AWR6843ARBSALPQ1 [TI]

AWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package (AOP);
AWR6843ARBSALPQ1
型号: AWR6843ARBSALPQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

AWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package (AOP)

文件: 总87页 (文件大小:3329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
AWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor  
Antennas-On-Package (AOP)  
Other interfaces available to user application  
– Up to 6 ADC channels (low sample rate  
monitoring)  
1 Features  
FMCW transceiver  
– Integrated 4 receivers and 3 transmitters  
Antennas-On-Package (AOP)  
– Integrated PLL, transmitter, receiver, Baseband,  
and ADC  
– Up to 2 SPI ports  
– Up to 2 UARTs  
– 2 CAN-FD interfaces  
– I2C  
– 60- to 64-GHz coverage with 4-GHz continuous  
bandwidth  
– Supports 6-bit phase shifter  
– Ultra-accurate chirp engine based on fractional-  
N PLL  
Built-in calibration and self-test  
– Arm® Cortex®-R4F-based radio control system  
– Built-in firmware (ROM)  
– Self-calibrating system across frequency and  
temperature  
– GPIOs  
– 2 lane LVDS interface for raw ADC data and  
debug instrumentation  
Functional Safety-Compliant targeted  
– Developed for functional safety applications  
– Documentation will be available to aid ISO  
26262 functional safety system design  
– Hardware integrity up to ASIL-B targeted  
– Safety-related certification  
ISO 26262 certification by TUV Sud planned  
– Embedded self-monitoring with no host  
processor involvement on Functional Safety-  
Compliant targeted devices  
C674x DSP for advanced signal processing  
(AWR6843 only)  
Hardware accelerator for FFT, filtering, and CFAR  
processing  
Memory compression  
Arm® Cortex®-R4F microcontroller for object  
detection, and interface control  
– Supports autonomous mode (loading user  
application from QSPI flash memory)  
Internal memory with ECC  
– AWR6843:1.75 MB, divided into MSS program  
RAM (512 KB), MSS data RAM (192 KB), DSP  
L1RAM (64KB) and L2 RAM (256 KB), and L3  
radar data cube RAM (768 KB)  
AEC-Q100 qualified  
Power management  
– Built-in LDO network for enhanced PSRR  
– I/Os support dual voltage 3.3 V/1.8 V  
Clock source  
– 40.0 MHz crystal with internal oscillator  
– Supports external oscillator at 40 MHz  
– Supports externally driven clock (square/sine)  
at 40 MHz  
Easy hardware design  
– 0.8-mm pitch, 180-pin 15 mm × 15 mm flip chip  
BGA package (ALP) for easy assembly and  
low-cost PCB design  
– Small solution size  
Supports automotive temperature operating range  
– AWR6443: 1.4 MB, divided into MSS program  
RAM (512 KB), MSS data RAM (192 KB), and  
L3 radar data cube RAM (768 KB)  
Technical reference manual includes allowed  
size modifications  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Seat belt reminder  
2 Applications  
Driver vital sign monitoring  
Kick sensor/access sensor  
Gesture recognition  
Interior Cabin sensing  
Child presence detection  
Occupancy detection  
3 Description  
The AWR6843AOP is an Antenna-on-Package (AOP) device that is an evolution within the single-chip radar  
device family from Texas Instruments (TI). This device enables unprecedented levels of integration in an  
extremely small form factor and is an ideal solution for low power, self-monitored, ultra-accurate radar systems  
in the Automtive space.Multiple automotive qualified variants are currently available including Functional Safety-  
Compliant targeted devices and non-functional safety devices.  
Device Information  
PART NUMBER  
AWR6843ARBGALPQ1  
AWR6843ARBGALPRQ1  
AWR6843ARBSALPQ1  
AWR6843ARBSALPRQ1  
PACKAGE(1)  
FCBGA (180)  
FCBGA (180)  
FCBGA (180)  
FCBGA (180)  
BODY SIZE  
TRAY / TAPE AND REEL  
Tray (Functional Safety-Compliant targeted, ASIL-B)  
Tape and Reel (Functional Safety-Compliant targeted, ASIL-B)  
Tray (Non-Functional Safety)  
15 mm × 15 mm  
15 mm × 15 mm  
15 mm × 15 mm  
15 mm × 15 mm  
Tape and Reel (Non-Functional Safety)  
(1) For more information, see Section 13, Mechanical, Packaging, and Orderable information.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
4 Functional Block Diagram  
Figure 4-1 shows the functional block diagram of the device.  
Antennas are on Package  
QSPI  
SPI  
Serial Flash interface  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Cortex R4F  
@ 200MHz  
External MCU interface  
(User programmable)  
PMIC control  
SPI / I2C  
CAN-FD  
CAN-FD  
Digital Front-end  
Data  
RAM  
Boot  
ROM  
Prog RAM  
(Decimation filter  
chain)  
Primary Communication  
Interfaces (Automotive)  
DMA  
Debug  
UARTs  
For debug  
Main Sub-System  
(Customer Programmed)  
Test/Debug  
JTAG for debug/development  
Phase  
Shift  
PA  
Mailbox  
High-speed ADC output  
interface (for recording)  
LVDS  
HIL  
Phase  
Shift  
Synth  
(20 GHz)  
Ramp  
Generator  
PA  
x3  
High-speed input for hardware-in-  
loop verification  
C674x DSP  
@600 MHz  
Phase  
Shift  
ADC  
Buffer  
PA  
6
HW  
Accel  
L1P  
(32kB)  
L1D  
(32kB)  
L2  
(256kB)  
GPADC  
DMA  
CRC  
Temp  
Osc.  
Radar Data Memory  
(L3)  
DSP Sub-System  
(Customer Programmed)  
RF/Analog Sub-System  
Figure 4-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AWR6843AOP  
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 4  
6 Device Comparison.........................................................6  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagram................................................................ 8  
7.2 Signal Descriptions..................................................... 9  
7.3 Pin Attributes.............................................................14  
8 Specifications................................................................ 28  
8.1 Absolute Maximum Ratings...................................... 28  
8.2 ESD Ratings............................................................. 28  
8.3 Power-On Hours (POH)............................................29  
8.4 Recommended Operating Conditions.......................30  
8.5 Power Supply Specifications.....................................30  
8.6 Power Consumption Summary................................. 31  
8.7 RF Specification........................................................32  
8.8 CPU Specifications................................................... 32  
8.9 Thermal Resistance Characteristics for FCBGA  
9 Detailed Description......................................................61  
9.1 Overview...................................................................61  
9.2 Functional Block Diagram.........................................61  
9.3 Subsystems.............................................................. 62  
9.4 Other Subsystems.................................................... 66  
10 Monitoring and Diagnostics....................................... 68  
10.1 Monitoring and Diagnostic Mechanisms................. 68  
11 Applications, Implementation, and Layout............... 73  
11.1 Application Information............................................73  
11.2 Reference Schematic..............................................73  
12 Device and Documentation Support..........................74  
12.1 Device Nomenclature..............................................74  
12.2 Tools and Software................................................. 76  
12.3 Documentation Support.......................................... 76  
12.4 Support Resources................................................. 76  
12.5 Trademarks.............................................................76  
12.6 Electrostatic Discharge Caution..............................76  
12.7 Glossary..................................................................76  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 77  
13.1 Packaging Information............................................ 77  
13.2 Tray Information for ALP, 15 × 15 mm ................... 77  
Package [ALP0180A].................................................. 33  
8.10 Timing and Switching Characteristics..................... 34  
5 Revision History  
Changes from November 13, 2020 to May 27, 2021 (from Revision * (November 2020) to  
Revision A (May 2021))  
Page  
Global: Updated/Changed AWR6843AOP device information and document Product Status from "Advanced  
Information" to "Production Data (PD)" ..............................................................................................................1  
Global: Updated/Changed A2D to ADC, Updated/Changed Master Subsystem to Main Subsystem and  
Masters R4F to MSS R4F...................................................................................................................................1  
Device Information: Updated/Added part numbers and Tray/Tape and Reel information". Updated/Changed  
Description paragraph........................................................................................................................................ 2  
Device Features Comparison: Changed/Updated to include AWR6843AOP product status to PD and included  
note about LVDS debug......................................................................................................................................6  
(Pin Attributes): Updated/Changed table to remove unsupported mux modes ............................................... 14  
Power Consumption Summary: Updated/Modified VIOIN current consumption value (changing from a TYP to  
a MAX value of 50 mA).....................................................................................................................................31  
RF Specification: Updated/Changed Reciever Effective isotropic noise figure (EINF) TYP value from 14 to 9  
dB and added Transmitter Power backoff range row .......................................................................................32  
Antenna radiation patterns: Updated/Changed RX and TX radiation pattern figures ......................................34  
Transmit Subsystem: Updated/Changed figure................................................................................................64  
Receive Subsystem: Updated/Changed figure.................................................................................................64  
Packaging Information: Updated/Added note on the expected variability in the color of the AOP product...... 77  
Tray Information for ALP, 15 × 15 mm: Added tray information........................................................................77  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Changes from May 28, 2021 to June 1, 2021 (from Revision A (May 2021) to Revision B (June  
2021))  
Page  
Global: Updated/Changed CAN to CAN-FD.......................................................................................................1  
(Pin Functions): Updated "CAN_FD_RX" to "CAN1_FD_RX" and added a row for signal name  
"CAN2_FD_RX" to the list and reassociated ball no. D2....................................................................................9  
(Pin Functions): Updated "CAN_FD_TX" to "CAN1_FD_TX" and added a row for signal name  
"CAN2_FD_TX" to the list and reassociated ball no. B4.................................................................................... 9  
(Pin Attributes): Updated/Changed ball number B4 to show correct signal name as "CAN2_FD_TX"............ 14  
(Pin Attributes): Updated/Changed ball number D2 to show correct signal name as "CAN2_FD_RX"............14  
(Pin Attributes): Updated/Changed signal name from "CAN_FD_RX" to "CAN1_FD_RX'...............................14  
(Pin Attributes): Updated/Changed signal name from "CAN_FD_TX" to "CAN1_FD_TX'................................14  
Updated/changed the CAN-FD description...................................................................................................... 52  
Updated/changed "CAN_FD_rx" to "CANx_FD_RX" and "CAN_FD_tx" to "CANx_FD_TX" in the table to  
include both instances...................................................................................................................................... 52  
Updated/changed "CAN" to "CAN-FD"............................................................................................................. 68  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
6 Device Comparison  
Table 6-1. Device Features Comparison  
FUNCTION  
AWR6843AOP  
AWR1843AOP  
AWR6843  
AWR6443  
AWR1843  
AWR1642  
AWR1443  
Antenna on Package (AOP)  
Number of receivers  
Yes  
Yes  
4
4
4
4
3(1)  
4
4
4
4
Number of transmitters  
RF frequency range  
3(1)  
3(1)  
3(1)  
3(1)  
3(1)  
2
76 to 81 GHz  
1.5MB  
B-Targeted  
3
60 to 64 GHz  
1.75MB  
B-Targeted  
76 to 81 GHz  
60 to 64 GHz 60 to 64 GHz 60 to 64 GHz  
76 to 81 GHz  
76 to 81 GHz  
On-chip memory  
2MB  
B-Targeted  
1.75MB  
1.75MB  
1.4MB  
2MB  
B-Targeted  
576KB  
ASIL  
B-Targeted  
B-Targeted  
Non-Functional Safety  
Max I/F (Intermediate Frequency) (MHz)  
Max real sampling rate (Msps)  
Max complex sampling rate (Msps)  
Processors  
10  
Yes  
10  
10  
Yes  
5
10  
10  
10  
5
25  
25  
25  
25  
25  
25  
12.5  
12.5  
6.25  
12.5  
12.5  
12.5  
12.5  
12.5  
12.5  
6.25  
MCU (R4F)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
DSP (C674x)  
Peripherals  
Serial Peripheral Interface (SPI) ports  
Quad Serial Peripheral Interface (QSPI)  
Inter-Integrated Circuit (I2C) interface  
2
Yes  
1
2
Yes  
1
2
Yes  
1
2
Yes  
1
2
Yes  
1
2
Yes  
1
2
Yes  
1
1
Yes  
1
Controller Area Network (DCAN)  
interface  
2
1
1
2
2
2
1
1
1
1
Controller Area Network (CAN-FD)  
interface  
Trace  
Yes  
Yes  
Yes  
Yes  
Yes(4)  
Yes  
Yes  
Yes  
Yes  
Yes(4)  
Yes  
Yes  
Yes  
Yes  
Yes(4)  
Yes  
Yes  
Yes  
Yes  
Yes(4)  
Yes  
Yes  
Yes  
Yes  
Yes(4)  
Yes  
Yes  
Yes  
Yes  
Yes(4)  
Yes  
Yes  
Yes  
Yes  
Yes(4)  
PWM  
Hardware In Loop (HIL/DMM)  
GPADC  
Yes  
Yes(4)  
LVDS/Debug  
CSI2  
Hardware accelerator  
1-V bypass mode  
JTAG  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Product Preview (PP),  
Product  
Advance Information (AI),  
status  
PD(2)  
AI(3)  
PD(2)  
PD(2)  
PD(2)  
PD(2)  
PD(2)  
PD(2)  
or Production Data (PD)  
(1) 3 Tx Simultaneous operation is supported only with 1-V LDO bypass and PA LDO disable mode. In this mode, the 1-V supply needs to  
be fed on the VOUT PA pin.  
(2) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty.  
(3) ADVANCE INFORMATION for pre-production products; subject to change without notice.  
(4) The LVDS interface is not a production interface and is only used for debug.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
6.1 Related Products  
For information about other devices in this family of products or related products see the links that follow.  
mmWave sensors  
TI’s mmWave sensors rapidly and accurately sense range, angle and velocity with less  
power using the smallest footprint mmWave sensor portfolio for industrial applications.  
Automotive mmWave TI’s automotive mmWave sensor portfolio offers high-performance radar front end to  
sensors  
ultra-high resolution, small and low-power single-chip radar solutions. TI’s scalable  
sensor portfolio enables design and development of ADAS system solution for every  
performance, application and sensor configuration ranging from comfort functions to  
safety functions in all vehicles.  
Companion products Review products that are frequently purchased or used in conjunction with this product.  
for AWR6843AOP  
Reference designs  
for AWR6843AOP  
TI Designs Reference Design Library is a robust reference design library spanning  
analog, embedded processor and connectivity. Created by TI experts to help you  
jump-start your system design, all TI Designs include schematic or block diagrams,  
BOMs, and design files to speed your time to market. Search and download designs at  
ti.com/tidesigns.  
Vehicle occupant  
detection reference  
design  
This reference design demonstrates the use of the AWR6843 60GHz single-chip  
mmWave sensor with integrated DSP, as a Vehicle Occupant Detection (VOD) and  
Child Presence Detection (CPD) Sensor enabling the detection of life forms in a  
vehicle. This design provides a reference software processing chain which runs on  
the C674x DSP, enabling the generation of a heat map to detect occupants in a Field of  
View (FOV) of ±60 degrees.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
7 Terminal Configuration and Functions  
7.1 Pin Diagram  
Figure 7-1 shows the pin locations for the 180-pin 15 × 15 mm FCBGA package  
Figure 7-1. Pin Diagram (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
7.2 Signal Descriptions  
Note  
All IO pins of the device (except NERROR IN, NERROR_OUT, and WARM_RESET) are non-failsafe;  
hence, care needs to be taken that they are not driven externally without the VIO supply being present  
to the device.  
Note  
The GPIO state during the power supply ramp is not ensured. In case the GPIO is used in the  
application where the state of the GPIO is critical, even when NRESET is low , a tri-state buffer  
should be used to isolate the GPIO output from the radar device and a pull resister used to define the  
required state in the application. The NRESET signal to the radar device could be used to control the  
output enable (OE) of the tri-state buffer.  
7.2.1 Pin Functions - Digital and Analog [ALP Package]  
NAME  
I/O  
DESCRIPTION  
DIGITAL  
NO.  
D3, E2, K3, L2, U8, U10,  
U16, V16  
BSS_UART_TX  
CAN1_FD_RX  
CAN1_FD_TX  
O
I
Debug UART Transmit [Radar Block]  
CAN1 FD (MCAN) Receive Signal  
CAN1 FD (MCAN) Transmit Signal  
A4, B3, E2, F2, K2, U8,  
V16  
C2, C3, D1, D3, J3, T3,  
U16  
O
CAN2_FD_RX  
CAN2_FD_TX  
DMM0  
I
O
I
CAN2 FD (MCAN) Receive Signal  
D2  
B4  
U7  
U6  
V5  
U5  
V3  
M1  
L2  
CAN2 FD (MCAN) Transmit Signal  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Clock  
DMM1  
I
DMM2  
I
DMM3  
I
DMM4  
I
DMM5  
I
DMM6  
I
DMM7  
I
L1  
DMM8  
I
C3  
B3  
C4  
A3  
B4  
A4  
C5  
B5  
U3  
DMM9  
I
DMM10  
DMM11  
DMM12  
DMM13  
DMM14  
DMM15  
DMM_CLK  
I
I
I
I
I
I
I
Debug Interface (Hardware In Loop) Mux Select between DMM1 and  
DMM2 (Two Instances)  
DMM_MUX_IN  
I
L3, M3, U12  
DMM_SYNC  
DSS_UART_TX  
EPWM1A  
I
Debug Interface (Hardware In Loop) - Sync  
Debug UART Transmit [DSP]  
PWM Module 1 - Output A  
U4  
O
O
O
D2, F2, G3, H2, L1  
B4, U16, V13  
EPWM1B  
PWM Module 1 - Output B  
A4, M2, U16, V10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AWR6843AOP  
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
NAME  
EPWM1SYNCI  
EPWM1SYNCO  
EPWM2A  
EPWM2B  
EPWM2SYNCO  
EPWM3A  
EPWM3B  
EPWM3SYNCO  
GPIO_0  
I/O  
I
DESCRIPTION  
PWM Module 1 - Sync Input  
NO.  
C3, L3  
I
PWM Module 1 - Sync Output  
PWM Module 2- Output A  
PWM Module 2 - Output B  
PWM Module 2 - Sync Output  
PWM Module 3 - Output A  
PWM Module 3 - Output A  
PWM Module 3 - Sync Output  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
B3  
O
C5, M2, U16, V10, V16  
O
B5, V16  
V3  
O
O
C4, V16  
A3  
O
O
U5  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
M2  
L3  
GPIO_1  
GPIO_2  
K3  
GPIO_3  
D2  
GPIO_4  
D3  
GPIO_5  
E2  
GPIO_6  
J2  
GPIO_7  
H2  
GPIO_8  
H3  
GPIO_9  
G2  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
GPIO_17  
GPIO_18  
GPIO_19  
GPIO_20  
GPIO_21  
GPIO_22  
GPIO_23  
GPIO_24  
GPIO_25  
GPIO_26  
GPIO_27  
GPIO_28  
GPIO_29  
GPIO_30  
GPIO_31  
GPIO_32  
GPIO_33  
GPIO_34  
GPIO_35  
GPIO_36  
GPIO_37  
J3  
K2  
B2  
M2  
U16  
V16  
L3  
T3  
U8  
F2  
D1  
G1  
G3  
U9  
U10  
V13  
K3  
V10  
U12  
M3  
C2, D2  
U7  
U6  
V5  
U5  
V3  
M1  
L2  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
www.ti.com  
NAME  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
I/O  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
DESCRIPTION  
NO.  
L1  
GPIO_38  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
I2C Clock  
GPIO_39  
C3  
GPIO_40  
B3  
GPIO_41  
C4  
GPIO_42  
A3  
GPIO_43  
B4  
GPIO_44  
A4  
GPIO_45  
C5  
GPIO_46  
B5  
GPIO_47  
U3  
I2C_SCL  
G3, V16  
G1, U16  
N2  
I2C_SDA  
I2C Data  
LVDS_TXP[0]  
LVDS_TXM[0]  
LVDS_TXP[1]  
LVDS_TXM[1]  
LVDS_CLKP  
LVDS_CLKM  
LVDS_FRCLKP  
LVDS_FRCLKM  
MCU_CLKOUT  
MSS_UARTA_RX  
MSS_UARTA_TX  
MSS_UARTB_RX  
Differential data Out – Lane 0  
Differential data Out – Lane 0  
Differential data Out – Lane 1  
Differential data Out – Lane 1  
Differential clock Out  
O
N1  
O
P2  
O
P1  
O
R1  
O
Differential clock Out  
R2  
O
Differential Frame Clock  
Differential Frame Clock  
T1  
O
T2  
O
Programmable clock given out to external MCU or the processor  
Main Subsystem - UART A Receive  
V13  
I
E2, U9, V16  
D3, U7, U10, U16  
U12, V16  
O
Main Subsystem - UART A Transmit  
IO  
Main Subsystem - UART B Receive  
D3, E2, K3, M1, T3, U10,  
U16  
MSS_UARTB_TX  
NDMM_EN  
O
I
Main Subsystem - UART B Transmit  
Debug Interface (Hardware In Loop) Enable - Active Low Signal  
U10, U16  
Failsafe input to the device. Nerror output from any other device  
can be concentrated in the error signaling monitor module inside the  
device and appropriate action can be taken by Firmware  
NERROR_IN  
I
U14  
Open drain fail safe output signal. Connected to PMIC/  
Processor/MCU to indicate that some severe criticality fault has  
happened. Recovery would be through reset.  
NERROR_OUT  
O
U15  
PMIC_CLKOUT  
QSPI[0]  
O
IO  
I
Output Clock from AWR6843AOP device for PMIC  
QSPI Data Line #0 (Used with Serial Data Flash)  
QSPI Data Line #1 (Used with Serial Data Flash)  
QSPI Data Line #2 (Used with Serial Data Flash)  
QSPI Data Line #3 (Used with Serial Data Flash)  
QSPI Clock (Used with Serial Data Flash)  
QSPI Clock (Used with Serial Data Flash)  
QSPI Chip Select (Used with Serial Data Flash)  
Debug UART (Operates as Bus Master) - Receive Signal  
Debug UART (Operates as Bus Master) - Transmit Signal  
Sense On Power - Line#0  
K3, M2, V10  
H3  
QSPI[1]  
G2  
QSPI[2]  
I
J3  
QSPI[3]  
I
K2  
QSPI_CLK  
QSPI_CLK_EXT  
QSPI_CS_N  
RS232_RX  
RS232_TX  
SOP[0]  
O
I
H2  
D3  
O
I
J2  
V16  
U16  
U10  
M3  
O
I
SOP[1]  
I
Sense On Power - Line#1  
SOP[2]  
I
Sense On Power - Line#2  
V10  
D2  
SPIA_CLK  
SPIA_CS_N  
IO  
IO  
SPI Channel A - Clock  
SPI Channel A - Chip Select  
C2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
NAME  
SPIA_MISO  
I/O  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
I
DESCRIPTION  
SPI Channel A - Master In Slave Out  
NO.  
D1  
SPIA_MOSI  
SPI Channel A - Master Out Slave In  
SPI Channel B - Clock  
F2  
SPIB_CLK  
E2, H2  
SPIB_CS_N  
SPI Channel B Chip Select (Instance ID 0)  
SPI Channel B Chip Select (Instance ID 1)  
SPI Channel B Chip Select (Instance ID 2)  
SPI Channel B - Master In Slave Out  
SPI Channel B - Master Out Slave In  
Out of Band Interrupt to an external host communicating over SPI  
Low frequency Synchronization signal input  
Low Frequency Synchronization Signal output  
JTAG Test Clock  
D3, J2  
SPIB_CS_N_1  
SPIB_CS_N_2  
SPIB_MISO  
B2, L3, M3  
G2, L3, M3  
G3, H3  
SPIB_MOSI  
G1, G2  
SPI_HOST_INTR  
SYNC_IN  
B2  
U12  
SYNC_OUT  
O
I
K3, L3, M3, U12  
TCK  
T3  
TDI  
I
JTAG Test Data Input  
U9  
TDO  
O
I
JTAG Test Data Output  
U10  
TMS  
JTAG Test Mode Signal  
U8  
TRACE_CLK  
TRACE_CTL  
TRACE_DATA_0  
TRACE_DATA_1  
TRACE_DATA_2  
TRACE_DATA_3  
TRACE_DATA_4  
TRACE_DATA_5  
TRACE_DATA_6  
TRACE_DATA_7  
TRACE_DATA_8  
TRACE_DATA_9  
TRACE_DATA_10  
TRACE_DATA_11  
TRACE_DATA_12  
TRACE_DATA_13  
TRACE_DATA_14  
TRACE_DATA_15  
FRAME_START  
CHIRP_START  
CHIRP_END  
ADC_VALID  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Debug Trace Output - Clock  
U3  
Debug Trace Output - Control  
U4  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Pulse signal indicating the start of each frame  
Pulse signal indicating the start of each chirp  
Pulse signal indicating the end of each chirp  
When high, indicating valid ADC samples  
U7  
U6  
V5  
U5  
V3  
M1  
L2  
L1  
C3  
B3  
C4  
A3  
B4  
A4  
C5  
B5  
K3, V10, V13  
K3, V10, V13  
K3, V10, V13  
B2, L3, M2  
Open drain fail safe warm reset signal. Can be driven from PMIC for  
diagnostic or can be used as status signal that the device is going  
through reset.  
WARM_RESET  
IO  
U13  
ANALOG  
NRESET  
CLKP  
I
I
Power on reset for chip. Active low  
U11  
A7  
In XTAL mode: Differential port for reference crystal In External clock  
mode: Single ended input reference clock port  
In XTAL mode: Differential port for reference crystal In External clock  
mode: Connect this port to ground  
CLKM  
I
B7  
Reference clock output from clocking sub system after cleanup PLL  
(1.4-V output voltage swing).  
OSC_CLKOUT  
O
A14, K3  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
www.ti.com  
NAME  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
I/O  
O
DESCRIPTION  
Device's Band Gap Reference Output  
NO.  
A16  
VBGAP  
VDDIN  
Power  
Power  
Power  
1.2V digital power supply  
E1, J1, V4, V8, V15  
A5, V6, V12  
C1, V7, V14  
VIN_SRAM  
VNWA  
1.2V power rail for internal SRAM  
1.2V power rail for SRAM array back bias  
I/O Supply (3.3V or 1.8V): All CMOS I/Os would operate on this  
supply  
VIOIN  
Power  
H1, V9  
VIOIN_18  
VIN_18CLK  
VIOIN_18DIFF  
VPP  
Power  
Power  
Power  
Power  
1.8V supply for CMOS IO  
1.8V supply for clock module  
1.8V supply for LVDS port  
Voltage supply for fuse chain  
B1, F1, K1, V11  
C15, C18  
U2  
V2  
1.3V Analog and RF supply,VIN_13RF1 and VIN_13RF2 could be  
shorted on the board  
VIN_13RF1  
Power  
J16, J17, J18  
VIN_13RF2  
VIN_18BB  
VIN_18VCO  
Power  
Power  
Power  
1.3V Analog and RF supply  
1.8V Analog base band power supply  
1.8V RF VCO supply  
H16, H17, H18  
M16, M17, M18  
A12, C11  
A1, A2, E3, F3, N3, P3,  
R3, T4, T5, T6, T7, T8, T9,  
T10, T11, T12, T13, T14,  
T15, T16, U1, V1, Y6  
VSS  
Ground  
Ground  
Digital ground  
A6, A8, A11, A13, A15,  
A17, A18, B6, B8, B9,  
B10, B11, B12, B13, B14,  
B15, B16, B17, B18, C6,  
C7, C8, C12, C13, C14,  
C16, C17, D16, D17, D18,  
E16, E17, E18, F16, F17,  
F18, K16, K17, K18, L16,  
L17, L18, N16, N17, N18,  
P16, R16, R17, T17, U17,  
U18, V17, V18  
VSSA  
Analog ground  
VOUT_14APLL  
O
Internal LDO output  
A10  
VOUT_14SYNTH  
O
Internal LDO output  
A9  
VOUT_PA  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Internal LDO output  
G16, G17, G18  
Analog Test1 / GPADC1  
Analog Test2 / GPADC2  
Analog Test3 / GPADC3  
Analog Test4 / GPADC4  
ANAMUX / GPADC5  
VSENSE / GPADC6  
Analog IO dedicated for ADC service  
Analog IO dedicated for ADC service  
Analog IO dedicated for ADC service  
Analog IO dedicated for ADC service  
Analog IO dedicated for ADC service  
Analog IO dedicated for ADC service  
P18  
P17  
R18  
T18  
C9  
C10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
7.3 Pin Attributes  
Table 7-1. Pin Attributes (ALP180A Package)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5] [9]  
TYPE [6]  
ADDRESS [4]  
TYPE [8]  
M2  
GPIO_0  
GPIO_13  
0xFFFFEA04  
0
IO  
IO  
O
O
O
IO  
IO  
O
I
Output Disabled  
Pull Down  
GPIO_0  
1
PMIC_CLKOUT  
EPWM1B  
2
10  
11  
0
ePWM2A  
L3  
GPIO_1  
GPIO_16  
0xFFFFEA08  
Output Disabled  
Pull Down  
GPIO_1  
1
SYNC_OUT  
DMM_MUX_IN  
SPIB_CS_N_1  
SPIB_CS_N_2  
EPWM1SYNCI  
GPIO_26  
2
12  
13  
14  
15  
0
IO  
IO  
I
K3  
GPIO_2  
0xFFFFEA64  
IO  
IO  
O
O
O
O
O
O
O
O
O
IO  
I
Output Disabled  
Pull Down  
GPIO_2  
1
OSC_CLKOUT  
MSS_UARTB_TX  
BSS_UART_TX  
SYNC_OUT  
PMIC_CLKOUT  
CHIRP_START  
CHIRP_END  
FRAME_START  
TRACE_DATA_0  
GPIO_31  
2
7
8
9
10  
11  
12  
13  
0
U7  
GPIO_31 (DP0)  
0xFFFFEA7C  
Output Disabled  
Pull Down  
1
DMM0  
2
MSS_UARTA_TX  
TRACE_DATA_1  
GPIO_32  
4
IO  
O
IO  
I
U6  
V5  
U5  
GPIO_32 (DP1)  
GPIO_33 (DP2)  
GPIO_34 (DP3)  
0xFFFFEA80  
0xFFFFEA84  
0xFFFFEA88  
0
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
1
DMM1  
2
TRACE_DATA_2  
GPIO_33  
0
O
IO  
I
1
DMM2  
2
TRACE_DATA_3  
GPIO_34  
0
O
IO  
I
1
DMM3  
2
EPWM3SYNCO  
4
O
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 7-1. Pin Attributes (ALP180A Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5] [9]  
TYPE [6]  
ADDRESS [4]  
TYPE [8]  
V3  
M1  
L2  
L1  
C3  
GPIO_35 (DP4)  
GPIO_36 (DP5)  
GPIO_37 (DP6)  
GPIO_38 (DP7)  
GPIO_39 (DP8)  
TRACE_DATA_4  
GPIO_35  
0xFFFFEA8C  
0
1
2
4
0
1
2
5
0
1
2
5
0
1
2
5
0
1
2
4
5
0
1
2
4
5
0
1
2
4
0
1
2
4
0
1
2
4
5
O
IO  
I
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
DMM4  
EPWM2SYNCO  
TRACE_DATA_5  
GPIO_36  
O
O
IO  
I
0xFFFFEA90  
0xFFFFEA94  
0xFFFFEA98  
0xFFFFEA9C  
DMM5  
MSS_UARTB_TX  
TRACE_DATA_6  
GPIO_37  
O
O
IO  
I
DMM6  
BSS_UART_TX  
TRACE_DATA_7  
GPIO_38  
O
O
IO  
I
DMM7  
DSS_UART_TX  
TRACE_DATA_8  
GPIO_39  
O
O
IO  
I
DMM8  
CAN1_FD_TX  
EPWM1SYNCI  
TRACE_DATA_9  
GPIO_40  
O
I
B3  
GPIO_40 (DP9)  
0xFFFFEAA0  
O
IO  
I
Output Disabled  
Pull Down  
DMM9  
CAN1_FD_RX  
EPWM1SYNCO  
TRACE_DATA_10  
GPIO_41  
I
O
O
IO  
I
C4  
A3  
B4  
GPIO_41 (DP10)  
GPIO_42 (DP11)  
GPIO_43 (DP12)  
0xFFFFEAA4  
0xFFFFEAA8  
0xFFFFEAAC  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
DMM10  
EPWM3A  
O
O
IO  
I
TRACE_DATA_11  
GPIO_42  
DMM11  
EPWM3B  
O
O
IO  
I
TRACE_DATA_12  
GPIO_43  
DMM12  
EPWM1A  
O
O
CAN2_FD_TX  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 7-1. Pin Attributes (ALP180A Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5] [9]  
TYPE [6]  
ADDRESS [4]  
TYPE [8]  
A4  
GPIO_44 (DP13)  
TRACE_DATA_13  
GPIO_44  
0xFFFFEAB0  
0
O
IO  
I
Output Disabled  
Pull Down  
1
DMM13  
2
EPWM1B  
4
O
I
CAN1_FD_RX  
TRACE_DATA_14  
GPIO_45  
5
C5  
B5  
U3  
GPIO_45 (DP14)  
GPIO_46 (DP15)  
0xFFFFEAB4  
0xFFFFEAB8  
0xFFFFEABC  
0
O
IO  
I
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
1
DMM14  
2
EPWM2A  
4
O
O
IO  
I
TRACE_DATA_15  
GPIO_46  
0
1
DMM15  
2
EPWM2B  
4
O
O
IO  
I
GPIO_47 (DMM_CLK)  
TRACE_CLK  
GPIO_47  
0
1
DMM_CLK  
TRACE_CTL  
DMM_SYNC  
GPIO_25  
2
U4  
DMM_SYNC  
0xFFFFEAC0  
0xFFFFEA60  
0
O
I
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
2
V13  
MCU_CLKOUT  
0
IO  
O
O
O
O
O
I
MCU_CLKOUT  
CHIRP_START  
CHIRP_END  
FRAME_START  
EPWM1A  
1
2
6
7
12  
U14  
U15  
V10  
NERROR_IN  
NERROR_IN  
NERROR_OUT  
SOP[2]  
0xFFFFEA44  
0xFFFFEA4C  
0xFFFFEA68  
0
Input  
NERROR_OUT  
PMIC_CLKOUT  
0
O
I
Hi-Z (Open Drain)  
Output Disabled  
During Power Up  
Pull Down  
GPIO_27  
0
IO  
O
O
O
O
O
O
IO  
IO  
IO  
PMIC_CLKOUT  
CHIRP_START  
CHIRP_END  
FRAME_START  
EPWM1B  
1
6
7
8
11  
12  
0
EPWM2A  
H3  
QSPI[0]  
GPIO_8  
0xFFFFEA2C  
Output Disabled  
Pull Down  
QSPI[0]  
1
SPIB_MISO  
2
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 7-1. Pin Attributes (ALP180A Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5] [9]  
TYPE [6]  
ADDRESS [4]  
TYPE [8]  
G2  
QSPI[1]  
GPIO_9  
0xFFFFEA30  
0
IO  
I
Output Disabled  
Pull Down  
QSPI[1]  
1
SPIB_MOSI  
SPIB_CS_N_2  
GPIO_10  
2
IO  
IO  
IO  
I
8
J3  
QSPI[2]  
0xFFFFEA34  
0xFFFFEA38  
0xFFFFEA3C  
0
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
QSPI[2]  
1
CAN1_FD_TX  
GPIO_11  
8
O
IO  
I
K2  
H2  
QSPI[3]  
0
QSPI[3]  
1
CAN1_FD_RX  
GPIO_7  
8
I
QSPI_CLK  
0
IO  
O
IO  
O
IO  
O
IO  
IO  
I
QSPI_CLK  
SPIB_CLK  
DSS_UART_TX  
GPIO_6  
1
2
6
J2  
QSPI_CS_N  
RS232_RX  
0xFFFFEA40  
0xFFFFEA74  
0
Output Disabled  
Input Enabled  
Pull Up  
Pull Up  
QSPI_CS_N  
SPIB_CS_N  
GPIO_15  
1
2
V16  
0
RS232_RX  
MSS_UARTA_RX  
BSS_UART_TX  
MSS_UARTB_RX  
CAN1_FD_RX  
I2C_SCL  
1
2
I
6
IO  
IO  
I
7
8
9
IO  
O
O
O
IO  
O
IO  
IO  
IO  
O
IO  
O
O
I
EPWM2A  
10  
11  
12  
0
EPWM2B  
EPWM3A  
U16  
RS232_TX  
GPIO_14  
0xFFFFEA78  
Output Enabled  
RS232_TX  
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UART_TX  
CAN1_FD_TX  
I2C_SDA  
1
5
6
7
10  
11  
12  
13  
14  
15  
EPWM1A  
EPWM1B  
NDMM_EN  
EPWM2A  
O
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 7-1. Pin Attributes (ALP180A Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5] [9]  
TYPE [6]  
ADDRESS [4]  
TYPE [8]  
D2  
SPIA_CLK  
GPIO_3  
0xFFFFEA14  
0
1
6
7
0
1
6
0
1
2
0
1
2
8
0
1
2
6
7
8
0
1
2
6
7
8
9
0
1
2
6
0
1
2
0
1
6
IO  
IO  
I
Output Disabled  
Pull Up  
SPIA_CLK  
CAN2_FD_RX  
DSS_UART_TX  
GPIO_30  
O
C2  
D1  
F2  
SPIA_CS_N  
SPIA_MISO  
SPIA_MOSI  
0xFFFFEA18  
0xFFFFEA10  
0xFFFFEA0C  
IO  
IO  
O
Output Disabled  
Output Disabled  
Output Disabled  
Pull Up  
Pull Up  
Pull Up  
SPIA_CS_N  
CAN1_FD_TX  
GPIO_20  
IO  
IO  
O
SPIA_MISO  
CAN1_FD_TX  
GPIO_19  
IO  
IO  
I
SPIA_MOSI  
CAN1_FD_RX  
DSS_UART_TX  
GPIO_5  
O
E2  
SPIB_CLK  
0xFFFFEA24  
IO  
IO  
I
Output Disabled  
Pull Up  
SPIB_CLK  
MSS_UARTA_RX  
MSS_UARTB_TX  
BSS_UART_TX  
CAN1_FD_RX  
GPIO_4  
O
O
I
D3  
SPIB_CS_N  
0xFFFFEA28  
IO  
IO  
O
Output Disabled  
Pull Up  
SPIB_CS_N  
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UART_TX  
QSPI_CLK_EXT  
CAN1_FD_TX  
GPIO_22  
O
IO  
I
O
G3  
SPIB_MISO  
0xFFFFEA20  
IO  
IO  
IO  
O
Output Disabled  
Pull Up  
SPIB_MISO  
I2C_SCL  
DSS_UART_TX  
GPIO_21  
G1  
B2  
SPIB_MOSI  
0xFFFFEA1C  
0xFFFFEA00  
IO  
IO  
IO  
IO  
O
Output Disabled  
Output Disabled  
Pull Up  
SPIB_MOSI  
I2C_SDA  
SPI_HOST_INTR  
GPIO_12  
Pull Down  
SPI_HOST_INTR  
SPIB_CS_N_1  
IO  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 7-1. Pin Attributes (ALP180A Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5] [9]  
TYPE [6]  
ADDRESS [4]  
TYPE [8]  
U12  
SYNC_IN  
GPIO_28  
0xFFFFEA6C  
0
IO  
I
Output Disabled  
Pull Down  
SYNC_IN  
1
MSS_UARTB_RX  
DMM_MUX_IN  
SYNC_OUT  
SOP[1]  
6
IO  
I
7
9
O
I
M3  
SYNC_OUT  
0xFFFFEA70  
During Power Up  
Output Disabled  
Pull Down  
GPIO_29  
0
IO  
O
I
SYNC_OUT  
DMM_MUX_IN  
SPIB_CS_N_1  
SPIB_CS_N_2  
GPIO_17  
1
9
10  
IO  
IO  
IO  
I
11  
T3  
TCK  
0xFFFFEA50  
0
Input Enabled  
Pull Down  
Pull Up  
TCK  
1
MSS_UARTB_TX  
CAN1_FD_TX  
GPIO_23  
2
O
O
IO  
I
8
U9  
TDI  
0xFFFFEA58  
0xFFFFEA5C  
0
Input Enabled  
TDI  
1
MSS_UARTA_RX  
SOP[0]  
2
I
U10  
TDO  
During Power Up  
I
Output Enabled  
GPIO_24  
0
1
2
6
7
9
0
1
2
6
0
IO  
O
O
O
O
I
TDO  
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UART_TX  
NDMM_EN  
GPIO_18  
U8  
TMS  
0xFFFFEA54  
0xFFFFEA48  
IO  
I
Input Enabled  
Pull Down  
TMS  
BSS_UART_TX  
CAN1_FD_RX  
WARM_RESET  
O
I
U13  
WARM_RESET  
IO  
Hi-Z Input (Open  
Drain)  
R2  
R1  
N2  
N1  
P2  
P1  
T1  
T2  
LVDS_CLKM  
LVDS_CLKP  
LVDS_CLKM  
LVDS_CLKP  
O
O
O
O
O
O
O
O
LVDS_TXP[0]  
LVDS_TXM[0]  
LVDS_TXP[1]  
LVDS_TXM[1]  
LVDS_FRCLKP  
LVDS_FRCLKM  
LVDS_TXP[0]  
LVDS_TXM[0]  
LVDS_TXP[1]  
LVDS_TXM[1]  
LVDS_FRCLKP  
LVDS_FRCLKM  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 7-1. Pin Attributes (ALP180A Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5] [9]  
TYPE [6]  
ADDRESS [4]  
TYPE [8]  
U11  
A7  
NRESET  
CLKP  
NRESET  
CLKP  
I
I
B7  
CLKM  
CLKM  
I
A14  
A16  
E1  
OSC_CLKOUT  
VBGAP  
OSC_CLKOUT  
VBGAP  
O
O
VDDIN  
VDDIN  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
GND  
GND  
J1  
VDDIN  
VDDIN  
V4  
VDDIN  
VDDIN  
V8  
VDDIN  
VDDIN  
V15  
A5  
VDDIN  
VDDIN  
VIN_SRAM  
VIN_SRAM  
VIN_SRAM  
VNWA  
VIN_SRAM  
VIN_SRAM  
VIN_SRAM  
VNWA  
V6  
V12  
C1  
V7  
VNWA  
VNWA  
V14  
H1  
VNWA  
VNWA  
VIOIN  
VIOIN  
V9  
VIOIN  
VIOIN  
B1  
VIOIN_18  
VIOIN_18  
VIOIN_18  
VIOIN_18  
VIN_18CLK  
VIN_18CLK  
VIOIN_18DIFF  
VPP  
VIOIN_18  
VIOIN_18  
VIOIN_18  
VIOIN_18  
VIN_18CLK  
VIN_18CLK  
VIOIN_18DIFF  
VPP  
F1  
K1  
V11  
C15  
C18  
U2  
V2  
J16  
J17  
J18  
H16  
H17  
H18  
M16  
M17  
M18  
A12  
C11  
A1  
VIN_13RF1  
VIN_13RF1  
VIN_13RF1  
VIN_13RF2  
VIN_13RF2  
VIN_13RF2  
VIN_18BB  
VIN_18BB  
VIN_18BB  
VIN_18VCO  
VIN_18VCO  
VSS  
VIN_13RF1  
VIN_13RF1  
VIN_13RF1  
VIN_13RF2  
VIN_13RF2  
VIN_13RF2  
VIN_18BB  
VIN_18BB  
VIN_18BB  
VIN_18VCO  
VIN_18VCO  
VSS  
A2  
VSS  
VSS  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 7-1. Pin Attributes (ALP180A Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5] [9]  
TYPE [6]  
ADDRESS [4]  
TYPE [8]  
E3  
VSS  
VSS  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
F3  
VSS  
VSS  
N3  
VSS  
VSS  
P3  
VSS  
VSS  
R3  
VSS  
VSS  
T4  
VSS  
VSS  
T5  
VSS  
VSS  
T6  
VSS  
VSS  
T7  
VSS  
VSS  
T8  
VSS  
VSS  
T9  
VSS  
VSS  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
U1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V1  
VSS  
VSS  
A6  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
A8  
A11  
A13  
A15  
A17  
A18  
B6  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 7-1. Pin Attributes (ALP180A Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5] [9]  
TYPE [6]  
ADDRESS [4]  
TYPE [8]  
C6  
VSSA  
VSSA  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
O
C7  
VSSA  
VSSA  
C8  
VSSA  
VSSA  
C12  
C13  
C14  
C16  
C17  
D16  
D17  
D18  
E16  
E17  
E18  
F16  
F17  
F18  
K16  
K17  
K18  
L16  
L17  
L18  
N16  
N17  
N18  
P16  
R16  
R17  
T17  
U17  
U18  
V17  
V18  
A10  
A9  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VOUT_14APLL  
VOUT_14SYNTH  
VOUT_PA  
VOUT_PA  
VOUT_PA  
VOUT_14APLL  
VOUT_14SYNTH  
VOUT_PA  
VOUT_PA  
VOUT_PA  
O
G16  
G17  
G18  
IO  
IO  
IO  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 7-1. Pin Attributes (ALP180A Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
Analog Test1 / GPADC1  
SIGNAL NAME [3]  
MODE [5] [9]  
TYPE [6]  
ADDRESS [4]  
TYPE [8]  
P18  
P17  
R18  
T18  
C9  
Analog Test1 / GPADC1  
IO  
IO  
IO  
IO  
IO  
IO  
Analog Test2 / GPADC2  
Analog Test3 / GPADC3  
Analog Test4 / GPADC4  
ANAMUX / GPADC5  
VSENSE / GPADC6  
Analog Test2 / GPADC2  
Analog Test3 / GPADC3  
Analog Test4 / GPADC4  
ANAMUX / GPADC5  
VSENSE / GPADC6  
C10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
The following list describes the table column headers:  
1. BALL NUMBER: Ball numbers on the bottom side associated with each signal on the bottom.  
2. BALL NAME: Mechanical name from package device (name is taken from muxmode 1).  
3. SIGNAL NAME: Names of signals multiplexed on each ball (also notice that the name of the ball is the signal name in muxmode 1).  
4. PINCNTL ADDRESS: MSS Address for PinMux Control  
5. MODE: Multiplexing mode number: value written to PinMux Cntl register to select specific Signal name for this Ball number. Mode column has bit  
range value.  
6. TYPE: Signal type and direction:  
I = Input  
O = Output  
IO = Input or Output  
7. BALL RESET STATE: The state of the terminal after supplies are stable after power-on-reset (NRESET) is asserted  
8. PULL UP/DOWN TYPE: indicates the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled  
via software.  
Pull Up: Internal pullup  
Pull Down: Internal pulldown  
An empty box means No pull.  
9. Pin Mux Control Value maps to lower 4 bits of register.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
 
 
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
IO MUX registers are available in the MSS memory map and the respective mapping to device pins is as follows:  
Table 7-2. PAD IO Control Registers  
Default Pin/Ball Name  
SPI_HOST_INTR  
GPIO_0  
Package Ball /Pin (Address)  
Pin Mux Config Register  
0xFFFFEA00  
0xFFFFEA04  
0xFFFFEA08  
0xFFFFEA0C  
0xFFFFEA10  
0xFFFFEA14  
0xFFFFEA18  
0xFFFFEA1C  
0xFFFFEA20  
0xFFFFEA24  
0xFFFFEA28  
0xFFFFEA2C  
0xFFFFEA30  
0xFFFFEA34  
0xFFFFEA38  
0xFFFFEA3C  
0xFFFFEA40  
0xFFFFEA44  
0xFFFFEA48  
0xFFFFEA4C  
0xFFFFEA50  
0xFFFFEA54  
0xFFFFEA58  
0xFFFFEA5C  
0xFFFFEA60  
0xFFFFEA64  
0xFFFFEA68  
0xFFFFEA6C  
0xFFFFEA70  
0xFFFFEA74  
0xFFFFEA78  
B2  
M2  
L3  
GPIO_1  
SPIA_MOSI  
SPIA_MISO  
SPIA_CLK  
SPIA_CS_N  
SPIB_MOSI  
SPIB_MISO  
SPIB_CLK  
SPIB_CS_N  
QSPI[0]  
F2  
D1  
D2  
C2  
G1  
G3  
E2  
D3  
H3  
QSPI[1]  
G2  
J3  
QSPI[2]  
QSPI[3]  
K2  
QSPI_CLK  
QSPI_CS_N  
NERROR_IN  
WARM_RESET  
NERROR_OUT  
TCK  
H2  
J2  
U14  
U13  
U15  
T3  
TMS  
U8  
TDI  
U9  
TDO  
U10  
V13  
K3  
MCU_CLKOUT  
GPIO_2  
PMIC_CLKOUT  
SYNC_IN  
V10  
U12  
M3  
V16  
U16  
SYNC_OUT  
RS232_RX  
RS232_TX  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 7-2. PAD IO Control Registers (continued)  
Default Pin/Ball Name  
GPIO_31  
GPIO_32  
GPIO_33  
GPIO_34  
GPIO_35  
GPIO_36  
GPIO_37  
GPIO_38  
GPIO_39  
GPIO_40  
GPIO_41  
GPIO_42  
GPIO_43  
GPIO_44  
GPIO_45  
GPIO_46  
GPIO_47  
DMM_SYNC  
Package Ball /Pin (Address)  
Pin Mux Config Register  
0xFFFFEA7C  
0xFFFFEA80  
0xFFFFEA84  
0xFFFFEA88  
0xFFFFEA8C  
0xFFFFEA90  
0xFFFFEA94  
0xFFFFEA98  
0xFFFFEA9C  
0xFFFFEAA0  
0xFFFFEAA4  
0xFFFFEAA8  
0xFFFFEAAC  
0xFFFFEAB0  
0xFFFFEAB4  
0xFFFFEAB8  
0xFFFFEABC  
0xFFFFEAC0  
U7  
U6  
V5  
U5  
V3  
M1  
L2  
L1  
C3  
B3  
C4  
A3  
B4  
A4  
C5  
B5  
U3  
U4  
The register layout is as follows:  
Table 7-3. PAD IO Register Bit Descriptions  
RESET (POWER  
ON DEFAULT)  
BIT  
FIELD  
TYPE  
DESCRIPTION  
31-11 NU  
RW  
RW  
0
0
Reserved  
10  
9
SC  
IO slew rate control:  
0 = Higher slew rate  
1 = Lower slew rate  
PUPDSEL  
RW  
RW  
RW  
0
0
1
Pullup/PullDown Selection  
0 = Pull Down  
1 = Pull Up (This field is valid only if Pull Inhibit is set as '0')  
8
PI  
Pull Inhibit/Pull Disable  
0 = Enable  
1 = Disable  
7
OE_OVERRIDE  
Submit Document Feedback  
Output Override  
Copyright © 2021 Texas Instruments Incorporated  
26  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 7-3. PAD IO Register Bit Descriptions (continued)  
RESET (POWER  
ON DEFAULT)  
BIT  
FIELD  
TYPE  
DESCRIPTION  
6
OE_OVERRIDE_CTRL  
RW  
1
Output Override Control:  
(A '1' here overrides any o/p manipulation of this IO by any of the peripheral block hardware it is  
associated with for example a SPI Chip select)  
5
4
IE_OVERRIDE  
RW  
RW  
0
0
Input Override  
IE_OVERRIDE_CTRL  
Input Override Control:  
(A '1' here overrides any i/p value on this IO with a desired value)  
3-0  
FUNC_SEL  
RW  
1
Function select for Pin Multiplexing (Refer to the Pin Mux Sheet)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8 Specifications  
8.1 Absolute Maximum Ratings  
PARAMETERS(1) (2)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
1.4  
UNIT  
VDDIN  
1.2 V digital power supply  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
1.4  
1.4  
I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this  
supply.  
VIOIN  
–0.5  
3.8  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for LVDS port  
–0.5  
–0.5  
–0.5  
2
2
2
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
1.3 V Analog and RF supply, VIN_13RF1 and VIN_13RF2 could  
be shorted on the board.  
–0.5  
1.45  
V
VIN_13RF1  
(1-V Internal LDO  
bypass mode)  
Device supports mode where external Power Management  
block can supply 1 V on VIN_13RF1 and VIN_13RF2 rails. In  
this configuration, the internal LDO of the device would be kept  
bypassed.  
–0.5  
1.4  
V
VIN_13RF2  
(1-V Internal LDO  
bypass mode)  
VIN_18BB  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
–0.5  
–0.5  
2
2
V
V
VIN_18VCO supply  
Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)  
–0.3V  
VIOIN + 0.3  
Input and output  
voltage range  
V
Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V  
(Transient Overshoot/Undershoot) or external oscillator input  
VIOIN + 20% up to  
20% of signal period  
CLKP, CLKM  
Clamp current  
Input ports for reference crystal  
–0.5  
2
V
Input or Output Voltages 0.3 V above or below their respective  
power rails. Limit clamp current that flows through the internal  
diode protection cells of the I/O.  
–20  
20  
mA  
TJ  
Operating junction temperature range  
–40  
–55  
125  
150  
°C  
°C  
TSTG  
Storage temperature range after soldered onto PC board  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011(2)  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) Corner pins are rated as ±750 V  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3 Power-On Hours (POH)  
JUNCTION TEMPERATURE (TJ)(1) (2)  
OPERATING  
CONDITION  
NOMINAL CVDD VOLTAGE (V)  
POWER-ON HOURS [POH] (HOURS)  
–40°C  
75°C  
600 (6%)  
2000 (20%)  
6500 (65%)  
900 (9%)  
100% duty cycle  
1.2  
95°C  
125°C  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
(2) The specified POH are applicable with max Tx output power settings using the default firmware gain tables. The specified POH would  
not be applicable, if the Tx gain table is overwritten using an API.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AWR6843AOP  
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.4 Recommended Operating Conditions  
MIN  
1.14  
1.14  
1.14  
3.13  
1.71  
1.71  
1.71  
1.71  
NOM  
1.2  
1.2  
1.2  
3.3  
1.8  
1.8  
1.8  
1.8  
MAX  
1.32  
1.32  
1.32  
3.45  
1.89  
1.9  
UNIT  
VDDIN  
1.2 V digital power supply  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V or 1.8 V):  
All CMOS I/Os would operate on this supply.  
VIOIN  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for LVDS port  
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
1.9  
1.9  
1.3 V Analog and RF supply. VIN_13RF1 and VIN_13RF2  
could be shorted on the board  
1.23  
1.3  
1.36  
V
VIN_13RF1  
(1-V Internal LDO  
bypass mode)  
0.95  
1
1.05  
V
VIN_13RF2  
(1-V Internal LDO  
bypass mode)  
VIN18BB  
1.8-V Analog baseband power supply  
1.8V RF VCO supply  
1.71  
1.71  
1.17  
2.25  
1.8  
1.8  
1.9  
1.9  
V
V
VIN_18VCO  
Voltage Input High (1.8 V mode)  
Voltage Input High (3.3 V mode)  
Voltage Input Low (1.8 V mode)  
Voltage Input Low (3.3 V mode)  
High-level output threshold (IOH = 6 mA)  
Low-level output threshold (IOL = 6 mA)  
VIL (1.8V Mode)  
VIH  
VIL  
V
V
0.3*VIOIN  
0.62  
VOH  
VOL  
VIOIN – 450  
mV  
mV  
450  
0.45  
VIH (1.8V Mode)  
0.96  
1.57  
NRESET  
SOP[2:0]  
V
VIL (3.3V Mode)  
0.65  
VIH (3.3V Mode)  
8.5 Power Supply Specifications  
Table 8-1 describes the four rails from an external power supply block of the AWR6843AOP device.  
Table 8-1. Power Supply Rails Characteristics  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOS IN THE DEVICE  
Input: VIN_18VCO, VIN18CLK, VIN_18BB,  
VIOIN_18DIFF, VIOIN_18  
LDO Output: VOUT_14SYNTH, VOUT_14APLL  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC, LVDS  
1.8 V  
1.3 V (or 1 V in internal  
LDO bypass mode)(1)  
Power Amplifier, Low Noise Amplifier, Mixers and LO  
Distribution  
Input: VIN_13RF2, VIN_13RF1  
LDO Output: VOUT_PA  
3.3 V (or 1.8 V for 1.8 V  
I/O mode)  
Digital I/Os  
Input VIOIN  
1.2 V  
Core Digital and SRAMs  
Input: VDDIN, VIN_SRAM  
(1) Three simultaneous transmitter operation is supported only in 1-V LDO bypass and PA LDO disable mode. In this mode 1V supply  
needs to be fed on the VOUT PA pin.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
The 1.3-V (1.0 V) and 1.8-V power supply ripple specifications mentioned in Table 8-2 are defined to meet  
a target spur level of –105 dBc (RF Pin = –15 dBm) at the RX. The spur and ripple levels have a dB-to-dB  
relationship, for example, a 1-dB increase in supply ripple leads to a ~1 dB increase in spur level. Values quoted  
are rms levels for a sinusoidal input applied at the specified frequency.  
Table 8-2. Ripple Specifications  
RF RAIL  
VCO/IF RAIL  
FREQUENCY (kHz)  
1.0 V (INTERNAL LDO BYPASS)  
1.3 V (µVRMS  
)
1.8 V (µVRMS)  
(µVRMS  
)
137.5  
275  
7
5
648  
76  
22  
4
83  
21  
11  
6
550  
3
1100  
2200  
4400  
6600  
2
11  
13  
22  
82  
93  
117  
13  
19  
29  
8.6 Power Consumption Summary  
Table 8-3 and Table 8-4 summarize the power consumption at the power terminals.  
Table 8-3. Maximum Current Ratings at Power Terminals  
PARAMETER  
SUPPLY NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Total current drawn by all  
nodes driven by 1.2V rail  
VDDIN, VIN_SRAM, VNWA  
1000  
Total current drawn by  
all nodes driven by 1.3V  
rail (or 1V rail in LDO  
VIN_13RF1, VIN_13RF2  
2000  
Bypass mode), when only  
2 transmitters are used.(3)  
Current consumption (1)  
mA  
VIOIN_18, VIN_18CLK,  
VIOIN_18DIFF, VIN_18BB,  
VIN_18VCO  
Total current drawn by all  
nodes driven by 1.8V rail  
850  
50  
Total current drawn by  
all nodes driven by 3.3V  
rail(2)  
VIOIN  
(1) The specified current values are at typical supply voltage level.  
(2) The exact VIOIN current depends on the peripherals used and their frequency of operation.  
(3) Simultaneous 3 Transmitter operation is supported only with 1-V LDO bypass and PA LDO disable mode. In this mode, the 1-V supply  
needs to be fed on the VOUT_PA pin. In this case, the peak 1-V supply current goes up to 2500 mA. To enable the LDO bypass mode,  
see the Interface Control document in the mmWave software development kit (SDK).  
Table 8-4. Average Power Consumption at Power Terminals  
PARAMETER  
CONDITION  
DESCRIPTION  
MIN  
TYP MAX UNIT  
1TX, 4RX  
Regular power ADC mode  
6.4 Msps complex transceiver,  
13.13-ms frame, 64 chirps, 256  
samples/chirp, 8.5-µs interchirp  
time, DSP + Hardware  
1.19  
24% duty cycle  
2TX, 4RX(1)  
1TX, 4RX  
1.25  
1.0-V internal  
LDO bypass  
mode  
accelerator active  
Average power  
consumption(1)  
W
Regular power ADC mode  
6.4 Msps complex transceiver,  
13.13-ms frame, 64 chirps, 256  
samples/chirp, 8.5-µs interchirp  
time, DSP + Hardware  
1.62  
48% duty cycle  
2TX, 4RX(1)  
1.75  
accelerator active  
(1) Two TX antennas are on simultaneously.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: AWR6843AOP  
 
 
 
 
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.7 RF Specification  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
dB  
Effective isotropic noise figure (EINF)  
IF bandwidth(1)  
60 to 64 GHz  
9
10 MHz  
25 Msps  
12.5 Msps  
Bits  
ADC sampling rate (real)  
ADC sampling rate (complex 1x)  
ADC resolution  
Receiver  
12  
–90  
15  
Idle Channel Spurs  
dBFS  
Single transmitter effective isotropic radiated power (EIRP)  
Power backoff range  
dBm  
Transmitter  
26  
dB  
Frequency range  
60  
64 GHz  
250 MHz/µs  
dBc/Hz  
Clock  
subsystem  
Ramp rate  
Phase noise at 1-MHz offset  
60 to 64 GHz  
–92  
(1) The analog IF stages include high-pass filtering, with two independently configurable first-order high-pass corner frequencies. The set  
of available HPF corners is summarized as follows:  
Available HPF Corner Frequencies (kHz)  
HPF1  
HPF2  
175, 235, 350, 700  
350, 700, 1400, 2800  
The filtering performed by the digital baseband chain is targeted to provide:  
Less than ±0.5 dB pass-band ripple/droop, and  
Better than 60 dB anti-aliasing attenuation for any frequency that can alias back into the pass-band.  
8.8 CPU Specifications  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
600  
32  
MAX UNIT  
Clock Speed  
DSP  
MHz  
KB  
L1 Code Memory  
Subsystem  
(C674  
Family)  
L1 Data Memory  
32  
KB  
L2 Memory  
256  
200  
512  
192  
KB  
Main  
Clock Speed  
MHz  
KB  
Controller  
Subsystem  
(R4F Family)  
Tightly Coupled Memory - A (Program)  
Tightly Coupled Memory - B (Data)  
KB  
Shared  
Memory  
Shared L3 Memory  
768  
KB  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.9 Thermal Resistance Characteristics for FCBGA Package [ALP0180A]  
THERMAL METRICS(1)  
°C/W(2) (3)  
2.6  
JC  
JB  
JA  
JMA  
PsiJT  
PsiJB  
Junction-to-case  
Junction-to-board  
7.5  
Junction-to-free air  
Junction-to-moving air  
Junction-to-package top  
Junction-to-board  
20.3  
N/A(4)  
0.9  
7.3  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on  
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
.
(4) N/A = not applicable. Heatsink on this device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: AWR6843AOP  
 
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10 Timing and Switching Characteristics  
8.10.1 Antenna Radiation Patterns  
This section discusses transmitter and receiver antenna radiation patterns in both Azmiuth and Elevaton planes  
for a specified frequency.  
8.10.1.1 Antenna Radiation Patterns for Receiver  
Figure 8-1 shows typical antenna radiation gain plots normalized to boresight at various frequencies for the four  
receivers in both Azimuth (H-Plane) and Elevation (E-Plane) planes  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
RX Gain Across Azimuth  
RX2  
RX1  
Angle  
RX3  
Angle  
RX4  
Angle  
RX1  
Angle  
RX2  
RX Gain Across Elevation  
Angle  
RX3  
Angle  
RX4  
Angle  
Angle  
Figure 8-1. Receiver Antenna Radiation Pattern  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.1.2 Antenna Radiation Patterns for Transmitter  
Figure 8-2 shows typical antenna radiation patterns for the three transmitters in both Azimuth and Elevation planes.  
TX Output Power Across Azimuth  
TX1  
TX2  
TX3  
Angle  
Angle  
TX3  
Angle  
TX1  
TX Output Power Across Elevation  
TX2  
Angle  
Angle  
Angle  
Figure 8-2. Transmitter Antenna Radiation Pattern  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.2 Antenna Positions  
Figure 8-3 shows the placement and relative spacing of the antennas.  
=5mm  
MIMO Virtual  
Antenna Array  
RX2  
RX4  
RX1  
RX3  
/2  
/2  
/2  
TX2  
/2  
TX1  
TX3  
Pin A1  
Figure 8-3. Antenna Positions (Placement and Relative Spacing)  
8.10.3 Power Supply Sequencing and Reset Timing  
The AWR6843AOP device expects all external voltage rails to be stable before reset is deasserted. Figure 8-4  
describes the device wake-up sequence.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
SOP  
Setup  
Time  
SOP  
Hold time to  
nRESET  
DC power  
MSS  
BOOT  
START  
nRESET  
ASSERT  
tPGDEL  
DC  
Power  
notOK  
Stable before  
nRESET  
release  
DC  
Power  
OK  
QSPI  
READ  
VDDIN,  
VIN_SRAM  
VNWA  
VIOIN_18  
VIN18_CLK  
VIOIN_18DIFF  
VIN18_BB  
VIN_13RF1  
VIN_13RF2  
VIOIN  
SOP IO  
Reuse  
SOP IO‘s can be used as functional IO‘s  
SOP[2.1.0]  
nRESET  
WARMRESET  
OUTPUT  
VBGAP  
OUTPUT  
CLKP, CLKM  
Using Crystal  
MCUCLK  
OUTPUT (1)  
QSPI_CS  
OUTPUT  
8 ms (XTAL Mode)  
850 µs (REFCLK Mode)  
A. MCU_CLK_OUT in autonomous mode, where AWR6843AOP application is booted from the serial flash, MCU_CLK_OUT is not  
enabled by default by the device bootloader.  
Figure 8-4. Device Wake-up Sequence  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.4 Input Clocks and Oscillators  
8.10.4.1 Clock Specifications  
The AWR6843AOP requires external clock source (that is, a 40-MHz crystal or external oscillator to CLKP) for  
initial boot and as a reference for an internal APLL hosted in the device. An external crystal is connected to the  
device pins. Figure 8-5 shows the crystal implementation.  
Cf1  
XTALP  
Cp  
40 MHz  
XTALM  
Cf2  
Figure 8-5. Crystal Implementation  
Note  
The load capacitors, Cf1 and Cf2 in Figure 8-5, should be chosen such that Equation 1 is satisfied.  
CL in the equation is the load specified by the crystal manufacturer. All discrete components used  
to implement the oscillator circuit should be placed as close as possible to the associated oscillator  
CLKP and CLKM pins.  
C f2  
CL = C f1  
´
+CP  
C
f1 +C f2  
(1)  
Table 8-5 lists the electrical characteristics of the clock crystal.  
Table 8-5. Crystal Electrical Characteristics (Oscillator Mode)  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
fP  
Parallel resonance crystal frequency  
40  
CL  
Crystal load capacitance  
Crystal ESR  
5
8
12  
50  
ESR  
Ω
Temperature range Expected temperature range of operation  
–40  
–50  
105  
°C  
Frequency  
Crystal frequency tolerance(1) (2) (3)  
tolerance  
50  
ppm  
µW  
Drive level  
50  
200  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.  
(3) Crystal tolerance affects radar sensor accuracy.  
In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only; CLKM  
is grounded. The phase noise requirement is very important when a 40-MHz clock is fed externally. Table 8-6  
lists the electrical characteristics of the external clock signal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: AWR6843AOP  
 
 
 
 
 
 
AWR6843AOP  
www.ti.com  
UNIT  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
Table 8-6. External Clock Mode Specifications  
SPECIFICATION  
PARAMETER  
MIN  
TYP  
MAX  
Frequency  
40  
MHz  
mV (pp)  
V
AC-Amplitude  
700  
0.00  
1.6  
1200  
0.20  
1.95  
–132  
–143  
–152  
–153  
65  
DC-Vil  
DC-Vih  
V
Input Clock:  
External AC-coupled sine wave or DC-  
coupled square wave  
Phase Noise at 1 kHz  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Duty Cycle  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
Phase Noise referred to 40 MHz  
35  
Freq Tolerance  
Freq Tolerance  
–50  
–50  
50  
ppm  
50  
ppm  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.5 Multibuffered / Standard Serial Peripheral Interface (MibSPI)  
8.10.5.1 Peripheral Description  
The SPI uses a MibSPI Protocol by TI.  
The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of  
programmed length (2 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate.  
The MibSPI/SPI is normally used for communication between the microcontroller and external peripherals or  
another microcontroller.  
Standard and MibSPI modules have the following features:  
16-bit shift register  
Receive buffer register  
8-bit baud clock generator  
SPICLK can be internally-generated (master mode) or received from an external clock source  
(slave mode)  
Each word transferred can have a unique format.  
SPI I/Os not used in the communication can be used as digital input/output signals  
8.10.5.2 MibSPI Transmit and Receive RAM Organization  
The Multibuffer RAM is comprised of 256 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a 16-bit  
transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer RAM can be  
partitioned into multiple transfer group with variable number of buffers each.  
Section 8.10.5.2.2 and Section 8.10.5.2.3 assume the operating conditions stated in Section 8.10.5.2.1.  
8.10.5.2.1 SPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
2
15  
pF  
8.10.5.2.2 SPI Master Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO = output, and  
SPISOMI = input)  
NO.(1) (2) (3)  
PARAMETER  
Cycle time, SPICLK(4)  
MIN  
25  
TYP  
MAX UNIT  
1
tc(SPC)M  
256tc(VCLK)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2(4)  
ns  
3(4)  
ns  
ns  
td(SPCH-  
Delay time, SPISIMO valid before SPICLK low, (clock  
polarity = 0)  
SIMO)M  
4(4)  
td(SPCL-  
Delay time, SPISIMO valid before SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M – 3  
SIMO)M  
tv(SPCL-  
Valid time, SPISIMO data valid after SPICLK low, (clock 0.5tc(SPC)M – 10.5  
polarity = 0)  
SIMO)M  
5(4)  
ns  
tv(SPCH-  
Valid time, SPISIMO data valid after SPICLK high, (clock 0.5tc(SPC)M – 10.5  
polarity = 1)  
SIMO)M  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: AWR6843AOP  
 
 
AWR6843AOP  
www.ti.com  
MAX UNIT  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
NO.(1) (2) (3)  
PARAMETER  
MIN  
TYP  
CSHOLD = 0  
CSHOLD = 1  
CSHOLD = 0  
CSHOLD = 1  
(C2TDELAY+2)*t  
c(VCLK) – 7.5  
(C2TDELAY+2)  
Setup time CS active until SPICLK  
high  
(clock polarity = 0)  
* tc(VCLK) + 7  
(C2TDELAY +3)  
* tc(VCLK) – 7.5  
(C2TDELAY+3)  
* tc(VCLK) + 7  
6(5)  
tC2TDELAY  
ns  
(C2TDELAY+2)*t  
c(VCLK) – 7.5  
(C2TDELAY+2)  
* tc(VCLK) + 7  
Setup time CS active until SPICLK  
low  
(clock polarity = 1)  
(C2TDELAY +3)  
* tc(VCLK) – 7.5  
(C2TDELAY+3)  
* tc(VCLK) + 7  
Hold time, SPICLK low until CS inactive (clock polarity =  
0)  
0.5*tc(SPC)M  
(T2CDELAY + 1)  
*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
(T2CDELAY +  
1) * tc(VCLK)  
7.5  
+
+
7(5)  
tT2CDELAY  
ns  
Hold time, SPICLK high until CS inactive (clock polarity =  
1)  
0.5*tc(SPC)M  
(T2CDELAY + 1)  
*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
(T2CDELAY +  
1) * tc(VCLK)  
+
+
7.5  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
5
5
3
3
SPCL)M  
8(4)  
ns  
ns  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
SPCH)M  
th(SPCL-  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
SOMI)M  
9(4)  
th(SPCH-  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
SOMI)M  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared (where x= 0 or 1).  
(2) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25ns, where  
PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
11  
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1  
4
5
Master Out Data Is Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 8-6. SPI Master Mode External Timing (CLOCK PHASE = 0)  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
Figure 8-7. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)  
8.10.5.2.3 SPI Master Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)  
NO.(1) (2) (3)  
PARAMETER  
Cycle time, SPICLK(4)  
MIN  
25  
TYP  
MAX UNIT  
1
tc(SPC)M  
256tc(VCLK)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2(4)  
ns  
3(4)  
ns  
ns  
td(SPCH-  
Delay time, SPISIMO valid before SPICLK low, (clock polarity 0.5tc(SPC)M – 3  
= 0)  
SIMO)M  
4(4)  
td(SPCL-  
Delay time, SPISIMO valid before SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M – 3  
SIMO)M  
tv(SPCL-  
Valid time, SPISIMO data valid after SPICLK low, (clock  
polarity = 0)  
0.5tc(SPC)M  
10.5  
SIMO)M  
5(4)  
ns  
tv(SPCH-  
Valid time, SPISIMO data valid after SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M  
10.5  
SIMO)M  
tC2TDELAY  
Setup time CS active until SPICLK  
high  
(clock polarity = 0)  
CSHOLD = 0  
CSHOLD = 1  
CSHOLD = 0  
CSHOLD = 1  
0.5*tc(SPC)M  
+
(C2TDELAY +  
2)*tc(VCLK) – 7  
0.5*tc(SPC)M  
(C2TDELAY+2  
) * tc(VCLK)  
7.5  
+
+
0.5*tc(SPC)M  
(C2TDELAY +  
2)*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
+
(C2TDELAY+2  
) * tc(VCLK)  
+
7.5  
6(5)  
ns  
0.5*tc(SPC)M  
(C2TDELAY+2  
)*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
+
(C2TDELAY+2  
) * tc(VCLK)  
+
Setup time CS active until SPICLK  
low  
(clock polarity = 1)  
7.5  
0.5*tc(SPC)M  
(C2TDELAY+3  
)*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
+
(C2TDELAY+3  
) * tc(VCLK)  
+
7.5  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
(T2CDELAY +  
(T2CDELAY +  
1) *tc(VCLK) + 7  
1) *tc(VCLK)  
7.5  
7(5)  
tT2CDELAY  
ns  
(T2CDELAY +  
(T2CDELAY +  
1) *tc(VCLK) + 7  
1) *tc(VCLK)  
7.5  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
www.ti.com  
MAX UNIT  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
NO.(1) (2) (3)  
PARAMETER  
MIN  
TYP  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
5
SPCL)M  
8(4)  
ns  
ns  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
5
3
3
SPCH)M  
th(SPCL-  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
SOMI)M  
9(4)  
th(SPCH-  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
SOMI)M  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set ( where x = 0 or 1 ).  
(2) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns,  
where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25 ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Master Out Data Is Valid  
Data Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 8-8. SPI Master Mode External Timing (CLOCK PHASE = 1)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
Figure 8-9. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.5.3 SPI Slave Mode I/O Timings  
8.10.5.3.1 SPI Slave Mode Switching Parameters (SPICLK = input, SPISIMO = input,  
and SPISOMI = output)(1) (2) (3)  
NO.  
PARAMETER  
MIN  
25  
TYP  
MAX  
UNIT  
1
tc(SPC)S  
Cycle time, SPICLK(4)  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
td(SPCH-SOMI)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
10  
2(5)  
ns  
ns  
10  
10  
3(5)  
10  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0)  
10  
10  
4(5)  
ns  
ns  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0)  
2
2
5(5)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1)  
(1) The MASTER bit (SPIGCRx.0) is cleared ( where x = 0 or 1 ).  
(2) The CLOCK PHASE bit (SPIFMTx.16) is either cleared or set for CLOCK PHASE = 0 or CLOCK PHASE = 1 respectively.  
(3) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(4) When the SPI is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns, where  
PS is the prescale value set in the SPIFMTx.[15:8] register bits.For PS values of 0: tc(SPC)S = 2tc(MSS_VCLK) ≥ 25 ns.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 8-10. SPI Slave Mode External Timing (CLOCK PHASE = 0)  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 8-11. SPI Slave Mode External Timing (CLOCK PHASE = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.5.4 Typical Interface Protocol Diagram (Slave Mode)  
1. Host should ensure that there is a delay of two SPI clocks between CS going low and start of SPI clock.  
2. Host should ensure that CS is toggled for every 16 bits of transfer through SPI.  
Figure 8-12 shows the SPI communication timing of the typical interface protocol.  
2 SPI clocks  
CS  
CLK  
0x4321  
0x1234  
CRC  
0x5678  
0x8765  
MOSI  
MISO  
IRQ  
0xDCBA  
0xABCD  
CRC  
16 bytes  
Figure 8-12. SPI Communication  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.6 LVDS Interface Configuration  
The supported AWR6843AOP LVDS lane configuration is two Data lanes (LVDS_TXP/M), one Bit Clock lane  
(LVDS_CLKP/M) and one Frame clock lane (LVDS_FRCLKP/M). The LVDS interface is used for debugging. The  
LVDS interface supports the following data rates:  
900 Mbps (450 MHz DDR Clock)  
600 Mbps (300 MHz DDR Clock)  
450 Mbps (225 MHz DDR Clock)  
400 Mbps (200 MHz DDR Clock)  
300 Mbps (150 MHz DDR Clock)  
225 Mbps (112.5 MHz DDR Clock)  
150 Mbps (75 MHz DDR Clock)  
Note that the bit clock is in DDR format and hence the numbers of toggles in the clock is equivalent to data.  
LVDS_TXP/M  
LVDS_FRCLKP/M  
Data bitwidth  
LVDS_CLKP/M  
Figure 8-13. LVDS Interface Lane Configuration And Relative Timings  
8.10.6.1 LVDS Interface Timings  
Table 8-7. LVDS Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Duty Cycle Requirements  
max 1 pF lumped capacitive load on  
LVDS lanes  
48%  
52%  
Output Differential Voltage  
peak-to-peak single-ended with 100 Ω  
resistive load between differential pairs  
250  
450  
mV  
Output Offset Voltage  
Trise and Tfall  
1125  
1275  
mV  
ps  
20%-80%, 900 Mbps  
900 Mbps  
330  
80  
Jitter (pk-pk)  
ps  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Trise  
LVDS_CLK  
Clock Jitter = 6sigma  
LVDS_TXP/M  
LVDS_FRCLKP/M  
1100 ps  
Figure 8-14. Timing Parameters  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.7 General-Purpose Input/Output  
Section 8.10.7.1 lists the switching characteristics of output timing relative to load capacitance.  
8.10.7.1 Switching Characteristics for Output Timing versus Load Capacitance (CL)  
PARAMETER(1) (2)  
TEST CONDITIONS  
CL = 20 pF  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
2.8  
6.4  
9.4  
2.8  
6.4  
9.4  
3.3  
6.7  
9.6  
3.1  
6.6  
9.6  
3.0  
6.9  
10.2  
2.8  
6.6  
9.8  
3.3  
7.2  
10.5  
3.1  
6.6  
9.6  
tr  
tf  
tr  
tf  
Max rise time  
CL = 50 pF  
ns  
CL = 75 pF  
Slew control = 0  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
Max fall time  
Max rise time  
Max fall time  
ns  
ns  
ns  
Slew control = 1  
(1) Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).  
(2) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: AWR6843AOP  
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.8 Controller Area Network - Flexible Data-rate (CAN-FD)  
The device integrates two CAN-FD (CAN with Flexible Data-rate) interfaces which allows high throughput and  
increased payload per data frame. This enables support of a typical use case where one CAN-FD interface is  
used as an ECU network interface while the other as a local network interface, providing communication with the  
neighboring sensors.  
The CAN-FD has the following features:  
Conforms with CAN Protocol 2.0 A, B and ISO 11898-1  
Full CAN FD support (up to 64 data bytes per frame)  
AUTOSAR and SAE J1939 support  
Up to 32 dedicated Transmit Buffers  
Configurable Transmit FIFO, up to 32 elements  
Configurable Transmit Queue, up to 32 elements  
Configurable Transmit Event FIFO, up to 32 elements  
Up to 64 dedicated Receive Buffers  
Two configurable Receive FIFOs, up to 64 elements each  
Up to 128 11-bit filter elements  
Internal Loopback mode for self-test  
Mask-able interrupts, two interrupt lines  
Two clock domains (CAN clock / Host clock)  
Parity / ECC support - Message RAM single error correction and double error detection (SECDED)  
mechanism  
Full Message Memory capacity (4352 words).  
8.10.8.1 Dynamic Characteristics for the CANx TX and RX Pins  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
td(CANx_FD_TX)  
td(CANx_FD_RX)  
Delay time, transmit shift register to  
CANx_FD_TX pin(1)  
15  
ns  
Delay time, CANx_FD_RX pin to receive shift  
register(1)  
10  
ns  
(1) These values do not include rise/fall times of the output buffer.  
8.10.9 Serial Communication Interface (SCI)  
The SCI has the following features:  
Standard universal asynchronous receiver-transmitter (UART) communication  
Standard non-return to zero (NRZ) format  
Double-buffered receive and transmit functions  
Asynchronous or iso-synchronous communication modes with no CLK pin  
Capability to use Direct Memory Access (DMA) for transmit and receive data  
Two external pins: RS232_RX and RS232_TX  
8.10.9.1 SCI Timing Requirements  
MIN  
TYP  
921.6  
MAX  
UNIT  
f(baud)  
Supported baud rate at 20 pF  
kHz  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.10 Inter-Integrated Circuit Interface (I2C)  
The inter-integrated circuit (I2C) module is a multimaster communication module providing an interface between  
devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by an I2C-bus™.  
This module will support any slave or master I2C compatible device.  
The I2C has the following features:  
Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number 9398  
393 40011)  
– Bit/Byte format transfer  
– 7-bit and 10-bit device addressing modes  
– General call  
– START byte  
– Multi-master transmitter/ slave receiver mode  
– Multi-master receiver/ slave transmitter mode  
– Combined master transmit/receive and receive/transmit mode  
– Transfer rates of 100 kbps up to 400 kbps (Phillips fast-mode rate)  
Free data format  
Two DMA events (transmit and receive)  
DMA event enable/disable capability  
Module enable/disable capability  
The SDA and SCL are optionally configurable as general purpose I/O  
Slew rate control of the outputs  
Open drain control of the outputs  
Programmable pullup/pulldown capability on the inputs  
Supports Ignore NACK mode  
Note  
This I2C module does not support:  
High-speed (HS) mode  
C-bus compatibility mode  
The combined format in 10-bit address mode (the I2C sends the slave address second byte every  
time it sends the slave address first byte)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
www.ti.com  
UNIT  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
8.10.10.1 I2C Timing Requirements  
(1)  
STANDARD MODE  
FAST MODE  
MIN  
10  
MAX  
MIN  
2.5  
MAX  
tc(SCL)  
Cycle time, SCL  
μs  
μs  
tsu(SCLH-SDAL)  
Setup time, SCL high before SDA low  
(for a repeated START condition)  
4.7  
0.6  
th(SCLL-SDAL)  
Hold time, SCL low after SDA low  
4
0.6  
μs  
(for a START and a repeated START condition)  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
μs  
μs  
μs  
μs  
μs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
tw(SDAH)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
3.45(1)  
0.9  
Pulse duration, SDA high between STOP and START  
conditions  
4.7  
1.3  
tsu(SCLH-SDAH)  
tw(SP)  
Setup time, SCL high before SDA high  
(for STOP condition)  
4
0.6  
0
μs  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(2) (3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the  
SCL signal.  
(3) Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
Figure 8-15. I2C Timing Diagram  
Note  
A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the  
VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW  
period (tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standard-  
mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will  
automatically be the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line tr max + tsu(SDA-SCLH)  
.
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.11 Quad Serial Peripheral Interface (QSPI)  
The quad serial peripheral interface (QSPI) module is a kind of SPI module that allows single, dual, or quad  
read access to external SPI devices. This module has a memory mapped register interface, which provides a  
direct interface for accessing data from external SPI devices and thus simplifying software requirements. The  
QSPI works as a master only. The QSPI in the device is primarily intended for fast booting from quad-SPI flash  
memories.  
The QSPI supports the following features:  
Programmable clock divider  
Six-pin interface  
Programmable length (from 1 to 128 bits) of the words transferred  
Programmable number (from 1 to 4096) of the words transferred  
Support for 3-, 4-, or 6-pin SPI interface  
Optional interrupt generation on word or frame (number of words) completion  
Programmable delay between chip select activation and output data from 0 to 3 QSPI clock cycles  
Section 8.10.11.2 and Section 8.10.11.3 assume the operating conditions stated in Section 8.10.11.1.  
8.10.11.1 QSPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
8.10.11.2 Timing Requirements for QSPI Input (Read) Timings  
Clock Mode 0 (clk polarity = 0 ; clk phase = 0 ) is the mode of operation.(1)  
MIN  
7.3  
TYP  
MAX  
UNIT  
ns  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
th(SCLK-D)  
Setup time, d[3:0] valid before falling sclk edge  
Hold time, d[3:0] valid after falling sclk edge  
1.5  
ns  
Setup time, final d[3:0] bit valid before final falling sclk edge  
Hold time, final d[3:0] bit valid after final falling sclk edge  
7.3 – P(2)  
1.5 + P(2)  
ns  
ns  
(1) The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although  
non-standard, the falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that  
launch data on the falling edge in Clock Mode 0.  
(2) P = SCLK period in ns.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: AWR6843AOP  
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.11.3 QSPI Switching Characteristics  
NO.  
Q1  
Q2  
Q3  
PARAMETER  
Cycle time, sclk  
MIN  
25  
TYP  
MAX  
UNIT  
ns  
tc(SCLK)  
tw(SCLKL)  
tw(SCLKH)  
td(CS-SCLK)  
Pulse duration, sclk low  
Y*P – 3(1) (2)  
Y*P – 3(1)  
ns  
Pulse duration, sclk high  
ns  
Delay time, sclk falling edge to cs active edge  
–M*P + 2.5(1)  
ns  
Q4  
Q5  
–M*P – 1(1) (3)  
N*P – 1(1) (3)  
(3)  
td(SCLK-CS)  
Delay time, sclk falling edge to cs inactive edge  
N*P + 2.5(1)  
ns  
(3)  
Q6  
Q7  
Q8  
td(SCLK-D1)  
tena(CS-D1LZ)  
tdis(CS-D1Z)  
td(SCLK-D1)  
Delay time, sclk falling edge to d[1] transition  
Enable time, cs active edge to d[1] driven (lo-z)  
Disable time, cs active edge to d[1] tri-stated (hi-z)  
–3.5  
–P – 4(3)  
–P – 4(3)  
7
–P +1(3)  
–P +1(3)  
ns  
ns  
ns  
ns  
Delay time, sclk first falling edge to first d[1] transition  
(for PHA = 0 only)  
Q9  
–3.5 – P(3)  
7 – P(3)  
Q12  
Q13  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
Setup time, d[3:0] valid before falling sclk edge  
Hold time, d[3:0] valid after falling sclk edge  
7.3  
1.5  
ns  
ns  
ns  
Setup time, final d[3:0] bit valid before final falling  
sclk edge  
Q14  
Q15  
7.3 — P(3)  
1.5 + P(3)  
th(SCLK-D)  
Hold time, final d[3:0] bit valid after final falling sclk  
edge  
ns  
(1) The Y parameter is defined as follows: If DCLK_DIV is 0 or ODD then, Y equals 0.5. If DCLK_DIV is EVEN then, Y equals  
(DCLK_DIV/2) / (DCLK_DIV+1). For best performance, it is recommended to use a DCLK_DIV of 0 or ODD to minimize the duty cycle  
distortion. All required details about clock division factor DCLK_DIV can be found in the device-specific Technical Reference Manual.  
(2) P = SCLK period in ns.  
(3) M = QSPI_SPI_DC_REG.DDx + 1, N = 2  
Figure 8-16. QSPI Read (Clock Mode 0)  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q8  
Q6  
Q6  
Q7  
Q9  
Command  
Bit n-1  
Q6  
Command  
Bit n-2  
Write Data  
Bit 1  
Write Data  
Bit 0  
d[0]  
d[3:1]  
SPRS85v_TIMING_OSPI1_04  
Figure 8-17. QSPI Write (Clock Mode 0)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.12 ETM Trace Interface  
Section 8.10.12.2 and List item.referenceTitle assume the recommended operating conditions stated in Section  
8.10.12.1.  
8.10.12.1 ETMTRACE Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Output Conditions  
CLOAD  
Output load capacitance  
2
20  
pF  
8.10.12.2 ETM TRACE Switching Characteristics  
NO.  
1
PARAMETER  
Cycle time, TRACECLK period  
Pulse Duration, TRACECLK High  
Pulse Duration, TRACECLK Low  
Clock and data rise time  
MIN  
TYP  
MAX  
UNIT  
ns  
tcyc(ETM)  
th(ETM)  
tl(ETM)  
20  
9
2
ns  
3
9
ns  
4
tr(ETM)  
tf(ETM)  
3.3  
3.3  
7
ns  
5
Clock and data fall time  
ns  
td(ETMTRACE Delay time, ETM trace clock high to ETM data valid  
1
1
ns  
6
7
CLKH-  
ETMDATAV)  
td(ETMTRACE Delay time, ETM trace clock low to ETM data valid  
7
ns  
CLKl-  
ETMDATAV)  
tl(ETM)  
th(ETM)  
tr(ETM)  
tf(ETM)  
tcyc(ETM)  
Figure 8-18. ETMTRACECLKOUT Timing  
Figure 8-19. ETMDATA Timing  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.13 Data Modification Module (DMM)  
A Data Modification Module (DMM) gives the ability to write external data into the device memory.  
The DMM has the following features:  
Acts as a bus master, thus enabling direct writes to the 4GB address space without CPU intervention  
Writes to memory locations specified in the received packet (leverages packets defined by trace mode of the  
RAM trace port [RTP] module)  
Writes received data to consecutive addresses, which are specified by the DMM (leverages packets defined  
by direct data mode of RTP module)  
Configurable port width (1, 2, 4, 8, 16 pins)  
Up to 100 Mbit/s pin data rate  
8.10.13.1 DMM Timing Requirements  
MIN  
10  
1
TYP  
MAX  
UNIT  
ns  
tcyc(DMM)  
tR  
Clock period  
Clock rise time  
3
3
ns  
tF  
Clock fall time  
1
ns  
th(DMM)  
tl(DMM)  
tssu(DMM)  
tsh(DMM)  
tdsu(DMM)  
tdh(DMM)  
High pulse width  
6
ns  
Low pulse width  
6
ns  
SYNC active to clk falling edge setup time  
DMM clk falling edge to SYNC deactive hold time  
DATA to DMM clk falling edge setup time  
DMM clk falling edge to DATA hold time  
2
ns  
3
ns  
2
ns  
3
ns  
tl(DMM)  
th(DMM)  
tf  
tr  
tcyc(DMM)  
Figure 8-20. DMMCLK Timing  
tssu(DMM)  
tsh(DMM)  
DMMSYNC  
DMMCLK  
DMMDATA  
tdsu(DMM)  
tdh(DMM)  
Figure 8-21. DMMDATA Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.10.14 JTAG Interface  
Section 8.10.14.2 and Section 8.10.14.3 assume the operating conditions stated in Section 8.10.14.1.  
8.10.14.1 JTAG Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
8.10.14.2 Timing Requirements for IEEE 1149.1 JTAG  
NO.  
MIN  
TYP  
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time TCK  
66.66  
26.67  
26.67  
2.5  
1a  
1b  
tw(TCKH)  
Pulse duration TCK high (40% of tc)  
Pulse duration TCK low(40% of tc)  
Input setup time TDI valid to TCK high  
Input setup time TMS valid to TCK high  
Input hold time TDI valid from TCK high  
Input hold time TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
ns  
3
4
2.5  
ns  
18  
ns  
18  
ns  
8.10.14.3 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
2
td(TCKL-TDOV)  
Delay time, TCK low to TDO valid  
0
25  
ns  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
SPRS91v_JTAG_01  
Figure 8-22. JTAG Timing  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The AWR6843AOP device includes the entire Millimeter Wave blocks and analog baseband signal chain for  
three transmitters and four receivers, as well as a customer-programmable MCU and DSP. This device is  
applicable as a radar-on-a-chip in use cases with modest requirements for memory, processing capacity, and  
application code size.These could be cost-sensitive automotive applications that are evolving from 24-GHz  
narrowband implementation and some emerging simple ultra-short-range radar applications. Typical application  
examples for this device include:  
Child presence detection  
Occupant detection  
Seat belt reminder  
Gesture detection  
Driver vital sign montioring  
In terms of scalability, the AWR6843AOP device could be paired with a low-end external MCU, to address more  
complex applications that might require additional memory for larger application software footprint and faster  
interfaces. Because the AWR6843AOP device also provides high speed data interfaces like Serial-LVDS, it is  
suitable for interfacing with more capable external processing blocks. Here system designers can choose the  
AWR6843AOP to provide raw ADC data.  
9.2 Functional Block Diagram  
Antennas are on Package  
QSPI  
SPI  
Serial Flash interface  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Cortex R4F  
@ 200MHz  
External MCU interface  
(User programmable)  
PMIC control  
SPI / I2C  
CAN-FD  
CAN-FD  
Digital Front-end  
Data  
RAM  
Boot  
ROM  
Prog RAM  
(Decimation filter  
chain)  
Primary Communication  
Interfaces (Automotive)  
DMA  
Debug  
UARTs  
For debug  
Main Sub-System  
(Customer Programmed)  
Test/Debug  
JTAG for debug/development  
Phase  
Shift  
PA  
Mailbox  
High-speed ADC output  
interface (for recording)  
LVDS  
HIL  
Phase  
Shift  
Synth  
(20 GHz)  
Ramp  
Generator  
PA  
x3  
High-speed input for hardware-in-  
loop verification  
C674x DSP  
@600 MHz  
Phase  
Shift  
ADC  
Buffer  
PA  
6
HW  
Accel  
L1P  
(32kB)  
L1D  
(32kB)  
L2  
(256kB)  
GPADC  
DMA  
CRC  
Temp  
Osc.  
Radar Data Memory  
(L3)  
DSP Sub-System  
(Customer Programmed)  
RF/Analog Sub-System  
Figure 9-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: AWR6843AOP  
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
9.3 Subsystems  
9.3.1 RF and Analog Subsystem  
The RF and analog subsystem includes the RF and analog circuitry – namely, the synthesizer, PA, LNA, mixer,  
IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The three transmit  
channels can be operated up to a maximum of two at a time (simultaneously) in 1.3-V mode. The three Transmit  
channels simultaneous operation is supported only with 1-V LDO bypass and PA LDO disabled mode for  
transmit beamforming purpose, as required. In this mode, the 1-V supply needs to be fed on the VIN_13RF1,  
VIN_13RF2, and VOUT PA pin; whereas, the four receive channels can all be operated simultaneously.  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
9.3.1.1 Clock Subsystem  
The AWR6843AOP clock subsystem generates 60 to 64 GHz from an input reference of 40-MHz crystal. It  
has a built-in oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit. The output of the RF  
synthesizer is then processed by an X3 multiplier to create the required frequency in the 60 to 64 GHz spectrum.  
The RF synthesizer output is modulated by the timing engine block to create the required waveforms for effective  
sensor operation.  
The clean-up PLL also provides a reference clock for the host processor after system wakeup.  
The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the  
quality of the generated clock.  
Figure 9-2 describes the clock subsystem.  
Self Test  
SYNC_OUT  
RX LO  
Timing Engine  
x3 MULT  
SYNC_IN  
TX LO  
RFSYNTH  
Lock Detect  
Clean-Up  
PLL  
SoC  
Clock  
XO / Slicer  
CLK Detect  
OSC_CLKOUT  
40 MHz  
Figure 9-2. Clock Subsystem  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
9.3.1.2 Transmit Subsystem  
The AWR6843AOP transmit subsystem consists of three parallel transmit chains, each with independent phase  
and amplitude control. The device supports 6-bit linear phase modulation for MIMO radar and interference  
mitigation.  
The transmit chains also support programmable backoff for system optimization.  
Figure 9-3 describes the transmit subsystem.  
Self Test  
Loopback  
Path  
Antenna on  
package  
N  
LO  
6-bit linear phase  
shifter  
Figure 9-3. Transmit Subsystem (Per Channel)  
9.3.1.3 Receive Subsystem  
The AWR6843AOP receive subsystem consists of four parallel channels. A single receive channel consists of  
an LNA, mixer, IF filtering, ADC conversion, and decimation. All four receive channels can be operational at the  
same time an individual power-down option is also available for system optimization.  
Unlike conventional real-only receivers, the AWR6843AOP device supports a complex baseband architecture,  
which uses quadrature mixer and dual IF and ADC chains to provide complex I and Q outputs for each receiver  
channel. The AWR6843AOP is targeted for fast chirp systems. The band-pass IF chain has configurable lower  
cutoff frequencies above 175 kHz and can support bandwidths up to 10 MHz.  
Figure 9-4 describes the receive subsystem.  
Self Test  
DAC  
Loopback  
Path  
∆∑M  
Antenna on  
package  
RSSI  
I
LO  
Q
∆∑M  
DAC  
Figure 9-4. Receive Subsystem (Per Channel)  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
9.3.2 Processor Subsystem  
Unified  
128 KB x 2  
ROM  
L2  
Cache/  
RAM  
TCM A 512 KB  
Main  
R4F  
L1P  
32 KB  
32 KB  
EDMA  
DSP  
HWA  
HIL  
JTAG  
CRC  
HIL  
TCM B 192 KB  
L1d  
DSP/HWA Interconnect œ 128 bit @ 200 MHz  
Main Interconnect  
BSS Interconnect  
Data  
Handshake  
Memory  
CRC  
ADC Buffer  
Mail  
Box  
MSS  
DMA  
L3  
32 KB  
32 KB Ping-Pong  
(static sharing  
with R4F Space)  
Interconnect  
LVDS  
PWM,  
PMIC  
CLK  
I2C  
QSPI  
UART  
SPI  
CAN-FD  
Figure 9-5. Processor Subsystem  
Figure 9-5shows the block diagram for customer programmable processor subsystems in the AWR6843AOP  
device. At a high level there are two customer programmable subsystems, as shown separated by a dotted line  
in the diagram. Left hand side shows the DSP Subsystem which contains TI's high-performance C674x DSP,  
hardware accelerator, a high-bandwidth interconnect for high performance (128-bit, 200MHz), and associated  
peripherals – four DMAs for data transfer,  
LVDS interface for Measurement data output, L3 Radar data cube memory, ADC buffers, CRC engine, and data  
handshake memory (additional memory provided on interconnect).  
The C674x DSP and L1/L2 RAM portion of the DSP subsystem is not supported on the AWR6443 device and  
therefore, the available memory is 1.4MB compared to 1.75MB on the IWR6843 device. For more information on  
the features supported and not supported on each device, see the Device Features Comparison table.  
The right side of the diagram shows the main subsystem. Main subsystem as name suggests is the master of  
the device and controls all the device peripherals and house-keeping activities of the device. Main subsystem  
contains Cortex-R4F (Main R4F) processor and associated peripherals and house-keeping components such as  
DMAs, CRC and Peripherals (I2C, UART, SPIs, CAN-FD, PMIC clocking module, PWM, and others) connected  
to Main Interconnect through Peripheral Central Resource (PCR interconnect).  
Details of the DSP CPU core can be found at http://www.ti.com/product/TMS320C6748.  
HIL module is shown in both the subsystems and can be used to perform the radar operations feeding the  
captured data from outside into the device without involving the RF subsystem. HIL on main SS is for controlling  
the configuration and HIL on DSPSS for high speed ADC data input to the device. Both HIL modules uses the  
same IOs on the device, one additional IO (DMM_MUX_IN) allows selecting either of the two.  
9.3.3 Automotive Interface  
The AWR6843AOP communicates with the automotive network over the following main interfaces:  
2 CAN-FD modules  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
9.3.4 Host Interface  
The host interface can be provided through a SPI, UART, or CAN-FD interface. In some cases the serial  
interface for industrial applications is transcoded to a different serial standard.  
This device communicates with the host radar processor over the following main interfaces:  
Reference Clock – Reference clock available for host processor after device wakeup  
Control – 4-port standard SPI (slave) for host control . All radio control commands (and response) flow  
through this interface.  
Reset – Active-low reset for device wakeup from host  
Host Interrupt - an indication that the mmwave sensor needs host interface  
Error – Used for notifying the host in case the radio controller detects a fault  
9.3.5 Main Subsystem Cortex-R4F  
The main system includes an ARM Cortex R4F processor, clock with a maximum operating frequency of  
200 MHz. User applications executing on this processor control the overall operation of the device, including  
radar control through well-defined API messages, radar signal processing (assisted by the radar hardware  
accelerator), and peripherals for external interfaces.  
See the Technical Reference Manual for a complete description and memory map.  
9.3.6 DSP Subsystem  
The DSP subsystem includes TI’s standard TMS320C674x megamodule and several blocks of internal memory  
(L1P, L1D, and L2). For complete information including memory map, please refer to Technical Reference  
Manual.  
9.3.7 Hardware Accelerator  
The Radar Hardware Accelerator (HWA) is an IP that enables off-loading the burden of certain frequently  
used computations in FMCW radar signal processing from the main processor. FMCW radar signal processing  
involves the use of FFT and Log-Magnitude computations to obtain a radar image across the range, velocity, and  
angle dimensions. Some of the frequently used functions in FMCW radar signal processing can be done within  
the radar hardware accelerator, while still retaining the flexibility of implementing other proprietary algorithms in  
the main processor. See the Radar Hardware Accelerator User's Guide for a functional description and features  
of this module and see the Technical Reference Manual for a complete list of register and memory map.  
9.4 Other Subsystems  
9.4.1 ADC Channels (Service) for User Application  
The AWR6843AOP device includes provision for an ADC service for user application, where the  
GPADC engine present inside the device can be used to measure up to six external voltages. The ADC1, ADC2,  
ADC3, ADC4, ADC5, and ADC6 pins are used for this purpose.  
ADC itself is controlled by TI firmware running inside the BIST subsystem and access to it for customer’s  
external voltage monitoring purpose is via ‘monitoring API’ calls routed to the BIST subsystem. This API  
could be linked with the user application running on the Main R4.  
BIST subsystem firmware will internally schedule these measurements along with other RF and Analog  
monitoring operations. The API allows configuring the settling time (number of ADC samples to skip) and  
number of consecutive samples to take. At the end of a frame, the minimum, maximum and average of the  
readings will be reported for each of the monitored voltages.  
GPADC Specifications:  
625 Ksps SAR ADC  
0 to 1.8V input range  
10-bit resolution  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
For 5 out of the 6 inputs, an optional internal buffer (0.4-1.4V input range) is available. Without the buffer,  
the ADC has a switched capacitor input load modeled with 5pF of sampling capacitance and 12pF parasitic  
capacitance (GPADC channel 6, the internal buffer is not available).  
5
ANALOG TEST 1-4,  
GPADC  
ANAMUX  
5
VSENSE  
A. GPADC structures are used for measuring the output of internal temperature sensors. The accuracy of these measurements is ±7°C.  
Figure 9-6. ADC Path  
9.4.1.1 GP-ADC Parameter  
PARAMETER  
TYP  
1.8  
UNIT  
V
ADC supply  
ADC unbuffered input voltage range  
ADC buffered input voltage range(1)  
ADC resolution  
0 – 1.8  
0.4 – 1.3  
10  
V
V
bits  
LSB  
LSB  
LSB  
LSB  
Ksps  
ns  
ADC offset error  
±5  
ADC gain error  
±5  
ADC DNL  
–1/+2.5  
±2.5  
625  
400  
10  
ADC INL  
ADC sample rate(2)  
ADC sampling time(2)  
ADC internal cap  
pF  
ADC buffer input capacitance  
ADC input leakage current  
2
pF  
3
uA  
(1) Outside of given range, the buffer output will become nonlinear.  
(2) ADC itself is controlled by TI firmware running inside the BIST subsystem. For more details please refer to the API calls.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: AWR6843AOP  
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
10 Monitoring and Diagnostics  
10.1 Monitoring and Diagnostic Mechanisms  
Table 10-1 is a list of the main monitoring and diagnostic mechanisms available in the Functional Safety-  
Compliant targeted devices  
Table 10-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Targeted Devices  
NO  
FEATURE  
DESCRIPTION  
Device architecture supports hardware logic BIST (LBIST) engine self-test Controller (STC).  
This logic is used to provide a very high diagnostic coverage (>90%) on the MSS R4F CPU  
core and Vectored Interrupt Module (VIM) at a transistor level.  
LBIST for the CPU and VIM need to be triggered by application code before starting the  
functional safety application. CPU stays there in while loop and does not proceed further if a  
fault is identified.  
Boot time LBIST For MSS  
R4F Core and associated  
VIM  
1
Main R4F has three Tightly coupled Memories (TCM) memories TCMA, TCMB0 and  
TCMB1. Device architecture supports a hardware programmable memory BIST (PBIST)  
engine. This logic is used to provide a very high diagnostic coverage (March-13n) on the  
implemented MSS R4F TCMs at a transistor level.  
PBIST for TCM memories is triggered by Bootloader at the boot time before starting  
download of application from Flash or peripheral interface. CPU stays there in while loop  
and does not proceed further if a fault is identified.  
Boot time PBIST for MSS  
R4F TCM Memories  
2
3
TCMs diagnostic is supported by Single error correction double error detection (SECDED)  
ECC diagnostic. An 8-bit code word is used to store the ECC data as calculated over the  
64-bit data bus. ECC evaluation is done by the ECC control logic inside the CPU. This  
scheme provides end-to-end diagnostics on the transmissions between CPU and TCM. CPU  
can be configured to have predetermined response (Ignore or Abort generation) to single  
and double bit error conditions.  
End to End ECC for MSS  
R4F TCM Memories  
Logical TCM word and its associated ECC code is split and stored in two physical SRAM  
banks. This scheme provides an inherent diagnostic mechanism for address decode failures  
in the physical SRAM banks. Faults in the bank addressing are detected by the CPU as an  
ECC fault.  
Further, bit multiplexing scheme implemented such that the bits accessed to generate a  
logical (CPU) word are not physically adjacent. This scheme helps to reduce the probability  
of physical multi-bit faults resulting in logical multi-bit faults; rather they manifest as multiple  
single bit faults. As the SECDED TCM ECC can correct a single bit fault in a logical word,  
this scheme improves the usefulness of the TCM ECC diagnostic.  
Main R4F TCM bit  
multiplexing  
4
Both these features are hardware features and cannot be enabled or disabled by application  
software.  
Device architecture supports Three Digital Clock Comparators (DCCs) and an internal  
RCOSC. Dual functionality is provided by these modules – Clock detection and Clock  
Monitoring.  
DCCint is used to check the availability/range of Reference clock at boot otherwise the  
device is moved into limp mode (Device still boots but on 10MHz RCOSC clock source.  
This provides debug capability). DCCint is only used by boot loader during boot time. It is  
disabled once the APLL is enabled and locked.  
DCC1 is dedicated for APLL lock detection monitoring, comparing the APLL output divided  
version with the Reference input clock of the device. Initially (before configuring APLL),  
DCC1 is used by bootloader to identify the precise frequency of reference input clock  
against the internal RCOSC clock source. Failure detection for DCC1 would cause the  
device to go into limp mode.  
5
Clock Monitor  
DCC2 module is one which is available for user software . From the list of clock options  
given in detailed spec, any two clocks can be compared. One example usage is to compare  
the CPU clock with the Reference or internal RCOSC clock source. Failure detection is  
indicated to the MSS R4F CPU via Error Signaling Module (ESM).  
Device architecture supports the use of an internal watchdog that is implemented in the  
real-time interrupt (RTI) module. The internal watchdog has two modes of operation: digital  
watchdog (DWD) and digital windowed watchdog (DWWD). The modes of operation are  
mutually exclusive; the designer can elect to use one mode or the other but not both at the  
same time.  
7
RTI/WD for MSS R4F  
Watchdog can issue either an internal (warm) system reset or a CPU non-mask able  
interrupt upon detection of a failure.  
The Watchdog is enabled by the bootloader in DWD mode at boot time to track the boot  
process. Once the application code takes up the control, Watchdog can be configured again  
for mode and timings based on specific customer requirements.  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 10-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Targeted Devices  
(continued)  
NO  
FEATURE  
DESCRIPTION  
Cortex-R4F CPU includes an MPU. The MPU logic can be used to provide spatial  
separation of software tasks in the device memory. Cortex-R4F MPU supports 12 regions.  
It is expected that the operating system controls the MPU and changes the MPU settings  
based on the needs of each task. A violation of a configured memory protection policy  
results in a CPU abort.  
8
MPU for MSS R4F  
Device architecture supports a hardware programmable memory BIST (PBIST) engine for  
Peripheral SRAMs as well.  
PBIST for peripheral SRAM memories can be triggered by the application. User can elect  
PBIST for Peripheral interface to run the PBIST on one SRAM or on groups of SRAMs based on the execution time,  
9
SRAMs - SPIs, CAN-FDs  
which can be allocated to the PBIST diagnostic. The PBIST tests are destructive to memory  
contents, and as such are typically run only at boot time. However, the user has the freedom  
to initiate the tests at any time if peripheral communication can be hindered.  
Any fault detected by the PBIST results in an error indicated in PBIST status registers.  
Peripheral interface SRAMs diagnostic is supported by Single error correction double error  
detection (SECDED) ECC diagnostic. When a single or double bit error is detected the  
ECC for Peripheral interface MSS R4F is notified via ESM (Error Signaling Module). This feature is disabled after reset.  
10  
SRAMs – SPIs, CAN-FDs  
Software must configure and enable this feature in the peripheral and ESM module. ECC  
failure (both single bit corrected and double bit uncorrectable error conditions) is reported to  
the MSS R4F as an interrupt via ESM module.  
All the Main SS peripherals (SPIs, CAN-FDs, I2C, DMAs, RTI/WD, DCCs, IOMUX etc.)  
are connected to interconnect via Peripheral Central resource (PCR). This provides two  
diagnostic mechanisms that can limit access to peripherals. Peripherals can be clock gated  
per peripheral chip select in the PCR. This can be utilized to disable unused features such  
that they cannot interfere. In addition, each peripheral chip select can be programmed to  
limit access based on privilege level of transaction. This feature can be used to limit access  
to entire peripherals to privileged operating system code only.  
Configuration registers  
protection for Main SS  
peripherals  
11  
These diagnostic mechanisms are disabled after reset. Software must configure and enable  
these mechanisms. Protection violation also generates an ‘aerror’ that result in abort to MSS  
R4F or error response to other masters such as DMAs.  
Device architecture supports hardware CRC engine on Main SS implementing the below  
polynomials.  
CRC16 CCITT – 0x10  
CRC32 Ethernet – 0x04C11DB7  
CRC64  
CRC 32C – CASTAGNOLI – 0x1EDC6F4  
CRC32P4 – E2E Profile4 – 0xF4ACFB1  
CRC-8 – H2F Autosar – 0x2F  
CRC-8 – VDA CAN-FD – 0x1D  
Cyclic Redundancy Check –  
Main SS  
12  
The read operation of the SRAM contents to the CRC can be done by CPU or by DMA.  
The comparison of results, indication of fault, and fault response are the responsibility of the  
software managing the test.  
Device architecture supports MPUs on Main SS DMAs. Failure detection by MPU is reported  
to the MSS R4F CPU core as an interrupt via ESM.  
13  
14  
15  
MPU for DMAs  
DSPSS’s high performance EDMAs also includes MPUs on both read and writes master  
ports. EDMA MPUs supports 8 regions. Failure detection by MPU is reported to the DSP  
core as an interrupt via local ESM.  
Device architecture supports hardware logic BIST (LBIST) even for BIST R4F core and  
associated VIM module. This logic provides very high diagnostic coverage (>90%) on the  
BIST R4F CPU core and VIM.  
This is triggered by MSS R4F boot loader at boot time and it does not proceed further if the  
fault is detected.  
Boot time LBIST For BIST  
R4F Core and associated  
VIM  
Device architecture supports a hardware programmable memory BIST (PBIST) engine for  
BIST R4F TCMs which provide a very high diagnostic coverage (March-13n) on the BIST  
R4F TCMs.  
PBIST is triggered by MSS R4F Bootloader at the boot time and it does not proceed further  
if the fault is detected.  
Boot time PBIST for BIST  
R4F TCM Memories  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 10-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Targeted Devices  
(continued)  
NO  
FEATURE  
DESCRIPTION  
BIST R4F TCMs diagnostic is supported by Single error correction double error detection  
(SECDED) ECC diagnostic. Single bit error is communicated to the BIST R4FCPU while  
double bit error is communicated to MSS R4F as an interrupt so that application code  
becomes aware of this and takes appropriate action.  
End to End ECC for BIST  
R4F TCM Memories  
16  
Logical TCM word and its associated ECC code is split and stored in two physical SRAM  
banks. This scheme provides an inherent diagnostic mechanism for address decode failures  
in the physical SRAM banks and helps to reduce the probability of physical multi-bit faults  
resulting in logical multi-bit faults.  
BIST R4F TCM bit  
multiplexing  
17  
18  
Device architecture supports an internal watchdog for BIST R4F. Timeout condition is  
reported via an interrupt to MSS R4F and rest is left to application code to either go for  
SW reset for BIST SS or warm reset for the device to come out of faulty condition.  
RTI/WD for BIST R4F  
Device architecture supports a hardware programmable memory BIST (PBIST) engine for  
DSPSS’s L1P, L1D, L2 and L3 memories which provide a very high diagnostic coverage  
(March-13n).  
PBIST is triggered by MSS R4F Bootloader at the boot time and it does not proceed further  
if the fault is detected.  
Boot time PBIST for L1P,  
L1D, L2 and L3 Memories  
19  
20  
Device architecture supports Parity diagnostic on DSP’s L1P memory. Parity error is  
reported to the CPU as an interrupt.  
Note:- L1D memory is not covered by parity or ECC and need to be covered by application  
level diagnostics.  
Parity on L1P  
Device architecture supports both Parity Single error correction double error detection  
(SECDED) ECC diagnostic on DSP’s L2 memory. L2 Memory is a unified 256KB of memory  
used to store program and Data sections for the DSP. A 12-bit code word is used to store the  
ECC data as calculated over the 256-bit data bus (logical instruction fetch size). The ECC  
logic for the L2 access is located in the DSP and evaluation is done by the ECC control logic  
inside the DSP. This scheme provides end-to-end diagnostics on the transmissions between  
DSP and L2. Byte aligned Parity mechanism is also available on L2 to take care of data  
section.  
21  
ECC on DSP’s L2 Memory  
L3 memory is used as Radar data section in Device. Device architecture supports Single  
error correction double error detection (SECDED) ECC diagnostic on L3 memory. An 8-bit  
code word is used to store the ECC data as calculated over the 64-bit data bus.  
Failure detection by ECC logic is reported to the MSS R4F CPU core as an interrupt via  
ESM.  
ECC on Radar Data Cube  
(L3) Memory  
22  
23  
Device architecture supports the use of an internal watchdog for BIST R4F that is  
implemented in the real-time interrupt (RTI) module – replication of same module as used in  
Main SS. This module supports same features as that of RTI/WD for Main/BIST R4F.  
This watchdog is enabled by customer application code and Timeout condition is reported  
via an interrupt to MSS R4F and rest is left to application code in MSS R4F to either go for  
SW reset for DSP SS or warm reset for the device to come out of faulty condition.  
RTI/WD for DSP Core  
Device architecture supports dedicated hardware CRC on DSPSS implementing the below  
polynomials.  
CRC16 CCITT - 0x10  
CRC32 Ethernet - 0x04C11DB7  
CRC64  
24  
25  
CRC for DSP Sub-System  
The read of SRAM contents to the CRC can be done by DSP CPU or by DMA. The  
comparison of results, indication of fault, and fault response are the responsibility of the  
software managing the test.  
Device architecture supports MPUs for DSP memory accesses (L1D, L1P, and L2). L2  
memory supports 64 regions and 16 regions for L1P and L1D each. Failure detection by  
MPU is reported to the DSP core as an abort.  
MPU for DSP  
Device architecture supports various temperature sensors all across the device (next to  
power hungry modules such as PAs, DSP etc) which is monitored during the inter-frame  
period.(1)  
26  
27  
Temperature Sensors  
Tx Power Monitors  
Device architecture supports power detectors at the Tx output.(2)  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 10-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Targeted Devices  
(continued)  
NO  
FEATURE  
DESCRIPTION  
When a diagnostic detects a fault, the error must be indicated. The device architecture  
provides aggregation of fault indication from internal monitoring/diagnostic mechanisms  
using a peripheral logic known as the Error Signaling Module (ESM). The ESM provides  
mechanisms to classify errors by severity and to provide programmable error response.  
ESM module is configured by customer application code and specific error signals can be  
enabled or masked to generate an interrupt (Low/High priority) for the MSS R4F CPU.  
Device supports Nerror output signal (IO) which can be monitored externally to identify any  
kind of high severity faults in the design which could not be handled by the R4F.  
Error Signaling  
Error Output  
28  
Monitors Synthesizer’s frequency ramp by counting (divided-down) clock cycles and  
comparing to ideal frequency ramp. Excess frequency errors above a certain threshold, if  
any, are detected and reported.  
Synthesizer (Chirp) frequency  
monitor  
29  
30  
Device architecture supports a ball break detection mechanism based on Impedance  
measurement at the TX output(s) to detect and report any large deviations that can indicate  
a ball break.  
Monitoring is done by TIs code running on BIST R4F and failure is reported to the MSS R4F  
via Mailbox.  
Ball break detection for TX  
ports (TX Ball break monitor)  
It is completely up to customer SW to decide on the appropriate action based on the  
message from BIST R4F.  
Built-in TX to RX loopback to enable detection of failures in the RX path(s), including Gain,  
inter-RX balance, etc.  
31  
32  
33  
34  
RX loopback test  
Built-in IF (square wave) test tone input to monitor IF filter’s frequency response and detect  
failure.  
IF loopback test  
Provision to detect ADC saturation due to excessive incoming signal level and/or  
interference.  
RX saturation detect  
Boot time LBIST for DSP core  
Device device supports boot time LBIST for the DSP Core. LBIST can be triggered by the  
MSS R4F application code during boot time.  
(1) Monitoring is done by the TI's code running on BIST R4F. There are two modes in which it could be configured to report the  
temperature sensed via API by customer application.  
a. Report the temperature sensed after every N frames  
b. Report the condition once the temperature crosses programmed threshold.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4Fvia Mailbox.  
(2) Monitoring is done by the TI's code running on BIST R4F.  
There are two modes in which it could be configured to report the detected output power via API by customer application.  
a. Report the power detected after every N frames  
b. Report the condition once the output power degrades by more than configured threshold from the configured.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4F.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: AWR6843AOP  
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
10.1.1 Error Signaling Module  
When a diagnostic detects a fault, the error must be indicated. AWR6843AOP architecture provides aggregation  
of fault indication from internal diagnostic mechanisms using a peripheral logic known as the error signaling  
module (ESM). The ESM provides mechanisms to classify faults by severity and allows programmable error  
response. Below is the high level block diagram for ESM module.  
Low Priority  
Low Priority  
Interrupt  
Interrupy  
Handing  
Error Group 1  
Interrupt Enable  
High Priority  
Interrupt  
Handing  
High Priority  
Interrupy  
Interrupt Priority  
Error Group 2  
Error Group 3  
Nerror Enable  
Error Signal  
Handling  
Device Output  
Pin  
Figure 10-1. ESM Module Diagram  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
11 Applications, Implementation, and Layout  
Note  
Information in the following Applications section is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
11.1 Application Information  
Application information can be found on AWR Application web page.  
11.2 Reference Schematic  
The reference schematic and power supply information can be found in the AWR6843AOP EVM Documentation.  
Listed for convenience are: Design Files, Schematics, Layouts, and Stack up for PCB.  
Altium XWR6843 EVM Design Files  
XWR6843 EVM Schematic Drawing, Assembly Drawing, and Bill of Materials  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: AWR6843AOP  
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
12 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions follow.  
12.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix)  
(for example, AWR6843AOP). Texas Instruments recommends two of three possible prefix designators for its  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from  
engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
XA Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
XA and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (XA or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package  
type (for example, ALP0180), the temperature range (for example, blank is the default automotive temperature  
range). Figure 12-1 provides a legend for reading the complete device name for any AWR6843AOP device.  
For orderable part numbers of AWR6843AOP devices in the ALP0180 package types, see the Package Option  
Addendum of this document, the TI website ( www.ti.com ),or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the AWR6843AOP Device  
Errata .  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
6
8
43  
A
R
B
G
ALP  
AWR  
Qualification  
Blank= no special qual  
Q1 = AEC-Q100  
Prefix  
XA = Pre-production Automotive  
AWR = Production Automotive  
Tray or Tape & Reel  
R = Tape & Reel  
Blank = Tray  
Generation  
1 = 77 GHz Band  
6 = 60 GHz Band  
Package  
ALP = 180-Ball FCBGA, Rev2.0  
Variant  
2 = FE  
Security  
4 = FE + FFT + MCU  
6 = FE + MCU + DSP  
8 = FE + MCU + FFT + DSP  
G = General  
S = Secure  
Num RX/TX Channels  
RX = 1,2,3,4  
TX = 1,2,3  
Silicon PG Revision  
A = Rev2.0  
Features  
Blank = baseline  
R = Antenna on Package (AoP)  
Safety Level  
B = ASIL B  
Figure 12-1. Device Nomenclature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: AWR6843AOP  
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
12.2 Tools and Software  
Models  
xWR6843AOP BSDL model  
Boundary scan database of testable input and output pins for IEEE 1149.1 of  
the specific device.  
xWR6843AOP IBIS model  
IO buffer information model for the IO buffers of the device. For simulation on a  
circuit board, see IBIS Open Forum.  
xWR6843AOP checklist for  
schematic review, layout  
review,bringup/wakeup  
A set of steps in spreadsheet form to select system functions and pinmux  
options. Specific EVM schematic and layout notes to apply to customer  
engineering. A bring up checklist is suggested for customers.  
12.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
The current documentation that describes the DSP, related peripherals, and other technical collateral follows.  
Errata  
AWR6843AOP Device Errata Describes known advisories, limitations, and cautions on silicon and provides  
workarounds.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
All trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: AWR6843AOP  
 
 
 
 
 
 
AWR6843AOP  
SWRS246B – NOVEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
13 Mechanical, Packaging, and Orderable Information  
13.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Note  
Variability in the color (or appearance) of Texas Instrument’s (TI’s) Antenna-on-Package (AoP) product  
is normal and expected. This variation is not indicative of any degradation or variability to the  
performance specifications of the AoP products.  
13.2 Tray Information for ALP, 15 × 15 mm  
Package  
Type  
Package  
Name  
Unit Array  
Matrix  
Max Temp.  
(°C)  
L
W
(mm)  
K0  
(mm)  
P1  
(mm)  
CL  
(mm)  
CW  
(mm)  
Device  
Pins  
SPQ  
(mm)  
AWR6843ARBGALPQ1  
AWR6843ARBSALPQ1  
FCBGA  
FCBGA  
ALP  
ALP  
180  
180  
126  
126  
7x18  
7x18  
150  
150  
315  
315  
135.9  
135.9  
7.62  
7.62  
17.2  
17.2  
11.30  
11.30  
16.35  
16.35  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: AWR6843AOP  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XA6843ARBGALP  
ACTIVE  
FCBGA  
ALP  
180  
126  
Non-RoHS &  
Non-Green  
Call TI  
Call TI  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
ALP0180A  
FCBGA - 0.965 mm max height  
S
C
A
L
E
1
.
1
0
0
PLASTIC BALL GRID ARRAY  
15.1  
14.9  
B
A
BALL A1  
CORNER  
15.1  
14.9  
0.965 MAX  
C
SEATING PLANE  
0.2 C  
0.53  
0.27  
13.6 TYP  
SYMM  
(0.7)  
(0.7)  
V
U
T
(2.85)  
(4.03)  
R
P
N
M
L
K
J
SYMM  
(9.29)  
13.6  
TYP  
(6.94)  
H
G
F
E
D
C
(0.15) TYP  
ALL AROUND  
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
0.8 TYP  
0.612  
0.512  
180X  
0.8 TYP  
(7.1)  
(3.58)  
(2.85)  
0.15  
0.08  
C A B  
C
(9.29)  
4225336/A 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ALP0180A  
FCBGA - 0.965 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
180X ( 0.4)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
A
(0.8) TYP  
B
C
D
E
F
G
H
SYMM  
J
K
L
M
N
P
R
T
U
V
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 6X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
(
0.4)  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL EDGE  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225336/A 09/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ALP0180A  
FCBGA - 0.965 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
180X ( 0.4)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
A
(0.8) TYP  
B
C
D
E
F
G
H
SYMM  
J
K
L
M
N
P
R
T
U
V
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 6X  
4225336/A 09/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
AWR6843ARBGALPQ1  
AWR6843ARBGALPRQ1  
AWR6843ARBSALPQ1  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ACTIVE  
FCBGA  
FCBGA  
FCBGA  
ALP  
180  
180  
180  
126  
RoHS &  
Non-Green  
SNAGCU  
Level---  
Level---  
Level---  
BG  
AWR6843  
AWR6843 BG  
ACTIVE  
ACTIVE  
ALP  
ALP  
1000  
126  
RoHS &  
Non-Green  
SNAGCU  
SNAGCU  
-40 to 125  
BG  
AWR6843  
AWR6843 BG  
RoHS &  
-40 to 125  
BS  
Non-Green  
AWR6843  
AWR6843 BS  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Jul-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
ALP0180A  
FCBGA - 0.965 mm max height  
S
C
A
L
E
1
.
1
0
0
PLASTIC BALL GRID ARRAY  
15.1  
14.9  
B
A
BALL A1  
CORNER  
15.1  
14.9  
0.965 MAX  
C
SEATING PLANE  
0.2 C  
0.53  
0.27  
13.6 TYP  
SYMM  
(0.7)  
(0.7)  
V
U
T
(2.85)  
(4.03)  
R
P
N
M
L
K
J
SYMM  
(9.29)  
13.6  
TYP  
(6.94)  
H
G
F
E
D
C
(0.15) TYP  
ALL AROUND  
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
0.8 TYP  
0.612  
0.512  
180X  
0.8 TYP  
(7.1)  
(3.58)  
(2.85)  
0.15  
0.08  
C A B  
C
(9.29)  
4225336/A 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ALP0180A  
FCBGA - 0.965 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
180X ( 0.4)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
A
(0.8) TYP  
B
C
D
E
F
G
H
SYMM  
J
K
L
M
N
P
R
T
U
V
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 6X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
(
0.4)  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL EDGE  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225336/A 09/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ALP0180A  
FCBGA - 0.965 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
180X ( 0.4)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
A
(0.8) TYP  
B
C
D
E
F
G
H
SYMM  
J
K
L
M
N
P
R
T
U
V
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 6X  
4225336/A 09/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

AWR6843ARBSALPRQ1

AWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package (AOP)
TI

AWR6843_V02

AWR6843 Single-Chip 60- to 64-GHz mmWave Sensor
TI

AWR8001

Downconverter
ETC

AWR8001S5C

Downconverter
ETC

AWRCFREQ1MA

Ceramic Resonator, CERAMIC RESONATOR, 1.8 MHz - 6 MHz
ABRACON

AWRCFREQ1MA-AMMO

Ceramic Resonator, CERAMIC RESONATOR, 1.8 MHz - 6 MHz
ABRACON

AWRCFREQ1MD

Ceramic Resonator, CERAMIC RESONATOR, 1.8 MHz - 6 MHz
ABRACON

AWRCFREQ1MD-AMMO

Ceramic Resonator, CERAMIC RESONATOR, 1.8 MHz - 6 MHz
ABRACON

AWRCFREQ1MS

Ceramic Resonator, CERAMIC RESONATOR, 1.8 MHz - 6 MHz
ABRACON

AWRCFREQ1MS-AMMO

Ceramic Resonator, CERAMIC RESONATOR, 1.8 MHz - 6 MHz
ABRACON

AWRCFREQ2MA

Ceramic Resonator, CERAMIC RESONATOR, 6.01 MHz - 13 MHz
ABRACON

AWRCFREQ2MA-AMMO

Ceramic Resonator, CERAMIC RESONATOR, 6.01 MHz - 13 MHz
ABRACON