BQ24100 [TI]

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POL CHARGE MANAGEMENT IC WITH INTEGRATED POWERFETS; 同步开关模式,锂离子和锂聚合物充电管理IC,集成POWERFETS
BQ24100
型号: BQ24100
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POL CHARGE MANAGEMENT IC WITH INTEGRATED POWERFETS
同步开关模式,锂离子和锂聚合物充电管理IC,集成POWERFETS

开关
文件: 总26页 (文件大小:613K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
bq24100, bq24103  
bq24105, bq24108  
Actual Size  
5,5 mm x 3,5 mm  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POLYMER CHARGE-MANAGEMENT  
IC WITH INTEGRATED POWER FETs (bqSWITCHER)  
FEATURES  
APPLICATIONS  
Handheld Products  
Ideal For Highly Efficient Charger Designs For  
Single-, Two- or Three-Cell Li-Ion and  
Li-Polymer  
Battery Packs  
Portable Media Players  
Industrial and Medical Equipment  
Portable Equipment  
Integrated Synchronous Fixed-Frequency  
PWM Controller Operating at 1.1 MHz With  
0% to 100% Duty Cycle  
DESCRIPTION  
The bqSWITCHER™ series are highly integrated  
Integrated Power FETs For Up To 2-A Charge  
Rate  
Li-ion  
and  
Li-polymer  
switch-mode  
charge  
management devices targeted at a wide range of  
portable applications. The bqSWITCHER™ series  
offers integrated synchronous PWM controller and  
power FETs, high-accuracy current and voltage  
regulation, charge preconditioning, charge status, and  
charge termination, in a small, thermally enhanced  
QFN package. The system-controlled version  
provides additional inputs for full charge management  
under system control.  
High-Accuracy Voltage and Current  
Regulation  
Available In Both Stand-Alone (Built-In Charge  
Management and Control) and  
System-Controlled (Under System Command)  
Versions  
Status Outputs For LED or Host Processor  
Interface Indicates Charge-In-Progress,  
Charge Completion, Fault, and AC-Adapter  
Present Conditions  
The bqSWITCHER charges the battery in three  
phases: conditioning, constant current, and constant  
voltage. Charge is terminated based on user-  
selectable minimum current level. A programmable  
charge timer provides a safety backup for charge  
termination. The bqSWITCHER automatically restarts  
the charge cycle if the battery voltage falls below an  
internal threshold. The bqSWITCHER automatically  
enters sleep mode when VCC supply is removed.  
20-V Maximum Voltage Rating on IN and OUT  
Pins  
High-Side Current Sensing  
Optional Battery Temperature Monitoring  
Automatic Sleep Mode for Low Power  
Consumption  
System-Controlled Version Can Be Used In  
NiMH and NiCd Applications  
Uses Ceramic Capacitors  
Reverse Leakage Protection Prevents Battery  
Drainage  
Thermal Shutdown and Protection  
Built-In Battery Detection  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
bqSWITCHER, PowerPAD are trademarks of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2004–2005, Texas Instruments Incorporated  
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
These devices have limited built-in ESD protection. The leads should be shorted together or the device  
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.  
TYPICAL SINGLE CELL LI-ION STAND-ALONE CHARGER  
L
OUT  
bq24100RHL  
IN OUT  
10 µH  
R
(SNS)  
V
IN  
3
4
6
2
1
10 µF  
C
10 µF  
OUT  
IN  
OUT 20  
VCC  
PGND 17  
STAT1 PGND 18  
PACK+  
19 STAT2  
SNS 15  
BAT 14  
+
VTSB  
PG  
5
7
PACK-  
R
R
(ISET1)  
0.1 µF  
TTC  
ISET1  
ISET2  
8
9
C
TTC  
(ISET2)  
16 CE  
R
T1  
10 VSS  
PWR PAD  
TS 12  
TEMP  
VTSB 11  
BATTERY  
PACK  
R
T2  
V
IN  
V
IN  
V
IN  
D1  
Adapter  
Present  
D3  
Charge  
D2  
Done  
UDG-04033  
ORDERING INFORMATION(1)  
TJ  
CHARGE REGULATION VOLTAGE (V)  
INTENDED APPLICATION PART NUMBER(2)(3) MARKINGS  
bq24100RHLR  
bq24100RHLT  
bq24103RHLR  
bq24103RHLT  
bq24105RHLR  
bq24105RHLT  
bq24108RHLR  
bq24113RHLR  
bq24113RHLT  
bq24115RHLR  
bq24115RHLT  
CIA  
CIA  
CID  
CID  
CIF  
CIF  
CIU  
CIJ  
CIJ  
CIL  
CIL  
4.2 V  
Stand-alone  
Stand-alone  
1 or 2 cells selectable (CELLS pin, 4.2 V or 8.4 V)  
Externally programmable (2.1 V to 15.5 V)  
4.2 (Blinking status pins)  
Stand-alone  
Stand-alone  
–40°C to 125°C  
1 or 2 cells selectable (CELLS pin, 4.2 V or 8.4 V)  
System-controlled  
Externally programmable (2.1 V to 15.5 V)  
System-controlled  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
Web site at www.ti.com.  
(2) The RHL package is available in the following options:  
T - taped and reeled in quantities of 3,000 devices per reel  
R - taped and reeled in quantities of 250 devices per reel  
(3) This product is RoHS compatible, including a lead concentration that does not exceed 0.1% of total product weight, and is suitable for  
use in specified lead-free soldering processes.  
2
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
PACKAGE DISSIPATION RATINGS  
TA < 40°C  
POWER RATING  
DERATING FACTOR  
ABOVE TA = 40°C  
PACKAGE  
ΘJA  
RHL(1)  
46.87°C/W  
1.81 W  
0.021 W/°C  
(1) This data is based on using the JEDEC High-K board, and the exposed die pad is connected to a copper pad on the board. This is  
connected to the ground plane by a 2x3 via matrix.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
UNIT  
Supply voltage range (with respect to VSS  
)
IN, VCC  
20 V  
–0.3 V to 20 V  
–0.7 V to 20 V  
7 V  
STAT1, STAT2, PG, CE, CELLS, SNS, BAT  
OUT  
Input voltage range (with respect to VSS and PGND)  
CMODE, TS, TTC  
VTSB  
3.6 V  
ISET1, ISET2  
3.3 V  
Voltage difference between SNS and BAT inputs (VSNS - VBAT  
)
±1 V  
Output sink  
STAT1, STAT2, PG  
OUT  
10 mA  
Output current (average)  
Operating free-air temperature range  
Junction temperature range  
Storage temperature  
2.2 A  
TA  
–40°C to 85°C  
–40°C to 125°C  
–65°C to 150°C  
300°C  
TJ  
Tstg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
4.35(1)  
–40  
NOM  
MAX UNIT  
Supply voltage, VCC and IN (Tie together)  
Operating junction temperature range, TJ  
16.0(2)  
V
125  
°C  
(1) The IC continues to operate below Vmin, to 3.5 V, but the specifications are not tested and not guaranteed.  
(2) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on either the IN or OUT pins. A tight layout  
minimizes switching noise.  
ELECTRICAL CHARACTERISTICS  
TJ = 0°C to 125°C and recommended supply voltage range (unless otherwise stated)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CURRENTS  
VCC > VCC(min), PWM switching  
VCC > VCC(min), PWM NOT switching  
VCC > VCC(min), CE = HIGH  
10  
mA  
µA  
IVCC(VCC)  
VCC supply current  
5
315  
0°C TJ 65°C, VI(BAT) = 4.2 V,  
VCC < V(SLP) or VCC > V(SLP) but not in charge  
3.5  
5.5  
7.7  
Battery discharge sleep current, (SNS,  
BAT, OUT, FB pins)  
0°C TJ 65°C, VI(BAT) = 8.4 V,  
VCC < V(SLP) or VCC > V(SLP) but not in charge  
I(SLP)  
µA  
0°C TJ 65°C, VI(BAT) = 12.6 V,  
VCC < V(SLP) or VCC > V(SLP) but not in charge  
3
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS (continued)  
TJ = 0°C to 125°C and recommended supply voltage range (unless otherwise stated)  
PARAMETER  
VOLTAGE REGULATION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CELLS = Low, in voltage regulation  
CELLS = High, in voltage regulation  
Operating in voltage regulation  
4.2  
8.4  
4.2  
Output voltage, bq24103/13  
Output voltage, bq24100/08  
VOREG  
V
V
Feedback regulation REF for bq24105/15  
only (W/FB)  
VIBAT  
IIBAT = 25 nA typical into pin  
TA = 25°C  
2.1  
–0.5%  
–1%  
0.5%  
1%  
Voltage regulation accuracy  
CURRENT REGULATION - FAST CHARGE  
V
LOWV VI(BAT) < VOREG,  
IOCHARGE  
Output current range of converter  
150  
2000  
mA  
V(VCC) - VI(BAT) > V(DO-MAX)  
100 mV VIREG200 mV,  
1V  
RSET1  
V
+
  1000,  
IREG  
VIREG  
Voltage regulated across R(SNS) Accuracy  
–10%  
10%  
Programmed Where  
5 kΩ ≤ RSET1 10 k, Select RSET1 to  
program VIREG  
,
VIREG(measured) = IOCHARGE + RSNS  
(–10% to 10% excludes errors due to RSET1  
and R(SNS) tolerances)  
V
(LOWV) VI(BAT) VO(REG)  
,
V(ISET1)  
K(ISET1)  
Output current set voltage  
Output current set factor  
1
V
V(VCC) VI(BAT)  
×
V(DO-MAX)  
VLOWV VI(BAT) < VO(REG)  
(VCC) VI(BAT)  
,
1000  
V/A  
V
+
V(DO-MAX)  
PRECHARGE AND SHORT-CIRCUIT CURRENT REGULATION  
Precharge to fast-charge transition voltage  
VLOWV  
68  
71.4  
30  
75  
%VO(REG)  
ms  
threshold, BAT, bq24100/03/05/08 ICs only  
Deglitch time for precharge to fast charge  
transition  
Rising voltage;  
tRISE, tFALL = 100 ns, 2-mV overdrive  
t
20  
15  
40  
IOPRECHG  
V(ISET2)  
K(ISET2)  
Precharge range  
VI(BAT) < VLOWV, t < tPRECHG  
200  
mA  
mV  
V/A  
Precharge set voltage, ISET2  
Precharge current set factor  
VI(BAT) < VLOWV, t < tPRECHG  
100  
1000  
100 mV VIREG-PRE 100 mV,  
0.1V  
RSET2  
V
+
  1000,  
IREG*PRE  
VIREG-PRE  
Voltage regulated across RSNS-Accuracy  
–20%  
20%  
(PGM) Where  
1.2 kΩ ≤ RSET2 10 k, Select RSET1  
to program VIREG-PRE,  
VIREG-PRE (Measured) = IOPRE-CHG × RSNS  
(–20% to 20% excludes errors due to RSET1  
and RSNS tolerances)  
CHARGE TERMINATION (CURRENT TAPER) DETECTION  
ITERM  
Charge current termination detection range VI(BAT) > VRCH  
15  
200  
mA  
mV  
V/A  
Charge termination detection set voltage,  
ISET2  
VTERM  
K(ISET2)  
VI(BAT) > VRCH  
100  
Termination current set factor  
1000  
Charger termination accuracy  
VI(BAT) > VRCH  
–20%  
20  
20%  
40  
Both rising and falling,  
2-mV overdrive tRISE, tFALL = 100 ns  
tdg-TERM  
Deglitch time for charge termination  
30  
ms  
TEMPERATURE COMPARATOR AND VTSB BIAS REGULATOR  
VLTF  
VHTF  
VTCO  
Cold temperature threshold, TS  
Hot temperature threshold, TS  
Cutoff temperature threshold, TS  
LTF hysteresis  
72.8  
33.7  
28.7  
0.5  
73.5  
34.4  
29.3  
1.0  
74.2  
35.1  
29.9  
1.5  
%VO(VTSB)  
4
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS (continued)  
TJ = 0°C to 125°C and recommended supply voltage range (unless otherwise stated)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Both rising and falling,  
tdg-TS  
Deglitch time for temperature fault, TS  
20  
30  
40  
ms  
2-mV overdrive tRISE, tFALL = 100 ns  
VCC > VIN(min)  
,
VO(VTSB)  
VO(VTSB)  
TS bias output voltage  
3.15  
V
I(VTSB) = 10 mA 0.1 µF CO(VTSB) 1 µF  
VCC  
>
,
IN(min)  
TS bias voltage regulation accuracy  
–10%  
10%  
I(VTSB) = 10 mA 0.1 µF CO(VTSB) 1 µF  
BATTERY RECHARGE THRESHOLD  
VRCH  
Recharge threshold voltage  
Deglitch time  
Below VOREG  
75  
20  
100  
30  
125  
40  
mV/cell  
ms  
VI(BAT) < decreasing below threshold,  
tFALL = 100 ns 10-mV overdrive  
tdg-RCH  
STAT1, STAT2, AND PG OUTPUTS  
VOL(STATx) Low-level output saturation voltage, STATx IO = 5 mA  
0.5  
0.1  
V
V
VOL(PG)  
Low-level output saturation voltage, PG  
IO = 10 mA  
CE CMODE, CELLS INPUTS  
VIL  
Low-level input voltage  
IIL = 5 µA  
0
0.4  
VIH  
High-level input voltage  
IIH = 20 µA  
1.3  
VCC  
TTC INPUT  
tPRECHG  
tCHARGE  
Precharge timer  
1440  
25  
1800  
2160  
572  
s
Programmable charge timer range  
Charge timer accuracy  
Timer multiplier  
t(CHG) = C(TTC) × K(TTC)  
minutes  
0.01 µF C(TTC) 0.18 µF  
-10%  
10%  
KTTC  
2.6  
min/nF  
µF  
CTTC  
Charge time capacitor range  
TTC enable threshold voltage  
0.01  
0.22  
VTTC_EN  
V(TTC) rising  
200  
mV  
SLEEP COMPARATOR  
V
CC VIBAT  
+5 mV  
V
CC VIBAT  
+75 mV  
2.3 V VI(OUT) VOREG, for 1 or 2 cells  
VSLP-ENT  
Sleep-mode entry threshold  
V
VI(OUT) = 12.6 V, RIN = 1 kΩ  
bq24105/15(1)  
V
CC VIBAT  
V
CC VIBAT  
+73 mV  
-4 mV  
VSLP-EXIT  
Sleep-mode exit hysteresis,  
Deglitch time for sleep mode  
2.3 V VI(OUT)VOREG  
40  
160  
mV  
µs  
VCC decreasing below threshold,  
tFALL = 100 ns, 10-mV overdrive,  
PMOS turns off  
5
tdg-SLP  
VCC decreasing below threshold,  
tFALL = 100 ns, 10-mV overdrive,  
STATx pins turn off  
20  
30  
40  
ms  
UVLO  
VUVLO-ON  
IC active threshold voltage  
IC active hysteresis  
VCC rising  
VCC falling  
3.15  
120  
3.30  
150  
3.50  
V
mV  
PWM  
7 V VCC VCC(max)  
4.5 V VCC 7 V  
7 V VCC VCC(max)  
4.5 V VCC 7 V  
400  
500  
130  
150  
Internal P-channel MOSFET on-resistance  
Internal N-channel MOSFET on-resistance  
mΩ  
fOSC  
Oscillator frequency  
1.1  
MHz  
Frequency accuracy  
–9%  
0%  
9%  
DMAX  
DMIN  
Maximum duty cycle  
100%  
Minimum duty cycle  
tTOD  
Switching delay time (turn on)  
Minimum synchronous FET on time  
Synchronous FET minimum current-off  
20  
60  
ns  
ns  
tsyncmin  
50  
400  
mA  
(2)  
threshold  
(1) For bq24105 and bq24115 only. RIN is connected between IN and PGND pins and needed to ensure sleep entry.  
(2) N-channel always turns on for ~60 ns and then turns off if current is too low.  
5
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS (continued)  
TJ = 0°C to 125°C and recommended supply voltage range (unless otherwise stated)  
PARAMETER  
BATTERY DETECTION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Battery detection current during time-out  
fault  
IDETECT  
VI(BAT) < VOREG – VRCH  
2
mA  
IDISCHRG1  
tDISCHRG1  
IWAKE  
Discharge current  
Discharge time  
Wake current  
Wake time  
VSHORT < VI(BAT) < VOREG – VRCH  
VSHORT < VI(BAT) < VOREG – VRCH  
VSHORT < VI(BAT) < VOREG – VRCH  
VSHORT < VI(BAT) < VOREG – VRCH  
Begins after termination detected,  
400  
1
µA  
s
2
mA  
s
tWAKE  
0.5  
IDISCHRG2  
tDISCHRG2  
Termination discharge current  
Termination time  
400  
262  
µA  
ms  
VI(BAT) VOREG  
OUTPUT CAPACITOR  
Required output ceramic capacitor range  
COUT  
from SNS to PGND, between inductor and  
RSNS  
4.7  
10  
47  
µF  
µF  
Required SNS capacitor (ceramic) at SNS  
pin  
CSNS  
0.1  
PROTECTION  
Threshold over VOREG to turn off P-channel  
MOSFET, STAT1, and STAT2 during charge  
or termination states  
VOVP  
OVP threshold voltage  
110  
117  
121  
%VO(REG)  
ILIMIT  
Cycle-by-cycle current limit  
Short-circuit voltage threshold, BAT  
Short-circuit current  
2.6  
1.95  
35  
3.6  
2
4.5  
2.05  
65  
A
VSHORT  
ISHORT  
TSHTDWN  
VI(BAT) falling  
V/cell  
mA  
VI(BAT) VSHORT  
Thermal trip  
165  
10  
°C  
Thermal hysteresis  
RHL PACKAGE  
(BOTTOM VIEW)  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
STAS2  
PGND  
PGND  
CE  
2
3
4
5
6
7
8
9
STAT1  
IN  
IN  
PG  
SNS  
BAT  
VCC  
TTC  
ISET1  
ISET2  
NC  
11  
10  
TS  
TERMINAL FUNCTIONS  
TERMINAL  
bq24100,  
I/O  
DESCRIPTION  
NAME  
bq24103 bq24105 bq24113 bq24115  
bq24108  
Battery voltage sense input. Bypass it with a capacitor to PGND if there are  
long inductive leads to battery.  
BAT  
14  
14  
16  
14  
16  
14  
16  
14  
16  
I
I
Charger enable input. This active low input, if set high, suspends charge and  
places the device in the low-power sleep mode. Do not pull up this input to  
VTSB.  
CE  
16  
6
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
I/O  
DESCRIPTION  
bq24100,  
bq24108  
NAME  
CELLS  
CMODE  
FB  
bq24103 bq24105 bq24113 bq24115  
Available on parts with fixed output voltage. Ground or float for single-cell  
operation (4.2 V). For two-cell operation (8.4 V) pull up this pin with a resistor  
13  
13  
7
I
I
I
to VCC  
.
Charge mode selection: low for precharge as set by ISET2 pin and high (pull  
up to VTSB or <7 V) for fast charge as set by ISET1.  
7
Output voltage analog feedback adjustment. Connect the output of a resistive  
voltage divider powered from the battery terminals to this node to adjust the  
output battery voltage regulation.  
13  
13  
IN  
3, 4  
8
3, 4  
8
3, 4  
8
3, 4  
8
3, 4  
8
I
Charger input voltage.  
Charger current set point 1 (fast charge). Use a resistor to ground to set this  
value.  
ISET1  
I/O  
Charge current set point 2 (precharge and termination), set by a resistor  
connected to ground. A low-level CMODE signal selects the ISET2 charge  
rate, but if the battery voltage reaches the regulation set point, bqSWITCHER  
changes to voltage regulation regardless of CMODE input.  
ISET2  
9
9
9
9
9
I/O  
N/C  
13  
1
19  
1
19  
1
-
No connection. This pin must be left floating in the application.  
1
1
O
O
OUT  
Charge current output inductor connection.  
20  
20  
20  
20  
20  
Power-good status output (open drain). The transistor turns on when a valid  
VCC is detected. It is turned off in the sleep mode. PG can be used to drive a  
LED or communicate with a host processor.  
PG  
5
5
5
5
5
O
PGND  
SNS  
17,18  
15  
17,18  
15  
17,18  
15  
17,18  
15  
17, 18  
15  
Power ground input  
Charge current-sense input. Battery current is sensed via the voltage drop  
developed on this pin by an external sense resistor in series with the battery  
pack. A 0.1-µF capacitor to PGND is required.  
I
Charge status 1 (open-drain output). When the transistor turns on indicates  
charge in process. When it is off and with the condition of STAT2 indicates  
various charger conditions (See Table 1)  
STAT1  
STAT2  
TS  
2
19  
12  
7
2
19  
12  
7
2
19  
12  
7
2
2
O
O
I
Charge status 2 (open-drain output). When the transistor turns on indicates  
charge is done. When it is off and with the condition of STAT1 indicates  
various charger conditions (See Table 1)  
Temperature sense input. This input monitors its voltage against an internal  
threshold to determine if charging is allowed. Use an NTC thermistor and a  
voltage divider powered from VTSB to develop this voltage. (See Figure 7)  
12  
12  
Timer and termination control. Connect a capacitor from this node to GND to  
set the bqSWITCHER timer. When this input is low, the timer and termination  
detection are disabled.  
TTC  
I
I
VCC  
VSS  
6
6
6
6
6
Analog device input  
Analog ground input  
10  
10  
10  
10  
10  
TS internal bias regulator voltage. Connect capacitor (with a value between a  
0.1-µF and 1-µF) between this output and VSS.  
VTSB  
11  
11  
11  
11  
11  
O
There is an internal electrical connection between the exposed thermal pad  
and VSS. The exposed thermal pad must be connected to the same potential  
as the VSS pin on the printed circuit board. The power pad can be used as a  
star ground connection between VSS and PGND. A common ground plane may  
be used. VSS pin must be connected to ground at all times.  
Exposed  
Thermal  
Pad  
Pad  
Pad  
Pad  
Pad  
Pad  
7
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
FUNCTIONAL BLOCK DIAGRAM  
-
+
8
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
EFFICIENCY  
vs  
EFFICIENCY  
vs  
OUTPUT CHARGE CURRENT  
OUTPUT CHARGE CURRENT  
100  
90  
100  
90  
80  
80  
V
IN  
= 9 V  
70  
60  
50  
70  
60  
50  
V
IN  
= 4.5 V  
V
IN  
= 16 V  
V
IN  
= 16 V  
40  
30  
40  
30  
20  
10  
20  
10  
0
V
= 4.2 V  
V
= 8.4 V  
(BAT)  
(BAT)  
1 Cell  
= 25°C  
2 Cell  
= 25°C  
T
T
A
A
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
I
= Output Charge Current - A  
I
= Output Charge Current - A  
O(CHARGE)  
O(CHARGE)  
Figure 1.  
Figure 2.  
L
OUT  
10 µH  
bq24113RHL  
R
(SNS)  
V
IN  
3
4
6
2
5
7
IN  
OUT 1  
10 µF  
C
OUT  
10 µF  
IN  
OUT 20  
VCC  
PGND 17  
STAT1 PGND 18  
PG SNS 15  
CMODE BAT 14  
PACK+  
+
PACK-  
0.1 µF  
R
R
(ISET1)  
16 CE  
ISET1  
ISET2  
8
9
(ISET2)  
R
T1  
10 VSS  
TS 12  
TEMP  
13 CELLS  
VTSB 11  
R
T2  
BATTERY  
PACK  
To System  
UDG-04035  
Figure 3. Typical Application Circuit (System-Controlled Version)  
9
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
APPLICATION INFORMATION  
POR  
Check for Battery  
Presence  
Battery  
No  
Detect?  
Indicate BATTERY  
ABSENT  
Yes  
Suspend Charge  
TS Pin  
in LTF to HTF  
Range?  
No  
Indicate CHARGE  
SUSPEND  
Yes  
VBAT<VLOWV  
No  
Regulate  
IPRECHG  
Reset and Start  
T30min timer  
Yes  
Indicate Charge-  
In-Progress  
Suspend Charge  
TS pin  
in LTF to TCO  
range?  
Reset and Start  
FSTCHG timer  
No  
Indicate CHARGE  
SUSPEND  
No  
Regulate  
Current or Voltage  
Yes  
VBAT<VLOWV  
Yes  
TS pin  
in LTF to HTF  
range?  
Indicate Charge-  
In-Progress  
No  
Suspend Charge  
Yes  
TS Pin  
in LTF to TCO  
Range?  
No  
Indicate CHARGE  
SUSPEND  
T30min  
Expired?  
No  
Yes  
No  
TS pin  
in LTF to HTF  
range?  
FSTCHG Timer  
Expired?  
No  
VBAT<VLOWV  
No  
Yes  
Yes  
Yes  
Yes  
- Fault Condition  
- Enable IDETECT  
No  
ITERM detection?  
Indicate Fault  
No  
Yes  
Battery  
Replaced?  
(Vbat < Vrch?)  
- Turn Off Charge  
- Enable IDISCHG for  
tDISCHG2  
Indicate Charge-  
In-Progress  
Yes  
*NOTE: If the TTC pin is  
pulled low, the safety timer  
and termination are  
Charge Complete  
VBAT < VRCH  
?
No  
disabled; the charger  
continues to regulate, and  
the STAT pins indicate  
charge in progress.  
Indicate DONE  
*
Battery Removed  
If the TTC pin is pulled high  
(VTSB), only the safety  
timer is disabled  
Yes  
Indicate BATTERY  
ABSENT  
(termination is normal).  
Figure 4. Stand-Alone Version Operational Flow Chart  
10  
 
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
APPLICATION INFORMATION (continued)  
POR  
SLEEP MODE  
Vcc > V  
Checked at All  
I(BAT)  
No  
Indicate SLEEP  
MODE  
No  
Times  
Yes  
/CE=Low  
Yes  
Regulate  
I
O(PRECHG)  
CMODE=Low  
Yes  
Indicate Charge-  
In-Progress  
No  
Yes  
/CE=High  
No  
Regulate Current  
or Voltage  
Yes  
Indicate Charge-  
In-Progress  
CMODE=High  
or  
Yes  
V
in V  
REG  
IBAT  
Yes  
No  
CMODE=Low  
No  
No  
/CE=High  
Yes  
Turn Off Charge  
Indicate DONE  
Yes  
No  
/CE=Low  
Yes  
Figure 5. System-Controlled Operational Flow Chart  
11  
 
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
FUNCTIONAL DESCRIPTION FOR STAND-ALONE VERSION (bq2410x)  
The bqSWITCHER™ supports a precision Li-ion or Li-polymer charging system for single-, two- or three-cell  
applications. See Figure 4 and Figure 5 for operational flow charts and Figure 6 for a typical charge profile.  
Precharge  
Phase  
Voltage Regulation and  
Charge Termination Phase  
Current Regulation Phase  
Regulation Voltage  
Regulation Current  
Charge Voltage  
V
LOW  
V
SHORT  
Charge Current  
Precharge  
and Termination  
I
SHORT  
Programmable  
Safety Timer  
Precharge  
Timer  
UDG-04037  
Figure 6. Typical Charging Profile  
Temperature Qualification  
The bqSWITCHER continuously monitors battery temperature by measuring the voltage between the TS pin and  
VSS pin. A negative temperature coefficient thermistor (NTC) and an external voltage divider typically develop  
this voltage. The bqSWITCHER compares this voltage against its internal thresholds to determine if charging is  
allowed. To initiate a charge cycle, the battery temperature must be within the V(LTF)-to-V(HTF) thresholds. If  
battery temperature is outside of this range, the bqSWITCHER suspends charge and waits until the battery  
temperature is within the V(LTF)-to-V(HTF) range. During the charge cycle (both precharge and fast charge), the  
battery temperature must be within the V(LTF)-to-V(TCO) thresholds. If battery temperature is outside of this range,  
the bqSWITCHER suspends charge and waits until the battery temperature is within the V(LTF)-to-V(HTF) range.  
The bqSWITCHER suspends charge by turning off the PWM and holding the timer value (i.e., timers are not  
reset during a suspend condition). Note that the bias for the external resistor divider is provided from the VTSB  
output. Applying a constant voltage between the V(LTF)-to-V(HTF) thresholds to the TS pin disables the  
temperature-sensing feature.  
12  
 
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
FUNCTIONAL DESCRIPTION FOR STAND-ALONE VERSION (bq2410x) (continued)  
V
CC  
Charge Suspend  
Charge Suspend  
V
(LTF)  
Temperature Range  
to Initiate Charge  
Temperature Range  
During Charge Cycle  
V
(HTF)  
V
(TCO)  
Charge Suspend  
Charge Suspend  
V
SS  
Figure 7. TS Pin Thresholds  
Battery Preconditioning (Precharge)  
On power up, if the battery voltage is below the VLOWV threshold, the bqSWITCHER applies a precharge current,  
IPRECHG, to the battery. This feature revives deeply discharged cells. The bqSWITCHER activates a safety timer,  
tPRECHG, during the conditioning phase. If the VLOWV threshold is not reached within the timer period, the  
bqSWITCHER turns off the charger and enunciates FAULT on the STATx pins. In the case of a FAULT  
condition, the bqSWITCHER reduces the current to IDETECT. IDETECT is used to detect a battery replacement  
condition. Fault condition is cleared by POR or battery replacement.  
The magnitude of the precharge current, IO(PRECHG), is determined by the value of programming resistor, R(ISET2)  
,
connected to the ISET2 pin.  
K
  V  
(ISET2)  
(ISET2)  
I
+ ǒR  
(SNS)Ǔ  
O(PRECHG)  
  R  
(ISET2)  
(1)  
where  
RSNS is the external current-sense resistor  
V(ISET2) is the output voltage of the ISET2 pin  
K(ISET2) is the V/A gain factor  
V(ISET2) and K(ISET2) are specified in the Electrical Characteristics table.  
Battery Charge Current  
The battery charge current, IO(CHARGE), is established by setting the external sense resistor, R(SNS), and the  
resistor, R(ISET1), connected to the ISET1 pin.  
In order to set the current, first choose R(SNS) based on the regulation threshold VIREG across this resistor. Let  
VIREG = 100 mV to start and calculate the RSNS value needed.  
V
IREG  
R
+
(SNS)  
I
OCHARGE  
(2)  
If this value is not a standard sense resistor value, choose the next larger value. Using the selected standard  
value, solve for VIREG  
.
13  
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
FUNCTIONAL DESCRIPTION FOR STAND-ALONE VERSION (bq2410x) (continued)  
V
R
I
OCHARGE  
IREG  
(SNS)  
(3)  
(4)  
The value of R(ISET1) is then calculated based on the following equation:  
K
V
ISET1  
ISET1  
1000 V  
R
+
+
SET1  
I
  R  
V
OCHARGE  
SNS  
IREG  
where  
VIREG is the voltage regulated across RSNS  
IOCHARGE is the battery charge current  
RSNS is the external current sense resistor  
V(ISET1) is the output voltage of the ISET1 pin  
K(ISET1) is the V/A gain factor (see Electrical Characteristics table)  
The following provide a more detailed design procedure and example for this parameter:  
1. Select the charge current.  
Example:  
IOCHARGE = 2 A  
IOPRECHG = 200 mA  
2. Select the sense resistor value. Ensure that the power rating of the sense resistor is not exceeded  
Example:  
Let VIREG = 100 mV (S/B from 100–200 mV  
Solve for  
V
IREG  
100 mV  
2 A  
R
+
+
+ 50 mW  
(SNS)  
I
OCHARGE  
(5)  
(6)  
Check availability for R(SNS). Use value that is equal (next larger value if not available).  
Check for power dissiaption  
  ǒIOCHARGEǓ2  
(SNS)  
2
(
)
P
+ R  
+ 0.05 W   2 A + 0.2 W  
(SNS)  
Select 0805 or 1206 size rated at 0.25 W  
3. Determine R(ISET1)  
V(ISET1) = 1 V  
K(ISET1) = 1000 V/A  
K
R
  V  
(ISET1)  
1000 VńA   1 V  
0.05 W   2 A  
(ISET1)  
R
+
+
+ 10 kW  
(ISET1)  
  I  
(SNS)  
OCHARGE  
(7)  
4. Determine R(ISET2)  
V(ISET2) = 0.1 V  
K(ISET2) = 1000 V/A  
14  
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
FUNCTIONAL DESCRIPTION FOR STAND-ALONE VERSION (bq2410x) (continued)  
K
R
  V  
(ISET2)  
1000 VńA   0.1 V  
0.05 W   0.2 A  
(ISET2)  
R
+
+
+ 10 kW  
(ISET2)  
  I  
(SNS)  
OPRECHG  
(8)  
R
SENSE  
SNS  
BAT  
V
= 1 V  
(ISET1)  
ISET1  
I
(ISET1)  
R
(ISET1)  
V
= 0.1 V  
(ISET2)  
ISET2  
R
(ISET2)  
I
(ISET2)  
VSS  
UDG-04036  
Figure 8. Program Charge Current with R(ISET1) and R(ISET2)  
Battery Voltage Regulation  
The voltage regulation feedback occurs through the BAT pin. This input is tied directly to the positive side of the  
battery pack. The bqSWITCHER monitors the battery-pack voltage between the BAT and VSS pins. The  
bqSWITCHER is offered in two fixed-voltage versions: 4.2 V and 8.4 V as selected by the CELLS input. A low or  
floating input on the CELLS selects single-cell mode (4.2 V) while a high-input selects two-cell mode.  
For device options that include adjustable output voltage, the voltage regulation feedback is through the FB pin.  
A resistor divider is used from the battery output voltage to GND. The BAT pin remains connected directly to the  
battery output voltage for current sensing with respect to SNS.  
Charge Termination and Recharge  
The bqSWITCHER monitors the charging current during the voltage regulation phase. Once the termination  
threshold, ITERM, is detected, the bqSWITCHER terminates charge. The termination current level is selected by  
the value of programming resistor, R(ISET2), connected to the ISET2 pin.  
K
+ ǒR  
  V  
(ISET2)  
TERM  
I
TERM  
(SNS)Ǔ  
  R  
(ISET2)  
(9)  
where  
R(SNS) is the external current-sense resistor  
VTERM is the output of the ISET2 pin  
K(ISET2) is the A/V gain factor  
VTERM and K(ISET2) are specified in the Electrical Characteristics table  
As a safety backup, the bqSWITCHER also provides a programmable charge timer. The charge time is  
programmed by the value of a capacitor connected between the TTC pin and GND by the following formula:  
t
C
K
CHARGE  
(TTC)  
(TTC)  
(10)  
where  
C(TTC) is the capacitor connected to the TTC pin  
K(TTC) is the multiplier  
15  
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
FUNCTIONAL DESCRIPTION FOR STAND-ALONE VERSION (bq2410x) (continued)  
A new charge cycle is initiated when one of the following conditions is detected:  
The battery voltage falls below the VRCH threshold.  
Power-on reset (POR), if battery voltage is below the VRCH threshold  
CE toggle  
TTC pin, described as follows.  
In order to disable the charge termination and safety timer, the user can pull the TTC input below the VTTC_EN  
threshold. Going above this threshold enables the termination and safety timer features and also resets the timer.  
Tying TTC high to VTSB disables the safety timer only.  
Sleep Mode  
The bqSWITCHER enters the low-power sleep mode if the VCC pin is removed from the circuit. This feature  
prevents draining the battery during the absence of VCC.  
Charge Status Outputs  
The open-drain STAT1 and STAT2 outputs indicate various charger operations as shown in Table 1 and Table 2.  
These status pins can be used to drive LEDs or communicate to the host processor. Note that OFF indicates that  
the open-drain transistor is turned off.  
Table 1. Status Pins Summary  
Charge State  
STAT1  
ON  
STAT2  
OFF  
ON  
Charge-in-progress  
Charge complete  
OFF  
OFF  
Charge suspend, timer fault, overvoltage, sleep mode, battery absent(1)  
OFF  
(1) bq2411x ICs do not have timer-fault or battery-absent modes  
Table 2. Status Pins Summary (bq24108 only)  
Charge State  
STAT1  
STAT2  
OFF  
OFF  
ON  
Battery absent  
OFF  
ON  
Charge-in-progress  
Charge complete  
OFF  
Battery over discharge, VI(BAT) < V(SC)  
ON/OFF (0.5 Hz)  
ON/OFF (0.5 Hz)  
ON/OFF (0.5 Hz)  
ON/OFF (0.5 Hz)  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Charge suspend, (due to TS pin and internal thermal protection)  
Precharge timer fault  
Fast-charge timer fault  
Sleep mode  
PG Output  
The open-drain PG (power good) indicates when the AC-to-DC adapter (i.e., VCC) is present. The output turns on  
when sleep-mode exit threshold, VSLP-EXIT, is detected. This output is turned off in the sleep mode. The PG pin  
can be used to drive an LED or communicate to the host processor.  
CE Input (Charge Enable)  
The CE digital input is used to disable or enable the charge process. A low-level signal on this pin enables the  
charge and a high-level VCC signal disables the charge. A high-to-low transition on this pin also resets all timers  
and fault conditions. Note that the CE pin cannot be pulled up to VTSB voltage. This may create power-up  
issues.  
16  
 
 
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
Battery Absent Detection  
For applications with removable battery packs, bqSWITCHER provides a battery absent detection scheme to  
reliably detect insertion and/or removal of battery packs.  
POR or V  
RCH  
Detection routine runs on power up  
and if V drops below refresh  
BAT  
threshold due to removing battery  
or discharging battery.  
Yes  
Enable  
(DETECT)  
I
for t  
(DETECT)  
BATTERY  
PRESENT,  
No  
V
I(BAT)  
<V  
(LOWV)  
Begin Charge  
Yes  
Apply I  
(WAKE)  
(WAKE)  
for t  
BATTERY  
PRESENT,  
Begin Charge  
V
>
I(BAT)  
No  
V
O(REG)  
-V  
RCH  
Yes  
BATTERY  
ABSENT  
Figure 9. Battery Absent Detection for bq2410x ICs only  
The voltage at the BAT pin is held above the battery recharge threshold, VRCH, by the charged battery following  
fast charging. When the voltage at the BAT pin falls to the recharge threshold, either by a load on the battery or  
due to battery removal, the bqSWITCHER begins a battery absent detection test. This test involves enabling a  
detection current, IDETECT, for a period of tDETECT and checking to see if the battery voltage is below the precharge  
threshold, VLOWV. Following this, the precharge current, IOPRECHG is applied for a period of tDETECT and the battery  
voltage is checked again to ensure that it is above the recharge threshold. The purpose of this current is to  
attempt to close a battery pack with an open protector, if one is connected to the bqSWITCHER.  
Passing both of the discharge and charging tests indicates a battery absent fault at the STAT pins. Failure of  
either test starts a new charge cycle. For the absent battery condition, the voltage on the BAT pin rises and falls  
between the VLOWV and VOREG thresholds indefinitely.  
Timer Fault Recovery  
As shown in Figure 5, bqSWITCHER provides a recovery method to deal with timer fault conditions. The  
following summarizes this method.  
Condition 1 VI(BAT) above recharge threshold (VOREG - VRCH) and timeout fault occurs.  
17  
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
Recovery method: bqSWITCHER waits for the battery voltage to fall below the recharge threshold. This could  
happen as a result of a load on the battery, self-discharge or battery removal. Once the battery falls below the  
recharge threshold, the bqSWITCHER clears the fault and enters the battery absent detection routine. A POR or  
CE or TTE toggle also clears the fault.  
Condition 2 Charge voltage below recharge threshold (VRCH) and timeout fault occurs  
Recovery method: Under this scenario, the bqSWITCHER applies the IDETECT current. This small current is used  
to detect a battery removal condition and remains on as long as the battery voltage stays below the recharge  
threshold. If the battery voltage goes above the recharge threshold, then the bqSWITCHER disables the IDETECT  
current and executes the recovery method described for Condition 1. Once the battery falls below the recharge  
threshold, the bqSWITCHER clears the fault and enters the battery absent detection routine. A POR or CE toggle  
also clears the fault.  
Output Overvoltage Protection (Applies To All Versions)  
The bqSWITCHER provides a built-in overvoltage protection to protect the detect and other components against  
damages if the battery voltage gets too high, as when the battery is suddenly removed. When an overvoltage  
condition is detected, this feature turns off the PWM and STATx pins. The fault is cleared once VIBAT drops to the  
recharge threshold (VOREG - VRCH).  
FUNCTIONAL DESCRIPTION FOR SYSTEM-CONTROLLED VERSION (bq2411x)  
For applications requiring charge management under the host system control, the bqSWITCHER (bq2411x)  
offers a number of control functions. The following section describes these functions.  
Precharge And Fast-Charge Control  
A low-level signal on the CMODE pin forces the bqSWITCHER to charge at the precharge rate set on the ISET2  
pin. A high-level signal forces charge at fast-charge rate as set by the ISET1 pin. If the battery reaches the  
voltage regulation level, VOREG, the bqSWITCHER transitions to voltage regulation phase regardless of the status  
of the CMODE input.  
Charge Termination And Safety Timers  
The charge timers and termination are disabled in the system-controlled versions of the bqSWITCHER. The host  
system can use the CE input to enable or disable charge. When an overvoltage condition is detected, the  
charger process stops, and all power FETs are turned off.  
Inductor, Capacitor, and Sense Resistor Selection Guidelines  
The bqSWITCHER provides internal loop compensation. With this scheme, best stability occurs when LC  
resonant frequency, fo is approximately 16 kHz (8 kHz to 32 kHz). Equation 11 can be used to calculate the  
value of the output inductor and capacitor. Table 3 provides a summary of typical component values for various  
charge rates.  
1
f +  
0
ǸL  
2p   
  C  
OUT  
OUT  
(11)  
Table 3. Output Components Summary  
CHARGE CURRENT  
Output inductor, LOUT  
0.5 A  
22 µH  
4.7 µF  
0.2 Ω  
1 A  
2 A  
4.7 µH  
10 µH  
10 µF  
0.1 Ω  
Output capacitor, COUT  
Sense resistor, R(SNS)  
22 µF (or 2 × 10 µH) ceramic  
0.05 Ω  
18  
 
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
THERMAL CONSIDERATIONS  
The SWITCHER is packaged in a thermally enhanced MLP package. The package includes a thermal pad to  
provide an effective thermal contact between the IC and the printed circuit board (PCB). Full PCB design  
guidelines for this package are provided in the application report entitled: QFN/SON PCB Attachment  
(SLUA271).  
The most common measure of package thermal performance is thermal impedance (ΘJA) measured (or modeled)  
from the chip junction to the air surrounding the package surface (ambient). The mathematical expression for ΘJA  
is:  
TJ TA  
q(JA)  
+
P
(12)  
Where:  
TJ = chip junction temperature  
TA = ambient temperature  
P = device power dissipation  
Factors that can greatly influence the measurement and calculation of ΘJA include:  
Whether or not the device is board mounted  
Trace size, composition, thickness, and geometry  
Orientation of the device (horizontal or vertical)  
Volume of the ambient air surrounding the device under test and airflow  
Whether other surfaces are in close proximity to the device being tested  
The device power dissipation, P, is a function of the charge rate and the voltage drop across the internal power  
FET. It can be calculated from the following equation:  
P = [Vin × lin - Vbat × Ibat]  
Due to the charge profile of Li-xx batteries, the maximum power dissipation is typically seen at the beginning of  
the charge cycle when the battery voltage is at its lowest. (See Figure 6.)  
PCB LAYOUT CONSIDERATION  
It is important to pay special attention to the PCB layout. The following provides some guidelines:  
To obtain optimal performance, the power input capacitors, connected from input to PGND, should be placed  
as close as possible to the bqSWITCHER. The output inductor should be placed directly above the IC and  
the output capacitor connected between the inductor and PGND of the IC. The intent is to minimize the  
current path loop area from the OUT pin through the LC filter and back to the GND pin. The sense resistor  
should be adjacent to the junction of the inductor and output capacitor. Route the sense leads connected  
across the R(SNS) back to the IC, close to each other (minimize loop area) or on top of each other on adjacent  
layers (do not route the sense leads through a high-current path). Use an optional capacitor downstream  
from the sense resistor if long (inductive) battery leads are used.  
Place all small-signal components (CTTC, RSET1/2 and TS) close to their respective IC pin (do not place  
components such that routing interrupts power stage currents). All small control signals should be routed  
away from the high current paths.  
The PCB should have a ground plane (return) connected directly to the return of all components through vias  
(3 vias per capacitor for power-stage capacitors, 3 vias for the IC PGND, 1 via per capacitor for small-signal  
components). A star ground design approach is typically used to keep circuit block currents isolated  
(high-power/low-power small-signal) which reduces noise-coupling and ground-bounce issues. A single  
ground plane for this design gives good results. With this small layout and a single ground plane, there is not  
a ground-bounce issue, and having the components segregated minimizes coupling between signals.  
The high-current charge paths into IN and from the OUT pins must be sized appropriately for the maximum  
charge current in order to avoid voltage drops in these traces. The PGND pins should be connected to the  
ground plane to return current through the internal low-side FET. The thermal vias in the IC PowerPAD™  
provide the return-path connection.  
The bqSWITCHER is packaged in a thermally enhanced MLP package. The package includes a thermal pad  
19  
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
PCB LAYOUT CONSIDERATION (continued)  
to provide an effective thermal contact between the IC and the PCB. Full PCB design guidelines for this  
package are provided in the application report entitled: QFN/SON PCB Attachment (SLUA271). Six 10-13 mil  
vias are a minimum number of recommended vias, placed in the IC's power pad, connecting it to a ground  
thermal plane on the opposite side of the PWB. This plane must be at the same potential as VSS and PGND  
of this IC.  
See user guide SLUU200 for an example of good layout.  
WAVEFORMS: All waveforms are taken at Lout (IC Out pin). VIN = 7.6 V and the battery was set to 2.6 V, 3.5 V,  
and 4.2 V for the three waveforms. When the top switch of the converter is on, the waveform is at ~7.5 V, and  
when off, the waveform is near ground. Note that the ringing on the switching edges is small. This is due to a  
tight layout (minimized loop areas), a shielded inductor (closed core), and using a low-inductive scope ground  
lead (i.e., short with minimum loop) .  
Precharge: The current is low in precharge; so, the bottom synchronous FET turns off after its minimum on-time  
which explains the step between ~0 V and -0.5 V. When the bottom FET and top FET are off, the current  
conducts through the body diode of the bottom FET which results in a diode drop below the ground potential.  
The initial negative spike is the delay turning on the bottom FET, which is to prevent shoot-through current as the  
top FET is turning off.  
20  
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
PCB LAYOUT CONSIDERATION (continued)  
Fast Charge: This is captured during the constant-current phase. The two negative spikes are the result of the  
short delay when switching between the top and bottom FETs. The break-before-make action prevents current  
shoot-through and results in a body diode drop below ground potential during the break time.  
Charge during Voltage Regulation and Approaching Termination: Note that this waveform is similar to the  
precharge waveform. The difference is that the battery voltage is higher so the duty cycle is slightly higher. The  
bottom FET stays on longer because there is more of a current load than during precharge; it takes longer for the  
inducator current to ramp down to the current threshold where the synchronous FET is disabled.  
21  
bq24100, bq24103  
bq24105, bq24108  
bq24113, bq24115  
www.ti.com  
SLUS606CJUNE 2004REVISED SEPTEMBER 2005  
Application Note: Charging Battery and Powering System Without Affecting Battery Charge and  
Termination.  
L
OUT  
bq24100RHL  
IN OUT  
10 µH  
R
(SNS)  
V
IN  
3
4
6
2
1
R
(SYS)  
10 µF  
C
10 µF  
OUT  
IN  
OUT 20  
VCC  
PGND 17  
STAT1 PGND 18  
PACK+  
19 STAT2  
SNS 15  
BAT 14  
+
PG  
5
7
PACK-  
VTSB  
VTSB  
R
R
(ISET1)  
0.1 µF  
TTC  
ISET1  
ISET2  
8
9
C
TTC  
(ISET2)  
16 CE  
R
T1  
10 VSS  
PWR PAD  
TS 12  
TEMP  
VTSB 11  
BATTERY  
PACK  
R
T2  
V
IN  
V
IN  
V
IN  
D1  
Adapter  
Present  
D3  
Charge  
D2  
Done  
UDG-04033  
The bqSWITCHER was designed as a stand-alone battery charger but can be easily adapted to power a system  
load, while considering a few minor issues.  
Advantages:  
1. The charger controller is based only on what current goes through the current-sense resistor (so precharge,  
constant current, and termination all work well), and is not affected by the system load.  
2. The input voltage has been converted to a usable system voltage with good efficiency from the input.  
3. Extra external FETs are not needed to switch power source to the battery.  
4. The TTC pin can be grounded to disable termination and keep the converter running and the battery fully  
charged, or let the switcher terminate when the battery is full and then run off of the battery via the sense  
resistor.  
Other Issues:  
1. If the system load current is large (1 A), the IR drop across the battery impedance causes the battery  
voltage to drop below the refresh threshold and start a new charge. The charger would then terminate due to  
low charge current. Therefore, the charger would cycle between charging and termination. If the load is  
smaller, the battery would have to discharge down to the refresh threshold resulting in a much slower  
cycling. Note that grounding the TTC pin keeps the converter on continuously.  
2. If TTC is grounded, the battery is kept at 4.2 V (not much different than leaving a fully charged battery set  
unloaded).  
3. Eefficiency declines 2-3% hit when discharging through the sense resistor to the system.  
22  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
QFN  
QFN  
Drawing  
BQ24100RHL  
PREVIEW  
ACTIVE  
RHL  
20  
20  
50  
TBD  
Call TI  
Call TI  
BQ24100RHLR  
RHL  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BQ24103RHLR  
BQ24105RHLR  
BQ24108RHLR  
BQ24113RHLR  
BQ24113RHLRG4  
BQ24115RHLR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
RHL  
RHL  
RHL  
RHL  
RHL  
RHL  
20  
20  
20  
20  
20  
20  
3000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
3000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

BQ24100RHL

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POL CHARGE MANAGEMENT IC WITH INTEGRATED POWERFETS
TI

BQ24100RHLR

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POL CHARGE MANAGEMENT IC WITH INTEGRATED POWERFETS
TI

BQ24100RHLRE3

IC IC,BATTERY MANAGEMENT,LLCC,20PIN,PLASTIC, Power Management Circuit
TI

BQ24100RHLT

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POL CHARGE MANAGEMENT IC WITH INTEGRATED POWERFETS
TI

BQ24100_05

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POL CHARGE MANAGEMENT IC WITH INTEGRATED POWERFETS (bqSWITCHER)
TI

BQ24100_07

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POLYMER CHARGE-MANAGEMENT IC WITH INTEGRATED POWER FETs (bqSWITCHER⑩)
TI

BQ24100_08

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POLYMER CHARGE-MANAGEMENT IC WITH INTEGRATED POWER FETs (bqSWITCHER™)
TI

BQ24100_10

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POLYMER CHARGE-MANAGEMENT IC WITH INTEGRATED POWER FETs ( bqSWITCHER?)
TI

BQ24103

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POL CHARGE MANAGEMENT IC WITH INTEGRATED POWERFETS
TI

BQ24103A

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POLYMER CHARGE-MANAGEMENT IC WITH INTEGRATED POWER FETs (bqSWITCHER⑩)
TI

BQ24103ARHLR

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POLYMER CHARGE-MANAGEMENT IC WITH INTEGRATED POWER FETs (bqSWITCHER™)
TI

BQ24103ARHLRG4

SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POLYMER CHARGE-MANAGEMENT IC WITH INTEGRATED POWER FETs (bqSWITCHER™)
TI