ATL432LIBQDBZRQ1 [TI]

汽车类高带宽低 IQ 可编程并联稳压器(引脚排列:RKA) | DBZ | 3 | -40 to 125;
ATL432LIBQDBZRQ1
型号: ATL432LIBQDBZRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类高带宽低 IQ 可编程并联稳压器(引脚排列:RKA) | DBZ | 3 | -40 to 125

光电二极管 稳压器
文件: 总37页 (文件大小:1680K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
ATL431LI-Q1/ATL432LI-Q1 高带宽、低 IQ 可编程并联稳压器  
1 特性  
3 说明  
1
符合汽车类 应用要求  
具有符合 AEC-Q100 标准的下列特性:  
ATL43xLI-Q1 是一款可调节三端并联稳压器,在适用  
的汽车级、商用级和军用级温度范围内具有额定的热稳  
定性。可通过两个外部电阻器将输出电压设置为介于  
Vref(约为 2.5V)和 36V 之间的任意值。该器件的输  
出阻抗典型值为 0.3Ω,其有源输出电路可提供快速导  
通特性,从而可在板载稳压、可调节电源和开关电源等  
多种 应用中完美地替代齐纳二极管。这款器件是  
TL431LI-Q1 TL432LI-Q1 的引脚对引脚替代品,且  
最低工作电流更低,有助于降低系统功耗。ATL432LI-  
Q1 具有与 ATL431LI-Q1 完全相同的功能和电气规  
格,但是具有不同的 DBZ 封装引脚排布。  
器件温度等级 1–40°C +125°C 的环境工作  
温度范围  
25°C 下的基准电压容差  
0.5%B 级)  
1%A 级)  
最低输出电压典型值:2.5V  
可调输出电压:Vref 36V  
工作温度范围:40°C +125°C  
27mV 最大温漂  
输出阻抗典型值 0.3Ω  
灌电流能力  
ATL431LI-Q1 具有 AB 两个等级,初始容差(在  
25°C 下)分别为 1% 0.5%ATL43xLI-Q1 的额定  
工作温度范围为 –40°C +125°C,其低输出温漂可  
确保在整个温度范围内保持良好稳定性。  
Imin = 0.08mA(最大值)  
IKA = 15mA(最大值)  
基准输入电流 IREF0.4μA(最大值)  
器件信息(1)  
整个温度范围内的基准输入电流偏差 II(dev)0.3μA  
(最大值)  
器件型号  
ATL43xLI  
封装(引脚)  
SOT-23 (3)  
封装尺寸(标称值)  
2.90mm x 1.30mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
逆变器和电机控制  
直流/直流转换器  
LED 照明  
车载充电器 (OBC)  
信息娱乐系统和仪表组  
简化原理图  
Input  
V
KA  
I
KA  
V
ref  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBB0  
 
 
 
 
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
目录  
9.3 Feature Description................................................. 13  
9.4 Device Functional Modes........................................ 13  
10 Applications and Implementation...................... 14  
10.1 Application Information.......................................... 14  
10.2 Typical Applications .............................................. 14  
10.3 System Examples ................................................. 24  
11 Power Supply Recommendations ..................... 27  
12 Layout................................................................... 27  
12.1 Layout Guidelines ................................................. 27  
12.2 Layout Example .................................................... 27  
13 器件和文档支持 ..................................................... 28  
13.1 器件支持................................................................ 28  
13.2 文档支持................................................................ 28  
13.3 相关链接................................................................ 28  
13.4 接收文档更新通知 ................................................. 28  
13.5 支持资源................................................................ 28  
13.6 ....................................................................... 28  
13.7 静电放电警告......................................................... 28  
13.8 Glossary................................................................ 29  
14 机械、封装和可订购信息....................................... 29  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Parameter Measurement Information .................. 9  
8.1 Temperature Coefficient............................................ 9  
8.2 Dynamic Impedance ............................................... 10  
Detailed Description ............................................ 11  
9.1 Overview ................................................................. 11  
9.2 Functional Block Diagram ....................................... 11  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (May 2019) to Revision A  
Page  
将器件状态从预告信息更改为生产数据.............................................................................................................................. 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
5 Device Comparison Table  
DEVICE PINOUT  
INITIAL ACCURACY  
OPERATING FREE-AIR TEMPERATURE (TA)  
ATL431LI-Q1  
ATL432LI-Q1  
A: 1%  
B: 0.5%  
Q: -40°C to 125°C  
6 Pin Configuration and Functions  
ATL431LI-Q1 DBZ Package  
3-Pin SOT-23  
ATL432LI-Q1 DBZ Package  
3-Pin SOT-23  
Top View  
Top View  
1
2
CATHODE  
REF  
1
2
REF  
ANODE  
3
ANODE  
3
CATHODE  
Pin Functions  
PIN  
NAME  
ATL431LI-Q1  
ATL432LI-Q1  
TYPE  
DESCRIPTION  
DBZ  
DBZ  
ANODE  
3
1
2
3
2
1
O
I/O  
I
Common pin, normally connected to ground  
Shunt Current/Voltage input  
CATHODE  
REF  
Threshold relative to common anode  
Copyright © 2019, Texas Instruments Incorporated  
3
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
37  
UNIT  
V
VKA  
IKA  
Cathode Voltage(2)  
Continuos Cathode Current Range  
Reference Input Current  
–10  
–5  
18  
mA  
mA  
C
II(ref)  
TJ  
10  
Operating Junction Temperature Range  
Storage Temperature Range  
–40  
–65  
150  
150  
Tstg  
C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ANODE, unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification  
7.3 Recommended Operating Conditions  
MIN  
MAX  
36  
UNIT  
V
VKA  
IKA  
TA  
Cathode Voltage  
VREF  
0.08  
–40  
Continuous Cathode Current Range  
Operating Free-Air Temperature(1)  
15  
mA  
C
ATL43xLIxQ  
125  
(1) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient  
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ can affect reliability. See the Semiconductor and IC  
Package Thermal Metrics Application Report for more information.  
7.4 Thermal Information  
ATL43xLI  
THERMAL METRIC(1)  
DBZ  
3 PINS  
371.7  
145.9  
104.7  
23.9  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
C/W  
C/W  
C/W  
C/W  
C/W  
Junction-to-top characterization parameter  
Juction-to-board characterization parameter  
ψJB  
102.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application  
Report.  
4
版权 © 2019, Texas Instruments Incorporated  
 
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
7.5 Electrical Characteristics  
over recommended operating conditions, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CIRCUIT  
TEST CONDITIONS  
ATL43xLIAx devices  
MIN TYP MAX  
2475 2500 2525  
2487 2500 2512  
UNIT  
mV  
VREF  
Reference Voltage  
See 17  
VKA = Vref, IKA = 1 mA  
ATL43xLIBx devices  
mV  
Deviation of reference  
input voltage over full  
temperature range  
VI(dev)  
See 17  
See 18  
VKA = Vref, IKA = 1 mA  
ATL43xLIxQ devices  
10  
27  
mV  
(1)  
Ratio of change in  
reference voltage to the  
change in cathode  
voltage  
ΔVKA = 10 V - Vref  
ΔVKA = 36 V - 10 V  
–1.4 –2.7  
mV/V  
mV/V  
µA  
ΔVref  
ΔVKA  
/
IKA = 1 mA  
–1  
–2  
Iref  
Reference Input Current See 18  
IKA = 1 mA, R1 = 10k, R2 = ∞  
IKA = 1 mA, R1 = 10k, R2 = ∞  
0.2  
0.4  
Deviation of reference  
II(dev)  
input current over full  
See 18  
See 17  
0.1  
0.3  
µA  
µA  
(1)  
temperature range  
Minimum cathode  
current for regulation  
Imin  
Ioff  
|ZKA  
VKA = Vref  
65  
80  
1
Off-state cathode  
current  
See 19  
See 17  
VKA = 36 V, Vref = 0  
0.1  
µA  
(2)  
|
Dynamic Impedance  
VKA = Vref, IKA = 1 mA to 15 mA  
0.65 0.75  
(1) The deviation parameters VI(dev) and II(dev) are defined as the differences between the maximum and minimum values obtained over the  
rated temperature range. For more details on VI(dev) and how it relates to the average temperature coefficient, see the Temperature  
Coefficient section.  
(2) The dynamic impedance is defined by |ZKA| = ΔVKA/ΔIKA. For more details on |ZKA| and how it relates to Vout, see the Temperature  
Coefficient section.  
版权 © 2019, Texas Instruments Incorporated  
5
 
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6 Typical Characteristics  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature  
ranges of the various devices.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2520  
2515  
2510  
2505  
2500  
2495  
2490  
2485  
2480  
2475  
IKA = 1 mA  
-50 -25  
0
25  
50  
TA - Free-Air Temperature - °C  
75 100 125  
-40  
-20  
0
20  
40  
TA (èC)  
60  
80  
100 120 140  
2. Reference Current versus Free-Air Temperature  
1. Reference Voltage versus Free-Air Temperature  
200  
15  
VKA = Vref  
TA = 25°C  
VKA = Vref  
TA = 25°C  
12  
175  
150  
125  
9
6
Imin  
100  
75  
50  
25  
0
3
0
-25  
-50  
-3  
0
0.5  
1
VKA - Cathode Voltage -V  
1.5  
2
2.5  
3
0
0.5  
1
VKA - Cathode Voltage - V  
1.5  
2
2.5  
D003  
D004  
3. Cathode Current versus Cathode Voltage  
4. Cathode Current versus Cathode Voltage  
0.02  
-0.35  
VKA = 3 V to 36 V  
-0.4  
0.016  
0.012  
0.008  
0.004  
0
-0.45  
-0.5  
-0.55  
-0.6  
-0.65  
-0.7  
-0.75  
-0.8  
-40 -20  
0 20 40 60 80 100 120 140  
TA - Free-Air Temperature - °C  
-50 -25  
0
25  
50  
Temperature (°C)  
75 100 125  
D006  
5. Off-State Cathode Current  
6. Ratio of Delta Reference Voltage to Delta Cathode  
versus Free-Air Temperature  
Voltage versus Free-Air Temperature  
6
版权 © 2019, Texas Instruments Incorporated  
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
Typical Characteristics (接下页)  
75  
200  
160  
120  
80  
I
= 10 mA  
KA  
T = 25°C  
A
60  
45  
30  
15  
Output  
232 Ω  
I
KA  
15 kΩ  
9 µF  
40  
+
AV  
Phase  
0
0
10M  
8.25 kΩ  
100  
1k  
10k 100k  
f - Frequency - Hz  
1M  
D000  
GND  
7. Small-Signal Voltage Amplification  
8. Test Circuit for Voltage Amplification  
versus Frequency  
100  
1 kΩ  
IKA = 1 mA  
TA = 25°C  
Output  
50  
30  
20  
I
KA  
10  
5
50 Ω  
+
3
2
1
GND  
0.5  
0.3  
0.2  
0.1  
1k  
10k 100k  
f - Frequency - Hz  
1M  
9. Reference Impedance versus Frequency  
10. Test Circuit for Reference Impedance  
6
220 Ω  
TA = 25èC  
Input  
Output  
5
4
Pulse  
50 Ω  
Generator  
f = 100 kHz  
3
Output  
2
1
0
GND  
-1  
0
1
2
3
4
5
6
7
t - Time - ms  
puls  
12. Test Circuit for Pulse Response  
11. Pulse Response  
版权 © 2019, Texas Instruments Incorporated  
7
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
150 Ω  
15  
A VKA = Vref  
B VKA = 5 V  
C VKA = 10 V  
I
13  
KA  
Stable Region  
+
V
BATT  
11  
9
C
L
7
TEST CIRCUIT FOR CURVE A  
5
3
I
KA  
R1 = 10 kΩ  
150 Ω  
1
0.001  
0.01  
0.1  
1
CL - Load Capacitance - µF  
10  
C
L
ATL4  
+
The areas under the curves represent conditions that may cause the  
device to oscillate. For curves B and C, R2 and V+ are adjusted to  
establish the initial VKA and IKA conditions, with CL = 0. VBATT and CL  
then are adjusted to determine the ranges of stability.  
R2  
V
BATT  
13. Stability Boundary Conditions for All ATL431LI-Q1,  
ATL432LI-Q1 Devices Above 1 mA  
TEST CIRCUIT FOR CURVES B, C, AND D  
14. Test Circuit for Stability Boundary Conditions  
150 Ω  
1
A VKA = Vref  
B VKA = 5 V  
C VKA = 10 V  
I
KA  
+
0.8  
V
BATT  
C
L
0.6  
0.4  
TEST CIRCUIT FOR CURVE A  
Stable Region  
I
KA  
0.2  
R1 = 10 kΩ  
150 Ω  
C
L
0
0.001  
+
0.01  
0.1  
1
CL - Load Capacitance - µF  
10  
R2  
V
BATT  
ATL4  
The areas in-between the curves represent conditions that may cause  
the device to oscillate. For curves B and C, R2 and V+ are adjusted  
to establish the initial VKA and IKA conditions, with CL = 0. VBATT and  
CL then are adjusted to determine the ranges of stability.  
15. Stability Boundary Conditions for All ATL431LI-Q1,  
ATL432LI-Q1 Devices Below 1 mA  
TEST CIRCUIT FOR CURVES B, C, AND D  
16. Test Circuit for Stability Boundary Conditions  
8
版权 © 2019, Texas Instruments Incorporated  
 
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
8 Parameter Measurement Information  
Input  
V
KA  
I
KA  
V
ref  
17. Test Circuit for VKA = Vref  
Input  
R1  
V
KA  
I
KA  
I
ref  
R2  
V
ref  
R1  
R2  
æ
ö
V
KA  
= V  
ref ç  
1 +  
+ I × R1  
ref  
÷
è
ø
18. Test Circuit for VKA > Vref  
Input  
V
KA  
I
off  
19. Test Circuit for Ioff  
8.1 Temperature Coefficient  
The deviation of the reference voltage, Vref, over the full temperature range is known as VI(dev). The parameter of  
VI(dev) can be used to find the temperature coefficient of the device. The average full-range temperature  
coefficient of the reference input voltage, αVref, is defined as:  
αVref is positive or negative, depending on whether minimum Vref or maximum Vref, respectively, occurs at the  
lower temperature. The full-range temperature coefficient is an average and, therefore, any subsection of the  
rated operating temperature range can yield a value that is greater or less than the average. For more details on  
temperature coefficient, refer to the Voltage Reference Selection Basics White Paper.  
版权 © 2019, Texas Instruments Incorporated  
9
 
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.2 Dynamic Impedance  
DVKA  
DIKA  
ZKA  
=
The dynamic impedance is defined as:  
. When the device is operating with two external resistors  
DV  
z' =  
(see 18), the total dynamic impedance of the circuit is given by:  
D
I , which is approximately equal to  
R1  
ZKA 1+  
÷
R2  
«
.
The VKA of the ATL431LI-Q1 can be affected by the dynamic impedance. The ATL431LI-Q1 test current Itest for  
VKA is specified in the Electrical Characteristics. Any deviation from Itest can cause deviation on the output VKA. 图  
20 shows the effect of the dynamic impedance on the VKA  
.
Itest  
IKA  
IKA(min)  
0
VKA (V)  
P
ë
 
20. Dynamic Impedance  
10  
版权 © 2019, Texas Instruments Incorporated  
 
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
9 Detailed Description  
9.1 Overview  
This standard device has proven ubiquity and versatility across a wide range of applications, ranging from power  
to signal path. This is due to its key components containing an accurate voltage reference and op amp, which  
are very fundamental analog building blocks. The ATL431LI-Q1 is used in conjunction with the key components  
to behave as the following:  
Single voltage reference  
Error amplifier  
Voltage clamp  
Comparator with integrated reference  
ATL431LI-Q1 can be operated and adjusted to cathode voltages from 2.5 V to 36 V, making this part optimal for  
a wide range of end equipments in industrial, auto, telecom, and computing. For this device to behave as a shunt  
regulator or error amplifier, >80 µA (Imin(maximum)) must be supplied in to the cathode pin. Under this condition,  
feedback can be applied from the Cathode and Ref pins to create a replica of the internal reference voltage.  
Various reference voltage options can be purchased with initial tolerances (at 25°C) of 0.5% and 1%. These  
reference options are denoted by B (0.5%) and A (1.0%) after the ATL431LI-Q1 or ATL432LI-Q1. ATL431LI-Q1  
and ATL432LI-Q1 are both functionally the same, but have different pinout options. The ATL43xLI-Q1 devices  
are characterized for operation from –40°C to +125°C.  
9.2 Functional Block Diagram  
CATHODE  
+
_
REF  
V
ref  
ANODE  
21. Equivalent Schematic  
版权 © 2019, Texas Instruments Incorporated  
11  
 
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Functional Block Diagram (接下页)  
CATHODE  
REF  
ANODE  
22. Detailed Schematic  
12  
版权 © 2019, Texas Instruments Incorporated  
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
9.3 Feature Description  
The ATL431LI-Q1 consists of an internal reference and amplifier that outputs a sink current based on the  
difference between the reference pin and the virtual internal pin. The sink current is produced by the internal  
Darlington pair, shown in 21. A Darlington pair is used for this device to be able to sink a maximum current of  
15 mA.  
When operated with enough voltage headroom (2.5 V) and cathode current (IKA), the ATL431LI-Q1 forces the  
reference pin to 2.5 V. However, the reference pin cannot be left floating, as it needs IREF 0.4 µA (see the  
Specifications). This is because the reference pin is driven into an NPN, which needs base current to operate  
properly.  
When feedback is applied from the Cathode and Reference pins, the ATL431LI-Q1 behaves as a Zener diode,  
regulating to a constant voltage dependent on current being supplied into the cathode. This is due to the internal  
amplifier and reference entering the proper operating regions. The same amount of current needed in the above  
feedback situation must be applied to this device in open loop, servo, or error amplifying implementations for it to  
be in the proper linear region giving ATL431LI-Q1 enough gain.  
Unlike many linear regulators, ATL431LI-Q1 is internally compensated to be stable without an output capacitor  
between the cathode and anode. However, if it is desired to use an output capacitor 13 can be used as a  
guide to assist in choosing the correct capacitor to maintain stability.  
9.4 Device Functional Modes  
9.4.1 Open Loop (Comparator)  
When the cathode/output voltage or current of ATL431LI-Q1 is not being fed back to the reference/input pin in  
any form, this device is operating in open loop. With proper cathode current (Ika) applied to this device, the  
ATL431LI-Q1 has the characteristics shown in 21. With such high gain in this configuration, the ATL431LI-Q1  
is typically used as a comparator. With the reference integrated makes ATL431LI-Q1 the preferred choice when  
users are trying to monitor a certain level of a single signal.  
9.4.2 Closed Loop  
When the cathode/output voltage or current of the ATL431LI-Q1 is being fed back to the reference/input pin in  
any form, this device is operating in closed loop. The majority of applications involving ATL431LI-Q1 use it in this  
manner to regulate a fixed voltage or current. The feedback enables this device to behave as an error amplifier,  
computing a portion of the output voltage and adjusting it to maintain the desired regulation. This is done by  
relating the output voltage back to the reference pin in a manner to make it equal to the internal reference  
voltage, which can be accomplished via resistive or direct feedback.  
版权 © 2019, Texas Instruments Incorporated  
13  
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
10 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
As this device has many applications and setups, there are many situations that this data sheet cannot  
characterize in detail. The linked application note will help the designer make the best choices when using this  
part.  
Setting the Shunt Voltage on an Adjustable Shunt Regulator Application Note assists with setting the shunt  
voltage to achieve optimum accuracy for this device.  
10.2 Typical Applications  
10.2.1 Comparator With Integrated Reference  
Vsup  
Rsup  
Vout  
CATHODE  
R1  
VL  
RIN  
REF  
V
IN  
+
R2  
2.5V  
ANODE  
23. Comparator Application Schematic  
14  
版权 © 2019, Texas Instruments Incorporated  
 
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
Typical Applications (接下页)  
10.2.2 Design Requirements  
For this design example, use the parameters listed in 1 as the input parameters.  
1. Design Parameters  
DESIGN PARAMETER  
Input Voltage Range  
Input Resistance  
EXAMPLE VALUE  
0 V to 5 V  
10 kΩ  
Supply Voltage  
24 V  
Cathode Current (Ik)  
Output Voltage Level  
Logic Input Thresholds VIH/VIL  
5 mA  
~2 V – VSUP  
VL  
10.2.3 Detailed Design Procedure  
When using the ATL431LI-Q1 as a comparator with reference, determine the following:  
Input voltage range  
Reference voltage accuracy  
Output logic input high and low level thresholds  
Current source resistance  
10.2.3.1 Basic Operation  
In the configuration shown in 23, the ATL431LI-Q1 behaves as a comparator, comparing the VREF pin voltage  
to the internal virtual reference voltage. When provided a proper cathode current (IK), ATL431LI-Q1 has enough  
open-loop gain to provide a quick response. This can be seen in 24 where the RSUP = 10 kΩ (IKA = 500 µA)  
situation responds much slower than RSUP = 1 kΩ (IKA = 5 mA). With the ATL431LI-Q1 max operating current  
(IMIN) being 1 mA, operation below that can result in low gain, leading to a slow response.  
10.2.3.1.1 Overdrive  
Slow or inaccurate responses can also occur when the reference pin is not provided enough overdrive voltage.  
This is the amount of voltage that is higher than the internal virtual reference. The internal virtual reference  
voltage is within the range of 2.5 V ±(0.5% or 1.0%) depending on which version is being used. The more  
overdrive voltage provided, the faster the ATL431LI-Q1 will respond.  
For applications where ATL431LI-Q1 is being used as a comparator, it is best to set the trip point to greater than  
the positive expected error (that is +1.0% for the A version). For fast response, setting the trip point to >10% of  
the internal VREF suffices.  
For minimal voltage drop or difference from Vin to the ref pin, TI recommends to use an input resistor <10 kΩ to  
provide Iref.  
版权 © 2019, Texas Instruments Incorporated  
15  
 
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
10.2.3.2 Output Voltage and Logic Input Level  
For ATL431LI-Q1 to properly be used as a comparator, the logic output must be readable by the receiving logic  
device. This is accomplished by knowing the input high and low level threshold voltage levels, typically denoted  
by VIH and VIL.  
As seen in 24, the output low level voltage of the ATL431LI-Q1 in open-loop/comparator mode is  
approximately 2 V, which is typically sufficient for 5 V supplied logic. However, this does not work for 3.3 V and  
1.8 V supplied logic. To accommodate this, a resistive divider can be tied to the output to attenuate the output  
voltage to a voltage legible to the receiving low voltage logic device.  
The output high voltage of the ATL431 is equal to VSUP due to ATL431LI-Q1 being open-collector. If VSUP is  
much higher than the maximum input voltage tolerance of the receiving logic, the output must be attenuated to  
accommodate the reliability of the outgoing logic.  
When using a resistive divider on the output, make sure the sum of the resistive divider (R1 and R2 in 23) is  
much greater than RSUP to not interfere with the ability of the ATL431LI-Q1 to pull close to VSUP when turning off.  
10.2.3.2.1 Input Resistance  
The ATL431LI-Q1 requires an input resistance in this application to source the reference current (IREF) needed  
from this device to be in the proper operating regions while turning on. The actual voltage seen at the ref pin is  
VREF = VIN - IREF × RIN because IREF can be as high as 4 µA. TI recommends to use a resistance small enough  
that mitigates the error that IREF creates from VIN.  
10.2.4 Application Curves  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
Vin  
Vka(Rsup=10kW)  
Vka(Rsup=1kW)  
0.5  
0
-0.5  
-0.001  
-0.0006  
-0.0002  
0.0002  
0.0006  
0.001  
Time (s)  
D001  
24. Output Response With Various Cathode Currents  
16  
版权 © 2019, Texas Instruments Incorporated  
 
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
10.2.5 Precision LED Lighting Current Sink Regulator  
VCC  
VCC  
R1 =  
IOUT  
IKA  
hFE  
VREF  
IOUT  
=
RS  
VCC  
IOUT  
R1  
ATL431LI-Q1  
RS  
GND  
25. LED Lighting Current Sink Regulator  
10.2.5.1 Design Requirements  
For this design example, use the parameters listed in 1 as the input parameters.  
2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Supply Voltage (VI(BATT)  
)
5 V  
Sink Current (IO)  
100 mA  
5 mA  
Cathode Current (Ik)  
10.2.5.2 Detailed Design Procedure  
When using the ATL43xLI-Q1 as a constant current sink, determine the following:  
Output current range  
Output current accuracy  
Power consumption for the ATL43xLI-Q1  
10.2.5.2.1 Basic Operation  
In the configuration shown, the ATL43xLI-Q1 acts as a control component within a feedback loop of the constant  
current sink. Working with an external passing component such as a BJT, the ATL43xLI-Q1 provides precision  
current sink with accuracy set by itself and the sense resistor RS. The LEDs are lit based on the desired current  
sink and regulated for accurate brightness and color.  
10.2.5.2.1.1 Output Current Range and Accuracy  
The output current range of the circuit is determined by the equation shown in the configuration. Keep in mind  
that the VREF equals to 2.500 V. When choosing the sense resistor RS, it needs to generate 2.500 V for the  
TL43xLI-Q1 when IO reaches the target current. If the overhead voltage of 2.500 V is not acceptable, consider  
lower voltage reference devices such as the TLV43x-Q1 or TLVH43x-Q1.  
版权 © 2019, Texas Instruments Incorporated  
17  
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
The output current accuracy is determined by both the accuracy of the ATL43xLI-Q1 chosen, as well as the  
accuracy of the sense resistor RS. The internal virtual reference voltage of ATL43xLI-Q1 is within the range of  
2.500 V ±(0.5% or 1.0%), depending on which version is being used. Another consideration for the output current  
accuracy is the temperature coefficient of the ATL43xLI-Q1 and RS. Refer to the for the specification of these  
parameters.  
10.2.5.2.2 Power Consumption  
For the ATL43xLI-Q1 to properly be used as a control component in this circuit, the minimum operating current  
needs to be reached. This is accomplished by setting the external biasing resistor in series with the ATL43xLI-  
Q1.  
To achieve lower power consumption, the ATL43xLI-Q1 is used due to its 65 µA typical minimum cathode  
current, Imin  
.
18  
版权 © 2019, Texas Instruments Incorporated  
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
10.2.6 Shunt Regulator/Reference  
RSUP  
R1  
V
SUP  
V
O
=
1 +  
V
)
ref  
(
R2  
R1  
0.1%  
CATHODE  
ATL431LI-Q1  
REF  
V
ref  
CL  
ANODE  
R2  
0.1%  
26. Shunt Regulator Schematic  
10.2.6.1 Design Requirements  
For this design example, use the parameters listed in 1 as the input parameters.  
3. Design Parameters  
DESIGN PARAMETER  
Reference Initial Accuracy  
Supply Voltage  
EXAMPLE VALUE  
1.0%  
24 V  
Cathode Current (Ik)  
5 mA  
Output Voltage Level  
2.5 V–36 V  
2 µF  
Load Capacitance  
Feedback Resistor Values and Accuracy (R1 and R2)  
10 kΩ  
10.2.6.2 Detailed Design Procedure  
When using ATL431LI-Q1 as a shunt regulator, determine the following:  
Input voltage range  
Temperature range  
Total accuracy  
Cathode current  
Reference initial accuracy  
Output capacitance  
10.2.6.2.1 Programming Output/Cathode Voltage  
To program the cathode voltage to a regulated voltage, a resistive bridge must be shunted between the cathode  
and anode pins with the mid point tied to the reference pin. This can be seen in 26 with R1 and R2 being the  
resistive bridge. The cathode/output voltage in the shunt regulator configuration can be approximated by the  
equation shown in 26. The cathode voltage can be more accuratel, which can be determined by taking in to  
account the cathode current:  
Vo = (1+R1/R2) × VREF-IREF × R1  
(1)  
For this equation to be valid, the ATL431LI-Q1 must be fully biased so that it has enough open loop gain to  
mitigate any gain error. This can be done by meeting the Imin spec denoted in the Specifications.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
10.2.6.2.2 Total Accuracy  
When programming the output above unity gain (VKA = VREF), the ATL431LI-Q1 is susceptible to other errors that  
can effect the overall accuracy beyond VREF. These errors include:  
R1 and R2 accuracies  
VI(dev): Change in reference voltage over temperature  
ΔVREF / ΔVKA: Change in reference voltage to the change in cathode voltage  
|zKA|: Dynamic impedance, causing a change in cathode voltage with cathode current  
Worst case cathode voltage can be determined taking all of the variables in to account. The Setting the Shunt  
Voltage on an Adjustable Shunt Regulator Application Note assists designers in setting the shunt voltage to  
achieve optimum accuracy for this device.  
10.2.6.2.3 Stability  
Though ATL431LI-Q1 is stable with no capacitive load, the device that receives the output voltage of the shunt  
regulator can present a capacitive load that is within the ATL431LI-Q1 region of stability, shown in 13. Also,  
designers can use capacitive loads to improve the transient response or for power supply decoupling. When  
using additional capacitance between Cathode and Anode, see 13. Also, Understanding Stability Boundary  
Conditions Charts in TL431, TL432 Data Sheet Application Note provides a deeper understanding of the stability  
characteristics of this device and aids the user in making the right choices when choosing a load capacitor.  
10.2.6.2.4 Start-Up Time  
As shown in 27, the ATL431LI-Q1 has a fast response up to approximately 2 V and then slowly charges to its  
programmed value. This is due to the compensation capacitance (shown in 13) the ATL43xLI-Q1 has to meet  
its stability criteria. Despite the secondary delay, ATL43xLI-Q1 still has a fast response suitable for many clamp  
applications.  
10.2.6.3 Application Curves  
27  
Vsup  
24  
Vka=Vref  
R1=10kW & R2=10kW  
R1=38kW & R2=10kW  
21  
18  
15  
12  
9
6
3
0
-3  
-6  
-5E-6  
-3E-6  
-1E-6  
1E-6  
3E-6  
5E-6  
Time (s)  
D001  
27. ATL43xLI-Q1 Start-Up Response  
20  
版权 © 2019, Texas Instruments Incorporated  
 
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
10.2.7 Isolated Flyback with Optocoupler  
VOUT  
VIN AC  
VDD  
VPC  
VSC  
VDD  
HV  
UCC28740  
PWM Controller  
UCC24636  
SR Controller  
VS  
FB  
DRV  
DRV  
TBLK  
CS  
ATL431LI-Q1  
GND  
28. Isolated Flyback with Optocoupler  
10.2.7.1 Design Requirements  
The ATL431LI-Q1 is used in the feedback network on the secondary side for a isolated flyback with optocoupler  
design. 28 shows the simplified flyback converter that used the ATL431LI-Q1. For this design example, use  
the parameters in 4 as the input parameters.  
4. Design Parameters  
DESIGN PARAMETER  
Voltage Output  
EXAMPLE VALUE  
20 V  
Feedback Network Quiescent Current (Iq)  
<40 mW  
10.2.7.1.1 Detailed Design Procedure  
In this example, a simplified design procedure will be discussed. The compensation network for the feedback  
network is beyond the scope of this section. Details on compensation network can be found in Compensation  
Design with TL431 for UCC28600 Application Report.  
The goal of this design is to design a low standby current feedback network to meet the Europe CoC Tier 2 and  
United States DoE Level VI requirements. To meet the design requirements, the system standby power needs to  
be below 75 mW. To meet this, the feedback network needs to consume less than 40 mW to allow margin for the  
power losses on the primary side controller and passive components. This can pose a challenge in systems  
greater than 10 V.  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
VOUT  
Rs  
Iq  
Iq  
IKA  
R1  
IRE  
F
ATL431LI-Q1  
R2  
29. Feedback Quiescent Current  
10.2.7.1.1.1 ATL431LI-Q1 Biasing  
29 shows the simplified version of the feedback network. The standby Iq of the system is dependent on two  
paths: the ATL431LI-Q1 biasing path and the resistor feedback path. With the given design requirements, the  
total current through the feedback network cannot exceed 2 mA.  
The design goal is to take full advantage of the Imin to set the IKA of the ATL431LI-Q1. The benefit of the  
ATL431LI-Q1 is its low Imin of 80 µA which allows the IKA to be lower at a full load condition compared to typical  
TL431LI-Q1 devices. This helps lower the IKA at the no-load condition which is higher than the full load condition  
due to the dynamic changes in the IKA as the system load varies. The IKA at no-load, IOPTNL, is dependent the  
value of Rs which is the biasing resistor. Rs is very application-specific and is dependent on variables such as  
the CTR of the optocoupler, voltage, and current at no-load. This can be seen in 公式 2. It is possible to lower  
IOPTNL to a value of 1.5 mA for a power loss of 30 mW by using an optocoupler with a high CTR.  
Rs ö (VOUT - VOPTNL - 2V) / IOPTNL  
VOPTNL = Optocoupler Voltage at No -Load Conditions  
IOPTNL = Optocoupler Current at No -Load Conditions  
(2)  
10.2.7.1.1.2 Resistor Feedback Network  
The feedback resistors set the output voltage of the secondary side and consume the same Iq at a fixed voltage.  
The design goal for the feedback resistor path is to minimize the resistor error while maintaining a low Iq. For this  
system example, the feedback network path in this design consumes 0.5 mA to allow enough current for  
ATL431LI-Q1 biasing. The resistors, R1 and R2, are sized based on a 0.5 mA budget for Iq and Iref. By using the  
resistor values from 公式 3 and 公式 4, the total power consumption is 10 mW. This can be further decreased by  
using larger resistors.  
R1 = (VOUT - VREF) / IFB  
R1 = (20 V - 2.5 V) / 0.5mA  
R1 = 35kW  
(3)  
(4)  
R2 = VREF / (IFB -IREF  
)
R2 = 2.5 V / (0.5mA - 0.4mA)  
R2 = 5.004kW  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
10.2.8 Adjustable Reference for Tracking LDO  
10.2.8.1 Design Requirements  
The ATL431LI-Q1 is used as a reference voltage to help regulate a supply voltage off an LDO. By adjusting the  
cathode voltage, the output voltage of the LDO can vary. The TPS7B4250-Q1 is a voltage-tracking LDO with an  
adjustable pin which needs a precise reference voltage to change the regulate output voltage.  
5. Design Parameters  
DESIGN PARAMETER  
Input Voltage  
EXAMPLE VALUE  
4 V to 40 V  
ADJ Reference Voltage  
Output Voltage  
2.500 V–18 V  
2.500 V–18 V  
50 mA  
Output Current Rating  
Output Capacitor Range  
Output Capacitor ESR Range  
1 µF to 50 µF  
1 mΩ to 20 Ω  
10.2.8.2 Detailed Design Procedure  
The goal of this design is to create a precision and stable output stage using an LDO that requires an external  
voltage reference such as the TPS7B4250-Q1. To begin the design process, the input and desired output voltage  
range is required. The ATL431LI-Q1 can be adjusted between 2.5 V and 36 V so it covers most of the output  
voltage rating of TPS7B42500-Q1. For reference voltage under 2.5 V, the TLV431-Q1 voltage reference can be  
used. The input and output capacitor must also be taken into consideration for decoupling and stability.  
VOUT  
2.2 µF  
VIN  
1 µF  
Vreg  
Vbat  
TPS7B4250-Q1  
ADJ/EN  
GND  
ATL431LI-Q1  
0.1 µF  
30. Feedback Quiescent Current  
10.2.8.2.1 External Capacitors  
An input capacitor, CI, is recommended to buffer line influences. Connect the capacitors close to the IC pins.  
The output capacitor for the TPS7B4250-Q1 device is required for stability. Without the output capacitor, the  
regulator oscillates. The actual size and type of the output capacitor can vary based on the application load and  
temperature range. The effective series resistance (ESR) of the capacitor is also a factor in the IC stability. The  
worst case is determined at the minimum ambient temperature and maximum load expected. To ensure stability  
of TPS7B4250-Q1 device, the device requires an output capacitor between 1 µF and 50 µF with an ESR range  
between 0.001 Ω and 20 Ω that can cover most types of capacitor ESR variation under the recommend operating  
conditions. As a result, the output capacitor selection is flexible.  
The capacitor must also be rated at all ambient temperature expected in the system. To maintain regulator  
stability down to –40°C, use a capacitor rated at that temperature.  
版权 © 2019, Texas Instruments Incorporated  
23  
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
10.3 System Examples  
V
I(BATT)  
R
2N222  
(see Note A)  
2N222  
30 Ω  
4.7 kΩ  
0.01 µF  
ATL431LI-Q1  
V
O
R1  
0.1%  
R2  
R1  
R2  
æ
ö
V
=
1 +  
V
ref  
O
ç
÷
0.1%  
è
ø
R should provide cathode current 80 µA to the ATL431LI-Q1 at minimum V(BATT)  
.
31. Precision High-Current Series Regulator  
V
I(BATT)  
IN  
OUT  
uA7805  
V
O
Common  
ATL431LI-Q1  
R1  
R2  
R1  
V
1
V
ref  
=
+
(
(
O
+
Vref 5 V  
Minimum V  
=
O
R2  
32. Output Control of a Three-Terminal Fixed Regulator  
V
V
O
I(BATT)  
R1  
R2  
R1  
V
1
V
(
ref  
=
+
(
O
ATL431LI-Q1  
R2  
33. High-Current Shunt Regulator  
V
I(BATT)  
V
O
R1  
ATL431LI-Q1  
C
(see Note A)  
R2  
Refer to the stability boundary conditions in 13 to determine allowable values for C.  
34. Crowbar Circuit  
24  
版权 © 2019, Texas Instruments Incorporated  
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
System Examples (接下页)  
IN  
OUT  
LM317  
Adjust  
V
V 5 V, 1.5 A  
O
I(BATT)  
8.2 kΩ  
243 Ω  
0.1%  
ATL431LI-Q1  
243 Ω  
0.1%  
35. Precision 5-V, 1.5-A Regulator  
V
V 5 V  
O
I(BATT)  
R
b
(see Note A)  
27.4 kΩ  
0.1%  
ATL431LI-Q1  
27.4 kΩ  
0.1%  
Rb should provide cathode current 80 µA to the ATL431LI-Q1.  
36. Efficient 5-V Low-Dropout (LDO) Regulator Configuration  
12 V  
V
CC  
6.8 kΩ  
10 kΩ  
5 V  
10 kΩ  
+
0.1%  
TL598  
X
Not  
ATL431LI-Q1  
Used  
10 kΩ  
0.1%  
Feedback  
37. PWM Converter With Reference  
版权 © 2019, Texas Instruments Incorporated  
25  
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
System Examples (接下页)  
R3  
(see Note A)  
V
I(BATT)  
R4  
R1B  
R2B  
R1A  
(see Note A)  
R1B  
R2B  
Low Limit = 1 +  
High Limit = 1 +  
Vref  
ATL431LI-Q1  
R1A  
R2A  
Vref  
LED on When Low Limit < V  
< High Limit  
I(BATT)  
R2A  
Select R3 and R4 to provide the desired LED intensity and cathode current 80 µA to the ATL431LI-Q1 at the  
available VI(BATT)  
.
38. Voltage Monitor  
650  
12 V  
R
2 k  
ATL431LI-Q1  
C
12 V  
12 V – V  
On  
Delay = R × C × ln  
 
 
!
!
Off  
ref  
"
#
39. Delay Timer  
R
CL  
I
O
0.1%  
Vref  
RCL  
V
I(BATT)  
Iout  
R1  
+ IKA  
=
=
VI(BATT  
R1  
)
ATL431LI-Q1  
I
O
I
+
KA  
h
FE  
40. Precision Current Limiter  
V
I(BATT)  
I
O
Vref  
RS  
I
=
O
ATL431LI-Q1  
R
S
0.1%  
41. Precision Constant-Current Sink  
26  
版权 © 2019, Texas Instruments Incorporated  
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
11 Power Supply Recommendations  
When using ATL43xLI-Q1 as a Linear Regulator to supply a load, designers typically uses a bypass capacitor on  
the output/cathode pin. When doing this, be sure that the capacitance is within the stability criteria shown in 图  
13.  
To not exceed the maximum cathode current, be sure that the supply voltage is current limited. Also, be sure to  
limit the current being driven into the Ref pin, so you do not exceed its absolute maximum rating.  
For applications shunting high currents, pay attention to the cathode and anode trace lengths, adjusting the width  
of the traces to have the proper current density.  
12 Layout  
12.1 Layout Guidelines  
Bypass capacitors must be placed as close to the part as possible. Current-carrying traces need to have widths  
appropriate for the amount of current they are carrying; in the case of the ATL43xLI-Q1, these currents are low.  
12.2 Layout Example  
ATL432LI-Q1  
(TOP VIEW)  
Rref  
REF  
Vin  
1
2
ANODE  
3
Rsup  
CATHODE  
GND  
Vsup  
CL  
GND  
42. DBZ Layout Example  
版权 © 2019, Texas Instruments Incorporated  
27  
ATL431LI-Q1  
ATL432LI-Q1  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 器件命名规则  
TI 通过分配后缀和前缀来区分 ATL43xLI-Q1 系列的所有组合。更多详细信息和可以订购的组合请参见封装选项附  
。  
ATL431LI X X XXX X XX  
Initial  
Accuracy  
B: 0.5%  
A: 1%  
Operating Free-Air Package  
Temperature Type  
Package  
Quantity Qualification  
R: Tape & Reel  
Product  
1: ATL431LI  
2: ATL432LI*  
*(Cathode and REF  
pins are switched)  
Q: -40°C to 125°C  
DBZ: SOT-23-3  
Q1: AEC-Q100  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《在可调节并联稳压器上设置并联电压》  
13.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
6. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
ATL431LI-Q1  
ATL432LI-Q1  
13.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.5 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
28  
版权 © 2019, Texas Instruments Incorporated  
ATL431LI-Q1  
ATL432LI-Q1  
www.ti.com.cn  
ZHCSJP0A MAY 2019REVISED NOVEMBER 2019  
13.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ATL431LIAQDBZRQ1  
ATL431LIBQDBZRQ1  
ATL432LIAQDBZRQ1  
ATL432LIBQDBZRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
22XP  
22ZP  
23AP  
23BP  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ATL431LIAQDBZRQ1  
ATL431LIBQDBZRQ1  
ATL432LIAQDBZRQ1  
ATL432LIBQDBZRQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
9.0  
9.0  
9.0  
9.0  
3.15  
3.15  
3.15  
3.15  
2.77  
2.77  
2.77  
2.77  
1.22  
1.22  
1.22  
1.22  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ATL431LIAQDBZRQ1  
ATL431LIBQDBZRQ1  
ATL432LIAQDBZRQ1  
ATL432LIBQDBZRQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
18.0  
18.0  
18.0  
18.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
(0.125)  
3.04  
2.80  
1.9  
3
(0.15)  
NOTE 4  
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/D 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ATL4JM

Field Programmable Gate Array, 2600 Gates, CMOS, PQCC68, PLASTIC, MO-047AE, LCC-68
ATMEL

ATL4UM

Field Programmable Gate Array, 2600 Gates, CMOS, CPGA68, WINDOWED, CERAMIC, PGA-68
ATMEL

ATL50/110-200AM

Field Programmable Gate Array, 65900 Gates, CMOS, PQFP160, TQFP-160
ATMEL

ATL50/110-200QM

Field Programmable Gate Array, 65900 Gates, CMOS, PQFP160, PLASTIC, QFP-160
ATMEL

ATL50/15-200JM

Field Programmable Gate Array, 10000 Gates, CMOS, PQCC68, PLASTIC, LCC-68
ATMEL

ATL50/15-200UM

Field Programmable Gate Array, 10000 Gates, CMOS, CPGA68, CERAMIC, PGA-68
ATMEL

ATL50/150-200QM

Field Programmable Gate Array, 89300 Gates, CMOS, PQFP184, PLASTIC, QFP-184
ATMEL

ATL50/200-200QM

Field Programmable Gate Array, 116900 Gates, CMOS, PQFP208
ATMEL

ATL50/25-200JM

Field Programmable Gate Array, 16900 Gates, CMOS, PQCC84, PLASTIC, LCC-84
ATMEL

ATL50/25-200UM

Field Programmable Gate Array, 16900 Gates, CMOS, CPGA84, CERAMIC, PGA-84
ATMEL

ATL50/4-200AM

Field Programmable Gate Array, 3000 Gates, CMOS, PQFP44
ATMEL

ATL50/4-200JM

Field Programmable Gate Array, 3000 Gates, CMOS, PQCC44
ATMEL