BQ25890HRTWR [TI]

具有 NVDC 电源路径和 HVDCP 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85;
BQ25890HRTWR
型号: BQ25890HRTWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 NVDC 电源路径和 HVDCP 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85

电池
文件: 总67页 (文件大小:2136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
BQ25890H I2C 控制型单节电池 5A 快速充电器,采用 MaxChargeTM 技  
术,支持高输入电压和可调电压 USB On-the-Go (OTG) 升压模式  
1 特性  
高精度  
±0.5% 充电电压调节  
1
高效率 5A 1.5MHz 开关模式降压充电  
±5% 充电电流调节  
±7.5% 输入电流调节  
93% 的充电效率(充电电流为 2A)和 91% 的  
充电效率(充电电流为 3A)  
针对高电压输入 (9V/12V) 进行优化  
低功耗 PFM 模式,适合轻载运行  
安全  
用于充电模式和升压模式的电池温度感测  
热调节和热关断  
USB On-the-Go (OTG) 以及 4.5V 5.5V 的可调  
输出电压范围  
2 应用  
可选 500KHz/1.5MHz 升压转换器,输出电流高  
2.4A  
智能手机  
5V/1A 输出时的升压效率为 93%  
精确的断续模式过流保护  
平板电脑  
便携式网络设备  
支持低至 2.5V 的电池  
3 说明  
针对轻载效率支持仅 PWM PFM/PWM 控制  
bq25890H 是一款适用于单节锂离子电池和锂聚合物电  
池的高度集成型 5A 开关模式电池充电管理和系统电源  
路径管理器件。此类器件支持高输入电压快速充电。低  
阻抗电源路径对开关模式运行效率进行了优化、缩短了  
电池充电时间并延长了放电阶段的电池使用寿命。  
单个输入,支持 USB 输入和可调高电压适配器  
支持 3.9V 14V 输入电压范围  
输入电流限制(100mA 3.25A,分辨率为  
50mA),支持 USB2.0USB3.0 标准和高电  
压适配器  
通过输入电压限制(最高 14V)实现最大功率  
跟踪,适用于各类适配器  
器件信息(1)  
器件型号  
bq25890H  
封装  
封装尺寸(标称值)  
自动检测 USB SDPCDPDCP 以及非标准  
适配器  
WQFN (24)  
4.00mm x 4.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
输入电流优化器 (ICO),无需过载适配器即可最大  
限度提高输入功率  
充电器输出与电池终端间的电阻补偿 (IRCOMP)  
简化原理图  
借助 11mΩ 电池放电 MOSFET 实现最高电池放电  
效率,放电电流高达 9A  
Input  
3.9Vt14V at 3A  
SYS 3.5Vt4.5V  
集成 ADC,用于系统监视  
(电压、温度和充电电流)  
VBUS  
SW  
USB  
OTG  
5V at 2.4A  
SYS  
VDC (NVDC) 电源路径管理  
Ichg = 3A  
BAT  
无需电池或使用深度放电的电池即可瞬时接通  
电池充电模式下实现理想的二极管运行  
I2C Bus  
QON  
Host  
REGN  
BATFET 控制,支持运输模式、唤醒和完全系统复  
灵活的自主和 I2C 模式,可实现最优系统性能  
bq25890H  
Optional  
Host Control  
TS  
高集成度,包括所有 MOSFET、电流检测和环路补  
12μA 低电池泄漏电流,支持运输模式  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCC5  
 
 
 
 
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
目录  
8.4 Register Maps......................................................... 34  
Application and Implementation ........................ 51  
9.1 Application Information............................................ 51  
9.2 Typical Application .................................................. 51  
9.3 System Examples ................................................... 56  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements.............................................. 12  
7.7 Typical Characteristics............................................ 13  
Detailed Description ............................................ 15  
8.1 Functional Block Diagram ....................................... 15  
8.2 Feature Description................................................. 16  
8.3 Device Functional Modes........................................ 32  
9
10 Power Supply Recommendations ..................... 57  
11 Layout................................................................... 57  
11.1 Layout Guidelines ................................................. 57  
11.2 Layout Example .................................................... 57  
12 器件和文档支持 ..................................................... 58  
12.1 文档支持 ............................................................... 58  
12.2 接收文档更新通知 ................................................. 58  
12.3 社区资源................................................................ 58  
12.4 ....................................................................... 58  
12.5 静电放电警告......................................................... 58  
12.6 术语表 ................................................................... 58  
13 机械、封装和可订购信息....................................... 58  
8
4 修订历史记录  
Changes from Original (September 2016) to Revision A  
Page  
Added "SW (peak for 10 ns duration)" To the Absolute Maximum Ratings(1) ....................................................................... 6  
Changed VSYS TYP value From: VBAT + 50 mV To: I(SYS) + 150 mV ...................................................................................... 7  
Changed the title of 4 From: Charge Current Accuracy To: I2C Setting ......................................................................... 13  
Changed axis title of 8 From: BAT Voltage (V) To: Input Current Limit (mA).................................................................. 13  
Changed VVREF to VREGN in 公式 2........................................................................................................................................ 24  
Changed VREF to VREGN in 16........................................................................................................................................... 25  
Added sentence to the Battery Monitor secton "In battery only mode, .."............................................................................ 25  
Changed the Description values of 26 From: mV To: mA ............................................................................................... 49  
Changed the Type values of Bit 7 in 28 From: R To: R/W.............................................................................................. 50  
Added VREF system pullup voltage to 29 ......................................................................................................................... 51  
2
版权 © 2016–2018, Texas Instruments Incorporated  
 
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
5 说明 (续)  
具有充电和系统设置的 I2C 串行接口使得此器件成为一个真正的灵活解决方案。  
bq25890H 是一款适用于单节锂离子电池和锂聚合物电池的高度集成型 5A 开关模式电池充电管理和系统电源路径  
管理器件。该器件 支持 高输入电压快速充电,适用于各类智能手机、平板电脑和便携式设备。其低阻抗电源路径  
对开关模式运行效率进行了优化、缩短了电池充电时间并延长了放电阶段的电池使用寿命。该器件还集成了输入电  
流优化器 (ICO) 和电阻补偿 (IRCOMP),从而为电池提供最大充电功率。该解决方案在系统和电池之间高度集成输  
入反向阻断 FETRBFETQ1)、高侧开关 FETHSFETQ2)、低侧开关 FETLSFETQ3)以及电池  
FETBATFETQ4)。它还集成了自举二极管以进行高侧栅极驱动和电池监视,从而简化系统设计。具有充电和  
系统设置的 I2C 串行接口使得此器件成为一个真正的灵活解决方案。  
该器件支持多种输入源,包括标准 USB 主机端口、USB 充电端口以及兼容 USB 的可调高电压适配器。为支持通  
过可调高电压适配器进行快速充电,SN25890H 提供了 MaxChargeTM 握手支持(使用 D+/D- 引脚和 DSEL 引  
脚)以进行 USB 开关控制。此外,该器件还提供有相应的接口,以支持采用输入电流脉冲协议的可调高电压适配  
器。为设定默认输入电流限值,该器件使用内置 USB 接口,例如 USB PHY 器件。该器件符合 USB 2.0 USB  
3.0 电源规范,具有输入电流和电压调节功能。此外,输入电流优化器 (ICO) 还能够检测输入源未发生过载时的最  
大功率点。该器件还具有高达 2.4A 的限流能力,能够为 VBUS 提供 5V4.5V-5.5V 可调节)电压,符合 USB  
On-the-Go (OTG) 运行功率额定值规范。  
电源路径管理将系统电压调节至稍高于电池电压的水平,但是不会下降至 3.5V 最小系统电压(可编程)以下。借  
助于这个特性,即使在电池电量完全耗尽或者电池被拆除时,系统也能保持运行。当达到输入电流限值或电压限值  
时,电源路径管理自动将充电电流减少为 0。随着系统负载持续增加,电源路径将使电池放电,直到满足系统电源  
需求。这种补充模式 工作方式可防止输入源发生过载。  
此器件在无需软件控制情况下启动并完成一个充电周期。它自动检测电池电压并通过三个阶段为电池充电:预充  
电、恒定电流和恒定电压。在充电周期的末尾,当充电电流低于在恒定电压阶段中预设定的限值时,充电器自动终  
止。当整个电池下降到低于再充电阈值时,充电器将自动启动另外一个充电周期。  
此充电器提供针对电池充电和系统运行情况的多种安全 特性 ,其中包括电池负温度系数热敏电阻监视、充电安全  
计时器和过压/过流保护。当结温超过 120°C(可编程)时,热调节会减小充电电流。STAT 输出报告充电状态和任  
何故障状况。 当故障发生时,INT 会立即通知主机。  
该器件还提供了一个 7 位模数转换器 (ADC),用于监视充电电流和输入/电池/系统(VBUSBATSYSTS)电  
压。QON 引脚提供 BATFET 使能/复位控制,以使器件退出低功耗出厂模式或完全系统复位功能。  
该器件系列采用 24 引脚 4mm x 4mm2 x 0.75mm 薄型 WQFN 封装。  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
BQ25890H  
RTW (WQFN)  
Top View  
23  
22  
20  
19  
24  
21  
VBUS  
D+  
1
2
3
4
5
6
18  
17  
PGND  
PGND  
SYS  
16  
15  
D  
STAT  
SCL  
SYS  
14  
BAT  
BAT  
13  
SDA  
7
8
9
10  
11  
12  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
No.  
Charger Input Voltage.  
VBUS  
1
P
The internal n-channel reverse block MOSFET (RBFET) is connected between VBUS and PMID with VBUS on  
source. Place a 1-µF ceramic capacitor from VBUS to PGND and place it as close as possible to IC.  
Positive line of the USB data line pair.  
D+/D- based USB host/charging port detection. The detection includes data contact detection (DCD), primary  
and secondary detection in BC1.2, and Adjustable high voltage adapter. The pin can be configured as output  
driver by DP_DAC register bits when input source is plugged-in or during OTG mode.  
D+  
D–  
2
3
4
AIO  
AIO  
DO  
Negative line of the USB data line pair.  
D+/D- based USB host/charging port detection. The detection includes data contact detection (DCD), primary  
and secondary detection in BC1.2, and Adjustable high voltage adapter. The pin can be configured as output  
driver by DM_DAC register bits when input source is plugged-in or during OTG mode.  
Open drain charge status output to indicate various charger operation.  
Connect to the pull up rail via 10-kΩ resistor. LOW indicates charge in progress. HIGH indicates charge  
complete or charge disabled. When any fault condition occurs, STAT pin blinks in 1 Hz.  
The STAT pin function can be disabled when STAT_DIS bit is set.  
STAT  
I2C Interface clock.  
Connect SCL to the logic rail through a 10-kΩ resistor.  
SCL  
SDA  
5
6
DI  
I2C Interface data.  
Connect SDA to the logic rail through a 10-kΩ resistor.  
DIO  
Open-drain Interrupt Output.  
INT  
7
DO  
Connect the INT to a logic rail via 10-kΩ resistor. The INT pin sends active low, 256-µs pulse to host to report  
charger device status and fault.  
Active high enable pin during boost mode.  
The boost mode is activated when OTG_CONFIG =1 and OTG pin is high  
OTG  
CE  
8
9
DI  
DI  
Active low Charge Enable pin.  
Battery charging is enabled when CHG_CONFIG = 1 and CE pin = Low. CE pin must be pulled High or Low.  
(1) DI (Digital Input), DO (Digital Output), DIO (Digital Input/Output), AI (Analog Input), AO (Analog Output), AIO (Analog Input/Output)  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
No.  
Input current limit Input. ILIM pin sets the maximum input current and can be used to monitor input current  
ILIM pin sets the maximum input current limit by regulating the ILIM voltage at 0.8 V. A resistor is connected  
from ILIM pin to ground to set the maximum limit as IINMAX = KILIM/RILIM . The actual input current limit is the  
lower limit set by ILIM pin (when EN_ILIM bit is high) or IIINLIM register bits. Input current limit of less than 500  
mA is not support on ILIM pin.  
ILIM  
10  
AI  
ILIM pin can also be used to monitor input current when the voltage is below 0.8V. The input current is  
proportional to the voltage on ILIM pin and can be calculated by IIN = (KILIM x VILIM) / (RILIM x 0.8)  
The ILIM pin function can be disabled when EN_ILIM bit is 0.  
Temperature qualification voltage input.  
Connect a negative temperature coefficient thermistor. Program temperature window with a resistor divider  
from REGN to TS to GND. Charge suspends when either TS pin is out of range. Recommend 103AT-2  
thermistor.  
TS  
11  
12  
AI  
DI  
BATFET enable/reset control input.  
When BATFET is in ship mode, a logic low of tSHIPMODE (typical 1sec) duration turns on BATFET to exit  
shipping mode. .  
When VBUS is not plugged-in, a logic low of tQON_RST (typical 15sec) duration resets SYS (system power) by  
turning BATFET off for tBATFET_RST (typical 0.3sec) and then re-enable BATFET to provide full system power  
reset.  
QON  
The pin contains an internal pull-up to maintain default high logic  
Battery connection point to the positive terminal of the battery pack.  
The internal BATFET is connected between BAT and SYS. Connect a 10uF closely to the BAT pin.  
BAT  
SYS  
13,14  
15,16  
P
P
System connection point.  
The internal BATFET is connected between BAT and SYS. When the battery falls below the minimum system  
voltage, switch-mode converter keeps SYS above the minimum system voltage. Connect a 20uF closely to the  
SYS pin.  
Power ground connection for high-current power converter node.  
Internally, PGND is connected to the source of the n-channel LSFET. On PCB layout, connect directly to  
ground connection of input and output capacitors of the charger. A single point connection is recommended  
between power PGND and the analog GND near the IC PGND pin.  
PGND  
17,18  
P
Switching node connecting to output inductor.  
SW  
19,20  
21  
P
P
Internally SW is connected to the source of the n-channel HSFET and the drain of the n-channel LSFET.  
Connect the 0.047µF bootstrap capacitor from SW to BTST.  
PWM high side driver positive supply.  
Internally, the BTST is connected to the anode of the boost-strap diode. Connect the 0.047 µF bootstrap  
capacitor from SW to BTST.  
BTST  
PWM low side driver positive supply output.  
Internally, REGN is connected to the cathode of the boost-strap diode. Connect a 4.7 µF (10 V rating) ceramic  
capacitor from REGN to analog GND. The capacitor should be placed close to the IC. REGN also serves as  
bias rail of TS pin.  
REGN  
PMID  
22  
23  
P
Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of HSFET.  
Given the total input capacitance, put 1µF on VBUS to PGND, and the rest capacitance on PMID to PGND.  
DO  
Active high D+/D- multiplexer selection control.  
Connect a 47-nF (6V rating) ceramic capacitor from DSEL to analog GND. The pin is normally low. During  
input source type detection, the pin drives high to indicate the device D+/D- detection is in progress and needs  
to take control of D+, D- signals. When detection is completed, the pin keeps high when DCP, MaxCharge or  
HVDCP is detected. The pin returns to low when other input source type is detected.  
DSEL  
24  
DO  
P
Exposed pad beneath the IC for heat dissipation. Always solder PowerPAD Pad to the board, and have vias on  
the PowerPAD plane star-connecting to PGND and ground plane for high-current power converter.  
PowerPAD™  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–2  
MAX  
22  
22  
20  
7
VALUE  
VBUS (converter not switching)  
V
V
PMID (converter not switching)  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
STAT  
DSEL  
BTST  
SW  
V
V
20  
16  
16  
6
V
V
Voltage range (with respect to GND)  
SW (peak for 10 ns duration)  
–3  
V
BAT, SYS (converter not switching)  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
V
SDA, SCL, INT, OTG, REGN, TS, CE, QON  
7
V
D+, D–  
7
V
BTST TO SW  
PGND to GND  
ILIM  
7
V
0.3  
5
V
V
INT, STAT  
DSEL  
6
mA  
mA  
°C  
°C  
Output sink current  
2
Junction temperature  
–40  
–65  
150  
150  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage  
values are with respect to the network ground terminal unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
UNIT  
(1)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001  
±2000  
V
VESD  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
±250  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
14(1)  
UNIT  
V
VIN  
Input voltage  
3.9  
IIN  
Input current (VBUS)  
Output current (SW)  
Battery voltage  
3.25  
A
ISYS  
VBAT  
5
A
4.608  
5
V
Fast charging current  
A
Up to 6 (continuos)  
A
IBAT  
Discharging current with internal MOSFET  
Operating free-air temperature range  
9 (peak)  
(Up to 1 sec duration)  
A
TA  
–40  
85  
°C  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on either the BTST or SW pins. A tight  
layout minimizes switching noise.  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
7.4 Thermal Information  
BQ25890H  
THERMAL METRIC(1)  
RTW (WQFN)  
UNIT  
24-PINS  
31.8  
27.9  
8.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC((op)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
8.7  
RθJC(bot)  
2.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = –40°C to +125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
QUIESCENT CURRENTS  
VBAT = 4.2 V, V(VBUS) < V(UVLO), leakage  
between BAT and VBUS  
5
µA  
µA  
High-Z mode, no VBUS, BATFET disabled  
(REG09[5]=1), battery monitor disabled, TJ  
85°C  
<
<
12  
32  
23  
IBAT  
Battery discharge current (BAT, SW, SYS) in buck mode  
High-Z mode, no VBUS, BATFET enabled  
(REG09[5]=0), battery monitor disabled, TJ  
85°C  
60  
µA  
V(VBUS)= 5 V, High-Z mode, no battery, battery  
monitor disabled  
15  
25  
1.5  
3
35  
50  
3
µA  
µA  
Input supply current (VBUS) in buck mode when High-Z mode  
is enabled  
I(VBUS_HIZ)  
V(VBUS)= 12 V, High-Z mode, no battery,  
battery monitor disabled  
VBUS > V(UVLO), VBUS > VBAT, converter not  
switching  
mA  
mA  
mA  
mA  
mA  
VBUS > V(UVLO), VBUS > VBAT, converter  
switching, VBAT = 3.2 V, ISYS = 0A  
I(VBUS)  
Input supply current (VBUS) in buck mode  
Battery discharge current in boost mode  
VBUS > V(UVLO), VBUS > VBAT, converter  
switching, VBAT = 3.8 V, ISYS = 0 A  
3
VBAT = 4.2 V, boost mode, I(VBUS)= 0 A,  
converter switching, PFM_OTG_DIS=0  
3
I(BOOST)  
VBAT = 4.2 V, boost mode, I(VBUS)= 0 A,  
converter switching, PFM_OTG_DIS=1  
15  
VBUS/BAT POWER UP  
V(VBUS_OP)  
VBUS operating range  
3.9  
3.6  
14  
V
V
VBUS for active I2C, no battery  
Sleep mode falling threshold  
V(VBUS_UVLOZ)  
V(SLEEP)  
25  
130  
14  
65  
120  
370  
14.6  
14  
mV  
mV  
V
V(SLEEPZ)  
Sleep mode rising threshold  
250  
VBUS over-voltage rising threshold  
VBUS over-voltage falling threshold  
Battery for active I2C, no VBUS  
Battery depletion falling threshold  
Battery depletion rising threshold  
Bad adapter detection threshold  
Bad adapter detection current source  
V(ACOV)  
13.5  
2.3  
V
VBAT(UVLOZ)  
VBAT(DPL)  
VBAT(DPLZ)  
V(VBUSMIN)  
I(BADSRC)  
V
2.15  
2.35  
2.5  
2.7  
V
V
3.8  
30  
V
mA  
POWER-PATH MANAGEMENT  
I(SYS) = 0 A, VBAT> VSYS(MIN), BATFET Disabled  
(REG09[5]=1)  
VBAT  
50 mV  
+
V
V
V
V
VSYS  
Typical system regulation voltage  
I(SYS) = 0 A, VBAT< VSYS(MIN), BATFET Disabled  
(REG09[5]=1)  
VSYS(MIN)  
150 mV  
+
VBAT< VSYS(MIN), SYS_MIN = 3.5 V  
(REG03[3:1]=101), ISYS= 0 A  
VSYS(MIN)  
VSYS(MAX)  
Minimum DC system voltage output  
Maximum DC system voltage output  
3.50  
3.65  
4.40  
VBAT = 4.35 V, SYS_MIN = 3.5V  
(REG03[3:1]=101), ISYS= 0 A  
4.42  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = –40°C to +125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mV  
V
TJ = –40°C to +85°C  
27  
38  
Top reverse blocking MOSFET(RBFET) on-resistance  
between VBUS and PMID  
RON(RBFET)  
RON(HSFET)  
RON(LSFET)  
TJ = –40°C to +125°C  
TJ = –40°C to +85°C  
TJ = –40°C to +125°C  
TJ = –40°C to +85°C  
TJ = –40°C to +125°C  
BAT discharge current 10 mA  
VBAT rising  
27  
44  
27  
39  
Top switching MOSFET (HSFET) on-resistance between PMID  
and SW  
27  
47  
16  
24  
Bottom switching MOSFET (LSFET) on-resistance between  
SW and GND  
16  
28  
V(FWD)  
BATFET forward voltage in supplement mode  
Battery good comparator rising threshold  
Battery good comparator falling threshold  
30  
VBAT(GD)  
3.4  
3.55  
100  
3.7  
VBAT(GD_HYST)  
BATTERY CHARGER  
VBAT(REG_RANGE)  
VBAT(REG_STEP)  
VBAT falling  
mV  
Typical charge voltage range  
Typical charge voltage step  
3.840  
4.608  
V
16  
64  
mV  
VBAT = 4.208 V (REG06[7:2]=010111) or  
VBAT = 4.352 V (REG06[7:2]=100000)  
TJ = –40°C to +85°C  
VBAT(REG)  
Charge voltage resolution accuracy  
-0.5%  
0
0.5%  
5056  
I(CHG_REG_RANGE)  
I(CHG_REG_STEP)  
Typical fast charge current regulation range  
Typical fast charge current regulation step  
mA  
mA  
VBAT = 3.1 V or 3.8 V, ICHG = 128 mA  
TJ = –40°C to +85°C  
-20%  
-10%  
-5%  
20%  
10%  
5%  
VBAT= 3.1 V or 3.8 V, ICHG = 256 mA  
TJ = –40°C to +85°C  
I(CHG_REG_ACC)  
Fast charge current regulation accuracy  
VBAT= 3.1 V or 3.8 V, ICHG=1792 mA  
TJ = –40°C to +85°C  
Battery LOWV falling threshold  
Battery LOWV rising threshold  
Fast charge to precharge, BATLOWV  
(REG06[1]) = 1  
2.6  
2.8  
3
2.9  
V
V
VBAT(LOWV)  
Precharge to fast charge, BATLOWV  
(REG06[1])=1  
(Typical 200-mV hysteresis)  
2.8  
64  
3.1  
I(PRECHG_RANGE)  
I(PRECHG_STEP)  
I(PRECHG_ACC)  
I(TERM_RANGE)  
I(TERM_STEP)  
Precharge current range  
1024  
mA  
mA  
Typical precharge current step  
Precharge current accuracy  
Termination current range  
Typical termination current step  
64  
64  
VBAT=2.6 V, IPRECHG = 256 mA  
–10%  
64  
+10%  
1024  
mA  
mA  
ITERM = 256 mA, ICHG<= 1344 mA  
TJ = –20°C to +85°C  
–12%  
–20%  
12%  
20%  
I(TERM_ACC)  
Termination current accuracy  
ITERM = 256 mA, ICHG> 1344 mA  
TJ = –20°C to +85°C  
V(SHORT)  
Battery short voltage  
VBAT falling  
2
200  
100  
100  
200  
V
V(SHORT_HYST)  
I(SHORT)  
Battery short voltage hysteresis  
Battery short current  
VBAT rising  
mV  
mA  
mV  
mV  
mA  
mΩ  
mΩ  
VBAT < 2.2 V  
VBAT falling, VRECHG (REG06[0]=0) = 0  
VBAT falling, VRECHG (REG06[0]=0) = 1  
VSYS = 4.2 V  
V(RECHG)  
Recharge threshold below VBATREG  
System discharge load current  
ISYS(LOAD)  
RON(BATFET)  
30  
TJ = 25°C  
11  
11  
13  
19  
SYS-BAT MOSFET (BATFET) on-resistance  
TJ = –40°C to +125°C  
INPUT VOLTAGE / CURRENT REGULATION  
VIN(DPM_RANGE)  
VIN(DPM_STEP)  
VIN(DPM_ACC)  
IIN(DPM_RANGE)  
IIN(DPM_STEP)  
IIN(DPM100_ACC)  
Typical Input voltage regulation range  
3.9  
15.3  
V
Typical Input voltage regulation step  
Input voltage regulation accuracy  
Typical Input current regulation range  
Typical Input current regulation step  
100  
mV  
VINDPM = 4.4 V, 9 V, TJ = –40°C to +105°C  
IINLIM (REG00[5:0]) =100 mA  
3%  
3%  
100  
3250  
mA  
mA  
50  
90  
Input current 100-mA regulation accuracy  
VBAT = 5 V, current pulled from SW  
85  
100  
mA  
USB150, IINLIM (REG00[5:0]) = 150 mA  
USB500, IINLIM (REG00[5:0]) = 500 mA  
USB900, IINLIM (REG00[5:0]) = 900 mA  
125  
440  
750  
135  
470  
825  
150  
500  
900  
mA  
mA  
mA  
Input current regulation accuracy  
VBAT = 5 V, current pulled from SW  
IIN(DPM_ACC)  
Adapter 1.5 A, IINLIM (REG00[5:0]) = 1500  
mA  
1300  
1400  
1500  
mA  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = –40°C to +125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mA  
IIN(START)  
Input current regulation during system start up  
IINMAX = KILIM/RILIM  
VSYS = 2.2 V, IINLIM (REG00[5:0])> = 200 mA  
Input current regulation by ILIM pin = 1.5 A  
200  
KILIM  
315  
350  
385  
A x Ω  
D+/D- DETECTION  
V(0P0_VSRC)  
D+/D– voltage source (0 V)  
D+/D– voltage source (0.6 V)  
I(DP) < 1 mA; DP_DAC=001 or  
DM_DAC=001  
-0.15  
0.5  
0
0.15  
0.7  
V
V
V(0P6_VSRC)  
V(1P2_VSRC)  
V(2P0_VSRC)  
V(2P7_VSRC)  
V(3P3_VSRC)  
I(DP) < 1 mA; DP_DAC=010  
or  
I(DM) < 1 m; ADM_DAC=010  
0.6  
D+/D– voltage source (1.2 V)  
D+/D– voltage source (2.0 V)  
D+/D– voltage source (2.7 V)  
D+/D– voltage source (3.3 V)  
I(DP) < 1 mA; DP_DAC=011  
or  
I(DM) < 1 m; DM_DAC=011  
1.075  
1.875  
2.575  
3.15  
1.2  
2.0  
2.7  
3.3  
1.325  
2.125  
2.825  
3.45  
V
V
V
V
I(DP) < 1 mA; DP_DAC=100  
or  
I(DM) < 1 m; DM_DAC=100  
I(DP) < 1 mA; DP_DAC=101  
or  
I(DM) < 1 m; DM_DAC=101  
I(DP) < 1 mA; DP_DAC=110  
or  
I(DM) < 1 m; DM_DAC=110  
V(3p45_VSRC)  
I(10UA_ISRC)  
I(100UA_ISINK)  
I(DPDM_LKG)  
D+/D– voltage source (3.45 V)  
D+ connection check current source  
D+/D– current sink (100 µA)  
D+/D– leakage current  
3.3  
7
3.45  
10  
3.6  
14  
V
µA  
µA  
µA  
µA  
µA  
mV  
V
50  
100  
150  
1
D–, switch open  
D+, switch open  
–1  
–1  
1
I(1P6MA_ISINK)  
V(0P4_VTH)  
V(0P8_VTH)  
V(2P7_VTH)  
D+/D– current sink (1.6 mA)  
D+/D– low comparator threshold  
D+ low comparator threshold  
1.45  
250  
1.60  
1.75  
400  
0.8  
2.85  
D+/D– comparator threshold for non-standard adapter  
detection (divider 1, 3, or 4)  
2.55  
1.85  
V
V(2P0_VTH)  
V(1P2_VTH)  
R(D–_DWN)  
D+/D– comparator threshold for non-standard adapter  
detection (divider 1, 3)  
2.15  
1.35  
24.8  
V
V
D+/D– comparator threshold for non-standard adapter  
detection (divider 2)  
1.05  
D– pulldown for connection check  
14.25  
kΩ  
BAT OVER-VOLTAGE/CURRENT PROTECTION  
VBAT(OVP)  
Battery over-voltage threshold  
Battery over-voltage hysteresis  
System over-current threshold  
VBAT rising, as percentage of VBAT(REG)  
VBAT falling, as percentage of VBAT(REG)  
104%  
2%  
VBAT(OVP_HYST)  
IBAT(FET_OCP)  
9
A
THERMAL REGULATION AND THERMAL SHUTDOWN  
TREG  
Junction temperature regulation accuracy  
Thermal shutdown rising temperature  
Thermal shutdown hysteresis  
REG08[1:0] = 11  
Temperature rising  
Temperature falling  
120  
160  
30  
°C  
°C  
°C  
TSHUT  
TSHUT(HYS)  
JEITA THERMISTOR COMPARATOR (BUCK MODE)  
T1 (0°C) threshold, charge suspended T1 below this  
temperature.  
V(T1)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
72.75%  
67.75%  
44.25v  
73.25%  
1.4%  
73.75%  
68.75%  
45.25%  
34.875%  
Charge back to ICHG/2 (REG04[6:0]) and VREG (REG06[7:2])  
above this temperature.  
V(T1_HYS)  
V(T2)  
V(T2_HYS)  
V(T3)  
V(T3_HYS)  
V(T5)  
T2 (10°C) threshold, charge back to ICHG/2 (REG04[6:0]) and  
VREG (REG06[7:2]) below this temperature.  
68.25%  
1.4%  
Charge back to ICHG (REG04[6:0]) and VREG (REG06[7:2])  
above this temperature.  
T3 (45°C) threshold, charge back to ICHG (REG04[6:0]) and  
VREG-200 mV (REG06[7:2]) above this temperature.  
44.75%  
1%  
Charge back to ICHG (REG04[6:0]) and VREG (REG06[7:2])  
below this temperature.  
T5 (60°C) threshold, charge suspended above this  
temperature.  
33.875%  
34.375%  
1.25%  
Charge back to ICHG (REG04[6:0]) and VREG-200 mV  
(REG06[7:2]) below this temperature.  
V(T5_HYS)  
COLD/HOT THERMISTOR COMPARATOR (BOOST MODE)  
Copyright © 2016–2018, Texas Instruments Incorporated  
9
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = –40°C to +125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
As percentage to VREGN REG01[5] = 1  
(Approximately –20°C w/ 103AT)  
V(BCOLD1)  
Cold temperature threshold 1, TS pin voltage rising threshold  
Cold temperature threshold 1, TS pin voltage falling threshold  
Hot temperature threshold 2, TS pin voltage falling threshold  
Hot temperature threshold 2, TS pin voltage rising threshold  
79.5%  
80%  
80.5%  
V(BCOLD1_HYS)  
V(BHOT2)  
As percentage to VREGN REG01[5] = 1  
1%  
As percentage to VREGN REG01[7:6] = 10  
(Approx. 65°C w/ 103AT)  
30.75%  
1.32  
31.25%  
3%  
31.75%  
1.68  
V(BHOT2_HYS)  
PWM  
As percentage to VREGN REG01[7:6] =10  
FSW  
PWM switching frequency, and digital clock  
Maximum PWM duty cycle  
Oscillator frequency  
MHz  
DMAX  
97%  
64  
BOOST MODE OPERATION  
V(OTG_REG_RANGE) Typical boost mode regulation voltage range  
V(OTG_REG_STEP)  
4.55  
–3%  
5.55  
3%  
V
Typical boost mode regulation voltage step  
Boost mode regulation voltage accuracy  
mV  
I(VBUS) = 0 A, BOOSTV=4.998V  
(REG0A[7:4] = 0111)  
V(OTG_REG_ACC)  
V(OTG_BAT1)  
V(OTG_BAT2)  
Minimum battery voltage to exit boost mode  
Minimum battery voltage to exit boost mode  
BAT falling, MIN_VBAT_SEL=0  
BAT falling, MIN_VBAT_SEL=1  
BAT rising, MIN_VBAT_SEL=0  
BAT rising, MIN_VBAT_SEL=1  
2.7  
2.4  
2.9  
2.7  
0.5  
1.2  
5.8  
2.9  
2.6  
V
V
V
V
A
A
V
3.1  
V(OTG_BAT_EN)  
Minimum battery voltage to enter boost mode  
2.9  
I(OTG)  
Typical boost mode output current range  
Boost mode RBFET over-current protection accuracy  
Boost mode over-voltage threshold  
2.45  
1.65  
I(OTG_OCP_ACC)  
V(OTG_OVP)  
BOOST_LIM =1.2 A (REG0A[2:0]=010)  
Rising threshold  
6
10  
Copyright © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = –40°C to +125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
REGN LDO output voltage  
REGN LDO current limit  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REGN LDO  
V(REGN)  
V(VBUS) = 9 V, I(REGN) = 40 mA  
V(VBUS) = 5 V, I(REGN) = 20 mA  
V(VBUS) = 9 V, V(REGN) = 3.8 V  
5.6  
4.7  
50  
6
6.4  
V
V
4.8  
I(REGN)  
mA  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
RES  
Resolution  
Rising threshold  
7
bits  
V
V(VBUS) > VBAT + V(SLEEP) or OTG mode is  
enabled  
2.304  
4.848  
4.848  
VBAT(RANGE)  
V(BAT_RES)  
V(SYS_RANGE)  
Typical battery voltage range  
Typical battery voltage resolution  
Typical system voltage range  
V(VBUS) < VBAT + V(SLEEP) and OTG mode is  
disabled  
VSYS_MIN  
V
mV  
V
20  
V(VBUS) > VBAT + V(SLEEP) or OTG mode is  
enabled  
2.304  
4.848  
4.848  
V(VBUS) < VBAT + V(SLEEP) and OTG mode is  
disabled  
VSYS_MIN  
V
V(SYS_RES)  
Typical system voltage resolution  
Typical VVBUS voltage range  
20  
mV  
V
V(VBUS) > VBAT + V(SLEEP) or OTG mode is  
enabled  
2.6  
15.3  
V(VBUS_RANGE)  
V(VBUS_RES)  
IBAT(RANGE)  
Typical VVBUS voltage resolution  
Typical battery charge current range  
100  
mV  
A
V(VBUS) > VBAT + V(SLEEP) and VBAT  
VBAT(SHORT)  
>
0
6.4  
IBAT(RES)  
Typical battery charge current resolution  
Typical TS voltage range  
50  
mA  
V(TS_RANGE)  
V(TS_RES)  
21%  
80%  
Typical TS voltage resolution  
0.47%  
LOGIC I/O PIN (OTG, CE, QON)  
VIH  
Input high threshold level  
1.3  
VIL  
Input low threshold level  
0.4  
1
V
µA  
V
IIN(BIAS)  
High Level Leakage Current  
Pull-up rail 1.8 V  
Battery only mode  
V(VBUS) = 9 V  
BAT  
5.8  
V(QON)  
Internal /QON pull-up  
V
V(VBUS) = 5 V  
4.3  
V
R(QON)  
Internal /QON pull-up resistance  
200  
kΩ  
LOGIC I/O PIN (DSEL)  
VOL  
Output low threshold level  
Output high threshold level  
IOL = 2 mA, CDSEL= 47 nF  
0.4  
V
V
IOH = 5 mA, CDSEL= 47 nF, non-switching,  
I(REGN) = 30 mA  
VOH  
4.5  
LOGIC I/O PIN (INT, STAT)  
VOL  
Output low threshold level  
High level leakage current  
Sink current = 5 mA, sink current  
Pull-up rail 1.8 V  
0.4  
1
V
IOUT_BIAS  
µA  
I2C INTERFACE (SCL, SDA)  
VIH  
Input high threshold level, SCL and SDA  
Pull-up rail 1.8 V  
1.3  
VIL  
Input low threshold level  
Output low threshold level  
High level leakage current  
Pull-up rail 1.8 V  
0.4  
0.4  
1
V
V
VOL  
IBIAS  
Sink current = 5 mA, sink current  
Pull-up rail 1.8 V  
µA  
Copyright © 2016–2018, Texas Instruments Incorporated  
11  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
7.6 Timing Requirements  
MIN  
NOM  
MAX UNIT  
VBUS/BAT POWER UP  
tBADSRC  
BAT OVER-VOLTAGE PROTECTION  
Battery over-voltage deglitch time to disable  
charge  
BATTERY CHARGER  
Bad Adapter detection duration  
30  
msec  
tBATOVP  
1
µs  
tRECHG  
Recharge deglitch time  
20  
ms  
CURRENT PULSE CONTROL  
tPUMPX_STOP  
tPUMPX_ON1  
tPUMPX_ON2  
tPUMPX_OFF  
tPUMPX_DLY  
Current pulse control stop pulse  
430  
240  
70  
570  
360  
130  
130  
225  
ms  
ms  
ms  
ms  
ms  
Current pulse control long on pulse  
Current pulse control short on pulse  
Current pulse control off pulse  
70  
Current pulse control stop start delay  
80  
BATTERY MONITOR  
tCONV  
Conversion time  
CONV_RATE(REG02[6]) = 0  
TJ = –10°C to +60°C  
8
1000  
ms  
QON AND SHIPMODE TIMING  
QON low time to turn on BATFET and exit ship  
mode  
tSHIPMODE  
0.8  
1.3  
s
tQON_RST  
QON low time to enable full system reset  
BATFET off time during full system reset  
Enter ship mode delay  
TJ = –10°C to +60°C  
TJ = –10°C to +60°C  
TJ = –10°C to +60°C  
15.5  
250  
10  
23  
400  
15  
s
ms  
s
tBATFET_RST  
tSM_DLY  
I2C INTERFACE  
fSCL  
SCL clock frequency  
400  
kHz  
DIGITAL CLOCK and WATCHDOG TIMER  
fLPDIG  
fDIG  
Digital low power clock  
Digital clock  
REGN LDO disabled  
REGN LDO enabled  
18  
30  
45  
kHz  
kHz  
1320  
1500  
1680  
WATCHDOG  
(REG07[5:4])=11, REGN LDO  
disabled  
100  
136  
160  
160  
s
s
tWDT  
Watchdog reset time  
WATCHDOG  
(REG07[5:4])=11, REGN LDO  
enabled  
12  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
7.7 Typical Characteristics  
95%  
94%  
93%  
92%  
91%  
90%  
89%  
88%  
87%  
86%  
85%  
95%  
93%  
91%  
89%  
87%  
85%  
83%  
81%  
79%  
77%  
75%  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
0
1
2
3
4
5
0
0.5  
1
1.5  
2
Charge Current (A)  
System Load Current (A)  
D001  
D002  
VBAT = 3.8 V  
DCR = 10 m  
1. Charge Efficiency vs Charge Current  
2. System Light Load Efficiency vs System Light Load  
Current  
96%  
94%  
92%  
90%  
88%  
86%  
84%  
82%  
80%  
6%  
5%  
4%  
3%  
2%  
1%  
0
-1%  
-2%  
-3%  
-4%  
VBUS = 3.2 V  
VBUS = 3.8 V  
VBAT = 3.1 V  
VBAT = 3.8 V  
-5%  
-6%  
0
0.5  
1
1.5  
VBUS (A)  
2
2.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Charge Current (A)  
D003  
D005  
VBUS = 9 V  
3. Boost Mode Efficiency vs VBUS Load Current  
4. Charge Current Accuracy vs Charge Current I2C  
Setting  
3.7  
3.68  
3.66  
3.64  
3.62  
3.6  
4.5  
4.45  
4.4  
4.35  
4.3  
4.25  
4.2  
3.58  
3.56  
3.54  
3.52  
3.5  
4.15  
4.1  
4.05  
4
VBUS = 5 V  
VBUS = 5 V  
2.5  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
3
System Load Current (A)  
System Load Current (A)  
D006  
D007  
VBAT = 2.9 V  
VBUS = 5 V  
SYSMIN = 3.5 V  
VBAT = 4.2 V  
5. SYS Voltage Regulation vs System Load Current  
6. SYS Voltage Regulation vs System Load Current  
版权 © 2016–2018, Texas Instruments Incorporated  
13  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
4.42  
4.4  
4.38  
4.36  
4.34  
4.32  
4.3  
4.28  
4.26  
4.24  
4.22  
4.2  
4.18  
4.16  
4.14  
4.12  
4.1  
IINLM = 500 mA  
IINLM = 900 mA  
IINLIM = 1.5 A  
VBUS = 5 V  
VBUS = 12 V  
-50  
0
50  
100  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140150  
Temperature (èC)  
Temperature (èC)  
D008  
D009  
7. BAT Voltage vs Temperature  
8. Input Current Limit vs Temperature  
14  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8 Detailed Description  
The device is a highly integrated 5-A siwtch-mode battery charger for single cell Li-Ion and Li-polymer battery. It  
is highly integrated with the input reverse-blocking FET (RBFET, Q1), high-side siwtching FET (HSFET, Q2) ,  
low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4). The device also integrates the boostrap  
diode for the high-side gate drive.  
8.1 Functional Block Diagram  
VBUS  
RBFET  
PMID  
(Q1)  
VVBUS_UVLOZ  
UVLO  
Q1 Gate  
Control  
V
BATZ +80mV  
SLEEP  
ACOV  
REGN  
BTST  
REGN  
LDO  
EN_HIZ  
V
ACOV  
FBO  
VBUS  
VBUS_OVP_BOOST  
Q2_UCP_BOOST  
V OTG_OVP  
IQ2  
VINDPM  
V OTG_HSZCP  
SW  
IQ3  
VOTG_BAT  
Q3_OCP_BOOST  
HSFET (Q2)  
REGN  
CONVERTER  
CONTROL  
IINDPM  
BAT  
BATOVP  
IC TJ  
TREG  
104%xVBAT_REG  
BAT  
I LSFET_UCP  
LSFET (Q3)  
V BAT_REG  
PGND  
UCP  
IQ2  
Q2_OCP  
IQ3  
SYS  
I HSFET_OCP  
VSYSMIN  
EN_HIZ  
EN_CHARGE  
EN_BOOST  
V BTST -VSW  
ICHG_REG  
REFRESH  
VBTST_REFRESH  
SYS  
ICHG  
REF  
DAC  
V BAT_REG  
I CHG_REG  
Q4 Gate  
Control  
IBADSRC  
BATFET  
(Q4)  
BAD_SRC  
IDC  
ILIM  
Converter  
Control State  
Machine  
DSEL  
IC TJ  
DSEL  
Driver  
EN  
TSHUT  
TSHUT  
BAT  
VQON  
BAT  
BAT_GD  
Input  
Source  
Detection  
VBATGD  
/QON  
D+  
USB  
ICHG  
ADC Control  
Adapter  
VBUS  
BAT  
SYS  
TS  
Dœ  
-VRECHG  
D+/D-  
Output  
Driver  
VREG  
BAT  
RECHRG  
ADC  
ICHG  
TERMINATION  
BATLOWV  
OTG  
INT  
CHARGE  
CONTROL  
STATE  
ITERM  
V BATLOWV  
BAT  
bq25890H  
MACHINE  
V SHORT  
BAT  
I2C  
Interface  
BATSHORT  
SUSPEND  
STAT  
Battery  
Sensing  
TS  
Thermistor  
SCL SDA  
CE  
版权 © 2016–2018, Texas Instruments Incorporated  
15  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.2 Feature Description  
8.2.1 Device Power-On-Reset (POR)  
The internal bias circuits are powered from the higher voltage of VBUS and BAT. When VBUS rises above  
VVBUS_UVLOZ or BAT rises above VBAT_UVLOZ , the sleep comparator, battery depletion comparator and BATFET  
driver are active. I2C interface is ready for communication and all the registers are reset to default value. The  
host can access all the registers after POR.  
8.2.2 Device Power Up from Battery without Input Source  
If only battery is present and the voltage is above depletion threshold (VBAT_DPLZ), the BATFET turns on and  
connects battery to system. The REGN LDO stays off to minimize the quiescent current. The low RDS(ON) of  
BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
The device always monitors the discharge current through BATFET (Supplement Mode). When the system is  
overloaded or shorted (IBAT > IBATFET_OCP), the device turns off BATFET immediately and set BATFET_DIS bit to  
indicate BATFET is disabled until the input source plugs in again or one of the methods describe in BATFET  
Enable (Exit Shipping Mode) is applied to re-enable BATFET.  
8.2.3 Device Power Up from Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all the  
bias circuits. It detects and sets the input current limit before the buck converter is started when  
AUTO_DPDM_EN bit is set. The power up sequence from input source is as listed:  
1. Power Up REGN LDO  
2. Poor Source Qualification  
3. Input Source Type Detection based on D+/D- to set default Input Current Limit (IINLIM) register and input  
source type  
4. Input Voltage Limit Threshold Setting (VINDPM threshold)  
5. Converter Power-up  
8.2.3.1 Power Up REGN Regulation (LDO)  
The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. The LDO also  
provides bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well. The  
REGN is enabled when all the below conditions are valid.  
1. VBUS above VVBUS_UVLOZ  
2. VBUS above VBAT + VSLEEPZ in buck mode or VBUS below VBAT + VSLEEP in boost mode  
3. After 220 ms delay is completed  
If one of the above conditions is not valid, the device is in high impedance mode (HIZ) with REGN LDO off. The  
device draws less than IVBUS_HIZ from VBUS during HIZ state. The battery powers up the system when the device  
is in HIZ.  
8.2.3.2 Poor Source Qualification  
After REGN LDO powers up, the device checks the current capability of the input source. The input source has  
to meet the following requirements in order to start the buck converter.  
1. VBUS voltage below VACOV  
2. VBUS voltage above VVBUSMIN when pulling IBADSRC (typical 30mA)  
Once the input source passes all the conditions above, the status register bit VBUS_GD is set high and the INT  
pin is pulsed to signal to the host. If the device fails the poor source detection, it repeats poor source qualification  
every 2 seconds.  
16  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
Feature Description (接下页)  
8.2.3.3 Input Source Type Detection  
After the VBUS_GD bit is set and REGN LDO is powered, the charger device runs Input Source Type Detection  
when AUTO_DPDM_EN bit is set.  
The bq25890H follows the USB Battery Charging Specification 1.2 (BC1.2) and to detect input source  
(SDP/CDP/DCP) and non-standard adapter through USB D+/D- lines. In addition, when USB DCP is detected, it  
initiates adjustable high voltage adapter handshake on D+/D-. The device supports MaxCharge™ handshake  
when MAXC_EN or HVDCP_EN is set.  
After input source type detection, an INT pulse is asserted to the host. In addition, the following registers and pin  
are changed:  
1. Input Current Limit (IINLIM) register is changed to set current limit  
2. PG_STAT bit is set  
The host can over-write IINLIM register to change the input current limit if needed. The charger input current is  
always limited by the lower of IINLIM register or ILIM pin at all-time regardless of Input Current Optimizer (ICO) is  
enable or disabled.  
When AUTO_DPDM_EN is disabled, the Input Source Type Detection is bypassed. The Input Current Limit  
(IINLIM) register, VBUS_STAT, and SPD_STAT bits are unchanged from previous values.  
8.2.3.3.1 D+/D– Detection Sets Input Current Limit  
The bq25890H contains a D+/D– based input source detection to set the input current limit automatically. The  
D+/D- detection includes standard USB BC1.2, non-standard adapter, and adjustable high voltage adapter  
detections. When input source is plugged-in, the device starts standard USB BC1.2 detections. The USB BC1.2  
is capable to identify Standard Downstream Port (SDP), Charging Downstream Port (CDP), and Dedicated  
Charging Port (DCP). When the Data Contact Detection (DCD) timer of 500ms is expired, the non-standard  
adapter detection is applied to set the input current limit.  
When DCP is detected, the device initates adjustable high voltage adapter handshake including MaxCharge™,  
etc. The handshake connects combinations of voltage source(s) and/or current sink on D+/D- to signal input  
source to raise output voltage from 5 V to 9 V / 12 V. The adjustable high voltage adapter handshake can be  
disabled by clearing MAXC_EN and/or HVDCP_EN bits .  
Non-Standard Adapter  
(Divider 1: 2.1A)  
(Divider 2: 2A)  
(Divider 3: 1A)  
Non-Standard  
Adapter  
(Divider 4: 2.4A)  
Adapter Plug-in  
USB BC1.2  
Detection  
Ajustable High Voltage Adapter  
Handshake  
or  
EN_DPDM  
SDP (USB500)  
(500mA)  
CDP  
(1.5A)  
MaxCharge™ Apapter  
(1.5A)  
DCP  
(3.25A)  
9. USB D+/D- Detection  
版权 © 2016–2018, Texas Instruments Incorporated  
17  
 
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
1. Non-Standard Adapter Detection  
NON-STANDARD  
ADAPTER  
D+ THRESHOLD  
D- THRESHOLD  
INPUT CURRENT LIMIT  
Divider 1  
Divider 2  
Divider 3  
Divider 4  
VD+ within V2P7_VTH  
VD+ within V1P2_VTH  
VD+ within V2P0_VTH  
VD+ within V2P7_VTH  
VD- within V2P0_VTH  
VD- within V1P2_VTH  
VD- within V2P7_VTH  
VD- within V2P7_VTH  
2.1A  
2A  
1A  
2.4A  
2. Adjustable High Voltage Adapter D+/D- Output Configurations  
ADJUSTABLE HIGH VOLTAGE HANDSHAKE  
MaxCharge (12V)  
D+  
D-  
OUTPUT  
12 V  
I1P6MA_ISINK  
V3p45_VSRC  
V3p45_VSRC  
I1P6MA_ISINK  
MaxCharge (9V)  
9 V  
After the Input Source Type Detection is done, an INT pulse is asserted to the host. In addition, the following  
registers including Input Current Limit register (IINLIM), VBUS_STAT, and SDP_STAT are updated as below:  
3. bq25890H Result  
INPUT CURRENT LIMIT  
D+/D- DETECTION  
SDP_STAT  
VBUS_STAT  
(IINLIM)  
500 mA  
1.5 A  
USB SDP (USB500)  
USB CDP  
1
1
1
1
1
1
1
1
1
001  
010  
011  
110  
110  
110  
110  
100  
101  
USB DCP  
3.25 A  
1 A  
Divider 3  
Divider 1  
2.1 A  
Divider 4  
2.4 A  
Divider 2  
2 A  
MaxCharge  
Unknown Adapter  
1.5 A  
500 mA  
18  
版权 © 2016–2018, Texas Instruments Incorporated  
 
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.2.3.3.2 Force Input Current Limit Detection  
In host mode, the host can force the device to run by setting FORCE_DPDM bit. After the detection is completed,  
FORCE_DPDM bit returns to 0 by itself and Input Result is updated.  
8.2.3.4 Input Voltage Limit Threshold Setting (VINDPM Threshold)  
The device supports wide range of input voltage limit (3.9 V – 14 V) for high voltage charging and provides two  
methods to set Input Voltage Limit (VINDPM) threshold to facilitate autonomous detection.  
1. Absolute VINDPM (FORCE_VINDPM=1)  
By setting FORCE_VINDPM bit to 1, the VINDPM threshold setting algorithm is disabled. Register VINDPM  
is writable and allows host to set the absolute threshold of VINDPM function.  
2. Relative VINDPM based on VINDPM_OS registers (FORCE_VINDPM=0) (Default)  
When FORCE_VINDPM bit is 0 (default), the VINDPM threshold setting algorithm is enabled. The VINDPM  
register is read only and the charger controls the register by using VINDPM Threshold setting algorithm. The  
algorithm allows a wide range of adapter (VVBUS_OP) to be used with flexible VINDPM threshold.  
After Input Voltage Limit Threshold is set, an INT pulse is generated to signal to the host.  
8.2.3.5 Converter Power-Up  
After the input current limit is set, the converter is enabled and the HSFET and LSFET start switching. If battery  
charging is disabled, BATFET turns off. Otherwise, BATFET stays on to charge the battery.  
The device provides soft-start when system rail is ramped up. When the system rail is below 2.2 V, the input  
current limit is forced to the lower of 200 mA or IINLIM register setting. After the system rises above 2.2 V, the  
device limits input current to the lower value of ILIM pin and IILIM register (ICO_EN = 0) or IDPM_LIM register  
(ICO_EN = 1).  
As a battery charger, the device deploys a highly efficient 1.5 MHz step-down switching regulator. The fixed  
frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery  
voltage, charge current and temperature, simplifying output filter design.  
A type III compensation network allows using ceramic capacitors at the output of the converter. An internal saw-  
tooth ramp is compared to the internal error control signal to vary the duty cycle of the converter. The ramp  
height is proportional to the PMID voltage to cancel out any loop gain variation due to a change in input voltage.  
In order to improve light-load efficiency, the device switches to PFM control at light load when battery is below  
minimum system voltage setting or charging is disabled. During the PFM operation, the switching duty cycle is  
set by the ratio of SYS and VBUS.  
8.2.4 Input Current Optimizer (ICO)  
The device provides innovative Input Current Optimizer (ICO) to identify maximum power point without overload  
the input source. The algorithm automatically identify maximum input current limit of power source without  
entering VINDPM to avoid input source overload.  
This feature is enabled by default (ICO_EN=1) and can be disabled by setting ICO_EN bit to 0. After DCP or  
MaxCharge type input source is detected based on the procedures previously described (Input Source Type  
Detection ). The algorithm runs automatically when ICO_EN bit is set. The algorithm can also be forced to  
execute by setting FORCE_ICO bit regardless of input source type detected.  
The actual input current limit used by the Dynamic Power Management is reported in IDPM_LIM register while  
Input Current Optimizer is enabled (ICO_EN = 1) or set by IINLIM register when the algorithm is disabled  
(ICO_EN = 0). In addition, the current limit is clamped by ILIM pin unless EN_ILIM bit is 0 to disable ILIM pin  
function.  
版权 © 2016–2018, Texas Instruments Incorporated  
19  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.2.5 Boost Mode Operation from Battery  
The device supports boost converter operation to deliver power from the battery to other portable devices  
through USB port. The boost mode output current rating meets the USB On-The-Go 500 mA (BOOST_LIM bits =  
000) output requirement. The maximum output current is up to 2.4 A. The boost operation can be enabled if the  
conditions are valid:  
1. BAT above BATLOWV  
2. VBUS less than BAT+VSLEEP (in sleep mode)  
3. Boost mode operation is enabled (OTG pin HIGH and OTG_CONFIG bit =1)  
4. Voltage at TS (thermistor) pin is within range configured by Boost Mode Temperature Monitor as configured  
by BHOT and BCOLD bits  
5. After 30 ms delay from boost mode enable  
In boost mode, the device employs a 500 KHz or 1.5 MHz (selectable using BOOST_FREQ bit) step-up  
switching regulator based on system requirements. To avoid frequency change during boost mode operations,  
write to boost frequency configuration bit (BOOST_FREQ) is ignored when OTG_CONFIG is set.  
During boost mode, the status register VBUS_STAT bits is set to 111, the VBUS output is 5V by default  
(selectable via BOOSTV register bits) and the output current can reach up to 2.4 A, selected via I2C  
(BOOST_LIM bits). The boost output is maintained when BAT is above VOTG_BAT threshold  
8.2.6 Power Path Management  
The device accommodates a wide range of input sources from USB, wall adapter, to car battery. The device  
provides automatic power path selection to supply the system (SYS) from input source (VBUS), battery (BAT), or  
both.  
8.2.6.1 Narrow VDC Architecture  
The device deploys Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by SYS_MIN bits. Even with a fully depleted battery, the system is regulated  
above the minimum system voltage (default 3.5 V).  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode),  
and the system is regulated above the minimum system voltage setting. As the battery voltage rises above the  
minimum system voltage, BATFET is fully on and the voltage difference between the system and battery is the  
VDS of BATFET. The status register VSYS_STAT bit goes high when the system is in minimum system voltage  
regulation.  
4.4  
Minimum System Voltage  
SYS (Charge Disabled)  
SYS (Charge Enabled)  
4.2  
4
3.8  
3.6  
3.4  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
BAT (V)  
D011  
10. V(SYS) vs V(BAT)  
20  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.2.6.2 Dynamic Power Management  
To meet maximum current limit in USB spec and avoid over loading the adapter, the device features Dynamic  
Power Management (DPM), which continuously monitors the input current and input voltage. When input source  
is over-loaded, either the current exceeds the input current limit (IINLIM or IDPM_LIM) or the voltage falls below  
the input voltage limit (VINDPM). The device then reduces the charge current until the input current falls below  
the input current limit and the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to  
drop. Once the system voltage falls below the battery voltage, the device automatically enters the Supplement  
Mode where the BATFET turns on and battery starts discharging so that the system is supported from both the  
input source and battery.  
During DPM mode, the status register bits VDPM_STAT (VINDPM) and/or IDPM_STAT (IINDPM) is/are set high.  
11 shows the DPM response with 9V/1.2A adapter, 3.2-V battery, 2.8-A charge current and 3.4-V minimum  
system voltage setting.  
Voltage  
VBUS  
SYS  
BAT  
3.6V  
3.4V  
3.2V  
3.18V  
Current  
4A  
ICHG  
3.2A  
2.8A  
ISYS  
1.2A  
1.0A  
IIN  
0.5A  
-0.6A  
DPM  
DPM  
Supplement  
11. DPM Response  
8.2.6.3 Supplement Mode  
When the system voltage falls below the battery voltage, the BATFET turns on and the BATFET gate is  
regulated the gate drive of BATFET so that the minimum BATFET VDS stays at 30 mV when the current is low.  
This prevents oscillation from entering and exiting the Supplement Mode. As the discharge current increases, the  
BATFET gate is regulated with a higher voltage to reduce RDS(ON) until the BATFET is in full conduction. At this  
point onwards, the BATFET VDS linearly increases with discharge current. 12 shows the V-I curve of the  
BATFET gate regulation operation. BATFET turns off to exit Supplement Mode when the battery is below battery  
depletion threshold.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
5
10 15 20 25 30 35 40 45 50 55  
V(BAT_SYS) (mV)  
D010  
12. BATFET V-I Curve  
版权 © 2016–2018, Texas Instruments Incorporated  
21  
 
 
 
 
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.2.7 Battery Charging Management  
The device charges 1-cell Li-Ion battery with up to 5-A charge current for high capacity battery. The 11-mΩ  
BATFET improves charging efficiency and minimize the voltage drop during discharging.  
8.2.7.1 Autonomous Charging Cycle  
With battery charging is enabled (CHG_CONFIG bit = 1 and CE pin is low), the device autonomously completes  
a charging cycle without host involvement. The device default charging parameters are listed in 4. The host  
can always control the charging operations and optimize the charging parameters by writing to the corresponding  
registers through I2C.  
4. Charging Parameter Default Setting  
DEFAULT MODE  
Charging Voltage  
Charging Current  
Pre-charge Current  
Termination Current  
Temperature Profile  
Safety Timer  
bq25890  
4.208 V  
2.048 A  
128 mA  
256 mA  
JEITA  
bq25892  
4.208 V  
2.048 A  
128 mA  
256 mA  
JEITA  
12 hour  
12 hour  
A new charge cycle starts when the following conditions are valid:  
Converter starts  
Battery charging is enabled by setting CHG_CONFIG bit, /CE pin is low and ICHG register is not 0 mA  
No thermistor fault on TS pin  
No safety timer fault  
BATFET is not forced to turn off (BATFET_DIS bit = 0)  
The charger device automatically terminates the charging cycle when the charging current is below termination  
threshold, charge voltage is above recharge threshold, and device not in DPM mode or thermal regulation. When  
a full battery voltage is discharged below recharge threshold (threshold selectable via VRECHG bit), the device  
automatically starts a new charging cycle. After the charge is done, either toggle CE pin or CHG_CONFIG bit  
can initiate a new charging cycle.  
The STAT output indicates the charging status of charging (LOW), charging complete or charge disable (HIGH)  
or charging fault (Blinking). The STAT output can be disabled by setting STAT_DIS bit. In addition, the status  
register (CHRG_STAT) indicates the different charging phases: 00-charging disable, 01-precharge, 10-fast  
charge (constant current) and constant voltage mode, 11-charging done. Once a charging cycle is completed, an  
INT is asserted to notify the host.  
8.2.7.2 Battery Charging Profile  
The device charges the battery in three phases: preconditioning, constant current and constant voltage. At the  
beginning of a charging cycle, the device checks the battery voltage and regulates current / voltage.  
5. Charging Current Setting  
VBAT  
< 2 V  
CHARGING CURRENT  
IBATSHORT  
REG DEFAULT SETTING  
CHRG_STAT  
01  
01  
10  
2 V – 3 V  
> 3 V  
IPRECHG  
128 mA  
2048 mA  
ICHG  
22  
版权 © 2016–2018, Texas Instruments Incorporated  
 
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
If the charger device is in DPM regulation or thermal regulation during charging, the charging current can be less  
than the programmed value. In this case, termination is temporarily disabled and the charging safety timer is  
counted at half the clock rate.  
Regulation Voltage  
(3.84V t 4.608V)  
Battery Voltage  
Fast Charge Current  
(128mA-5056mA)  
Charge Current  
V
BAT_LOWV (2.8V/3V)  
V
BAT_SHORT (2V)  
I
PRECHARGE (64mA-1024mA)  
TERMINATION (64mA-1024mA)  
BATSHORT (100mA)  
I
I
Fast Charge and Voltage Regulation  
Trickle Charge  
Pre-charge  
Safety Timer  
Expiration  
13. Battery Charging Profile  
8.2.7.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is  
below termination current. After the charging cycle is completed, the BATFET turns off. The converter keeps  
running to power the system, and BATFET can turn on again to engage Supplement Mode.  
When termination occurs, the status register CHRG_STAT is set to 11, and an INT pulse is asserted to the host.  
Termination is temporarily disabled when the charger device is in input current, voltage or thermal regulation.  
Termination can be disabled by writing 0 to EN_TERM bit prior to charge termination.  
8.2.7.4 Resistance Compensation (IRCOMP)  
For high current charging system, resistance between charger output and battery cell terminal such as board  
routing, connector, MOSFETs and sense resistor can force the charging process to move from constant current  
to constant voltage too early and increase charge time. To speed up the charging cycle, the device provides  
resistance compensation (IRCOMP) feature which can extend the constant current charge time to delivery  
maximum power to battery.  
The device allows the host to compensate for the resistance by increasing the voltage regulation set point based  
on actual charge current and the resistance as shown below. For safe operation, the host should set the  
maximum allowed regulation voltage register (VCLAMP) and the minimum resistance compensation (BATCOMP).  
VREG_ACTUAL = VREG + min(ICHRG_ACTUAL x BATCOMP, VCLAMP  
)
(1)  
8.2.7.5 Thermistor Qualification  
8.2.7.5.1 JEITA Guideline Compliance in Charge Mode  
To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline  
emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high  
temperature ranges.  
版权 © 2016–2018, Texas Instruments Incorporated  
23  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
The device continuously monitors battery temperature by measuring the voltage between the TS pins and  
ground, typically determined by a negative temperature coefficient thermistor (NTC) and an external voltage  
divider. The device compares this voltage against its internal thresholds to determine if charging is allowed. To  
initiate a charge cycle, the voltage on TS pin must be within the VT1 to VT5 thresholds. If TS voltage exceeds the  
T1–T5 range, the controller suspends charging and waits until the battery temperature is within the T1 to T5  
range. At cool temperature (T1–T2), JEITA recommends the charge current to be reduced to at least half of the  
charge current or lower. At warm temperature (T3–T5), JEITA recommends charge voltage below nominal  
charge voltage.  
The device provides flexible voltage/current settings beyond the JEITA requirement. The voltage setting at warm  
temperature (T3–T5) can be 200 mV below charge voltage (JEITA_VSET=0). The current setting at cool  
temperature (T1–T2) can be further reduced to 20% or 50% of fast charge current (JEITA_ISET bit).  
REGN  
bq2589x  
RT1  
TS  
RTH  
RT2  
103AT  
14. TS Resistor Network  
VREG  
VREG - 200 mV  
15. Charging Values  
Assuming a 103AT NTC thermistor on the battery pack as shown in 14, the value RT1 and RT2 can be  
determined by using 公式 2: :  
1
1
æ
ö
VREGN ´RTHCOLD ´RTHHOT  
´
-
VT1 VT5  
ç
÷
è
ø
RT2 =  
V
V
æ
ö
æ
ö
REGN  
REGN  
RTHHOT  
´
-1 - RTHCOLD  
´
ç
-1  
÷
ç
÷
VT5  
VT1  
è
ø
è
ø
VREGN  
VT1  
-1  
RT1=  
1
1
+
RT2 RTHCOLD  
(2)  
Select 0°C to 60°C range for Li-ion or Li-polymer battery,  
RTHT1 = 27.28 kΩ  
RTHT5 = 3.02 kΩ  
RT1 = 5.24 kΩ  
24  
版权 © 2016–2018, Texas Instruments Incorporated  
 
 
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
RT2 = 30.31 kΩ  
8.2.7.5.2 Cold/Hot Temperature Window in Boost Mode  
For battery protection during boost mode, the device monitors the battery temperature to be within the VBCOLDx to  
VBHOT2 thresholds unless boost mode temperature is disabled by setting BHOT bits to 11. When temperature is  
outside of the temperature thresholds, the boost mode is suspended. Once temperature is within thresholds, the  
boost mode is recovered.  
Temperature Range to  
Boost  
VREGN  
Boost Disable  
V
BCOLDx  
(-  
10ºC / 20ºC)  
Boost Enable  
V
BHOTx  
(55ºC / 60ºC / 65ºC)  
Boost Disable  
AGND  
16. TS Pin Thermistor Sense Thresholds in Boost Mode  
8.2.7.6 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The  
safety timer is 4 hours when the battery is below VBATLOWV threshold. The user can program fast charge safety  
timer through I2C (CHG_TIMER bits). When safety timer expires, the fault register CHRG_FAULT bits are set to  
11 and an INT is asserted to the host. The safety timer feature can be disabled via I2C by setting EN_TIMER bit.  
During input voltage, current or thermal regulation, the safety timer counts at half clock rate as the actual charge  
current is likely to be below the register setting. For example, if the charger is in input current regulation  
(IDPM_STAT = 1) throughout the whole charging cycle, and the safety time is set to 5 hours, the safety timer will  
expire in 10 hours. This half clock rate feature can be disabled by writing 0 to TMR2X_EN bit.  
8.2.8 Battery Monitor  
The device includes a battery monitor to provide measurements of VBUS voltage, battery voltage, system  
voltage, thermistor ratio, and charging current, and charging current based on the device modes of operation.  
The measurements are reported in Battery Monitor Registers (REG0E-REG12). The battery monitor can be  
configured as two conversion modes by using CONV_RATE bit: one-shot conversion (default) and 1 second  
continuous conversion.  
For one-shot conversion (CONV_RATE = 0), the CONV_START bit can be set to start the conversion. During the  
conversion, the CONV_START is set and it is cleared by the device when conversion is completed. The  
conversion result is ready after tCONV (maximum 1 second).  
For continuous conversion (CONV_RATE = 1), the CONV_RATE bit can be set to initiate the conversion. During  
active conversion, the CONV_START is set to indicate conversion is in progress. The battery monitor provides  
conversion result every 1 second automatically. The battery monitor exits continuous conversion mode when  
CONV_RATE is cleared.  
When battery monitor is active, the REGN power is enabled and can increase device quiescent current. In  
battery only mode, the battery monitor is only active when V(BAT) > SYS_MIN setting in REG03.  
版权 © 2016–2018, Texas Instruments Incorporated  
25  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
6. Battery Monitor Modes of Operation  
MODES OF OPERATION  
PARAMETER  
REGISTER  
CHARGE  
MODE  
DISABLE CHARGE  
MODE  
BATTERY ONLY  
MODE  
BOOST MODE  
Battery Voltage (VBAT  
)
REG0E  
REG0F  
REG10  
REG11  
REG12  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
Yes  
Yes  
Yes  
Yes  
NA  
Yes  
Yes  
Yes  
NA  
System Voltage (VSYS  
Temperature (TS) Voltage (VTS  
VBUS Voltage (VVBUS  
Charge Current (IBAT  
)
)
)
)
NA  
8.2.9 Status/Control Outputs (STAT, INT and DSEL)  
8.2.9.1 Charging Status Indicator (STAT)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED as shown in 图  
47. The STAT pin function can be disable by setting STAT_DIS bit.  
7. STAT Pin State  
CHARGING STATE  
Charging in progress (including recharge)  
STAT INDICATOR  
LOW  
HIGH  
HIGH  
Charging complete  
Sleep mode, charge disable  
Charge suspend (Input overvoltage, TS fault, timer fault, input or system overvoltage).  
Boost Mode suspend (due to TS Fault)  
blinking at 1 Hz  
8.2.9.2 Interrupt to Host (INT)  
In some applications, the host does not always monitor the charger operation. The INT notifies the system on the  
device operation. The following events will generate 256-µs INT pulse.  
USB/adapter source identified (through PSEL or DPDM detection, with OTG pin)  
Good input source detected  
VBUS above battery (not in sleep)  
VBUS below VACOV threshold  
VBUS above VVBUSMIN (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
Input removed  
Charge Complete  
Any FAULT event in REG0C  
When a fault occurs, the charger device sends out INT and keeps the fault state in REG0C until the host reads  
the fault register. Before the host reads REG0C and all the faults are cleared, the charger device would not send  
any INT upon new faults. To read the current fault status, the host has to read REG0C two times consecutively.  
The 1st read reports the pre-existing fault register status and the 2nd read reports the current fault register status.  
8.2.9.3 D+/D- Multiplexer Selection Control  
The DSEL pin is normally grounded and pulled-up by internally to 5V during input source type detection (when  
AUTO_DPDM_EN=1 or FORCE_DPDM=1). The pin is normally low and drives high to indicate the D+/D-  
detection is in progress. When detection is completed, the pin maintains high logic when DCP, MaxCharge or  
HVDCP is detected. The pin returns to logic low when other input source type is detected. In addition, while input  
source is plugged in or during OTG mode, the FORCE_DSEL bit can be set to force the DSEL pin to change  
from low to high regardless of input source type detected. When in battery discharge mode (not in OTG), the  
DSEL pin is always low.  
26  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.2.10 BATET (Q4) Control  
8.2.10.1 BATFET Disable Mode (Shipping Mode)  
To extend battery life and minimize power when system is powered off during system idle, shipping, or storage,  
the device can turn off BATFET so that the system voltage is zero to minimize the battery leakage current. When  
the host set BATFET_DIS bit, the charger can turn off BATFET immediately or delay by tSM_DLY as configurated  
by BATFET_DLY bit.  
8.2.10.2 BATFET Enable (Exit Shipping Mode)  
When the BATFET is disabled (in shipping mode) and indicated by setting BATFET_DIS, one of the following  
events can enable BATFET to restore system power:  
1. Plug in adapter  
2. Clear BATFET_DIS bit  
3. Set REG_RST bit to reset all registers including BATFET_DIS bit to default (0)  
4. A logic high to low transition on QON pin with tSHIPMODE deglitch time to enable BATFET to exit shipping  
mode  
8.2.10.3 BATFET Full System Reset  
The BATFET functions as a load switch between battery and system when input source is not plugged-in. By  
changing the state of BATFET from off to on, system connects to SYS can be effectively have a power-on-reset.  
The QON pin supports push-button interface to reset system power without host by change the state of BATFET.  
When the QON pin is driven to logic low for tQON_RST (typical 15 seconds) while input source is not plugged in  
and BATFET is enabled (BATFET_DIS=0), the BATFET is turned off for tBATFET_RST and then it is re-enabled to  
reset system power. This function can be disabled by setting BATFET_RST_EN bit to 0.  
8.2.11 Current Pulse Control Protocol  
The device provides the control to generate the VBUS current pulse protocol to communicate with adjustable  
high voltage adapter in order to signal adapter to increase or decrease output voltage. To enable the interface,  
the EN_PUMPX bit must be set. Then the host can select the increase/decrease voltage pulse by setting one of  
the PUMPX_UP or PUMPX_DN bit (but not both) to start the VBUS current pulse sequence. During the current  
pulse sequence, the PUMPX_UP and PUMPX_DN bits are set to indicate pulse sequence is in progress and the  
device pulses the input current limit between current limit set forth by IINLIM or IDPM_LIM register and the  
100mA current limit (IINDPM100_ACC). When the pulse sequence is completed, the input current limit is returned to  
value set by IINLIM or IDPM_LIM register and the PUMPX_UP or PUMPX_DN bit is cleared. In addition, the  
EN_PUMPX can be cleared during the current pulse sequence to terminate the sequence and force charger to  
return to input current limit as set forth by the IINLIM or IDPM_LIM register immediately. When EN_PUMPX bit is  
low, write to PUMPX_UP and PUMPX_DN bit would be ignored and have no effect on VBUS current limit.  
8.2.12 D+/D- Output Driver  
The device provides independent controlled voltage output drivers on D+ and D- pins to interface or emulate  
non-standard adapters when input source is plugged-in or OTG mode is enabled. The D+/D- drivers are disabled  
in high impedance mode (HiZ) by default or when DP_DAC or DM_DAC bits are set to 000. The drivers are  
enabled and controlled independently with predefined voltage threshold when DP_DAC and DM_DAC bits are  
set to values between 001 to 110.  
When input source is plugged-in, the output drivers control (DP_DAC and DM_DAC) are reset to HiZ (000) to  
execute USB BC1.2 and built-in handshake during the input source type detection. The host is recommended to  
change DP_DAC and DM_DAC settings after input source type detection when VBUS_STAT/PG_STAT bits are  
updated.  
When OTG mode is enabled, the drivers can be enabled to provide electrical signature on D+/D- to emulate USB  
non-standard adapters (Divider 1-4) as shown in 1.  
8.2.13 Input Current Limit on ILIM  
For safe operation, the device has an additional hardware pin on ILIM to limit maximum input current on ILIM pin.  
The input maximum current is set by a resistor from ILIM pin to ground as:  
版权 © 2016–2018, Texas Instruments Incorporated  
27  
 
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
K
ILIM  
I
=
INMAX  
R
ILIM  
(3)  
The actual input current limit is the lower value between ILIM setting and register setting (IINLIM). For example, if  
the register setting is 111111 for 3.25 A, and ILIM has a 260-Ω resistor (KILIM = 390 max.) to ground for 1.5 A,  
the input current limit is 1.5 A. ILIM pin can be used to set the input current limit rather than the register settings  
when EN_ILIM bit is set. The device regulates ILIM pin at 0.8 V. If ILIM voltage exceeds 0.8 V, the device enters  
input current regulation (Refer to Dynamic Power Management section).  
The ILIM pin can also be used to monitor input current when EN_ILIM is enabled. The voltage on ILIM pin is  
proportional to the input current. ILIM pin can be used to monitor the input current following 公式 4:  
K
x V  
ILIM  
ILIM  
I
=
IN  
R
x 0.8 V  
ILIM  
(4)  
For example, if ILIM pin is set with 260-Ω resistor, and the ILIM voltage is 0.4 V, the actual input current 0.615 A  
- 0.75 A (based on KILM specified). If ILIM pin is open, the input current is limited to zero since ILIM voltage  
floats above 0.8 V. If ILIM pin is short, the input current limit is set by the register.  
The ILIM pin function can be disabled by setting EN_ILIM bit to 0. When the pin is disabled, both input current  
limit function and monitoring function are not available.  
8.2.14 Thermal Regulation and Thermal Shutdown  
8.2.14.1 Thermal Protection in Buck Mode  
The device monitors the internal junction temperature TJ to avoid overheat the chip and limits the IC surface  
temperature in buck mode. When the internal junction temperature exceeds the preset thermal regulation limit  
(TREG bits), the device lowers down the charge current. The wide thermal regulation range from 60ºC to 120ºC  
allows the user to optimize the system thermal performance.  
During thermal regulation, the actual charging current is usually below the programmed battery charging current.  
Therefore, termination is disabled, the safety timer runs at half the clock rate, and the status register  
THERM_STAT bit goes high.  
Additionally, the device has thermal shutdown to turn off the converter and BATFET when IC surface  
temperature exceeds TSHUT. The fault register CHRG_FAULT is set to 10 and an INT is asserted to the host. The  
BATFET and converter is enabled to recover when IC temperature is below TSHUT_HYS  
.
8.2.14.2 Thermal Protection in Boost Mode  
The device monitors the internal junction temperature to provide thermal shutdown during boost mode. When IC  
surface temperature exceeds TSHUT, the boost mode is disabled (converter is turned off) by setting  
OTG_CONFIG bit low and BATFET is turned off. When IC surface temperature is below TSHUT_HYS, the BATFET  
is enabled automatically to allow system to restore and the host can re-enable OTG_CONFIG bit to recover.  
8.2.15 Voltage and Current Monitoring in Buck and Boost Mode  
8.2.15.1 Voltage and Current Monitoring in Buck Mode  
The device closely monitors the input and system voltage, as well as HSFET current for safe buck and boost  
mode operations.  
8.2.15.1.1 Input Overvoltage (ACOV)  
The input voltage for buck mode operation is VVBUS_OP. If VBUS voltage exceeds VACOV, the device stops  
switching immediately. During input over voltage (ACOV), the fault register CHRG_FAULT bits sets to 01. An INT  
is asserted to the host..  
8.2.15.1.2 System Overvoltage Protection (SYSOVP)  
The charger device clamps the system voltage during load transient so that the components connect to system  
would not be damaged due to high voltage. When SYSOVP is detected, the converter stops immediately to  
clamp the overshoot.  
28  
版权 © 2016–2018, Texas Instruments Incorporated  
 
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.2.15.2 Voltage and Current Monitoring in Boost Mode  
The device closely monitors the VBUS voltage, as well as RBFET and LSFET current to ensure safe boost mode  
operation.  
8.2.15.2.1 VBUS Overcurrent Protection  
The charger device closely monitors the RBFET (Q1), and LSFET (Q3) current to ensure safe boost ode  
operation. During overcurrent condition when output current exceed (IOTG_OCP) the device operates in hiccup  
mode for protection. While in hiccup mode cycle, the device turns off RBFET for tOTG_OCP_OFF (30 ms typical) and  
turns on RBFET for tOTG_OCP_ON (250 µs typical) in an attempt to restart. If the overcurrent condition is removed,  
the boost converter returns to normal operation. When overcurrent condition continues to exist, the device  
repeats the hiccup cycle until overcurrent condition is removed. When overcurrent condition is detected the fault  
register bit BOOST_FAULT is set high to indicate fault in boost operation. An INT is also asserted to the host.  
8.2.15.2.2 Boost Mode Overvoltage Protection  
When the VBUS voltage rises above regulation target and exceeds VOTG_OVP, the device enters overvoltage  
protection which stops switching, clears OTG_CONFIG bit and exits boost mode. During the overvoltage  
duration, the fault register bit (BOOST_FAULT) is set high to indicate fault in boost operation. An INT is also  
asserted to the host.  
8.2.16 Battery Protection  
8.2.16.1 Battery Overvoltage Protection (BATOVP)  
The battery overvoltage limit is clamped at 4% above the battery regulation voltage. When battery over voltage  
occurs, the charger device immediately disables charge. The fault register BAT_FAULT bit goes high and an INT  
is asserted to the host.  
8.2.16.2 Battery Over-Discharge Protection  
When battery is discharged below VBAT_DPL, the BATFET is turned off to protect battery from over discharge. To  
recover from over-discharge, an input source is required at VBUS. When an input source is plugged in, the  
BATFET turns on. Thy is charged with IBATSHORT (typically 100 mA) current when the VBAT < VSHORT, or  
precharge current as set in IPRECHG register when the battery voltage is between VSHORT and VBATLOWV  
.
8.2.16.3 System Overcurrent Protection  
When the system is shorted or significantly overloaded (IBAT > IBATOP) so that its current exceeds the overcurrent  
limit, the device latches off BATFET. Section BATFET Enable (Exit Shipping Mode) can reset the latch-off  
condition and turn on BATFET  
8.2.17 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2C is a bi-directional 2-wire serial interface. Only two open-drain bus lines are required: a serial  
data line (SDA) and a serial clock line (SCL). Devices can be considered as masters or slaves when performing  
data transfers. A master is the device which initiates a data transfer on the bus and generates the clock signals  
to permit that transfer. At that time, any device addressed is considered a slave.  
The device operates as a slave device with address 6AH, receiving control inputs from the master device like  
micro controller or a digital signal processor through REG00-REG14. Register read beyond REG14 (0x14)  
returns 0xFF. The I2C interface supports both standard mode (up to 100 kbits), and fast mode (up to 400 kbits).  
When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain and must be connected to the  
positive supply voltage via a current source or pull-up resistor.  
8.2.17.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each  
data bit transferred.  
版权 © 2016–2018, Texas Instruments Incorporated  
29  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
SDA  
SCL  
Change  
of data  
allowed  
Data line stable;  
Data valid  
17. Bit Transfer on the I2C Bus  
8.2.17.2 START and STOP Conditions  
All transactions begin with a START (S) and can be terminated by a STOP (P). A HIGH to LOW transition on the  
SDA line while SCl is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition.  
START and STOP conditions are always generated by the master. The bus is considered busy after the START  
condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
STOP (P)  
START (S)  
18. START and STOP conditions  
8.2.17.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant  
Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has performed some  
other function, it can hold the clock line SCL low to force the master into a wait state (clock stretching). Data  
transfer then continues when the slave is ready for another byte of data and release the clock line SCL.  
Acknowledgement  
signal from revceiver  
Acknowledgement  
signal from slave  
MSB  
1
P or  
Sr  
S or Sr  
2
7
8
9
ACK  
1
2
8
9
ACK  
START or  
Repeated  
START  
STOP or  
Repeated  
START  
19. Data Transfer on the I2C Bus  
30  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.2.17.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter  
that the byte was successfully received and another byte may be sent. All clock pulses, including the  
acknowledge 9th clock pulse, are generated by the master.  
The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line  
LOW and it remains stable LOW during the HIGH period of this clock pulse.  
When SDA remains HIGH during the 9th clock pulse, this is the Not Acknowledge signal. The master can then  
generate either a STOP to abort the transfer or a repeated START to start a new transfer.  
8.2.17.5 Slave Address and Data Direction Bit  
After the START, a slave address is sent. This address is 7 bits long followed by the eighth bit as a data direction  
bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
SDA  
S
8
9
8
9
8
9
P
SCL  
1-7  
1-7  
1-7  
START  
ADDRESS  
R/W ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
20. Complete Data Transfer  
8.2.17.6 Single Read and Write  
1
8
1
1
7
1
0
1
1
8
Slave Address  
ACK  
Reg Addr  
ACK  
P
S
ACK  
Data Addr  
21. Single Write  
1
8
1
1
1
7
1
0
1
1
1
7
Slave Address  
ACK  
Reg Addr  
ACK  
S
S
ACK  
Slave Address  
1
1
8
P
Data  
NCK  
22. Single Read  
If the register address is not defined, the charger IC send back NACK and go back to the idle state.  
8.2.17.7 Multi-Read and Multi-Write  
The charger device supports multi-read and multi-write on REG00 through REG14 except REG0C.  
23. Multi-Write  
版权 © 2016–2018, Texas Instruments Incorporated  
31  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
24. Multi-Read  
REG0C is a fault register. It keeps all the fault information from last read until the host issues a new read. For  
example, if Charge Safety Timer Expiration fault occurs but recovers later, the fault register REG0C reports the  
fault when it is read the first time, but returns to normal when it is read the second time. In order to get the fault  
information at present, the host has to read REG0C for the second time. The only exception is NTC_FAULT  
which always reports the actual condition on the TS pin. In addition, REG0C does not support multi-read and  
multi-write.  
8.3 Device Functional Modes  
8.3.1 Host Mode and Default Mode  
The device is a host controlled charger, but it can operate in default mode without host management. In default  
mode, the device can be used an autonomous charger with no host or while host is in sleep mode. When the  
charger is in default mode, WATCHDOG_FAULT bit is HIGH. When the charger is in host mode,  
WATCHDOG_FAULT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the  
registers are in the default settings.  
In default mode, the device keeps charging the battery with 12-hour fast charging safety timer. At the end of the  
12-hour, the charging is stopped and the buck converter continues to operate to supply system load. Any write  
command to device transitions the charger from default mode to host mode. All the device parameters can be  
programmed by the host. To keep the device in host mode, the host has to reset the watchdog timer by writing 1  
to WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT bit is set), or disable watchdog timer by  
setting WATCHDOG bits=00.  
When the watchdog timer (WATCHDOG_FAULT bit = 1) is expired, the device returns to default mode and all  
registers are reset to default values except IINLIM, VINDPM, VINDPM_OS, BATFET_RST_EN, BATFET_DLY,  
and BATFET_DIS bits.  
32  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
Device Functional Modes (接下页)  
POR  
watchdog timer expired  
Reset registers  
I2C interface enabled  
Host Mode  
Start watchdog timer  
Host programs registers  
Y
I2C Write?  
N
Default Mode  
Reset watchdog timer  
Reset selective registers  
Y
WD_RST bit = 1?  
N
Y
N
I2C Write?  
Y
N
Watchdog Timer  
Expired?  
25. Watchdog Timer Flow Chart  
版权 © 2016–2018, Texas Instruments Incorporated  
33  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.4 Register Maps  
I2C Slave Address: 6AH (1101010B + R/W)  
8.4.1 REG00  
26. REG00  
7
0
6
0
5
0
4
0
3
1
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8. REG00  
Bit  
Field  
Type  
Reset  
Description  
Enable HIZ Mode  
0 – Disable (default)  
1 – Enable  
by REG_RST  
by Watchdog  
7
EN_HIZ  
R/W  
Enable ILIM Pin  
0 – Disable  
1 – Enable (default: Enable ILIM pin (1))  
by REG_RST  
by Watchdog  
6
EN_ILIM  
R/W  
5
4
3
2
1
IINLIM[5]  
IINLIM[4]  
IINLIM[3]  
IINLIM[2]  
IINLIM[1]  
R/W  
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
1600mA  
800mA  
400mA  
200mA  
100mA  
Input Current Limit  
Offset: 100mA  
Range: 100mA (000000) – 3.25A (111111)  
Default:0001000 (500mA)  
(Actual input current limit is the lower of I2C or ILIM pin)  
IINLIM bits are changed automaticallly after input source  
type detection is completed  
USB Host SDP = 500mA  
USB CDP = 1.5A  
USB DCP = 3.25A  
Adjustable High Voltage (MaxCharge) DCP = 1.5A  
Unknown Adapter = 500mA  
0
IINLIM[0]  
R/W  
by REG_RST  
50mA  
Non-Standard Adapter = 1A/2A/2.1A/2.4A  
34  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.4.2 REG01  
27. REG01  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9. REG01  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
DP_DAC[2]  
DP_DAC[1]  
by REG_RST  
by REG_RST  
D+ Pin Output Driver  
000 – HiZ mode (Default)  
001 – 0V (V0P0_VSRC  
6
)
010 – 0.6V (V0P6_VSRC  
011 – 1.2V (V1P2_VSRC  
100 – 2.0V (V2P0_VSRC  
101 – 2.7V (V2P7_VSRC  
110 – 3.3V (V3P3_VSRC  
111 – Reserved  
)
)
)
)
)
5
DP_DAC[0]  
R/W  
by REG_RST  
Register bits are reset to default value when input source is plugged-in  
and can be changed after D+/D- detection is completed.  
4
3
DM_DAC[2]  
DM_DAC[1]  
R/W  
R/W  
by REG_RST  
by REG_RST  
D- Pin Output Driver  
000 – HiZ mode (Default)  
001 – 0V (V0P0_VSRC  
)
010 – 0.6V (V0P6_VSRC  
011 – 1.2V (V1P2_VSRC  
100 – 2.0V (V2P0_VSRC  
101 – 2.7V (V2P7_VSRC  
110 – 3.3V (V3P3_VSRC  
111 – Reserved  
)
)
)
)
)
2
DM_DAC[0]  
R/W  
by REG_RST  
Register bits are reset to default value when input source is plugged-in  
and can be changed after D+/D- detection is completed.  
Enable 12V detection for MaxCharge and HVDCP  
0 – Disable 12V Detection (default)  
1 – Enable 12V Detection  
1
0
EN_12V  
R/W  
R/W  
by REG_RST  
by REG_RST  
Input Voltage Limit Offset  
0 – 400mV  
VINDPM_OS  
1 – 600mV (default)  
版权 © 2016–2018, Texas Instruments Incorporated  
35  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.4.3 REG02  
28. REG02  
7
0
6
0
5
0
4
1
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
10. REG02  
Bit  
Field  
Type  
Reset  
Description  
ADC Conversion Start Control  
0 – ADC conversion not active (default).  
1 – Start ADC Conversion  
This bit is read-only when CONV_RATE = 1. The bit stays high during  
ADC conversion and during input source detection.  
by REG_RST  
by Watchdog  
7
CONV_START  
R/W  
ADC Conversion Rate Selection  
0 – One shot ADC conversion (default)  
1 – Start 1s Continuous Conversion  
by REG_RST  
by Watchdog  
6
5
CONV_RATE  
R/W  
R/W  
Boost Mode Frequency Selection  
0 – 1.5MHz  
1 – 500KHz  
by REG_RST  
by Watchdog  
BOOST_FREQ  
Note: Write to this bit is ignored when OTG_CONFIG is enabled.  
Input Current Optimizer (ICO) Enable  
0 – Disable ICO Algorithm  
1 – Enable ICO Algorithm (default)  
4
3
2
1
0
ICO_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by REG_RST  
by REG_RST  
High Voltage DCP Enable  
0 – Disable HVDCP handshake  
1 – Enable HVDCP handshake (default)  
HVDCP_EN  
MAXC_EN  
MaxCharge Adapter Enable  
0 – Disable MaxCharge handshake  
1 – Enable MaxCharge handshake (default)  
Force D+/D- Detection  
0 – Not in D+/D- or PSEL detection (default)  
1 – Force D+/D- detection  
by REG_RST  
by Watchdog  
FORCE_DPDM  
AUTO_DPDM_EN  
Automatic D+/D- Detection Enable  
0 –Disable D+/D- or PSEL detection when VBUS is plugged-in  
1 –Enable D+/D- or PEL detection when VBUS is plugged-in (default)  
by REG_RST  
36  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.4.4 REG03  
29. REG03  
7
0
6
0
5
0
4
1
3
1
2
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
11. REG03  
Bit  
Field  
Type  
Reset  
Description  
DSEL Pin Control  
7
FORCE_DSEL  
R/W  
by REG_RST  
0 – Allow DSEL pin output to drive low (default)  
1 – Force DSEL pin output to drive high  
I2C Watchdog Timer Reset  
0 – Normal (default)  
1 – Reset (Back to 0 after timer reset)  
by REG_RST  
by Watchdog  
6
5
4
WD_RST  
R/W  
R/W  
R/W  
Boost (OTG) Mode Configuration  
0 – OTG Disable (default)  
1 – OTG Enable  
by REG_RST  
by Watchdog  
OTG_CONFIG  
CHG_CONFIG  
Charge Enable Configuration  
0 - Charge Disable  
1- Charge Enable (default)  
by REG_RST  
by Watchdog  
3
2
1
SYS_MIN[2]  
SYS_MIN[1]  
SYS_MIN[02]  
R/W  
R/W  
R/W  
by REG_RST  
by REG_RST  
by REG_RST  
0.4V  
0.2V  
0.1V  
Minimum System Voltage Limit  
Offset: 3.0V  
Range 3.0V-3.7V  
Default: 3.5V (101)  
Minimum Battery Voltage (falling) to exit boost mode  
0 - 2.9V (default)  
1- 2.5V  
by REG_RST  
by Watchdog  
0
MIN_VBAT_SEL  
R/W  
版权 © 2016–2018, Texas Instruments Incorporated  
37  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.4.5 REG04  
30. REG04  
7
0
6
0
5
1
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
12. REG04  
Bit  
Field  
Type  
Reset  
Description  
Current pulse control Enable  
0 - Disable Current pulse control (default)  
1- Enable Current pulse control (PUMPX_UP and PUMPX_DN)  
by Softwareby  
by Watchdog  
7
EN_PUMPX  
R/W  
by Softwareby  
by Watchdog  
6
5
4
3
2
1
0
ICHG[6]  
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
4096mA  
by Softwareby  
by Watchdog  
2048mA  
Fast Charge Current Limit  
Offset: 0mA  
by Softwareby  
by Watchdog  
1024mA  
512mA  
256mA  
128mA  
64mA  
Range: 0mA (0000000) – 5056mA (1001111)  
Default: 2048mA (0100000)  
Note:  
ICHG=000000 (0mA) disables charge  
ICHG > 1001111 (5056mA) is clamped to register value  
1001111 (5056mA)  
by Softwareby  
by Watchdog  
by Softwareby  
by Watchdog  
by Softwareby  
by Watchdog  
by Softwareby  
by Watchdog  
38  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.4.6 REG05  
31. REG05  
7
0
6
0
5
0
4
1
3
0
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
13. REG05  
Bit  
Field  
Type  
Reset  
Description  
by Softwareby  
by Watchdog  
7
IPRECHG[3]  
R/W  
512mA  
by Softwareby  
by Watchdog  
Precharge Current Limit  
Offset: 64mA  
Range: 64mA – 1024mA  
Default: 128mA (0001)  
6
5
4
3
2
1
0
IPRECHG[2]  
IPRECHG[1]  
IPRECHG[0]  
ITERM[3]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
256mA  
128mA  
64mA  
by Softwareby  
by Watchdog  
by Softwareby  
by Watchdog  
by Softwareby  
by Watchdog  
512mA  
256mA  
128mA  
64mA  
by Softwareby  
by Watchdog  
Termination Current Limit  
Offset: 64mA  
Range: 64mA – 1024mA  
Default: 256mA (0011)  
ITERM[2]  
by Softwareby  
by Watchdog  
ITERM[1]  
by Softwareby  
by Watchdog  
ITERM[0]  
版权 © 2016–2018, Texas Instruments Incorporated  
39  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.4.7 REG06  
32. REG06  
7
0
6
1
5
0
4
1
3
1
2
1
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
14. REG06  
Bit  
Field  
Type  
Reset  
Description  
by Softwareby  
by Watchdog  
7
VREG[5]  
R/W  
512mV  
by Softwareby  
by Watchdog  
6
5
4
3
2
VREG[4]  
VREG[3]  
VREG[2]  
VREG[1]  
VREG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
256mV  
128mV  
64mV  
32mV  
16mV  
Charge Voltage Limit  
Offset: 3.840V  
Range: 3.840V – 4.608V (110000)  
Default: 4.208V (010111)  
Note:  
by Softwareby  
by Watchdog  
by Softwareby  
by Watchdog  
VREG > 110000 (4.608V) is clamped to register value  
110000 (4.608V)  
by Softwareby  
by Watchdog  
by Softwareby  
by Watchdog  
Battery Precharge to Fast Charge Threshold  
0 – 2.8V  
1 – 3.0V (default)  
by Softwareby  
by Watchdog  
1
0
BATLOWV  
VRECHG  
R/W  
R/W  
Battery Recharge Threshold Offset  
by Softwareby (below Charge Voltage Limit)  
by Watchdog 0 – 100mV (VRECHG) below VREG (REG06[7:2]) (default)  
1 – 200mV (VRECHG) below VREG (REG06[7:2])  
40  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.4.8 REG07  
33. REG07  
7
1
6
0
5
0
4
1
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
15. REG07  
Bit  
Field  
Type  
Reset  
Description  
Charging Termination Enable  
0 – Disable  
1 – Enable (default)  
by Softwareby  
by Watchdog  
7
EN_TERM  
R/W  
STAT Pin Disable  
0 – Enable STAT pin function (default)  
1 – Disable STAT pin function  
by Softwareby  
by Watchdog  
6
STAT_DIS  
R/W  
by Softwareby I2C Watchdog Timer Setting  
5
4
WATCHDOG[1]  
WATCHDOG[0]  
R/W  
R/W  
by Watchdog  
00 – Disable watchdog timer  
01 – 40s (default)  
10 – 80s  
by Softwareby  
by Watchdog  
11 – 160s  
Charging Safety Timer Enable  
0 – Disable  
1 – Enable (default)  
by Softwareby  
by Watchdog  
3
EN_TIMER  
R/W  
by Softwareby Fast Charge Timer Setting  
2
1
CHG_TIMER[1]  
CHG_TIMER[0]  
R/W  
R/W  
by Watchdog  
00 – 5 hrs  
01 – 8 hrs  
10 – 12 hrs (default)  
11 – 20 hrs  
by Softwareby  
by Watchdog  
JEITA Low Temperature Current Setting  
0 – 50% of ICHG (REG04[6:0])  
1 – 20% of ICHG (REG04[6:0]) (default)  
by Software  
by Watchdog  
0
JEITA_ISET (0C-10C)  
R/W  
版权 © 2016–2018, Texas Instruments Incorporated  
41  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.4.9 REG08  
34. REG08  
7
0
6
0
5
0
4
0
3
0
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
16. REG08  
Bit  
Field  
Type  
Reset  
Description  
by Softwareby  
by Watchdog  
7
BAT_COMP[2]  
R/W  
80mΩ  
IR Compensation Resistor Setting  
Range: 0 – 140m  
Default: 0(000) (i.e. Disable IRComp)  
by Softwareby  
by Watchdog  
6
5
4
3
2
1
BAT_COMP[1]  
BAT_COMP[0]  
VCLAMP[2]  
VCLAMP[1]  
VCLAMP[0]  
TREG[1]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
40mΩ  
20mΩ  
128mV  
64mV  
32mV  
by Softwareby  
by Watchdog  
by Softwareby  
by Watchdog  
IR Compensation Voltage Clamp  
above VREG (REG06[7:2])  
Offset: 0mV  
Range: 0-224mV  
Default: 0mV (000)  
by Softwareby  
by Watchdog  
by Softwareby  
by Watchdog  
by Softwareby Thermal Regulation Threshold  
by Watchdog  
00 – 60°C  
01 – 80°C  
10 – 100°C  
11 – 120°C (default)  
by Softwareby  
by Watchdog  
0
TREG[0]  
R/W  
42  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.4.10 REG09  
35. REG09  
7
0
6
1
5
0
4
0
3
0
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
17. REG09  
Bit  
Field  
Type  
Reset  
Description  
Force Start Input Current Optimizer (ICO)  
0 – Do not force ICO (default)  
1 – Force ICO  
by Softwareby  
by Watchdog  
7
FORCE_ICO  
R/W  
Note:  
This bit is can only be set only and always returns to 0 after ICO starts  
Safety Timer Setting during DPM or Thermal Regulation  
0 – Safety timer not slowed by 2X during input DPM or thermal  
regulation  
1 – Safety timer slowed by 2X during input DPM or thermal regulation  
(default)  
by Softwareby  
by Watchdog  
6
TMR2X_EN  
R/W  
Force BATFET off to enable ship mode  
5
4
BATFET_DIS  
R/W  
R/W  
by Softwareby 0 – Allow BATFET turn on (default)  
1 – Force BATFET off  
JEITA High Temperature Voltage Setting  
by Software  
0 – Set Charge Voltage to VREG-200mV during JEITA hig temperature  
JEITA_VSET (45C-60C)  
by Watchdog  
(default)  
1 – Set Charge Voltage to VREG during JEITA high temperature  
BATFET turn off delay control  
3
2
BATFET_DLY  
R/W  
R/W  
by Softwareby 0 – BATFET turn off immediately when BATFET_DIS bit is set (default)  
1 – BATFET turn off delay by tSM_DLY when BATFET_DIS bit is set  
BATFET full system reset enable  
by Softwareby 0 – Disable BATFET full system reset  
1 – Enable BATFET full system reset (default)  
BATFET_RST_EN  
Current pulse control voltage up enable  
0 – Disable (default)  
by Softwareby 1 – Enable  
1
0
PUMPX_UP  
PUMPX_DN  
R/W  
R/W  
by Watchdog  
Note:  
This bit is can only be set when EN_PUMPX bit is set and returns to 0  
after current pulse control sequence is completed  
Current pulse control voltage down enable  
0 – Disable (default)  
by Softwareby 1 – Enable  
by Watchdog  
Note:  
This bit is can only be set when EN_PUMPX bit is set and returns to 0  
after current pulse control sequence is completed  
版权 © 2016–2018, Texas Instruments Incorporated  
43  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.4.11 REG0A  
36. REG0A  
7
0
6
1
5
1
4
1
3
0
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
18. REG0A  
Bit  
Field  
Type  
Reset  
Description  
by Softwareby  
by Watchdog  
7
BOOSTV[3]  
R/W  
512mV  
Boost Mode Voltage Regulation  
Offset: 4.55V  
Range: 4.55V – 5.51V  
Default:4.998V(0111)  
by Softwareby  
by Watchdog  
6
5
4
BOOSTV[2]  
BOOSTV[1]  
BOOSTV[0]  
R/W  
R/W  
R/W  
256mV  
by Softwareby 128mV  
by Softwareby  
64mV  
by Watchdog  
PFM mode allowed in boost mode  
0 – Allow PFM in boost mode (default)  
3
PFM_OTG_DIS  
R/W  
by Software  
1 – Disable PFM in boost mode  
by Software  
by Watchdog  
000: 0.5A  
001: 0.75A  
010: 1.2A  
2
1
BOOST_LIM[2]  
BOOST_LIM[1]  
R/W  
R/W  
by Software  
by Watchdog  
011: 1.4A  
Boost Mode Current Limit  
Default: 1.4A (011)  
100: 1.65A  
101: 1.875A  
110: 2.15A  
111: 2.45A  
by Software  
by Watchdog  
0
BOOST_LIM[0]  
R/W  
44  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.4.12 REG0B  
37. REG0B  
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
19. REG0B  
Bit  
7
Field  
Type  
R
Reset  
N/A  
Description  
VBUS_STAT[2]  
VBUS_STAT[1]  
VBUS Status register  
000: No Input 001: USB Host SDP  
010: USB CDP (1.5A)  
6
R
N/A  
011: USB DCP (3.25A)  
100: Adjustable High Voltage DCP (MaxCharge) (1.5A)  
101: Unknown Adapter (500mA)  
5
VBUS_STAT[0]  
R
N/A  
110: Non-Standard Adapter (1A/2A/2.1A/2.4A)  
111: OTG Note: Software current limit is reported in IINLIM register  
4
3
CHRG_STAT[1]  
CHRG_STAT[0]  
R
R
N/A  
N/A  
Charging Status  
00 – Not Charging  
01 – Pre-charge ( < VBATLOWV  
10 – Fast Charging  
)
11 – Charge Termination Done  
Power Good Status  
0 – Not Power Good  
1 – Power Good  
2
1
0
PG_STAT  
Reserved  
R
R
N/A  
N/A  
Reserved: Always reads 0  
VSYS Regulation Status  
0 – Not in VSYSMIN regulation (BAT > VSYSMIN)  
1 – In VSYSMIN regulation (BAT < VSYSMIN)  
VSYS_STAT  
版权 © 2016–2018, Texas Instruments Incorporated  
45  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.4.13 REG0C  
38. REG0C  
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
20. REG0C  
Bit  
Field  
Type  
Reset  
Description  
Watchdog Fault Status  
Status 0 – Normal  
7
WATCHDOG_FAULT  
R
N/A  
1- Watchdog timer expiration  
Boost Mode Fault Status  
0 – Normal  
1 – VBUS overloaded in OTG, or VBUS OVP, or battery is too low in  
boost mode  
6
5
BOOST_FAULT  
CHRG_FAULT[1]  
R
R
N/A  
N/A  
Charge Fault Status  
00 – Normal  
01 – Input fault (VBUS > VACOV or VBAT < VBUS < VVBUSMIN(typical 3.8V)  
)
4
CHRG_FAULT[0]  
R
N/A  
10 - Thermal shutdown  
11 – Charge Safety Timer Expiration  
Battery Fault Status  
0 – Normal  
3
BAT_FAULT  
R
N/A  
1 – BATOVP (VBAT > VBATOVP  
)
2
1
NTC_FAULT[2]  
NTC_FAULT[1]  
R
R
N/A  
N/A  
NTC Fault Status  
Buck Mode:  
000 – Normal  
010 – TS Warm  
011 – TS Cool  
101 – TS Cold  
110 – TS Hot  
Boost Mode:  
0
NTC_FAULT[0]  
R
N/A  
000 – Normal  
101 – TS Cold  
110 – TS Hot  
46  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.4.14 REG0D  
39. REG0D  
7
0
6
0
5
0
4
1
3
0
2
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
21. REG0D  
Bit  
Field  
Type  
Reset  
Description  
VINDPM Threshold Setting Method  
0 – Run Relative VINDPM Threshold (default)  
1 – Run Absolute VINDPM Threshold  
7
FORCE_VINDPM  
R/W  
by Softwareby  
Note: Register is reset to default value when input source is plugged-in  
6
5
4
3
2
1
VINDPM[6]  
VINDPM[5]  
VINDPM[4]  
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
by Softwareby 6400mV  
by Softwareby 3200mV  
by Softwareby 1600mV  
by Softwareby 800mV  
by Softwareby 400mV  
by Softwareby 200mV  
Absolute VINDPM Threshold  
Offset: 2.6V  
Range: 3.9V (0001101) – 15.3V (1111111)  
Default: 4.4V (0010010)  
Note:  
Value < 0001101 is clamped to 3.9V (0001101)  
Register is read only when FORCE_VINDPM=0 and can  
be written by internal control based on relative VINDPM  
threshold setting  
Register can be read/write when FORCE_VINDPM = 1  
Note: Register is reset to default value when input source  
is plugged-in  
0
VINDPM[0]  
R/W  
by Softwareby 100mV  
8.4.15 REG0E  
40. REG0E  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
22. REG0E  
Bit  
Field  
Type  
Reset  
Description  
Thermal Regulation Status  
0 – Normal  
7
THERM_STAT  
R
N/A  
1 – In Thermal Regulation  
6
5
4
3
2
1
0
BATV[6]  
BATV[5]  
BATV[4]  
BATV[3]  
BATV[2]  
BATV[1]  
BATV[0]  
R
R
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1280mV  
640mV  
320mV  
160mV  
80mV  
40mV  
20mV  
ADC conversion of Battery Voltage (VBAT  
Offset: 2.304V  
Range: 2.304V (0000000) – 4.848V (1111111)  
Default: 2.304V (0000000)  
)
版权 © 2016–2018, Texas Instruments Incorporated  
47  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.4.16 REG0F  
41. REG0F  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
23. REG0F  
Bit  
7
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Description  
Reserved  
SYSV[6]  
SYSV[5]  
SYSV[4]  
SYSV[3]  
SYSV[2]  
SYSV[1]  
SYSV[0]  
Reserved: Always reads 0  
1280mV  
6
R
5
R
640mV  
4
R
320mV  
160mV  
80mV  
40mV  
20mV  
ADDC conversion of System Voltage (VSYS  
Offset: 2.304V  
Range: 2.304V (0000000) – 4.848V (1111111)  
Default: 2.304V (0000000)  
)
3
R
2
R
1
R
0
R
8.4.17 REG10  
42. REG10  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
24. REG10  
Bit  
7
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Description  
Reserved  
TSPCT[6]  
TSPCT[5]  
TSPCT[4]  
TSPCT[3]  
TSPCT[2]  
TSPCT[1]  
TSPCT[0]  
Reserved: Always reads 0  
29.76%  
6
R
5
R
14.88%  
4
R
7.44%  
3.72%  
1.86%  
0.93%  
0.465%  
ADC conversion of TS Voltage (TS) as percentage of REGN  
Offset: 21%  
Range 21% (0000000) – 80% (1111111)  
Default: 21% (0000000)  
3
R
2
R
1
R
0
R
48  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
8.4.18 REG11  
43. REG11  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
25. REG11  
Bit  
Field  
Type  
Reset  
Description  
VBUS Good Status  
0 – Not VBUS attached  
1 – VBUS Attached  
7
VBUS_GD  
R
N/A  
6
5
4
3
2
1
0
VBUSV[6]  
VBUSV[5]  
VBUSV[4]  
VBUSV[3]  
VBUSV[2]  
VBUSV[1]  
VBUSV[0]  
R
R
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6400mV  
3200mV  
1600mV  
800mV  
400mV  
200mV  
100mV  
ADC conversion of VBUS voltage (VBUS  
Offset: 2.6V  
Range 2.6V (0000000) – 15.3V (1111111)  
Default: 2.6V (0000000)  
)
8.4.19 REG12  
44. REG12  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
26. REG12  
Bit  
7
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Description  
Always reads 0  
3200mA  
Unused  
6
ICHGR[6]  
ICHGR[5]  
ICHGR[4]  
ICHGR[3]  
ICHGR[2]  
ICHGR[1]  
ICHGR[0]  
R
5
R
1600mA  
800mA  
400mA  
200mA  
100mA  
50mA  
ADC conversion of Charge Current (IBAT) when VBAT  
VBATSHORT  
Offset: 0mA  
Range 0mA (0000000) – 6350mA (1111111)  
Default: 0mA (0000000)  
>
4
R
3
R
2
R
Note:  
This register returns 0000000 for VBAT < VBATSHORT  
1
R
0
R
版权 © 2016–2018, Texas Instruments Incorporated  
49  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
8.4.20 REG13  
45. REG13  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
27. REG13  
Bit  
Field  
Type  
Reset  
Description  
VINDPM Status  
0 – Not in VINDPM  
1 – VINDPM  
7
VDPM_STAT  
R
N/A  
IINDPM Status  
0 – Not in IINDPM  
1 – IINDPM  
6
IDPM_STAT  
R
N/A  
5
4
3
2
1
0
IDPM_LIM[5]  
IDPM_LIM[4]  
IDPM_LIM[3]  
IDPM_LIM[2]  
IDPM_LIM[1]  
IDPM_LIM[0]  
R
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1600mA  
800mA  
Input Current Limit in effect while Input Current Optimizer  
(ICO) is enabled  
Offset: 100mA (default)  
400mA  
200mA  
100mA  
50mA  
Range 100mA (0000000) – 3.25mA (1111111)  
8.4.21 REG14  
46. REG14  
7
0
6
0
5
0
4
1
3
1
2
1
1
1
0
1
R/W  
R/W  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
28. REG14  
Bit  
Field  
Type  
Reset  
Description  
Register Reset  
0 – Keep current register setting (default)  
7
REG_RST  
R/W  
N/A  
1 – Reset to default register value and reset safety timer  
Note:  
Reset to 0 after register reset is completed  
Input Current Optimizer (ICO) Status  
0 – Optimization is in progress  
6
ICO_OPTIMIZED  
R
N/A  
1 – Maximum Input Current Detected  
5
4
3
PN[2]  
PN[1]  
PN[0]  
R
R
R
N/A  
N/A  
N/A  
Device Configuration  
011: bq25890H  
Temperature Profile  
1- JEITA  
2
TS_PROFILE  
R
N/A  
1
0
DEV_REV[1]  
DEV_REV[0]  
R
R
N/A  
N/A  
Device Revision: 11  
50  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
A typical application consists of the device configured as an I2C controlled power path management device and a  
single cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of smartphones and other  
portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and BATFET (Q4) between the system and battery. The device also  
integrates a bootstrap diode for the high-side gate drive.  
9.2 Typical Application  
Input  
OTG  
3.9Vt14V at 3A  
5V at 2.4A  
VBUS  
PMID  
1H  
SYS 3.5Vt4.5V  
10F 10F  
1F  
C1  
SW  
47nF  
USB  
47nF  
BTST  
REGN  
Optional  
DSEL  
D+  
4.7F  
D-  
1F  
PGND  
SYS  
260Q  
SYS  
ILIM  
Ichg = 5A  
10F  
BAT  
VREF  
QON  
2.2YQ  
STAT  
SDA  
10YQ 10YQ 10YQ  
Host  
Optional  
REGN  
SCL  
INT  
OTG  
5.23YQ  
TS  
/CE  
30.1YQ  
10YQ  
bq25890H  
Copyright © 2016, Texas Instruments Incorporated  
Recommended C1 = 8.2 μF (OTG 1.8 A) or 20 μF (OTG 2.4 A)  
47. bq25890 with D+/D- Interface and USB On-The-Go (OTG)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in 29.  
29. Design Parameter  
PARAMETERS  
Input voltage range  
Input current limit  
VALUES  
3.9 V to 14 V  
1.5 A  
Fast charge current  
Output voltage  
5000 mA  
4.352 V  
VREF system pullup voltage  
1.8 V - 3.3 V  
版权 © 2016–2018, Texas Instruments Incorporated  
51  
 
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The device has 1.5 MHz switching frequency to allow the use of small inductor and capacitor values. The  
Inductor saturation current should be higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
I
³ I  
+ (1/2) I  
BAT  
CHG  
RIPPLE  
(5)  
The inductor ripple current depends on input voltage (VBUS), duty cycle (D = VBAT/VVBUS), switching frequency (fs)  
and inductance (L):  
V
x D x (1-D)  
BUS  
I
=
RIPPLE  
f s x L  
(6)  
The maximum inductor ripple current happens with D = 0.5 or close to 0.5. Usually inductor ripple is designed in  
the range of (20–40%) maximum charging current as a trade-off between inductor size and efficiency for a  
practical design.  
9.2.2.2 Buck Input Capacitor  
Input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst case  
RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not operate at  
50% duty cycle, then the worst case capacitor RMS current IPMID occurs where the duty cycle is closest to 50%  
and can be estimated by 公式 7:  
I
= I x D x (1 - D)  
CHG  
PMID  
(7)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed to the drain of the high side MOSFET and source of the low side MOSFET as close as possible. Voltage  
rating of the capacitor must be higher than normal input voltage level. 25 V rating or higher capacitor is preferred  
for up to 14-V input voltage. 8.2-μF capacitance is suggested for typical of 3 A – 5 A charging current.  
52  
版权 © 2016–2018, Texas Instruments Incorporated  
 
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
9.2.2.3 System Output Capacitor  
Output capacitor also should have enough ripple current rating to absorb output switching ripple current. The  
output capacitor RMS current ICOUT is given:  
I
RIPPLE  
I
=
» 0.29 x I  
RIPPLE  
CSYS  
2 x  
3
(8)  
The output capacitor voltage ripple can be calculated as follows:  
æ
ö
÷
÷
÷
V
V
SYS  
SYS  
ç
DV  
=
ç1-  
O
ç
ç
è
2
÷
ø
V
BUS  
8 LC  
SYS  
f s  
(9)  
At certain input/output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC. The charger device has internal loop compensator. To get good loop stability, 1-µH and minimum  
of 20-µF output capacitor is recommended. The preferred ceramic capacitor is 6V or higher rating, X7R or X5R.  
版权 © 2016–2018, Texas Instruments Incorporated  
53  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
9.2.3 Application Curves  
VBAT = 3.2 V  
48. Power Up with Charge Disabled  
49. Power Up with Charge Enabled  
VBUS = 5 V  
VBUS = 12 V  
50. Charge Enable  
51. Charge Disable  
VBUS = 5 V  
IIN = 3 A  
Charge Disable  
VBUS = 9 V  
ICHG = 2 A  
IIN = 1.5 A  
VBAT = 3.8 V  
ISYS = 0 A - 4 A  
52. Input Current DPM Response without Battery  
53. Load Transient During Supplement Mode  
54  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
VBUS = 12 V  
VBAT = 3.8 V  
ICHG = 3 A  
VBUS = 9V  
No Battery  
ISYS = 10 mA,  
Charge Disable  
54. PWM Switching Waveform  
55. PFM Switching Waveform  
VBAT = 3.8 V  
ILOAD = 1 A  
VBAT = 3.8 V  
ILOAD = 0 A - 1 A  
56. Boost Mode Switching Waveform  
57. Boost Mode Load Transient  
版权 © 2016–2018, Texas Instruments Incorporated  
55  
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
9.3 System Examples  
Input  
OTG  
3.9Vœ14V at 3A  
5V at 2.4A  
VBUS  
PMID  
1H  
SYS 3.5Vœ4.5V  
1F  
C1  
SW  
47nF  
10F  
10F  
USB  
47nF  
BTST  
Optional  
DSEL  
D+  
REGN  
4.7F  
D-  
1F  
PGND  
SYS  
260  
ILIM  
SYS  
Ichg=5A  
10uF  
BAT  
VREF  
QON  
2.2K  
STAT  
SDA  
10KΩ 10KΩ 10KΩ  
Optiona  
l
Host  
REGN  
SCL  
INT  
5.23K  
TS  
OTG  
/CE  
10KΩ  
bq25890H  
Copyright © 2016, Texas Instruments Incorporated  
Recommended C1 = 8.2 μF (OTG 1.8 A) or 20 μF (OTG 2.4 A)  
58. bq25890H with D+/D- Interface, USB On-The-Go (OTG) and no Thermistor Connections  
56  
版权 © 2016–2018, Texas Instruments Incorporated  
BQ25890H  
www.ti.com.cn  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
10 Power Supply Recommendations  
In order to provide an output voltage on SYS, the device requires a power supply between 3.9 V and 14 V input  
with at least 100-mA current rating connected to VBUS or a single-cell Li-Ion battery with voltage > VBATUVLO  
connected to BAT. The source current rating needs to be at least 3 A in order for the buck converter of the  
charger to provide maximum output power to SYS.  
11 Layout  
11.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loop (see 59) is important to prevent electrical and  
magnetic field radiation and high frequency resonant problems. Here is a PCB layout priority list for proper  
layout. Layout PCB according to this specific order is essential.  
1. Place input capacitor as close as possible to PMID pin and GND pin connections and use shortest copper  
trace connection or GND plane.  
2. Place inductor input terminal to SW pin as close as possible. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not  
use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other  
trace or plane.  
3. Put output capacitor near to the inductor and the IC. Ground connections need to be tied to the IC ground  
with a short copper trace connection or GND plane.  
4. Route analog ground separately from power ground. Connect analog ground and connect power ground  
separately. Connect analog ground and power ground together using power pad as the single ground  
connection point. Or using a 0Ω resistor to tie analog ground to power ground.  
5. Use single ground connection to tie charger power ground to charger analog ground. Just beneath the IC.  
Use ground copper pour but avoid power pins to reduce inductive and capacitive noise coupling.  
6. Decoupling capacitors should be placed next to the IC pins and make trace connection as short as possible.  
7. It is critical that the exposed power pad on the backside of the IC package be soldered to the PCB ground.  
Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on the  
other layers.  
8. The via size and number should be enough for a given current path.  
See the EVM design for the recommended component placement with trace and via locations. For the VQFN  
information, refer to SCBA017 and SLUA271.  
11.2 Layout Example  
59. High Frequency Current Path  
版权 © 2016–2018, Texas Instruments Incorporated  
57  
 
BQ25890H  
ZHCSI54A SEPTEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
《四方扁平无引线逻辑封装》应用报告 SCBA017  
QFN/SON PCB 连接》应用报告 SLUA271  
《半导体和 IC 封装热指标》应用报告 SPRA953  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
58  
版权 © 2016–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25890HRTWR  
BQ25890HRTWT  
ACTIVE  
WQFN  
WQFN  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
BQ  
25890H  
ACTIVE  
RTW  
NIPDAU  
BQ  
25890H  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25890HRTWR  
BQ25890HRTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25890HRTWR  
BQ25890HRTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTW 24  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224801/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

BQ25890HRTWT

具有 NVDC 电源路径和 HVDCP 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25890RTWR

采用 Maxcharge™ 技术、支持高输入且具有 D+/D- 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25890RTWT

采用 Maxcharge™ 技术、支持高输入且具有 D+/D- 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25890_15

bq25890/2 I2C Controlled Single Cell 5-A Fast Charger with MaxChargeTM Technology for High Input Voltage and Adjustable Voltage USB On-the-Go Boost Mode
TI

BQ25892

具有 NVDC 电源路径和 PSEL 的 I2C 单节 5A 降压电池充电器
TI

BQ25892RTWR

具有 NVDC 电源路径和 PSEL 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25892RTWT

具有 NVDC 电源路径和 PSEL 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25892_15

bq25890/2 I2C Controlled Single Cell 5-A Fast Charger with MaxChargeTM Technology for High Input Voltage and Adjustable Voltage USB On-the-Go Boost Mode
TI

BQ25895

支持高输入电压和 3.1A 升压、支持 HVDCP 功能的 I2C 单节 5A 降压电池充电器
TI

BQ25895M

bq25895M I2C Controlled Single Cell Fast Charger with MaxChargeTM Technology for High Input Voltage
TI

BQ25895MRTWR

bq25895M I2C Controlled Single Cell Fast Charger with MaxChargeTM Technology for High Input Voltage
TI

BQ25895MRTWT

bq25895M I2C Controlled Single Cell Fast Charger with MaxChargeTM Technology for High Input Voltage
TI