BQ21040 [TI]

单节锂电池充电芯片;
BQ21040
型号: BQ21040
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单节锂电池充电芯片

电池
文件: 总31页 (文件大小:4097K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
bq21040 0.8A、单输入、单节锂离子和锂聚合物电池充电器  
1 特性  
3 说明  
1
充电中  
bq21040 器件是一款面向空间受限类便携式应用的高  
度集成锂离子和锂聚合物线性 电池充电器的理想选  
择。此器件可由一个 USB 端口或交流适配器供电运  
行。具有输入过压保护的高输入电压范围支持低成本、  
未稳压的适配器。  
充电电压精度为 1%  
10% 充电电流精度  
低电池泄漏电流 (1µA)  
可通过外部电阻编程设定的充电电流最高可达  
800mA  
bq21040 具有一个可为电池充电的单电源输出。如果  
10 小时的安全定时器期间内平均系统负载无法让电  
池充满电,则可以使系统负载与电池并联。  
4.2V 锂离子和锂聚合物充电器  
保护  
30V 额定输入电压;具有 6.6V 输入过压保护  
电池充电经历以下三个阶段:调节,恒定电流和恒定电  
压。在所有充电阶段,内部控制环路都会监控 IC 结  
温,当其超过内部温度阈值时,它会减少充电电流。  
输入电压动态电源管理  
125°C 热调节;150°C 热关断保护  
OUT 短路保护和 ISET 短路检测  
通过负温度系数 (NTC) 实现过热感测保护  
10 小时固定安全定时器  
充电器功率级和充电电流感测功能均完全集成。该充电  
器具有高精度电流和电压调节环路功能、充电状态显  
示,和充电终止功能。预充电电流阈值和终止电流阈值  
分别固定为 20% 10%。快速充电电流值可通过一个  
外部电阻进行编程。  
系统  
状态指示 - 充电/完成  
采用小型小外形尺寸晶体管 (SOT)-23 封装  
器件信息(1)  
2 应用  
器件型号  
bq21040  
封装  
封装尺寸(标称值)  
电子销售点 (EPOS)  
SOT-23 (6)  
3.00mm x 1.75mm  
医疗内窥镜  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
BLE 扬声器和耳机  
低功耗手持器件  
简化电路原理图  
bq21040  
VIN  
VOUT  
VIN  
BAT  
TEMP  
System  
Load  
PACK+  
1 µF  
1 µF  
+
œ
RCHG  
NTC  
ISET  
TS  
RISET  
PACKœ  
GND  
CHG  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCE2  
 
 
 
 
 
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 10  
8.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 17  
9.1 Application Information............................................ 17  
9.2 Typical Application .................................................. 17  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison ............................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
7.1 Absolute Maximum Ratings ...................................... 3  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 4  
7.6 Timing Requirements................................................ 6  
9
10 Power Supply Recommendations ..................... 22  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 22  
11.3 Thermal Considerations........................................ 23  
12 器件和文档支持 ..................................................... 24  
12.1 接收文档更新通知 ................................................. 24  
12.2 社区资源................................................................ 24  
12.3 ....................................................................... 24  
12.4 静电放电警告......................................................... 24  
12.5 Glossary................................................................ 24  
13 机械、封装和可订购信息....................................... 24  
7.7 Typical Operational Characteristics (Protection  
Circuits Waveforms)................................................... 7  
8
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
8.2 Functional Block Diagram ......................................... 9  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (May 2017) to Revision C  
Page  
已更改 简化电路原理图 .......................................................................................................................................................... 1  
Changed 250 kto 237 kin TS pin description.................................................................................................................. 3  
Changed RTS max from 25.8 kΩ to 258 kΩ............................................................................................................................ 4  
Changed Low temperature charging to Normal temperature charging in VTS-0C Test Conditions.......................................... 6  
Changed low temperature charging to normal temperature charging in VHYS-0C Test Conditions ......................................... 6  
Changed High temperature charging to Normal temperature charging in VTS-45C Test Conditions ....................................... 6  
Changed high temperature charging to normal temperature charging in VHYS-45C Test Conditions ...................................... 6  
已删除 Load Regulation graph .............................................................................................................................................. 7  
已删除 Line Regulation graph ................................................................................................................................................ 7  
已更改 6 .......................................................................................................................................................................... 11  
已删除 The bq21040 does not have a safety timer. in Timers ............................................................................................. 15  
已更改 10 ........................................................................................................................................................................ 17  
Changes from Revision A (April 2016) to Revision B  
Page  
更改了电气特性 表中的最小值和最大值,更改了快速充电电流系数 KISET 的最小值和最大值 ............................................. 1  
已添加 接收文档更新通知 ............................................................................................................................................... 1  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
bq21040  
www.ti.com.cn  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
5
Device Comparison  
PART NO.  
VO(REG)  
VOVP  
TS  
PACKAGE  
bq21040  
4.20 V  
6.6 V  
TS  
3.00 mm × 1.75 mm × 1.45 mm SOT-23  
6 Pin Configuration and Functions  
DBV Package  
6-Pin SOT-23  
Top View  
TS  
OUT  
CHG  
1
6
5
4
VIN  
2
3
GND  
ISET  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
CHG  
NO.  
3
Low (FET on) indicates charging and Open Drain (FET off) indicates no Charging or Charge  
complete.  
O
I
GND  
ISET  
5
Ground terminal  
Programs the Fast-charge current setting. External resistor from ISET to VSS defines fast charge  
current value. Range is 10.8kΩ (50mA) to 675(800mA).  
4
Battery connection. System load may be connected. Expected range of bypass capacitors 1μF to  
10μF.  
OUT  
2
1
6
O
Temperature sense terminal connected to bq21040 -10k at 25°C NTC thermistor, in the battery  
pack. Floating T terminal or pulling High puts part in TTDM “Charger” Mode and disable TS  
monitoring, Timers and Termination. Pulling terminal Low disables the IC. If NTC sensing is not  
needed, connect this terminal to VSS through an external 10 kresistor. A 237 kfrom TS to  
ground will prevent IC entering TTDM mode when battery with thermistor is removed.  
TS  
I
Input power, connected to external DC supply (AC adapter or USB port). Expected range of  
VIN  
I
bypass capacitors 1μF to 10μF, connect from IN to VSS  
.
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
30  
UNIT  
V
IN (with respect to VSS)  
Input voltage  
OUT (with respect to VSS)  
7
V
PRE-TERM, ISET, ISET2, TS, /CHG (with respect to VSS)  
7
V
Input current  
IN  
1.25  
1.25  
15  
A
Output current (continuous)  
Output sink current  
OUT  
CHG  
A
mA  
°C  
°C  
Junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.5  
NOM  
MAX  
28  
UNIT  
V
IN voltage range  
VIN  
IN operating voltage range, restricted by VDPM and VOVP  
Input current, IN terminal  
4.45  
6.45  
0.8  
V
IIN  
A
IOUT  
TJ  
Current, OUT terminal  
0.8  
A
Junction temperature  
0
0.675  
1.66  
125  
10.8  
258  
°C  
kΩ  
kΩ  
RISET  
RTS  
Fast-charge current programming resistor  
10k NTC thermistor range without entering TTDM  
7.4 Thermal Information  
bq21040  
THERMAL METRIC(1)  
DBV (SOT-23)  
6 PINS  
130.8  
75.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
45.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
31.8  
ψJB  
45.5  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
UVLO  
Undervoltage lockout exit  
VIN: 0 V to 4 V  
VIN: 0 V to 4 V, VUVLO_FALL  
VUVLO_RISE – VHYS-UVLO  
3.15  
175  
3.3  
3.45  
280  
V
=
VHYS-UVLO  
Hysteresis on VUVLO_RISE falling  
Input power good detection  
227  
mV  
(Input power good if VIN > VOUT + VIN-  
DT); VOUT = 3.6 V, VIN: 3.5 V to 4 V  
VIN-DT  
30  
80  
31  
145  
6.8  
mV  
mV  
V
threshold is VOUT  
+
VIN-DT  
VHYS-INDT  
VOVP  
Hysteresis on VIN-DT falling  
VOUT = 3.6 V, VIN: 4 V to 3.5 V  
Input overvoltage protection  
threshold  
VIN: 5 V to 12 V  
6.5  
6.65  
95  
VHYS-OVP  
Hysteresis on OVP  
VIN: 11 V to 5 V  
mV  
Adaptor low input voltage  
protection. Restricts lout at VIN-  
DPM  
Feature active in adaptor mode; Limit  
Input Current to 50 mA; VOUT = 3.5 V;  
RISET = 825  
VIN-DPM  
4.24  
4.3  
4.46  
500  
V
ISET SHORT CIRCUIT TEST  
Highest resistance considered a  
RISET: 250 Ω to 540 Ω, Iout latches off.  
Cycle power to reset  
RISET_SHORT  
fault (short). Monitored for  
IOUT>90mA  
Ω
4
Copyright © 2016–2017, Texas Instruments Incorporated  
 
bq21040  
www.ti.com.cn  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Maximum OUT current limit  
regulation (clamp)  
VIN = 5 V, VOUT = 3.6 V, RISET: 250 Ω to  
540 Ω, Iout latches off after tDGL-SHORT  
IOUT_CL  
1.05  
1.4  
A
BATTERY SHORT PROTECTION  
OUT terminal short-circuit detection  
threshold/precharge threshold  
VOUT(SC)  
Vout:3V to 0.5V, no deglitch  
0.75  
10  
0.8  
77  
15  
0.85  
20  
V
Recovery VOUT(SC) + VOUT(SC-HYS)  
Rising, no deglitch  
;
VOUT(SC-HYS)  
IOUT(SC)  
OUT terminal short hysteresis  
mV  
mA  
Source current to OUT terminal  
during short-circuit detection  
QUIESCENT CURRENT  
IOUT(PDWN)  
IOUT(DONE)  
IIN(STDBY)  
ICC  
Battery current into OUT terminal  
VIN = 0V  
1
6
µA  
µA  
µA  
µA  
OUT pin current, charging  
terminated  
VIN = 6 V, VBAT > VBAT(REG), net current  
is into OUT pin  
Standby current into IN pin  
TS = Low, VIN 6 V  
125  
1000  
TS = Low, VIN = 6 V, no load on OUT  
pin, VBAT > VBAT(REG)  
Active supply current, IN pin  
BATTERY CHARGER FAST-CHARGE  
VOUT(REG)  
Battery regulation voltage  
VREG = 4.2 V, IL = 25 mA, VIN = 5.5 V  
4.16  
10  
4.2  
4.23  
800  
V
Programmed output fast charge  
current range  
VOUT(REG) > VOUT > VLOWV; VIN = 5 V,  
RISET = 0.675 to 52 kΩ  
IOUT(RANGE)  
mA  
Adjust VIN down until IOUT = 0.5 A, VOUT  
= 4.15 V, RISET = 1.08kΩ  
VDO(IN-OUT)  
IOUT  
Drop-Out, VIN – VOUT  
325  
550  
mV  
A
KISET/  
RISET  
KISET/  
RISET  
KISET/  
RISET  
Output fast charge formula  
VOUT(REG) > VOUT > VLOWV; VIN = 5 V  
KISET (60mA < I <1000mA)  
KISET (25mA < I < 60mA)  
KISET (10mA < I < 25mA)  
490  
470  
340  
540  
527  
520  
590  
605  
685  
KISET  
Fast charge current factor  
AΩ  
PRECHARGE  
Pre-charge to fast-charge transition  
threshold  
VLOWV  
2.4  
18  
2.5  
20  
2.6  
V
Pre-charge  
Default pre-charge current  
VBAT < VLOWV, ICHG = 50 mA  
22 %ISET  
TERMINATION  
Termination Threshold Current,  
default setting  
%IOUT-  
CC  
%TERM  
VOUT > VRCH; RISET = 1 kΩ  
9
10  
11  
RECHARGE OR REFRESH  
VIN = 5 V, VTS = 0.5 V, VOUT = 4.25 V to VO(REG)  
-
VO(REG)  
95 mV  
-
VO(REG)  
70 mV  
-
VRCH  
Recharge detection threshold  
mV  
VRCH  
120 mV  
BATT DETECT  
VREG-BD  
IBD-SINK  
VOUT Reduced regulation during  
battery detect  
VO(REG)  
450 mV  
-
VO(REG)  
400 mV  
- VO(REG) -  
mV  
mA  
V
350 mV  
VIN = 5 V, VTS = 0.5 V, battery absent  
Sink current during VREG-BD  
7
10  
VO(REG)  
150 mV  
- VO(REG) - VO(REG) -  
VBD-HI  
High battery detection threshold  
100 mV  
50 mV  
VIN = 5 V, VTS = 0.5 V, battery absent  
VREG-  
BD+0.50  
VREG-  
BD+0.1 BD+0.15  
VREG-  
VBD-LO  
Low battery detection threshold  
V
BATTERY-PACK NTC MONITOR  
INTC 50µA  
NTC bias current  
48  
27  
50  
30  
53  
34  
µA  
µA  
10K NTC bias current when  
charging is disabled  
INTC-DIS-10K  
VTS = 0 V  
INTC is reduced prior to entering  
INTC-FLDBK -10K TTDM to keep cold thermistor from VTS = 1.525 V  
entering TTDM  
4
5
6.5  
µA  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Termination and timer disable  
mode-Threshold-Enter  
VTTDM(TS)  
VTS: 0.5 V to 1.7 V; timer held in reset  
1550  
1600  
1650  
mV  
IHYS-TTDM(TS)  
VCLAMP(TS)  
Hysteresis exiting TTDM  
VTS: 1.7 V to 0.5 V; timer enabled  
VTS = Open (float)  
100  
mV  
mV  
TS maximum voltage clamp  
1800  
1220  
1950  
2000  
TS voltage where INTC is reduce to INTC adjustment (90 to 10%; 45 to 6.6  
keep thermistor from entering  
TTDM  
VTS_I-FLDBK  
µs) takes place near this spec  
threshold. VTS: 1.425 V to 1.525 V  
1475  
mV  
CTS  
Optional capacitance – ESD  
0.22  
µF  
Normal temperature charging to  
pending; VTS: 1 V to 1.5 V  
VTS-0C  
Low temperature CHG pending  
1250  
1280  
mV  
Charge pending to normal temperature  
charging; VTS: 1.5 V to 1 V  
VHYS-0C  
VTS-45C  
Hysteresis at 0°C  
100  
275  
mV  
mV  
Normal temperature charging to  
pending; VTS: 0.5 V to 0.2 V  
High temperature CHG disable  
Hysteresis at 45°C  
260  
80  
290  
96  
Charge pending to normal temperature  
charging; VTS: 0.2 V to 0.5 V  
VHYS-45C  
20  
88  
12  
mV  
mV  
mV  
VTS-EN-10K  
Charge enable threshold (10k NTC) VTS: 0 V to 0.175 V  
HYS below VTS-EN-10k to disable  
VTS: 0.125 V to 0 V  
VTS-DIS_HYS-10K  
(10k NTC)  
THERMAL REGULATION  
TJ(REG)  
Temperature regulation limit  
125  
155  
20  
TJ(OFF)  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
°C  
TJ(OFF-HYS)  
CHG INDICATION  
Output Low Voltage-CHG FET on -  
first charge after power-up  
VOL  
ISINK = 5 mA  
V CHG = 5 V  
0.4  
1
V
ILEAK  
Leakage current into IC  
µA  
7.6 Timing Requirements  
MIN NOM  
MAX UNIT  
INPUT  
tDGL(OVP_SET)  
tDGL(OVP_REC)  
ISET SHORT CIRCUIT TEST  
Deglitch time transition from ISET short Clear fault by disconnecting IN or cycling  
to IOUT disable (high / low) TS  
PRECHARGE – SET INTERNALLY  
Deglitch time on pre-charge to fast-  
Input over-voltage blanking time  
VIN: 5 V to 12 V  
113  
30  
µs  
µs  
Deglitch time exiting OVP  
Time measured from VIN: 12V to 5V  
tDGL_SHORT  
1
ms  
tDGL1(LOWV)  
70  
32  
µs  
charge transition  
Deglitch time on fast-charge to pre-  
charge transition  
tDGL2(LOWV)  
ms  
TERMINATION  
tDGL(TERM)  
Deglitch time, termination detected  
29  
29  
ms  
ms  
RECHARGE OR REFRESH  
Deglitch time, recharge threshold  
detected  
VIN = 5 V, VTS = 0.5 V, VOUT: 4.25 V to 3.5  
V in 1 µs; tDGL(RCHG) is time to ISET ramp  
tDGL1(RCHG)  
BATTERY DETECT ROUTINE  
tDGL(HI/LOW REG) Regulation time at VREG or VREG-BD  
BATTERY-PACK NTC MONITOR; TS TERMINAL  
25  
30  
ms  
ms  
tDGL(TS)  
Deglitch for TS thresholds: 0/45C.  
Battery charging  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
bq21040  
www.ti.com.cn  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
7.7 Typical Operational Characteristics (Protection Circuits Waveforms)  
SETUP: bq21040 typical applications schematic; VIN = 5V, VBAT = 3.6V (unless otherwise indicated)  
4.212  
546  
V
at 0°C  
R
= 100 Ω  
O
OUT  
Kiset  
544  
542  
540  
4.21  
4.208  
4.206  
4.204  
4.202  
4.2  
Low to High Currents  
(may occur in recharge to fast charge transion)  
V
at 25°C  
at 85°C  
O
538  
536  
534  
High to Low Currents  
(may occur in Voltage Regulation - Taper Current)  
V
O
532  
4.198  
4.196  
530  
528  
.15  
4.5  
5
5.5  
6
6.5  
0
0.2  
0.4  
0.6  
0.8  
V - Input Voltage DC - V  
I
I
- Output Current - A  
O
2. Line Regulation  
1. Kiset for Low and High Currents  
4.2  
363.4  
363.2  
4.199  
I
at 25°C  
V
at 25°C  
O
reg  
363  
4.198  
4.197  
V
at 85°C  
reg  
362.8  
I
at 85°C  
O
362.6  
4.196  
4.195  
4.194  
4.193  
4.192  
362.4  
362.2  
V
at 0°C  
reg  
I
at 0°C  
O
362  
361.8  
2.5  
3
3.5  
4
4.5  
0
0.2  
0.4  
0.6  
0.8  
1
I
- Output current - A  
V
- Output Voltage - V  
O
O
4. Current Regulation Over Temperature  
3. Load Regulation Over Temperature  
版权 © 2016–2017, Texas Instruments Incorporated  
7
 
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The bq21040 is a highly integrated single cell Li-Ion and Li-Pol charger. The charger can be used to charge a  
battery, power a system or both. The charger has three phases of charging: Pre-charge to recover a fully  
discharged battery, fast-charge constant current to supply the buck charge safely and voltage regulation to safely  
reach full capacity. The charger is very flexible, allowing programming of the fast-charge current. This charger is  
designed to work with a USB connection or Adaptor (DC out). The charger also checks to see if a battery is  
present.  
The charger also comes with a full set of safety features: Temperature Sensing Standard, Over-Voltage  
Protection, DPM-IN, Safety Timers, and ISET short protection. All of these features and more are described in  
detail below.  
The charger is designed for a single power path from the input to the output to charge a single cell Li-Ion or  
Li-Pol battery pack. Upon application of a 5VDC power source the ISET and OUT short checks are performed to  
assure a proper charge cycle.  
If the battery voltage is below the LOWV threshold, the battery is considered discharged and a preconditioning  
cycle begins. The amount of the current goes into the battery during this phase is called pre-charge current. It is  
fixed to 20% of the fast charge current.  
Once the battery voltage has charged to the VLOWV threshold, fast charge is initiated and the fast charge  
current is applied. The fast charge constant current is programmed using the ISET terminal. The constant current  
provides the bulk of the charge. Power dissipation in the IC is greatest in fast charge with a lower battery voltage.  
If the IC reaches 125°C the IC enters thermal regulation, slows the timer clock by half and reduce the charge  
current as needed to keep the temperature from rising any further. 5 shows the charging profile with thermal  
regulation. Typically under normal operating conditions, the IC’s junction temperature is less than 125°C and  
thermal regulation is not entered.  
Once the cell has charged to the regulation voltage the voltage loop takes control and holds the battery at the  
regulation voltage until the current tapers to the termination threshold. The termination current is set to 10% of  
the fast charge current. The CHG terminal is low (LED on) during the first charge cycle only and turns off once  
the termination threshold is reached, regardless if termination, for charge current, is enabled or disabled.  
8
版权 © 2016–2017, Texas Instruments Incorporated  
bq21040  
www.ti.com.cn  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
8.2 Functional Block Diagram  
Internal Charge Current Sense  
w/Multiple Outputs  
IN  
OUT  
+
-
80 mV  
Input  
Power  
Detect  
IN  
OUT  
-
+
-
+
-
OUT  
IN,DPM  
VO,REG  
+
Charge  
Pump  
IOUT x 1.5V  
540 A  
TjC  
-
Fast Charge  
Pre-Charge  
125 CREF  
+
ISET  
IN  
+
-
1.5V  
Pre-CHG Reference  
75uA  
Term Reference  
TjC  
+
_
+
_
150 CREF  
Charge  
Pump  
Thermal Shutdown  
+
_
IN  
+
_
X2 Gain (1:2)  
Term: Pre-CHGX2  
OVPREF  
CHG  
On During 1st  
Charge Only  
VREF_0C_COLD  
_
+
ON  
OFF:  
TS_0C  
CHARGE  
CONTROL  
VREF_45C_HOT  
_
+
TS_45C  
_
+
TTDM MODE  
TS  
TS Cold Temperature  
Sink Current  
TS Disable  
Sink Current  
VTTDM  
45uA  
V
CLAMP  
+
20uA  
+
_
_
5uA  
45uA  
Copyright © 2016, Texas Instruments Incorporated  
版权 © 2016–2017, Texas Instruments Incorporated  
9
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
8.3 Feature Description  
Thermal  
Regulation  
Phase  
Current  
Regulation  
Phase  
Voltage Regulation and  
Charge Termination  
Phase  
Pre-  
Conditioning  
Phase  
DONE  
V
O(REG)  
I
O(OUT)  
Battery Current,  
I
FAST-CHARGE  
CURRENT  
(OUT)  
Battery  
Voltage,  
V
(OUT)  
Charge  
Complete  
Status,  
Charger  
Off  
PRE-CHARGE  
CURRENT AND  
TERMINATION  
THRESHOLD  
V
O(LOWV)  
I
(TERM)  
I
O(PRECHG)  
T
(THREG)  
0A  
Temperature, Tj  
T
DONE  
(CHG)  
T
(PRECHG)  
5. Charging Profile With Thermal Regulation  
8.3.1 Power-Down or Undervoltage Lockout (UVLO)  
The bq21040 is in power-down mode if the IN terminal voltage is less than UVLO. The part is considered “dead”  
and all the terminals are high impedance. Once the IN voltage rises above the UVLO threshold the IC will enter  
Sleep Mode or Active mode depending on the OUT terminal (battery) voltage.  
8.3.2 Power-up  
The IC is alive after the IN voltage ramps above UVLO (see sleep mode), resets all logic and timers, and starts  
to perform many of the continuous monitoring routines. Typically the input voltage quickly rises through the  
UVLO and sleep states where the IC declares power good, starts the qualification charge at 100mA starts the  
safety timer and enables the CHG terminal. See 6.  
8.3.3 Sleep Mode  
If the IN terminal voltage is between than VOUT+VDT and UVLO, the charge current is disabled, the safety timer  
counting stops (not reset) and the CHG terminal is high impedance. As the input voltage rises and the charger  
exits sleep mode, the safety timer continues to count, charge is enabled and the CHG terminal returns to its  
previous state. See 7.  
8.3.4 New Charge Cycle  
A new charge cycle is started when a good power source is applied, performing a chip disable/enable (TS  
terminal), exiting Termination and Timer Disable Mode (TTDM), detecting a battery insertion or the OUT voltage  
dropping below the VRCH threshold. The CHG terminal is active low only during the first charge cycle, therefore  
exiting TTDM or a dropping below VRCH will not turn on the CHG terminal FET, if the CHG terminal is already  
high impedance.  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
bq21040  
www.ti.com.cn  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
V
TS  
1.8V  
Normal  
Operation  
Cold  
Fault  
TTDM  
Mode  
Normal  
Operation  
TTDM  
Mode  
Cold  
Fault  
Normal  
Operation  
HOT  
Fault  
Normal  
Operation  
Disabled  
Disabled  
t
DGL(TTDM)  
t
DGL(TTDM)  
Enter  
Enter  
t
DGL(TTDM)  
Exit  
TTDM  
t < t  
Exit  
DGL(TTDM)  
TTDM  
HYS  
t
DGL(TS)  
t
DGL(TS)  
t
DGL(TS)  
0°C  
0°C  
HYS  
t
DGL(TS)  
t
t
DGL(TS)  
DGL(TS)  
45°C  
HYS  
45°C  
Dots Show Threshold Trip Points  
followed by a deglitch time before  
transitioning into a new mode.  
EN  
DIS  
HYS  
0V  
t
Drawing Not to Scale  
6. TS Battery Temperature Bias Threshold and Deglitch Timers  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
 
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
Apply Input  
Power  
Is power good?  
VBAT + VDT < VOVP &  
VUVLO < VIN  
No  
Yes  
No  
Is chip enabled?  
VTS > VEN  
Yes  
Set the Current Limit to 100 mA  
and Start Charge Perform ISET &  
OUT short tests  
Yes  
Set the charge current based on  
ISET  
Yes  
Return to Charge  
7. bq21040 Power-Up Flow Diagram  
8.3.5 Overvoltage-Protection (OVP) – Continuously Monitored  
If the input source applies an overvoltage, the pass FET, if previously on, turns off after a deglitch, tBLK(OVP). The  
timer ends and the CHG terminal goes to a high impedance state. After the overvoltage returns to a normal  
voltage, the timer continues, charge continues, and the CHG terminal goes low after a 25ms deglitch.  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
bq21040  
www.ti.com.cn  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
8.3.6 CHG Terminal Indication  
The charge terminal has an internal open drain FET which is on (pulls down to VSS) during the first charge only  
(independent of TTDM) and is turned off once the battery reaches voltage regulation and the charge current  
tapers to the termination threshold set by the PRE-TERM resistor. The bq21040 does not terminate charge,  
however, the CHG terminal will turn off once the battery current reaches 10% of the programmed charge current.  
The charge terminal is high impedance in sleep mode and OVP and returns to its previous state once the  
condition is removed.  
Cycling input power, pulling the TS terminal low and releasing or entering pre-charge mode causes the CHG  
terminal to go reset (go low if power is good and a discharged battery is attached) and is considered the start of  
a first charge.  
8.4 Device Functional Modes  
8.4.1 CHG LED Pull-up Source  
For host monitoring, a pullup resistor is used between the STATUS terminal and the VCC of the host and for a  
visual indication a resistor in series with an LED is connected between the STATUS terminal and a power  
source. If the CHG source is capable of exceeding 7 V, a 6.2-V Zener should be used to clamp the voltage. If the  
source is the OUT terminal, note that as the battery changes voltage, and the brightness of the LEDs vary.  
1. Charging States and CHG LED  
CHARGING STATE  
First charge after VIN applied  
Refresh charge  
OVP  
CHG FET/LED  
ON  
OFF  
SLEEP  
TEMP FAULT  
ON for 1st Charge  
8.4.2 IN-DPM (VIN-DPM or IN-DPM)  
The IN-DPM feature is used to detect an input source voltage that is folding back (voltage dropping), reaching its  
current limit due to excessive load. When the input voltage drops to the VIN-DPM threshold the internal pass FET  
starts to reduce the current until there is no further drop in voltage at the input. This would prevent a source with  
voltage less than VIN-DPM to power the out terminal. This works well with current limited adaptors and USB ports  
as long as the nominal voltage is above 4.3 V. This is an added safety feature that helps protect the source from  
excessive loads.  
8.4.3 OUT  
The Charger’s OUT terminal provides current to the battery and to the system, if present. This IC can be used to  
charge the battery plus power the system, charge just the battery or just power the system (TTDM) assuming the  
loads do not exceed the available current. The OUT terminal is a current limited source and is inherently  
protected against shorts. If the system load ever exceeds the output programmed current threshold, the output  
will be discharged unless there is sufficient capacitance or a charged battery present to supplement the  
excessive load.  
8.4.4 ISET  
An external resistor is used to Program the Output Current (50 to 800 mA) and can be used as a current monitor.  
RISET = KISET / IOUT  
where  
IOUT is the desired fast charge current;  
KISET is a gain factor found in the electrical specification  
(1)  
For greater accuracy at lower currents, part of the sense FET is disabled to give better resolution. 1 shows the  
transition from low current to higher current. Going from higher currents to low currents, there is hysteresis and  
the transition occurs around 0.15 A.  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
The ISET resistor is short protected and will detect a resistance lower than 340 . The detection requires at  
least 80mA of output current. If a “short” is detected, then the IC will latch off and can only be reset by cycling the  
power. The OUT current is internally clamped to a maximum current between 1.05 A and 1.4 A and is  
independent of the ISET short detection circuitry, as shown in 8. Also, see 23 and 24.  
1.8  
1.6  
1.4  
IOUT Internal Clamp Range  
1.2  
1
0.8  
IOUT Programmed  
max  
0.6  
ISET Short  
Fault  
0.4  
Range  
Non Restricted  
Operating Area  
min  
0.2  
0
100  
1000  
10000  
ISET - W  
8. Programmed/Clamped Out Current  
8.4.5 TS  
The TS function is designed to follow the temperature sensing standard for Li-Ion and Li-Pol batteries. There are  
two thresholds, 45°C and 0°C. Normal operation occurs between 0°C and 45°C.  
The TS feature is implemented using an internal 50μA current source to bias the thermistor (designed for use  
with a 10k NTC β = 3370 (SEMITEC 103AT-2 or Mitsubishi TH05-3H103F) connected from the TS terminal to  
VSS. If this feature is not needed, a fixed 10kΩ can be placed between TS and VSS to allow normal operation.  
This may be done if the host is monitoring the thermistor and then the host would determine when to pull the TS  
terminal low to disable charge.  
The TS terminal has two additional features, when the TS terminal is pulled low or floated/driven high. A low  
disables charge (similar to a high on the BAT_EN feature) and a high puts the charger in TTDM.  
Above 45°C or below 0°C the charge is disabled. Once the thermistor reaches –10°C the TS current folds back  
to keep a cold thermistor (between –10°C and –50°C) from placing the IC in the TTDM mode. If the TS terminal  
is pulled low into disable mode, the current is reduce to 30μA, see 6. Since the ITS curent is fixed along with  
the temperature thresholds, it is not possible to use thermistor values other than the 10k NTC (at 25°C).  
8.4.6 Termination and Timer Disable Mode (TTDM) - TS Terminal High  
The battery charger is in TTDM when the TS terminal goes high from removing the thermistor (removing battery  
pack/floating the TS terminal) or by pulling the TS terminal up to the TTDM threshold.  
When entering TTDM, the 10 hour safety timer is held in reset and termination is disabled. A battery detect  
routine is run to see if the battery was removed or not. If the battery was removed then the CHG terminal will go  
to its high impedance state if not already there. If a battery is detected the CHG terminal does not change states  
until the current tapers to the termination threshold, where the CHG terminal goes to its high impedance state if  
not already there (the regulated output will remain on).  
The charging profile does not change (still has pre-charge, fast-charge constant current and constant voltage  
modes). This implies the battery is still charged safely and the current is allowed to taper to zero.  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
 
bq21040  
www.ti.com.cn  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
When coming out of TTDM, the battery detect routine is run and if a battery is detected, then a new charge cycle  
begins and the CHG LED turns on.  
If TTDM is not desired upon removing the battery with the thermistor, one can add a 237k resistor between TS  
and VSS to disable TTDM. This keeps the current source from driving the TS terminal into TTDM. This creates  
0.1°C error at hot and a 3°C error at cold.  
8.4.7 Timers  
The pre-charge timer is set to 30 minutes. The pre-charge current, can be programmed to off-set any system  
load, making sure that the 30 minutes is adequate.  
The fast charge timer is fixed at 10 hours and can be increased real time by going into thermal regulation, IN-  
DPM or if in USB current limit. The timer clock slows by a factor of 2, resulting in a clock than counts half as fast  
when in these modes. If either the 30 minute or ten hour timer times out, the charging is terminated and the CHG  
terminal goes high impedance if not already in that state. The fast charge timer is reset by disabling the IC,  
cycling power or going into and out of TTDM.  
8.4.8 Termination  
Once the OUT terminal goes above VRCH, (reaches voltage regulation) and the current tapers down to the  
termination threshold (10% of the fast charge current), the CHG terminal goes high impedance and a battery  
detect route is run to determine if the battery was removed or the battery is full. If the battery is present, the  
charge current will terminate. If the battery was removed along with the thermistor, then the TS terminal is driven  
high and the charge enters TTDM. If the battery was removed and the TS terminal is held in the active region,  
then the battery detect routine will continue until a battery is inserted.  
8.4.9 Battery Detect Routine  
The battery detect routine should check for a missing battery while keeping the OUT terminal at a useable  
voltage. Whenever the battery is missing the CHG terminal should be high impedance.  
The battery detect routine is run when entering and exiting TTDM to verify if battery is present, or run all the time  
if battery is missing and not in TTDM. On power-up, if battery voltage is greater than VRCH threshold, a battery  
detect routine is run to determine if a battery is present.  
The battery detect routine is disabled while the IC is in TTDM, or has a TS fault. See 9 for the Battery Detect  
Flow Diagram.  
8.4.10 Refresh Threshold  
After termination, if the OUT terminal voltage drops to VRCH (100mV below regulation) then a new charge is  
initiated, but the CHG terminal remains at a high impedance (off).  
8.4.11 Starting a Charge on a Full Battery  
The termination threshold is raised by 14%, for the first minute of a charge cycle so if a full battery is removed  
and reinserted or a new charge cycle is initiated, that the new charge terminates (less than 1 minute). Batteries  
that have relaxed many hours may take several minutes to taper to the termination threshold and terminate  
charge.  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
Start  
BATT_DETECT  
Start 25ms timer  
No  
Timer Expired?  
Yes  
Battery Present  
Turn off Sink Current  
Return to flow  
Yes  
Is VOUT<VREG-100mV?  
No  
Set OUT REG  
to VREG-400mV  
Enable sink current  
Reset & Start 25ms timer  
No  
Timer Expired?  
Yes  
Yes  
Battery Present  
Turn off Sink Current  
Return to flow  
Is VOUT>VREG-300mV?  
No  
Battery Absent  
Don’t Signal Charge  
Turn off Sink Current  
Return to Flow  
9. Battery Detect Routine (bq21040)  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
bq21040  
www.ti.com.cn  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The bq21040 device is a highly integrated Li-Ion and Li-Pol linear charger device targeted at space-limited  
portable applications. The device operates from either a USB port or AC adapter. The high input voltage range  
with input overvoltage protection supports low-cost unregulated adapters. This device has a single power output  
that charges the battery. A system load can be placed in parallel with the battery as long as the average system  
load does not keep the battery from charging fully during the 10 hour safety timer.  
9.2 Typical Application  
IOUT_FAST_CHG = 540mA; IOUT_PRE_CHG = 108mA; IOUT_TERM = 54mA  
bq21040  
VIN  
VOUT  
TS  
VIN  
BAT  
TEMP  
System  
Load  
PACK+  
1 µF  
1 µF  
+
RCHG  
œ
NTC  
ISET  
RISET  
PACKœ  
GND  
CHG  
Copyright © 2016, Texas Instruments Incorporated  
10. Typical Application Circuit  
9.2.1 Design Requirements  
Supply voltage = 5 V  
Fast charge current: IOUT-FC = 540 mA; ISET-terminal 2  
Termination Current Threshold: %IOUT-FC = 10% of Fast Charge or about 54mA  
Pre-Charge Current by default is twice the termination Current or about 108mA  
TS – Battery Temperature Sense = 10k NTC (103AT)  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
Typical Application (接下页)  
9.2.2 Detailed Design Procedure  
9.2.2.1 Calculations  
9.2.2.1.1 Program the Fast Charge Current, ISET:  
RISET = [K(ISET) / I(OUT)  
]
(2)  
From the Electrical Characteristics table:  
K(SET) = 540AΩ  
RISET = [540A/0.54A] = 1.0 kΩ  
Selecting the closest standard value, use a 1.0 kresistor between ISET (terminal 16) and Vss.  
9.2.2.1.2 Pre-Charge and Termination Current Thresholds, ITERM, and PRE-CHG  
TERM = I(OUT) × 10%IOUT-FC  
(3)  
(4)  
TERM = 540mA × 10% = 54mA  
One can calculate the pre-charge current by using 20% of the fast charge current (factor of 2 difference).  
PRE-Charge = I(OUT) × 20%IOUT-FC  
(5)  
(6)  
PRE-Charge = 540mA × 20% = 108mA  
9.2.2.1.3 TS Function  
Use a 10k NTC thermistor in the battery pack (103AT).  
To Disable the temp sense function, use a fixed 10k resistor between the TS (terminal 1) and Vss.  
9.2.2.1.4 CHG  
LED Status: connect a 1.5kΩ resistor in series with a LED between the OUT terminal and the CHG terminal.  
Processor Monitoring: Connect a pull-up resistor between the processor’s power rail and the CHG terminal.  
9.2.2.2 Selecting In and Out Terminal Capacitors  
In most applications, all that is needed is a high-frequency decoupling capacitor (ceramic) on the power terminal,  
input and output terminals. Using the values shown on the application diagram, is recommended. After  
evaluation of these voltage signals with real system operational conditions, one can determine if capacitance  
values can be adjusted toward the minimum recommended values (DC load application) or higher values for fast  
high amplitude pulsed load applications. Note if designed for high input voltage sources (bad adaptors or wrong  
adaptors), the capacitor needs to be rated appropriately. Ceramic capacitors are tested to 2x their rated values  
so a 16V capacitor may be adequate for a 30V transient (verify tested rating with capacitor manufacturer).  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
bq21040  
www.ti.com.cn  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
Typical Application (接下页)  
9.2.3 Application Curves  
SETUP: bq21040 typical applications schematic; VIN = 5V, VBAT = 3.6V (unless otherwise indicated)  
11. Power-Up Timing  
12. Power-Up Timing – No Battery or Load in TTDM  
13. Start-Up in Thermal Regulation  
14. TS Entering and Leaving Cold Temperature  
15. OVP 8-V Adaptor — Hot Plug  
16. OVP From Normal Power-Up  
Operation – VIN 0 V 6 V 7 V 6 V0 V  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
Typical Application (接下页)  
.
Fixed 10kresistor, between TS and GND.  
17. TS Enable and Disable  
18. Power-Up Timing with No Battery and No Load –  
Battery Detection  
19. Battery Removal – GND Removed 1st, 42-Load  
20. Battery Removal With OUT and  
TS Disconnect 1st, With 100-Load  
Continuous battery detection when not in TTDM  
CH4: IOUT (1A/Div)  
Battery voltage swept from 0V to 4.25V to 3.9V.  
21. Battery Removal With Fixed TS = 0.5 V  
22. Battery Charge Profile  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
bq21040  
www.ti.com.cn  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
Typical Application (接下页)  
CH4: IOUT (1A/Div)  
CH4: IOUT (0.2A/Div)  
23. ISET Shorted During Normal Operation  
24. ISET Shorted Prior to USB Power-up  
CH4: IOUT (0.2A/Div)  
25. DPM – Adaptor Current Limits – VIN Regulated  
26. DPM – USB Current Limits – VIN Regulated to 4.4 V  
The IC temperature rises to 125°C and enters thermal  
regulation. Charge current is reduced to regulate the IC at  
125°C. VIN is reduced, the IC temperature drops, the charge  
current returns to the programmed value  
VIN swept from 5 V to 3.9 V to 5 V  
VBAT = 4 V  
.
28. Entering and Exiting UVLO  
27. Charge Cycle With Thermal Regulation  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 3.5 V and 28 V and current  
capability of at least the maximum designed charge current. This input supply should be well regulated. If located  
more than a few inches from the bq21040 IN and GND terminals, a larger capacitor is recommended.  
11 Layout  
11.1 Layout Guidelines  
To obtain optimal performance, the decoupling capacitor from IN to GND (thermal pad) and the output filter  
capacitors from OUT to GND (thermal pad) should be placed as close as possible to the bq21040, with short  
trace runs to both IN, OUT, and GND (thermal pad).  
All low-current GND connections should be kept separate from the high-current charge or discharge paths  
from the battery. Use a single-point ground technique incorporating both the small signal ground path and the  
power ground path.  
The high current charge paths into IN terminal and from the OUT terminal must be sized appropriately for the  
maximum charge current in order to avoid voltage drops in these traces  
The bq21040 is packaged in a thermally-enhanced MLP package. The package includes a thermal pad to  
provide an effective thermal contact between the IC and the printed circuit board (PCB); this thermal pad is  
also the main ground connection for the device. Connect the thermal pad to the PCB ground connection. It is  
best to use multiple 10mil vias in the power pad of the IC and close enough to conduct the heat to the bottom  
ground plane. The bottom ground place should avoid traces that “cut off” the thermal path. The thinner the  
PCB the less temperature rise. The EVM PCB has a thickness of 0.031 inches and uses 2 oz. (2.8mil thick)  
copper on top and bottom, and is a good example of optimal thermal performance.  
11.2 Layout Example  
29. Board Layout  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
bq21040  
www.ti.com.cn  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
11.3 Thermal Considerations  
The bq21040 is packaged in a thermally-enhanced MLP package. The package includes a thermal pad to  
provide an effective thermal contact between the IC and the printed circuit board (PCB). The power pad should  
be directly connected to the VSS terminal. The most common measure of package thermal performance is  
thermal impedance (RθJA) measured (or modeled) from the chip junction to the air surrounding the package  
surface (ambient). The mathematical expression for ψJT is:  
ψJT = (TJ – T) / P  
where  
TJ = Chip junction temperature  
P = Device power dissipation  
T = Case temperature  
(7)  
Factors that can influence the measurement and calculation of ψJT include:  
1. Whether or not the device is board mounted  
2. Trace size, composition, thickness, and geometry  
3. Orientation of the device (horizontal or vertical)  
4. Volume of the ambient air surrounding the device under test and airflow  
5. Whether other surfaces are in close proximity to the device being tested  
Due to the charge profile of Li-Ion and Li-Pol batteries the maximum power dissipation is typically seen at the  
beginning of the charge cycle when the battery voltage is at its lowest. Typically after fast charge begins the pack  
voltage increases to 3.4V within the first 2 minutes. The thermal time constant of the assembly typically takes a  
few minutes to heat up so when doing maximum power dissipation calculations, 3.4V is a good minimum voltage  
to use. This is verified, with the system and a fully discharged battery, by plotting temperature on the bottom of  
the PCB under the IC (pad should have multiple vias), the charge current and the battery voltage as a function of  
time. The fast charge current will start to taper off if the part goes into thermal regulation.  
The device power dissipation, P, is a function of the charge rate and the voltage drop across the internal  
PowerFET. It can be calculated from the following equation when a battery pack is being charged:  
P = [V(IN) – V(OUT)] × I(OUT) + [V(OUT) – V(BAT)] × I(BAT)  
(8)  
The thermal loop feature reduces the charge current to limit excessive IC junction temperature. It is  
recommended that the design not run in thermal regulation for typical operating conditions (nominal input voltage  
and nominal ambient temperatures) and use the feature for non typical situations such as hot environments or  
higher than normal input source voltage. With that said, the IC will still perform as described, if the thermal loop  
is always active.  
11.3.1 Leakage Current Effects on Battery Capacity  
To determine how fast a leakage current on the battery will discharge the battery is an easy calculation. The time  
from full to discharge can be calculated by dividing the Amp-Hour Capacity of the battery by the leakage current.  
For a 0.75AHr battery and a 10μA leakage current (750 mAHr / 0.010 mA = 75000 hours), it would take 75k  
hours or 8.8 years to discharge. In reality the self discharge of the cell would be much faster so the 10μA  
leakage would be considered negligible.  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
bq21040  
ZHCSEZ6C APRIL 2016REVISED AUGUST 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据发生变化时,  
我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Aug-2017  
PACKAGING INFORMATION  
Orderable Device  
BQ21040DBVR  
BQ21040DBVT  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
SOT-23  
SOT-23  
DBV  
6
6
3000  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-1-260C-UNLIM  
130E  
130E  
ACTIVE  
DBV  
250  
Green (RoHS  
& no Sb/Br)  
Call TI  
Level-1-260C-UNLIM  
0 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Aug-2017  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Aug-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ21040DBVR  
BQ21040DBVT  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000  
250  
178.0  
178.0  
9.0  
9.0  
3.23  
3.23  
3.17  
3.17  
1.37  
1.37  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Aug-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ21040DBVR  
BQ21040DBVT  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
18.0  
18.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
重要声明  
德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提  
供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。  
TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其  
他条款可能适用于其他类型 TI 产品及服务的使用或销售。  
复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文  
件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去  
相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。  
买方和在系统中整合 TI 产品的其他开发人员(总称设计人员)理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且  
应全权 负责并确保 应用的安全性, 及设计人员的 应用 (包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计  
人员就自己设计的 应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后  
果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何 应用前, 将彻底测试该等 应用  
和 该等应用中所用 TI 产品的 功能。  
TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称“TI 资  
),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、  
访问或使用任何特定的 TI 资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI 资源。  
TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。  
TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。  
设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或  
其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限  
于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务  
的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权  
的许可。  
TI 资源系按原样提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡  
发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或  
与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关  
的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔  
偿,TI 概不负责。  
TI 已明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担  
任何责任。  
如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的  
应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准。设计人员不可将  
任何 TI 产品用于关乎性命的医疗设备,除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是  
指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设  
备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的  
所有医疗设备。  
TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的  
应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。  
设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2017 德州仪器半导体技术(上海)有限公司  

相关型号:

BQ21040DBVR

Single Cell Li-Ion and Li-Pol Battery Charger
TI

BQ21040DBVT

1-cell, 0.8-A Li-ion and Li-polymerymer battery charger 6-SOT-23 0 to 125
TI

BQ21061

具有电源路径、4.2V VBAT 和 VOUT=VBAT + 225mV 的独立型单节电池 1.5A 线性充电器
TI

BQ21061YFPR

具有电源路径、4.2V VBAT 和 VOUT=VBAT + 225mV 的独立型单节电池 1.5A 线性充电器 | YFP | 20 | -40 to 85
TI

BQ21061YFPT

具有电源路径、4.2V VBAT 和 VOUT=VBAT + 225mV 的独立型单节电池 1.5A 线性充电器 | YFP | 20 | -40 to 85
TI

BQ21062

具有 10nA 运输模式、电源路径、稳定系统电压和 LDO 的 500mA 单节电池线性充电器
TI

BQ21062YFPR

具有 10nA 运输模式、电源路径、稳定系统电压和 LDO 的 500mA 单节电池线性充电器 | YFP | 20 | -40 to 85
TI

BQ21080

采用 WCSP 封装且具有稳压电源路径的 800mA 锂离子和磷酸铁锂 I2C 可编程线性充电器
TI

BQ21080YBGR

采用 WCSP 封装且具有稳压电源路径的 800mA 锂离子和磷酸铁锂 I2C 可编程线性充电器 | YBG | 8 | -40 to 85
TI

BQ2110

NiCd or NiMH Gas Gauge Module
TI

BQ2110LB

NiCd or NiMH Gas Gauge Module
TI

BQ2110LB-KT

暂无描述
TI