AWR1443FQIGABLRQ1 [TI]

集成 MCU 和硬件加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125;
AWR1443FQIGABLRQ1
型号: AWR1443FQIGABLRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

集成 MCU 和硬件加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125

雷达 传感器
文件: 总76页 (文件大小:2554K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AWR1443  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
AWR1443 芯片 77GHz 79GHz FMCW 雷达感器  
高速数据接口,可支持分布式应用(即中间数据)  
主机接口  
1 特性  
FMCW 收发器  
通过 SPI 与外部处理器进行控制连接  
用于故障报告的中断  
符合 AECQ-100 标准  
集成 PLL、发送器、接收器、基带和 ADC  
– 76GHz 81GHz 的覆盖范围,具有 4GHz 的可  
用带宽  
器件高级特性  
四个接收通道  
嵌入式自监控,无需使用主机处理器  
三个发送通道(可以同时使用两个通道)  
基于分数 N PLL 的超精确线性调频脉冲引擎  
– TX 功率:12dBm  
复基带架构  
嵌入式干扰检测功能  
电源管理  
– RX 噪声系数:  
内置 LDO 网络,可增强 PSRR  
– I/O 支持双电压 3.3V/1.8V  
时钟源  
14dB76 77GHz)  
15dB77 81GHz)  
– 1MHz 时的相位噪声:  
支持外部驱动、频率为 40MHz 的时钟(方波/正  
–95dBc/Hz76 77GHz)  
弦波)  
–93dBc/Hz77 81GHz)  
支持 40MHz 晶体与负载电容器相连接  
轻松的硬件设计  
内置校准和自检  
®
基于 Arm® Cortex®-R4F 的无线电控制系统  
– 0.65mm 间距、161 引脚 10.4mm × 10.4mm 覆  
BGA 封装,可实现轻松组装和低成本 PCB  
设计  
小尺寸解决方案  
运行条件  
内置固件 (ROM)  
针对工艺和温度进行自校准的系统  
适用于嵌入式用户应用的片上可编程内核  
时钟频率为 200MHz 的集成 Cortex®-R4F 微控  
制器  
结温范围:–40°C 125°C  
片上引导加载程序支持自主模式(从 QSPI 闪存  
加载用户应用)  
集成外设  
具有 ECC 的内部存储器  
雷达硬件加速器(FFT、对数幅度计算等)  
集成计时器(看门狗以及多达四个 32 位计时  
器或两个 64 位计时器)  
I2C(支持控制器模式和目标模式)  
两个 SPI 端口  
CAN 端口  
多达六个通用 ADC 端口  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SWRS202  
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
手势识别  
车门开启器应用  
2 应用  
接近传感  
泊车辅助  
占位检测  
Crystal  
Power Management  
RX1  
RX2  
Antenna  
Structure  
SPI/I2C  
RX3  
RX4  
External  
MCU  
Interface to  
External  
Peripherals  
mmWave Sensor  
CSI2 (4 Lane Data + 1 Clock lane)  
TX1  
TX2  
Reset  
Error  
TX3  
MCU Clock  
2-1. 适用于汽车应用的自主雷达传感器  
3 说明  
AWR1443 器件是一款能够在 76 81GHz 频带中运行的集成式单芯片 FMCW 雷达传感器。该器件采用 TI 的低  
功耗 45nm RFCMOS 工艺构建,具有一个集成式 ARM R4F 处理器和一个硬件加速器,用于进行雷达数据处理,  
该解决方案在极小的封装中实现了出色的集成度。AWR1443 是适用于汽车领域中的低功耗、自监控、超精确雷达  
系统的理想解决方案。  
AWR1443 器件是一种自包含 FMCW 雷达传感器单芯片解决方案,能够简化 76 81GHz 频带中的汽车雷达传感  
器实施。它实现了一个具有内置 PLL ADC 转换器的单片实施 3TX4RX 系统。简单编程模型更改可支持各种  
传感器实施(近距离、中距离和远距离),并且能够进行动态重新配置,从而实现多模式传感器。此外,该器件  
作为完整的平台解决方案进行提供,其中包括 TI 参考设计、软件驱动程序、示例配置、API 指南以及用户文档。  
不同的应用在雷达数据立方体存储器、处理能力和功能安全监控方面,对雷达器件的要求各不相同。因此,可以  
AWR1443 视为适用于入门级雷达应用的 77GHz 片上雷达解决方案  
器件信息  
器件型号(2)  
AWR1443FQIGABLQ1  
AWR1443FQIGABLRQ1  
封装(1)  
封装尺寸  
托盘/卷带包装  
托盘  
FCBGA (161)  
10.4mm × 10.4mm  
卷带包装  
(1) 如需更多信息,请参阅12 机械、封装和可订购信息。  
(2) 如需更多信息,请参阅11.1器件命名规则。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
2
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
4 功能方框图  
4-1 展示了器件的功能方框图  
Cortex R4F  
@ 200 MHz  
RX1  
RX2  
RX3  
RX4  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
(User programmable)  
Digital Front  
End  
Boot  
ROM  
Prog RAM* Data RAM*  
(Decimation  
filter chain)  
Serial Flash  
interface  
QSPI  
SPI  
Radar Data  
Memory*  
Optional External  
MCU interface  
ADC  
Buffer  
TX1  
TX2  
TX3  
PA  
Radar  
Hardware  
Accelerator  
(FFT, Log-  
Mag, and  
others.)  
PMIC control  
SPI / I2C  
DCAN  
Synth  
(20 GHz)  
Ramp  
Generator  
PA  
PA  
x4  
Primary communication  
interface (automotive)  
Debug  
UARTs  
DMA  
For debug  
RF Control/  
BIST  
Mailbox  
Test/  
Debug  
JTAG for debug/  
development  
Osc.  
VMON  
Temp  
GPADC  
Main subsystem  
(Customer programmed)  
RF/Analog subsystem  
* Total RAM available in Main subsystem is 576KB (for Cortex-R4F Program RAM, Data RAM, and Radar Data Memory)  
Copyright © 2017, Texas Instruments Incorporated  
4-1. 功能方框图  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
4 功能方框图.........................................................................3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................6  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagram................................................................ 8  
7.2 Signal Descriptions................................................... 13  
7.3 Pin Multiplexing.........................................................17  
8 Specifications................................................................ 22  
8.1 Absolute Maximum Ratings...................................... 22  
8.2 ESD Ratings............................................................. 22  
8.3 Power-On Hours (POH)............................................23  
8.4 Recommended Operating Conditions.......................23  
8.5 Power Supply Specifications.....................................24  
8.6 Power Consumption Summary................................. 25  
8.7 RF Specification........................................................26  
8.8 Thermal Resistance Characteristics for FCBGA  
9.1 Overview...................................................................49  
9.2 Functional Block Diagram.........................................49  
9.3 External Interfaces....................................................50  
9.4 Subsystems.............................................................. 51  
9.5 Accelerators and Coprocessors................................57  
9.6 Other Subsystems.................................................... 57  
9.7 Boot Modes...............................................................58  
10 Applications, Implementation, and Layout............... 62  
10.1 Application Information........................................... 62  
10.2 Short-Range Radar ................................................62  
10.3 Blind Spot Detector and Ultrasonic Upgrades........ 63  
10.4 Reference Schematic..............................................64  
11 Device and Documentation Support..........................65  
11.1 Device Nomenclature..............................................65  
11.2 Tools and Software..................................................66  
11.3 Documentation Support.......................................... 66  
11.4 支持资源..................................................................66  
11.5 Trademarks............................................................. 67  
11.6 静电放电警告...........................................................67  
11.7 术语表..................................................................... 67  
12 Mechanical, Packaging, and Orderable  
Package [ABL0161].....................................................27  
8.9 Timing and Switching Characteristics....................... 27  
9 Detailed Description......................................................49  
Information.................................................................... 68  
12.1 Packaging Information............................................ 68  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
5 Revision History  
Changes from April 30, 2020 to January 10, 2022 (from Revision B (April 2020) to Revision C  
(January 2022))  
Page  
通篇:“A2D”替换为“ADC”;将主子系统R4F”更改为主要子系统主要 R4F”;在主/从术语方面改  
用了更具包容性的措辞 .......................................................................................................................................1  
(特性):提及了毫米波传感器的额定工作温度范围;..................................................................................... 1  
(特性):将 1MHz 时的相位噪声从“–94dBc/Hz76GHz 77GHz更新/更改为“-95dBc/Hz”,并从“–  
91dBc/Hz77GHz 81GHz更新/更改为“–93dBc/Hz”.................................................................................1  
(应用):添加了图示........................................................................................................................................2  
更新/更改了功能方框图以改用包容性术语....................................................................................................... 3  
(Device Comparison): Removed a row on Functional-Safety compliance; Added a table-note for LVDS  
Interface; Additional information on Device security updated.............................................................................6  
(Signal Descriptions): Updated descriptions for CLKP and CLKM pins for Reference Oscillator.....................13  
(Absolute Maximum Ratings): Added entries for externally supplied power on the RF inputs (TX and RX) and  
a table-note for the signal level applied on TX..................................................................................................22  
(Average Power Consumption at Power Terminals): Added measurement conditions for the specified power  
numbers............................................................................................................................................................25  
(Maximum Current Rating at Power Terminals): Updated footnotes section to add estimation assumption for  
VIOIN rail.......................................................................................................................................................... 25  
(Synchronized Frame Triggering): Updated the maximum pulse width to 4000ns........................................... 28  
(Clock Specifications): Updated/Changed 8-6 to reflect correct device operating temperature range........ 30  
(Table. External Clock Mode Specifications): Revised frequency tolerance specs from +/-50 to +/-100 ppm..30  
(Reference Schematics) : Added weblinks to device EVM documentation collateral ......................................64  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
6 Device Comparison  
FUNCTION  
AWR1243  
AWR1443  
AWR1642  
AWR1843  
Number of receivers  
Number of transmitters  
On-chip memory  
4
3
4
3
4
2
4
3
576KB  
5
1.5MB  
5
2MB  
10  
Max I/F (Intermediate Frequency) (MHz)  
Max real/complex 2x sampling rate (Msps)  
Max complex 1x sampling rate (Msps)  
Device Security(1)  
15  
37.5  
18.75  
12.5  
6.25  
12.5  
6.25  
Yes  
25  
12.5  
Yes  
Processor  
MCU (R4F)  
Yes  
Yes  
Yes  
Yes  
Yes  
DSP (C674x)  
Peripherals  
Serial Peripheral Interface (SPI) ports  
Quad Serial Peripheral Interface (QSPI)  
Inter-Integrated Circuit (I2C) interface  
Controller Area Network (DCAN) interface  
CAN-FD  
1
Yes  
Yes  
Yes  
2
1
2
2
Yes  
1
Yes  
1
Yes  
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Trace  
PWM  
Hardware In Loop (HIL/DMM)  
GPADC  
Yes  
Yes  
LVDS/Debug(2)  
CSI2  
Hardware accelerator  
1-V bypass mode  
Yes  
Yes  
Yes  
Yes  
Yes  
Cascade (20-GHz sync)  
JTAG  
Yes  
2
Yes  
2
Yes  
3(3)  
Yes  
Number of Tx that can be simultaneously used  
Per chirp configurable Tx phase shifter  
PRODUCT PREVIEW (PP),  
Product  
ADVANCE INFORMATION (AI),  
status(4)  
PD  
PD  
PD  
PD  
or PRODUCTION DATA (PD)  
(1) Device security features including Secure Boot and Customer Programmable Keys are available in select devices for only select part  
variants as indicated by the Device Type identifier in Section 3, Device Information table.  
(2) The LVDS interface is not a production interface and is only used for debug.  
(3) 3 Tx Simultaneous operation is supported only in AWR1843 with 1V LDO bypass and PA LDO disable mode. In this mode 1V supply  
needs to be fed on the VOUT PA pin. Rest of the other devices only support simultaneous operation of 2 Transmitters.  
(4) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
6
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
6.1 Related Products  
For information about other devices in this family of products or related products see the links that follow.  
mmWave sensors  
TI’s mmWave sensors rapidly and accurately sense range, angle and velocity with  
less power using the smallest footprint mmWave sensor portfolio for automotive  
applications.  
Automotive mmWave TI’s automotive mmWave sensor portfolio offers high-performance radar front end to  
sensors  
ultra-high resolution, small and low-power single-chip radar solutions. TI’s scalable  
sensor portfolio enables design and development of ADAS system solution for every  
performance, application and sensor configuration ranging from comfort functions to  
safety functions in all vehicles.  
Companion products Review products that are frequently purchased or used in conjunction with this product.  
for AWR1443  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
7 Terminal Configuration and Functions  
7.1 Pin Diagram  
7-1 shows the pin locations for the 161-pin FCBGA package. 7-2, 7-3, 7-4, and 7-5 show the  
same pins, but split into four quadrants.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VOUT  
_14APLL  
VOUT  
_14SYNTH  
OSC  
_CLKOUT  
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VIN  
_18CLK  
VIN  
_18VCO  
RESERVED  
RESERVED  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VSSA  
VSSA  
VBGAP  
VSSA  
VSSA  
VIN  
_13RF2  
ANAMUX/  
GPADC5  
VSENSE/  
GPADC6  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VIN  
_13RF2  
VIOIN  
_18DIFF  
RESERVED  
RESERVED  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX4  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSA  
VDDIN  
Reserved  
TDI  
CLKP  
CLKM  
VSSA  
VIN_18BB  
VSS  
VSS  
VSS  
LVDS_  
TXP[0]  
LVDS_  
TXM[0]  
VIN  
_13RF1  
G
H
J
VSSA  
RX3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VIN  
_13RF1  
LVDS  
_TXM[1]  
LVDS  
_TXP[1]  
VSS  
VIN  
_13RF1  
VSSA  
RX2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TDO  
LVDS_CLKM LVDS_CLKP  
HS_  
RESERVED  
_TXM[2]  
HS_  
RESERVED  
_TXP[2]  
K
L
VIN_18BB  
VSS  
VIOIN_18  
HS_  
HS_  
RESERVED  
_TXP[3]  
RESERVED  
_TXM[3]  
VSSA  
RX1  
VSS  
VSS  
TMS  
LVDS_  
FRCLKP  
LVDS_  
FRCLKM  
M
N
P
R
TCK  
HS_  
HS_P_  
Debug2_M  
WARM  
_RESET  
VSSA  
GPIO[0]  
Reserved  
Reserved  
RS232_RX  
RS232_TX  
GPIO[1]  
NERROR_OUTMCU_CLK_OUT  
Sync_in  
QSPI[3]  
VDDIN  
Sync_out  
QSPI[0]  
GPIO[2]  
Debug2_M  
Analog Test 1/ Analog Test 2/ Analog Test 3/  
GPADC3  
MISO_1 SPI_HOST_INTR_NERROR_IN  
QSPI_CS  
MOSI_1  
QSPI[1]  
NRESET PMIC_CLK_OUT  
VNWA  
VDDIN  
GPADC1  
GPADC2  
Analog Test 4/  
GPADC4  
VSSA  
Reserved  
Reserved  
VDDIN  
SPI_CS_1  
SPI_CLK_1  
QSPI_CLK  
QSPI[2]  
VIOIN  
VIN_SRAM  
VSS  
Not to scale  
Copyright © 2017, Texas Instruments Incorporated  
7-1. Pin Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
8
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
RESERVED  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VIN  
VSSA  
VSSA  
VSSA  
VSSA  
_13RF2  
VIN  
RESERVED  
_13RF2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
RX4  
VIN_18BB  
VIN  
VSS  
G
VSSA  
VSSA  
VSS  
VSS  
_13RF1  
Not to scale  
1
2
4
3
7-2. Top Left Quadrant  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9
10  
11  
12  
13  
14  
15  
VOUT  
_14APLL  
VOUT  
_14SYNTH  
OSC  
_CLKOUT  
A
B
C
D
E
F
VSSA  
VSSA  
VSSA  
VSSA  
VIN  
_18CLK  
VIN  
_18VCO  
RESERVED  
VBGAP  
VSSA  
VSSA  
ANAMUX/  
GPADC5  
VSENSE/  
GPADC6  
VSSA  
VIOIN  
_18DIFF  
RESERVED  
VSS  
VSS  
VSS  
VSSA  
VDDIN  
CLKP  
CLKM  
VSSA  
VSS  
LVDS_  
TXM[0]  
LVDS  
_TXP[0]  
G
VSS  
Reserved  
Not to scale  
1
3
2
4
Copyright © 2017, Texas Instruments Incorporated  
7-3. Top Right Quadrant  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
10  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
1
2
3
4
5
6
7
8
VIN  
_13RF1  
H
RX3  
VSSA  
VSS  
VIN  
_13RF1  
J
VSSA  
VSSA  
RX2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
L
VIN_18BB  
VSSA  
VSSA  
RX1  
VSS  
VSS  
M
N
P
R
VSSA  
VSSA  
GPIO[0]  
Reserved  
Reserved  
RS232_RX  
MISO_1  
RS232_TX  
GPIO[1]  
NERROR_IN  
SPI_CS_1  
NERROR_OUT  
Analog Test 1/ Analog Test 2/ Analog Test 3/  
GPADC3  
SPI_HOST  
_INTR_1  
QSPI_CS  
GPADC1  
GPADC2  
Analog Test 4/  
GPADC4  
VSSA  
Reserved  
Reserved  
VDDIN  
MOSI_1  
Not to scale  
1
3
2
4
Copyright © 2017, Texas Instruments Incorporated  
7-4. Bottom Left Quadrant  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9
10  
11  
12  
13  
14  
15  
LVDS  
LVDS  
H
J
VSS  
VSS  
TDI  
_TXM[1]  
_TXP[1]  
VSS  
VSS  
VSS  
TDO  
VIOIN_18  
TMS  
LVDS_CLKM  
LVDS_CLKP  
HS_RESERVED HS_RESERVED  
_TXM[2] TXP[2]  
K
L
VSS  
VSS  
_
HS_RESERVED HS_RESERVED  
_TXM[3]  
_TXP[3]  
LVDS_  
LVDS_  
M
N
P
R
TCK  
FRCLKM  
FRCLKP  
WARM  
HS_  
HS_  
MCU_CLK_OUT  
Sync_in  
QSPI[3]  
VDDIN  
Sync_out  
QSPI[0]  
GPIO[2]  
PMIC_CLK_OUT  
VIOIN  
_RESET  
_Debug2_M  
_Debug2_P  
QSPI[1]  
NRESET  
VNWA  
VDDIN  
SPI_CLK_1  
QSPI_CLK  
QSPI[2]  
VIN_SRAM  
VSS  
Not to scale  
1
3
2
4
7-5. Bottom Right Quadrant  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
12  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
7.2 Signal Descriptions  
备注  
All digital IO pins of the device (except NERROR IN, NERROR_OUT, and WARM_RESET) are  
non-failsafe; hence, care needs to be taken that they are not driven externally without the VIO supply  
being present to the device.  
备注  
The GPIO state during the power supply ramp is not ensured. In case the GPIO is used in the  
application where the state of the GPIO is critical, even when NRESET is low, a tri-state buffer should  
be used to isolate the GPIO output from the radar device and a pull resister used to define the  
required state in the application. The NRESET signal to the radar device could be used to control the  
output enable (OE) of the tri-state buffer.  
7.2.1 Signal Descriptions  
PIN  
PIN  
DEFAULT PULL  
STATUS(1)  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
NUMBER TYPE  
TX1  
B4  
B6  
O
O
O
I
Single-ended transmitter1 o/p  
Single-ended transmitter2 o/p  
Single-ended transmitter3 o/p  
Single-ended receiver1 i/p  
Single-ended receiver2 i/p  
Single-ended receiver3 i/p  
Single-ended receiver4 i/p  
Transmitters  
TX2  
TX3  
B8  
RX1  
M2  
K2  
RX2  
I
Receivers  
RX3  
H2  
I
RX4  
F2  
I
LVDS_TXP[0]  
LVDS_TXM[0]  
LVDS_CLKP  
LVDS_CLKM  
LVDS_TXP[1]  
LVDS_TXM[1]  
G15  
G14  
J15  
J14  
H15  
H14  
O
O
O
O
O
O
Differential data Out – Lane 0  
Differential clock Out  
Differential data Out – Lane 1  
HS_RESERVED_TX  
P[2]  
K15  
K14  
L15  
L14  
O
O
O
O
Differential data Out – Lane 2  
Differential data Out – Lane 3  
HS_RESERVED_TX  
M[2]  
LVDS TX  
HS_RESERVED_TX  
P[3]  
HS_RESERVED_TX  
M[3]  
LVDS_FRCLKP  
LVDS_FRCLKM  
HS_DEBUG2_P  
HS_DEBUG2_M  
M15  
M14  
N15  
N14  
O
O
O
O
Differential debug port 1  
Differential debug port 2  
B1, B15, D1,  
D15  
RESERVED  
Reference clock output from clocking subsystem  
after cleanup PLL. Can be used by peripheral chip  
in multichip cascading  
Reference clock OSC_CLKOUT  
A14  
O
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
PIN  
PIN  
DEFAULT PULL  
STATUS(1)  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
NUMBER TYPE  
Low-frequency frame synchronization signal output.  
Can be used by peripheral chip in multichip  
cascading  
SYNC_OUT  
P11  
N10  
O
I
Pull Down  
Pull Down  
System  
synchronization  
Low-frequency frame synchronization signal input.  
This signal could also be used as a hardware trigger  
for frame start  
SYNC_IN  
SPI_CS_1  
R7  
R9  
R8  
P5  
P6  
I
I
Pull Up  
Pull Down  
Pull Up  
SPI chip select  
SPI clock  
SPI control  
interface from  
external MCU  
(default  
peripheral  
mode)  
SPI_CLK_1  
MOSI_1  
I
SPI data input  
SPI data output  
SPI interrupt to host  
MISO_1  
O
O
Pull Up  
SPI_HOST_INTR_1  
Pull Down  
R3, R4, R5,  
P4  
RESERVED  
NRESET  
P12  
I
Power on reset for chip. Active low  
Open-drain fail-safe warm reset signal. Can be  
driven from PMIC for diagnostic or can be used as  
status signal that the device is going through reset.  
Reset  
Safety  
WARM_RESET  
NERROR_OUT  
N12  
IO  
Open Drain  
Open Drain  
Open-drain fail-safe output signal. Connected to  
PMIC/Processor/MCU to indicate that some severe  
criticality fault has happened. Recovery would be  
through reset.  
N8  
P7  
O
I
Fail-safe input to the device. Error output from  
any other device can be concentrated in the error  
signaling monitor module inside the device and  
appropriate action can be taken by firmware  
NERROR_IN  
Open Drain  
TMS  
TCK  
TDI  
L13  
M13  
H13  
J13  
I
I
Pull Up  
Pull Down  
Pull Up  
JTAG  
JTAG port for standard boundary scan  
I
TDO  
O
In XTAL mode: Input for the reference crystal  
In External clock mode: Single ended input  
reference clock port  
CLKP  
E14  
I
Reference  
oscillator  
In XTAL mode: Feedback drive for the reference  
crystal  
In External clock mode: Connect this port to ground  
CLKM  
F14  
B10  
O
O
Band-gap  
voltage  
VBGAP  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
14  
Submit Document Feedback  
Product Folder Links: AWR1443  
AWR1443  
www.ti.com.cn  
FUNCTION  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
PIN  
PIN  
DEFAULT PULL  
STATUS(1)  
SIGNAL NAME  
DESCRIPTION  
NUMBER TYPE  
F13,N11,P15  
POW  
VDDIN  
1.2-V digital power supply  
,R6  
VIN_SRAM  
VNWA  
R14  
P14  
POW  
POW  
1.2-V power rail for internal SRAM  
1.2-V power rail for SRAM array back bias  
I/O supply (3.3-V or 1.8-V): All CMOS I/Os would  
operate on this supply.  
VIOIN  
R13  
POW  
VIOIN_18  
K13  
B11  
POW  
POW  
POW  
POW  
POW  
POW  
POW  
POW  
1.8-V supply for CMOS IO  
1.8-V supply for clock module  
1.8-V supply for high speed interface port  
No connect  
VIN_18CLK  
VIOIN_18DIFF  
Reserved  
D13  
G13  
VIN_13RF1  
VIN_13RF2  
VIN_18BB  
G5,J5,H5  
C2,D2  
K5,F5  
B12  
1.3-V Analog and RF supply,VIN_13RF1 and  
VIN_13RF2 could be shorted on the board  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
VIN_18VCO  
E5,E6,E8,E1  
0,E11,F9,F1  
1,G6,G7,G8,  
G10,H7,H9,  
Power supply  
VSS  
H11,J6,J7,J8 GND  
,J10,K7,K8,K  
9,K10,K11,L  
5,L6,L8,L10,  
R15  
Digital ground  
A1,A3,A5,A7  
,A9,A15,B3,  
B5,B7,B9,B1  
3,B14,C1,C3  
,C4,C5,C6,C  
7,C8,C9,C15  
,E1,E2,E3,E GND  
13,E15,F3,G  
1,G2,G3,H3,  
J1,J2,J3,K3,  
L1,L2,L3,  
VSSA  
Analog ground  
M3,N1,N2,N  
3,R1  
VOUT_14APLL  
VOUT_14SYNTH  
VOUT_PA  
A10  
A13  
O
O
O
O
Internal LDO  
output/inputs  
A2,B2  
P13  
PMIC_CLK_OUT  
Dithered clock input to PMIC  
External clock  
out  
Programmable clock given out to external MCU or  
the processor  
MCU_CLK_OUT  
N9  
O
GPIO[0]  
GPIO[1]  
GPIO[2]  
N4  
N7  
IO  
IO  
IO  
Pull Down  
Pull Down  
Pull Down  
General-purpose IO  
General-purpose IO  
General-purpose IO  
General-  
purpose I/Os  
N13  
Chip-select output from the device. Device is a  
controller connected to serial flash peripheral.  
QSPI_CS  
P8  
O
O
Pull Up  
Clock output from the device. Device is a controller  
connected to serial flash peripheral.  
QSPI_CLK  
R10  
Pull Down  
QSPI for Serial  
Flash(2)  
QSPI[0]  
QSPI[1]  
QSPI[2]  
QSPI[3]  
R11  
P9  
IO  
IO  
IO  
IO  
Pull Down  
Pull Down  
Pull Up  
Data IN/OUT  
Data IN/OUT  
Data IN/OUT  
Data IN/OUT  
R12  
P10  
Pull Up  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
PIN  
PIN  
DEFAULT PULL  
STATUS(1)  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
NUMBER TYPE  
Flash  
RS232_TX  
N6  
N5  
O
I
Pull Down  
programming  
and RS232  
UART(2)  
UART pins for programming external flash in  
preproduction/debug hardware.  
RS232_RX  
Pull Up  
Analog Test1 /  
GPADC1  
P1  
P2  
P3  
IO  
IO  
IO  
GP ADC channel 1  
GP ADC channel 2  
GP ADC channel 3  
Test and Debug  
output for  
preproduction  
phase. Can be  
pinned out on  
production  
Analog Test2 /  
GPADC2  
Analog Test3 /  
GPADC3  
Analog Test4  
R2  
IO  
IO  
IO  
GP ADC channel 4  
GP ADC channel 5  
GP ADC channel 6  
hardware for  
field debug  
ANAMUX / GPADC5  
VSENSE / GPADC6  
C13  
C14  
(1) Status of PULL structures associated with the IO after device POWER UP.  
(2) This option is for development/debug in preproduction phase. Can be disabled by firmware pin mux setting.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
7.3 Pin Multiplexing  
7-1. Pin Multiplexing  
PAD STATE  
nReset = 0 [ASSERTED]  
FUNCTION  
SIGNAL DESCRIPTION  
General Purpose IO  
DIGITAL PIN  
MUX CONFIG  
VALUE [Bits3:0]  
REGISTER  
PIN NAME  
PIN  
ADDRESS(1)  
INTERNAL WEAK  
PULL STATE  
SIGNAL NAME  
GPIO_12  
SIGNAL TYPE  
STATE  
Hi-Z  
0
1
0
1
2
0
1
IO  
O
Weak Pull Down  
EA00h  
GPIO_12  
GPIO_0  
P6  
N4  
SPI_HOST1_INTR  
GPIO_13  
General Purpose IO [AWR14xx]  
General Purpose IO  
IO  
IO  
O
Hi-Z  
Hi-Z  
Weak Pull Down  
Weak Pull Down  
EA04h  
EA08h  
GPIO_0  
General Purpose IO  
PMIC_CLKOUT  
GPIO_16  
Dithered Clock Output for PMIC  
General Purpose IO  
IO  
IO  
GPIO_1  
General Purpose IO  
GPIO_1  
N7  
Low Frequency Synchronization  
Signal output  
2
SYNC_OUT  
O
0
1
2
0
1
2
0
1
GPIO_19  
MOSI_1  
General Purpose IO  
SPI Channel#1 Data Input  
CAN Interface  
IO  
IO  
I
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Weak Pull Up  
Weak Pull Up  
Weak Pull Up  
Weak Pull Up  
EA0Ch  
EA10h  
EA14h  
EA18h  
EA1Ch  
EA20h  
MOSI_1  
MISO_1  
R8  
P5  
R9  
R7  
R3  
P4  
CAN_RX  
GPIO_20  
MISO_1  
General Purpose IO  
SPI Channel#1 Data Output  
CAN Interface  
IO  
IO  
O
CAN_TX  
GPIO_3  
General Purpose IO  
SPI Channel#1 Clock  
IO  
IO  
O
SPI_CLK_1  
SPI_CS_1  
MOSI_2  
SPI_CLK_1  
RCOSC_CLK  
GPIO_30  
SPI_CS_1  
RCOSC_CLK  
GPIO_21  
MOSI_2  
0
1
General Purpose IO  
IO  
IO  
O
SPI Channel#1 Chip Select  
0
1
2
0
1
2
General Purpose IO  
SPI Channel#2 Data Input  
I2C Data  
IO  
IO  
IO  
IO  
IO  
IO  
I2C_SDA  
GPIO_22  
MISO_2  
General Purpose IO  
SPI Channel#2 Data Output  
I2C Clock  
MISO_2  
I2C_SCL  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
7-1. Pin Multiplexing (continued)  
PAD STATE  
nReset = 0 [ASSERTED]  
FUNCTION  
DIGITAL PIN  
MUX CONFIG  
VALUE [Bits3:0]  
REGISTER  
PIN NAME  
PIN  
ADDRESS(1)  
INTERNAL WEAK  
PULL STATE  
SIGNAL NAME  
GPIO_5  
SIGNAL DESCRIPTION  
SIGNAL TYPE  
STATE  
0
1
General Purpose IO  
SPI Channel#2 Clock  
IO  
IO  
IO  
O
Hi-Z  
SPI_CLK_2  
MSS_UARTA_RX  
MSS_UARTB_TX  
BSS_UART_TX  
GPIO_4  
EA24h  
SPI_CLK_2  
R5  
6
7
0
1
Debug: Firmware Trace  
Debug: Firmware Trace  
General Purpose IO  
O
IO  
IO  
IO  
O
Hi-Z  
SPI_CS_2  
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UART_TX  
GPIO_8  
SPI Channel#2 Chip Select  
EA28h  
SPI_CS_2  
R4  
6
7
0
1
2
0
1
2
0
1
0
1
0
Debug: Firmware Trace  
Debug: Firmware Trace  
General Purpose IO  
QSPI Data IN/OUT  
O
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
Hi-Z  
Hi-Z  
Weak Pull Down  
Weak Pull Down  
EA2Ch  
EA30h  
QSPI[0]  
QSPI[1]  
R11  
P9  
QSPI[0]  
MISO_2  
SPI Channel#1 Data Output  
General Purpose IO  
QSPI Data IN/OUT  
GPIO_9  
QSPI[1]  
MOSI_2  
SPI Channel#2 Data Input  
General Purpose IO  
QSPI Data IN/OUT  
GPIO_10  
Hi-Z  
Hi-Z  
Hi-Z  
Weak Pull Down  
Weak Pull Down  
Weak Pull Down  
EA34h  
EA38h  
QSPI[2]  
QSPI[3]  
R12  
P10  
QSPI[2]  
GPIO_11  
General Purpose IO  
QSPI Data IN/OUT  
QSPI[3]  
GPIO_7  
General Purpose IO  
IO  
QSPI Clock output from the device.  
Device operates as a master with  
the serial flash being a slave  
EA3Ch  
EA40h  
QSPI_CLK  
QSPI_CS  
R10  
1
QSPI_CLK  
O
2
0
SPI_CLK_2  
GPIO_6  
SPI Channel#2 Clock  
General Purpose IO  
IO  
IO  
Hi-Z  
Weak Pull Up  
QSPI Chip Select output from the  
device.  
Device operates as a master with  
the serial flash being a slave  
P8  
1
2
QSPI_CS  
SPI_CS_2  
O
SPI Channel#2 Chip Select  
IO  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
18  
Submit Document Feedback  
Product Folder Links: AWR1443  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
7-1. Pin Multiplexing (continued)  
PAD STATE  
nReset = 0 [ASSERTED]  
FUNCTION  
DIGITAL PIN  
MUX CONFIG  
VALUE [Bits3:0]  
REGISTER  
PIN NAME  
PIN  
ADDRESS(1)  
INTERNAL WEAK  
PULL STATE  
SIGNAL NAME  
SIGNAL DESCRIPTION  
SIGNAL TYPE  
STATE  
Failsafe input to the device. Nerror  
output from any other device can be  
concentrated in the error signaling  
monitor module inside the device  
and appropriate action can be taken  
by Firmware  
NERROR_IN  
P7  
NERROR_IN  
I
Hi-Z  
Open drain fail safe warm reset  
signal. Can be driven from PMIC  
for diagnostic or can be used as  
status signal that the device is going  
through reset.  
WARM_RESET  
NERROR_OUT  
N12  
N8  
WARM_RESET  
NERROR_OUT  
IO  
O
Hi-Z Input Open Drain  
Open drain fail safe output signal.  
Connected to PMIC/Processor/MCU  
to indicate that some severe  
criticality fault has happened.  
Recovery would be through reset.  
Hi-Z  
Hi-Z  
Open Drain  
0
1
2
6
0
1
2
0
1
GPIO_17  
General Purpose IO  
JTAG Clock  
IO  
I
Weak Pull Down  
TCK  
EA50h  
TCK  
M13  
MSS_UARTB_TX  
BSS_UART_RX  
GPIO_18  
Debug: Firmware Trace  
Debug: Firmware Trace  
General Purpose IO  
JTAG Test Mode Select  
Debug: Firmware Trace  
General Purpose IO  
JTAG Test Data In  
O
I
IO  
IO  
O
IO  
I
Hi-Z  
Hi-Z  
Hi-Z  
Weak Pull Up  
Weak Pull Up  
EA54h  
EA58h  
TMS  
TDI  
L13  
H13  
TMS  
BSS_UART_TX  
GPIO_23  
TDI  
MSS_UARTA_RX  
GPIO_24  
IO  
IO  
O
IO  
O
O
0
1
General Purpose IO  
JTAG Test Data Out  
TDO  
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UART_TX  
EA5Ch  
TDO  
J13  
6
7
Debug: Firmware Trace  
Debug: Firmware Trace  
Sense On Power [Reset] Line  
Impacts boot mode  
SOP0  
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
7-1. Pin Multiplexing (continued)  
PAD STATE  
nReset = 0 [ASSERTED]  
FUNCTION  
DIGITAL PIN  
MUX CONFIG  
VALUE [Bits3:0]  
REGISTER  
PIN NAME  
PIN  
ADDRESS(1)  
INTERNAL WEAK  
PULL STATE  
SIGNAL NAME  
GPIO_25  
SIGNAL DESCRIPTION  
SIGNAL TYPE  
STATE  
0
1
General Purpose IO  
IO  
O
Hi-Z  
Weak Pull Down  
Programmable clock given out to  
external MCU or the processor  
EA60h  
MCU_CLKOUT  
N9  
MCU_CLKOUT  
10  
0
BSS_UART_RX  
GPIO_26  
Debug: Firmware Trace  
General Purpose IO  
I
IO  
IO  
O
Hi-Z  
Weak Pull Down  
1
GPIO_2  
General Purpose IO  
7
MSS_UARTB_TX  
BSS_UART_TX  
Debug: Firmware Trace  
Debug: Firmware Trace  
EA64h  
GPIO_2  
N13  
8
O
Low frequency Synchronization  
signal output  
9
SYNC_OUT  
O
10  
0
PMIC_CLKOUT  
GPIO_27  
Dithered clock input to PMIC  
General Purpose IO  
O
IO  
O
Hi-Z  
Hi-Z  
Hi-Z  
Weak Pull Down  
Weak Pull Down  
Weak Pull Down  
1
PMIC_CLKOUT  
Dithered Clock Output for PMIC  
EA68h  
EA6Ch  
PMIC_CLKOUT  
SYNC_IN  
P13  
N10  
Sense On Power [Reset] Line  
Impacts boot mode  
SOP2  
I
IO  
I
0
1
GPIO_28  
SYNC_IN  
General Purpose IO  
Low frequency Synchronization  
signal input  
6
0
MSS_UARTB_RX  
GPIO_29  
Debug: Firmware Trace  
General Purpose IO  
I
IO  
Low frequency Synchronization  
signal output  
1
SYNC_OUT  
RCOSC_CLK  
SOP1  
O
O
I
EA70h  
EA74h  
SYNC_OUT  
P11  
Sense On Power [Reset] Line  
Impacts boot mode  
0
1
GPIO_15  
General Purpose IO  
IO  
IO  
Hi-Z  
Weak Pull Up  
RS232_RX  
Debug: Firmware load to RAM  
FLASH Programming  
Bootloader Controlled  
RS232_RX  
N5  
2
MSS_UARTA_RX  
I
6
7
BSS_UART_TX  
Debug: Firmware Trace  
Debug: Firmware Trace  
O
I
MSS_UARTB_RX  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
20  
Submit Document Feedback  
Product Folder Links: AWR1443  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
7-1. Pin Multiplexing (continued)  
PAD STATE  
nReset = 0 [ASSERTED]  
FUNCTION  
DIGITAL PIN  
MUX CONFIG  
VALUE [Bits3:0]  
REGISTER  
PIN NAME  
PIN  
ADDRESS(1)  
INTERNAL WEAK  
PULL STATE  
SIGNAL NAME  
GPIO_14  
SIGNAL DESCRIPTION  
SIGNAL TYPE  
STATE  
0
1
General Purpose IO  
IO  
IO  
RS232_TX  
Debug: Firmware load to RAM  
FLASH Programming  
Bootloader Controlled  
EA78h  
RS232_TX  
N6  
5
MSS_UARTA_TX  
O
6
7
MSS_UARTB_TX  
BSS_UART_TX  
Debug: Firmware Trace  
Debug: Firmware Trace  
O
O
(1) Register addresses are of the form FFFF XXXXh, where XXXX is listed here.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
PARAMETERS(1) (2)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
UNIT  
VDDIN  
1.2 V digital power supply  
1.4  
1.4  
1.4  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this  
supply.  
VIOIN  
–0.5  
3.8  
V
VIOIN_18  
1.8 V supply for CMOS IO  
–0.5  
–0.5  
2
2
V
V
VIN_18CLK  
VIN_13RF1  
VIN_13RF2  
VIN_13RF1  
1.8 V supply for clock module  
1.3 V Analog and RF supply, VIN_13RF1 and VIN_13RF2 could  
be shorted on the board.  
–0.5  
1.45  
V
1-V Internal LDO bypass mode. Device supports mode  
where external Power Management block can supply 1 V on  
VIN_13RF1 and VIN_13RF2 rails. In this configuration, the  
internal LDO of the device would be kept bypassed.  
–0.5  
1.4  
V
VIN_13RF2  
VIN_18BB  
VIN_18VCO supply  
RX1-4  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
–0.5  
–0.5  
2
V
2
V
Externally applied power on RF inputs  
Externally applied power on RF outputs(3)  
Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)  
10  
10  
dBm  
dBm  
TX1-3  
–0.3V  
VIOIN + 0.3  
Input and output  
voltage range  
V
Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V  
(Transient Overshoot/Undershoot) or external oscillator input  
VIOIN + 20% up to  
20% of signal period  
CLKP, CLKM  
Clamp current  
Input ports for reference crystal  
–0.5  
2
V
Input or Output Voltages 0.3 V above or below their respective  
power rails. Limit clamp current that flows through the internal  
diode protection cells of the I/O.  
–20  
20  
mA  
TJ  
Operating junction temperature range  
–40  
–55  
125  
150  
°C  
°C  
TSTG  
Storage temperature range after soldered onto PC board  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) This value is for an externally applied signal level on the TX. Additionally, a reflection coefficient up to Gamma = 1 can be applied on  
the TX output.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC  
V(ESD)  
Electrostatic discharge  
V
Q100-011  
Corner pins  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
22  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
 
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.3 Power-On Hours (POH)  
JUNCTION  
OPERATING  
TEMPERATURE (Tj)  
NOMINAL CVDD VOLTAGE (V)  
POWER-ON HOURS [POH] (HOURS)  
CONDITION  
(1) (2)  
–40°C  
600 (6%)  
2000 (20%)  
6500 (65%)  
900 (9%)  
75°C  
100% duty cycle  
95°C  
1.2  
125°C  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
(2) The specified POH are applicable with max Tx output power settings using the default firmware gain tables. The specified POH would  
not be applicable, if the Tx gain table is overwritten using an API.  
8.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.14  
1.14  
1.14  
3.135  
1.71  
1.71  
1.71  
NOM  
1.2  
1.2  
1.2  
3.3  
1.8  
1.8  
1.8  
MAX  
1.32  
1.32  
1.32  
3.465  
1.89  
1.9  
UNIT  
VDDIN  
1.2 V digital power supply  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V or 1.8 V):  
All CMOS I/Os would operate on this supply.  
VIOIN  
V
VIOIN_18  
1.8 V supply for CMOS IO  
V
V
VIN_18CLK  
VIN_13RF1  
VIN_13RF2  
1.8 V supply for clock module  
1.9  
1.3 V Analog and RF supply. VIN_13RF1 and VIN_13RF2  
could be shorted on the board  
1.23  
1.3  
1.36  
V
VIN_13RF1  
(1-V Internal LDO  
bypass mode)  
0.95  
1
1.05  
V
VIN_13RF2  
(1-V Internal LDO  
bypass mode)  
VIN18BB  
1.8-V Analog baseband power supply  
1.8V RF VCO supply  
1.71  
1.71  
1.17  
2.25  
1.8  
1.8  
1.9  
1.9  
V
V
VIN_18VCO  
Voltage Input High (1.8 V mode)  
Voltage Input High (3.3 V mode)  
Voltage Input Low (1.8 V mode)  
Voltage Input Low (3.3 V mode)  
High-level output threshold (IOH = 6 mA)  
Low-level output threshold (IOL = 6 mA)  
VIL (1.8V Mode)  
VIH  
VIL  
V
V
0.3*VIOIN  
0.62  
VOH  
VOL  
VIOIN – 450  
mV  
mV  
450  
0.2  
VIH (1.8V Mode)  
0.96  
1.57  
NRESET  
SOP[2:0]  
V
VIL (3.3V Mode)  
0.3  
VIH (3.3V Mode)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.5 Power Supply Specifications  
8-1 describes the four rails from an external power supply block of the AWR1443 device.  
8-1. Power Supply Rails Characteristics  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOS IN THE DEVICE  
Input: VIN_18VCO, VIN18CLK, VIN_18BB,  
VIOIN_18DIFF, VIOIN_18  
LDO Output: VOUT_14SYNTH, VOUT_14APLL  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC, LVDS  
1.8 V  
1.3 V (or 1 V in internal  
LDO bypass mode)(1)  
Power Amplifier, Low Noise Amplifier, Mixers and LO  
Distribution  
Input: VIN_13RF2, VIN_13RF1  
LDO Output: VOUT_PA  
3.3 V (or 1.8 V for 1.8 V  
I/O mode)  
Digital I/Os  
Input VIOIN  
1.2 V  
Core Digital and SRAMs  
Input: VDDIN, VIN_SRAM  
(1) Three simultaneous transmitter operation is supported only in 1-V LDO bypass and PA LDO disable mode. In this mode 1V supply  
needs to be fed on the VOUT PA pin.  
The 1.3-V (1.0 V) and 1.8-V power supply ripple specifications mentioned in are defined to meet a target spur  
level of –105 dBc (RF Pin = –15 dBm) at the RX. The spur and ripple levels have a dB-to-dB relationship, for  
example, a 1-dB increase in supply ripple leads to a ~1 dB increase in spur level. Values quoted are rms levels  
for a sinusoidal input applied at the specified frequency.  
8-2. Ripple Specifications  
RF RAIL  
VCO/IF RAIL  
FREQUENCY (kHz)  
1.0 V (INTERNAL LDO BYPASS)  
1.3 V (µVRMS  
)
1.8 V (µVRMS)  
(µVRMS  
)
137.5  
275  
7
5
648  
76  
22  
4
83  
21  
11  
6
550  
3
1100  
2200  
4400  
6600  
2
11  
13  
22  
82  
93  
117  
13  
19  
29  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
24  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.6 Power Consumption Summary  
8-3 and 8-4 summarize the power consumption at the power terminals.  
8-3. Maximum Current Ratings at Power Terminals  
PARAMETER  
SUPPLY NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Total current drawn by all  
nodes driven by 1.2V rail  
VDDIN, VIN_SRAM, VNWA  
500  
Total current drawn by all  
nodes driven by 1.3V rail  
VIN_13RF1, VIN_13RF2  
2000  
850  
Current consumption(1)  
mA  
VIOIN_18, VIN_18CLK,  
VIOIN_18DIFF, VIN_18BB,  
VIN_18VCO  
Total current drawn by all  
nodes driven by 1.8V rail  
Total current drawn by  
all nodes driven by 3.3V  
rail(2)  
VIOIN  
50  
(1) The specified current values are at typical supply voltage level.  
(2) The exact VIOIN current depends on the peripherals used and their frequency of operation.  
8-4. Average Power Consumption at Power Terminals  
PARAMETER  
CONDITION  
DESCRIPTION  
MIN  
TYP  
MAX UNIT  
1.0-V internal  
LDO bypass  
mode  
1TX, 4RX  
2TX, 4RX  
1TX, 4RX  
2TX, 4RX  
1.72  
1.89  
1.90  
2.10  
Sampling: 16.66 MSps complex  
Transceiver, 40-ms frame time, 512  
chirps, 512 samples/chirp, 8.5-μs  
interchirp time (50% duty cycle)  
Data Port: MIPI-CSI-2  
Average power  
consumption  
W
1.3-V internal  
LDO enabled  
mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.7 RF Specification  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
14  
15  
–8  
48  
24  
2
MAX UNIT  
76 to 77 GHz  
Noise figure  
dB  
77 to 81 GHz  
1-dB compression point (Out Of Band)(1)  
Maximum gain  
dBm  
dB  
Gain range  
dB  
Gain step size  
dB  
Image Rejection Ratio (IMRR)  
IF bandwidth(2)  
30  
dB  
5
MHz  
ADC sampling rate (real/complex 2x)  
ADC sampling rate (complex 1x)  
ADC resolution  
12.5 Msps  
6.25 Msps  
Receiver  
12  
<–10  
±0.5  
±3  
Bits  
dB  
dB  
°
Return loss (S11)  
Gain mismatch variation (over temperature)  
Phase mismatch variation (over temperature)  
RX gain = 30dB  
IF = 1.5, 2 MHz at  
–12 dBFS  
In-band IIP2  
16  
24  
dBm  
dBm  
RX gain = 24dB  
IF = 10 kHz at -10dBm,  
1.9 MHz at -30 dBm  
Out-of-band IIP2  
Idle Channel Spurs  
Output power  
–90  
12  
dBFS  
dBm  
Transmitter  
Amplitude noise  
Frequency range  
Ramp rate  
–145  
dBc/Hz  
76  
81 GHz  
100 MHz/µs  
Clock  
subsystem  
76 to 77 GHz  
77 to 81 GHz  
–95  
–93  
Phase noise at 1-MHz offset  
dBc/Hz  
(1) 1-dB Compression Point (Out Of Band) is measured by feed a Continuous wave Tone (10 kHz) well below the lowest HPF cut-off  
frequency.  
(2) The analog IF stages include high-pass filtering, with two independently configurable first-order high-pass corner frequencies. The set  
of available HPF corners is summarized as follows:  
Available HPF Corner Frequencies (kHz)  
HPF1  
HPF2  
175, 235, 350, 700  
350, 700, 1400, 2800  
The filtering performed by the digital baseband chain is targeted to provide:  
Less than ±0.5 dB pass-band ripple/droop, and  
Better than 60 dB anti-aliasing attenuation for any frequency that can alias back into the pass-band.  
8-1 shows variations of noise figure and in-band P1dB parameters with respect to receiver gain programmed.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
26  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
18  
16  
14  
12  
10  
8
-18  
NF (dB)  
In-band P1DB (dBm)  
-24  
-30  
-36  
-42  
-48  
30  
32  
34  
36  
38 40  
RX Gain (dB)  
42  
44  
46  
48  
8-1. Noise Figure, In-band P1dB vs Receiver Gain  
8.8 Thermal Resistance Characteristics for FCBGA Package [ABL0161]  
THERMAL METRICS(1)  
°C/W(2) (3)  
5
JC  
JB  
JA  
JMA  
PsiJT  
PsiJB  
Junction-to-case  
Junction-to-board  
5.9  
Junction-to-free air  
Junction-to-moving air  
Junction-to-package top  
Junction-to-board  
21.6  
15.3 (4)  
0.69  
5.8  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on  
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(4) Air flow = 1 m/s  
8.9 Timing and Switching Characteristics  
8.9.1 Power Supply Sequencing and Reset Timing  
The AWR1443 device expects all external voltage rails to be stable before reset is deasserted. 8-2 describes  
the device wake-up sequence.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
SOP  
Setup  
Time  
SOP  
Hold time to  
nRESET  
DC power  
MSS  
BOOT  
START  
nRESET  
ASSERT  
tPGDEL  
DC  
Power  
notOK  
Stable before  
nRESET  
release  
DC  
Power  
OK  
QSPI  
READ  
VDDIN,  
VIN_SRAM  
VNWA  
VIOIN_18  
VIN18_CLK  
VIOIN_18DIFF  
VIN18_BB  
VIN_13RF1  
VIN_13RF2  
VIOIN  
SOP[2.1.0]  
nRESET  
Warm reset  
delay for crystal  
or ext osc  
WARMRESET  
OUTPUT  
VBGAP  
OUTPUT  
CLKP, CLKM  
Using Crystal  
MCUCLK  
OUTPUT (1)  
QSPI_CS  
OUTPUT  
7ms (XTAL Mode)  
500 µs (REFCLK Mode)  
A. MCU_CLK_OUT in autonomous mode, where AWR1443 application is booted from the serial flash, MCU_CLK_OUT is not enabled by  
default by the device bootloader.  
8-2. Device Wake-up Sequence  
8.9.2 Synchronized Frame Triggering  
The AWR1443 device supports a hardware based mechanism to trigger radar frames. An external host can  
pulse the SYNC_IN signal to start radar frames. The typical time difference between the rising edge of  
the external pulse and the frame transmission on air (Tlag) is about 160 ns. There is also an additional  
programmable delay that the user can set to control the frame start time.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
28  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
Tactive_frame  
SYNC_IN  
(Hardware  
Trigger)  
Radar  
Frames  
Tpulse  
Tlag  
Frame-2  
Frame-1  
8-3. Sync In Hardware Trigger  
8-5. Frame Trigger Timing  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
Tactive_frame  
Tpulse  
Active frame duration  
User defined  
25  
ns  
4000  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.9.3 Input Clocks and Oscillators  
8.9.3.1 Clock Specifications  
An external crystal is connected to the device pins. 8-4 shows the crystal implementation.  
Cf1  
CLKP  
Cp  
40 MHz  
CLKM  
Cf2  
8-4. Crystal Implementation  
备注  
The load capacitors, Cf1 and Cf2 in 8-4, should be chosen such that 方程式 1 is satisfied. CL in the  
equation is the load specified by the crystal manufacturer. All discrete components used to implement  
the oscillator circuit should be placed as close as possible to the associated oscillator CLKP and  
CLKM pins.Note that Cf1 and Cf2 include the parasitic capacitances due to PCB routing.  
C f2  
CL = C f1  
´
+CP  
C
f1 +C f2  
(1)  
8-6 lists the electrical characteristics of the clock crystal.  
8-6. Crystal Electrical Characteristics (Oscillator Mode)  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
fP  
Parallel resonance crystal frequency  
40  
CL  
Crystal load capacitance  
Crystal ESR  
5
8
12  
ESR  
50  
Ω
Temperature range Expected temperature range of operation  
–40  
125  
°C  
Frequency  
Crystal frequency tolerance(1) (2)  
tolerance  
–200  
200  
200  
ppm  
µW  
Drive level  
50  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.  
In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only; CLKM  
is grounded. The phase noise requirement is very important when a 40-MHz clock is fed externally. 8-7 lists  
the electrical characteristics of the external clock signal.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
30  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8-7. External Clock Mode Specifications  
SPECIFICATION  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
Frequency  
40  
MHz  
mV (pp)  
ns  
AC-Amplitude  
700  
1200  
10  
DC-trise/fall  
Input Clock:  
External AC-coupled sine wave or DC-  
coupled square wave  
Phase Noise at 1 kHz  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Duty Cycle  
–132  
–143  
–152  
–153  
65  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
Phase Noise referred to 40 MHz  
35  
Freq Tolerance  
–100  
100  
ppm  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.9.4 Multibuffered / Standard Serial Peripheral Interface (MibSPI)  
8.9.4.1 Peripheral Description  
The SPI uses a MibSPI Protocol by TI.  
The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of  
programmed length (2 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate.  
The MibSPI/SPI is normally used for communication between the microcontroller and external peripherals or  
another microcontroller.  
Standard and MibSPI modules have the following features:  
16-bit shift register  
Receive buffer register  
8-bit baud clock generator  
SPICLK can be internally-generated (controller mode) or received from an external clock source  
(peripheral mode)  
Each word transferred can have a unique format.  
SPI I/Os not used in the communication can be used as digital input/output signals  
8.9.4.2 MibSPI Transmit and Receive RAM Organization  
The Multibuffer RAM is comprised of 256 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a 16-bit  
transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer RAM can be  
partitioned into multiple transfer group with variable number of buffers each.  
8.9.4.2.2 and 8.9.4.2.3 assume the operating conditions stated in 8.9.4.2.1.  
8.9.4.2.1 SPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
2
15  
pF  
8.9.4.2.2 SPI Controller Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1) (2) (3)  
NO.  
PARAMETER  
Cycle time, SPICLK(4)  
MIN  
25  
TYP  
MAX UNIT  
1
tc(SPC)M  
256tc(VCLK)  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 3  
2(4)  
ns  
3(4)  
ns  
ns  
td(SPCH-  
Delay time, SPISIMO valid before SPICLK low, (clock  
polarity = 0)  
SIMO)M  
4(4)  
td(SPCL-  
Delay time, SPISIMO valid before SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M – 3  
SIMO)M  
tv(SPCL-  
Valid time, SPISIMO data valid after SPICLK low, (clock  
polarity = 0)  
0.5tc(SPC)M  
10.5  
SIMO)M  
5(4)  
ns  
tv(SPCH-  
Valid time, SPISIMO data valid after SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M  
10.5  
SIMO)M  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
32  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
AWR1443  
www.ti.com.cn  
NO.  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
PARAMETER  
MIN  
TYP  
MAX UNIT  
(C2TDELAY+2)  
CSHOLD = 0  
CSHOLD = 1  
CSHOLD = 0  
CSHOLD = 1  
(C2TDELAY+2)*  
tc(VCLK) – 7.5  
Setup time CS active until SPICLK  
high  
(clock polarity = 0)  
* tc(VCLK) + 7  
(C2TDELAY +3)  
* tc(VCLK) – 7.5  
(C2TDELAY+3)  
* tc(VCLK) + 7  
6(5)  
tC2TDELAY  
ns  
(C2TDELAY+2)*  
tc(VCLK) – 7.5  
(C2TDELAY+2)  
* tc(VCLK) + 7  
Setup time CS active until SPICLK low  
(clock polarity = 1)  
(C2TDELAY +3)  
* tc(VCLK) – 7.5  
(C2TDELAY+3)  
* tc(VCLK) + 7  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
0.5*tc(SPC)M  
(T2CDELAY +  
1) *tc(VCLK) – 7  
+
0.5*tc(SPC)M  
(T2CDELAY +  
1) * tc(VCLK)  
7.5  
+
+
7(5)  
tT2CDELAY  
ns  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M  
+
(T2CDELAY +  
1) *tc(VCLK) – 7  
(T2CDELAY +  
1) * tc(VCLK)  
+
7.5  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
5
5
3
3
SPCL)M  
8(4)  
ns  
ns  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
SPCH)M  
th(SPCL-  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
SOMI)M  
9(4)  
th(SPCH-  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
SOMI)M  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared (where x= 0 or 1).  
(2) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Controller mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25ns,  
where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
11  
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1  
4
5
Master Out Data Is Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
8-5. SPI Controller Mode External Timing (CLOCK PHASE = 0)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
Master Out Data Is Valid  
6
7
SPICSn  
8-6. SPI Controller Mode Chip Select Timing (CLOCK PHASE = 0)  
8.9.4.2.3 SPI Controller Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1) (2) (3)  
NO.  
PARAMETER  
Cycle time, SPICLK(4)  
MIN  
25  
TYP  
MAX UNIT  
1
tc(SPC)M  
256tc(VCLK)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2(4)  
ns  
3(4)  
ns  
ns  
td(SPCH-  
Delay time, SPISIMO valid before SPICLK low, (clock polarity 0.5tc(SPC)M – 3  
= 0)  
SIMO)M  
4(4)  
td(SPCL-  
Delay time, SPISIMO valid before SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M – 3  
SIMO)M  
tv(SPCL-  
Valid time, SPISIMO data valid after SPICLK low, (clock  
polarity = 0)  
0.5tc(SPC)M  
10.5  
SIMO)M  
5(4)  
ns  
tv(SPCH-  
Valid time, SPISIMO data valid after SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M  
10.5  
SIMO)M  
tC2TDELAY  
Setup time CS active until SPICLK  
high  
(clock polarity = 0)  
CSHOLD = 0  
CSHOLD = 1  
CSHOLD = 0  
CSHOLD = 1  
0.5*tc(SPC)M  
+
(C2TDELAY +  
2)*tc(VCLK) – 7  
0.5*tc(SPC)M  
(C2TDELAY+2  
) * tc(VCLK)  
7.5  
+
+
0.5*tc(SPC)M  
(C2TDELAY +  
2)*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
+
(C2TDELAY+2  
) * tc(VCLK)  
+
7.5  
6(5)  
ns  
0.5*tc(SPC)M  
(C2TDELAY+2  
)*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
+
(C2TDELAY+2  
) * tc(VCLK)  
+
Setup time CS active until SPICLK  
low  
(clock polarity = 1)  
7.5  
0.5*tc(SPC)M  
(C2TDELAY+3  
)*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
+
(C2TDELAY+3  
) * tc(VCLK)  
+
7.5  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
(T2CDELAY +  
(T2CDELAY +  
1) *tc(VCLK) + 7  
1) *tc(VCLK)  
7.5  
7(5)  
tT2CDELAY  
ns  
(T2CDELAY +  
(T2CDELAY +  
1) *tc(VCLK) + 7  
1) *tc(VCLK)  
7.5  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
34  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
AWR1443  
www.ti.com.cn  
NO.  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
PARAMETER  
MIN  
TYP  
MAX UNIT  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
5
SPCL)M  
8(4)  
ns  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
5
3
3
SPCH)M  
th(SPCL-  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
SOMI)M  
9(4)  
ns  
th(SPCH-  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
SOMI)M  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set ( where x = 0 or 1 ).  
(2) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Controller mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns,  
where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25 ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Master Out Data Is Valid  
Data Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
8-7. SPI Controller Mode External Timing (CLOCK PHASE = 1)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
8-8. SPI Controller Mode Chip Select Timing (CLOCK PHASE = 1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
36  
Submit Document Feedback  
Product Folder Links: AWR1443  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.9.4.3 SPI Peripheral Mode I/O Timings  
8.9.4.3.1 SPI Peripheral Mode Switching Parameters (SPICLK = input, SPISIMO = input,  
and SPISOMI = output)(1) (2) (3)  
NO.  
PARAMETER  
MIN  
25  
TYP  
MAX  
UNIT  
1
tc(SPC)S  
Cycle time, SPICLK(4)  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
td(SPCH-SOMI)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
10  
2(5)  
ns  
ns  
10  
10  
3(5)  
10  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0)  
10  
10  
4(5)  
ns  
ns  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
td(SPCH-SOMI)S  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0)  
2
2
5(5)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1)  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
10  
10  
4(5)  
5(5)  
6(5)  
7(5)  
ns  
ns  
ns  
ns  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1; clock phase = 0) OR (clock polarity =  
0; clock phase = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
2
2
3
3
1
1
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)  
Setup time, SPISIMO before SPICLK low (clock  
polarity = 0; clock phase = 0) OR (clock polarity =  
1; clock phase = 1)  
tsu(SIMO-SPCL)S  
Setup time, SPISIMO before SPICLK high (clock  
tsu(SIMO-SPCH)S polarity = 1; clock phase = 0) OR (clock polarity =  
0; clock phase = 1)  
Hold time, SPISIMO data valid after SPICLK low  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
th(SPCL-SIMO)S  
Hold time, SPISIMO data valid after SPICLK high  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)  
th(SPCL-SIMO)S  
(1) The MASTER bit (SPIGCRx.0) is cleared ( where x = 0 or 1 ).  
(2) The CLOCK PHASE bit (SPIFMTx.16) is either cleared or set for CLOCK PHASE = 0 or CLOCK PHASE = 1 respectively.  
(3) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(4) When the SPI is in peripheral mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns,  
where PS is the prescale value set in the SPIFMTx.[15:8] register bits.For PS values of 0: tc(SPC)S = 2tc(MSS_VCLK) ≥ 25 ns.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
8-9. SPI peripheral Mode External Timing (CLOCK PHASE = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
8-10. SPI peripheral Mode External Timing (CLOCK PHASE = 1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
38  
Submit Document Feedback  
Product Folder Links: AWR1443  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.9.4.4 Typical Interface Protocol Diagram (Peripheral Mode)  
1. Host should ensure that there is a delay of two SPI clocks between CS going low and start of SPI clock.  
2. Host should ensure that CS is toggled for every 16 bits of transfer through SPI.  
8-11 shows the SPI communication timing of the typical interface protocol.  
2 SPI clocks  
CS  
CLK  
0x4321  
0x1234  
CRC  
0x5678  
0x8765  
MOSI  
MISO  
IRQ  
0xDCBA  
0xABCD  
CRC  
16 bytes  
8-11. SPI Communication  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.9.5 LVDS Interface Configuration  
The AWR1443 supports seven differential LVDS IOs/Lanes. The lane configuration supported is four Data lanes  
(LVDS_TXP/M), one Bit Clock lane (LVDS_CLKP/M) and one Frame clock lane (LVDS_FRCLKP/M), and one  
HS_DEBUG LVDS pair. The LVDS interface is used for debugging. The LVDS interface supports the following  
data rates:  
900 Mbps (450 MHz DDR Clock)  
600 Mbps (300 MHz DDR Clock)  
450 Mbps (225 MHz DDR Clock)  
400 Mbps (200 MHz DDR Clock)  
300 Mbps (150 MHz DDR Clock)  
225 Mbps (112.5 MHz DDR Clock)  
150 Mbps (75 MHz DDR Clock)  
Note that the bit clock is in DDR format and hence the numbers of toggles in the clock is equivalent to data.  
LVDS_TXP/M  
LVDS_FRCLKP/M  
Data bitwidth  
LVDS_CLKP/M  
8-12. LVDS Interface Lane Configuration And Relative Timings  
8.9.5.1 LVDS Interface Timings  
8-8. LVDS Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Duty Cycle Requirements  
max 1 pF lumped capacitive load on  
LVDS lanes  
48%  
52%  
Output Differential Voltage  
peak-to-peak single-ended with 100 Ω  
resistive load between differential pairs  
250  
450  
mV  
Output Offset Voltage  
Trise and Tfall  
1125  
1275  
mV  
ps  
20%-80%, 900 Mbps  
900 Mbps  
330  
80  
Jitter (pk-pk)  
ps  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
40  
Submit Document Feedback  
Product Folder Links: AWR1443  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
Trise  
LVDS_CLK  
Clock Jitter = 6sigma  
LVDS_TXP/M  
LVDS_FRCLKP/M  
1100 ps  
8-13. Timing Parameters  
8.9.6 General-Purpose Input/Output  
8.9.6.1 lists the switching characteristics of output timing relative to load capacitance.  
8.9.6.1 Switching Characteristics for Output Timing versus Load Capacitance (CL)  
PARAMETER(1) (2)  
TEST CONDITIONS  
CL = 20 pF  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
2.8  
6.4  
9.4  
2.8  
6.4  
9.4  
3.3  
6.7  
9.6  
3.1  
6.6  
9.6  
3.0  
6.9  
10.2  
2.8  
6.6  
9.8  
3.3  
7.2  
10.5  
3.1  
6.6  
9.6  
tr  
tf  
tr  
tf  
Max rise time  
CL = 50 pF  
ns  
CL = 75 pF  
Slew control = 0  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
Max fall time  
Max rise time  
Max fall time  
ns  
ns  
ns  
Slew control = 1  
(1) Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).  
(2) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.9.7 Controller Area Network Interface (DCAN)  
The DCAN supports the CAN 2.0B protocol standard and uses a serial, multi-commander communication  
protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 Mbps.  
The DCAN is ideal for applications operating in noisy and harsh environments that require reliable serial  
communication or multiplexed wiring.  
The DCAN has the following features:  
Supports CAN protocol version 2.0 part A, B  
Bit rates up to 1 Mbps  
Configurable Message objects  
Individual identifier masks for each message object  
Programmable FIFO mode for message objects  
Suspend mode for debug support  
Programmable loop-back modes for self-test operation  
Direct access to Message RAM in test mode  
Supports two interrupt lines - Level 0 and Level 1  
Automatic Message RAM initialization  
8.9.7.1 Dynamic Characteristics for the DCANx TX and RX Pins  
PARAMETER  
MIN  
TYP  
MAX  
15  
UNIT  
ns  
td(CAN_tx)  
td(CAN_rx)  
Delay time, transmit shift register to CAN_tx pin(1)  
Delay time, CAN_rx pin to receive shift register(1)  
10  
ns  
(1) These values do not include rise/fall times of the output buffer.  
8.9.8 Serial Communication Interface (SCI)  
The SCI has the following features:  
Standard universal asynchronous receiver-transmitter (UART) communication  
Standard non-return to zero (NRZ) format  
Double-buffered receive and transmit functions  
Asynchronous or iso-synchronous communication modes with no CLK pin  
Capability to use Direct Memory Access (DMA) for transmit and receive data  
Two external pins: RS232_RX and RS232_TX  
8.9.8.1 SCI Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
kHz  
f(baud)  
Supported baud rate at 20 pF  
921.6  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
42  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.9.9 Inter-Integrated Circuit Interface (I2C)  
The inter-integrated circuit (I2C) module is a multicontroller communication module providing an interface  
between devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by an  
I2C-bus™. This module will support any target or controller I2C compatible device.  
The I2C has the following features:  
Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number 9398  
393 40011)  
– Bit/Byte format transfer  
– 7-bit and 10-bit device addressing modes  
– General call  
– START byte  
– Multi-controller transmitter/ target receiver mode  
– Multi-controller receiver/ target transmitter mode  
– Combined controller transmit/receive and receive/transmit mode  
– Transfer rates of 100 kbps up to 400 kbps (Phillips fast-mode rate)  
Free data format  
Two DMA events (transmit and receive)  
DMA event enable/disable capability  
Module enable/disable capability  
The SDA and SCL are optionally configurable as general purpose I/O  
Slew rate control of the outputs  
Open drain control of the outputs  
Programmable pullup/pulldown capability on the inputs  
Supports Ignore NACK mode  
备注  
This I2C module does not support:  
High-speed (HS) mode  
C-bus compatibility mode  
The combined format in 10-bit address mode (the I2C sends the target address second byte every  
time it sends the target address first byte)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
AWR1443  
www.ti.com.cn  
UNIT  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.9.9.1 I2C Timing Requirements(1)  
STANDARD MODE  
FAST MODE  
MIN  
10  
MAX  
MIN  
2.5  
MAX  
tc(SCL)  
Cycle time, SCL  
μs  
μs  
tsu(SCLH-SDAL)  
Setup time, SCL high before SDA low  
(for a repeated START condition)  
4.7  
0.6  
th(SCLL-SDAL)  
Hold time, SCL low after SDA low  
4
0.6  
μs  
(for a START and a repeated START condition)  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
μs  
μs  
μs  
μs  
μs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
tw(SDAH)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
3.45(1)  
0.9  
Pulse duration, SDA high between STOP and START  
conditions  
4.7  
1.3  
tsu(SCLH-SDAH)  
tw(SP)  
Setup time, SCL high before SDA high  
(for STOP condition)  
4
0.6  
0
μs  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(2) (3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the  
SCL signal.  
(3) Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
8-14. I2C Timing Diagram  
备注  
A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the  
VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW  
period (tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standard-  
mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will  
automatically be the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line tr max + tsu(SDA-SCLH)  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
44  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.9.10 Quad Serial Peripheral Interface (QSPI)  
The quad serial peripheral interface (QSPI) module is a kind of SPI module that allows single, dual, or quad read  
access to external SPI devices. This module has a memory mapped register interface, which provides a direct  
interface for accessing data from external SPI devices and thus simplifying software requirements. The QSPI  
works as a controller only. The QSPI in the device is primarily intended for fast booting from quad-SPI flash  
memories.  
The QSPI supports the following features:  
Programmable clock divider  
Six-pin interface  
Programmable length (from 1 to 128 bits) of the words transferred  
Programmable number (from 1 to 4096) of the words transferred  
Support for 3-, 4-, or 6-pin SPI interface  
Optional interrupt generation on word or frame (number of words) completion  
Programmable delay between chip select activation and output data from 0 to 3 QSPI clock cycles  
8.9.10.2 and 8.9.10.3 assume the operating conditions stated in 8.9.10.1.  
8.9.10.1 QSPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
8.9.10.2 Timing Requirements for QSPI Input (Read) Timings(1) (2)  
MIN  
7.3  
TYP  
MAX  
UNIT  
ns  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
th(SCLK-D)  
Setup time, d[3:0] valid before falling sclk edge (Q12)  
Hold time, d[3:0] valid after falling sclk edge (Q13)  
Setup time, final d[3:0] bit valid before final falling sclk edge  
Hold time, final d[3:0] bit valid after final falling sclk edge  
1.5  
ns  
7.3 – P(3)  
1.5 + P(3)  
ns  
ns  
(1) Clock Mode 0 (clk polarity = 0 ; clk phase = 0 ) is the mode of operation.  
(2) The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although  
non-standard, the falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that  
launch data on the falling edge in Clock Mode 0.  
(3) P = SCLK period in ns.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.9.10.3 QSPI Switching Characteristics  
NO.  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Q8  
PARAMETER  
Cycle time, sclk  
MIN  
25  
TYP  
MAX  
UNIT  
ns  
tc(SCLK)  
tw(SCLKL)  
Pulse duration, sclk low  
0.5*P – 3(1)  
0.5*P – 3  
–M*P – 1(2)  
N*P – 1(2)  
–3.5  
ns  
tw(SCLKH)  
Pulse duration, sclk high  
ns  
td(CS-SCLK)  
td(SCLK-CS)  
td(SCLK-D1)  
tena(CS-D1LZ)  
tdis(CS-D1Z)  
td(SCLK-D1)  
Delay time, sclk falling edge to cs active edge  
Delay time, sclk falling edge to cs inactive edge  
Delay time, sclk falling edge to d[0] transition  
Enable time, cs active edge to d[0] driven (lo-z)  
Disable time, cs active edge to d[0] tri-stated (hi-z)  
–M*P + 2.5(2)  
N*P + 2.5(2)  
7
ns  
ns  
ns  
–P – 4(2)  
–P – 4(2)  
–P +1(2)  
–P +1(2)  
ns  
ns  
Delay time, sclk first falling edge to first d[1] transition  
(for PHA = 0 only)  
ns  
Q9  
–3.5 – P(2)  
7 – P(2)  
(1) P = SCLK period in ns.  
(2) M = QSPI_SPI_DC_REG.DDx + 1, N = 2  
8-15. QSPI Read (Clock Mode 0)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
46  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q8  
Q6  
Q6  
Q7  
Q9  
Q6  
Command  
Bit n-1  
Command  
Bit n-2  
Write Data  
Bit 1  
Write Data  
Bit 0  
d[0]  
d[3:1]  
SPRS85v_TIMING_OSPI1_04  
8-16. QSPI Write (Clock Mode 0)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
8.9.11 JTAG Interface  
8.9.11.2 and 8.9.11.3 assume the operating conditions stated in 8.9.11.1.  
8.9.11.1 JTAG Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
8.9.11.2 Timing Requirements for IEEE 1149.1 JTAG  
NO.  
MIN  
TYP  
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time TCK  
66.66  
26.67  
26.67  
2.5  
1a  
1b  
tw(TCKH)  
Pulse duration TCK high (40% of tc)  
Pulse duration TCK low(40% of tc)  
Input setup time TDI valid to TCK high  
Input setup time TMS valid to TCK high  
Input hold time TDI valid from TCK high  
Input hold time TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
ns  
3
4
2.5  
ns  
18  
ns  
18  
ns  
8.9.11.3 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
2
td(TCKL-TDOV)  
Delay time, TCK low to TDO valid  
0
25  
ns  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
SPRS91v_JTAG_01  
8-17. JTAG Timing  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
48  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9 Detailed Description  
9.1 Overview  
The AWR1443 device includes the entire millimeter wave blocks and analog baseband signal chain for three  
transmitters (two usable at the same instance) and four receivers, as well as a customer-programmable MCU  
with a hardware accelerator for radar signal processing. This device is applicable as a radar-on-a-chip in  
use-cases with modest requirements for memory, processing capacity and application code size. These could  
be cost-sensitive automotive applications that are evolving from 24 GHz narrowband implementation and some  
emerging simple ultra-short-range radar applications. Typical application examples for this device include basic  
Blind Spot Detect, Parking Assist, and so forth.  
In terms of scalability, the AWR1443 device could be paired with a low-end external MCU, to address more  
complex applications that might require additional memory for larger application software footprint and faster  
interfaces. Because the AWR1443 device also provides high speed data interfaces, it is suitable for interfacing  
with more capable external processing blocks. Here system designers can choose the AWR1443 to provide raw  
ADC data or use the on-chip Hardware Accelerator for partial processing viz. first stage Fast Fourier Transform.  
9.2 Functional Block Diagram  
Cortex R4F  
@ 200 MHz  
RX1  
RX2  
RX3  
RX4  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
(User programmable)  
Digital Front  
End  
Boot  
ROM  
Prog RAM* Data RAM*  
(Decimation  
filter chain)  
Serial Flash  
interface  
QSPI  
Radar Data  
Memory*  
Optional External  
MCU interface  
SPI  
ADC  
Buffer  
TX1  
TX2  
TX3  
PA  
Radar  
PMIC control  
SPI / I2C  
DCAN  
Hardware  
Accelerator  
(FFT, Log-  
Mag, and  
others.)  
Synth  
(20 GHz)  
Ramp  
Generator  
PA  
PA  
x4  
Primary communication  
interface (automotive)  
Debug  
UARTs  
DMA  
For debug  
RF Control/  
BIST  
Mailbox  
Test/  
Debug  
JTAG for debug/  
development  
Osc.  
VMON  
Temp  
GPADC  
Main subsystem  
(Customer programmed)  
RF/Analog subsystem  
* Total RAM available in Main subsystem is 576KB (for Cortex-R4F Program RAM, Data RAM, and Radar Data Memory)  
Copyright © 2017, Texas Instruments Incorporated  
9-1. Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9.3 External Interfaces  
The AWR1443 device provides the following external interfaces:  
Reference Clock – Reference clock available for Host Processor after device wakeup.  
Low speed control information  
– Up to two 4-line standard SPI interface  
– One I2C interface (Pin multiplexed with one of the SPI ports)  
One Controller Area Network (CAN) Port for Automotive Interfacing  
Reset – Active Low reset for device wakeup from host General Purpose IOs  
Error Signaling – Used for notifying the host in case the Radio Controller detects a fault  
The AWR1443 device comprises of three main blocks – Radar (or the Millimeter Wave) System, Main (or the  
Control) System and Processing System.  
RADAR System  
Radar Processing Inter-connect [128 Bit @ 200MHz]  
RF/Analog/Monitoring  
FFT  
ADC  
L3  
ACCELERATOR  
EDMA  
LVDS  
BUFFERS  
RAM  
MAILBOX  
(384KB)  
2x16KB  
Main (Control) System Inter-connect [64 Bit @ 200MHz]  
CRC  
JTAG  
DMA  
Peripheral Inter-connect  
SPI  
Timer  
UART  
QSPI  
CAN  
I2C  
PWM  
SPI  
9-2. System Interconnect  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
50  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9.4 Subsystems  
9.4.1 RF and Analog Subsystem  
The RF and analog subsystem includes the RF and analog circuitry – namely, the synthesizer, PA, LNA, mixer,  
IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The three transmit  
channels can be operated up to a maximum of two at a time (simultaneously) for transmit beamforming purpose  
as required; whereas the four receive channels can all be operated simultaneously.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9.4.1.1 Clock Subsystem  
The AWR1443 clock subsystem generates 76 to 81 GHz from an input reference of 40-MHz crystal. It has  
a built-in oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit. The output of the RF  
synthesizer is then processed by an X4 multiplier to create the required frequency in the 76 to 81 GHz spectrum.  
The RF synthesizer output is modulated by the timing engine block to create the required waveforms for effective  
sensor operation.  
The clean-up PLL also provides a reference clock for the host processor after system wakeup.  
The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the  
quality of the generated clock.  
9-3 describes the clock subsystem.  
Self Test  
Timing  
Engine  
RF SYNTH  
1 GHz  
(fixed clockdomain)  
Lock Detect  
SoC Clock  
Clean-  
Up PLL  
x4  
MULT  
XO/  
Slicer  
CLK Detect  
40 MHz  
9-3. Clock Subsystem  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9.4.1.2 Transmit Subsystem  
The AWR1443 transmit subsystem consists of three parallel transmit chains, each with independent phase and  
amplitude control. A maximum of 2 transmit chains can be operational at the same time. However all 3 chains  
can be operated together in a time multiplexed fashion. The device supports binary phase modulation for MIMO  
radar and interference mitigation.  
Each transmit chain can deliver a maximum of 12 dBm at the antenna port on the PCB. The transmit chains also  
support programmable backoff for system optimization.  
9-4 describes the transmit subsystem.  
Loopback Path  
Fine Phase Shifter Control  
PCB  
6 bits  
12dBm  
@ 50 Ω  
û-  
LO  
0/180°  
(from Timing Engine)  
Self Test  
9-4. Transmit Subsystem (Per Channel)  
9.4.1.3 Receive Subsystem  
The AWR1443 receive subsystem consists of four parallel channels. A single receive channel consists of an  
LNA, mixer, IF filtering, ADC conversion, and decimation. All four receive channels can be operational at the  
same time an individual power-down option is also available for system optimization.  
Unlike conventional real-only receivers, the AWR1443 device supports a complex baseband architecture, which  
uses quadrature mixer and dual IF and ADC chains to provide complex I and Q outputs for each receiver  
channel. The AWR1443 is targeted for fast chirp systems. The band-pass IF chain has configurable lower cutoff  
frequencies above 175 kHz and can support bandwidths up to 5 MHz.  
9-5 describes the receive subsystem.  
Self Test  
DAC  
Loopback  
Path  
DSM  
PCB  
I
RSSI  
50 W  
GSG  
LO  
Q
DSM  
DAC  
9-5. Receive Subsystem (Per Channel)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9.4.1.4 Radio Processor Subsystem  
The Radio Processor subsystem (also referred to as BIST Subsystem in this document) includes the digital  
front-end, the ramp generator and an internal processor for control / configuration of the low-level RF/analog  
and ramp generator registers. The Radar Processor also schedules periodic monitoring tasks. User applications,  
running on  
Master (Control) System, do not have direct access to Radar System; access is based on well-defined API  
messages (over a hardware channel) from the master subsystem.  
备注  
This radio processor is programmed by TI and takes care of RF calibration and self-test/monitoring  
functions (BIST). This processor is not available directly for customer use/application.  
The digital front-end takes care of filtering and decimating the raw sigma-delta ADC output and provides the final  
ADC data samples at a programmable sampling rate.  
9.4.2 Main (Control) System  
The Main (Control) System includes ARM’s automotive grade Cortex-R4F processor clocked at 200 MHz, which  
is user programmable. User applications executing on this processor control the overall operation of the device,  
including Radar Control via well-defined API messages, radar signal processing (assisted by the radar hardware  
accelerator) and peripherals for external interface.  
The Main (Control) System plays a big role in enabling autonomous operation of AWR1443 as a radar-on-a-chip  
sensor. The device includes a quad serial peripheral interface (QSPI) which can be used to download customer  
code directly from a serial flash. A (classic) CAN interface is included that can be used to communicate directly  
from the device to a CAN bus. An SPI/I2C interface is available for power management IC (PMIC) control when  
the AWR1443 is used as an autonomous sensor.  
For more complex applications, the device can operate under the control of an external MCU, which can  
communicate with AWR1443 device over an SPI interface. In this case, it is possible to use the AWR14xx as a  
radar sensor, providing raw detected objects to the external MCU. External MCU could reduce the application  
code complexity residing in the device and makes more memory available for radar data cube inside the  
AWR1443. This configuration also eliminates the need for a separate serial flash to be connected to the  
AWR1443.  
Furthermore, the external MCU can provide faster interfaces, such as CAN-FD or Ethernet, for the radar sensor  
to connect to a central processing unit (CPU). In such a distributed configuration, multiple AWR1443 devices  
mounted around the vehicle can connect to the CPU, providing a surround view. The external MCU itself  
is low-cost, because the low-level radar signal processing is accomplished inside the AWR1443, using the  
hardware accelerator, while the higher-layer intelligence and complex algorithms reside in the common CPU,  
making the overall solution cost-effective.  
Note that although four interfaces – one CAN, one I2C and two SPI interfaces – are present in the AWR1443  
device for external communication and PMIC control, only two of these interfaces are usable at any point in time.  
The total memory (RAM) available in the Main subsystem is 576 KB. This is partitioned between the R4F  
program RAM, R4F data RAM and radar data memory. The maximum usable size for R4F is 448 KB and this  
is partitioned between the R4F’s tightly coupled interfaces TCMA (320 KB) and TCMB (128 KB). Although the  
complete 448 KB is unified memory and can be used for program or data, typical applications use TCMA as  
program and TCMB as data memory.  
The remaining memory, starting at a minimum of 128 KB, is available to be used as radar data memory for  
storing the ‘radar data cube’. It is possible to increase the radar data memory size in 64 KB increments, at the  
cost of corresponding reduction in R4F program or data RAM size. The maximum size of radar data memory  
possible is 384 KB. A few example configurations supported are listed in 9-1.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
54  
Submit Document Feedback  
Product Folder Links: AWR1443  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9-1. R4F RAM(1)  
R4F  
R4F DATA  
PROGRAM  
RAM  
RADAR DATA  
MEMORY  
OPTION  
RAM  
1
2
3
4
320KB  
256KB  
256KB  
128KB  
128KB  
128KB  
64KB  
128KB  
192KB  
256KB  
384KB  
64KB  
(1) For AWR1443 ES version 1.0, available RAM is 448 KB instead  
of 576KB.  
The Main Subsystem, Cortex-R4F memory map is shown in 9-2.  
9-2. Main System Memory Map  
Frame Address (Hex)  
Name  
Size  
Description  
Start  
End  
CPU Tightly Coupled Memories  
TCMA ROM  
TCM RAM-A  
TCM RAM-B  
0x0000_0000  
0x0020_0000  
0x0800_0000  
0x0001_FFFF  
0x0024_FFFF  
0x0802_FFFF  
96KiB  
Program ROM  
128–320KiB  
64–128KiB  
Memory size is dependant on the  
allocation done in 9-1, R4F RAM  
System Peripherals  
0xF060_1000  
0xF060_2000  
0xF060_17FF  
0xF060_27FF  
2KiB  
2KiB  
RADARSS to MSS mailbox memory space  
MSS to RADARSS mailbox memory space  
Mail Box  
MSS<->RADARSS  
MSS to RADARSS mailbox Configuration  
Registers  
0xF060_8000  
0xF060_8060  
0xFFFF_E100  
0xF060_80FF  
0xF060_86FF  
0xFFFF_E2FF  
188B  
188B  
756B  
RADARSS to MSS mailbox Configuration  
Registers  
TOP Level Reset, Clock management  
registers  
0xFFFF_FF00  
0xFFFF_EA00  
0xFFFF_F800  
0xFFFF_FFFF  
0xFFFF_EBFF  
0xFFFF_FBFF  
256B  
512KiB  
352B  
MSS Reset, Clock management registers  
IO Mux module registers  
PRCM & Control Module  
General-purpose control registers  
TPCC,TPTC,ADC buffer configuration,  
status registers  
0x5000_0400  
584B  
GIO  
DMA  
VIM  
0xFFF7_BC00  
0xFFFF_F000  
0xFFFF_FD00  
0xFFFF_FC00  
0xFFFF_EE00  
0xFFF7_BDFF  
0xFFFF_F3FF  
0xFFFF_FEFF  
0xFFFF_FCFF  
0xFFFF_EEFF  
180B  
1KiB  
512B  
192B  
192B  
GIO module configuration registers  
DMA-1 module configuration registers  
VIM module configuration registers  
RTI-A module  
RTI-A  
RTI-B  
RTI-B module register space  
Serial Interfaces and Connectivity  
QSPI  
0xC000_0000  
0xC080_0000  
0xFFF7_F400  
0xFFF7_F600  
0xFFF7_E500  
0xFFF7_E700  
0xFFF7_DC00  
0xFFF7_D400  
0x5200_0000  
0x5202_0000  
0xC07F_FFFF  
0xC0FF_FFFF  
0xFFF7_F5FF  
0xFFF7_F7FF  
0xFFF7_E5FF  
0xFFF7_E7FF  
0xFFF7_DDFF  
0xFFF7_D4FF  
8MB  
116B  
512B  
512B  
148B  
148B  
512B  
112B  
16KiB  
16KiB  
QSPI –Flash Memory space  
QSPI module configuration registers  
MIBSPI-A module configuration registers  
SPI module configuration registers  
SCI-A module configuration registers  
SCI-B module configuration registers  
CAN module configuration registers  
I2C module configuration registers  
ADC ping pong buffer memory space  
Common buffer memory space  
MIBSPI  
SPI  
SCI-A/UART  
SCI-B/UART  
CAN  
I2C  
ADC Buffer  
CBUF_FIFO  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9-2. Main System Memory Map (continued)  
Frame Address (Hex)  
Name  
Size  
Description  
Start  
End  
0x5008_0000  
0x5008_0800  
0x5008_1000  
0x5203_0000  
0x5203_8000  
0x5008_07FF  
0x5008_0FFF  
512B  
264B  
4KiB  
FFT Accelerator PARAM memory  
FFT accelerator Configuration registors  
FFT accelerator Window registers  
FFT accelerator Memory -1 space  
FFT accelerator Memory -2 space  
Hardware FFT accelerator  
0x5203_7FFF  
32KiB  
32KiB  
L3 Memory  
L3 Shared Memory  
0x5100_0000  
384KiB  
L3 Shared memory space  
Interconnects  
0xFFF7_87FF  
0xFCFF_17FF  
PCR  
PCR-2  
0xFFF7_8000  
0xFCFF_1000  
0x5207_0000  
1KiB  
1KiB  
128B  
PCR-1 interconnect configuration port  
PCR-2 interconnect configuration port  
128 bit SCR configuration port  
128 bit SCR  
Safety Modules  
CRC  
PBIST  
STC  
0xFE00_0000  
0xFFFF_E400  
0xFFFF_E600  
0xFFFF_EC00  
0xFFFF_F400  
0xFFFF_F500  
0xFFFF_F600  
0xFEFF_FFFF  
0xFFFF_E5FF  
0xFFFF_E7FF  
0xFFFF_ECFF  
0xFFFF_F4FF  
0xFFFF_F5FF  
0xFFFF_F6FF  
16KiB  
464B  
284B  
44B  
CRC module configuration registers  
PBIST module configuration registers  
STC module configuration registers  
DCC-A module configuration registers  
DCC-B module configuration registers  
ESM module configuration registers  
CCMR4 module configuration registers  
DCC-A  
DCC-B  
ESM  
44B  
156B  
136B  
CCMR4  
Peripheral Memories (System & Non System)  
CAN RAM  
DMA RAM  
0xFF1E_0000  
0xFFF8_0000  
0xFFF8_2000  
0xFF0E_0000  
0xFF0E_0200  
0xFF1F_FFFF  
0xFFF8_0FFF  
0xFFF8_2FFF  
0xFF0E_01FF  
0xFF0E_03FF  
128KB  
4KB  
CAN RAM memory space  
DMA RAM memory space  
VIM RAM  
2KB  
VIM RAM memory space  
MIBSPIA-TX RAM  
MIBSPIA- RX RAM  
0.5KB  
0.5KB  
MIBSPIA-TX RAM memory space  
MIBSPIA- RX RAM memory space  
Debug Modules  
0xFFAF_FFFF  
Debug subsystem memory space and  
registers  
Debug Sub System  
0xFFA0_0000  
244KiB  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
56  
Submit Document Feedback  
Product Folder Links: AWR1443  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9.4.3 Host Interface  
The AWR1443 device communicates with the host radar processor over the following main interfaces:  
Reference Clock – Reference clock available for host processor after device wakeup  
Control – 4-port standard SPI (peripheral) for host control . All radio control commands (and response) flow  
through this interface.  
Reset – Active-low reset for device wakeup from host  
Out-of-band interrupt  
Error – Used for notifying the host in case the radio controller detects a fault  
9.5 Accelerators and Coprocessors  
The Processing System in the AWR1443 device is an accelerator for FFT operations. The Radar Hardware  
Accelerator is an IP that enables off-loading the burden of certain frequently used computations in FMCW radar  
signal processing from the main processor. It is well-known that FMCW radar signal processing involves the use  
of FFT and Log-Magnitude computations in order to obtain a radar image across the range, velocity and angle  
dimensions. Some of the frequently used functions in FMCW radar signal processing can be done within the  
Radar Hardware Accelerator, while still retaining the flexibility of implementing other proprietary algorithms in the  
Master System processor.  
Key features of the Radar Processing Accelerator are:  
FFT computation, with programmable FFT sizes (powers of 2) up to 1024-pt complex FFT  
Internal FFT bit-width of 24 bits (each for I and Q) for good SQNR performance, with fully programmable  
butterfly scaling at every radix-2 stage for user flexibility  
Built-in capabilities for simple pre-FFT processing – specifically, programmable windowing, basic interference  
zeroing-out and basic BPM removal  
Magnitude (absolute value) and Log-Magnitude computation capability  
Flexible data flow and data sample arrangement to support efficient multi-dimensional FFT operations and  
transpose accesses as required  
Chaining and Looping mechanism to sequence a set of accelerator operations one-after-another with minimal  
intervention from the main processor  
CFAR-CA detector support (linear and logarithmic)  
Miscellaneous other capabilities of the accelerator  
– Stitching two or four 1024-point FFTs to get the equivalent of 2048-point or 4096-point FFT for industrial  
level sensing applications where large FFT sizes are required  
– Slow DFT mode, with resolution equivalent to 16K size FFT, for FFT peak interpolation (eg. range  
interpolation) purpose  
– Complex Vector Multiplication and Dot product capability for vectors of size up to 512  
9.6 Other Subsystems  
9.6.1 ADC Channels (Service) for User Application  
The AWR1443 device includes provision for an ADC service for user application, where the  
GPADC engine present inside the device can be used to measure up to six external voltages. The ADC1, ADC2,  
ADC3, ADC4, ADC5, and ADC6 pins are used for this purpose.  
ADC itself is controlled by TI firmware running inside the BIST subsystem and access to it for customer’s  
external voltage monitoring purpose is via ‘monitoring API’ calls routed to the BIST subsystem. This API  
could be linked with the user application running on MSS R4F.  
BIST subsystem firmware will internally schedule these measurements along with other RF and Analog  
monitoring operations. The API allows configuring the settling time (number of ADC samples to skip) and  
number of consecutive samples to take. At the end of a frame, the minimum, maximum and average of the  
readings will be reported for each of the monitored voltages.  
GPADC Specifications:  
625 Ksps SAR ADC  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
0 to 1.8V input range  
10-bit resolution  
For 5 out of the 6 inputs, an optional internal buffer is available. Without the buffer, the ADC has a switched  
capacitor input load modeled with 5pF of sampling capacitance and 12pF parasitic capacitance (GPADC  
channel 6, the internal buffer is not available).  
5
ANALOG TEST 1-4,  
GPADC  
ANAMUX  
5
VSENSE  
A. GPADC structures are used for measuring the output of internal temperature sensors. The accuracy of these measurements is ±7°C.  
9-6. ADC Path  
9.6.1.1 GP-ADC Parameter  
PARAMETER  
TYP  
1.8  
UNIT  
V
ADC supply  
ADC unbuffered input voltage range  
ADC buffered input voltage range(1)  
ADC resolution  
0 – 1.8  
0.4 – 1.3  
10  
V
V
bits  
LSB  
LSB  
LSB  
LSB  
Ksps  
ns  
ADC offset error  
±5  
ADC gain error  
±5  
ADC DNL  
–1/+2.5  
±2.5  
625  
400  
10  
ADC INL  
ADC sample rate(2)  
ADC sampling time(2)  
ADC internal cap  
pF  
ADC buffer input capacitance  
ADC input leakage current  
2
pF  
3
uA  
(1) Outside of given range, the buffer output will become nonlinear.  
(2) ADC itself is controlled by TI firmware running inside the BIST subsystem. For more details please refer to the API calls.  
9.7 Boot Modes  
As soon as device reset is de-asserted, the R4F processor of the Main (Control) system starts executing its  
bootloader from an on-chip ROM memory.  
The bootloader of the Main system operates in two basic modes and these are specified on the user hardware  
(Printed Circuit Board) by configuring what are termed as “Sense on Power” (SOP) pins. These pins on the  
device boundary are scanned by the bootloader firmware and choice of mode for bootloader operation is made.  
9-3 enumerates the relevant SOP combinations and how these map to bootloader operation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
58  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9-3. SOP Combinations  
SOP2 (P13)  
SOP1 (P11)  
SOP0 (J13)  
BOOTLOADER MODE AND OPERATION  
Functional Mode  
0
0
1
Device Bootloader loads user application from QSPI Serial Flash to  
internal RAM and switches the control to it  
Flashing Mode  
1
0
0
1
1
1
Device Bootloader spins in loop to allow flashing of user application  
(or device firmware patch – Supplied by TI) to the serial flash  
Debug Mode  
Bootloader is bypassed and R4F processor is halted. This allows  
user to connect emulator at a known point  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9.7.1 Flashing Mode  
In Flashing Mode, the Main System’s bootloader enables the UART driver and expects a data stream comprising  
of User Application (Binary Image) and Device Firmware (referred to as Device Firmware Patch or Service Pack)  
from an external flashing utility. 9-7 shows the flashing utility executing on a PC platform, but the protocol can  
be accomplished on an embedded platform as well.  
Serial  
FLASH  
User Application  
And device firmware  
Flashing  
ROM  
UART  
FLASHING  
UTILITY  
Program  
RAM  
Integrated MCU  
ARM Cortex-R4F  
Radar  
Section  
RAM  
Data  
RAM  
9-7. Figure 5. Bootloader Flashing Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
60  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
9.7.2 Functional Mode  
In Functional Mode, the Main System’s bootloader looks for a valid image in the serial flash memory, interfaced  
over the QSPI port. If a valid image is found, the bootloader transfers the same to Main System’s memory  
subsystem. If the device firmware image is found, it gets transferred to the Radar section’s memory subsystem.  
If a valid image (or the QSPI Serial Flash is not found), the bootloader initializes the SPI port and awaits for the  
image transfer. This operation comes handy for configurations where the AWR1443 is interfaced to an external  
processor which has its own nonvolatile storage hence can store the user application and the AWR1443 device’s  
firmware image.  
User Application is Loaded  
Serial  
From FLASH to R4F RAM and  
Flash  
Device Patch to Radar Section  
ROM  
UART  
Data  
RAM  
Integrated MCU  
ARM Cortex-R4F  
Radar  
Section  
RAM  
Histogram  
RAM  
External  
Processor  
SPI  
User Application is Loaded  
From FLASH to R4F RAM and  
Device Patch to Radar Section  
9-8. Bootloader’s Functional Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
10 Applications, Implementation, and Layout  
备注  
Information in the following Applications section is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
Key device features driving the following applications are:  
Integration of Radar Front End and Programmable MCU  
On-chip Hardware Accelerator for Radar Data Processing  
Flexible boot modes: Autonomous Application boot using a serial flash or external boot over SPI.  
10.2 Short-Range Radar  
40-MHz  
Crystal  
Power  
Management  
Antenna  
Structure  
RX1  
Integrated MCU  
AcceARM Cortex-R4F  
and  
Hardware  
Accelerator for  
Radar Processing  
RX2  
RX3  
Radar  
Front End  
RX4  
SPI  
TX1  
TX2  
Control  
TX3  
Detected  
Objects  
AWR1443  
10-1. Short-Range Radar  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
62  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
10.3 Blind Spot Detector and Ultrasonic Upgrades  
40-MHZ  
Crystal  
Serial  
Flash  
Power  
Management  
Antenna  
Structure  
RX1  
RX2  
RX3  
RX4  
Integrated MCU  
ARM Cortex-R4F  
and  
Hardware  
Accelerator for  
Radar Processing  
Radar  
Front End  
Automotive  
Network  
CAN  
PHY  
CAN  
TX1  
TX2  
TX3  
AWR1443  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
10.4 Reference Schematic  
The reference schematic and power supply information can be found in the AWR1443 EVM Documentation.  
Listed for convenience are: Design Files, Schematics, Layouts, and Stack up for PCB.  
Altium AWR1443 EVM Design Files  
AWR1443 EVM Schematic Drawing, Assembly Drawing, and Bill of Materials  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
64  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
11 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions follow.  
11.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, AWR1443). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package  
type (for example, ABL0161 ALB0161), the temperature range (for example, blank is the default commercial  
temperature range). 11-1 provides a legend for reading the complete device name for any AWR1443 device.  
For orderable part numbers of AWR1443 devices in the ABL0161 package types, see the Package Option  
Addendum of this document , the TI website (www.ti.com), or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the AWR1443 Device Errata .  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
1
4
43  
Q
I
AWR  
G
ABL  
Q1  
Qualification  
Q1 = AEC-Q100  
Blank = no special Qual  
Prefix  
AWR = Production  
Tray or Tape & Reel  
Generation  
1 = 76 œ 81 GHz  
R = Big Reel  
Blank = Tray  
Variant  
2 = FE  
4 = FE + FFT + MCU  
6 = FE + MCU + DSP + 1.5 MB  
Package  
ABL = BGA  
Security  
Num RX/TX Channels  
G = General  
S = Secure  
D = Development Secure  
RX = 1,2,3,4  
TX = 1,2,3  
Silicon PG Revision  
Blank = Rev 1.0  
E = Rev 2.0  
Temperature (Tj)  
C = 0°C to 70°C  
K = œ40°C to 85°C  
A = œ40°C to 105°C  
I = œ40°C to 125°C  
F = Rev 3.0  
Features  
Blank = Baseline  
P = High Performance  
Safety  
Q = Non-Functional Safety  
11-1. Device Nomenclature  
11.2 Tools and Software  
Models  
AWR1443 BSDL model  
AWR1x43 IBIS model  
Boundary scan database of testable input and output pins for IEEE 1149.1 of the  
specific device.  
IO buffer information model for the IO buffers of the device. For simulation on a  
circuit board, see IBIS Open Forum.  
AWR1443 checklist for  
schematic review, layout  
review, bringup/wakeup  
A set of steps in spreadsheet form to select system functions and pinmux options.  
Specific EVM schematic and layout notes to apply to customer engineering. A  
bringup checklist is suggested for customers.  
11.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
The current documentation that describes the DSP, related peripherals, and other technical collateral follows.  
Errata  
AWR1443 device errata Describes known advisories, limitations, and cautions on silicon and provides  
workarounds.  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
66  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
®, Arm®, and Cortex® are registered trademarks of ARM Limited.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序,可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
12 Mechanical, Packaging, and Orderable Information  
12.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
68  
Submit Document Feedback  
Product Folder Links: AWR1443  
 
 
 
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
PACKAGE OUTLINE  
ABL0161B  
FCBGA - 1.17 mm max height  
SCALE 1.400  
PLASTIC BALL GRID ARRAY  
10.5  
10.3  
B
A
BALL A1 CORNER  
10.5  
10.3  
1.17 MAX  
C
SEATING PLANE  
0.1 C  
BALL TYP  
0.37  
0.27  
TYP  
9.1 TYP  
PKG  
(0.65) TYP  
(0.65) TYP  
R
P
N
M
L
K
J
PKG  
H
G
F
9.1  
TYP  
E
D
C
0.45  
161X  
0.35  
0.15  
0.08  
C A B  
C
B
A
0.65 TYP  
BALL A1 CORNER  
1
2
3
4
5
6
7
8
9 10 11  
12 13 14 15  
0.65 TYP  
4223365/A 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
EXAMPLE BOARD LAYOUT  
ABL0161B  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
(0.65) TYP  
161X ( 0.32)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
(0.65) TYP  
D
E
F
G
H
J
PKG  
K
L
M
N
P
R
PKG  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
( 0.32)  
METAL  
(
0.32)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223365/A 10/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS202  
70  
Submit Document Feedback  
Product Folder Links: AWR1443  
AWR1443  
www.ti.com.cn  
ZHCSHS2C – MAY 2017 – REVISED JANUARY 2022  
EXAMPLE STENCIL DESIGN  
ABL0161B  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
(0.65) TYP  
161X ( 0.32)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
(0.65) TYP  
D
E
F
G
H
J
PKG  
K
L
M
N
P
R
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4223365/A 10/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: AWR1443  
English Data Sheet: SWRS202  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
AWR1443FQIGABLQ1  
AWR1443FQIGABLRQ1  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ACTIVE  
FCCSP  
FCCSP  
ABL  
161  
161  
176  
RoHS & Green  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
AWR1443  
Samples  
Samples  
IG  
964FC  
ACTIVE  
ABL  
1000 RoHS & Green  
Call TI  
-40 to 125  
AWR1443  
IG  
964FC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jun-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
AWR1443FQIGABLQ1  
ABL  
FCCSP  
161  
176  
8 x 22  
150  
315 135.9 7620 13.4  
16.8  
17.2  
Pack Materials-Page 1  
GENERIC PACKAGE VIEW  
ABL 161  
10.4 x 10.4, 0.65 mm pitch  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225978/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

AWR1642

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器
TI

AWR1642ABIGABLQ1

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1642ABIGABLRQ1

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1642ABISABLQ1

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1642ABISABLRQ1

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器
TI

AWR1843ABGABLQ1

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843ABGABLRQ1

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843ABSABLQ1

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843ABSABLRQ1

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843AOP

AWR1843AOP Single-chip 77- and 79-GHz FMCW radar sensor
TI

AWR1843AOP_V01

AWR1843AOP Single-chip 77- and 79-GHz FMCW radar sensor
TI