BQ2060A-E619DBQG4 [TI]

符合 SBS 1.1 标准的多化合物电量监测计,具有 5 个 LED 驱动器和其他电池管理控制 | DBQ | 28 | -20 to 70;
BQ2060A-E619DBQG4
型号: BQ2060A-E619DBQG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合 SBS 1.1 标准的多化合物电量监测计,具有 5 个 LED 驱动器和其他电池管理控制 | DBQ | 28 | -20 to 70

电池 驱动 光电二极管 电源管理电路 电源电路 驱动器
文件: 总46页 (文件大小:716K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
bq2060A  
SBS v1.1-Compliant Gas Gauge IC  
bq2060A provides LED drivers and a  
push-button input to depict remaining  
Features  
General Description  
battery capacity from full to empty in  
The bq2060A SBS-Compliant Gas  
20% or 25% increments with a 4 or  
Ga u ge I C for ba t t er y p a ck or  
5-segment display.  
> Provides accurate measurement  
of a va ila ble ch a r ge in N iCd ,  
N iMH , Li-I on , a n d lea d -a cid  
batteries  
in-system installation maintains an  
accurate record of available charge in  
rechargeable batteries. The bq2060A  
monitors capacity and other critical  
battery parameters for NiCd, NiMH,  
Li-Ion, and lead-acid chemistries.  
The bq2060A uses a V-to-F converter  
with automatic offset error correction  
for charge and discharge counting.  
For voltage, temperature, and current  
r epor t in g, t h e bq2060A u ses a n  
A-to-D converter. The onboard ADC  
also monitors individual cell voltages  
in a Li-Ion battery pack and allows  
the bq2060A to generate control sig-  
nals that may be used in conjunction  
with a pack supervisor to enhance  
pack safety.  
The bq2060A works with an external  
EEPROM. The EEPROM stores the  
configuration information for the  
bq2060A, such as the batterys chem-  
istry, self-discharge rate, rate com-  
pensation factors, measurement cali-  
bration, and design voltage and ca-  
pacity. The bq2060A uses the pro-  
grammable self-discharge rate and  
other compensation factors stored in  
the EEPROM to accurately adjust re-  
maining capacity for use and standby  
conditions based on time, rate, and  
temperature. The bq2060A also auto-  
matically calibrates or learns the true  
battery capacity in the course of a dis-  
ch a r ge cycle fr om n ea r -fu ll t o  
near-empty levels.  
> Su ppor t s SBS Sm a r t Ba t t er y  
Data Specification v1.1  
> Supports the 2-wire SMBus v1.1  
in t er fa ce wit h P E C or 1-wir e  
HDQ16  
> Reports individual cell voltages  
> Monitors and provides control to  
ch a r ge a n d disch a r ge F E Ts in  
Li-Ion protection circuit  
> P r ovides 15-bit r esolu t ion for  
voltage, temperature, and cur-  
rent measurements  
> Mea su r es ch a r ge flow u sin g a  
V-to-F converter with offset of  
less than 16µV after calibration  
The bq2060A supports the smart bat-  
tery data (SBData) commands and  
charge-control functions. It communi-  
cates data using the system manage-  
ment bus (SMBus) 2-wire protocol or  
the Benchmarq 1-wire HDQ16 proto-  
col. The data available include the  
batterys remaining capacity, temper-  
ature, voltage, current, and remain-  
in g r u n -t im e p r ed ict ion s . Th e  
The REG output regulates the operat-  
ing voltage for the bq2060A from the  
battery cell stack using an external  
JFET.  
> Consumes less than 0.5mW oper-  
ating  
> Drives a 4- or 5-segment LED  
display for remaining capacity in-  
dication  
> 28-pin 150-mil SSOP  
Pin Connections  
Pin Names  
DFC  
CFC  
Discharge FET control  
Charge FET control  
Cell voltage divider  
HDQ16 Serial communication  
input/output  
HDQ16  
28  
1
SMBC  
ESCL  
ESDA  
27  
26  
2
3
SMBD  
VCELL  
ESCL  
ESDA  
Serial memory clock  
4
3
2
1
VON  
control  
4
VCELL  
VCELL  
VCELL  
RBI  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
Serial memory data and  
address  
5
REG  
THON  
TS  
Thermistor bias control  
Thermistor voltage input  
Current sense input  
V
OUT  
6
RBI  
Register backup input  
Regulator output  
EEPROM supply output  
Supply voltage  
V
CC  
7
SR  
1
V
SS  
8
9
SR  
2
REG  
DISP  
LED  
SRC  
TS  
SRC  
10  
11  
12  
13  
14  
1
V
V
V
OUT  
CC  
SR –  
1
SR  
2
Charge-flow sense resistor  
inputs  
LED  
THON  
CVON  
CFC  
DFC  
2
3
4
5
LED  
LED  
LED  
Ground  
VCELL – Single-cell voltage inputs  
SS  
1
VCELL  
SMBD  
SMBC  
4
DISP  
Display control input  
28-Pin 150-mil SSOP  
SMBus data  
SMBus clock  
LED – LED display segment outputs  
1
LED  
5
28PN2060.eps  
SLUS500A–OCTOBER 2001–REVISED MAY 2002  
1
bq2060A  
Disch ar ge FET con tr ol ou tpu t  
DF C  
Pin Descriptions  
Output to control the discharge FET in the  
Li-Ion pack protection circuitry  
Ser ial com m u n ication in pu t/ou tpu t  
HDQ16  
Ch ar ge FET con tr ol ou tpu t  
CF C  
Open-drain bidirectional communications  
port  
Output to control the charge FET in the  
Li-Ion pack protection circuitry  
Ser ia l m em or y clock  
ESCL  
Cell voltage divider con tr ol ou tpu t  
CVON  
Output to clock the data transfer between  
the bq2060A and the external nonvolatile  
configuration memory  
Output control for external FETs to connect  
the cells to the external voltage dividers  
during cell voltage measurements  
ESDA  
RBI  
Ser ial m em or y data an d addr ess  
Th er m istor bias con tr ol ou tpu t  
THON  
Bidirectional pin used to transfer address  
and data to and from the bq2060A and the  
external nonvolatile configuration memory  
Output control for external FETs to connect  
the thermistor bias resistor during a tempera-  
ture measurement  
Register backu p in pu t  
Th er m istor voltage in pu t  
TS  
Input that provides backup potential to the  
bq2060A registers during periods of low op-  
erating voltage. RBI accepts a storage ca-  
pacitor or a battery input.  
Input connection for a thermistor to monitor  
temperature  
Cu r r en t sen se voltage in pu t  
Input to monitor instantaneous current  
Sen se r esistor in pu ts  
SRC  
REG  
Regu lator ou tpu t  
Output to control an n-J FET for VCC regu-  
lation to the bq2060A from the battery po-  
tential  
SR1–  
SR2  
Input connections for a small value sense  
resistor to monitor the battery charge and  
discharge current flow  
Su pply ou tpu t  
VOUT  
Output that supplies power to the external  
EEPROM configuration memory  
Sin gle-cell voltage in pu ts  
VCELL1–  
VCELL4  
Su pply voltage in pu t  
Gr ou n d  
VCC  
VSS  
Inputs that monitor the series element cell  
voltages  
SMBu s data  
SMBD  
SMBC  
Display con tr ol in pu t  
DISP  
Open-drain bidirectional pin used to trans-  
fer a ddr ess a n d da t a t o a n d fr om t h e  
bq2060A  
I n p u t t h a t con t r ols t h e LE D d r iver s  
LED1–LED5  
LED display segm en t ou tpu ts  
LED1–  
LED5  
SMBu s clock  
Outputs that each may drive an external  
LED  
Open drain bidirectional pin used to clock  
the data transfer to and from the bq2060A  
2
bq2060A  
The VFC measures bipolar signals up to 250mV. The  
Functional Description  
bq2060A detects charge activity when VSR = VSR2  
VSR1 is positive and discharge activity when VSR = VSR2  
– VS R 1 is n ega t ive. Th e bq2060A con t in u ou s ly  
in t egr a t es t h e sign a l over t im e u sin g a n in t er n a l  
cou n t er . Th e fu n da m en t a l r a t e of t h e cou n t er is  
6.25µVh.  
General Operation  
The bq2060A determines battery capacity by monitoring  
the amount of charge input or removed from a recharge-  
able battery. In addition to measuring charge and dis-  
charge, the bq2060A measures battery voltage, tempera-  
ture, and current, estimates battery self-discharge, and  
monitors the battery for low-voltage thresholds. The  
bq2060A measures charge and discharge activity by  
monitoring the voltage across a small-value series sense  
resistor between the batterys negative terminal and the  
negative terminal of the battery pack. The available  
battery charge is determined by monitoring this voltage  
and correcting the measurement for environmental and  
operating conditions.  
Offset Calibration  
The bq2060A provides an auto-calibration feature to can-  
cel the voltage offset error across SR1 and SR2 for maxi-  
mum charge measurement accuracy. The calibration rou-  
t in e is in it ia t ed by is s u in g  
a
com m a n d t o  
ManufacturerAccess(). The bq2060A is capable of auto-  
matic offset calibration down to 6.25µV. Offset cancellation  
resolution is less than 1µV.  
Digital Filter  
Figure 1 shows a typical bq2060A-based battery-pack  
application. The circuit consists of the LED display,  
volt a ge a n d t em per a t u r e m ea su r em en t n et wor k s,  
EEPROM connections, a serial port, and the sense resis-  
tor. The EEPROM stores basic battery-pack configura-  
tion information and measurement-calibration values.  
Th e E E P ROM m u st be pr ogr a m m ed pr oper ly for  
bq2060A operation. Table 9 shows the EEPROM mem-  
ory map and outlines the programmable functions avail-  
able in the bq2060A.  
The bq2060A does not measure charge or discharge  
counts below the digital filter threshold. The digital fil-  
t er t h r esh old is pr ogr a m m ed in t h e E E P ROM a n d  
should be set sufficiently high to prevent false signal de-  
tection with no charge or discharge flowing through the  
sense resistor.  
Voltage  
While monitoring SR1 and SR2 for charge and discharge  
currents, the bq2060A monitors the battery-pack poten-  
t ia l a n d t h e in dividu a l cell volt a ges t h r ou gh t h e  
VCELL1–VCELL4 pins. The bq2060A measures the pack  
voltage and reports the result in Voltage(). The bq2060A  
can also measure the voltage of up to four series ele-  
ments in a battery pack. The individual cell voltages  
are stored in the optional Manufacturer Function area.  
Th e bq2060A a ccept s a n NTC t h er m ist or (Sem it ec  
103AT) for temperature measurement. The bq2060A  
u ses t h e t h er m ist or t em per a t u r e t o m on it or ba t-  
tery-pack temperature, detect a battery full-charge con-  
dition, and compensate for self-discharge and charge/dis-  
charge battery efficiencies.  
Measurements  
The VCELL1–VCELL4 inputs are divided down from the  
cells using precision resistors, as shown in Figure 1. The  
maximum input for VCELL1–VCELL4 is 1.25V with re-  
spect to VSS. The voltage dividers for the inputs must be  
set so that the voltages at the inputs do not exceed the  
1.25V limit under all operating conditions. Also, the di-  
vider ratios on VCELL1–VCELL2 must be half of that of  
VCELL3–VCELL4. To reduce current consumption from  
The bq2060A uses a fully differential, dynamically bal-  
anced voltage-to-frequency converter (VFC) for charge  
measurement and a sigma delta analog-to-digital con-  
verter (ADC) for battery voltage, current, and tempera-  
ture measurement.  
Voltage, current, and temperature measurements are  
made every 2–2.5 seconds, depending on the bq2060A the battery, the CVON output may used to connect the  
operating mode. Maximum times occur with compen-  
sated EDV, mWh mode, and maximum allowable dis-  
charge rate. Any AtRate computations requested or  
scheduled (every 20 seconds) may add up to 0.5 seconds  
to the time interval.  
divider to the cells only during measurement period.  
CVON is high impedance for 250ms (12.5% duty cycle)  
when the cells are measured, and driven low otherwise.  
(See Table 1.)  
The SRC input of the bq2060A measures battery charge  
and discharge current. The SRC ADC input converts  
the current signal from the series sense resistor and  
stores the result in Current(). The full-scale input range  
to SBC is limited to ±250mV as shown in Table 2.  
Charge and Discharge Counting  
The VFC measures the charge and discharge flow of the  
ba t t er y by m on it or in g a sm a ll-va lu e sen se r esist or  
between the SR1 and SR2 pins as shown in Figure 1.  
3
bq2060A  
Figure 1. Battery Pack Application Diagram–LED Display and Series Cell Monitoring  
4
bq2060A  
Table 1. Example VCELL1–VCELL4 Divider  
and Input Range  
Current  
The SRC input of the bq2060A measures battery charge  
and discharge current. The SRC ADC input converts  
the current signal from the series sense resistor and  
stores the result in Current(). The full-scale input range  
to SBC is limited to ±250mV, as shown in Table 2.  
Voltage Division Full-Scale Input  
Voltage Input  
VCELL4  
Ratio  
(V)  
16  
16  
8
20.0  
20.0  
10.0  
10.0  
VCELL3  
Temperature  
VCELL2  
The TS input of the bq2060A in conjunction with an  
NTC thermistor measures the battery temperature as  
shown in Figure 1. The bq2060A reports temperature in  
Temperature(). THON may be used to connect the bias  
source to the thermistor when the bq2060A samples the  
TS input. THON is high impedance for 60ms when the  
temperature is measured, and driven low otherwise.  
VCELL1  
8
Table 2. SRC Input Range  
Gas Gauge Operation  
Sense Resistor (W)  
Full-Scale Input  
(A)  
General  
The operational overview in Figure 2 illustrates the gas  
gauge operation of the bq2060A. Table 3 describes the  
bq2060A registers.  
0.02  
0.03  
0.05  
0.10  
±12.5  
±8.3  
±5.0  
±2.5  
The bq2060A accumulates a measure of charge and  
discharge currents and estimates self-discharge of the  
Figure 2. bq2060A Operational Overview  
5
bq2060A  
Table 3. bq2060A Register Functions  
Command Code  
SMBus  
Access  
Function  
Units  
SMBus  
0x00  
HDQ16  
0x00  
ManufacturerAccess  
RemainingCapacityAlarm  
RemainingTimeAlarm  
BatteryMode  
read/write  
read/write  
read/write  
read/write  
read/write  
read  
n/a  
mAh, 10mWh  
minutes  
n/a  
0x01  
0x01  
0x02  
0x02  
0x03  
0x03  
AtRate  
0x04  
0x04  
mA, 10mW  
minutes  
minutes  
Boolean  
0.1°K  
AtRateTimeToFull  
AtRateTimeToEmpty  
AtRateOK  
0x05  
0x05  
0x06  
0x06  
read  
0x07  
0x07  
read  
Temperature  
0x08  
0x08  
read  
Voltage  
0x09  
0x09  
read  
mV  
Current  
0x0a  
0x0a  
read  
mA  
AverageCurrent  
MaxError  
0x0b  
0x0b  
read  
mA  
0x0c  
0x0c  
read  
percent  
percent  
percent  
mAh, 10mWh  
mAh, 10mWh  
minutes  
minutes  
minutes  
mA  
RelativeStateOfCharge  
AbsoluteStateOfCharge  
RemainingCapacity  
FullChargeCapacity  
RunTimeToEmpty  
AverageTimeToEmpty  
AverageTimeToFull  
ChargingCurrent  
ChargingVoltage  
Battery Status  
CycleCount  
0x0d  
0x0d  
read  
0x0e  
0x0e  
read  
0x0f  
0x0f  
read  
0x10  
0x10  
read  
0x11  
0x11  
read  
0x12  
0x12  
read  
0x13  
0x13  
read  
0x14  
0x14  
read  
0x15  
0x15  
read  
mV  
0x16  
0x16  
read  
n/a  
0x17  
0x17  
read  
cycles  
mAh, 10mWh  
mV  
DesignCapacity  
DesignVoltage  
SpecificationInfo  
ManufactureDate  
SerialNumber  
0x18  
0x18  
read  
0x19  
0x19  
read  
0x1a  
0x1a  
read  
n/a  
0x1b  
0x1b  
read  
n/a  
0x1c  
0x1c  
read  
integer  
-
Reserved  
0x1d–0x1f  
0x20  
0x1d - 0x1f  
0x20–0x25  
0x28–0x2b  
0x30–0x32  
0x38–0x3b  
0x2f (LSB)  
0x2f (MSB)  
0x3c  
-
ManufacturerName  
DeviceName  
read  
string  
string  
string  
string  
n/a  
0x21  
read  
DeviceChemistry  
ManufacturerData  
Pack Status  
0x22  
read  
0x23  
read  
0x2f (LSB)  
0x2f (MSB)  
0x3c  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Pack Configuration  
VCELL4  
n/a  
mV  
VCELL3  
0x3d  
0x3d  
mV  
VCELL2  
0x3e  
0x3e  
mV  
VCELL1  
0x3f  
0x3f  
mV  
6
bq2060A  
battery. The bq2060A compensates the charge current  
measurement for temperature and state-of-charge of the  
battery. It also adjusts the self-discharge estimation  
based on temperature.  
charge capacity of the battery. The last measured dis-  
charge of the battery is based on the value in the DCR  
register after a qualified discharge occurs. Once up-  
da t ed, t h e bq2060A wr it es t h e n ew F CC va lu e t o  
EEPROM in mAh to Last Measured Discharge. FCC  
represents the full battery reference for the relative dis-  
play mode and relative state of charge calculations.  
The main counter RemainingCapacity() (RM) represents  
the available capacity or energy in the battery at any  
given t im e. Th e bq2060A a dju st s RM for ch a r ge,  
self-discharge, and leakage compensation factors. The  
information in the RM register is accessible through the  
communications ports and is also represented through  
the LED display.  
Discharge Count Register (DCR)  
The DCR register counts up during discharge, independ-  
ent of RM. DCR can continue to count even after RM has  
counted down to 0. Prior to RM = 0, discharge activity,  
light discharge estimation and self-discharge increment  
DCR. After RM = 0, only discharge activity increments  
DCR. The bq2060A initializes DCR to FCC – RM when  
RM is within twice the programmed value in Near Full  
EE 0x55. The DCR initial value of FCC – RM is reduced  
by FCC/128 if SC = 0 (bit 2 in Control Mode) and is not  
reduced if SC = 1. DCR stops counting when the battery  
voltage reaches the EDV2 threshold on discharge.  
The FullChargeCapacity() (FCC) register represents the  
last measured full discharge of the battery. It is used as  
the batterys full-charge reference for relative capacity  
indication. The bq2060A updates FCC when the battery  
undergoes a qualified discharge from nearly full to a low  
battery level. FCC is accessible through the serial com-  
munications ports.  
The Discharge Count Register (DCR) is a non-accessible  
register that only tracks discharge of the battery. The  
bq2060A uses the DCR register to update the FCC regis-  
ter if the battery undergoes a qualified discharge from  
nearly full to a low battery level. In this way, the  
bq2060A learns the true discharge capacity of the bat-  
tery under system use conditions.  
Capacity Learning (FCC Update) and Qualified  
Discharge  
The bq2060A updates FCC with an amount based on the  
value in DCR if a qualified discharge occurs. The new  
value for FCC equals the DCR value plus the program-  
mable nearly full and low battery levels, according to  
the following equation:  
Main Gas Gauge Registers  
RemainingCapacity() (RM)  
FCC(new)=DCR(final)=  
(1)  
DCR(initial)+ measured discharge to EDV2  
+(FCC´ Battery Low%)  
RM represents the remaining capacity in the battery.  
The bq2060A computes RM in either mAh or 10mWh de-  
pending on the selected mode.  
where  
Battery Low % =(value stored in EE 0x54)¸ 2.56  
On initialization, the bq2060A sets RM to 0. RM counts  
up during charge to a maximum value of FCC and down  
during discharge and self-discharge to 0. In addition to  
charge and self-discharge compensation, the bq2060A  
calibrates RM at three low-battery-voltage thresholds,  
E DV2, E DV1, a n d E DV0 a n d t h r ee pr ogr a m m a ble  
midrange thresholds VOC25, VOC50, and VOC75. This  
provides a voltage-based calibration to the RM counter.  
A qualified discharge occurs if the battery discharges  
from RM FCC - Near Full 2 to the EDV2 voltage  
*
threshold with the following conditions:  
n
No valid charge activity occurs during the discharge  
period. A valid charge is defined as an input of  
10mAh into the battery.  
n
No more than 256mAh of self-discharge and/or light  
discharge estimation occurs during the discharge  
period.  
DesignCapacity() (DC)  
The DC is the user-specified battery full capacity. It is  
calculated from Pack Capacity EE 0x3a–0x3b and is rep-  
resented in mAh or 10mWh. It also represents the  
full-battery reference for the absolute display mode.  
n
n
The temperature does not drop below 5°C during the  
discharge period.  
The battery voltage reaches the EDV2 threshold  
during the discharge period and the voltage was less  
than the EDV2 threshold minus 256mV when the  
bq2060A detected EDV2.  
FullChargeCapacity() (FCC)  
FCC is the last measured discharge capacity of the bat-  
tery. It is represented in either mAh or 10mWh depend-  
ing on the selected mode. On initialization, the bq2060A  
sets FCC to the value stored in Last Measured Dis-  
charge EE 0x38–0x39. During subsequent discharges,  
the bq2060A updates FCC with the last measured dis-  
n
n
No midrange voltage correction occurs during the  
discharge period.  
There is no overload condition when voltage EDV2  
threshold  
7
bq2060A  
FCC cannot be reduced by more than 256mAh or in-  
creased by more than 512mAh during any single update  
cycle. The bq2060A saves the new FCC value to the  
EEPROM within 4s of being updated.  
rate. This method maintains a constant granularity of  
0.39% for each self-discharge adjustment, which may be  
performed multiple times per day, instead of once per  
day with a potentially large reduction.  
The self-discharge estimation rate for 25°C is doubled  
for each 10 degrees above 25°C or halved for each 10 de-  
grees below 25°C. The following table shows the relation  
of the self-discharge estimation at a given temperature  
to the rate programmed for 25°C (Y% per day):  
End-of-Discharge Thresholds and Capacity Cor-  
rection  
The bq2060A monitors the battery for three low-voltage  
thresholds, EDV0, EDV1, and EDV2. The EDV thresh-  
olds are programmed in EDVF/ EDV0 EE 0x72–0x73,  
E MF / E DV1 E E 0x74–0x75, a n d E DV C1/ C0 F a c-  
tor/ EDV2 EE 0x78–0x79. If the CEDV bit in Pack Con-  
figuration is set, automatic EDV compensation is en-  
abled and the bq2060A computes the EDV0, EDV1, and  
EDV2 thresholds based on the values in EE 0x72–0x7d,  
0x06, and the batterys current discharge rate, tempera-  
ture, capacity, and cycle count. The bq2060A disables  
EDV detection if Current() exceeds the Overload Current  
threshold programmed in EE 0x46 - EE 0x47. The  
bq2060A resumes EDV threshold detection after Cur-  
rent() drops below the overload current threshold. Any  
EDV threshold detected will be reset after 10mAh of  
charge are applied.  
Self-Discharge Rate  
41Y% per day  
Temperature ( C)  
Temp < 10  
21Y% per day  
10 Temp <20  
20 Temp <30  
30 Temp <40  
40 Temp <50  
50 Temp <60  
60 Temp <70  
70 Temp  
Y% per day  
2Y% per day  
4Y% per day  
8Y% per day  
16Y% per day  
32Y% per day  
The bq2060A uses the thresholds to apply voltage-based  
corrections to the RM register according to Table 4.  
The interval at which RM is reduced is given by the fol-  
lowing equation, where n is the appropriate factor of 2  
1
4
(n =  
,
21 , 1, 2, . . . ):  
Table 4. State of Charge Based  
on Low Battery Voltage  
(2)  
640·13500  
Self -Discharge Update Time =  
seconds  
256·n ·(Y% per day)  
Threshold  
EDV0  
State of Charge in RM  
0%  
3%  
The timer that keeps track of the self-discharge update  
time is halted whenever charge activity is detected. The  
t im er is r eset t o zer o if t h e bq2060A r ea ch es t h e  
RemainingCapacity()=FullChargeCapacity() condition  
while charging.  
EDV1  
EDV2  
Battery Low %  
The bq2060A adjusts RM as it detects each threshold. If  
the voltage threshold is reached before the correspond-  
ing capacity on discharge, the bq2060A reduces RM to  
the appropriate amount as shown in Table 4. If RM  
reaches the capacity level before the voltage threshold is  
reached on discharge, the bq2060A prevents RM from  
decreasing until the battery voltage reaches the corre-  
sponding threshold, but only on a full learning-cycle dis-  
charge (VDQ = 1). The EDV1 threshold is ignored if Mis-  
cellaneous Options bit 7 = 1.  
E x a m p l e : I f T = 35°C (n = 2) a n d p r ogr a m m ed  
self-discharge rate Y is 2.5 (2.5% per day at 25°C), the  
bq2060A reduces RM by RM/256 (0.39%) every  
(3)  
640·13500  
= 6750seconds  
256·n· (Y% per day)  
This means that a 0.39% reduction of RM will be made  
12.8 times per day to achieve the desired 5% per day re-  
duction at 35°C.  
Self-Discharge  
The bq2060A estimates the self-discharge of the battery  
to maintain an accurate measure of the battery capacity  
d u r in g p er iod s of in a ct ivit y. Th e a lgor it h m for  
self-discharge estimation takes a programmed estimate  
for the expected self-discharge rate at 25°C stored in  
EEPROM and makes a fixed reduction to RM of an  
amount equal to RemainingCapacity()/256. The bq2060A  
makes the fixed reduction at a varying time interval  
that is adjusted to achieve the desired self-discharge  
Figure 3 illustrates how the self-discharge estimate al-  
gorithm adjusts RemainingCapacity() vs. temperature.  
Light Discharge or Suspend Current  
Compensation  
The bq2060A can be configured in two ways to compen-  
sate for small discharge currents that produce a signal  
8
bq2060A  
Threshold  
VOC25  
Associated State of Charge  
25%  
50%  
75%  
VOC50  
VOC75  
For the midrange corrections to occur, the temperature  
must be in the range of 19°C to 31°C inclusive and the  
Current() and AverageCurrent() must both be between  
–64mA and 0. For a correction to occur, the bq2060A  
must also detect the need for correction during two adja-  
cent measurements separated by 20s. The second mea-  
surement is not required if the first measurement is im-  
mediately after a device reset. The bq2060A makes  
midrange corrections as shown in Table 5.  
Figure 3. Self-Discharge at 2.5%/Day @25C  
Charge Control  
below the digital filter. First, the bq2060A can decrement  
RM and DCR at a rate determined by the value stored in  
Light Discharge Current EE 0x2b when it detects no dis-  
charge activity and the SMBC and SMBD lines are high.  
Light Discharge Current has a range of 44µA to 11.2mA.  
Charging Voltage and Current Broadcasts  
The bq2060A supports SBS charge control by broadcasting  
the ChargingCurrent() and ChargingVoltage() to the  
Smart Charger address. The bq2060A broadcasts the re-  
quests every 10s. The bq2060A updates the values used  
in the charging current and voltage broadcasts based on  
the batterys state of charge, voltage, and temperature.  
The fast-charge rate is programmed in Fast-Charging  
Current EE 0x1a - 0x1b while the charge voltage is pro-  
grammed in Charging Voltage EE 0x0a-0x0b.  
Alternatively, the bq2060A can be configured to disable  
the digital filter for discharge when the SMBC and  
SMBD lines are high. In this way, the digital filter will  
not mask the leakage current signal. The bq2060A is  
configured in this mode by setting the NDF bit in Con-  
trol Mode.  
The bq2060A internal charge control is compatible with  
popu la r r ech a r gea ble ch em ist r ies. Th e pr im a r y  
charge-termination techniques include a change in tem-  
perature over a change in time (T/t) and current  
taper, for nickel-based and Li-Ion chemistries, respec-  
tively. The bq2060A also provides pre-charge qualifica-  
tion and a number of safety charge suspensions based  
on current, voltage, temperature, and state of charge.  
Midrange Capacity Corrections  
The bq2060A applies midrange capacity corrections  
when the VCOR bit is set in Pack Configuration. The  
bq2060A adjusts RM to the associated percentage at  
t h r ee differ en t volt a ge levels VOC25, VOC50, a n d  
VOC75. The VOC values represent the open circuit bat-  
tery voltage at which RM corresponds to the associated  
state of charge for each threshold.  
Table 5. Midrange Corrections  
Condition  
Result  
VOC75 and RelativeStateOfCharge() 63%  
< VOC75 and RelativeStateOfCharge() 87%  
RelativeStateOfCharge()75%  
RelativeStateOfCharge()75%  
RelativeStateOfCharge()50%  
RelativeStateOfCharge()50%  
RelativeStateOfCharge()25%  
RelativeStateOfCharge()25%  
VOC50 and RelativeStateOfCharge() 38%  
Voltage()  
<VOC50 and RelativeStateOfCharge() 62%  
VOC25 and RelativeStateOfCharge() 13%  
< VOC25 and RelativeStateOfCharge() 37%  
9
bq2060A  
is no longer being charged (DISCHARGING bit set in  
BatteryStatus()). The bq2060A continues to broadcast  
zero charging current until the overvoltage condition is  
cleared. The overvoltage condition is cleared when the  
Alarm Broadcasts to Smart Charger and Host  
If any of the bits 8–15 in BatteryStatus() is set, the  
bq2060A broadcasts an AlarmWarning() message to the  
Host address. If any of the bits 12–15 in BatteryStatus() is  
set, the bq2060A also sends an AlarmWarning() message  
to the Smart Charger address. The bq2060A repeats the  
AlarmWarning() message every 10s until the bits are  
cleared.  
measured  
battery  
voltage  
drops  
below  
the  
ChargingVoltage() plus the Overvoltage Margin or when  
the CVOV bit is reset.  
n
Over -Tem p er a tu r e: An over-temperature condition  
exists when Temperature() is greater than or equal to  
the Max T value programmed in EE 0x45 (most  
significant nibble). On detecting an over-temperature  
condition, the bq2060A sets the ChargingCurrent() to  
zero and sets the OVER_TEMP_ALARM and  
Pre-Charge Qualification  
The bq2060A sets ChargingCurrent() to the pre-charge  
r a t e a s p r ogr a m m ed in P r e-Ch a r ge Cu r r en t E E  
0x1e-0x1f under the following conditions:  
TERMINATE_CHARGE_  
ALARM  
bit  
in  
BatteryStatus() and the CVOV bit in Pack Status.  
The over-temperature condition is cleared when  
n
Volta ge:  
The bq2060A requests the pre-charge  
Temperature() is equal to or below (Max T  
– 5°C).  
charge rate when Voltage() drops below the EDV0  
threshold (compensated or fixed EDVs). Once  
requested, a pre-charge rate remains until Voltage()  
increases above the EDVF threshold. The bq2060A  
also broadcasts the pre-charge value immediately  
after a device reset until Voltage() is above the EDVF  
threshold. This threshold is programmed in  
EDVF/ EDV0 EE 0x72-0x73.  
The temperature set by MaxT is increased by 16°C if  
bit 5 in Miscellaneous Options is set.  
n
Over ch a r ge: An overcharge condition exists if the  
battery is charged more than the Maxmum  
Overcharge value after RM  
= FCC. Maximum  
Overcharge is programmed in EE 0x2e–0x2f. On  
detecting an overcharge condition, the bq2060A sets  
the ChargingCurrent() to zero and sets the  
OVER_CHARGED_ALARM, TERMINATE_CHARGE_  
n
Tem p er a tu r e:  
The bq2060A requests the  
pre-charge rate when Temperature() is between 0°C  
and 5°C. Temperature() must rise above 5°C before  
the bq2060A requests the fast-charge rate.  
ALARM,  
and  
FULLY_CHARGED  
bits  
in  
BatteryStatus(). The bq2060A clears the OVER_  
CHARGED_ALARM and TERMINATE_CHARGE_  
ALARM when it detects that the battery is no longer  
being charged. The FULLY_CHARGED bit remains set  
and the bq2060A continues to broadcast zero charging  
current until RelativeStateOfCharge() is less than  
Fully Charged Clear% programmed in EE 0x4c.The  
counter used to track overcharge capacity is reset  
with 2mAh of discharge.  
Charge Suspension  
The bq2060A may temporarily suspend charge if it de-  
tects a charging fault. A charging fault includes the fol-  
lowing conditions.  
n
Over cu r r en t: An overcurrent condition exists when  
the bq2060A measures the charge current to be more  
than  
the  
Overcurrent  
Margin  
above  
the  
n
Un d er -Tem p er a tu r e:  
An  
under-temperature  
ChargingCurrent(). Overcurrent Margin is programmed  
in EE 0x49. On detecting an overcurrent condition, the  
bq2060A sets the ChargingCurrent() to zero and sets the  
condition exists if Temperature() < 0°C. On detecting  
an under temperature condition, the bq2060A sets  
ChargingCurrent() to zero. The bq2060A sets  
ChargingCurrent() to the appropriate pre-charge rate  
or fast-charge rate when Temperature() 0°C.  
TERMINATE_CHARGE_ALARM  
bit  
in  
Battery  
Status(). The overcurrent condition and TERMINATE_  
CHARGE_ALARM are cleared when the measured  
current drops below the ChargingCurrent plus the  
Overcurrent Margin.  
Primary Charge Termination  
T h e b q 2 0 6 0 A t e r m in a t e s ch a r ge if it d e t e ct s a  
charge-termination condition. A charge-termination  
condition includes the following.  
n
Over voltage: An overvoltage condition exists when the  
bq2060A measures the battery voltage to be more than  
the Overvoltage Margin above the ChargingVoltage() or  
a Li-Ion cell voltage has exceeded the overvoltage limit  
programmed in Cell Under-/ Overoltage. Overvoltage  
Margin is programmed in EE 0x48 and Cell Under/ Over  
Voltage in EE 0x4a (least significant nibble). On  
detecting an overvoltage condition, the bq2060A sets the  
n
T/t : For T/t, the bq2060A detects a change in  
temperature over many seconds. The T/t setting  
is programmable in both the temperature step,  
DeltaT (1.6°C - 4.6°C), and the time step, DeltaT  
Time (20s-320s). Typical settings for 1°C/minute  
include 2°C/120s and 3°C/180s. Longer times are  
required for increased slope resolution. The DeltaT  
value is programmed in EE 0x45 (least significant  
nibble) and the Delta T Time in EE 0x4e.  
ChargingCurrent()  
TERMINATE_CHARGE_ALARM bit in BatteryStatus().  
The bq2060A clears the TERMINATE_  
CHARGE_ALARM bit when it detects that the battery  
to  
zero  
and  
sets  
the  
10  
bq2060A  
LED bit in Control Mode programs the 4 or 5 LED op-  
tion. A 5th LED can be used with the 4 LED display op-  
tion to show when the battery capacity is to 100%.  
In addition to the T/t timer, a hold-off timer starts  
when the battery is being charged at more than  
255mA and the temperature is above 25°C. Until this  
timer expires, T/t detection is suspended. If  
Current() drops below 256mA or Temperature() below  
25°C, the hold-off timer resets and restarts only when  
the current and temperature conditions are met again.  
The hold-off timer is programmable (20s – 320s) with  
Holdoff Time value in EE 0x4f.  
Activation  
Th e d is p la y m a y be a ct iva t ed a t a n y t im e by a  
high-to-low transition on the DISP input. This is usually  
accomplished with a pullup resistor and a pushbutton  
switch. Detection of the transition activates the dis-  
n
Current Taper: For current taper, ChargingVoltage()  
must be set to the pack voltage desired during the  
constant-voltage phase of charging. The bq2060A detects  
a current taper termination when the pack voltage is  
greater than the voltage determined by Current Taper  
Qual Voltage in EE 0x4f and the charging current is  
and starts a four-second display timer. The timer  
play  
expires and turns off the display whether  
DISP was  
brought low momentarily or held low indefinitely. Reac-  
tivation of the display requires that the DISP input re-  
turn to a logic-high state and then transition low again.  
The second high-to-low transition must occur after the  
display timer expires. The bq2060A requires the DISP  
input to remain stable for a minimum of 250ms to detect  
the logic state.  
below  
a
threshold determined by Current Taper  
Threshold in EE 0x4e, for at least 80s. The bq2060A uses  
the VFC to measure current for current taper  
termination. The current must also remain above  
0.5625/RS mA to qualify the termination condition.  
If the EDV0 bit is set, the bq2060A disables the LED  
display. The display is also disabled during a VFC cali-  
br a t ion a n d sh ou ld be t u r n ed off befor e en t er in g  
low-power storage mode.  
Once the bq2060A detects a primary charge termination,  
it s et s t h e TE RMI N ATE _CH ARGE _ALARM a n d  
FULLY_CHARGED bits in BatteryStatus(), and sets  
the ChargingCurrent() to the maintenance charge rate  
as programmed in Maintenance Charging Current EE  
0x1c–0x1d. On termination, the bq2060A also sets RM  
to a programmed percentage of FCC, provided that  
R e la t ive S t a t e O fC h a r ge () is b e low t h e d e s ir e d  
percentage of FCC and the CSYNC bit in Pack Configu-  
ration EE 0x3f is set. If the CSYNC bit is not set and  
RelativeStateOfCharge() is less than the programmed  
p e r ce n t a ge of F C C , t h e b q 2 0 6 0 A cle a r s t h e  
FULLY_CHARGED bit in BatteryStatus(). The pro-  
grammed percentage of FCC, Fast Charge Termination  
%, is s e t in E E 0 x4 b . T h e b q 2 0 6 0 A cle a r s t h e  
FULLY_CHARGED bit when RelativeStateOfCharge()  
is less than the programmed Fully Charged Clear %.  
The bq2060A broadcasts the fast-charge rate when the  
FULLY_CHARGED bit is cleared and voltage and tem-  
per a t u r e per m it . Th e bq2060A clea r s t h e TE RMI-  
NATE_CHARGE_ALARM when it no longer detects  
that the battery is being charged or it no longer detects  
the termination condition. See Table 6 for a summary  
of BatteryStatus() alarm and status bit operation.  
Display Modes  
In relative mode, each LED output represents 20% or  
25% of the RelativeStateOfCharge() value. In absolute  
mode, each LED output represents 20% or 25% of the  
AbsoluteStateOfCharge() value. Tables 7A and 7B show  
the display operation.  
In either mode, the bq2060A blinks the LED display if  
R e m a in in gC a p a cit y() is le s s t h a n R e m a in in g  
CapacityAlarm(). The display is disabled if EDV0 = 1.  
Secondary Protection for Li-Ion  
The bq2060A has two pins, CFC and DFC, that can be  
used for secondary override control of a Li-Ion protector  
or for blowing a fuse to disable the battery pack. The  
CFC pin is the Charge FET Control pin for secondary  
protector control or for blowing a fuse. The DFC pin is  
the Discharge FET Control pin for secondary protector  
control. Discharge current can cause an override of the  
CFC control, and charge current can cause an override  
of the DFC control. Pack Status can read the CVOV  
and CVUV status flags and can also read the true logic  
state of the CFC and DFC pins.  
Display Port  
General  
The display port drives a 4 or 5 LED bar-graph display.  
The display is activated by a logic signal on the DISP in-  
put. The bq2060A can display RM in either a relative or  
absolute mode with each LED representing a percentage  
of the full-battery reference. In relative mode, the  
bq2060A uses FCC as the full-battery reference; in abso-  
lute mode, it uses DC.  
The CVOV status flag is set if Voltage() Charging  
Voltage() + Overvoltage Margin, any VCELL voltage ≥  
Cell Overvoltage threshold, or if Temperature() MaxT.  
When CVOV=1 and Miscellaneous Options bit 6 = 0, the  
CFC pin is pulled low unless DISCHARGING bit in  
Ba t t er ySt a t u s() is set or Tem per a t u r e() > S a fety  
Overtemperature threshold. If Miscellaneous Options bit  
6 = 1, the CPC pin is pulled low only if Temperature()  
>Safety Overtemperature threshold.  
The DMODE bit in Pack Configuration programs the  
bq2060A for the absolute or relative display mode. The  
11  
bq2060A  
Table 6. Alarm and Status Bit Summary  
CC() State and  
CC() = Fast or Pre-charge Current  
Battery State  
Conditions  
BatteryStatus Bits Set  
and/or Bits Cleared  
C() < CC() + Overcurrent Margin  
DISCHARGING = 1  
C() CC() + Overcurrent  
Overcurrent  
CC() = 0, TCA = 1  
TCA = 1  
Margin  
V() CV() + Overvoltage  
Margin  
VCELL1, 2, 3, or 4 > Cell  
Over Voltage  
Overvoltage  
V() < CV() + Overvoltage Margin  
Li-Ion cell voltage Cell Over Voltage  
CC() = 0, CVOV = 1  
CC() = 0, OTA = 1,  
TCA = 1, CVOV = 1  
Overtemperature  
Overcharge  
T() Max T  
T() Max T - 5°C or T() ≤ 43°C  
Capacity added after  
RM() = FCC() ≥  
Maximum Overcharge  
CC() = 0, FC = 1  
OCA = 1, TCA = 1  
RSOC() < Fully Charged Cleared %  
DISCHARGING = 1  
0°C ≤ Τ() < 5°C, CC() = Pre-Charge  
Current  
Undertemperature  
T() < 0°C  
CC() = 0  
T() ≥ 5°C, CC() = Fast-Charging Current  
CC() = Maintenance  
Charging Current,  
FC = 1  
RSOC() < Fully Charged Cleared %  
Fast charge  
termination  
T/t or Current Taper  
DISCHARGING = 1 or termination  
condition is no longer valid.  
TCA = 1  
V() EDV2  
or  
Fully discharged  
Overdischarged  
FD = 1  
RSOC() > 20%  
RM() < FCC() Battery  
*
Low%  
V() EDV0  
TDA = 1  
V() > EDV0  
VCELL1, 2, 3 or 4 < Cell  
TDA = 1, CVUV = 1  
VCELL1, 2, 3, or 4 Cell Under Voltage  
Under Voltage  
RM() = 0  
TDA = 1  
RCA = 1  
RTA = 1  
RM() > 0  
Low capacity  
Low run-time  
RM() < RCA()  
ATTE() < RTA()  
RM() RCA()  
ATTE() RTA()  
Note:  
C() = Current(), CV() = ChargingVoltage(), CC() = ChargingCurrent(), V() = Voltage(), T() = Tempera-  
ture(), TCA = TERMINATE_CHARGE_ALARM, OTA = OVER_TEMPERATURE_ALARM,  
OCA = OVER_CHARGED_ALARM, TDA = TERMINATE_DISCHARGE_ALARM, FC =  
FULLY_CHARGED,  
FD = FULLY_DISCHARGED, RSOC() = RelativeStateOfCharge(). RM() = RemainingCapacity(),  
RCA = REMAINING_CAPACITY_ALARM, RTA = REMAINING_TIME_ALARM,  
ATTE() = AverageTimeToEmpty(), RTA() = RemainingTimeAlarm(), RCA() = RemainingCapacityAlarm(),  
FCC() = FullChargeCapacity.  
12  
bq2060A  
Table 7A. Display Mode  
Table 7B. Display Mode  
Condition  
Relative or  
Absolute  
5 LED Display Option  
LED1 LED2 LED3 LED4 LED5  
Condition  
Relative or  
Absolute  
4 LED Display Option  
LED1  
LED2  
LED3  
LED4  
StateOfCharge()  
StateOfCharge()  
EDV0 = 1  
<20%  
OFF  
ON  
ON  
ON  
ON  
ON  
OFF OFF OFF  
OFF OFF OFF  
ON OFF OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
EDV0 = 1  
<25%  
OFF  
ON  
ON  
ON  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
≥20%, <40%  
≥40%, <60%  
≥60%, <80%  
80%  
≥25%, <50%  
≥50%, <75%  
≥75%  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
ON  
ON  
ON  
partial reset leaves MaxError, RELEARN_FLAG, and  
RM u n ch a n ged. Th e bq2060A dela ys r ea din g t h e  
EEPROM for 700ms after all resets to allow settling  
The CVUV status flag is set if any VCELL voltage < Cell  
Undervoltage threshold. When CVUV = 1, the DVC pin  
is pulled low unless DISCHARGING bit in  
BatteryStatus() is set or Temperature() is not set.  
time for VCC  
.
Cell Undervoltage and Cell Overvoltage limits may be  
programmed in the upper and lower nibbles of EE 0x4a.  
Safety Overtemperature threshold may be programmed  
in EE 0x09, and Miscellaneous Options is programmed  
in EE 0x08.  
Communication  
The bq2060A includes two types of communica tion  
ports: SMBus and HDQ16. The SMBus interface is a  
2-wire bidirectional protocol using the SMBC (clock) and  
SMBD (data) pins. The HDQ16 interface is a 1-wire  
bidirectional protocol using the HDQ16 pin. All three  
communication lines are isolated from VCC and may be  
pulled-up higher than VCC. Also, the bq2060A will not  
pull these lines low if VCC to the part is zero . HDQ16  
should be pulled down with a 100Kresistor if not  
used.  
Low-Power Storage Mode  
The bq2060A enters low-power mode 5– 8s after receiv-  
ing the Enable Low-Power command. In this mode the  
bq2060A consumes less than 10µA. A rising edge on  
SMBC, SMBD, or HDQ16 restores the bq2060A to the  
full operating mode. The bq2060A does not perform any  
gas gauge functions during low-power storage mode.  
The communication ports allow a host controller, an  
SMBus compatible device, or other processor to access  
the memory registers of the bq2060A. In this way a sys-  
tem can efficiently monitor and manage the battery.  
Device Reset  
The bq2060A can be reset when power is applied or by  
commands over the HDQ16 or SMBus. Upon reset, the  
bq2060A initializes its internal registers with the infor-  
mation contained in the configuration EEPROM. The  
following command sequence initiates a full bq2060A re-  
set:  
SMBus  
The SMBus interface is a command-based protocol. A  
processor acting as the bus master initiates communica-  
tion to the bq2060A by generating a START condition. A  
START condition consists of a high-to-low transition of  
the SMBD line while the SMBC is high. The processor  
then sends the bq2060A device address of 0001011 (bits  
7–1) plus a R/W bit (bit 0) followed by an SMBus com-  
mand code. The R/W bit and the command code instruct  
the bq2060A to either store the forthcoming data to a  
register specified by the SMBus command code or out-  
put the data from the specified register. The processor  
completes the access with a STOP condition. A STOP  
condition consists of a low-to-high transition of the  
SMBD line while the SMBC is high. With SMBus, the  
most significant bit of a data byte is transmitted first.  
Write 0xff5a to address 0x4f  
Write 0x0000 to address 0x7d  
Write 0x0080 to address 0x7d  
A partial reset of the bq2060A occurs if step 1 is omitted  
and all check-byte values previously loaded into RAM  
are still correct. All initial RAM values are read from  
EEPROM for both full and partial resets. A full reset  
initializes MaxError = 100%, sets RELEARN_FLAG (bit  
7) = 1 in Battery Mode, and initializes RM from EE  
0x2c–2d (should be zero for rechargeable batteries). A  
13  
bq2060A  
In some instances, the bq2060A acts as the bus master.  
This occurs when the bq2060A broadcasts charging re-  
quirements and alarm conditions to device addresses  
0x12 (SBS Smart Charger) and 0x10 (SBS Host Control-  
ler.)  
= X8 + X2 + X1 + 1. The PEC calculation includes all  
bytes in the transmission, including address, command,  
and data. The PEC calculation does not include AC-  
KNOWLEDGE, NOT ACKNOWLEDGE, START, STOP,  
and Repeated START bits.  
For example, the host requests RemainingCapacity()  
from the bq2060A. This includes the host following the  
Read Word protocol. The bq2060A calculates the PEC  
based on the following 5 bytes of data, assuming the re-  
maining capacity of the battery is 1001mAh.  
SMBus Protocol  
The bq2060A supports the following SMBus protocols:  
n
n
n
Read Word  
Write Word  
Read Block  
n
n
n
n
Battery Address with R/W = 0: 0x16  
Command Code for RemainingCapacity(): 0x0f  
Battery Address with R/W = 1: 0x17  
RemainingCapacity(): 0x03e9  
A processor acting as the bus master uses the three pro-  
tocols to communicate with the bq2060A. The bq2060A  
acting as the bus master uses the Write Word protocol.  
For 0x160f17e903, the bq2060A transmits a PEC of 0xe8  
to the host.  
The SMBD and SMBC pins are open drain and require  
external pullup resistors.  
PEC Enable in Master Mode  
SMBus Packet Error Checking  
PEC for master mode broadcasts to the charger, host, or  
both can be enabled/disabled with the combination of  
the bits HPE and CPE in Control Mode.  
The bq2060A supports Packet Error Checking as a mech-  
anism to confirm proper communication between it and  
another SMBus device. Packet Error Checking requires  
that both the transmitter and receiver calculate a Packet  
Error Code (PEC) for each communication message. The  
device that supplies the last byte in the communication  
message appends the PEC to the message. The receiver  
compares the transmitted PEC to its PEC result to deter-  
mine if there is a communication error.  
SMBus On and Off State  
The bq2060A detects whether the SMBus enters the Off  
State” by monitoring the SMBC and SMBD lines. When  
both signals are continually low for at least 2.5s, the  
bq2060A detects the Off State. When the SMBC and  
SMBD lines go high, the bq2060A detects the On State  
and can begin communication within 1ms. One-MΩ  
pulldown resistors on SMBC and SMBD are recom-  
mended for reliable Off State detection.  
PEC Protocol  
The bq2060A can receive or transmit data with or with-  
out PEC. Figure 4 shows the communication protocol  
for the Read Word, Write Word, and Read Block mes-  
sages without PEC. Figure 5 includes PEC.  
HDQ16  
The HDQ16 interface is a command-based protocol. (See  
Figure 6.) A processor sends the command code to the  
bq2060A. The 8-bit command code consists of two fields,  
the 7-bit HDQ16 command code (bits 0–6) and the 1-bit  
R/W field. The R/W field directs the bq2060A either to  
In the Write Word protocol, the bq2060A receives the  
PEC after the last byte of data from the host. If the host  
does not support PEC, the last byte of data is followed  
by a STOP condition. After receipt of the PEC, the  
bq2060A compares the value to its calculation. If the  
PEC is correct, the bq2060A responds with an AC-  
KNOWLEDGE. If it is not correct, the bq2060A re-  
sponds with a NOT ACKNOWLEDGE and sets an error  
code.  
n
Store the next 16 bits of data to a specified register or  
Output 16 bits of data from the specified register  
n
With HDQ16, the least significant bit of a data byte  
(command) or word (data) is transmitted first.  
In the Read Word and Block Read, the host generates an  
ACKNOWLEDGE after the last byte of data sent by the  
bq2060A. The bq2060A then sends the PEC and the  
host acting as a master-receiver generates a NOT AC-  
KNOWLEDGE and a STOP condition.  
A bit transmission consists of three distinct sections. The  
first section starts the transmission by either the host or  
the bq2060A taking the HDQ16 pin to a logic-low state  
for a period tSTRH ;B. The next section is the actual  
data-transmission, where the data bit is valid by the  
time, tDSU;B after the negative edge used to start commu-  
nication. The data bit is held for a period tDH;DV to allow  
the host processor or bq2060A to sample the data bit.  
PEC Calculation  
The basis of the PEC calculation is an 8-bit Cyclic Re-  
dundancy Check (CRC-8) based on the polynomial C(X)  
14  
bq2060A  
Figure 4. SMBus Communication Protocol without PEC  
Figure 5. SMBus Communication Protocol with PEC  
15  
bq2060A  
The final section is used to stop the transmission by re-  
turning the HDQ16 pin to a logic-high state by at least  
the time tSSU;B after the negative edge used to start  
communication. The final logic-high state should be un-  
til a period tCYCH;B to allow time to ensure that the bit  
transmission was stopped properly.  
LEDs must be off before entering the low-power storage  
mode as the display state remains unchanged.  
The bq2060A clears the ManufacturerAccess() command  
within 900ms of acknowledging the Enable Low-Power  
Storage command. The VFC Calibration command may  
be sent 900–5000ms after SMBus acknowledgment of  
the Enable Low-Power Storage command. In this case,  
the bq2060A delays entering storage mode until the cali-  
bration process completes and the bq2060A stores the  
new calibration values in EEPROM.  
If a communication error occurs (e.g., tCYCB > 250µs), the  
host sends the bq2060A a BREAK to reinitiate the serial  
interface. The bq2060A detects a BREAK when the  
HDQ16 pin is in a logic-low state for a time t B or  
greater. The HDQ16 pin is then returned to its normal  
ready-high logic state for a time tBR. The bq2060A is  
then ready to receive a command from the host proces-  
sor.  
0x062b SEAL: Instructs the bq2060A to restrict access  
to those functions listed in Table 3. The bq2060A com-  
pletes the seal function and clears ManufacturerAccess()  
within 900ms of acknowledging the command.  
The HDQ16 pin is open drain and requires an external  
pullup resistor.  
0x064d Ch a r ge Syn ch r on iza t ion : Instructs the  
bq2060A t o u pda t e RM t o a per cen t a ge of F CC a s  
defined in Fast Charge Termination %. The bq2060A  
updates RM and clears ManufacturerAccess() within  
900ms of acknowledging the command.  
Command Codes  
The SMBus Command Codes are in ( ), the HDQ16 in [ ].  
Temperature(), Voltage(), Current(), and AverageCurrent(),  
performance specifications are at regulated VCC (VRO  
and a temperature of 0–70°C.  
)
0x0653 En a ble VF C Ca libr a tion : Instructs the un-  
sealed bq2060A to begin VFC calibration. With this  
command the bq2060A deselects the SR1 and SR2 inputs  
and calibrates for IC offset only. It is best to avoid  
charge or discharge currents through the sense resistor  
during this calibration process.  
ManufacturerAccess() (0x00); [0x00–0x01]  
Descr ip tion :  
This function provides writable command codes to con-  
trol the bq2060A during normal operation and pack  
manufacture. These commands can be ignored if sent  
within one second after a device reset. The following list  
of commands are available.  
0x067e Alter n a te VF C Ca libr a tion : Instructs the  
unsealed bq2060A to begin VFC calibration. With this  
command, the bq2060A does not deselect the SR1 and  
SR2 inputs and does calibrate for IC and PCB offset.  
Du r in g th is p r oced u r e n o ch a r ge or d isch a r ge cu r -  
r en ts  
0x0618 En a ble Low -P ow er Stor a ge Mod e: Activates  
the low-power storage mode. The bq2060A enters the  
storage mode after a 5–8s delay. The bq2060A accepts  
other commands to ManufacturerAccess() during the  
delay before entering low-power storage mode. The  
During VFC calibration, the bq2060A disables the LED  
display and accepts only the Stop VFC Calibration and  
Figure 6. HDQ16 Communication Example  
16  
bq2060A  
the SEAL comma nds to Ma nufa cturerAccess(). The  
bq2060A disr ega r ds a ll ot h er com m a n ds. SMBu s  
communication should be kept to a minimum during  
VFC calibration to reduce the noise level and allow a  
more accurate calibration.  
br a t ion com m a n d. Th is dela ys t h e low-power  
storage mode until after VFC calibration comple-  
tion.  
5. Issue the SEAL Command subsequent to the VFC  
Calibration command. The bq2060A must receive  
the SEAL Command before VFC calibration com-  
pletes. The bq2060A resets the OCE bit in Pack  
Status when calibration begins and sets the bit  
when calibration successfully completes.  
Once started, the VFC calibration procedure completes  
automatically. When complete, the bq2060A saves the  
calibration values in EEPROM. The calibration nor-  
mally takes about 8 to 10 minutes. The calibration time  
is inversely proportional to the bq2060A VFC (and PCB)  
offset error. The bq2060A caps the calibration time at  
one hour in the event of calibrating zero offset error. The  
VFC calibration can be done as the last step in a battery  
pack test procedure since the calibration can complete  
automatically after removal from a test setup.  
After VFC calibration completes automatically, the  
bq2060A saves the VFC offset cancellation values in  
EEPROM and enters the low-power storage mode in  
about 20s. In addition, the bq2060A is sealed, allowing  
access as defined in Table 3 only.  
P u r p ose:  
The bq2060A clears ManufacturerAccess() within 900ms  
and starts calibration within 3.2s of acknowledging the  
command.  
The ManufacturerAccess() function provides the system  
host access to bq2060A functions that are not defined by  
the SBD.  
0x0660 Stop VF C Ca libr a tion : Instructs the bq2060A  
to abort a VFC calibration procedure. If aborted, the  
bq2060A disables offset correction. The bq2060A stops  
calibration within 20ms of acknowledging the command.  
SMBu s P r otocol: Read or Write Word  
In p u t/Ou tp u t: Word  
RemainingCapacityAlarm() (0x01); [0x01]  
0x0606 P r ogr a m E E P R OM: Instructs the unsealed  
bq2060A to connect the SMBus to the EEPROM I2C bus.  
The bq2060A applies power to the EEPROM within  
900ms of acknowledging the command. After issuing the  
program EEPROM command, the bq2060A monitoring  
functions are disabled until the I2C bus is disconnected.  
The bq2060A disconnects the I2C bus when it detects that  
the Battery Address 0x16 is sent over the SMBus. The  
Battery Address 0x16 to disconnect the I2C bus should  
not be sent until 10ms after the last write to the  
EEPROM.  
Descr ip tion :  
Sets or gets the low-capacity threshold value. Whenever  
the RemainingCapacity() falls below the low capacity  
value, the bq2060A sends AlarmWarning() messages to  
t h e SMBu s H ost wit h t h e RE MAIN IN G_CAPAC-  
ITY_ALARM bit set. A low-capacity value of 0 disables  
this alarm. The bq2060A initially sets the low-capacity  
value to Remaining Capacity Alarm value programmed  
in EE 0x04 - 0x05. The low-capacity value remains un-  
ch a n ge d u n t il a lt e r e d b y t h e R e m a in in g-  
CapacityAlarm() function. The low-capacity value may  
be expressed in either current (mA) or power (10mWh)  
depending on the setting of the BatteryMode()s CAPAC-  
ITY_MODE bit.  
Exa m p le: The following sequence of actions is an exam-  
ple of how to use the ManufacturerAccess() commands  
in an efficient manner to take a battery pack that has  
completed all testing and calibration except for VFC cal-  
ibr a t ion a n d t o m a ke it r ea dy for sh ipm en t in t h e  
SEALED state and in low-power storage mode:  
P u r p ose:  
The RemainingCapacityAlarm() function can be used by  
systems that know how much power they require to  
save their operating state. It enables those systems to  
more finely control the point at which they transition  
into suspend or hibernate state. The low-capacity value  
can be read to verify the value in use by the bq2060s  
low capacity alarm.  
1. Complete testing and calibration with desired final  
values stored in EEPROM. This process includes  
set t in g t h e SE AL bit in P a ck Con figu r a tion .  
Sending a reset command to the bq2060A during  
test ensures that RAM values correspond to the fi-  
nal EEPROM values  
SMBu s P r otocol: Read or Write Word  
2. If the initial value of RemainingCapacity() must be  
non-zero, the desired value may be written to Com-  
mand 0x26 with the pack unsealed. A reset sent af-  
ter this step resets RM to zero.  
In p u t /Ou t p u t : Unsigned integer—value below which  
Low Capacity messages are sent.  
3. Issue the Enable Low-Power Storage Mode com-  
mand.  
4. Wit h in 900–1600m s a ft er sen din g t h e E n a ble  
Low-Power command, issue the Enable VFC Cali-  
17  
bq2060A  
n
Whether all broadcasts to the Smart Battery Charger  
and Host are disabled  
Battery Modes  
CAPACITY_MODE CAPACITY_MODE  
bit = 0  
bit = 1  
The defined request condition is the battery requesting  
a conditioning cycle (RELEARN_FLAG).  
Units  
Range  
mAh @ C/5  
0–65,535mAh  
10mWh @ P/5  
0–65,535 10mWh  
P u r p ose:  
Granularity  
Accuracy  
Not applicable  
See RemainingCapacity()  
The CAPACITY_MODE bit allows power management  
systems to best match their electrical characteristics  
with those reported by the battery. For example, a  
switching power supply represents a constant power  
load, whereas a linear supply is better represented by a  
constant current model. The CHARGER_MODE bit al-  
lows a SMBus Host or Smart Battery Charger to over-  
ride the Smart Batterys desired charging parameters by  
d is a b lin g t h e b q 2 0 6 0 s b r oa d ca s t s . T h e R E-  
LEARN_FLAG bit allows the bq2060A to request a con-  
ditioning cycle.  
RemainingTimeAlarm() (0x02); [0x02]  
Descr iption :  
Sets or gets the remaining time alarm value. Whenever the  
AverageTimeToEmpty() falls below the remaining time  
value, the bq2060A sends AlarmWarning() messages to the  
SMBus Host with the REMAINING_TIME_ALARM bit set.  
A remaining time value of 0 effectively disables this alarm.  
The bq2060A initially sets the remaining time value to the  
Remaining Time Alarm value programmed in EE 0x02 -  
0x03. The remaining time value remains unchanged until  
altered by the RemainingTimeAlarm() function.  
SMBu s P r otocol: Read or Write Word  
In p u t/Ou tp u t:  
Unsigned integer —bit mapped— see below.  
Units: not applicable  
P u r p ose:  
The RemainingTimeAlarm() function can be used by sys-  
tems that want to adjust when the remaining time  
alarm warning is sent. The remaining time value can be  
r ea d t o ver ify t h e va lu e in u s e by t h e bq2060s  
RemainingTimeAlarm().  
Range: 0–1  
Granularity: not applicable  
Accuracy: not applicable  
The BatteryMode() word is divided into two halves, the  
most significant bit (bits 8–15), which is read/write and  
the least significant bit (bits 0–7), which is read only.  
The bq2060A forces bits 0–6 to zero and prohibits writes  
to bit 7.  
SMBu s P r otocol: Read or Write Word  
In p u t/Ou tp u t:  
Unsigned integer—the point below which remain-  
ing time messages are sent.  
Table 8 summarizes the meanings of the individual bits  
in the BatteryMode() word and specifies the default val-  
ues, where applicable, are noted.  
Units: minutes  
Range: 0 to 65,535 minutes  
Granularity: Not applicable  
I N T E R N AL _C H AR G E _C O N T R O L L E R bit is n ot  
used by the bq2060A.  
Accuracy: see AverageTimeToEmpty()  
P RIMARY_BATTERY_SUP P ORT bit is not used by  
the bq2060A.  
BatteryMode() (0x03); [0x03]  
Descr ip tion :  
RELEARN_F LAG bit set indicates that the bq2060A is  
requesting a capacity relearn cycle for the battery. The  
bq2060A sets the RELEARN_FLAG under any of three  
conditions: full reset, detection of 20 cycle counts with-  
out an FCC update, or a midrange voltage correction.  
The bq2060A clears this flag after a learning cycle has  
been completed.  
This function selects the various battery operational  
modes and reports the batterys mode and requests.  
Defined modes include  
n
Whether the batterys capacity information is  
specified in mAh or 10mWh (CAPACITY_MODE bit)  
CHARGE_CONTROLLER_ENABLED bit is not used  
by the bq2060A. The bq2060A forces this bit to zero.  
n
Whether the ChargingCurrent() and ChargingVoltage()  
values are broadcast to the Smart Battery Charger  
when the bq2060A detects the battery requires charging  
(CHARGER_MODE bit)  
P RIMARY_BATTERY bit is not used by the bq2060A.  
The bq2060A forces this bit to zero.  
18  
bq2060A  
Table 8. Battery Mode Bits and Values  
Battery Mode() Bits  
INTERNAL_CHARGE_CONTROLLER  
PRIMARY_BATTERY_SUPPORT  
Reserved  
Bits Used  
Format  
Allowable Values  
0
1
Read only bit flag  
Read only bit flag  
2–6  
0—Battery OK  
1—Relearn cycle requested  
RELEARN_FLAG  
7
Read only bit flag  
CHARGE_CONTROLLER_ENABLED  
PRIMARY_BATTERY  
Reserved  
8
9
R/W bit flag  
R/W bit flag  
10–12  
0—Enable alarm broadcast (default)  
1—Disable alarm broadcast  
ALARM_MODE  
CHARGER_MODE  
CAPACITY_MODE  
13  
14  
15  
R/W bit flag  
R/W bit flag  
R/W bit flag  
0—Enable charging broadcast  
(default)  
1—Disable charging broadcast  
0—Report in mA or mAh (default)  
1—Report in 10mW or 10mWh  
Charger. When set, the bq2060A does NOT transmit  
ChargingCurrent() and ChargingVoltage() values to the  
Smart Battery Charger. When cleared, the bq2060A  
transmits the ChargingCurrent() and ChargingVoltage()  
va lu e s t o t h e S m a r t B a t t e r y C h a r ge r . T h e  
CHARGER_MODE bit defaults to a cleared state within  
130ms after the bq2060A detects the SMBus Off-State.  
ALARM_MODE bit is set to disable the bq2060s ability  
to master the SMBus and send AlarmWarning() messages  
to the SMBus Host and the Smart Battery Charger. When  
set, the bq2060A does NOT master the SMBus, and  
AlarmWarning() messages are NOT sent to the SMBus  
Host and the Smart Battery Charger for a per iod of n o  
m or e th an 65s an d n o less th an 45s. When cleared  
(default), the Smart Battery sends the AlarmWarning()  
messages to the SMBus Host and the Smart Battery  
Charger any time an alarm condition is detected.  
CAPACITY_MODE bit indicates if capacity informa-  
tion is reported in mA/mAh or 10mW/10mWh. When  
set , t h e bq2060A r epor t s ca pa cit y in for m a t ion in  
10m W/10m Wh a s a ppr opr ia t e. Wh en clea r ed, t h e  
bq2060A reports capacity information in mA/mAh as ap-  
propriate. The CAPACITY_MODE bit defaults to a  
cleared state within 130ms after the bq2060A detects  
the SMBus Off-State.  
n
The bq2060A polls the ALARM_MODE bit at least  
every 150ms. Whenever the ALARM_MODE bit is set,  
the bq2060A resets the bit and starts or restarts a 55s  
(nominal) timer. After the timer expires, the bq2060A  
automatically enables alarm broadcasts to ensure that  
the accidental deactivation of broadcasts does not  
persist. To prevent the bq2060A from becoming a  
master on the SMBus, an SMBus host must therefore  
continually set this bit at least once per 50s to keep  
the bq2060A from broadcasting alarms.  
Note 1: The following functions are changed to accept or  
return values in mA/mAh or 10mW/10mWh depending  
on the CAPACITY_MODE bit:  
n
n
n
n
n
RemainingCapacityAlarm()  
AtRate()  
n
n
The ALARM_MODE bit defaults to a cleared state  
within 130ms after the bq2060A detects the SMBus  
Off-State.  
RemainingCapacity()  
FullChargeCapacity()  
DesignCapacity()  
The condition of the ALARM-MODE bit does NOT  
affect the operation or state of the CHARGER_MODE  
bit which is used to prevent broadcasts of  
ChargingCurrent() and ChargingVoltage() to the  
Smart Battery Charger.  
Note 2: The following functions are calculated on the  
basis of capacity and may be calculated differently de-  
pending on the CAPACITY_MODE bit:  
CHARGER_MODE bit enables or disables the bq2060s  
t r a n s m is s ion of C h a r gin gC u r r e n t () a n d  
Ch a r gin gVolt a ge() m essa ges t o t h e Sm a r t Ba t t er y  
19  
bq2060A  
n
n
n
n
n
n
n
n
AtRateOK()  
SMBu s P r otocol: Read or Write Word  
AtRateTimeToEmpty()  
AtRateTimeToFull()  
RunTimeToEmpty()  
AverageTimeToEmpty()  
AverageTimeToFull()  
Remaining Time Alarm()  
BatteryStatus()  
In p u t /Ou t p u t : Signed integer—charge or discharge;  
the AtRate() value is positive for charge, negative for  
discharge, and zero for neither (default).  
Battery Mode  
CAPACITY_MODE CAPACITY_MODE  
bit = 0  
bit = 1  
Units  
mA  
10mW  
Charge  
Range  
1–32,767mA  
1–32,768 10mW  
The bq2060A updates the non-AtRate related register  
values within 3s of changing the state of the CAPAC-  
ITY_MODE bit. The AtRate() values will be updated af-  
ter the next AtRate value is written to the bq2060A (or  
after the next 20s scheduled refresh calculation).  
Discharge  
Range  
-1– -32,768mA  
-1– -32,768 10mW  
Granularity  
Accuracy  
1 Unit  
NA  
AtRate() (0x04); [0x04]  
AtRateTimeToFull() (0x05);[0x05]  
Descr ip tion :  
Descr ip tion :  
The AtRate() function is the first half of a two-function  
call-set used to set the AtRate value used in calculations  
m a d e b y t h e At R a t e Tim e ToF u ll(), At R a t e Tim e -  
ToEmpty(), and AtRateOK() functions. The AtRate  
value may be expressed in either current (mA) or power  
(10mW) depending on the setting of the BatteryMode()s  
CAPACITY_MODE bit.  
Returns the predicted remaining time to fully charge  
the battery at the AtRate( ) value (mA).  
P u r p ose:  
T h e At R a t e Tim e ToF u ll() fu n ct ion is p a r t of a  
two-function call-set used to determine the predicted  
remaining charge time at the AtRate value in mA. The  
bq2060A updates AtRateTimeToFull() within 1.3s after  
the SMBus Host sets the AtRate value. If read before  
this delay, the command is No Acknowledged and the er-  
ror code in BatteryStatus is set to not rea dy. The  
bq2060A automatically updates AtRateTimeToFull()  
based on the AtRate() value every 20s.  
P u r p ose:  
Sin ce t h e At Ra t e() fu n ct ion is t h e fir st h a lf of a  
two-function call-set, it is followed by the second func-  
tion of the call-set that calculates and returns a value  
based on the AtRate value and the batterys present  
state. A delay of up to 1.3s is required after writing  
AtRate() before the bq2060A can acknowledge the re-  
quested AtRate function.  
SMBu s P r otocol: Read Word  
n
When the AtRate() value is positive, the AtRate-  
TimeToFull() function returns the predicted time to  
full-charge at the AtRate value of charge.  
Ou tp u t:  
Unsigned integer—predicted time in minutes to  
fully charge the battery.  
n
When the AtRate() value is negative, the  
AtRateTimeToEmpty() function returns the predicted  
operating time at the AtRate value of discharge.  
Units: minutes  
n
When the AtRate() value is negative, the AtRateOK()  
function returns a Boolean value that predicts the  
batterys ability to supply the AtRate value of  
additional discharge energy (current or power) for 10  
seconds.  
Range: 0 to 65,534 min  
Granularity: 2 min or better  
Accuracy: ±MaxError() *  
FullChargeCapacity()/| AtRate()|  
Th e defa u lt va lu e for At Ra t e() is zer o. Wr it in g  
AtRate() values over the HDQ16 serial port does NOT  
Invalid Data Indication: 65,535 indicates the bat-  
tery is not being charged.  
t r igger  
a r e-ca lcu la t ion of At Ra t eTim eToF u ll(),  
AtRateTimeToEmpty(), and AtRateOK() functions.  
It is recommended that AtRate() requests should be lim-  
ited to one request every 4s.  
20  
bq2060A  
Range: TRUE, FALSE  
AtRateTimeToEmpty() (0x06); [0x06]  
Granularity: not applicable  
Accuracy: not applicable  
Descr ip tion :  
Returns the predicted remaining operating time if the  
battery is discharged at the AtRate() value.  
Temperature() (0x08); [0x08]  
P u r p ose:  
Th e At Ra t eTim eToE m p t y() fu n ct ion is p a r t of a  
two-function call-set used to determine the remaining  
operating time at the AtRate()value. The bq2060A up-  
da t es At Ra t eTim eToE m pt y() wit h in 1.3s a ft er t h e  
SMBus Host sets the AtRate() value. If read before this  
delay, the command is No Acknowledged, and the error  
code in BatteryStatus is set to not ready. The bq2060A  
automatically updates AtRateTimeToEmpty() based on  
the AtRate() value every 20s.  
Descr ip tion :  
Returns the temperature (K) measured by the bq2060A.  
P u r p ose:  
The Temperature() function provides accurate cell tem-  
peratures for use by battery chargers and thermal man-  
agement systems. A battery charger can use the tem-  
perature as a safety check. Thermal management sys-  
tems may use the temperature because the battery is  
one of the largest thermal sources in a system.  
SMBu s P r otocol: Read Word  
Ou tp u t:  
SMBu s P r otocol: Read Word  
Ou tp u t:  
Unsigned integer — estimated operating time left.  
Units: minutes  
U n s ign e d in t e ge r —ce ll t e m p e r a t u r e in  
tenth-degree Kelvin increments.  
Range: 0 to 65,534 min  
Units: 0.1°K  
Granularity: 2 min or better  
Range: 0 to +6553.5°K {real range}  
Granularity: 0.1°K  
Accuracy: -0, +MaxError() *  
FullChargeCapacity/| AtRate()|  
Accuracy: ±1.5°K (from ideal 103AT thermistor  
performance, after calibration)  
Invalid Data Indication: 65,535 indicates the bat-  
tery is not being discharged.  
Voltage() (0x09); [0x09]  
AtRateOK() (0x07); [0x07]  
Descr ip tion :  
Returns the cell-pack voltage (mV).  
Descr ip tion :  
Returns a Boolean value that indicates whether or not  
the battery can deliver the AtRate( )value of additional  
energy for 10 seconds (Boolean). If the AtRate value is  
zero or positive, the AtRateOK() function ALWAYS re-  
turn-true.  
P u r p ose:  
The Voltage() function provides power management sys-  
tems with an accurate battery terminal voltage. Power  
management systems can use this voltage, along with  
battery current information, to characterize devices they  
control. This ability helps enable intelligent, adaptive  
power-management systems.  
P u r p ose:  
Th e At Ra t eOK() fu n ct ion is pa r t of a t wo-fu n ct ion  
call-set used by power management systems to deter-  
mine if the battery can safely supply enough energy for  
an additional load. The bq2060A updates AtRateOK()  
within 1.3s after the SMBus Host sets the AtRate( )  
value. If read before this delay, the command is No Ac-  
knowledged, and the error code in BatteryStatus is set  
t o n ot r ea d y. Th e bq2060A a u t om a t ica lly u pda t es  
AtRateOK() based on the At Rate() value every 20s.  
SMBu s P r otocol: Read Word  
Ou tp u t:  
Unsigned integer—battery terminal  
voltage in mV.  
Units: mV  
SMBu s P r otocol: Read Word  
Range: 0 to 20,000 mV  
Granularity: 1mV  
Ou tp u t:  
Boolean—indicates if the battery can  
supply the additional energy requested.  
Accuracy: ±0.65% (after calibration)  
Units: Boolean  
21  
bq2060A  
Current() (0x0a); [0x0a]  
the Relative StateOfCharge() is more likely between 50  
and 60%. The bq2060A sets MaxError() to 100% on a  
full reset. The bq2060A sets MaxError() to 2% on com-  
pletion of a learning cycle, unless the bq2060A limits  
the learning cycle to the +512/-256mAh maximum ad-  
justment values. If the learning cycle is limited, the  
bq2060A sets MaxError() to 8% unless MaxError() was  
already below 8%. In this case MaxError() does not  
change. The bq2060A increments MaxError() by 1% af-  
ter four increments of CycleCount() without a learning  
cycle.  
Descr ip tion :  
Ret u r n s t h e cu r r en t bein g su pplied (or a ccept ed)  
through the batterys terminals (mA).  
P u r p ose:  
The Current() function provides a snapshot for the  
power management system of the current flowing into or  
out of the battery. This information is of particular use  
in power-management systems because they can charac-  
terize individual devices and tune their operation to ac-  
tual system power behavior.  
If voltage-based corrections are applied to the coulomb  
counter, MaxError() is set to 25%.  
SMBu s P r otocol: Read Word  
Ou tp u t:  
P u r p ose:  
The MaxError() function has real value in two ways:  
first, to give the user a confidence level about the state  
of charge and second, to give the power management  
system information about how aggressive it should be,  
particularly as the battery nears the end of its life.  
Signed integer—charge/discharge rate in mA incre-  
mentspositive for charge, negative for discharge.  
Units: mA  
Range: (± 250mV/RS) mA  
SMBu s P r otocol: Read Word  
Granularity: 0.038mV/RS (integer value)  
Accuracy: ±1mV/RS (after calibration)  
Ou tp u t:  
Unsigned integer—percent uncertainty for selected  
information.  
AverageCurrent() (0x0b); [0x0b]  
Descr ip tion :  
Units: %  
Returns a value that approximates a one-minute rolling  
average of the current being supplied (or accepted)  
t h r ou gh t h e b a t t e r ys t e r m in a ls (m A).  
Range: 2 to 100%  
T h e  
AverageCurrent() function will return meaningful val-  
ues during the batterys first minute of operation.  
Granularity: 1%  
Accuracy: not applicable  
RelativeStateOfCharge() (0x0d); [0x0d]  
P u r p ose:  
The AverageCurrent() function provides the average cur-  
rent flowing into or out of the battery for the power  
management system.  
Descr ip tion :  
Returns the predicted remaining battery capacity ex-  
pressed as a percentage of FullChargeCapacity() (%).  
SMBu s P r otocol: Read Word  
P u r p ose:  
Ou tp u t:  
The RelativeStateOfCharge() function is used to esti-  
mate the amount of charge remaining in the battery rel-  
ative to the last learned capacity.  
Signed integer—charge/discharge rate in mA incre-  
mentspositive for charge, negative for discharge.  
SMBu s P r otocol: Read Word  
Ou tp u t:  
Units: mA  
Range: (± 250mV/RS) mA  
Unsigned integer—percent of remaining capacity.  
Units: %  
Granularity: 0.038mV/RS (integer value)  
Accuracy: ±1mV/RS (after calibration)  
MaxError() (0x0c); [0x0c]  
Range: 0 to 100%  
Granularity: 1%  
Descr ip tion :  
Returns the expected margin of error (%) in the state of  
charge calculation. For example, when MaxError() re-  
turns 10% and RelativeStateOfCharge() returns 50%,  
Accuracy: -0, +MaxError()  
22  
bq2060A  
AbsoluteStateOfCharge()(0x0e); [0x0e]  
FullChargeCapacity() (0x10); [0x10]  
Descr ip tion :  
Descr ip tion :  
Returns the predicted remaining battery capacity ex-  
pressed as a percentage of DesignCapacity() (%). Note  
that AbsoluteStateOfCharge() can return values greater  
than 100%.  
Returns the predicted pack capacity when it is fully  
charged. The FullChargeCapacity() value is expressed  
in either current (mAh at a C/5 discharge rate) or power  
(10mWh at a P/5 discharge rate) depending on the set-  
ting of the BatteryMode()s CAPACITY_MODE bit.  
P u r p ose:  
P u r p ose:  
The AbsoluteStateOfCharge() function is used to esti-  
mate the amount of charge remaining in the battery rel-  
ative to the nominal or DesignCapacity().  
The FullChargeCapacity() function provides the user  
with a means of understanding the tank size of their  
battery. This information, along with information about  
the original capacity of the battery, can be presented to  
the user as an indication of battery wear.  
SMBu s P r otocol: Read Word  
Ou tp u t:  
SMBu s P r otocol: Read Word  
Unsigned integer—percent of remaining capacity.  
Units: %  
Ou tp u t:  
Unsigned integer—estimated full-charge capacity  
in mAh or 10mWh.  
Range: 0 to 100+%  
Granularity: 1%  
Battery Mode  
Accuracy: -0, +MaxError()  
RemainingCapacity() (0x0f); [0x0f]  
CAPACITY_MODE CAPACITY_MODE  
bit = 0  
bit = 1  
Units  
Range  
mAh  
10mWh  
Descr ip tion :  
0–65,535mAh  
mAh  
0–65,535 10mWh  
10mWh  
Returns the predicted charge or energy remaining in the  
battery. The RemainingCapacity() value is expressed in  
either charge (mAh at a C/5 discharge rate) or energy  
(10mWh at a P/5 discharge rate) depending on the set-  
ting of the BatteryMode()s CAPACITY_MODE bit.  
Granularity  
Accuracy  
-0, +MaxError() FullChargeCapacity()  
RunTimeToEmpty() (0x11); [0x11]  
P u r pose:  
Descr ip tion :  
The RemainingCapacity() function returns the batterys  
remaining capacity. This information is a numeric indica-  
tion of remaining charge or energy given by the Absolute  
or Relative StateOfCharge() functions and may be in a  
better form for use by power management systems.  
Returns the predicted remaining battery life at the pres-  
e n t  
r a t e of d is ch a r ge (m in u t e s ).  
T h e  
RunTimeToEmpty() value is calculated based on either  
cu r r en t or power depen din g on t h e set t in g of t h e  
BatteryMode()s CAPACITY_MODE bit.  
SMBu s P r otocol: Read Word  
P u r p ose:  
Ou tp u t:  
The RunTimeToEmpty() provides the power management  
system with information about the relative gain or loss in  
remaining battery life in response to a change in power  
policy. Th is in for m a t ion is N OT t h e sa m e a s t h e  
AverageTimeToEmpty(), which is not suitable to deter-  
mine the effects that result from a change in power policy.  
Unsigned integer—remaining charge in mAh or  
10mWh.  
Battery Mode  
CAPACITY_MODE CAPACITY_MODE  
SMBu s P r otocol: Read Word  
Ou tp u t:  
bit = 0  
bit = 1  
Units  
Range  
mAh  
10mWh  
0–65,535mAh  
mAh  
0–65,535 10mWh  
10mWh  
Unsigned integer—minutes of operation left.  
Units: minutes  
Granularity  
Accuracy  
-0, +MaxError() FullChargeCapacity()  
Range: 0 to 65,534 min  
Granularity: 2 min or better  
23  
bq2060A  
Accuracy: -0, +MaxError() FullChargeCapacity()  
/ Current()  
ChargingCurrent() (0x14); [0x14]  
Descr ip tion : Returns the desired charging rate in mA.  
Invalid Data Indication: 65,535 indicates battery is  
not being discharged.  
P u r p ose : The ChargingCurrent() function sets the  
m a xim u m ch a r ge cu r r e n t of t h e b a t t e r y. T h e  
ChargingCurrent() value should be used in combination  
with the ChargingVoltage() value to set the charger s op-  
erating point. Together, these functions permit the  
bq2060A to dynamically control the charging profile  
(current/voltage) of the battery. The bq2060A can effec-  
tively turn off a charger by returning a value of 0 for  
this function. The charger may be operated as a con-  
stant-voltage source above its maximum regulated cur-  
rent range by returning a ChargingCurrent() value of  
65,535.  
AverageTimeToEmpty() (0x12); [0x12]  
Descr ip tion : Returns a one-minute rolling average of  
the predicted remaining battery life (minutes). The  
AverageTimeToEmpty() value is calculated based on ei-  
ther current or power depending on the setting of the  
BatteryMode()s CAPACITY_MODE bit.  
P u r p ose:  
The AverageTimeToEmpty() displays state-of-charge in-  
formation in a more useful way. It averages the instan-  
taneous estimations so the remaining time does not ap-  
pear to jump around.  
SMBu s P r otocol: Read Word  
Ou tp u t:  
SMBu s P r otocol: Read Word  
Ou tp u t:  
Unsigned integer—maximum charger output cur-  
rent in mA.  
Unsigned integer — minutes of operation left.  
Units: minutes  
Units: mA  
Range: 0 to 65,535mA  
Granularity: 1mA  
Accuracy: not applicable  
Range: 0 to 65,534 min  
Granularity: 2 min or better  
Accuracy: -0, +MaxError() FullChargeCapacity()  
/ AverageCurrent()  
Invalid Data Indication: 65,535 indicates that a  
charger should operate as a voltage source outside  
its maximum regulated current range.  
Invalid Data Indication: 65,535 indicates battery is  
not being discharged.  
ChargingVoltage() (0x15); [0x15]  
AverageTimeToFull() (0x13); [0x13]  
Descr ip tion : Returns the desired charging voltage in  
mV.  
Descr ip tion : Returns a one-minute rolling average of  
the predicted remaining time until the battery reaches  
full charge (minutes).  
P u r p ose: The ChargingVoltage() function sets the max-  
im u m ch a r ge volt a ge of t h e b a t t e r y. T h e  
ChargingVoltage() value should be used in combination  
with the ChargingCurrent() value to set the charger s  
operating point. Together, these functions permit the  
bq2060A to dynamically control the charging profile  
(current/voltage) of the battery. The charger may be op-  
erated as a constant-current source above its maximum  
P u r p ose: The AverageTimeToFull() function can be  
used by the SMBus Hosts power management system to  
aid in its policy. It may also be used to find out how long  
the system must be left on to achieve full charge.  
SMBu s P r otocol: Read Word  
Ou tp u t:  
r e gu la t e d volt a ge r a n ge b y r e t u r n in g  
ChargingVoltage() value of 65,535.  
a
Unsigned integer —remaining time in minutes.  
Units: minutes  
SMBu s P r otocol: Write Word  
Ou tp u t:  
Range: 0 to 65,534 minutes  
Granularity: 2 minutes or better  
Unsigned integer—charger output voltage in mV.  
Units: mV  
Accuracy: MaxError()  
AverageCurrent()  
FullChargeCapacity() /  
Range: 0 to 65,535mV  
Granularity: 1mV  
Invalid Data Indication: 65,535 indicates the bat-  
tery is not being charged.  
24  
bq2060A  
Accuracy: not applicable  
Alarm Bits  
OVE R _CH AR GE D_ALAR M bit is set whenever the  
bq2060A detects that the battery is being charged be-  
yond the Maximum Overcharge limit. This bit is cleared  
when the bq2060A detects that the battery is no longer  
being charged (i.e., the bq2060A detects discharge activ-  
ity or no activity for the digital filter timeout periods.  
The digital filter timeout period (seconds) equates to 10  
time the value shared in Digital Filter EE0x52.)  
Invalid Data Indication: 65,535 indicates that the  
charger should operate as a current source outside  
its maximum regulated voltage range.  
BatteryStatus()(0x16); [0x16]  
Descr ip tion : Returns the bq2060s status word (flags).  
Some of the BatteryStatus() flags (REMAINING_CA-  
PACITY_ALARM and REMAINING_TIME_ALARM)  
are calculated based on either current or power depend-  
in g on t h e set t in g of t h e Ba t t er yMode()s CAPAC-  
ITY_MODE bit. This is important because use of the  
wrong calculation mode may result in an inaccurate  
alarm.  
TERMINATE_CHARGE_ALARM bit is set when the  
bq2060A detects that one or more of the batterys charg-  
ing parameters are out of range (e.g., its voltage, cur-  
rent, or temperature is too high) or when the bq2060A  
det ect s a pr im a r y ch a r ge t er m in a t ion . Th is bit is  
cleared when the parameter falls back into the allow-  
able range, the termination condition ceases, or when  
the bq2060A detects that the battery is no longer being  
charged.  
P u r p ose: The BatteryStatus() function is used by the  
power-management system to get alarm and status bits,  
as well as error codes from the bq2060A. This is basi-  
cally the same information broadcast to both the SMBus  
H os t a n d t h e S m a r t B a t t e r y C h a r ge r b y t h e  
Ala r m Wa r n in g() fu n ct ion e xce p t t h a t t h e  
AlarmWarning() function sets the Error Code bits all  
high before sending the data.  
OVER_TEMP _ALARM bit is set when the bq2060A de-  
tects that the internal battery temperature is greater  
than or equal to the MaxT limit. This bit is cleared  
when the internal temperature falls back into the ac-  
ceptable range.  
TERMINATE_DISCHARGE_ALARM bit is set when  
the bq2060A detects Voltage() EDV0, the CVUV bit in  
Pack Status is set (Li-Ion cell voltage has dropped below  
the limit programmed in Cell Under / Over Voltage), or  
RemainingCapacity() = 0. The bit is cleared when Volt-  
SMBu s P r otocol: Read Word  
Ou tp u t:  
Unsigned integer—Status Register with alarm con-  
ditions bit mapped as follows:  
a ge ()  
> E D V0 or C VU V b it is cle a r e d , a n d  
RemainingCapacity() > 0.  
REMAINING_CAPACITY_ALARM bit is set when the  
bq2060A detects that RemainingCapacity() is less than  
that set by the RemainingCapacityAlarm() function.  
This bit is cleared when either the value set by the  
Rem a in in gCa pa cit yAla r m () fu n ct ion is lower t h a n  
RemainingCapacity() or when the RemainingCapacity()  
is increased by charging.  
Alarm Bits  
0x8000  
0x4000  
0x2000  
0x1000  
0x0800  
0x0400  
0x0200  
0x0100  
OVER_CHARGED_ALARM  
TERMINATE_CHARGE_ALARM  
reserved  
OVER_TEMP_ALARM  
TERMINATE_DISCHARGE_ALARM  
reserved  
REMAINING_CAPACITY_ALARM  
REMAINING_TIME_ALARM  
Status Bits  
R E MAI N I N G _T I ME _AL AR M bit is set wh en t h e  
bq2060A detects that the estimated remaining time at  
the present discharge rate is less than that set by the  
RemainingTimeAlarm() function. This bit is cleared when  
either the value set by the RemainingTimeAlarm() func-  
tion is lower than the AverageTimeToEmpty() or when the  
AverageTimeToEmpty() is increased by charging.  
0x0080  
0x0040  
0x0020  
0x0010  
INITIALIZED  
DISCHARGING  
FULLY_CHARGED  
FULLY_DISCHARGED  
Error Codes  
Status Bits  
0x0007  
0x0006  
0x0005  
0x0004  
0x0003  
0x0002  
0x0001  
0x0000  
Unknown Error  
INITIALIZED bit is set when the bq2060A is has de-  
tected a valid load of EEPROM. It is cleared when the  
bq2060A detects an improper EEPROM load.  
BadSize  
Overflow/Underflow  
AccessDenied  
UnsupportedCommand  
ReservedCommand  
Busy  
DISCH AR GING bit is set when the bq2060A deter-  
mines that the battery is not being charged. This bit is  
cleared when the bq2060A detects that the battery is be-  
ing charged.  
OK  
25  
bq2060A  
Granularity: 1 cycle  
F ULLY_CHARGED bit is set when the bq2060A de-  
tects a primary charge termination or an overcharged  
condition. It is cleared when RelativeStateOfCharge() ≤  
the programmed Fully Charged Clear % in EE 0x4c.  
Accuracy: absolute count  
DesignCapacity() (0x18); [0x18]  
F ULLY_DISCH AR GE D bit is set when Voltage() ≤  
EDV2 threshold, or RemainingCapacity() < Full Charge  
Descr ip tion : Returns the theoretical or nominal capac-  
ity of a new pack. The DesignCapacity() value is ex-  
pressed in either current (mAh at a C/5 discharge rate)  
or power, (10mWh at a P/5 discharge rate) depending on  
the setting of the BatteryMode()s CAPACITY_MODE  
bit.  
Capacity  
Relative StateOfCharge() is 20%.  
BatteryLow%. This bit is cleared when the  
*
Error Codes  
Description  
The bq2060A processed the function  
code without detecting any errors.  
OK  
P u r p ose: The DesignCapacity() function is used by the  
SMBus Hosts power management in conjunction with  
FullChargeCapacity() to determine battery wear. The  
power management system may present this informa-  
tion to the user and also adjust its power policy as a re-  
sult.  
The bq2060A is unable to process the  
function code at this time.  
Busy  
The bq2060A detected an attempt to  
read or write to a function code  
reserved by this version of the  
specification. The 2060 detected an  
attempt to access an unsupported  
optional manufacturer function code.  
Reserved  
SMBu s P r otocol: Read Word  
Ou tp u t:  
The bq2060A does not support this  
function code which is defined in this  
version of the specification.  
Unsupported  
Unsigned integer—ba ttery ca pa city in mAh or  
10mWh.  
The bq2060A detected an attempt to  
write to a read-only function code.  
AccessDenied  
Battery Mode  
CAPACITY_MODE CAPACITY_MODE  
The bq2060A detected a data overflow  
or underflow.  
Over/Underflow  
bit = 0  
bit = 1  
The bq2060A detected an attempt to  
write to a function code with an  
incorrect data block.  
Units  
Range  
Granularity  
Accuracy  
mAh  
10mWh  
0–65,535 10mWh  
BadSize  
0–65,535mAh  
Not applicable  
Not applicable  
The bq2060A detected an  
unidentifiable error.  
UnknownError  
DesignVoltage() (0x19); [0x19]  
CycleCount()(0x17); [0x17]  
Descr ip tion : Returns the theoretical voltage of a new  
pack (mV). The bq2060A sets DesignVoltage() to the  
value programmed in Design Voltage EE0x12–0x13.  
Descr ip tion : Returns the number of cycles the battery  
has experienced. The mAh value of each count is deter-  
mined by programming the Cycle Count Threshold value  
in EE 0x3c–0x3d. The bq2060A saves the cycle count  
value to Cycle Count EE 0x0e–0x0f after an update to  
CycleCount().  
P u r p ose: The DesignVoltage() function can be used to  
give additional information about a particular Smart  
Batterys expected terminal voltage.  
SMBu s P r otocol: Read Word  
P u r p ose: The CycleCount() function provides a means  
to determine the batterys wear. It may be used to give  
advanced warning that the battery is nearing its end of  
life.  
Ou tp u t:  
Unsigned integer—the batterys designed terminal  
voltage in mV  
SMBu s P r otocol: Read Word  
Units: mV  
Ou tp u t:  
Range: 0 to 65,535 mV  
Granularity: not applicable  
Accuracy: not applicable  
Unsigned integer—count of total charge removed  
from the battery over its life.  
Units: cycle  
Range: 0 to 65,534 cycles 65,535 indicates battery  
has experienced 65,535 or more cycles.  
26  
bq2060A  
SpecificationInfo() (0x1a); [0x1a]  
Field Bits Used  
Format  
Allowable Values  
5-bit binary 0–31 (corresponds to  
value date)  
4-bit binary 1–12 (corresponds to  
value month number)  
7-bit binary 0–127 (corresponds to  
value year biased by 1980)  
Day  
Month  
Year  
0...4  
5...8  
Descr ip tion : Returns the version number of the Smart  
Battery specification the battery pack supports, as well  
as voltage and current scaling information in a packed  
unsigned integer. Power scaling is the product of the  
volt a ge s ca lin g t im es t h e cu r r en t s ca lin g. Th e  
SpecificationInfo is packed in the following fashion:  
9...15  
(SpecID_H  
0x10) 0x100.  
0x10 + SpecID_L) + (VScale + IPScale  
SerialNumber() (0x1c); [0x1c]  
Descr ip tion : This function is used to return a serial  
n u m ber. Th is n u m ber, wh en com bin ed wit h t h e  
Ma n u fa ct u r er N a m e(), t h e DeviceN a m e(), a n d t h e  
ManufactureDate(), uniquely identifies the battery (un-  
signed int). The bq2060A sets SerialNumber() to the  
value programmed in Serial Number EE 0x18–0x19.  
The bq2060A VScale (voltage scaling) and IPScale (cur-  
rent scaling) should always be set to zero. The bq2060A  
sets SpecificationInfo() to the value programmed in  
Specification Information EE 0x14–0x15.  
P u r p ose: The SpecificationInfo() function is used by  
the SMBus Hosts power management system to deter-  
mine what information the Smart Battery can provide.  
P u r p ose: The SerialNumber() function can be used to  
identify a particular battery. This may be important in  
systems that are powered by multiple batteries where  
the system can log information about each battery that  
it encounters.  
SMBu s P r otocol: Read Word  
Ou tp u t:  
SMBu s P r otocol: Read Word  
Ou tp u t:  
Unsigned integer—packed specification number  
and scaling information.  
Unsigned integer  
Bits  
Field  
Used  
Format  
4-bit binary  
value  
4-bit binary  
value  
4-bit binary 0 (multiplies voltage  
value by 10^ VScale)  
4-bit binary 0 (multiplies current  
value by 10 ^ IPScale)  
Allowable Values  
ManufacturerName() (0x20); [0x20-0x25]  
SpecID_L  
0...3  
0–15  
Descr ip tion : This function returns a character array  
containing the batterys manufacturer s name. For ex-  
ample, MyBattCo would identify the Smart Batterys  
m a n u fa ct u r e r a s M yB a t t C o. T h e b q 2 0 6 0 A s e t s  
ManufacturerName() to the value programmed in Man-  
ufacturer Name EE 0x20–0x2a.  
SpecID_H  
VScale  
4...7  
8...11  
12...15  
0–15  
IPScale  
P u r p ose: The ManufacturerName() function returns  
the name of the Smart Batterys manufacturer. The  
manufacturer s name can be displayed by the SMBus  
Hosts power management system display as both an  
identifier and as an advertisement for the manufac-  
turer. The name is also useful as part of the informa-  
tion required to uniquely identify a battery.  
ManufactureDate() (0x1b); [0x1b]  
Descr ip tion : This function returns the date the cell  
pack was manufactured in a packed integer. The date is  
packed in the following fashion: (year-1980)  
512 +  
month 32 + day. The bq2060A sets ManufactureDate()  
t o t h e va lu e pr ogr a m m ed in Ma n u fa ctu r e Da te E E  
0x16–0x17.  
SMBu s P r otocol: Read Block  
Ou tp u t:  
String—character string with maximum length of  
11 characters (11+length byte).  
P u r p ose: The ManufactureDate() provides the system  
with information that can be used to uniquely identify a  
particular battery pack when used in conjunction with  
SerialNumber().  
DeviceName() (0x21); [0x28-0x2b]  
Descr ip tion : This function returns a character string  
t h a t con t a in s t h e ba t t er ys n a m e. F or exa m ple, a  
DeviceNa me() of BQ2060A would indica te tha t the  
ba t t er y is a m od el BQ2060A. Th e bq2060A s et s  
DeviceName() to the value programmed in Device Name  
EE 0x30–0x37.  
SMBu s P r otocol: Read Word  
Ou tp u t:  
Unsigned integer—packed date of manufacture.  
27  
bq2060A  
P u r p ose: The DeviceName() function returns the bat-  
terys name for identification purposes.  
Ou tp u t:  
Block data—data that reflects EEPROM program-  
SMBu s P r otocol: Read Block  
ming as assigned by the manufacturer with maxi-  
mum length of 7 characters (7+length byte).  
Ou tp u t:  
String—character string with maximum length of 7  
characters (7+length byte).  
Pack Status and Pack Configuration (0x2f);  
[0x2f]  
DeviceChemistry() (0x22); [0x30-0x32]  
This function returns the Pack Status and Pack Config-  
uration registers. The Pack Status register contains a  
number of status bits relating to bq2060A operation.  
The Pack Status register is the least significant byte of  
the word. The Pack Configuration register is the most  
significant byte of the word. The byte reflects how the  
bq2060A is configured as defined by the value pro-  
grammed in Pack Configuration in EE 0x3f.  
Descr ip tion : This function returns a character string  
that contains the batterys chemistry. For example, if  
t h e DeviceCh em ist r y() fu n ct ion r et u r n s NiMH , t h e  
battery pack would contain nickel metal hydride cells.  
Th e bq2060A set s DeviceCh em ist r y() t o t h e va lu e  
programmed in Device Chemistry EE 0x40–0x44.  
P u r p ose: The DeviceChemistry() function gives cell  
chemistry information for use by charging systems. The  
bq2060A does not use DeviceChemisty() values for inter-  
nal charge control or fuel gauging.  
The Pack Status Register consists of the following bits:  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
SMBu s P r otocol: Read Block  
OCE  
EDV2 EINT VDQ COK DOK CVOV CVUV  
Ou tp u t:  
OCE  
String—character string with maximum length of 4  
characters (4+length byte).  
The OCE bit indicates that offset cancellation is en-  
abled. The bq2060A sets this bit after VFC offset cali-  
bration is complete.  
Note: The following is a partial list of chemistries and  
their expected abbreviations. These abbreviations are  
NOT case sensitive.  
0
1
Offset calibration is not enabled  
Offset calibration is enabled  
Lead acid  
PbAc  
LION  
NiCd  
NiMH  
NiZn  
RAM  
ZnAr  
Lithium ion  
EDV2  
Nickel cadmium  
Nickel metal hydride  
Nickel zinc  
The EDV2 bit indicates that Voltage() is less than the  
EDV2 threshold.  
0
1
Voltage() > EDV2 threshold (discharging)  
Rechargeable alkaline-manganese  
Zinc air  
Voltage() EDV2 threshold  
EINT  
ManufacturerData() (0x23); [0x38–0x3a]  
The EINT bit indicates that the VFC has detected a  
charge or discharge pulse.  
Descr ip tion : This function allows access to the manu-  
fa ct u r er da t a con t a in ed in t h e ba t t er y (da t a ). Th e  
bq2060A stores seven critical operating parameters in  
this data area.  
0
No charge/discharge activity detected  
Charge/discharge activity detected.  
1
P u r p ose: The ManufacturerData() function may be  
used to access the manufacturer s data area. The data  
fields of this command reflect the programming of five  
critical EEPROM locations and can be used to facilitate  
evaluation bq2060A under various programming sets.  
The ManufacturerData() function returns the following  
in for m a t ion in or der : Con tr ol Mod e, Digita l F ilter,  
Self-Discharge Rate, Battery Low %, Near Full, and the  
pending EDV threshold voltage (low byte and high byte.)  
VDQ  
The VDQ bit indicates if the present discharge cycle is  
valid for an FCC update.  
0
1
Discharge cycle is not valid  
Discharge cycle is valid  
SMBu s P r otocol: Read Block  
28  
bq2060A  
EEPROM Programming  
COK  
The COK bit indicates the status of the CFC pin of the  
bq2060A.  
The following sections describes the function of each  
EEPROM location and how the data is to be stored.  
0
1
CFC pin is low  
CFC pin is high  
Fundamental Parameters  
DOK  
Sense Resistor Value  
The DOK bit indicates the status of the DFC pin of the  
bq2060A.  
Two factors are used to scale the current related mea-  
surements. The 16-bit ADC Sense Resistor Gain value  
in EE 0x68–0x69 scales Current() to mA. Adjusting  
ADC Sense Resistor Gain from its nominal value pro-  
vides a method to calibrate the current readings for sys-  
tem errors and the sense resistor value (RS) . The nomi-  
nal value is set by  
0
1
DFC pin is low  
DFC pin is high  
CVOV  
The CVOV bit indicates that a secondary Li-Ion protec-  
tion limit has been exceeded. It is set if any individual  
cell exceeds the programmed high voltage limit, if the  
pack voltage exceeds the overvoltage threshold, or if an  
over temperature condition occurs. The bit is not latched  
and merely reflects the present overvoltage status.  
625  
(4)  
(Rs)  
ADC Sense Resistor Gain =  
The 16-bit VFC Sense Resistor Gain in EE 0x6a–0x6b  
scales each VFC interrupt to mAh. VFC Sense Resistor  
Gain is based on the resistance of the series sense resis-  
tor. The following formula computes a nominal or start-  
ing value for VFC Sense Resistor Gain from the sense  
resistor value.  
0
1
No secondary protection limits exceeded  
A secondary protection limit exceeded  
CVUV  
The CVUV bit indicates if any individual cell falls below  
the programmed low-voltage limit. The bit applies to  
lithium batteries only. The bit is not latched and merely  
reflects the present undervoltage status.  
409.6  
(Rs)  
(5)  
VFC Sense Resistor Gain =  
Sense resistor values are limited to the range of 0.00916  
0
1
All series cells are above the low-voltage limit  
A series cell is below the low voltage limit  
to 0.100.  
Digital Filter  
VCELL4–VCELL1 (0x3c–0x3f); [0x3c–0x3f]  
The digital filter threshold, VDF (µV), is set by the  
value stored in Digital Filter EE 0x52.  
These functions return the calculated voltages in mV at  
the VCELL4 through VCELL1 inputs.  
2250  
VDF  
(6)  
Digital Filter =  
EEPROM  
Cell Characteristics  
General  
Battery Pack Capacity and Voltage  
The bq2060A accesses the external EEPROM during a  
full reset and when storing historical data. During an  
EEPROM access, the VOUT pin becomes active and the  
bq2060A uses the ESCL and ESDA pins to communicate  
with the EEPROM. The EEPROM stores basic configu-  
r a t ion in for m a t ion for u se by t h e bq2060A. Th e  
EEPROM must be programmed correctly for proper  
bq2060A operation.  
Pack capacity in mAh units is stored in Pack Capacity  
EE 0x3a–0x3b. In mAh mode, the bq2060A copies Pack  
Ca pa city t o Design Ca pa cit y(). In m Wh m ode, t h e  
bq2060A multiplies Pack Capacity by Design Voltage EE  
0x12–0x13 t o ca lcu la t e Design Ca pa cit y() sca led t o  
10mWh. Design Voltage is stored in mV.  
The initial value for Last Measured Discharge in mAh is  
stored in EE 0x38–0x39. Last Measured Discharge is  
modified over the course of pack usage to reflect cell  
aging under the particular use conditions. The bq2060A  
u pda t es La st Mea su r ed Disch a r ge in m Ah a ft er a  
ca p a cit y le a r n in g cycle . T h e b q 2 0 6 0 A u s e s t h e  
L a s t M ea s u r ed D i s ch a r ge va lu e t o ca lcu la t e  
FullChargeCapacity() in mAh or 10mWh mode.  
Memory Map  
Table 9 shows the memory map for the EEPROM. It  
also contains example data for a 10 series NiMH and a  
3s3p Li-Ion battery pack with a 0.05sense resistor.  
29  
bq2060A  
Table 9. EEPROM Memory Map  
EEPROM  
Address  
NiMH  
Data  
Li-Ion  
Example  
Data  
Name  
Chemistry  
Example  
MSB LSB  
MSB LSB  
0x00 0x01  
0x02 0x03  
Check Byte 1  
Li-Ion, Nickel  
15487  
3c  
00  
01  
7f  
0a  
5e  
15487  
10 minutes  
400mAh  
3c  
00  
01  
7f  
0a  
90  
Remaining Time Alarm  
Li-Ion, Nickel 10 minutes  
0x04 0x05 Remaining Capacity Alarm Li-Ion, Nickel  
350mAh  
EDV A0 Impedance Age  
0x06  
0x07  
Li-Ion, Nickel  
-
0
-
-
00  
00  
0
3
-
-
00  
03  
Factor  
EDV TC Cold Impedance  
Factor  
0
0x08  
Misc Options  
Safety Overtemperature  
Charging Voltage  
Reserved  
-
-
0
0
-
00  
00  
50  
80  
00  
00  
e0  
31  
0
-
00  
00  
38  
80  
00  
00  
30  
31  
59  
01  
b8  
0x09  
-
0
12600mV  
128  
-
0x0a 0x0b  
0x0c 0x0d  
0x0e 0x0f  
0x10 0x11  
0x12 0x13  
0x14 0x15  
0x16 0x17  
0x18 0x19  
0x1a 0x1b  
Li-Ion, Nickel 18000mV  
46  
00  
00  
00  
2e  
00  
31  
00  
00  
00  
2a  
00  
26  
00  
0b  
-
128  
0
Cycle Count  
Li-Ion, Nickel  
-
0
Reserved  
0
0
Design Voltage  
Li-Ion, Nickel 12000mV  
v1.1/PEC  
10800mV  
v1.1/PEC  
Specification Information Li-Ion, Nickel  
Manufacture Date  
Serial Number  
Li-Ion, Nickel 2/25/99=9817 26  
59 2/25/99=9817  
Li-Ion, Nickel  
Li-Ion, Nickel  
1
00  
0f  
01  
a0  
1
Fast-Charging Current  
4000mA  
3000mA  
Maintenance Charging  
Current  
0x1c 0x1d  
Li-Ion, Nickel  
200mA  
00  
c8  
0mA  
00  
00  
0x1e 0x1f  
0x20  
Pre-Charge Current  
Li-Ion, Nickel  
800mA  
03  
-
20  
09  
42  
45  
4e  
43  
48  
4d  
41  
52  
51  
00  
00  
00  
38  
07  
42  
51  
32  
30  
100mA  
00  
-
64  
09  
42  
45  
4e  
43  
48  
4d  
41  
52  
51  
00  
00  
00  
00  
07  
42  
51  
32  
30  
Manufacturer Name Length Li-Ion, Nickel  
9
9
0x21  
Character 1  
Character 2  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
-
B
-
B
-
0x22  
E
-
E
-
0x23  
Character 3  
N
-
N
-
0x24  
Character 4  
C
-
C
-
0x25  
Character 5  
H
-
H
-
0x26  
Character 6  
M
-
M
-
0x27  
Character 7  
A
-
A
-
0x28  
Character 8  
R
-
R
-
0x29  
Character 9  
Q
-
Q
-
0x2a  
Character 10  
Light Discharge Current  
Reserved  
0
-
0
-
0x2b  
0
-
0
-
0x2c 0x2d  
0x2e 0x2f  
0x30  
0
00  
ff  
-
0
00  
ff  
-
Maximum Overcharge  
Device Name Length  
Character 1  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
200mAh  
256mAh  
7
B
Q
2
7
B
Q
2
0x31  
-
-
0x32  
Character 2  
-
-
0x33  
Character 3  
-
-
0x34  
Character 4  
0
-
0
-
(Continued on next page)  
Note:  
Reserved locations must be set as shown. Locations marked with an * are calibration values that can be  
adjusted for maximum accuracy. For these locations the table shows the appropriate default or initial  
30  
bq2060A  
Table 9. EEPROM Memory Map (Continued)  
EEPROM  
Address  
NiMH  
Example  
Data  
Li-Ion  
Example  
Data  
Name  
Chemistry  
MSB LSB  
MSB LSB  
0x35  
0x36  
0x37  
Character 5  
Character 6  
Character 7  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
6
0
-
-
36  
30  
41  
a0  
a0  
0c  
00  
e8  
04  
4e  
49  
4d  
48  
c7  
70  
00  
20  
00  
-
6
-
-
36  
30  
41  
d2  
d2  
58  
00  
f6  
0
A
-
A
-
0x38 0x39 Last Measured Discharge Li-Ion, Nickel 4000mAh  
0f  
0f  
fe  
-
4050mAh  
0f  
0f  
f3  
-
0x3a 0x3b  
0x3c 0x3d  
0x3e  
Pack Capacity  
Cycle Count Threshold  
Reserved  
Li-Ion, Nickel 4000mAh  
Li-Ion, Nickel 500mAh  
4050mAh  
3240mAh  
-
0
232  
4
0
0x3f  
Pack Configuration  
Device Chemistry Length  
Character 1  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
-
246  
-
0x40  
-
4
-
04  
4c  
49  
4f  
4e  
cf  
0x41  
N
-
L
-
0x42  
Character 2  
I
-
I
-
0x43  
Character 3  
M
H
-
O
-
0x44  
Character 4  
-
N
50C, 4.6  
6000mA  
800mV  
512mA  
-
-
0x45  
MaxT DeltaT  
Li-Ion, Nickel 50C, 3.0  
Li-Ion, Nickel 6000mA  
-
-
0x46 0x47  
0x48  
Overload Current  
Overvoltage Margin  
Overcurrent Margin  
Reserved  
17  
-
17  
-
70  
32  
20  
-
Li-Ion, Nickel  
Li-Ion, Nickel  
Nickel  
0
512mA  
0
0x49  
-
-
-
-
0x4a  
Cell Under/ Over Voltage  
Li-Ion  
-
-
118  
-
76  
9c  
a1  
ff  
0x4b  
0x4c  
0x4d  
Fast Charge Termination % Li-Ion, Nickel  
96%  
90%  
97%  
-
-
a0  
a6  
el  
100%  
95%  
100%  
200mA  
-
-
Fully Charged Clear %  
Charge Efficiency  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion  
-
-
-
-
Current Taper Threshold  
DeltaT Time  
-
-
-
12  
-
0x4e  
0x4f  
Nickel  
180s  
240s  
-
-
07  
04  
-
-
Holdoff Time  
Nickel  
-
-
-
-
Current Taper Qual Voltage  
Li-Ion  
-
128mV  
7
-
40  
07  
04  
2d  
05  
12  
64  
00  
00  
00  
0x50  
Manufacturers Data Length Li-Ion, Nickel  
7
-
07  
04  
2d  
cb  
12  
64  
00  
00  
00  
-
0x51  
Control Mode  
Digital Filter  
Self-Discharge Rate  
Battery Low %  
Near Full  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
4
4
0x52  
50µV  
1%  
7%  
-
-
-
-
-
-
-
50µV  
0.21%  
7%  
-
-
-
-
-
-
-
0x53  
0x54  
0x55  
Li-Ion, Nickel 200mAh  
200mAh  
0
0x56 0x57  
0x58 0x59  
0x5a 0x5b  
Reserved  
-
-
-
0
0
0
Reserved  
0
Reserved  
0
(Continued on next page)  
Note:  
Reserved locations must be set as shown. Locations marked with an * are calibration values that can be  
adjusted for maximum accuracy. For these locations the table shows the appropriate default or initial  
setting.  
31  
bq2060A  
Table 9. EEPROM Memory Map (Continued)  
EEPROM  
Address  
NiMH  
Example  
Data  
Li-Ion  
Example  
Data  
Description  
Chemistry  
MSB LSB  
MSB LSB  
0x5c 0x5d  
0x5e 0x5f  
0x60  
Reserved  
VFC Offset*  
-
0
0
0
0
0
-
00  
00  
-
00  
00  
00  
00  
00  
-
0
0
0
0
0
0
00  
00  
-
00  
00  
00  
00  
00  
00  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion  
VFC Offset*  
0x61  
Temperature Offset*  
ADC Offset*  
-
-
0x62  
-
-
Cell 2 Calibration Factor*  
-
-
0x63  
0x64  
Efficiency Temperature  
Compensation  
Nickel  
Li-Ion  
Nickel  
0.25%  
-
-
-
-
20  
-
-
0
-
-
-
-
-
00  
-
Cell 3 Calibration Factor*  
Efficiency Drop Off  
Percentage  
96%  
a0  
Cell 4 Calibration Factor*  
Efficiency Reduction Rate  
ADC Voltage Gain*  
Li-Ion  
Nickel  
-
-
-
0
-
00  
-
0x65  
1%  
-
50  
20  
d4  
00  
14  
2c  
44  
1c  
10  
00  
-
-
0x66 0x67  
Li-Ion, Nickel  
16 : 1  
0.05Ω  
0.05Ω  
4e  
30  
20  
d3  
cf  
16 : 1  
4e  
30  
20  
d6  
d6  
d4  
28  
2d  
11  
20  
d4  
00  
ca  
02  
40  
19  
1e  
7b  
0x68 0x69 ADC Sense Resistor Gain* Li-Ion, Nickel  
0x6a 0x6b VFC Sense Resistor Gain* Li-Ion, Nickel  
0.05Ω  
0.05Ω  
0x6c 0x6d  
0x6e 0x6f  
0x70 0x71  
0x72 0x73  
0x74 0x75  
0x76 0x77  
VOC 25%  
VOC 50%  
Li-Ion, Nickel 11500mV  
Li-Ion, Nickel 12500mV  
Li-Ion, Nickel 13500mV  
10550mV  
10750mV  
11200mV  
10265mV  
11550  
VOC 75%  
cb  
25  
27  
00  
EDVF/ EDV0  
EMF/ EDV1  
EDV T0 Factor  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
9500mV  
10000mV  
0
4475  
C1 = 0  
C0 = 235  
0x78 0x79 EDV C1/ C0 Factor/ EDV2 Li-Ion, Nickel 10500mV  
29  
04  
00  
eb  
0x7a 0x7b  
0x7c 0x7d  
0x7e 0x7f  
EDV R0 Factor  
EDV R1 Factor  
Check Byte 2  
Li-Ion, Nickel  
Li-Ion, Nickel  
Li-Ion, Nickel  
0
0
00  
-
00  
00  
5a  
5350  
250  
14  
00  
a5  
e6  
fa  
42330  
a5  
42330  
5a  
Note:  
Reserved locations must be set as shown. Locations marked with an * are calibration values that can be adjusted  
for maximum accuracy. For these locations the table shows the appropriate default or initial setting.  
32  
bq2060A  
Residual Capacity Factor C1 =RESIDUAL% * 2.56  
EDV Thresholds and Near Full Percentage  
RESIDUAL % is the desired battery capacity remaining  
at EDV0 (RM = 0).  
The bq2060A uses three pack voltage thresholds to pro-  
vide voltage-based warnings of low battery capacity.  
The bq2060A uses the values stored in EEPROM for the  
EDV0, EDV1, and EDV2 values or calculates the three  
thresholds from a base value and the temperature, ca-  
pacity, and rate adjustment factors stored in EEPROM.  
If EDV compensation is disabled then EDV0, EDV1,  
andEDV2 are stored directly in mV in EE 0x72–0x73,  
EE 0x74–0x75, and EE 0x78–0x79, respectively.  
n
T is the current temperature in °K  
R0 FTZ represents the resistance of the battery as a  
function of temperature and capacity.  
F
TZ = f ( R1 , T0, T, C + C1, TC)  
(11)  
n
n
R0 is the first order rate dependency factor stored in  
EDV R0 Factor EE 0x7a–0x7b.  
For capacity correction at EDV2, Battery Low % EE  
0 x5 4 ca n b e s e t a t  
a d e s ir e d s t a t e -of-ch a r ge ,  
STATEOFCHARGE%, in the range of 5 to 20%. Typical  
values for STATEOFCHARGE% are 7–12% representing  
7 –12% capacity.  
T
is the current temperature; C is the battery  
capacity relating to EDV0, EDV1, and EDV2; and C1  
is the desired residual battery capacity remaining at  
EDV0 (RM = 0).  
(7)  
Battery Low % = STATEOFCHARGE% 2.56  
The bq2060A updates FCC if a qualified discharge oc-  
curs from a near-full threshold to EDV2. The desired  
near-full threshold window, NFW (mAh), is programmed  
in Near Full in EE 0x55.  
n
R1 adjusts the variation of impedance with battery  
capacity. R1 is programmed in EDV R1 Rate Factor  
EE 0x7c–0x7d.  
n
T0 adjusts the variation of impedance with battery  
temperature. T0 is programmed in EDV T0 Rate  
Factor EE 0x76–0x77.  
NFW  
2
(8)  
Near Full =  
EDV Discharge Rate and Temperature Com-  
pensation  
n
TC adjusts the variation of impedance for cold  
temperature (T < 23°C). TC is programmed in EDV  
TC EE 0x07.  
If EDV compensation is enabled, the bq2060A calculates  
battery voltage to determine EDV0, EDV1, and EDV2  
thresholds as a function of battery capacity, tempera-  
ture, and discharge load. (See Figures 7 and 8.) The gen-  
eral equation for EDV0, EDV1, and EDV2 calculation is  
FCY is the factor that adjusts for changing cell imped-  
ance as the battery pack is cycled:  
F
CY = f(A0, CycleCount())  
(12)  
where A0 is the EDV aging factor that is stored in EDV  
A0 Factor EE 0x06. It should be set to 0 for most appli-  
cations.  
(9)  
EDV0,1,2 = EMF FBL - | ILOAD  
where  
|
R0 FTZ FCY  
Typical values for the EDV compensation factors for a  
Li-Ion 3s3p 18650 pack are  
n
EMF is a no-load battery voltage that is higher than  
the highest EDV threshold that is computed. EMF is  
programmed in mV in EMF/ EDV1 EE 0x74–0x75.  
EMF = 11550  
T0 = 4475  
C0 = 235  
C1 = 0  
n
ILOAD is the current discharge load.  
FBL is the factor that adjusts the EDV voltage for bat-  
tery capacity and temperature to match the no-load  
characteristics of the battery.  
R0 = 5350  
R1 = 250  
A0 = 0  
FBL = f ( C0, C + C1, T )  
(10)  
where C (0%, 3%, or Battery Low % for EDV0, EDV1,  
and EDV2, respectively) and C0 are the capacity related  
EDV adjustment factors. C0 is programmed in the  
lower 11 bits of EDV C0 Factor/ EDV2 EE 0x78–79.  
TC = 3  
The graphs in Figures 7 and 8 show the calculated  
EDV0, EDV1, and EDV2 thresholds versus capacity us-  
in g t h e t ypica l com pen sa t ion va lu es for differ en t  
temperatures and loads for a Li-Ion 3s3p 18650 pack.  
The compensation values vary widely for different cell  
The Residual Capacity Factor is stored in the upper 5  
bits of EE 0x78–0x79.  
33  
bq2060A  
types and manufacturers and must be matched exactly  
to the unique characteristics for optimal performance.  
(15)  
Charge Efficiency = 10 (EFF% - 74.5)  
74.5 EFF% ≤ 100  
where  
Overload Current Threshold  
The Overload Current threshold is a 16-bit value stored  
in EE 0x46-0x47 in mA units.  
ERR% is encoded in Efficiency Reduction Rate EE 0x65  
according to the following equation:  
ERR%  
(16)  
0.0125  
Midrange Capacity Corrections  
Efficiency Reduction Rate =  
Three voltage-based thresholds, VOC25 EE 0x6c–0x6d,  
VOC50 EE 0x6e–0x6f, and VOC75 EE 0x70–0x71, are  
u s e d t o t e s t t h e a ccu r a cy of t h e R M b a s e d on  
open-circuit pack voltages. These thresholds are stored  
in the EEPROM in 2s complement of voltage in mV.  
The values represent the open-circuit battery voltage at  
which the battery capacity should correspond to the as-  
sociated state of charge for each threshold.  
where  
0 ERR% 3.19  
The Efficiency Drop Off Percentage is stored in 2s com-  
plement of percent.  
The bq2060A also adjusts the efficiency factors for tem-  
perature. TEFF% defines the percent efficiency reduc-  
tion per degree C over 25°C. TEFF% is encoded in Effi-  
ciency Temperature Compensation EE 0x63 according to  
the following equation  
Self-Discharge Rate  
The nominal self-discharge rate, %PERDAY (% per day),  
is programmed in an 8-bit value Self-Discharge Rate EE  
0x53 by the following relation:  
(17)  
TEFF%*1.6  
Efficiency Temperature Compensation =  
0.0125  
æ
ö
÷
ø
52.73  
(13)  
ç
Self -Discharge Rate=256 -  
where  
è
%PERDAY  
0 TEFF% 1.99  
Light Load Current  
The bq2060A applies all four charge-compensation fac-  
tors when the CHEM bit in Pack Configuration is not  
set denoting a nickel pack.  
The amount of light load current in mA, ILEAK, used  
for compensation is stored in Light Discharge Current in  
EE 0x2b as follows:  
(18)  
Effective Charge Efficiency Reduction (nickel only)  
= ERR%[RSOC() – EFF%] + TEFF%[T(°C) – 25]  
where  
ILEAK * 1024  
(14)  
Light Discharge Current =  
45  
ILEAK is between 0.044 and 11.2mA.  
Charge Efficiency  
RSOC() EFF% and T ≥ 25°C  
The bq2060A uses four charge-efficiency factors to com-  
pensate for charge acceptance. These factors are coded  
in Charge Efficiency, Efficiency Reduction Rate, Effi-  
ciency Drop Off Percentage, and Efficiency Temperature  
Compensation.  
If CHEM is set denoting a Li-Ion pack, the bq2060A ap-  
plies only the value coded in High Charge Efficiency and  
makes no other adjustments for charge acceptance.  
Charge Limits and Termination  
Techniques  
The bq2060A applies the efficiency factor, EFF%, when  
RelativeStateOfCharge() is less than the value coded in  
E fficien cy Dr op Off P er cen t a ge E E 0x64. Wh en  
RelativeStateOfCharge() is greater than or equal to the  
value coded in Efficiency Drop Off Percentage, EFF%  
and ERR% determine the charge efficiency rate. ERR%  
defines the percent efficiency reduction per percentage  
point of RelativeStateOfCharge() over Efficiency Drop  
Off P er cen ta ge. E F F % is en coded in H igh Ch a r ge  
Efficiency EE 0x4d according to the following equation:  
Charging Voltage  
The 16-bit value, Charging Voltage EE 0x0a-0x0b pro-  
grams the ChargingVoltage() value broadcast to a Smart  
Charger. It is also sets the base value for determining  
overvoltage conditions during charging and voltage com-  
pliance during a constant-voltage charging methodology.  
It is stored in mV.  
34  
bq2060A  
Battery Low % =7%,Temperature = 35 C  
Battery Low %= 7%, Load = 500mA  
11500  
11500  
11000  
EDV2  
11000  
EDV2  
10500  
EDV1  
10500  
10000  
EDV1  
10000  
9500  
9000  
8500  
8000  
7500  
9500  
9000  
8500  
8000  
7500  
35C/500mA  
45C/500mA  
20C/500mA  
35C/1A  
35C/2A  
EDV0  
7000  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
% Capacity  
% Capacity  
Figure 8. EDV Calculations vs. Capacity  
for Various Loads  
Figure 7. EDV Calculations vs. Capacity  
for Various Temperatures  
Fast Charging Current, Maintenance Charging Current,  
and Pre-Charge Current are stored in mA.  
Overvoltage  
The 8-bit value, Overvoltage Margin EE 0x48, sets the  
limit over ChargingVoltage() that is to be considered as Charge Suspension  
an overvoltage charge-suspension condition. The volt-  
During charge, the bq2060A compares the current to the  
age in mV above the ChargingVoltage(), VOVM, that  
s h ou ld t r igge r ch a r ge s u s p e n d is e n cod e d in  
Overvoltage Margin as follows:  
ChargingCurrent() plus the value IOIM. If the pack is  
charged at a current above the ChargingCurrent() plus  
IOIM, the bq2060A sets ChargingCurrent() to zero to  
stop charging. IOIM is programmed in the EEPROM  
value, Overcurrent Margin, encoded as follows:  
a
VOVM  
16  
(19)  
Overvoltage Margin =  
VOVM is between 0 and 4080mV.  
IOIM  
16  
(20)  
Overcurrent Margin =  
Charging Current  
Overcurrent Margin EE 0x49 may be used to program  
ChargingCurrent() values are either broadcast to a  
Level 2 Sm a r t Ba t t er y Ch a r ger or r ea d fr om t h e  
bq2060A by a Level 3 Smart Battery Charger. The  
bq2060A sets the value of ChargingCurrent(), depending  
on the charge requirements and charge conditions of the  
pack.  
IOIM values of 0 to 4080mA in 16mA steps.  
The desired temperature threshold for charge suspen-  
sion, MAXTEMP, may be programmed between 45°C  
and 69°C in 1.6°C steps. Charge-suspension tempera-  
ture is increased by 16° above the programmed value of  
bit 5 in Miscellaneous Option EE 0x08 is set. MaxT  
DeltaT EE 0x45 (most significant nibble) is stored in a  
4-bit value as shown:  
Wh en fa s t ch a r ge is a llowed , t h e bq2060A s et s  
ChargingCurrent() to the rate programmed in Fa st  
Charging Current EE 0x1a-0x1b.  
é 69 -MAXTEMP ù  
MaxT =  
(21)  
Wh en fa s t ch a r ge t er m in a t es , t h e bq2060A s et s  
ChargingCurrent() to zero and then to the Maintenance  
Charging Current EE 0x1c-0x1d when the termination  
condition ceases.  
ê
ú
û
ë
1.6  
The bq2060A suspends fast charge when fast charge  
continues past full by the amount programmed in Maxi-  
mum Overcharge EE 0x2e-0x2f. Maximum Overcharge  
is programmed in 2s complement form of charge in  
mAh.  
When Voltage() is less than EDV0, the bq2060A sets  
ChargingCurrent() to Pre-charge Current EE 0x1e-0x1f.  
Typically this rate is larger than the maintenance rate  
to charge a deeply depleted pack up to the point where it  
may be fast charged.  
35  
bq2060A  
Hold-off  
Time  
Hold-off  
Time (s)  
Hold-off  
Time  
Hold-off  
Time (s)  
FULLY_CHARGED Bit Clear Threshold  
Th e bq2060A clea r s t h e F ULLY_CH ARGE D bit in  
BatteryStatus() when RelativeStateOfCharge() reaches  
t h e va lu e, F u lly Ch a r ged Clea r % E E 0x4c. F u lly  
Charged Clear % is an 8-bit value and is stored as a 2s  
complement of percent.  
00  
01  
02  
03  
04  
05  
06  
07  
320  
300  
280  
260  
240  
220  
200  
180  
08  
09  
0a  
0b  
0c  
0d  
0e  
0f  
160  
140  
120  
100  
80  
60  
40  
20  
Fast Charge Termination Percentage  
The bq2060A sets RM to a percentage of FCC on charge  
termination if the CSYNC bit is set in the Pack Configu-  
ration register. The percentage of FCC is stored in Fast  
Charge Termination % in EE 0x4b. The value is stored  
in 2s complement of percent.  
Current Taper Termination Characteristics  
Two factors in the EEPROM set the current taper termi-  
nation for Li-Ion battery packs. The two coded locations  
are Current Taper Qual Voltage EE 0x4f and Current  
Taper Threshold EE 0x4e. Current taper termination oc-  
curs during charging when the pack voltage is above the  
charging voltage minus CELLV (mV) and the charging  
current is below the threshold coded in Current Taper  
Threshold for at least 80s.  
Cycle Count Threshold  
Cycle Count Threshold 0x3c–0x3d sets the number of  
mAh that must be removed from the battery to incre-  
ment CycleCount(). Cycle Count Threshold is a 16-bit  
value stored in 2s complement of charge in mAh.  
T/Dt Rate Programming  
The T portion of the T/t rate is programmed in  
DeltaT, the low nibble of MaxT DeltaT EE 0x45 (least  
significant nibble). The t portion is programmed in  
DeltaT Time EE 0x4e.  
CELLV  
2
(23)  
Current Taper Qual Voltage =  
Current Taper Threshold =  
RS* i  
(24)  
[
]
DeltaT*2 +16 / 10 é° Cù  
0.5625  
(22)  
T/t =  
ê
ú
ë
]
s
û
[
320 - DeltaT Time*20  
where i = the desired current termination threshold in  
mA, and RS = VFC sense resistor in ohms.  
DeltaT  
D(°C)  
DeltaT_Time  
t (s)  
320  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0a  
0b  
0c  
0d  
0e  
0f  
Pack Options  
Pack Configuration  
Pack Configuration EE 0x3f contains bit-programmable  
features.  
b3  
b2  
b1  
b0  
b7  
b6  
b5  
b4  
SEAL  
DMODE  
CSYNC CEDV  
VCOR  
CHEM LCC1 LCC0  
DMODE  
The DMODE bit determines whether the LED outputs  
will in d ica t e Abs olu t eS t a t eOfCh a r ge() or  
RelativeStateOfCharge()  
60  
40  
20  
0
1
LEDs reflect AbsoluteStateOfCharge()  
LEDs reflect RelativeStateOfCharge()  
DT/Dt Hold-off Timer Programming  
The hold-off timer is programmed in the lower nibble of  
Holdoff Time EE 0x4f. The hold-off time is 320s minus  
20 times the Holdoff Time value.  
36  
bq2060A  
SEAL  
LCC0 and LCC1  
The LCC0 and LCC1 bits configure the cell voltage in-  
puts (VCELL1–4).  
The SEAL bit determines the SMBus access state of the  
bq2060A on reset  
0
SMBus commands (0x00–0xff) are accessible for  
both read and write.  
No. of Series  
Cells  
Cell Voltage  
Inputs  
LCC1 LCC0  
NA  
00  
VCELL4 = Cell Stack  
VCELL1 = Cell 1  
VCELL2 = Cell 2  
VCELL1 = Cell 1  
VCELL2 = Cell 2  
VCELL3 = Cell 3  
VCELL1 = Cell 1  
VCELL2 = Cell 2  
VCELL3 = Cell 3  
VCELL4 = Cell 4  
1
S MBu s r ea d a cces s is lim it ed t o com m a n d s  
(0x05–0x1c) and (0x20–0x23). SMBus read/write  
access is limited to commands (0x00–0x04), (0x2f),  
and (0x3c–0x3f).  
2
01  
3
4
10  
CSYNC  
In usual operation of the bq2060A, the CSYNC bit is set  
so that the coulomb counter is adjusted when a fast  
charge termination is detected. In some applications, es-  
pecially those where an externally controlled charger is  
used, it may be desirable NOT to adjust the coulomb  
counter. In these cases the CSYNC bit should be cleared.  
11  
For Li-Ion packs with individual measurements, LCC0  
and LCC1 define the number of series elements and  
their voltage measurement inputs. In each case (2, 3, or  
4), the bq2060A uses the highest numbered cell voltage  
input to measure the pack voltage measurement as re-  
turned with Voltage(). For nickel chemistries or Li-Ion  
without single-cell measurements, LCC0 and LCC1  
must be set to 00. VCELL4 is the pack voltage input for  
this programming.  
0
The bq2060A does not alter RM at the time of a  
valid charge termination.  
1
The bq2060A updates RM with a programmed per-  
centage of FCC at a valid charge termination.  
CEDV  
The CEDV bit determines whether the bq2060A imple-  
ments automatic EDV compensation to calculate the  
EDV0, EDV1 and EDV2 thresholds base on rate, tem-  
perature, and capacity. If reset, the bq2060A uses the  
fixed values programmed in EEPROM for EDV0, EDV1  
and EDV2. If set the bq2060A calculates EDV0, EDV1  
and EDV2.  
Remaining Time and Capacity Alarms  
Rem a in in g Tim e Ala r m in E E 0x02–0x03 a n d Re-  
maining Capacity Alarm in 0x04–0x05set the alarm  
thresholds used in the SMBus command codes 0x01 and  
0x02, respectively. Remaining Time Alarm is stored in  
minutes and Remaining Capacity Alarm in mAh.  
0
1
EDV compensation disabled  
EDV compensation enabled  
Secondary Protection Limits for Li-Ion  
VCOR  
The cell undervoltage (VUV) and overvoltage (VOV) limits  
are programmed in Cell Undervoltage/ Over Voltage EE  
0x4a according to the equations:  
The VCOR bit enables the midrange voltage correction  
algorithm. When set, the bq2060A compares the pack  
voltage to RM and may adjust RM according to the val-  
ues programmed in VOC25, VOC50, and VOC75.  
VOV - 4096  
32  
(25)  
Cell Undervoltage/ Overvoltage (lower) =  
Cell Undervoltage/ Overvoltage (upper) =  
0
1
Midrange corrections disabled  
Midrange corrections enabled  
VUV - 2048  
(26)  
64  
CHEM  
The CHEM bit configures the bq2060A for nickel packs  
(NiCd or NiMH) or Li-Ion packs. When set the bq2060A  
employs the configuration parameters in EEPROM des-  
ignated for Li-Ion. When not set, the bq2060A employs  
the configuration parameters designated for nickel.  
0
1
The bq2060A uses nickel configuration parameters.  
The bq2060A uses Li-Ion configuration parameters.  
37  
bq2060A  
Cell Under/Over  
Voltage  
(upper nibble)  
Cell Under/Over  
Voltage  
(lower nibble)  
HIT  
VUV  
(mV)  
VOV  
(mV)  
The HIT bit controls the available temperature range  
for maximum temperature.  
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f
2048  
2112  
2176  
2240  
2304  
2368  
2432  
2496  
2560  
2624  
2688  
2752  
2816  
2880  
2944  
3008  
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f
4096  
4128  
4160  
4192  
4224  
4256  
4288  
4320  
4352  
4384  
4416  
4448  
4480  
4512  
4544  
4576  
0
Ma xim u m t em per a t u r e set in n or m a l 45–85°C  
range  
1
Maximum temperature set in elevated 61–85°C  
range  
Cycle Count Initialization  
Cycle Count EE 0x0e–0x0f stores the initial value for  
the CycleCount() function. It should be programmed to  
0x0000.  
Control Modes  
Control Mode EE0x51 contains additional bit program-  
mable features.  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
NDF  
-
HPE CPE LED  
SC  
-
SM  
S a fet y O ver t em p er a t u r e E E 0 x0 9 s e t s S a fe t y  
Overtemperature Threshold (SOT) level for the CFC pin.  
It can be programmed for a threshold of 69° to 85°C.  
This range is increased by 16° if Miscellaneous Options  
bit 5 = 1.  
NDF  
The NDF bit disables the digital filter during discharge  
if the SMBC and SMBD lines are high.  
0
1
Digital filter enabled all the time  
SafetyOvertemperature=(94.5 -SOT)*10  
if Miscellaneous Options bit 5 = 0.  
Digital filter disabled if SMBC and SMBD are high  
SafetyOvertemperature=(110.5 -SOT)*10  
if Miscellaneous Options bit 5 = 1.  
HPE  
The HPE bit enables/disables PEC transmissions to the  
Smart Battery host for master mode alarm messages.  
Miscellaneous Options  
M i s cel l a n eou s  
bit -pr ogr a m m a ble opt ion s. Bit s 0–4 sh ou ld be pr o-  
grammed to zero.  
O p t i on s  
E E  
0 x0 8  
con t a in s  
0
1
No PEC byte on alarm warning to host  
PEC byte on alarm warning to host  
CPE  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
The CPE bit enables/disables PEC transmissions to the  
Smart Battery Charger for master mode alarm mes-  
sages.  
NE1 SOT HIT  
0
0
0
0
0
NE1  
0
1
No PEC byte on broadcasts to charger  
PEC byte on broadcasts to charger  
The NE1 bit disables the EDV1 threshold.  
0
1
EDV1 enabled  
EDV1 disabled  
LED  
SOT  
The LED bit configures the bq2060A for 4 or 5 LED indi-  
cation  
The SOT bit controls override of the CFC pin for Safety  
Overtemperature threshold.  
0
1
Selects the 5 LED indication mode  
Selects the 4 LED indication mode  
0
CFC control with overvoltage, maximum tempera-  
ture, and safety overtemperature.  
1
CFC control; only with safety overtemperature.  
38  
bq2060A  
The bq2060A compute the node voltages as follows:  
SC  
(27)  
The SC bit enables learning cycle optimization for a  
Smart Charger or independent charge  
é
ùé  
ù
ADC Voltage Gain  
VCELL1*32768  
Vn1=  
+ ADC Offset *  
ê
úê  
ú
ë
ûë  
û
1250  
65536  
0
1
Learning cycle optimized for independent charger  
Learning cycle optimized for Smart Charger  
(28)  
é
ù
VCELL2*32768  
SM  
Vn2=  
+ ADC Offset *  
ê
ú
ë
û
1250  
The SM bit enables/disables master mode broadcasts by  
the bq2060A  
é
ù
ADC Voltage Gain + 8*(Cell 2 CalibrationFactor)  
ê
ú
ë
û
65536  
0
1
Broadcasts to host and charger enabled  
Broadcasts to host and charger disabled  
(29)  
é
ù
VCELL3*32768  
Vn3=  
+ ADC Offset  
*
ê
ú
I f t h e S M b it is s e t , m od ifica t ion s t o b it s in  
BatteryMode() will not re-enable broadcasts.  
ë
û
1250  
ADC Voltage Gain + 8*(Cell 3 CalibrationFactor) *  
[
]
é
ù
2
Measurement Calibration  
ê
ú
ë
û
65536  
ADC  
(30)  
To describe how the bq2060A calculates reported battery  
and individual cell voltages, the following abbreviations  
and designations are used:  
é
ù
VCELL4*32768  
Vn4=  
+ ADC Offset *  
ê
ú
ë
û
1250  
ADC Voltage Gain + 8*(Cell 4 CalibrationFactor) *  
[
]
VCE LL1–4 = volt a ges a t t h e in pu t pin s of t h e  
bq2060A  
é
ù
2
ê
ú
ë
û
65536  
VCELL1–4 = reported cell voltages  
Note: With LCC1-LCC0 = 00, Cell 4 Calibration  
Factor = 0.  
Vnl–4 = voltages at the different series nodes in the  
battery  
ADC Offset adjusts the ADC reading for voltage and cur-  
rent measurements. ADC Offset is a signed 8-bit value  
that cancels offset present in the circuit with no poten-  
tial or current flow. ADC Offset is typically set between  
-20 and 20.  
Voltage() = reported battery voltage  
Vsr = voltage across the sense resistor  
The reported voltages measurements, Voltage() and  
VCELL1–4, may be calibrated by adjusting five 8- or  
16-bit registers in EEPROM: ADC Offset in EE0x62,  
ADC Voltage Gain in EE 0x66–0x67, Cell 2 Calibration  
Factor in EE 0x63, Cell 3 Calibration Factor in EE 0x64,  
and Cell 4 Calibration Factor in EE 0x65.  
The bq2060A uses the computed node voltages to calcu-  
late the reported voltages. It does not compute reported  
cell voltages greater than the selected number of nodes.  
If n o in dividu a l cell volt a ges a r e t o be m ea su r ed,  
LCC1–LCC0 should be set to 00 and the top of the bat-  
tery stack should be connected to a voltage divider to  
the VCELL4 input.  
The bq2060A first computes the node voltages Vnl, Vn2,  
Vn3, and Vn4. The node voltages are inputs to the volt-  
age dividers to the VCELL1 through VCELL4 input pins  
of the bq2060A. The bq2060A computes node voltages to  
calculate the five reported voltages by the bq2060A:  
Voltage(), VCELL1, VCELL2, VCELL3, and VCELL4.  
The bq2060A computes the reported voltages as follows:  
Voltage() = Vn4 (LCC1–LCC0 = 11 or 00) - Vsr  
Voltage() = Vn3 (LCC1–LCC0 = 10) - Vsr  
Voltage() = Vn2 (LCC1–LCC0 = 01) - Vsr  
VCELL4 = Vn4 - Vn3  
An ADC Voltage Gain factor of 20,000 is the nominal  
value when using the recommended cell-voltage division  
ratios of 16:1 on the VCELL4 and VCELL3 inputs and  
8:1 on the VCELL2 and VCELL1 inputs. The bq2060A  
subtracts the voltage across the sense resistor from the  
measurements so that the reported voltages reflect the  
cell-stack voltages only.  
VCELL3 = Vn3 - Vn2  
VCELL2 = Vn2 - Vn1  
VCELL1 = Vn1 - Vsr  
39  
bq2060A  
Current  
Constants and String Data  
The bq2060A scales Current() to mA units by the 16-bit  
va lu e ADC S en se Resistor Ga in in E E 0x68–0x69.  
Adjusting ADC Sense Resistor Gain from its nominal  
value provides a method to calibrate the current read-  
ings for variances in the ADC gain, internal voltage ref-  
erence, and sense resistor value. The bq2060A calculates  
Current() by  
EEPROM Constants  
Check/ Byte 1 EE 0x00–0x01 and Check Byte 2 EE  
0x7e–0x7f must be programmed to 0x3c7f and 0xa55a,  
respectively.  
Specification Information  
Specification Information EE 0x14–0x15 stores the de-  
fault value for the SpecificationInfo() function. It is  
stored in EEPROM in the same format as the data re-  
turned by the SepcificationInfo().  
(31)  
Current() =  
[
]
(ADC Reading + ADC Offset)* ADC Sense Resistor Gain  
16,384  
Manufacture Date  
Ma nufa cture Da te EE 0x16–0x17 stores the default  
value for the ManufactureDate() function. It is stored in  
EEPROM in the same format as the data returned by  
the ManufactureDate().  
The nominal value for ADC Sense Resistor Gain is given  
by equation (6).  
VFC  
Serial Number  
To calibrate the coulomb counting measurement for VFC  
gain errors and sense resistor tolerance, the value of  
VFC Sense Resistor Gain EE 0x6a-0x6b may be adjusted  
from its nominal value.  
Serial Number EE 0x18–0x19 stores the default value  
for t h e S er ia lN u m ber () fu n ct ion . I t is s t or ed in  
EEPROM in the same format as the data returned by  
the SerialNumber().  
The nominal value of VFC Sense Resistor Gain is given  
by equation (5).  
Manufacturer Name Data  
Manufacturer Name Length EE 0x20 stores the length  
of t h e d e s ir e d s t r in g t h a t is r e t u r n e d b y t h e  
ManufacturerName() function. Locations EE 0x21–0x2a  
store the characters for ManufacturerName() in ASCII  
code.Device Name Data  
The bq2060A VFC circuit can introduce a signal opposite  
in sign from that of the inherent device and circuit offset  
to cancel this error. The offset calibration routine is ini-  
tiated with commands to ManufacturerAccess().  
The bq2060A calculates the offset with the calibration  
routine and stores the calibration value using the least  
21 bits of VFC Offset in EE 0x5e–0x60.  
Device Name Length EE 0x30 stores the length of the  
desired string that is returned by the DeviceName()  
function. Locations EE 0x31–0x37 store the characters  
for DeviceName() in ASCII code.  
The least 20 bits store the offset calibration value  
(OCV). The sign of the offset calibration value is positive  
if the 21st bit is 0.  
Device Chemistry Data  
0.6V  
(32)  
Device Chemistry Length EE 0x40 stores the length of  
t h e d e s ir e d s t r in g t h a t is r e t u r n e d b y t h e  
DeviceChemistry() function. Locations EE 0x41–0x44  
store the characters for DeviceChemistry() in ASCII  
code.  
OCV =  
VFCuOffset19 – 0  
Temperature  
The bq2060A uses Temperature Offset in EE 0x61 to cali-  
brate the Temperature() function for offset. The required  
offset adjustment, TOFF (C), sets Temperature Offset ac-  
cording to the equation  
Manufacturers Data Length  
Manufacturers Data Length EE 0x50 stores the length  
of the desired number of bytes that is returned by the  
ManufacturersData() function. It should be set to 7.  
Temperature Offset = TOFF * 10  
(33)  
where  
-12.8 TOFF 12.7  
40  
bq2060A  
Absolute Maximum Ratings  
Symbol  
Parameter  
Minimum  
-0.3  
Maximum  
+6.0  
Unit  
V
Notes  
V
CC—Supply voltage Relative to VSS  
VIN–All other pins  
TOPR  
Relative to VSS  
-0.3  
+6.0  
V
Operating  
temperature  
-20  
+70  
°C  
Commercial  
Note: Permanent device damage may occur if Absolu te Ma xim u m Ra tin gs are exceeded. Functional operation  
should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to  
conditions beyond the operational limits for extended periods of time may affect device reliability.  
DC Electrical Characteristics (V = 2.7–3.7V, T  
= -20–70°C, Unless Otherwise Noted)  
Minimum Typical Maximum  
CC  
OPR  
Parameter  
Conditions  
Unit  
Symbol  
VCC  
Supply voltage  
Operating current  
2.7  
3.3  
180  
5
3.7  
235  
10  
V
ICC  
VOUT inactive  
1.5V < VCC < 3.7V  
VOUT inactive  
µA  
µA  
µA  
ISLP  
Low-power storage mode current  
VOUT leakage current  
ILVOUT  
-0.2  
-5.0  
0.2  
VOUT active,  
VOUT = VCC - 0.6V  
IVOUT  
VOUT source current  
mA  
V
Output voltage low: LED1–LED5, CFC,  
DFC  
IOLS = 5mA  
IOLS = 5mA  
0.4  
VOLS  
Output voltage low: THON, CVON  
Input voltage low DISP  
0.36  
0.8  
V
V
V
VIL  
VIH  
-0.3  
2.0  
Input voltage high DISP  
VCC + 0.3  
Output voltage low SMBC, SMBD,  
HDQ16, ESCL, ESDA  
VOL  
VILS  
VIHS  
VAI  
IOL = 1.0mA  
0.4  
0.8  
6.0  
V
V
V
V
Input voltage low SMBC, SMBD,  
HDQ16, ESCL, ESDA  
-0.3  
1.7  
Input voltage high SMBC, SMBD,  
HDQ16, ESCL, ESDA  
Input voltage range VCELL1–4, TS,  
SRC  
VSS - 0.3  
1.25  
50  
IRB  
VRBI  
ZAI1  
ZAI2  
RBI data-retention input current  
RBI data-retention voltage  
VRBI > 3.0V, VCC < 2.0V  
10  
nA  
V
1.3  
10  
5
Input impedance: SR1, SR2  
0–1.25V  
0–1.25V  
MΩ  
MΩ  
Input impedance: VCELL1–4, TS, SRC  
Note:  
ZAI specifications are reference numbers based on process data.  
41  
bq2060A  
VFC Characteristics (VCC = 3.1–3.5V, TOPR = 0–70°C Unless Otherwise Noted))  
Symbol  
Parameter  
Conditions  
Minimum Typical Maximum  
Unit  
Input voltage range, VSR2  
and VSR1  
VSR  
VSR = VSR2 – VSR1  
–0.25  
+0.25  
V
V
SR2 = VSR1, autocorrection  
VSROS  
VSRCOS  
RMVCO  
VSR input offset  
–250  
–16  
–50  
0.8  
250  
+16  
1.2  
µV  
µV  
disabled  
Calibrated offset  
Supply voltage gain  
coefficient (see Note)  
VCC = 3.3V  
%/V  
Slope for TOPR = –20 to 70°C  
Total Deviation TOPR = –20 to 70°C  
Slope for TOPR = –0 to 50°C  
–0.09  
–1.6  
+0.09  
0.1  
%/°C  
%
Temperature gain  
coefficient (see note)  
RMTCO  
–0.05  
–0.6  
+0.05  
0.1  
%/°C  
%
Total Deviation TOPR = –0 to 50°C  
Integral nonlinearity  
error  
TOPR = 0–50C  
INL  
0.21  
%
Note: RMTCO total deviation is from the nominal gain at 25°C.  
REG Characteristics (TOPR = -20–70°C)  
Symbol  
VRO  
Parameter  
Conditions  
Minimum Typical Maximum  
Unit  
V
J FET: Rds(on) < 150Ω  
Vgs (off) < –3.0V @ 10µA  
REG controlled output voltage  
REG output current  
3.1  
1.0  
3.3  
3.5  
IREG  
µA  
42  
bq2060A  
SMBus AC Specifications (V = 2.7–3.7V, T  
= -20–70°C, Unless Otherwise Noted)  
CC  
OPR  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
FSMB  
SMBus operating frequency  
Slave mode, SMBC 50% duty cycle  
10  
100  
kHz  
kHz  
µs  
Master mode, no clock low slave  
extend  
FMAS  
TBUF  
SMBus master clock frequency  
51.2  
Bus free time between start and  
stop  
4.7  
THD:STA  
TSU:STA  
TSU:STO  
Hold time after (repeated) start  
Repeated start setup time  
Stop setup time  
4.0  
4.7  
4.0  
0
300  
250  
25  
µs  
µs  
µs  
ns  
ns  
ns  
ms  
µs  
µs  
Receive mode  
Transmit mode  
THD:DAT  
Data hold time  
TSU:DAT  
TTIMEOUT  
TLOW  
Data setup time  
Error signal/detect  
Clock low period  
Clock high period  
See Note 1  
35  
4.7  
4.0  
THIGH  
See Note 2  
See Note 3  
50  
25  
Cumulative clock low slave  
extend time  
Cumulative clock low master  
extend time  
TLOW:SEXT  
TLOW:MEXT  
Notes:  
ms  
ms  
See Note 4  
10  
1. The bq2060A will time out when any clock low exceeds TTIMEOUT  
.
2. THIGH Max. is minimum bus idle time. SMBC = SMBD = 1 for t > 50µs will cause reset of any  
transaction involving bq2060A that is in progress.  
3. TLOW:SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message  
from initial start to the stop. The bq2060A typically extends the clock only 20µs as a slave in the read  
byte or write byte protocol.  
4. TLOW:MEXT is the cumulative time a master device is allowed to extend the clock cycles in one mes-  
sage from initial start to the stop. The bq2060A typically extends the clock only 20µs as a master in  
the read byte or write byte protocol.  
HDQ16 AC Specifications (V = 2.7–3.7V, T  
= -20–70 C, Unless Otherwise Noted)  
CC  
OPR  
Symbol  
tCYCH  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Cycle time, host to bq2060A (write)  
Cycle time, bq2060A to host (read)  
190  
190  
-
-
µs  
µs  
tCYCB  
205  
250  
Start hold time, host to bq2060A  
(write)  
tSTRH  
5
-
-
ns  
tSTRB  
tDSU  
tDSUB  
tDH  
Start hold time, bq2060A to host (read)  
Data setup time  
32  
-
-
-
-
-
-
-
-
-
-
-
-
50  
50  
-
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Data setup time  
-
Data hold time  
100  
80  
-
tDV  
Data valid time  
-
tSSU  
tSSUB  
tRSPS  
tB  
Stop setup time  
145  
145  
320  
-
Stop setup time  
-
Response time, bq2060A to host  
Break time  
190  
190  
40  
tBR  
Break recovery time  
-
43  
bq2060A  
SMBus Timing Data  
HDQ16 Break Timing  
t
t
BR  
B
TD201803.eps  
HDQ16 Host to bq2060A  
Write "1"  
Write "0"  
t
STRH  
t
DSU  
t
DH  
t
SSU  
t
CYCH  
HDQ16 bq2060A to Host  
Read "1"  
Read "0"  
t
t
STRB  
DSUB  
t
DV  
t
SSUB  
t
CYCB  
TD201805.eps  
44  
bq2060A  
Ordering Information  
bq2060A-E619 DBQ  
Ta p e a n d Reel  
blank = tubes  
R = tape and reel  
P a ck a ge Op tion :  
DBQ = 28-pin SSOP  
Device:  
bq2060A SBS v1.1-Compliant Gas Gauge IC  
45  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to dis-  
continue any product or service without notice, and advise customers to obtain the latest version of rele-  
vant information to verify, before placing orders, that information being relied on is current and complete.  
All products are sold subject to the terms and conditions of sale supplied at the time of order acknowl-  
edgement, including those pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of  
sale in accordance with TIs standard warranty. Testing and other quality control techniques are utilized  
to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each de-  
vice is not necessarily performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL  
RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE  
(CRITICAL APPLICATIONS). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHO-  
RIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS  
OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS  
UNDERSTOOD TO BE FULLY AT THE CUSTOMERS RISK.  
In order to minimize risks associated with the customers applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or  
represent that any license, either express or implied, is granted under any patent right, copyright, mask  
work right, or other intellectual property right of TI covering or relating to any combination, machine, or  
process in which such semiconductor products or services might be or are used. TIs publication of in-  
formation regarding any third partys products or services does not constitute TIs approval, warranty or  
endorsement thereof.  
Copyright © 2002, Texas Instruments Incorporated  
46  

相关型号:

BQ2060A-E619DBQR

SBS v1.1-Compliant Gas Gauge IC
TI

BQ2060SS

SBS V1.1-COMPLIANT GAS GAUGE IC
TI

BQ2060SS-E207-EP

SBS v1.1-Compliant Gas Gauge IC
TI

BQ2060SS-E207-EPG4

SBS V1.1-COMPLIANT GAS GAUGE IC
TI

BQ2060SS-E207TR-EP

SBS v1.1-Compliant Gas Gauge IC
TI

BQ2060SS-E411

SBS v1.1-Compliant Gas Gauge IC
TI

BQ2060SS-E411G4

SBS V1.1-COMPLIANT GAS GAUGE IC
TI

BQ2060SS-E411TR

SBS v1.1-Compliant Gas Gauge IC
TI

BQ2060SS-E411TRG4

SBS V1.1-COMPLIANT GAS GAUGE IC
TI

BQ2060SSE207TREPG4

SBS V1.1-COMPLIANT GAS GAUGE IC
TI

BQ2060SSTR

4-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, 0.150 INCH, SSOP-28
TI

BQ2063

SBS v1.1-COMPLIANT Li-ION GAS-GAUGE IC WITH PROTECTOR INTERFACE
TI