BQ24311 [TI]

过压和过流保护及锂离子电池充电器前端保护 IC;
BQ24311
型号: BQ24311
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

过压和过流保护及锂离子电池充电器前端保护 IC

电池
文件: 总25页 (文件大小:1949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
bq24311  
ZHCSCP1 JULY 2014  
bq24311 过压和过流保护 IC 以及  
锂电池充电器前端保护 IC  
1 特性  
1
针对三个变量提供保护:  
3 说明  
输入过压、快速响应小于 1μs  
带有电流限制的用户可编程过流  
电池过压  
bq24311 是一个高度集成的电路,旨在保护锂离子电  
池免受充电电路故障的影响。 该 IC 可持续监视输入电  
压、输入电流和电池电压。 输入过压保护通过关断内  
部开关立即停止为充电电路供电。 输入保护可将系统  
电流限制为用户可编程的值,如果过流情况仍存在,则  
在一个消隐周期之后关断导通元件。 此外,该 IC 还会  
监控自身的芯片温度,并在过热时切断电源。  
30V 最大输入电压  
支持高达 0.3A 的输入电流  
防止由电流瞬变造成的错误触发  
过热保护  
使能输入  
IC 可由一个处理器控制并且可为主机提供关于故障  
条件的状态信息。  
状态指示  
2 应用  
器件信息  
手机和智能电话  
部件号  
封装  
封装尺寸(标称值)  
bq24311  
WSON (8)  
2.00mm x 2.00mm  
掌上电脑 (PDA)  
MP3 播放器  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
低功耗手持器件  
Bluetooth™ 耳机  
4 应用信息  
AC Adapter  
VDC  
1
IN  
OUT  
8
6
1 mF  
1 mF  
GND  
bq24080  
Charger IC  
bq24311DSG  
SYSTEM  
VBAT  
FAULT  
CE  
4
5
2
7
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLUSBT8  
 
 
 
 
bq24311  
ZHCSCP1 JULY 2014  
www.ti.com.cn  
目录  
8.1 Overview ................................................................... 8  
8.2 Functional Block Diagram ......................................... 8  
8.3 Feature Description................................................... 9  
8.4 Device Functional Modes.......................................... 9  
Application and Implementation ........................ 12  
9.1 Typical Application Circuit....................................... 12  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
应用信息................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 5  
7.7 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
9
10 Power Supply Requirements ............................. 16  
11 Layout................................................................... 17  
11.1 Layout Guidelines ................................................. 17  
11.2 Layout Example .................................................... 17  
12 器件和文档支持 ..................................................... 18  
12.1 Trademarks........................................................... 18  
12.2 Electrostatic Discharge Caution............................ 18  
12.3 术语表 ................................................................... 18  
13 机械封装和可订购信息 .......................................... 18  
8
5 修订历史记录  
日期  
修订版本  
注释  
6 月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
bq24311  
www.ti.com.cn  
ZHCSCP1 JULY 2014  
6 Pin Configuration and Functions  
DSG PACKAGE  
(TOP VIEW)  
8
7
IN  
VSS  
NC  
1
2
3
OUT  
ILIM  
VBAT  
CE  
6
5
FAULT 4  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
DSG  
Input power, connect to external DC supply. Connect external 1μF ceramic capacitor  
(minimum) to VSS.  
IN  
1
8
I
O
Output pin to the charging system. Connect external 1 μF ceramic capacitor (minimum) to  
VSS.  
OUT  
VBAT  
ILIM  
CE  
6
7
5
I
I/O  
I
Battery voltage sense input. Connect to pack positive pin through a resistor.  
Input overcurrent threshold programming. Connect a resistor to VSS to set the overcurrent  
threshold.  
Chip enable input. Active low. When CE = High, the input FET is off. Internally pulled down.  
Device status, open-drain output. FAULT = Low indicates that the input FET Q1 has been  
turned on due to input overvoltage, input overcurrent, battery overvoltage, or thermal  
shutdown.  
FAULT  
4
O
VSS  
NC  
2
3
Ground pin  
This pin may have internal circuits used for test purposes. Do not make any external  
connections at these pins for normal operation.  
There is an internal electrical connection between the exposed thermal pad and the VSS pin  
of the device. The thermal pad must be connected to the same potential as the VSS pin on  
the printed circuit board. Do not use the thermal pad as the primary ground input for the  
device. The VSS pin must be connected to ground at all times.  
Thermal PAD  
Copyright © 2014, Texas Instruments Incorporated  
3
bq24311  
ZHCSCP1 JULY 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
30  
UNIT  
IN (with respect to VSS)  
Input voltage  
OUT (with respect to VSS)  
12  
V
ILIM, FAULT, CE, VBAT (with respect to VSS)  
7
Input current  
IN  
0.5  
0.5  
15  
A
A
Output current  
OUT  
FAULT  
Output sink current  
Junction temperature, TJ  
mA  
°C  
–40  
150  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
Electrostatic discharge  
–65  
150  
°C  
Human body model (HBM), per  
–2000  
2000  
500  
V
V
ANSI/ESDA/JEDEC JS-001, all pins(1)  
VESD  
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins  
–500  
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
VIN  
IIN  
Input voltage range  
3
50  
26  
300  
300  
500  
125  
Input current, IN pin  
mA  
mA  
kΩ  
IOUT  
RILIM  
TJ  
Output current, OUT pin  
OCP Programming resistor  
Junction temperature  
50  
83.3  
–40  
°C  
7.4 Thermal Information  
DSG  
THERMAL METRIC(1)  
UNITS  
8 PINS  
86.3  
116.9  
56.1  
8.1  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJCtop  
RθJB  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
56.4  
25.9  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
bq24311  
www.ti.com.cn  
ZHCSCP1 JULY 2014  
7.5 Electrical Characteristics  
over junction temperature range –40°C to 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IN  
Undervoltage lock-out, input power  
detected threshold  
V(UVLO)  
CE = Low, VIN increasing from 0 V to 3 V  
CE = Low, VIN decreasing from 3 V to 0 V  
2.6  
2.7  
260  
400  
65  
2.8  
V
V(UVLO_HYS) Hysteresis on UVLO  
200  
300 mV  
CE = Low, No load on OUT pin,  
VIN = 5 V, R(ILIM) = 200 kΩ  
IDD  
Operating current  
500  
95  
μA  
μA  
I(STDBY)  
Standby current  
CE = High, VIN = 5 V  
INPUT TO OUTPUT CHARACTERISTICS  
V(DO) Drop-out voltage IN to OUT  
INPUT OVERVOLTAGE PROTECTION  
CE = Low, VIN = 5 V, IOUT = 0.125 A  
21  
35 mV  
V(OVP)  
Input overvoltage protection threshold CE = Low, VIN increasing from 5V to 7.5 V  
Hysteresis on OVP CE = Low, VIN decreasing from 7.5 V to 5 V  
5.71  
20  
5.85  
60  
6.00  
V
VHYS-OVP  
110 mV  
INPUT OVERCURRENT PROTECTION  
Input overcurrent protection threshold  
50  
300 mA  
range  
I(OCP)  
CE = Low, RILIM = 200 k,  
3 V VIN < VOVP  
TJ = 0°C to 85°C  
TJ = 0°C to 125°C  
110  
110  
125  
125  
135  
mA  
140  
Input overcurrent protection threshold  
BATTERY OVERVOLTAGE PROTECTION  
Battery overvoltage protection  
threshold  
V(BOVP)  
CE = Low, VIN > 4.4 V  
4.30  
200  
4.35  
275  
4.4  
V
V(HYS-BOVP) Hysteresis on V(BOVP)  
CE = Low, VIN > 4.4 V  
VBAT = 4.4 V, TJ = 25°C  
320 mV  
I(VBAT)  
Input bias current on VBAT pin  
10  
nA  
THERMAL PROTECTION  
TJ(OFF)  
Thermal shutdown temperature  
140  
20  
150  
°C  
°C  
TJ(OFF-HYS) Thermal shutdown hysteresis  
LOGIC LEVELS ON CE  
VIL  
VIH  
IIL  
Low-level input voltage  
High-level input voltage  
Low-level input current  
High-level input current  
0
0.4  
V
V
1.4  
VCE = 0 V  
1
μA  
μA  
IIH  
VCE = 1.8 V  
15  
LOGIC LEVELS ON FAULT  
VOL  
Output low voltage  
I(SINK) = 5 mA  
V(FAULT) = 5 V  
0.2  
10  
V
I(HI-Z)  
Leakage current, FAULT pin HI-Z  
μA  
7.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
ms  
μs  
CE = Low. Time measured from VIN 0 V 5 V 1  
μs rise-time, to output turning ON  
tDGL(PGOOD)  
tPD(OVP)  
Deglitch time, input power detected status  
8
Input OV propagation delay(1)  
CE = Low  
1
Recovery time from input overvoltage  
condition  
CE = Low, Time measured from  
VIN 7.5 V 5 V, 1μs fall-time  
tON(OVP)  
8
176  
64  
ms  
μs  
tBLANK(OCP)  
tREC(OCP)  
Blanking time, input overcurrent detected  
Recovery time from input overcurrent  
condition  
ms  
CE = Low, VIN > 4.4 V. Time measured from  
V(VBAT) rising from 4.1 V to 4.4 V to FAULT going  
low.  
tDGL(BOVP)  
Deglitch time, battery overvoltage detected  
176  
μs  
(1) Not tested in production. Specified by design.  
Copyright © 2014, Texas Instruments Incorporated  
5
bq24311  
ZHCSCP1 JULY 2014  
www.ti.com.cn  
7.7 Typical Characteristics  
Test conditions (unless otherwise noted) for typical operating performance: VIN = 5 V, CIN = 1 μF, COUT = 1 μF,  
R(ILIM) = 200 k, R(BAT) = 100 k, TA = 25°C, V(PU) = 3.3 V (see Figure 11 for the Typical Application Circuit)  
2.75  
35  
VIN = 5 V  
VIN = 4 V  
33  
2.7  
VIN Increasing  
31  
2.65  
29  
27  
2.6  
25  
2.55  
23  
21  
2.5  
19  
VIN Decreasing  
2.45  
17  
15  
2.4  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
0
20  
40  
60  
80  
100  
120  
140  
Temperature - °C  
Temperature (qC)  
D002  
Figure 1. Undervoltage Lockout vs Free-Air Temperature  
Figure 2. Dropout Voltage (In to Out) vs Free-Air  
Temperature  
5.88  
350  
300  
250  
200  
150  
100  
50  
5.86  
5.84  
5.82  
VIN Increasing  
5.8  
VIN Decreasing  
0
5.78  
0
100  
200  
300  
400  
500  
600  
-50  
-30  
-10  
10  
30  
50  
70  
90  
130  
110  
RILIM (k:)  
Temperature - °C  
D002  
Figure 3. Overvoltage Threshold Protection vs Free-Air  
Temperature  
Figure 4. Input Overcurrent Protection vs ILIM Resistance  
4.4  
128  
127  
126  
125  
124  
123  
122  
121  
4.35  
V(BOVP) (VVBAT Increasing)  
4.3  
4.25  
4.2  
4.15  
Bat-OVP Recovery (VVBAT Decreasing)  
4.1  
4.05  
-50  
-30 -10  
10  
30  
50  
70  
90  
110 130  
-50  
0
50  
100  
150  
Temperature (qC)  
Temperature (oC)  
D002  
Figure 6. Battery Overvoltage Protection vs Free-Air  
Temperature  
Figure 5. Input Overcurrent Protection vs Free-Air  
Temperature  
6
Copyright © 2014, Texas Instruments Incorporated  
 
bq24311  
www.ti.com.cn  
ZHCSCP1 JULY 2014  
Typical Characteristics (continued)  
2.5  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I(DD (/CE = Low)  
I(STDBY (/CE = High)  
2
1.5  
1
0.5  
0
-50  
-30 -10  
10  
30  
50  
70  
90  
110 130  
0
5
10  
15  
VIN (V)  
20  
25  
30  
35  
Temperature (oC)  
D002  
Figure 7. Leakage Current (VBAT Pin) vs Free-Air  
Temperature  
Figure 8. Supply Current vs Input Voltage  
Copyright © 2014, Texas Instruments Incorporated  
7
bq24311  
ZHCSCP1 JULY 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The bq24311 is a highly integrated circuit designed to protect Li-ion batteries from charging circuit failures. The  
IC continuously monitors the input voltage, input current, and battery voltage. The input overvoltage protection  
immediately removes power from the charging circuit by turning off an internal switch. The input protection limits  
the system current at the user-programmable value, and if the overcurrent persists, switches the pass element  
OFF after a blanking period. Additionally, the IC also monitors its own die temperature and switches off if it  
becomes too hot.  
8.2 Functional Block Diagram  
Q1  
IN  
OUT  
Charge Pump,  
Bandgap,  
Bias Gen  
VBG  
I
SNS  
ILIM  
Current limiting  
loop  
ILIMREF  
OFF  
OCP comparator  
ILIMREF- Δ  
tBLANK(OCP)  
I
SNS  
FAULT  
V
IN  
V
BG  
COUNTERS,  
CONTROL,  
AND STATUS  
OVP  
CE  
V
IN  
V
BG  
tDGL(PGOOD)  
UVLO  
VBAT  
THERMAL  
SHUTDOW  
V
BG  
tDGL(BOVP)  
VSS  
Figure 9. Simplified Block Diagram  
8
Copyright © 2014, Texas Instruments Incorporated  
bq24311  
www.ti.com.cn  
ZHCSCP1 JULY 2014  
8.3 Feature Description  
8.3.1 Power Down  
The device remains in power down mode when the voltage at the IN pin is below the undervoltage threshold  
VUVLO. The FET Q1 connected between IN and OUT pins is off, and the status output, FAULT, is set to Hi-Z.  
8.3.2 Power-On Reset  
The device resets when the voltage at the IN pin exceeds the UVLO threshold. All internal counters and other  
circuit blocks are reset. The IC then waits for duration tDGL(PGOOD) for the input voltage to stabilize. If, after  
tDGL(PGOOD), the input voltage and battery voltage are safe, FET Q1 is turned ON. The IC has a soft-start feature  
to control the inrush current which minimizes the ringing at input during power up, as shown in Figure 15 (ringing  
occurs because the parasitic inductance of the adapter cable and the input bypass capacitor form a resonant  
circuit). Because of the deglitch time at power-on, if the input voltage rises rapidly to beyond the OVP threshold,  
the device will not switch on at all, instead it will go into protection mode and indicate a fault on the FAULT pin,  
as shown in Figure 16.  
8.4 Device Functional Modes  
8.4.1 Operation  
The device continuously monitors the input voltage, input current, and battery voltage as described in detail in the  
following sections.  
8.4.1.1 Input Overvoltage Protection  
If the input voltage rises above VOVP, the internal FET Q1 is turned off, removing power from the circuit. As  
shown in Figure 17, the response is rapid, with the FET turning off in less than a microsecond. The FAULT pin is  
driven low. When the input voltage returns below VOVP – VHYS-OVP (but is still above VUVLO), the FET Q1 is turned  
on again after a deglitch time of tON(OVP) to ensure that the input supply has stabilized. Figure 18 shows the  
recovery from input OVP.  
8.4.1.2 Input Overcurrent Protection  
If the load current tries to exceed the IOCP threshold, the device limits the current for a blanking period,  
tBLANK(OCP). If the load current returns to less than IOCP before tBLANK(OCP) times out, the device continues to  
operate. However, if the overcurrent situation persists for tBLANK(OCP), the FET Q1 is turned off for a duration of  
tREC(OCP), and the FAULT pin is driven low. The FET is then turned on again after tREC(OCP) and the current is  
monitored all over again. Each time an OCP fault occurs, an internal counter is incremented. If 15 OCP faults  
occur in one charge cycle, the FET is turned off permanently, as shown in Figure 19. The counter is cleared  
either by removing and re-applying input power, or by disabling and re-enabling the device with the CE pin.  
Figure 19 and Figure 20 show what happens in an overcurrent fault.  
To prevent the input voltage from spiking up due to the inductance of the input cable, Q1 is turned off slowly,  
resulting in a “soft-stop”, as shown in Figure 22.  
8.4.1.3 Battery Overvoltage Protection  
The battery overvoltage threshold V(BOVP) is internally set to 4.35V. If the battery voltage exceeds the V(BOVP)  
threshold, the FET Q1 is turned off, and the FAULT pin is driven low. The FET is turned back on once the battery  
voltage drops to V(BOVP) – VHYS-BOVP (see Figure 22 and Figure 23). Each time a battery overvoltage fault occurs,  
an internal counter is incremented. If 15 such faults occur in one charge cycle, the FET is turned off permanently,  
as shown in Figure 23. The counter is cleared either by removing and re-applying input power, or by disabling  
and re-enabling the device with the CE pin. In the case of a battery overvoltage fault, Q1 is switched OFF  
gradually, resulting in a soft-stop (see Figure 22).  
Copyright © 2014, Texas Instruments Incorporated  
9
bq24311  
ZHCSCP1 JULY 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.1.4 Thermal Protection  
If the junction temperature of the device exceeds TJ(OFF), the FET Q1 is turned off, and the FAULT pin is driven  
low. The FET is turned back on when the junction temperature falls below TJ(OFF) – TJ(OFF-HYS)  
.
8.4.1.5 Enable Function  
The IC has an enable pin which can be used to enable or disable the device. When the CE pin is driven high, the  
internal FET is turned off. When the CE pin is low, the FET is turned on if other conditions are safe. The OCP  
counter and the Bat-OVP counter are both reset when the device is disabled and re-enabled. The CE pin has an  
internal pulldown resistor and can be left floating. Note that the FAULT pin functionality is also disabled when the  
CE pin is high.  
8.4.1.6 Fault Indication  
The FAULT pin is an active-low open-drain output. It is in a high-impedance state when operating conditions are  
safe, or when the device is disabled by setting CE high. With CE low, the FAULT pin goes low whenever any of  
these events occurs:  
Input overvoltage  
Input overcurrent  
Battery overvoltage  
IC Overtemperature  
10  
Copyright © 2014, Texas Instruments Incorporated  
bq24311  
www.ti.com.cn  
ZHCSCP1 JULY 2014  
Device Functional Modes (continued)  
Power Down  
All IC functions OFF  
FAULT = HiZ  
Any State  
if V(IN) < V (UVLO),  
go to Power Down  
No  
V(IN) > V(UVLO) ?  
Any State  
if CE = Hi,  
go to Reset  
Yes  
Reset  
Timers reset  
Counters reset  
FAULT = HiZ  
FET off  
No  
CE = Low ?  
Turn off FET  
FAULT = Low  
V(IN) < V(OVP) ?  
No  
Yes  
No  
Go to Reset  
CE = Hi ?  
Yes  
No  
Turn off FET  
FAULT = Low  
Incr OCP counter  
Wait t  
REC(OCP)  
I < IOCP ?  
Yes  
count <15?  
No  
Yes  
No  
Go to Reset  
CE = Hi ?  
No  
Turn off FET  
FAULT = Low  
Incr BAT counter  
V
< BATOVP ?  
Yes  
count <15?  
BAT  
No  
No  
T
J
< T  
?
Turn off FET  
FAULT = Low  
J(OFF)  
Yes  
Turn on FET  
FAULT = HiZ  
Figure 10. Flow Diagram  
Copyright © 2014, Texas Instruments Incorporated  
11  
bq24311  
ZHCSCP1 JULY 2014  
www.ti.com.cn  
9 Application and Implementation  
9.1 Typical Application Circuit  
VOVP = 5.85 V, IOCP = 125 mA, V(BOVP) = 4.35 V.  
AC Adapter  
VDC  
GND  
IN  
OUT  
1
8
C
C
IN  
OUT  
bq24080  
Charger IC  
1 mF  
1 mF  
bq24311DSG  
R
BAT  
SYSTEM  
VBAT  
6
100 kW  
V
PU  
R
47 kW  
PU  
47 kW  
FAULT  
CE  
4
5
R
FAULT  
Host  
Controller  
47 kW  
R
CE  
7
2
R
ILM  
200 kW  
Figure 11.  
9.1.1 Design Requirements  
9.1.1.1 Selection of RILIM  
The overcurrent threshold is programmed by a resistor, RILIM, connected from the ILIM pin to VSS. Figure 4  
shows the OCP threshold as a function of RILIM, and may be approximated by the following equation:  
IOCP = 25 ÷ RILIM (current in A, resistance in k)  
(1)  
Choose a IOCP between 50 mA and 300 mA and apply the above equation to select a RILIM resistor value from  
500 kΩ to 83.3 kΩ respectively. However, at lower OCP limits, approaching 50 mA, the precision of the current  
protection circuit decreases the achievable accuracy of the OCP threshold.  
9.1.1.2 Selection of RBAT  
It is strongly recommended that the battery not be tied directly to the VBAT pin of the device, as under some  
failure modes of the IC, the voltage at the IN pin may appear on the VBAT pin. This voltage can be as high as 30  
V, and applying 30 V to the battery in case of the failure of the bq24311 can be hazardous. Connecting the VBAT  
pin through R(BAT) prevents a large current from flowing into the battery in case of a failure of the IC. In the  
interests of safety, RBAT should have a high value. The problem with a large R(BAT) is that the voltage drop across  
this resistor because of the VBAT bias current I(VBAT) causes an error in the V(BOVP) threshold. This error is over  
and above the tolerance on the nominal 4.35V V(BOVP) threshold.  
Choosing RBAT in the range 100 kto 470 kis a good compromise. In the case of an IC failure, with RBAT  
equal to 100k, the maximum current flowing into the battery would be (30 V – 3 V) ÷ 100 k= 246 μA, which is  
low enough to be absorbed by the bias currents of the system components. R(BAT) equal to 100 kwould result  
in a worst-case voltage drop of R(BAT) × I(VBAT) = 1 mV. This is negligible to compared to the internal tolerance of  
50mV on V(BOVP) threshold.  
If the Bat-OVP function is not required, the VBAT pin should be connected to VSS.  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
 
bq24311  
www.ti.com.cn  
ZHCSCP1 JULY 2014  
Typical Application Circuit (continued)  
9.1.1.3 Selection of R(CE), R(FAULT), and R(PU)  
The CE pin can be used to enable and disable the IC. If host control is not required, the CE pin can be tied to  
ground or left un-connected, permanently enabling the device.  
In applications where external control is required, the CE pin can be controlled by a host processor. As in the  
case of the VBAT pin (see Selection of Rbat), the CE pin should be connected to the host GPIO pin through as  
large a resistor as possible. The limitation on the resistor value is that the minimum VOH of the host GPIO pin  
less the drop across the resistor should be greater than VIH of the bq24311 CE pin. The drop across the resistor  
is given by R(CE) × IIH.  
The FAULT pin is an open-drain output that goes low during OV, OC, battery-OV, and OT events. If the  
application does not require monitoring of the FAULT pin, it can be left unconnected. But if the FAULT pin has to  
be monitored, it should be pulled high externally through R(PU), and connected through R(FAULT) to the host.  
R(FAULT) prevents damage to the host controller if the bq24311 fails (see Selection of Rbat). The resistors should  
be of high value, in practice values between 22 kand 100 kshould be sufficient.  
9.1.1.4 Selection of Input and Output Bypass Capacitors  
The input capacitor CIN in Figure 11 is for decoupling, and serves an important purpose. Whenever there is a  
step change downwards in the system load current, the inductance of the input cable causes the input voltage to  
spike up. CIN prevents the input voltage from overshooting to dangerous levels. It is strongly recommended that a  
ceramic capacitor of at least 1μF be used at the input of the device. It should be located in close proximity to the  
IN pin.  
COUT in Figure 11 is also important: If a fast (< 1 μs rise time) overvoltage transient occurs at the input, the  
current that charges COUT causes the device’s current-limiting loop to kick in, reducing the gate-drive to FET Q1.  
This results in improved performance for input overvoltage protection. COUT should also be a ceramic capacitor of  
at least 1 μF, located close to the OUT pin. COUT also serves as the input decoupling capacitor for the charging  
circuit downstream of the protection IC.  
9.1.2 Detailed Design Procedures  
9.1.2.1 Powering Accessories  
In some applications, the equipment that the protection IC resides in may be required to provide power to an  
accessory (that is, a cellphone may power a headset or an external memory card) through the same connector  
pins that are used by the adapter for charging. Figure 12 and Figure 13 illustrate typical charging and accessory-  
powering scenarios:  
that is,  
cellphone  
DIS  
Accessory  
power supply  
to rest of  
OUT  
bq24311  
IN  
system  
AC Adapter  
Charger  
Battery  
pack  
EN  
Figure 12. Charging - The Red Arrows Show the Direction of Current Flow  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
bq24311  
ZHCSCP1 JULY 2014  
www.ti.com.cn  
Typical Application Circuit (continued)  
that is,  
cellphone  
EN  
Accessory  
power supply  
to rest of  
system  
OUT  
IN  
Charger  
Battery  
pack  
bq24311  
DIS  
Figure 13. Powering an Accessory - The Red Arrows Show the Direction of Current Flow  
In the second case, when power is being delivered to an accessory, the bq24311 device is required to support  
current flow from the OUT pin to the IN pin.  
If VOUT > V(UVLO) + 0.7 V, FET Q1 is turned on, and the reverse current does not flow through the diode but  
through Q1. Q1 will then remain ON as long as VOUT > V(UVLO) – V(HYS-UVLO) + RDS(on) x I(ACCESSORY). Within this  
voltage range, the reverse current capability is the same as the forward capability, 0.5 A. It should be noted that  
there is no overcurrent protection in this direction.  
IN  
OUT  
Q1  
V
OUT  
Charge Pump,  
Bandgap,  
Bias Gen  
Figure 14.  
14  
Copyright © 2014, Texas Instruments Incorporated  
bq24311  
www.ti.com.cn  
ZHCSCP1 JULY 2014  
Typical Application Circuit (continued)  
9.1.3 Application Curves  
V(IN)  
V(IN)  
V(OUT)  
V(OUT)  
FAULT  
I(OUT)  
Time 2 ms/div  
Time 2 ms/div  
VIN = 0 V to 10 V  
tr = 50 μs  
ROUT = 50 Ω  
Figure 16. OVP at Power-On  
Figure 15. Normal Power-On Showing Soft-Start  
V(IN)  
V(IN)  
V(OUT)  
I(OUT)  
V(OUT)  
FAULT  
FAULT  
Time 2 ms/div  
Time 20 ms/div  
VIN = 15 V to 5 V  
tr = 400 μs  
VIN = 5 V to 12 V  
tr = 20 μs  
Figure 18. Recovery from OVP  
Figure 17. OVP Response for Input Step  
V(IN)  
V(IN)  
V(OUT)  
I(OUT)  
FAULT  
V(OUT)  
I(OUT)  
FAULT  
Time 2 ms/div  
Time 200 ms/div  
OCP Counter Counts to 15 Before Switching OFF the Device  
Figure 20. OCP, Zoom-in on the First Cycle of Figure 19  
Figure 19. OCP, Powering Up into a Short Circuit on OUT  
Pin  
Copyright © 2014, Texas Instruments Incorporated  
15  
 
bq24311  
ZHCSCP1 JULY 2014  
www.ti.com.cn  
Typical Application Circuit (continued)  
V(IN)  
V(BAT)  
V(OUT)  
V(OUT)  
I(OUT)  
FAULT  
FAULT  
Time 100 ms/div  
Time 2 ms/div  
Figure 22. BAT-OVP, V(VBAT) Steps from 4.3 V to 4.4 V,  
Shows tDGL(BAT-OVP) and Soft-Stop  
Figure 21. OCP, ROUT Switches from 130 Ω to 30 Ω, Shows  
Current Limiting and Soft-Stop  
V(OUT)  
V(BAT)  
FAULT  
Time 100 ms/div  
Figure 23. BAT-OVP, V(VBAT) Steps from 3.9V to 4.4V,  
Shows BAT-OVP Counter  
10 Power Supply Requirements  
In a typical application, the system is powered by a USB port or USB wall adapter.  
The minimum input voltage, where the protector starts to pass current assuming VBAT is acceptable, could be  
2.7 V. The maximum supported input voltage is up to 5.85 V; the overvoltage protection kicks in at 5.85 V and  
the maximum input voltage rating is 30 V input rating.  
16  
Copyright © 2014, Texas Instruments Incorporated  
bq24311  
www.ti.com.cn  
ZHCSCP1 JULY 2014  
11 Layout  
11.1 Layout Guidelines  
This device is a protection device, and is meant to protect down-stream circuitry from hazardous voltages.  
Potentially, high voltages may be applied to this IC. It has to be ensured that the edge-to-edge clearances of  
PCB traces satisfy the design rules for high voltages.  
The device uses SON packages with a PowerPAD™. For good thermal performance, the PowerPAD should  
be thermally coupled with the PCB ground plane. In most applications, this will require a copper pad directly  
under the IC. This copper pad should be connected to the ground plane with an array of thermal vias.  
CIN and COUT should be located close to the IC. Other components like RILIM and RBAT should also be located  
close to the IC.  
11.2 Layout Example  
Copyright © 2014, Texas Instruments Incorporated  
17  
bq24311  
ZHCSCP1 JULY 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 Trademarks  
PowerPAD is a trademark of Texas Instruments.  
Bluetooth is a trademark of Bluetooth SIG, Inc.  
12.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
18  
Copyright © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ24311DSGR  
BQ24311DSGT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
SHN  
SHN  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Nov-2022  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

BQ24311DSGR

过压和过流保护及锂离子电池充电器前端保护 IC | DSG | 8 | -40 to 85
TI

BQ24311DSGT

过压和过流保护及锂离子电池充电器前端保护 IC | DSG | 8
TI

BQ24312

OVERVOLTAGE AND OVERCURRENT PROTECTION IC AND Li+ CHARGER FRONT-END PROTECTION IC
TI

BQ24312DSG

OVERVOLTAGE AND OVERCURRENT PROTECTION IC AND Li+ CHARGER FRONT-END PROTECTION IC
TI

BQ24312DSGR

OVERVOLTAGE AND OVERCURRENT PROTECTION IC AND Li+ CHARGER FRONT-END PROTECTION IC
TI

BQ24312DSGT

OVERVOLTAGE AND OVERCURRENT PROTECTION IC AND Li+ CHARGER FRONT-END PROTECTION IC
TI

BQ24313

OVERVOLTAGE AND OVERCURRENT PROTECTION IC AND Li+ CHARGER FRONT-END PROTECTION IC
TI

BQ24313DSG

OVERVOLTAGE AND OVERCURRENT PROTECTION IC AND Li+ CHARGER FRONT-END PROTECTION IC
TI

BQ24313DSGR

OVERVOLTAGE AND OVERCURRENT PROTECTION IC AND Li+ CHARGER FRONT-END PROTECTION IC
TI

BQ24313DSGT

OVERVOLTAGE AND OVERCURRENT PROTECTION IC AND Li+ CHARGER FRONT-END PROTECTION IC
TI

BQ24314

OVERVOLTAGE AND OVERCURRENT PROTECTION IC AND Li+ CHARGER FRONT-END PROTECTION IC
TI

BQ24314A

OVERVOLTAGE AND OVERCURRENT PROTECTION IC AND Li+ CHARGER FRONT-END PROTECTION IC
TI