ATL431AQDBZR [TI]

2.5V 低 IQ 可调节精密并联稳压器 | DBZ | 3 | -40 to 125;
ATL431AQDBZR
型号: ATL431AQDBZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.5V 低 IQ 可调节精密并联稳压器 | DBZ | 3 | -40 to 125

稳压器
文件: 总29页 (文件大小:1779K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ATL431, ATL432  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
ATL43xx 2.5V 低静态电流可调节精密分流稳压器  
1 特性  
3 说明  
1
可调节稳压输出:2.5V 36V  
超低工作电流  
ATL431 ATL432 为三引脚可调节分流稳压器,在适  
用的汽车级、商业级和工业级温度范围内均可满足规定  
的热稳定性。 这两款稳压器均可通过两个外部电阻将  
输出电压设置为 Vref(约为 2.5V)至 36V 范围内的任  
意值。 其输出阻抗典型值均为 0.05Ω。此类器件的有  
源输出电路具有出色的导通特性,因此成为了许多应用  
中齐纳二极管的绝佳替代产品,例如板载稳压器、可调  
节电源和开关电源。  
IKA(min) = 35µA(最大值)  
IREF = 150nA(最大值)  
内部补偿确保稳定性  
无需容性负载即可保持稳定  
25°C 温度下的基准电压容差  
0.5% (ATL43xB)  
1% (ATL43xA)  
ATL43X 的阴极电流范围相比其上一代产品 TL43X 有  
20 倍以上的提升。 另外稳定性也有所提高,可支持范  
围更为宽泛的负载电容类型和容值。  
温度漂移典型值  
5mV–40°C 85°C);“I”版本  
6mV–40°C 125°C);“Q”版本  
ATL431 ATL432 这两款器件的功能完全相同,只是  
引脚分配和订货编号有所不同。 ATL43X 提供 A B  
两个等级,25°C 温度下的初始容差分别为 1% 和  
0.5%。 此外,这两款器件的输出温度漂移较低,可确  
保在整个温度范围内保持出色的稳定性。  
扩展级阴极电流范围:35µA 100mA  
低输出阻抗:0.3Ω(最大值)  
ATL431AQATL431BI ATL431BQ 目前均为预  
览状态  
ATL432AIATL432AQATL432BI ATL432BQ  
目前均为预览状态  
ATL43xxI 器件的额定工作温度范围为 –40°C 至  
85°CATL43xxQ 器件的额定工作温度范围为 –40°C  
125°C。  
2 应用  
反激式开关模式电源 (SMPS) 中的二次侧稳压  
器件信息(1)  
工业、计算、消费类和便携式产品  
可调节电压和电流基准  
电源管理  
器件型号  
ATL43x  
封装  
封装尺寸(标称值)  
SOT (3)  
2.90mm x 1.60mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
电源隔离  
齐纳二极管替代产品  
VKA = 15.0V 时的稳定区域  
4 简化电路原理图  
2000  
Input  
V
KA  
1000  
I
KA  
STABLE  
100  
V
ref  
20  
0.0001  
0.001  
0.01  
CKA(PF)  
0.1  
1
10  
D001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCV5  
 
 
 
 
 
ATL431, ATL432  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
目录  
9.1 Overview ................................................................. 12  
9.2 Functional Block Diagram ....................................... 12  
9.3 Feature Description................................................. 12  
9.4 Device Functional Modes........................................ 13  
10 Applications and Implementation...................... 14  
10.1 Application Information.......................................... 14  
10.2 Typical Applications .............................................. 15  
11 Power Supply Recommendations ..................... 20  
12 Layout................................................................... 20  
12.1 Layout Guidelines ................................................. 20  
12.2 Layout Example .................................................... 20  
13 器件和文档支持 ..................................................... 21  
13.1 相关链接................................................................ 21  
13.2 ....................................................................... 21  
13.3 静电放电警告......................................................... 21  
13.4 术语表 ................................................................... 21  
14 机械、封装和可订购信息....................................... 21  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
7.1 Absolute Maximum Ratings ..................................... 3  
7.2 ESD Ratings.............................................................. 3  
7.3 Thermal Information.................................................. 3  
7.4 Recommended Operating Conditions....................... 4  
7.5 Electrical Characteristics, ATL431Ax, ATL432Ax..... 4  
7.6 Electrical Characteristics, ATL431Bx, ATL432Bx..... 4  
7.7 Notes......................................................................... 5  
7.8 Typical Characteristics.............................................. 6  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 12  
8
9
5 修订历史记录  
Changes from Original (March 2013) to Revision A  
Page  
最初发布的完整版文档。 ........................................................................................................................................................ 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
ATL431, ATL432  
www.ti.com.cn  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
6 Pin Configuration and Functions  
ATL431A/..DBZ (SOT-23-3) Package  
ATL432A/..DBZ (SOT-23-3) Package  
(T OP VIEW)  
(T OP VIEW)  
CATHODE  
REF  
1
2
REF  
1
ANODE  
3
ANODE  
3
CATHODE  
2
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
ATL431x  
ATL432x  
CATHODE  
REF  
1
2
3
2
1
3
I/O  
I
Shunt Current/Voltage input  
Threshold relative to common anode  
ANODE  
O
Common pin, normally connected to ground  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
40  
UNIT  
V
VKA  
IKA  
Cathode voltage(2)  
Continuous cathode current range  
Reference input current range  
Operating virtual junction temperature  
Storage temperature range  
–100  
–0.05  
-40  
150  
10  
mA  
mA  
°C  
II(ref)  
TJ  
150  
150  
Tstg  
–65  
°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ANODE, unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Thermal Information  
ATL43xx  
THERMAL METRIC(1)  
DBZ  
3 PINS  
331.8  
106.5  
64.6  
UNIT  
θJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
ψJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.9  
62.9  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2015, Texas Instruments Incorporated  
3
ATL431, ATL432  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
7.4 Recommended Operating Conditions  
MIN  
Vref  
MAX  
UNIT  
V
VKA  
IKA  
Cathode voltage  
Cathode current  
36  
100  
85  
.035  
–40  
–40  
mA  
"I" Grade  
TA  
Operating free-air temperature  
°C  
"Q" Grade  
125  
7.5 Electrical Characteristics, ATL431Ax, ATL432Ax  
over recommended operating conditions, TA = 25°C (unless otherwise noted)  
TEST  
ATL431Ax, ATL432Ax  
PARAMETER  
TEST CONDITIONS  
UNIT  
CIRCUIT  
MIN  
TYP  
MAX  
Vref  
Reference voltage  
23  
VKA = Vref, IKA = 1 mA  
2475  
2500  
2525  
mV  
ATL43XAI; TA = -  
40°C to 85°C  
5
6
15  
34  
Deviation of reference input  
voltage over full temperature  
range, see Notes section  
VKA = Vref  
IKA = 1 mA,  
,
VI(dev)  
23  
mV  
ATL43XAQ; TA = -  
40°C to 125°C  
Ratio of change in reference  
voltage to the change in  
cathode voltage  
ΔVKA = 10 V Vref  
ΔVKA = 36 V 10 V  
–0.4  
–0.1  
30  
–2.7  
–2  
ΔVref  
ΔVKA  
/
24  
24  
24  
IKA = 1 mA  
mV/V  
nA  
Iref  
Reference input current  
IKA = 1 mA, R1 = 10 k, R2 = ∞  
IKA = 1 mA, R1 = 10 k, R2 = ∞  
150  
Deviation of reference input  
current over full temperature  
range, see Notes section  
II(dev)  
20  
50  
nA  
Minimum cathode current for  
regulation  
23  
6  
Imin  
Ioff  
|zKA  
VKA = Vref  
20  
0.05  
0.05  
35  
0.2  
0.3  
µA  
µA  
Off-state cathode current  
25  
VKA = 36 V, Vref = 0  
Dynamic impedance, see  
Notes section  
|
23  
VKA = Vref, f 1 kHz, IKA = 1 mA to 100 mA  
7.6 Electrical Characteristics, ATL431Bx, ATL432Bx  
over recommended operating conditions, TA = 25°C (unless otherwise noted)  
ATL431Bx, ATL432Bx  
PARAMETER  
TEST CIRCUIT  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
Vref  
Reference voltage  
23  
VKA = Vref, IKA = 1 mA  
2487  
2500  
2512  
mV  
ATL43XBI; TA  
–40°C to 85°C  
=
5
6
15  
34  
Deviation of reference input  
voltage over full temperature  
range, see Notes section  
VKA = Vref, IKA = 1  
mA  
VI(dev)  
23  
mV  
ATL43XBQ; TA  
–40°C to 125°C  
=
Ratio of change in reference  
voltage to the change in  
cathode voltage  
ΔVKA = 10 V Vref  
ΔVKA = 36 V 10 V  
–0.4  
–0.1  
30  
–2.7  
–2  
ΔVref  
ΔVKA  
/
24  
24  
24  
IKA = 1 mA  
mV/V  
nA  
Iref  
Reference input current  
IKA = 1 mA, R1 = 10 k, R2 = ∞  
IKA = 1 mA, R1 = 10 k, R2 = ∞  
150  
Deviation of reference input  
current over full temperature  
range, see Notes section  
II(dev)  
20  
50  
nA  
Minimum cathode current for  
regulation  
23  
6  
Imin  
Ioff  
|zKA  
VKA = Vref  
20  
0.05  
0.05  
35  
0.2  
0.3  
µA  
µA  
Off-state cathode current  
25  
VKA = 36 V, Vref = 0  
Dynamic impedance, see  
Notes section  
|
23  
VKA = Vref, f 1 kHz, IKA = 1 mA to 100 mA  
4
版权 © 2015, Texas Instruments Incorporated  
 
ATL431, ATL432  
www.ti.com.cn  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
7.7 Notes  
The deviation parameters Vref(dev) and Iref(dev) are defined as the differences between the maximum and minimum  
values obtained over the rated temperature range. The average full-range temperature coefficient of the  
reference input voltage αVref is defined as:  
αVref is positive or negative, depending on whether minimum Vref or maximum Vref, respectively, occurs at the  
lower temperature.  
VKA  
IKA  
|zKA| =  
The dynamic impedance is defined as:  
When the device is operating with two external resistors (see 24), the total dynamic impedance of the circuit is  
V  
I  
R1  
R2  
|z'| =  
|z |  
1 +  
(
KA  
(
given by:  
which is approximately equal to  
版权 © 2015, Texas Instruments Incorporated  
5
ATL431, ATL432  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
7.8 Typical Characteristics  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the  
various devices.  
0.04  
0.032  
0.024  
0.016  
0.008  
0
2520  
2515  
2510  
2505  
2500  
2495  
2490  
2485  
2480  
2475  
Vref = 2485mV  
Vref = 2500mV  
Vref = 2504mV  
-40  
-20  
0
20  
40  
TA (qC)  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
TA (qC)  
60  
80  
100 120 140  
IKA=1mA  
2. Reference Voltage vs Free-Air Temperature  
3. Reference Current vs Free-Air Temperature  
100  
80  
40  
30  
20  
10  
TA = -40qC  
TA = 25qC  
TA = 85qC  
TA = 125qC  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
0
0
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
0.5  
1
1.5  
2
2.5  
3
D001  
VKA = VREF (V)  
VKA = VREF (V)  
D001  
5. Cathode Current vs Cathode Voltage  
4. Cathode Current vs Cathode Voltage  
0.2  
0.16  
0.12  
0.08  
0.04  
0
30  
25  
20  
15  
10  
Ik(min)  
-40  
-20  
0
20  
40  
TA (qC)  
60  
80  
100 120 140  
2.3  
2.35  
2.4  
2.45  
2.5  
2.55  
VKA = VREF (V)  
7. Off-State Cathode Current vs Free-Air Temperature  
6. Cathode Current vs Cathode Voltage  
6
版权 © 2015, Texas Instruments Incorporated  
ATL431, ATL432  
www.ti.com.cn  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
Typical Characteristics (接下页)  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the  
various devices.  
-0.1  
-0.15  
-0.2  
0
-0.5  
-1  
-1.5  
-2  
Vref to 10V  
10V to 36V  
-0.25  
-0.3  
-2.5  
-3  
-3.5  
-4  
-0.35  
-0.4  
-4.5  
-5  
-0.45  
-0.5  
-5.5  
-6  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
5
10  
15  
20  
25  
30  
35  
40  
Temperature (qC)  
Vka (V)  
D001  
IKA=1mA  
IKA=1mA  
8. Delta Reference Voltage vs Cathode Voltage  
9. Delta Reference Voltage vs Cathode Voltage  
900  
840  
780  
720  
660  
600  
150  
130  
110  
90  
Gain  
Phase  
70  
50  
30  
10  
-10  
-30  
-50  
10  
100  
1000  
Frequency (Hz)  
10000  
1000  
10000  
100000  
1000000  
Freq (kHz)  
D001  
26 used for this measurement.  
IKA=1mA  
IKA = 1 mA  
11. Small-Signal Voltage Amplification vs Frequency  
10. Noise Voltage  
1.2  
1.1  
1
0.1  
0.08  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.06  
0.04  
0.02  
0
100  
1000  
10000  
100000  
1000000  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Frequency (Hz)  
TA (qC)  
27 used for this measurement.  
27 used for this measurement.  
13. DC Output Impedance vs Temperature  
12. Output Impedance vs Frequency  
版权 © 2015, Texas Instruments Incorporated  
7
 
ATL431, ATL432  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the  
various devices.  
2000  
1000  
Unstable  
STABLE  
100  
STABLE  
20  
0.0001  
0.001  
0.01  
CKA(PF)  
0.1  
1
10  
D001  
ESR < 20 mΩ  
28 used to verify stability.  
IKA = 100 µA  
29 used for this measurement.  
14. Pulse Response  
15. Low IKA (VKA = 2.5 V) Stability Boundary Conditions  
all ATL43xx Devices  
2000  
2000  
Unstable  
1000  
1000  
Unstable  
STABLE  
STABLE  
100  
20  
100  
STABLE  
STABLE  
20  
0.0001  
0.001  
0.01  
CKA(PF)  
0.1  
1
10  
0.0001  
0.001  
0.01  
CKA(PF)  
0.1  
1
10  
D001  
D001  
ESR < 20 mΩ  
28 used to verify stability.  
ESR < 20 mΩ  
28 used to verify stability.  
16. Low IKA (VKA = 5.0 V) Stability Boundary Conditions  
17. Low IKA (VKA = 10.0 V) Stability Boundary Conditions  
all ATL43xx Devices  
all ATL43xx Devices  
2000  
1000  
100  
Unstable  
10  
STABLE  
100  
Stable  
1
20  
0.0001  
0.001  
0.01  
CKA(uF)  
0.1  
1
10  
D001  
0.0001  
0.001  
0.01  
CKA(PF)  
0.1  
1
10  
D001  
ESR < 20 mΩ  
28 used to verify stability.  
ESR < 20mΩ  
28 used to verify stability.  
19. High IKA (VKA = 2.5 V) Stability Boundary Conditions  
18. Low IKA (VKA = 15.0 V) Stability Boundary Conditions  
all ATL43xx Devices  
all ATL43xx Devices  
8
版权 © 2015, Texas Instruments Incorporated  
ATL431, ATL432  
www.ti.com.cn  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
Typical Characteristics (接下页)  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the  
various devices.  
100  
10  
1
100  
10  
1
Stable  
Stable  
Unstable  
Unstable  
0.0001  
0.001  
0.01  
CKA(uF)  
0.1  
1
10  
D001  
0.0001  
0.001  
0.01  
CKA(uF)  
0.1  
1
10  
D001  
ESR < 20 mΩ  
28 used to verify stability.  
ESR < 20 mΩ  
28 used to verify stability.  
20. High IKA (VKA = 5.0 V) Stability Boundary Conditions  
21. High IKA (VKA = 10.0 V) Stability Boundary Conditions  
all ATL43xx Devices  
all ATL43xx Devices  
100  
10  
1
Stable  
0.0001  
0.001  
0.01  
CKA(uF)  
0.1  
1
10  
D001  
ESR < 20 mΩ  
28 used to verify stability.  
22. High IKA (VKA = 15.0 V) Stability Boundary Conditions all ATL43xx Devices  
版权 © 2015, Texas Instruments Incorporated  
9
 
ATL431, ATL432  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
8 Parameter Measurement Information  
Input  
V
KA  
Input  
R1  
V
KA  
I
KA  
I
KA  
I
ref  
V
ref  
R2  
V
ref  
R1  
R2  
æ
ö
V
KA  
= V  
ref ç  
1 +  
+ I × R1  
ref  
÷
è
ø
23. Test Circuit for VKA = Vref  
Input  
24. Test Circuit for VKA > Vref  
OUTPUT  
V
KA  
I
off  
IK  
10NŸꢀ  
2.5NŸꢀ  
10µF  
+
-
5.0V  
25. Test Circuit for Ioff  
10NŸꢀ  
GND  
26. Test Circuit for Phase and Gain Measurement  
>250Ÿꢀ  
100Ÿꢀ  
OUTPUT  
IK  
R1 = 10NŸꢀ  
+
CL  
Vbat  
-
IK  
R2  
100Ÿꢀ  
-
+
>250Ÿꢀ  
IK  
GND  
27. Test Circuit for Reference Impedance (ZKA  
+
)
Vbat  
CL  
-
28. Test Circuit for Stability Boundary Conditions  
10  
版权 © 2015, Texas Instruments Incorporated  
ATL431, ATL432  
www.ti.com.cn  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
Parameter Measurement Information (接下页)  
25NŸꢀ  
OUTPUT  
IK  
Pulse  
Generator  
F = 100kHz  
50 Ÿꢀ  
GND  
29. Test Circuit for Pulse Response  
版权 © 2015, Texas Instruments Incorporated  
11  
ATL431, ATL432  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
ATL43x is a low power counterpart to TL431 and TLV431, having lower minimum cathode current (Ik(min) = 35 µA  
vs 0.1/1.0 mA). Like TL431, ATL43x is used in conjunction with it's key components to behave as a single  
voltage reference, error amplifier, voltage clamp or comparator with integrated reference.  
ATL43x can be operated and adjusted to cathode voltages from 2.5 V to 36 V, making this part optimum for a  
wide range of end equipments in industrial, auto, telecom & computing. In order for this device to behave as a  
shunt regulator or error amplifier, > 35 µA (Imin(max)) must be supplied in to the cathode pin. Under this  
condition, feedback can be applied from the Cathode and Ref pins to create a replica of the internal reference  
voltage.  
Various reference voltage options can be purchased with initial tolerances (at 25°C) of 0.5% and 1.0%. These  
reference options are denoted by B (0.5%) and A (1.0%) after the ATL43x.  
The ATL43xxI devices are characterized for operation from –40°C to 85°C, and the ATL43xxQ devices are  
characterized for operation from –40°C to 125°C.  
9.2 Functional Block Diagram  
CATHODE  
REF  
+
Vref  
ANODE  
9.3 Feature Description  
ATL43x consists of an internal reference and amplifier that outputs a sink current based on the difference  
between the reference pin and the virtual internal pin. The sink current is produced by an internal Darlington pair.  
When operated with enough voltage headroom (2.5 V) and cathode current (IKA), ATL43x forces the reference  
pin to 2.5 V. However, the reference pin can not be left floating, as it needs Iref 0.1 µA (please see the  
Functional Block Diagram). This is because the reference pin is driven into an NPN, which needs base current in  
order operate properly.  
When feedback is applied from the Cathode and Reference pins, ATL43x behaves as a Zener diode, regulating  
to a constant voltage dependent on current being supplied into the cathode. This is due to the internal amplifier  
and reference entering the proper operating regions. The same amount of current needed in the above feedback  
situation must be applied to this device in open loop, servo or error amplifying implementations in order for it to  
be in the proper linear region giving ATL43x enough gain.  
Unlike many linear regulators, ATL43x is internally compensated to be stable without an output capacitor  
between the cathode and anode; however, if it is desired to use an output capacitor 15 through 22 can be  
used as a guide to assist in choosing the correct capacitor to maintain stability.  
12  
版权 © 2015, Texas Instruments Incorporated  
 
ATL431, ATL432  
www.ti.com.cn  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
9.4 Device Functional Modes  
9.4.1 Open Loop (Comparator)  
When the cathode/output voltage or current of ATL43x is not being fed back to the reference/input pin in any  
form, this device is operating in open loop. With such high gain in this configuration, ATL43x is typically used as  
a comparator. Due to the integrated reference, the ATL43x allows users to monitor a certain level of a single  
signal.  
9.4.2 Closed Loop  
When the cathode/output voltage or current of ATL43x is being fed back to the reference/input pin in any form,  
this device is operating in closed loop. The majority of applications involving ATL43x use it in this manner to  
regulate a fixed voltage or current. The feedback enables this device to behave as an error amplifier, computing  
a portion of the output voltage and adjusting it to maintain the desired regulation. This is done by relating the  
output voltage back to the reference pin in a manner to make it equal to the internal reference voltage, which can  
be accomplished via resistive or direct feedback.  
版权 © 2015, Texas Instruments Incorporated  
13  
ATL431, ATL432  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
10 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
30 shows the ATL43x used in a 24-V isolated flyback supply. The output of the regulator, plus the forward  
voltage drop of the optocoupler LED (2.5 + 0.7 = 3.2 V), determine the minimum voltage that can be regulated in  
an isolated supply configuration. Regulated voltage as low as 5.0 Vdc is possible in the topology shown in 30.  
The 431 family of devices are prevalent in these applications, being designers go to choice for secondary side  
regulation. Due to this prevalence, this section will further go on to explain operation and design in both states of  
ATL43x that this application will see, open loop (Comparator + Vref) & closed loop (Shunt Regulator).  
ATL43x's key benefit in isolated supplies is the no load power savings gained by the > 20x decrease in IKmin from  
TL431. More information about this and other benefits can be found in the application note Designing with the  
"Advanced" TL431, ATL431 SLVA685. Further information about system stability and using a ATL43x device for  
compensation can be found in the application note Compensation Design With TL431 for UCC28600, SLUA671.  
VI  
120 V  
Vo=24 V  
IKMIN  
Gate Drive  
VCC  
Controller  
VFB  
ATL431  
Current  
Sense  
GND  
30. Flyback With Isolation Using ATL43x  
as Voltage Reference and Error Amplifier  
14  
版权 © 2015, Texas Instruments Incorporated  
 
ATL431, ATL432  
www.ti.com.cn  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
10.2 Typical Applications  
10.2.1 Comparator with Integrated Reference (Open Loop)  
Vsup  
Rsup  
Vout  
CATHODE  
R1  
R2  
VL  
RIN  
VIN  
REF  
+
2.5V  
ANODE  
31. Comparator Application Schematic  
10.2.1.1 Design Requirements  
For this design example, use the parameters listed in 1 as the input parameters.  
1. Design Parameters  
DESIGN PARAMETER  
Input Voltage Range  
Input Resistance  
EXAMPLE VALUE  
0 V to 3.3 V  
100 kΩ  
Supply Voltage  
5 V  
Cathode Current (IK)  
Output Voltage Level  
Logic Input Thresholds VIH/VIL  
50 µA  
~2 V - Vsup  
1.5 V / 0.8 V  
10.2.1.2 Detailed Design Procedure  
When using ATL43x as a comparator with reference, determine the following:  
Input voltage range  
Reference voltage accuracy  
Output logic input high and low level thresholds  
Current source resistance  
10.2.1.2.1 Basic Operation  
In the configuration shown in 31 ATL43x will behave as a comparator, comparing the Vref pin voltage to the  
internal virtual reference voltage. When provided a proper cathode current (Ik), ATL43x will have enough open  
loop gain to provide a quick response. With the ATL43x's max Operating Current (Imin) being 35 µA and up to 40  
µA over temperature, operation below that could result in low gain, leading to a slow response.  
版权 © 2015, Texas Instruments Incorporated  
15  
 
 
ATL431, ATL432  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
10.2.1.2.2 Overdrive  
Slow or inaccurate responses can also occur when the reference pin is not provided enough overdrive voltage.  
This is the amount of voltage that is higher than the internal virtual reference. The internal virtual reference  
voltage will be within the range of 2.5 V ±(0.5% or 1.0%) depending on which version is being used.  
The more overdrive voltage provided, the faster the ATL43x will respond.  
For applications where ATL43x is being used as a comparator, it is best to set the trip point to greater than the  
positive expected error (i.e. +1.0% for the A version). For fast response, setting the trip point to > 10% of the  
internal Vref should suffice. 32 shows the transition from VOH to VOL based on the input voltage and can be  
used as a guide for selecting the overdrive voltage.  
For minimal voltage drop or difference from Vin to the ref pin, it is recommended to use an input resistor < 1 MΩ  
to provide Iref.  
10.2.1.2.3 Output Voltage and Logic Input Level  
In order for ATL43x to properly be used as a comparator, the logic output must be readable by the receiving logic  
device. This is accomplished by knowing the input high and low level threshold voltage levels, typically denoted  
by VIH & VIL.  
As seen in 32, ATL43x's output low level voltage in open-loop/comparator mode is ~2 V, which is sufficient for  
some 5.0 V supplied logic. However, would not work for 3.3 V and 1.8 V supplied logic. In order to  
accommodate this, a resistive divider can be tied to the output to attenuate the output voltage to a voltage legible  
to the receiving low voltage logic device.  
ATL43x's output high voltage is approximately Vsup due to ATL43x being open-collector. If Vsup is much higher  
than the receiving logic's maximum input voltage tolerance, the output must be attenuated to accommodate the  
outgoing logic's reliability.  
When using a resistive divider on the output, be sure to make the sum of the resistive divider (R1 & R2 in 31)  
is much greater than Rsup in order to not interfere with ATL43x's ability to pull close to Vsup when turning off.  
10.2.1.2.3.1 Input Resistance  
ATL43x requires an input resistance in this application in order to source the reference current (Iref) needed from  
this device to be in the proper operating regions while turning on. The actual voltage seen at the ref pin will be:.  
Vref = Vin – Iref × Rin  
(1)  
Since Iref can be as high as 0.15 µA it is recommended to use a resistance small enough that will mitigate the  
error that Iref creates from Vin. Also, the input resistance must be set high enough as to not surpass the absolute  
maximum of 10mA.  
10.2.1.3 Application Curves  
5.5  
5.25  
5
4.75  
4.5  
4.25  
4
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
2
1.75  
1.5  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
VIN (V)  
3
D001  
RIN = 100 kΩ  
VSUP = 5.0 V  
RSUP = 10 kΩ  
32. Open Loop (Comparator Mode) Vout vs. Vin  
16  
版权 © 2015, Texas Instruments Incorporated  
 
ATL431, ATL432  
www.ti.com.cn  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
10.2.2 Shunt Regulator/Reference  
RSUP  
R1  
VSUP  
VO  
= 1 +  
(
)VREF  
R2  
R1  
CATHODE  
0.1%  
REF  
VREF  
ATL431  
ANODE  
CL  
R2  
0.1%  
33. Shunt Regulator Schematic  
10.2.2.1 Design Requirements  
For this design example, use the parameters listed in 2 as the input parameters.  
2. Design Parameters  
DESIGN PARAMETER  
Reference Initial Accuracy  
Supply Voltage  
EXAMPLE VALUE  
1.0%  
48 V  
Cathode Current (IK)  
50 µA  
Output Voltage Level  
2.5 V - 36 V  
1 nF  
Load Capacitance  
Feedback Resistor Values and Accuracy (R1 & R2)  
10 kΩ  
版权 © 2015, Texas Instruments Incorporated  
17  
 
 
ATL431, ATL432  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
10.2.2.2 Detailed Design Procedure  
When using ATL43x as a Shunt Regulator, determine the following:  
Input voltage range  
Temperature range  
Total accuracy  
Cathode current  
Reference initial accuracy  
Output capacitance  
10.2.2.2.1 Programming Output/Cathode Voltage  
In order to program the cathode voltage to a regulated voltage a resistive bridge must be shunted between the  
cathode and anode pins with the mid point tied to the reference pin. This can be seen in 33, with R1 & R2  
being the resistive bridge. The cathode/output voltage in the shunt regulator configuration can be approximated  
by the equation shown in 33. The cathode voltage can be more accuratel determined by taking in to account  
the cathode current:  
VO = (1 + R1/R2) × Vref – Iref × R1  
(2)  
In order for this equation to be valid, ATL43x must be fully biased so that it has enough open loop gain to  
mitigate any gain error. This can be done by meeting the Imin spec denoted in Electrical Characteristics,  
ATL431Ax, ATL432Ax table.  
10.2.2.2.2 Total Accuracy  
When programming the output above unity gain (VKA= Vref), ATL43x is susceptible to other errors that may effect  
the overall accuracy beyond Vref. These errors include:  
R1 and R2 accuracies  
VI(dev) - Change in reference voltage over temperature  
ΔVref / ΔVKA - Change in reference voltage to the change in cathode voltage  
|zKA| - Dynamic impedance, causing a change in cathode voltage with cathode current  
Worst case cathode voltage can be determined taking all of the variables in to account. Application note  
SLVA445 assists designers in setting the shunt voltage to achieve optimum accuracy for this device.  
10.2.2.2.3 Stability  
Though ATL43x is stable with no capacitive load, the device that receives the shunt regulator's output voltage  
could present a capacitive load that is within the ATL43x region of stability, shown in 15 through 22. Also,  
designers may use capacitive loads to improve the transient response or for power supply decoupling.  
15 through 22 should be used as a guide for capacitor selection and compensation. It is characterized  
using ceramic capacitors with very low ESR. When it is desirable to use a capacitor within the unstable region,  
higher ESR capacitors can be used to stabilize ATL43x or an external series resistance can be added. For more  
information and guidance on ESR values, please refer to the application note Designing with the "Advanced"  
TL431, ATL431 SLVA685.  
Unlike TL431, the stability boundary is characterized and determined with resistors 250Ω and greater. Which is  
more suitable for low cathode current applications.  
18  
版权 © 2015, Texas Instruments Incorporated  
ATL431, ATL432  
www.ti.com.cn  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
10.2.2.3 Application Curves  
34. ATL43x Start-up Response IKA = 50 µA  
35. ATL43x Start-up Response IKA = 1 mA  
版权 © 2015, Texas Instruments Incorporated  
19  
ATL431, ATL432  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
11 Power Supply Recommendations  
When using ATL43x as a Linear Regulator to supply a load, designers will typically use a bypass capacitor on  
the output/cathode pin. Be sure that the capacitance is within the stability criteria shown in 15 through 22.  
In order to not exceed the maximum cathode current, be sure that the supply voltage is current limited. Also, be  
sure to limit the current being driven into the Ref pin, as not to exceed it's absolute maximum rating.  
For applications shunting high currents, pay attention to the cathode and anode trace lengths, adjusting the width  
of the traces to have the proper current density.  
12 Layout  
12.1 Layout Guidelines  
Place decoupling capacitors as close to the device as possible. Use appropriate widths for traces when shunting  
high currents to avoid excessive voltage drops.  
12.2 Layout Example  
DBZ  
(TOP VIEW)  
Rref  
REF  
Vin  
1
2
ANODE  
3
Rsup  
CATHODE  
GND  
Vsup  
CL  
GND  
36. DBZ Layout Example  
20  
版权 © 2015, Texas Instruments Incorporated  
ATL431, ATL432  
www.ti.com.cn  
ZHCSDN9A MARCH 2015REVISED APRIL 2015  
13 器件和文档支持  
13.1 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
ATL431  
ATL432  
13.2 商标  
All trademarks are the property of their respective owners.  
13.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ATL431AIDBZR  
ATL431AQDBZR  
ATL431BIDBZR  
ATL431BQDBZR  
ATL432AIDBZR  
ATL432AQDBZR  
ATL432BIDBZR  
ATL432BQDBZR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3
3
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 125  
(ZCKS, ZCR3)  
(ZCLS, ZCS3)  
(ZCMS, ZCT3)  
(ZCJS, ZCU3)  
(ZCNS, ZCV3)  
(ZCOS, ZCW3)  
(ZCPS, ZCX3)  
(ZCQS, ZCY3)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Feb-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ATL431AIDBZR  
ATL431AIDBZR  
ATL431AQDBZR  
ATL431AQDBZR  
ATL431BIDBZR  
ATL431BIDBZR  
ATL431BQDBZR  
ATL431BQDBZR  
ATL432AIDBZR  
ATL432AIDBZR  
ATL432AQDBZR  
ATL432AQDBZR  
ATL432BIDBZR  
ATL432BIDBZR  
ATL432BQDBZR  
ATL432BQDBZR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
178.0  
180.0  
178.0  
180.0  
178.0  
178.0  
180.0  
178.0  
180.0  
178.0  
180.0  
180.0  
178.0  
178.0  
180.0  
8.4  
9.2  
8.4  
9.2  
8.4  
9.2  
9.2  
8.4  
9.2  
8.4  
9.2  
8.4  
8.4  
9.2  
9.2  
8.4  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Feb-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ATL431AIDBZR  
ATL431AIDBZR  
ATL431AQDBZR  
ATL431AQDBZR  
ATL431BIDBZR  
ATL431BIDBZR  
ATL431BQDBZR  
ATL431BQDBZR  
ATL432AIDBZR  
ATL432AIDBZR  
ATL432AQDBZR  
ATL432AQDBZR  
ATL432BIDBZR  
ATL432BIDBZR  
ATL432BQDBZR  
ATL432BQDBZR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
183.0  
180.0  
183.0  
180.0  
183.0  
180.0  
180.0  
183.0  
180.0  
183.0  
180.0  
183.0  
183.0  
180.0  
180.0  
183.0  
183.0  
180.0  
183.0  
180.0  
183.0  
180.0  
180.0  
183.0  
180.0  
183.0  
180.0  
183.0  
183.0  
180.0  
180.0  
183.0  
20.0  
18.0  
20.0  
18.0  
20.0  
18.0  
18.0  
20.0  
18.0  
20.0  
18.0  
20.0  
20.0  
18.0  
18.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
(0.125)  
3.04  
2.80  
1.9  
3
(0.15)  
NOTE 4  
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/D 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ATL431BIDBZR

2.5V 低 IQ 可调节精密并联稳压器 | DBZ | 3 | -40 to 85
TI

ATL431BQDBZR

2.5V 低 IQ 可调节精密并联稳压器 | DBZ | 3 | -40 to 125
TI

ATL431LI

采用超小型 DQN 封装的低 IQ 可编程分流稳压器
TI

ATL431LI-Q1

汽车类高带宽低 IQ 可编程并联稳压器(引脚排列:KRA)
TI

ATL431LIAIDBZR

采用超小型 DQN 封装的低 IQ 可编程分流稳压器 | DBZ | 3 | -40 to 85
TI

ATL431LIAIDQNR

采用超小型 DQN 封装的低 IQ 可编程分流稳压器 | DQN | 4 | -40 to 85
TI

ATL431LIAQDBZR

采用超小型 DQN 封装的低 IQ 可编程分流稳压器 | DBZ | 3 | -40 to 125
TI

ATL431LIAQDBZRQ1

汽车类高带宽低 IQ 可编程并联稳压器(引脚排列:KRA) | DBZ | 3 | -40 to 125
TI

ATL431LIAQDQNR

采用超小型 DQN 封装的低 IQ 可编程分流稳压器 | DQN | 4 | -40 to 125
TI

ATL431LIBIDBZR

采用超小型 DQN 封装的低 IQ 可编程分流稳压器 | DBZ | 3 | -40 to 85
TI

ATL431LIBIDQNR

采用超小型 DQN 封装的低 IQ 可编程分流稳压器 | DQN | 4 | -40 to 85
TI

ATL431LIBQDBZR

采用超小型 DQN 封装的低 IQ 可编程分流稳压器 | DBZ | 3 | -40 to 125
TI