BQ25306 [TI]

独立型 17V、3A 1 至 2 节降压电池充电器;
BQ25306
型号: BQ25306
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

独立型 17V、3A 1 至 2 节降压电池充电器

电池
文件: 总38页 (文件大小:2558K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25306  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
BQ25306 独立17V3.0A1-2 压电池充电器  
1 特性  
2 应用  
• 独立充电器且易于配置  
• 高1.2MHz 同步开关模式降压充电器  
无线扬声器  
游戏  
底座充电器  
医疗  
1 节电5V 输入、2A 电流时的充电效率为  
92.5%  
1 节电9V 输入、2A 电流时的充电效率为  
3 说明  
91.8%  
BQ25306 是一款高度集成的独立型开关模式电池充电  
适用于 1 节和 2 节锂离子、锂聚合物和磷酸铁锂  
电池。BQ25306 支持 4.1V 17V 输入电压和 3A 快  
速充电电流。该器件的集成式电流检测拓扑可实现高充  
电效率和低 BOM 成本。此器件具有出色的 200nA 低  
静态电流可节省电池电量并更大限度地延长便携式设  
备的存放时间。BQ25306 3x3 WQFN 封装适用  
2 层布局和空间有限的应用。  
2 节电12V 输入、2A 电流时的充电效率为  
95%  
• 单个输入USB 输入和高电压适配器  
– 支4.1V 17V 输入电压范围绝对最大输入  
电压额定值28V  
– 输入电压动态电源管(VINDPM) 跟踪电池电压  
• 高度集成  
– 集成反向阻断和同步开MOSFET  
– 内部输入和充电电流感应  
– 内部环路补偿  
器件信息  
器件型号(1)  
BQ25306  
封装尺寸标称值)  
封装  
– 集成式自举二极管  
WQFN (16)  
3.00mm x 3.00mm  
3.4V 9.0V 可编程充电电压  
3.0A 最大快速充电电流  
4.5V VBAT 200nA 低电池泄漏电流  
IC 禁用模式下4.25μA VBUS 电源电流  
120°C 时充电电流热调节  
• 预充电电流快速充电电流10%  
• 终止电流快速充电电流10%  
• 充电精度  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
L
VBUS  
SW  
VBUS  
Q1  
Q2  
2.2 F  
10 F  
2.2 F  
10 F  
47 nF  
BTST  
GND  
Q3  
PMID  
– 充电电压调节范围±0.5%  
– 充电电流调节范围±10%  
• 安全  
BAT  
FB  
REGN  
470 pF  
REGN  
R1  
R2  
200k  
FB_GND  
– 热调节和热关断  
– 输入欠压锁(UVLO) 和过压保(OVP)  
– 电池过充保护  
– 预充电和快速充电安全计时器  
– 如果电池反馈引FB 开路或短路则充电被禁  
ICHG  
STAT  
REGN  
REGN  
TS  
1 kꢀ  
Thermal Pad  
– 冷/热电池温度保护  
– 关STAT 引脚的故障报告  
• 采WQFN 3x3-16 封装  
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDC7  
 
 
 
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
Table of Contents  
9.4 Device Functional Modes..........................................20  
10 Application and Implementation................................21  
10.1 Application Information........................................... 21  
10.2 Typical Applications................................................ 21  
11 Power Supply Recommendations..............................29  
12 Layout...........................................................................30  
12.1 Layout Guidelines................................................... 30  
12.2 Layout Example...................................................... 30  
13 Device and Documentation Support..........................32  
13.1 Device Support....................................................... 32  
13.2 Documentation Support.......................................... 32  
13.3 接收文档更新通知................................................... 32  
13.4 支持资源..................................................................32  
13.5 Trademarks.............................................................32  
13.6 静电放电警告.......................................................... 32  
13.7 术语表..................................................................... 32  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Device Comparison Table...............................................4  
7 Pin Configuration and Functions...................................5  
8 Specifications.................................................................. 7  
8.1 Absolute Maximum Ratings ....................................... 7  
8.2 ESD Ratings .............................................................. 7  
8.3 Recommended Operating Conditions ........................7  
8.4 Thermal Information ...................................................8  
8.5 Electrical Characteristics ............................................8  
8.6 Timing Requirements ............................................... 11  
8.7 Typical Characteristics..............................................12  
9 Detailed Description......................................................14  
9.1 Overview...................................................................14  
9.2 Functional Block Diagram.........................................14  
9.3 Feature Description...................................................16  
Information.................................................................... 33  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (March 2020) to Revision A (November 2020)  
Page  
• 将“预告信息”更改为“量产数据”..................................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
2
Submit Document Feedback  
Product Folder Links: BQ25306  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
5 说明)  
BQ25306 支持 4V 17V 输入电压可通过电阻分压器编程为单节电池或双节串联电池充电充电电压范围为  
3.4V 9.0VBQ25306 为单节 (1S) 电池或双节串联 (2S) 电池提供高达 3A 的连续充电电流。该器件可为便携  
式设备进行快速充电。其输入电压调节功能可从输入源向电池提供最大充电功率。该解决方案与输入反向阻断  
FETRBFETQ1、高侧开FETHSFETQ2和低侧开FETLSFETQ3高度集成。  
BQ25306 具有无损集成式电流检测功能可通过尽可能地减少元件数量来降低功率损耗和 BOM 成本。它还集成  
了自举二极管以进行高侧栅极驱动和电池温度监控从而简化系统设计。此器件无需主机控制即可启动并完成一  
个充电周期。BQ25306 充电电压和充电电流可通过外部电阻设定。BQ25306 充电电压由一个外部电阻分压器进  
行编程它分三个阶段为电池充电预调节、恒定电流和恒定电压。在充电周期结束时如果充电电流低于终止  
电流阈值并且电池电压高于再充电阈值则充电器自动终止。当电池电压下降到低于再充电阈值时充电器将自  
动启动另一个充电周期。充电器为电池充电和系统操作提供各种安全特性包括基于负温度系数 (NTC) 热敏电阻  
的电池温度监控、充电安全计时器、输入过压和过流保护以及电池过压保护。还内置了引脚开路和短路保护功  
可防止电池电压反馈引FB 或反馈电阻意外开路或短路。热调节功能可调节充电电流从而在高功率运行或  
高环境温度条件下限制内核温度。  
STAT 引脚输出报告充电状态和故障状况。当移除输入电压时此器件以极低的电池到充电器器件漏电流自动进入  
高阻态模式。BQ25306 3mm x 3mm WQFN 封装。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
6 Device Comparison Table  
BQ25302  
BQ25306  
Battery Cells in Series  
Input Voltage  
1 cell  
4.1V to 6.2V  
1-2 cell  
4.1V - 17V  
Charge Voltage  
4.1V, 4.35V, 4.4V, 4.2V  
2.0A  
Programmable from 3.4V to 9.0V  
Maximum Fast Charge Current  
3.0A  
Battery Temperature Protection (JEITA or Cold/Hot) Cold/Hot  
Cold/Hot  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
4
Submit Document Feedback  
Product Folder Links: BQ25306  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
7 Pin Configuration and Functions  
VBUS  
REGN  
STAT  
ICHG  
1
2
3
4
12  
11  
10  
9
GND  
GND  
BAT  
FB  
Thermal  
Pad  
5
6
7
8
(Not to scale)  
7-1. RTE Package 16-Pin WQFN Top View  
7-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
Charger input voltage. The internal n-channel reverse block MOSFET (RBFET) is connected between  
VBUS and PMID with VBUS on source. Place a 2.2uF ceramic capacitor from VBUS to GND and place it  
as close as possible to IC.  
VBUS  
1
P
P
P
Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of high-side MOSFET  
(HSFET). Place ceramic 10μF on PMID to GND and place it as close as possible to IC.  
PMID  
SW  
16  
Switching node. Connected to output inductor. Internally SW is connected to the source of the n-channel  
HSFET and the drain of the n-channel LSFET. Connect the 0.047μF bootstrap capacitor from SW to  
BTST.  
13,14  
High-side FET driver supply. Internally, the BTST is connected to the cathode of the internal boost-strap  
diode. Connect the 0.047μF bootstrap capacitor from SW to BTST.  
BTST  
GND  
REGN  
BAT  
15  
11,12  
2
P
P
Ground. Connected directly to thermal pad on the top layer. A single point connection is recommended  
between power ground and analog ground near the IC GND pins.  
Low-side FET driver positive supply output. Connect a 2.2μF ceramic capacitor from REGN to GND. The  
capacitor should be placed close to the IC.  
P
Battery voltage sensing input. Connect this pin to the positive terminal of the battery pack and the node of  
inductor output terminal. 10-µF capacitor is recommended to connect to this pin.  
10  
AI  
Battery temperature voltage input. Connect a negative temperature coefficient thermistor (NTC). Program  
temperature window with a resistor divider from REGN to TS and TS to GND. Charge suspends when TS  
pin voltage is out of range. When TS pin is not used, connect a 10-kΩresistor from REGN to TS and a  
10-kΩresistor from TS to GND. It is recommended to use a 103AT-2 thermistor.  
TS  
7
4
AI  
AI  
Charge current program input. Connect a 1% resistor RICHG from this pin to ground to program the  
charge current as ICHG = KICHG / RICHG (KICHG = 40,000). No capacitor is allowed to connect at this pin.  
When ICHG pin is pulled to ground or left open, the charger stop switching and STAT pin starts blinking.  
ICHG  
Charge status indication output. This pin is open drain output. Connect this pin to REGN via a current  
limiting resistor and LED. The STAT pin indicates charger status as:  
Charge in progress: STAT pin is pulled LOW  
Charge completed, charge disabled by EN: STAT pin is OPEN  
Fault conditions: STAT pin blinks.  
STAT  
3
AO  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
7-1. Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
Battery voltage feedback input. Connect this pin to resistor dividers middle point to program battery  
charge voltage. When this pin is shorted to GND or open by fault, the converter stop switching and STAT  
pin blinks. The resistor divider consists of a resistor R1 from battery positive terminal to FB pin and a  
resistor R2 from FB pin to FB_GND. The recommended resistance value of R2 is 200kΩor lower. The  
battery charge voltage is programmed as VBATREG = 1.1 (1 + R1/R2). The voltage regulation loop is  
internally compensated and a 470pF feedforward capacitor is recommended to connect from battery to FB  
pin.  
FB  
9
AI  
Battery voltage feedback ground input. Connect the feedback resistor divider's low side resister to this pin.  
The input of this pin is in high impedance when adaptor is unplugged or the charger is disabled by EN pin.  
FB_GND  
POL  
8
5
AI  
AI  
EN pin polority selection. Keep this pin floating for standalone charger.  
Device sisable input. With POL pin floating, the device is enabled with EN pin floating or pulled low, and  
the device is disabled if EN pin is pulled high. With POL pin grounded, the device is enabled with EN pin  
pulled high, and the device is disabled with EN pin pulled low or floating.  
EN  
6
AI  
Ground reference for the device that is also the thermal pad used to conduct heat from the device. This  
connection serves two purposes. The first purpose is to provide an electrical ground connection for the  
device. The second purpose is to provide a low thermal-impedance path from the device die to the PCB.  
This pad should be tied externally to a ground plane. Ground layer(s) are connected to thermal pad  
through vias under thermal pad.  
Thermal Pad  
17  
-
(1) AI = Analog input, AO = Analog Output, AIO = Analog input Output, DI = Digital input, DO = Digital Output, DIO = Digital input Output,  
P = Power  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
6
Submit Document Feedback  
Product Folder Links: BQ25306  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
8 Specifications  
8.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
MIN  
2  
MAX  
28  
UNIT  
V
VBUS (converter not switching)  
PMID(converter not switching)  
28  
V
0.3  
2(2)  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
SW  
20  
V
BTST  
STAT  
25.5  
5.5  
11  
V
V
BAT  
Voltage Range (with respect to GND)  
BTST to SW  
V
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
11  
V
ICHG  
REGN  
POL  
/EN  
V
V
V
V
TS  
V
FB  
Voltage Range (with respect to GND)  
FB_GND  
V
11  
V
STAT  
6
mA  
mA  
ºC  
ºC  
Output Sink Current  
REGN  
20  
Junction temperature  
Storage temperature  
TJ  
150  
150  
40  
65  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) -3V for 10ns transient  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
4.1  
NOM  
MAX  
17  
9
UNIT  
V
VVBUS  
VBAT  
IVBUS  
ISW  
TA  
Input voltage  
Battery voltage  
3.4  
V
Input current  
3
A
Output current (SW)  
3
A
Ambient temperature  
85  
°C  
µH  
µH  
40  
L
Recommended inductance at VVBUS_MAX < 6.2V  
Recommended inductance at VVBUS_MAX > 6.2V  
1.0  
2.2  
L
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
 
 
 
 
 
 
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
8.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
NOM  
2.2  
10  
MAX  
UNIT  
µF  
CVBUS  
CPMID  
CBAT  
Recommended capacitance at VBUS  
Recommended capacitance at PMID  
Recommended capacitance at BAT  
µF  
10  
µF  
8.4 Thermal Information  
BQ2530x  
THERMAL METRIC(1)  
RTE  
16-PINS  
45.8  
48.5  
19.0  
1.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance (JEDEC(1)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
)
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
19  
ΨJB  
RθJC(bot)  
7.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values  
(unless otherwise noted)  
PARAMETER  
QUIESCENT CURRENT  
VBUS reverse current from BAT/SW VBAT = VSW = 4.5V, VBUS is shorted to GND,  
to VBUS, TJ = -40°C - 85°C measure VBUS reverse current  
VBUS reverse current from BAT/SW VBAT = VSW = 9.0V, VBUS is shorted to  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IVBUS_REVS  
IVBUS_REVS  
IQ_VBUS_DIS  
IQ_VBUS_DIS  
IQ_BAT_HIZ  
0.07  
0.14  
3.5  
3
6
µA  
µA  
to VBUS TJ = -40°C - 85°C  
GND, measure VBUS reverse current  
VBUS leakage current in disable  
mode, TJ = -40°C - 85°C  
VBUS = 5V, VBAT = 4V, charger is  
disabled, /EN is pulled high  
4.25 µA  
µA  
1.0 µA  
VBUS leakage current in disable  
mode, TJ = -40°C - 85°C  
VBUS = 9V, VBAT = 4V, charger is  
disabled, /EN is pulled high  
4.7  
6
BAT and SW pin leakage current in  
HiZ mode, TJ = -40°C - 65°C  
VBAT = VSW = 4.5V, VBUS floating  
0.17  
0.50  
BAT and SW pin leakage current in  
disable mode, TJ = -40°C - 65°C  
VBAT = VSW = 9V, ICHG connected to a 25kΩ  
resistor, VBUS floating  
IQ_BAT_DIS_9V  
2
µA  
VBUS POWER UP  
VVBUS_OP  
VBUS operating range  
4.1  
3.0  
17.0  
3.80  
V
V
VVBUS_UVLOZ  
VBUS power on reset  
VBUS rising  
VVBUS_UVLOZ_HYS  
VVBUS_LOWV  
VBUS power on reset hysteresis  
A condition to turnon REGN  
VBUS falling  
250  
mV  
V
VBUS rising, REGN turns on, VBAT = 3.2V  
3.8  
30  
3.90  
4.00  
A condition to turnon REGN,  
hysteresis  
VVBUS_LOWV_HYS  
VSLEEP  
VBUS falling, REGN turns off, VBAT = 3.2V  
300  
60  
mV  
VBUS falling, VBUS - VBAT, VVBUS_LOWV  
VBAT < VBATREG  
<
Enter sleep mode threshold  
100 mV  
295 mV  
VBUS rising, VBUS - VBAT, VVBUS_LOWV  
VBAT < VBATREG  
<
VSLEEPZ  
Exit sleep mode threshold  
110  
157  
VVBUS_OVP_RISE  
VBUS overvoltage rising threshold  
VBUS rising, converter stops switching  
17.00  
17.40  
17.80  
V
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
8
Submit Document Feedback  
Product Folder Links: BQ25306  
 
 
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VVBUS_OVP_HYS  
VBUS overvoltage falling hysteresis  
VBUS falling, converter stops switching  
750  
mV  
MOSFETS  
Top reverse blocking MOSFET on-  
resistance between VBUS and  
PMID (Q1)  
RDSON_Q1  
VREGN = 5V  
VREGN = 5V  
VREGN = 5V  
40  
50  
45  
65  
82  
mΩ  
mΩ  
High-side switching MOSFET on-  
resistance between PMID and SW  
(Q2)  
RDSON_Q2  
Low-side switching MOSFET on-  
resistance between SW and GND  
(Q3)  
RDSON_Q3  
72  
38  
mΩ  
FB_GND MOSFET on-resistance  
between FB_GND and GND  
RDSON_FB_GND  
Ω
BATTERY CHARGER  
VVBUS = 12V, VBATREG is programmed by  
FB resistor divider  
VBATREG_RANGE  
Charge voltage regulation range  
3.400  
9.000  
V
VFB_REF_VBATREG  
Battery feedback regulation voltage TJ = -40°C to +85°C  
1094  
1.55  
0.90  
0.40  
1100 1104.5 mV  
1.72  
1.00  
1.89  
1.10  
0.60  
A
A
A
ICHG set at 1.72A with RICHG=23.2kΩ  
ICHG set at 1.0A with RICHG=40.2kΩ  
ICHG set at 0.5A with RICHG=78.7kΩ  
ICHG  
Charge current regulation  
0.500  
ICHG = 1.72A, 10% of ICHG,  
RICHG=23.2kΩ  
ITERM  
ITERM  
ITERM  
Termination current  
Termination current  
Termination current  
138  
70  
172  
100  
63  
206 mA  
130 mA  
93 mA  
ICHG = 1.0A, 10% of ICHG,  
RICHG=40.2kΩ  
ICHG = 0.5A, ITERM =63mA  
RICHG=78.7kΩ  
33  
ICHG = 1.72A, 10% of ICHG,  
RICHG=23.2kΩ  
115  
172  
225 mA  
IPRECHG  
Precharge current  
50  
28  
100  
63  
150 mA  
98 mA  
ICHG = 1.0A, 10% of ICHG, RICHG=40.2kΩ  
ICHG = 0.5A, 10% of ICHG, RICHG=78.7kΩ  
Short to precharge  
VBAT_SHORT_RISE  
VBAT_SHORT_FALL  
IBAT_SHORT  
VBAT short rising threshold  
VBAT short falling threshold  
Battery short current  
2.05  
1.85  
25  
2.20  
2.00  
35  
2.35  
2.15  
V
V
Precharge to battery short  
VBAT < VBAT_SHORT_FALL  
46 mA  
Precharge to fast charge rising, as  
percentage of VFB_REF_VBATREG  
VFB_REF_LOWV_RISE VBATLOWV rising threshold  
VFB_REF_LOWV_FALL VBATLOWV falling threshold  
68  
66  
70  
68  
72  
70  
%
%
%
Fast charge to precharge falling, as  
percentage of VFB_REF_VBATREG  
VFB falling, as percentage of  
VFB_REF_VBATREG  
VFB_REF_RECHG  
Recharge threshold  
95.2  
96.4  
97.6  
INPUT VOLTAGE / CURRENT REGULATION  
VINDPM_MIN  
VINDPM  
Minimum input voltage regulation  
Input voltage regulation  
VBAT = 3.5V, measured at PMID pin  
4.0  
4.07  
4.30  
4.2  
V
V
VBAT = 4V, measured at PMID pin, VINDPM  
1.044*VBAT + 0.125V  
=
=
4.15  
4.41  
VBAT = 8V, measured at PMID pin, VINDPM  
1.044*VBAT + 0.125V  
VINDPM  
Input voltage regulation  
Input current regulation  
8.27  
3.00  
8.47  
3.35  
8.67  
3.70  
V
A
IINDPM_3A  
BATTERY OVER-VOLTAGE PROTECTION  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBAT rising as percentage of  
VFB_REF_VBATREG  
VFB_BAT_OVP_RISE  
VFB_BAT_OVP_FALL  
Battery overvoltage rising threshold  
103  
104  
105  
103  
%
%
VBAT falling as percentage of  
VFB_REF_VBATREG  
Battery overvoltage falling threshold  
101  
102  
CONVERTER PROTECTION  
Bootstrap refresh comparator  
(VBTST - VSW) when LSFET refresh pulse is  
requested, VBUS = 5V  
VBTST_REFRESH  
2.7  
5.2  
3
3.3  
6.7  
V
A
threshold  
HSFET cycle by cycle over current  
limit threshold  
IHSFET_OCP  
6.2  
STAT INDICATION  
ISTAT_SINK  
STAT pin sink current  
6
mA  
Hz  
%
FBLINK  
STAT pin blink frequency  
STAT pin blink duty cycle  
1
FBLINK_DUTY  
50  
THERMAL REGULATION AND THERMAL SHUTDOWN  
Junction temperature regulation  
accuracy  
TREG  
111  
120  
133 °C  
Thermal shutdown rising threshold  
TSHUT  
Temperature increasing  
SW node frequency  
150  
125  
°C  
°C  
Thermal shutdown falling threshold Temperature decreasing  
BUCK MODE OPERATION  
FSW  
PWM switching frequency  
1.02  
1.20  
97.0  
1.38 MHz  
%
DMAX  
Maximum PWM Duty Cycle  
REGN LDO  
VREGN_UVLO  
VREGN  
REGN UVLO  
VVBUS rising  
3.85  
5.0  
V
V
V
REGN LDO output voltage  
REGN LDO output voltage  
VVBUS = 5V, IREGN = 0 to 16mA  
VVBUS = 12V, IREGN = 16mA  
4.2  
VREGN  
4.50  
5.40  
ICHG SETTING  
VICHG  
ICHG pin regulated voltage  
993  
565  
998  
1003 mV  
Maximum resistance to disable  
charge  
RICHG_SHORT_FALL  
RICHG_OPEN_RISE  
RICHG_MAX  
1.0  
kΩ  
kΩ  
kΩ  
kΩ  
Minimum resistance to disable  
charge  
Maximum programmable resistance  
at ICHG  
250  
Minimum programmable resistance  
at ICHG  
RICHG_MIN_SLE1  
11.70  
60  
ICHG setting resistor threshold to  
clamp precharge and termination  
current to 63mA  
RICHG_HIGH  
RICHG > RICHG_HIGH  
65  
70  
kΩ  
ICHG set at 1.72A with RICHG = 23.2kΩ,  
ICHG = KICHG / RICHG  
KICHG  
KICHG  
KICHG  
Charge current ratio  
Charge current ratio  
Charge current ratio  
36000 40000 44000  
36000 40280 44000  
32000 40700 48000  
AxΩ  
AxΩ  
AxΩ  
ICHG set at 1.0A with RICHG = 40.2kΩ, ICHG  
= KICHG / RICHG  
ICHG set at 0.5A with RICHG = 78.7kΩ, ICHG  
= KICHG / RICHG  
COLD/HOT THERMISTOR COMPARATOR  
TCOLD (0°C) threshold, charge  
VT1%  
suspended if thermistor temperature VTS rising, as percentage to VREGN  
is below T1  
72.68  
73.5  
74.35  
%
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
10  
Submit Document Feedback  
Product Folder Links: BQ25306  
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VT1  
VT3  
VT3  
%
%
%
VTS falling  
As Percentage to VREGN  
70.68  
71.5  
72.33  
48.15  
49.15  
%
%
%
THOT (45°C) threshold, charge  
suspended if thermistor temperature VTS falling, as percentage to VREGN  
is above T_HOT  
46.35  
47.35  
47.25  
48.25  
VTS rising  
As percentage to VREGN  
LOGIC I/O PIN CHARACTERESTICS (POL, EN)  
VILO  
VIH  
Input low threshold  
Input high threshold  
Falling  
Rising  
0.40  
V
V
1.3  
IBIAS  
High-level leakage current at /EN pin /EN pin is pulled up to 1.8 V  
1.0  
µA  
8.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
VBUS/BAT POWER UP  
Delay from enable at /EN pin to  
charger power on  
tCHG_ON_EN  
/EN pin voltage rising  
245  
275  
ms  
ms  
tCHG_ON_VBUS Delay from VBUS to charge start  
BATTERY CHARGER  
/EN pin is grounded, batttery present  
tSAFETY_FAST Charge safety timer  
Fast charge safety timer 20 hours  
Precharge safety timer  
15.0  
1.5  
20.0  
2.0  
24.0  
2.5  
hr  
hr  
tSAFETY_PRE  
Charge safety timer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
8.7 Typical Characteristics  
fSW = 1.2 MHz  
Inductance = 1.0 uH  
fSW = 1.2 MHz  
VBAT = 3.8 V  
Inductance = 2.2 uH  
Inductor DCR = 20 mΩ  
VVBUS = 5.0 V, VBAT = 3.8 V  
Inductor DCR = 10 mΩ  
8-1. 1-Cell Battery Charge Efficiency vs. Charge Current  
8-2. 1-Cell Battery Charge Efficiency vs. Charge Current  
4.4  
4.3  
4.2  
4.1  
4
VINDPM = 4.1V  
VINDPM = 4.3V  
3.9  
-40  
-20  
0
20  
40  
60  
80 100 120 140  
Junction Temperature (oC)  
VIND  
fSW = 1.2 MHz  
VBAT = 7.6 V  
Inductance = 2.2 uH  
8-4. VINDPM vs. Junction Temperature  
Inductor DCR = 20 mΩ  
8-3. 2-Cell Battery Charge Efficiency vs. Charge Current  
8-5. Termination Current as Percentage of Charge Current  
8-6. Termination Current as Percentage of Charge Current  
vs. Charge Current (1-cell)  
vs. Charge Current (2-cell)  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
8.7 Typical Characteristics (continued)  
8-7. KICHG vs. Charge Current  
8-8. Charge Current vs. Charge Current Setting Resistance  
RICHG  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
9 Detailed Description  
9.1 Overview  
The BQ25306 is a highly integrated standalone single cell and duel cell Li-Ion battery charger for Li-Ion, Li-  
polymer and LiFePO4 batteries with charge voltage and charge current programmable by external resistors. It  
includes the input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching  
FET (LSFET, Q3), bootstrap diode for the high-side gate drive as well as current sensing circuitry.  
9.2 Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
14  
Submit Document Feedback  
Product Folder Links: BQ25306  
 
 
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
VBUS  
PMID  
VVBUS_LOWV  
RBFET (Q1)  
+
UVLO  
VVBUS  
VBAT + VSLEEP  
œ
IIN  
Q1 Gate  
Control  
REGN  
EN_REGN  
+
SLEEP  
REGN  
LDO  
VVBUS  
œ
EN_CHARGE  
BTST  
FBO  
ICHG  
SNS  
VVBUS  
VBUS_OV  
+
VVBUS_OV  
œ
VPMID  
œ
+
+
œ
+
œ
HSFET (Q2)  
SW  
VINDPM  
BAT  
IIN  
Converter  
Control  
+
BATOVP  
UCP  
REGN  
104% × V BAT_REG  
IINDPM  
œ
ILSFET_UCP  
LSFET (Q3)  
GND  
IC TJ  
TREG  
+
IQ2  
IQ3  
BAT  
œ
Q2_OCP  
+
+
IHSFET_OCP  
VBAT_REG  
œ
œ
VBTST - VSW  
ICHG  
+
+
REFRESH  
EN_CHARGE  
VBTST_REFRESH  
ICHG_REG  
œ
œ
BAT  
Converter  
Control State  
Machine  
IC TJ  
+
TSHUT  
TSHUT  
œ
ICHG  
VREG -VRECHG  
+
RECHRG  
BAT  
ICHG  
œ
BAT  
+
TERMINATION  
BATLOWV  
œ
FB  
REF/EN  
VBAT_LOWV  
+
BAT  
œ
FB_GND  
EN  
VSHORT  
Charger  
Control State  
Machine  
+
BATSHORT  
SUSPEND  
BAT  
œ
POL  
œ
VTCOLD  
STAT  
+
VTS  
œ
VTHOT  
SUSPEND  
VTS  
TS  
+
VTS  
AGND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
9.3 Feature Description  
9.3.1 Device Power Up  
The EN pin enable or disable the device. When the device is disabled, the device draws minimum current from  
VBUS pin. The device can be powered up from either VBUS or by enabling the device from EN pin.  
9.3.1.1 Power-On-Reset (POR)  
The EN pin can enable or disable the device. When the device is disabled, the device is in disable mode and it  
draws minimum current at VBUS. When the device is enabled, if VBUS rises above VVBUS_UVLOZ, the device  
powers part of internal bias and comparators and starts Power on Reset (POR).  
9.3.1.2 REGN Regulator Power Up  
The internal bias circuits are powered from the input source. The REGN supplies internal bias circuits as well as  
the HSFET and LSFET gate drive. The REGN also provides voltage rail to STAT LED indication. The REGN is  
enabled when all the below conditions are valid:  
Chip is enabled by EN pin  
VVBUS above VVBUS_UVLOZ  
VVBUS above VBAT + VSLEEPZ  
After sleep comparator deglitch time and REGN delay time  
REGN remains on at fault conditions. REGN is powered by VBUS only and REGN is off when VBUS power is  
removed.  
9.3.1.3 Charger Power Up  
Following REGN power-up, if there is no fault conditions, the charger powers up with soft start. If there is any  
fault, the charger will remain off until fault is clear. Any of the fault conditions below gates charger power-up:  
VVBUS > VVBUS_OVP  
Thermistor cold/hot fault on TS pin  
VBAT > VBAT_OVP  
Safety timer fault  
FB pin is open or short to GND  
ICHG pin is open or short to GND  
Die temperature is above TSHUT  
9.3.1.4 Charger Enable and Disable by EN Pin  
With POL pin floating, the charger can be enabled with EN pin pulled low (or floating) or disabled by EN pin  
pulled high. The charger is in disable mode when disabled.  
9.3.1.5 Device Unplugged from Input Source  
When VBUS is removed from an adaptor, the device stays in HiZ mode and the leakage current from the battery  
to BAT pin and SW pin is less than IQ_BAT_HIZ.  
9.3.2 Battery Charging Management  
The BQ25306 charges 1-cell or 2-cell Li-Ion battery with up to 3.0-A charge current from up to 17-V input  
voltage. A new charge cycle starts when the charger power-up conditions are met. The charge voltage  
programmed by external resistor divider at FB pin and charge current are set by external resistors at ICHG pin.  
The charger terminates the charging cycle when the charging current is below termination threshold ITERM and  
charge voltage is above recharge threshold, and device is not in IINDPM or thermal regulation. When a fully  
charged battery's voltage is discharged below recharge threshold, the device automatically starts a new charging  
cycle with safety timer reset. To initiate a recharge cycle, the conditions of charger power-up must be met. The  
STAT pin output indicates the charging status of charging (LOW), charging complete or charge disabled (HIGH)  
or charging faults (BLINKING).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
16  
Submit Document Feedback  
Product Folder Links: BQ25306  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
9.3.2.1 Battery Charging Profile  
The device charges the battery in four phases: battery short, preconditioning, constant current, constant voltage.  
The fast charge current is set by a resistor ICHG pin. The battery charging profile is shown in the figure. The  
device charges battery based on charge voltage set by the feedback resister divider from BAT to FB and  
FB_GND.  
9-1. Charging Current Setting  
MODE  
BATTERY VOLTAGE VBAT  
CHARGE CURRENT  
TYPICAL VALUE  
Battery Short  
VBAT < VBAT_SHORT  
IBAT_SHORT  
35 mA  
10% of ICHG ( IPRE  
63mA )  
>
Precharge  
VBAT_SHORT < VBAT < VBAT_LOWV  
VBAT_LOWV < VBAT  
IPRECHG  
ICHG  
Fast Charge  
Set by ICHG resistor  
Regulation Voltage VBATREG  
Fast Charge Current ICHG  
Battery Voltage  
Charge Current  
VBAT_LOWV  
VBAT_SHORT  
IPRECHG  
ITERM  
IBAT_SHORT  
Time  
Trickle Charge  
Pre-charge  
Fast Charge  
Voltage Regulation  
Safety Timer Expiration if  
Charge is not Terminated  
9-1. Battery Charging Profile  
9.3.2.2 Precharge  
The device charges the battery at 10% of set fast charge current in precharge mode. When RICHG > RICHG_HIGH  
,
the precharge current is clamped at 63mA.  
9.3.2.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above recharge threshold and the charge  
current is below termination current. After a charging cycle is completed, the converter stops swicthing, charge is  
terminated and the system load is powered from battery. Termination is temporarily disabled when the charger  
device is in input current regulation or thermal regulation mode and the charging safety timer is counted at half  
the clock rate. The charge termination current is 10% of set fast charge current if RICHG < RICHG_HIGH. The  
termination current is clamped at 63mA if RICHG > RICHG_HIGH  
.
9.3.2.4 Battery Recharge  
A charge cycle is completed and the charge is terminated, safety time is disabled. If the battery feedback voltage  
VFB decreases below VFB_REF_RECHG, the charger is enabled with safety timer reset and enabled.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
9.3.2.5 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The  
safety timer is 20 hours when the battery voltage is above VBAT_LOWV threshold and 2 hours below VBAT_LOWV  
threshold. When the safety timer expires, charge is suspended until the safety timer is reset. Safety timer is reset  
and charge starts under one of the following conditions:  
Battery voltage falls below recharge threshold  
VBUS voltage is recycled  
EN pin is toggled  
Battery voltage transits across VBAT_SHORT threshold  
Battery voltage transits across VBAT_LOWV threshold  
If the safety timer expires and the battery voltage is above recharge threshold, the charger is suspended and the  
STAT pin is open. If the safety timer expires and the battery voltage is below the recharge threshold, the charger  
is suspended and the STAT pin blinks to indicate a fault. The safety timer fault is cleared with safety timer reset.  
During input current regulation, thermal regulation, the safety timer counts at half the original clock frequency  
and the safety timer is doubled. During TS fault, VBUS_OVP, VBAT_OVP, ICHG pin open and short, FB pin fault, and  
IC thermal shutdown faults, the safety timer is suspended. Once the fault(s) is clear, the safety timer resumes to  
count.  
9.3.2.6 Thermistor Temperature Monitoring  
The charger device provides a single thermistor input TS pin for battery temperature monitor. RT1 and RT2  
programs the cold temperature T1 and hot temperature T3. In the equations, RNTC,T1 is NTC thermistor  
resistance value at temperature T1 and RNTC,T3 is NTC thermistor resistance values at temperature T3.  
Assuming RHOT = 0, select 0°C to 45°C for battery charge temperature range, then NTC thermistor 103AT-2  
resistance RNTC,T1 = 27.28 kΩ ( at 0°C) and RNTC,T3 = 4.91 kΩ (at 45°C), from the 方程式 1 and 方程式 2, RT1  
and RT2 are derived as:  
RT1 = 4.527 kΩ  
RT2 = 23.26 kΩ  
On top of the calculation results, adding RHOT resisitor can shift HOT temperature T3 up and only slightly shift  
up COLD temperature T1. The actual temperature T3 can be looked up in a NTC resistance table based on  
(RNTC,T3 - RHOT) and T1 can be looked up in a NTC resistance table based on (RNTC,T1 - RHOT). Because  
RNTC,T1 is much higher than RNTC,T3, RHOT can adjust HOT temperature significantly with mimimal affect on  
COLD temperature. RHOT is optional.  
REGN  
RT1  
RHOT  
TS  
RTH  
103AT  
RT2  
9-2. Battery Temperature Sensing Circuit  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
18  
Submit Document Feedback  
Product Folder Links: BQ25306  
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
T1  
T3  
%
%
%
T3  
T3  
T1  
T1  
%
T1  
T3  
(1)  
(2)  
%
9.3.3 Charging Status Indicator (STAT)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive a LED that is pulled up  
to REGN rail through a current limit resistor.  
9-2. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
LOW  
Charging in progress (including recharge)  
Charging complete  
HIGH  
HiZ mode, sleep mode, charge disable  
HIGH  
Safety timer expiration with battery voltage above recharge threshold  
HIGH  
Charge faults:  
1. VBUS input over voltage  
2. TS cold/hot faults  
3. Battery over voltage  
BLINKING at 1 Hz  
with 50% duty cycle  
4. IC thermal shutdown  
5. Safety timer expiration with battery voltage below recharge threshold  
6. ICHG pin open or short  
7. FB pin open or short  
9.3.4 Protections  
9.3.4.1 Voltage and Current Monitoring  
The device closely monitors the input voltage and input current for safe operation.  
9.3.4.1.1 Input Over-Voltage Protection  
This device integrates the functionality of an input over-voltage protection (OVP). The input OVP threshold is  
VVBUS_OVP_RISE. During an input over-voltage event, the converter stops switching and safety timer stops  
counting as well. The converter resumes switching and the safety timer resumes counting once the VBUS  
voltage drops back below (VVBUS_OVP_RISE - VVBUS_OVP_HYS). The REGN LDO remains on during an input over-  
voltage event. The STAT pin blinks during an input OVP event.  
9.3.4.1.2 Input Voltage Dynamic Power Management (VINDPM)  
When the input current of the device exceeds the current capability of the power supply, the charger device  
regulates PMID voltage by reducing charge current to avoid crashing the input power supply. VINDPM  
dynamically tracks the battery voltage. The actual VINDPM is the higher of VINDPM_MIN and (1.044*VBAT +  
125mV).  
9.3.4.1.3 Input Current Limit  
The device has built-in input current limit. When the input current is over the threshold IINDPM, the converter duty  
cycle is reduced to reduce input current.  
9.3.4.1.4 Cycle-by-Cycle Current Limit  
High-side (HS) FET current is cycle-by-cycle limited. Once the HSFET peak current hits the limit IHSFET_OCP, the  
HSFET shuts down until the current is reduced below a threshold.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
9.3.4.2 Thermal Regulation and Thermal Shutdown  
The device monitors the junction temperature TJ to avoid overheating the chip and limit the device surface  
temperature. When the internal junction temperature exceeds thermal regulation limit TREG, the device lowers  
down the charge current. During thermal regulation, the average charging current is usually below the  
programmed battery charging current. Therefore, termination is disabled and the safety timer runs at half the  
clock rate.  
Additionally, the device has thermal shutdown built in to turn off the charger when device junction temperature  
exceeds TSHUT rising threshold. The charger is reenabled when the junction temperature is below TSHUT falling  
threshold. During thermal shutdown, the safety timer stops counting and it resumes when the temperature drops  
below the threshold.  
9.3.4.3 Battery Protection  
9.3.4.3.1 Battery Over-Voltage Protection (VBAT_OVP  
)
The battery voltage is clamped at above the battery regulation voltage. When the battery voltage is over  
VBAT_OVP_RISE, the converter stops switching until the battery voltage is below the falling threshold. During a  
battery over-voltage event, the safety timer stops counting and STAT pin reports the fault and it resumes once  
the battery voltage falls below the falling threshold. A 7-mA pull-down current is on the BAT pin once BAT_OVP  
is triggered. BAT_OVP may be triggered in charging mode, termination mode, and fault mode.  
9.3.4.3.2 Battery Short Circuit Protection  
When the battery voltage falls below the VBAT_SHORT threshold, the charge current is reduced to IBAT_SHORT  
.
9.3.4.4 ICHG Pin Open and Short Protection  
To protect against ICHG pin is short or open, the charger immediately shuts off once ICHG pin is open or short to  
GND and STAT pin blinks to report the fault. At powerup, if ICHG pin is detected open or short to GND, the  
charge will not power up until the fault is clear.  
9.4 Device Functional Modes  
9.4.1 Disable Mode, HiZ Mode, Sleep Mode, Charge Mode, Termination Mode, and Fault Mode  
The device operates in different modes depending on VBUS voltage, battery voltage, and EN pin, POL pin,  
ICHG pin and FB pin connection.The functional modes are listed in the following table.  
9-3. Device Functional Modes  
MODE  
CONDITIONS  
REGN LDO  
CHARGE ENABLED  
STAT PIN  
Device is disabled, POL floating, EN =  
1
Disable Mode  
OFF  
NO  
OPEN  
Device is enabled and  
VVBUS < VVBUS_UVLOZ  
HiZ Mode  
OFF  
OFF  
NO  
NO  
OPEN  
OPEN  
Device is enabled and  
VVBUS > VVBUS_UVLOZ and  
VVBUS < VBAT + VSLEEPZ  
Sleep Mode  
Device is enabled, VVBUS  
>
VVBUS_LOWV and VVBUS > VBAT  
VSLEEPZ, no faults, charge is not  
terminated  
+
Charge Mode  
ON  
ON  
ON  
YES  
NO  
SHORT to GND  
OPEN  
VVBUS > VVBUS_LOWV and VVBUS  
VBAT + VSLEEPZ and device is enabled,  
no faults, charge is terminated  
>
Charge Termination  
Mode  
VBUS_OVP, TS cold/hot, VBAT_OVP, IC  
thermal shutdown, safety timer fault,  
ICHG pin open or short, FB pin open  
or short  
Fault Mode  
NO  
BLINKING  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
20  
Submit Document Feedback  
Product Folder Links: BQ25306  
 
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
10 Application and Implementation  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
A typical application consists of a single cell or dual cell battery charger for Li-Ion, Li-polymer and LiFePO4  
batteries used in a wide range of portable devices and accessories. It integrates an input reverse-block FET  
(RBFET, Q1), high-side switching FET (HSFET, Q2), and low-side switching FET (LSFET, Q3). The Buck  
converter output is connected to the battery directly to charge the battery and power system loads. The device  
also integrates a bootstrap diode for high-side gate drive.  
10.2 Typical Applications  
The typical applications in this section include a standalone charger without power path, a standalone charger  
with external power path, and a typical application with MCU programmed charge current.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
 
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
10.2.1 Typical Application  
The typical application in this section includes a standalone charger without power path.  
1.0 H (VVBUS_MAX  
2.2 H (VVBUS_MAX  
<
>
6.2V)  
6.2V)  
VBUS  
SW  
VBUS  
Q1  
Q2  
2.2 F  
10 F  
47 nF  
BTST  
Q3  
PMID  
GND  
BAT  
10 F  
REGN  
REGN  
470pF  
R1  
R2  
FB  
2.2 F  
200k  
FB_GND  
ICHG  
Q4  
REGN  
REGN  
1 kꢀ  
TS  
STAT  
POL  
EN  
Thermal Pad  
10-1. Typical Application Diagram  
(1-µH inductor is recommended if maximum input voltage VVBUS_MAX < 6.2V; 2.2-µH inductor is  
recommended if maximum input voltage VVBUS_MAX > 6.2V )  
10.2.1.1 Design Requirements  
10-1. Design Requirements  
PARAMETER  
Input Voltage  
VALUE  
4.1V to 17V  
3.0A  
Input Current  
Fast Charge Current  
Battery Regulation Voltage  
3.0A  
3.4 V 9.0 V  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Charge Voltage Settings  
Battery charge voltage is set by a resister divider. The battery charge voltage is programmed as VREG =  
1.1(1+R1/R2). R1 is a high side resistor from BAT to FB pin and R2 is a low side resister from FB to FB_GND.  
The recommended resistance of R2 is 200 kΩor lower. 1% or higher accuracy of resistors is needed for R1 and  
R2 resisitors. For a 1-cell 4.2-V battery, R1 = 562 kΩ and R2 = 200 kΩ are recommended; For a 2-cell 8.4-V  
battery, R1 = 1.33MΩand R2 = 200 kΩare recommded.  
10.2.1.2.2 Charge Current Setting  
The charger current is set by the resistor value at the ICHG pin according to the equation below:  
ICHG (A) = KICHG (A·Ω) / RICHG(Ω)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
22  
Submit Document Feedback  
Product Folder Links: BQ25306  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
KICHG is a coefficient that is listed in Electrical Characteristics table and RICHG is the resistor value from ICHG pin  
to GND. KICHG is typically 40,000 (A·Ω) and it is slightly shifted up at lower charge current setting. The KICHG vs.  
ICHG typical characteresitc curve is shown in 8-7.  
10.2.1.2.3 Inductor Selection  
The 1.2-MHz switching frequency allows the use of small inductor and capacitor values. Inductance value is  
selected based on maximum input voltage VVBUS_MAX in applications. 1-µH inductor is recommended if  
VVBUS_MAX < 6.2V and 2.2-µH inductor is recommended if VVBUS_MAX > 6.2V for either 1-cell or 2-cell battery  
charge. An inductor saturation current ISATshould be higher than the charging curren ICHG plus half the ripple  
current IRIPPLE  
:
I
SAT ICHG + (1/2) IRIPPLE  
(3)  
The inductor ripple current IRIPPLE depends on the input voltage (VVBUS), the duty cycle (D = VBAT/VVBUS), the  
switching frequency (fS) and the inductance (L).  
VIN ´D ´ (1- D)  
=
IRIPPLE  
fs ´ L  
(4)  
The maximum inductor ripple current occurs when the duty cycle (D) is 0.5 or approximately 0.5.  
10.2.1.2.4 Input Capacitor  
Design input capacitance to provide enough ripple current rating to absorb the input switching ripple current.  
Worst case RMS ripple current is half of the charging current when the duty cycle is 0.5. If the converter does not  
operate at 50% duty cycle, then the worst case capacitor RMS current ICin occurs where the duty cycle is closest  
to 50% and can be estimated using 方程5.  
ICIN = ICHG ´ D ´ (1- D)  
(5)  
A low ESR ceramic capacitor such as X7R or X5R is preferred for the input decoupling capacitor and should be  
placed as close as possible to the drain of the high-side MOSFET and source of the low-side MOSFET. The  
voltage rating of the capacitor must be higher than the normal input voltage level. A rating of 25-V or higher  
capacitor is preferred for 15-V input voltage.  
10.2.1.2.5 Output Capacitor  
Ensure that the output capacitance has enough ripple current rating to absorb the output switching ripple current.  
The equation below shows the output capacitor RMS current ICOUT calculation.  
IRIPPLE  
ICOUT  
=
» 0.29 ´ IRIPPLE  
2 ´  
3
(6)  
The output capacitor voltage ripple can be calculated as follows:  
æ
ç
è
ö
VOUT  
8LCfs2  
VOUT  
V
DVO =  
1-  
÷
IN ø  
(7)  
At certain input and output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
10.2.1.3 Application Curves  
SW  
VBUS  
VBAT  
REGN  
STAT  
IBAT  
STAT  
IBAT  
VBUS = 5 V  
VBUS = 5 V  
ICHG = 2 A  
VBAT = 1.5V - 4.2V  
VBATREG = 4.2V  
ICHG = 2A  
Device Enabled  
10-2. Power Up from VBUS  
10-3. Charge Cycle  
VBUS = 15 V  
ICHG = 2 A  
VBAT = 1.5V - 8.8V  
VBATREG = 8.4V  
VBUS = 12V -25V -12V  
ICHG = 1A  
VBAT = 3.8V  
10-5. VBUS Over Voltage Protection  
10-4. Charge Cycle  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
VBUS = 5 V  
ICHG = 2A  
Adaptor Currrent Limit: 1A  
VBAT = 3.5V  
From ICHG = 2A to ICHG pin  
VBUS = 5 V  
10-6. VBUS startup into VINDPM  
short  
10-7. ICHG Pin Short Circuit Protection  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
10.2.2 Typical Application with External Power Path  
In the case where a system needs to be immediately powered up from VBUS when the battery is overdischarged  
or dead, the application circuit shown in 10-8 can be used to provide a power path from VBUS/PMID to  
VSYS. PFET Q4 is an external PFET that turns on to supply VSYS from the battery when VBUS is removed;  
PFET Q4 turns off when VBUS is plugged in and VSYS is supplied from VBUS/PMID.  
VSYS  
10 µF  
VBUS  
PMID  
R
Q4  
L
VBUS  
SW  
VBUS  
Q1  
Q2  
10 F  
2.2 F  
47 nF  
BTST  
GND  
REGN  
REGN  
Q3  
2.2 F  
REGN  
BAT  
FB  
470pF  
STAT  
ICHG  
R1  
1 k  
R2  
200kꢀ  
FB_GND  
REGN  
EN  
TS  
POL  
Thermal Pad  
10-8. Typical Application Diagram with Power Path  
(1-µH inductor is recommended if maximum input voltage VVBUS_MAX < 6.2V; 2.2-µH inductor is  
recommended if maximum input voltage VVBUS_MAX > 6.2V )  
10.2.2.1 Design Requirements  
For design requirements, see 10.2.1.1.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
26  
Submit Document Feedback  
Product Folder Links: BQ25306  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
10.2.3 Typical Application with MCU Programmable Charge Current  
In some application cases, the charge current needs to be controlled by a MCU. In those cases, the GPIOs of  
the MCU can be used for on/off control of the charge current setting resistors RICHG1 and RICHG2 as shown in 图  
10-9. With GPIO1 and GPIO2 on/off control, three levels of charge current can be programmed. If the charge  
current needs to be controlled smoothly in a wide range, a PWM output of the MCU can be used to generate an  
average DC voltage output to program the charge current as show in 10-10. The charge current can be  
calculated as: (1V - VPWM) / (RICHG1 + RICHG2). VPWM is the averaged DC voltage of the PWM output and it must  
be lower than 1 V. The regulated voltage at the ICHG pin is 1 V.  
1.0 H (VVBUS_MAX < 6.2V)  
2.2 H (VVBUS_MAX > 6.2V)  
VBUS  
SW  
VBUS  
Q1  
Q2  
10 F  
2.2 F  
47 nF  
BTST  
GND  
Q3  
PMID  
10 F  
REGN  
BAT  
FB  
1 k  
STAT  
470pF  
R1  
REGN  
R2  
200kꢀ  
REGN  
FB_GND  
2.2 F  
MCU  
RICHG1  
RICHG2  
GPIO  
GPIO  
REGN  
ICHG  
TS  
EN  
POL  
Thermal Pad  
10-9. Typical Application with MCU Programmed Charge Current  
(1-µH inductor is recommended if maximum input voltage VVBUS_MAX < 6.2V; 2.2-µH inductor is  
recommended if maximum input voltage VVBUS_MAX > 6.2V )  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
1.0 H (VVBUS_MAX < 6.2V)  
2.2 H (VVBUS_MAX > 6.2V)  
VBUS  
SW  
VBUS  
Q1  
Q2  
10 F  
2.2 F  
47 nF  
BTST  
GND  
Q3  
PMID  
10 F  
REGN  
BAT  
FB  
1 k  
470pF  
STAT  
R1  
REGN  
R2  
200kꢀ  
REGN  
FB_GND  
2.2 F  
REGN  
GPIO  
PWM  
EN  
RICHG2  
RICHG1  
TS  
ICHG  
MCU  
POL  
Thermal Pad  
10-10. Typical Application with MCU Programmed Charge Current  
(1-µH inductor is recommended if maximum input voltage VVBUS_MAX < 6.2V; 2.2-µH inductor is  
recommended if maximum input voltage VVBUS_MAX > 6.2V )  
10.2.3.1 Design Requirements  
For design requirements, see 10.2.1.1.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
28  
Submit Document Feedback  
Product Folder Links: BQ25306  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
11 Power Supply Recommendations  
In order to provide an output voltage on the BAT pin, the device requires a power supply between 4.1 V and 17 V  
single-cell or dual-cell Li-Ion battery with positive terminal connected to BAT. The source current rating needs to  
be at least 3 A in order for the buck converter to provide maximum output power to BAT or the system connected  
to BAT pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
12 Layout  
12.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loop (see 12-1) is important to prevent electrical and  
magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the  
proper layout.  
Place input capacitor as close as possible to PMID pin and use shortest thick copper trace to connect input  
capacitor to PMID pin and GND plane.  
It is critical that the exposed thermal pad on the backside of the device be soldered to the PCB ground.  
Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on the other  
layers. Connect the GND pins to thermal pad on the top layer.  
Put output capacitor near to the inductor output terminal and the charger device. Ground connections need to  
be tied to the IC ground with a short copper trace or GND plane  
Place inductor input terminal to SW pin as close as possible and limit SW node copper area to lower  
electrical and magnetic field radiation. Do not use multiple layers in parallel for this connection. Minimize  
parasitic capacitance from this area to any other trace or plane.  
Route analog ground separately from power ground if possible. Connect analog ground and power ground  
together using thermal pad as the single ground connection point under the charger device. It is acceptable to  
connect all grounds to a single ground plane if multiple ground planes are not available.  
Decoupling capacitors should be placed next to the device pins and make trace connection as short as  
possible.  
For high input voltage and high charge current applications, sufficient copper area on GND should be  
budgeted to dissipate heat from power losses.  
Ensure that the number and sizes of vias allow enough copper for a given current path  
See the 2 layer PCB design example in 12-2 for the recommended component placement with trace,  
grounding and via locations.  
+
+
œ
12-1. High Frequency Current Path  
12.2 Layout Example  
The device pinout and component count are optimized for a 2 layer PCB design. The 2-layer PCB layout  
example is shown in 12-2.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
30  
Submit Document Feedback  
Product Folder Links: BQ25306  
 
 
 
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
Top layer  
Bottom layer  
GND  
Vias  
1 µH /  
2.2uH  
BAT  
47 nF  
10µF  
2.2 µF  
VBUS  
2.2 µF  
10 µF  
VBUS  
GND  
GND  
BAT  
1
2
3
4
12  
11  
10  
9
REGN  
STAT  
ICHG  
FB  
5
6
7
8
12-2. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following: BQ25306 Evaluation Module User's Guide  
13.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
13.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDC7  
32  
Submit Document Feedback  
Product Folder Links: BQ25306  
 
 
 
 
 
 
 
 
BQ25306  
www.ti.com.cn  
ZHCSMH4A MARCH 2020 REVISED NOVEMBER 2020  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25306  
English Data Sheet: SLUSDC7  
 
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

BQ25306RTER

独立型 17V、3A 1 至 2 节降压电池充电器 | RTE | 16 | -40 to 85
TI

BQ2540-7P

DC-DC Regulated Power Supply Module,
BEL

BQ2540-7R

60...132 Watt DC-DC Converters
POWER-ONE

BQ2540-7R

DC-DC Regulated Power Supply Module,
BEL

BQ2540-9P

DC-DC Regulated Power Supply Module,
BEL

BQ2540-9R

DC-DC Regulated Power Supply Module, 2 Output, 120W, Hybrid, METAL, CASE Q01, MODULE
BEL

BQ25504

Ultra Low Power Boost Converter with Battery Management for Energy Harvester Applications
TI

BQ25504RGTR

Ultra Low Power Boost Converter with Battery Management for Energy Harvester Applications
TI

BQ25504RGTT

Ultra Low Power Boost Converter with Battery Management for Energy Harvester Applications
TI

BQ25505

Ultra Low Power Boost Charger with Battery Management and Autonomous Power
TI

BQ25505RGRR

Ultra Low Power Boost Charger with Battery Management and Autonomous Power Multiplexor
TI

BQ25505RGRT

Ultra Low Power Boost Charger with Battery Management and Autonomous Power Multiplexor
TI