BQ27427YZFR [TI]

具有预编程化学成分和集成感应电阻器的单芯电池电量监测计 | YZF | 9 | -40 to 85;
BQ27427YZFR
型号: BQ27427YZFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有预编程化学成分和集成感应电阻器的单芯电池电量监测计 | YZF | 9 | -40 to 85

电池 电阻器
文件: 总24页 (文件大小:1288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ27427  
ZHCSRB7 DECEMBER 2022  
BQ27427 具有集成检测电阻的系统Impedance Track™ 电量监测计  
1 特性  
3 说明  
• 单节锂离子电池电量监测计  
– 驻留在系统主板上  
德州仪器 (TI) BQ27427 电池电量监测计是一款单节电  
池电量监测计只需进行少量的用户配置和系统微控制  
器固件开发工作即可快速启动系统。  
– 支持嵌入式或可拆除电池  
– 由具有集LDO 的电池直接供电  
– 集成低阻值检测电(7m)  
• 超低功耗正常模式下50µA睡眠模式下为  
9µA  
通过预编程三种化学配置文件最大限度减少用户配  
并帮助客户管理项目中不同电池化学成分的库存。  
BQ27427 电池电量监测计在睡眠模式下具有超低功  
有助于延长电池运行时间。可配置中断有助于节省  
系统功耗释放主机使其停止继续轮询。外部热敏电阻  
为精确温度感测提供支持。  
• 基于获得专利Impedance Track技术的电池电  
量监测  
4.2V4.35V 4.4V 电池提供三种可选的预  
编程配置文件  
– 借助平滑滤波器报告剩余电量和荷电状(SOC)  
– 针对电池老化、自放电、温度和速率变化自动调  
BQ27427 电池电量监测计使用已获专利的 Impedance  
Track™ 算法来进行电量监测并提供诸如剩余电量  
(mAh)、荷电状(%) 和电池电(mV) 等信息。  
使用 BQ27427 电量监测计进行电池电量监测时只需  
连接至可拆卸电池包或嵌入式电池电路的 PACK+ (P+)  
PACK- (P-)微型 9 1.62mm x 1.58mm,  
0.5mm 间距 NanoFree芯片级封装 (DSBGA) 非常适  
合空间受限的应用。  
– 估计电池健康状况老化)  
• 微控制器外设接口支持:  
400kHz I2C 串行接口  
– 可配SOC 中断或  
电池低电量数字输出警告  
– 内部温度传感器或主机报告的温度或外部热敏电  
器件信息  
封装尺寸标称值)  
器件型号  
BQ27427  
封装  
YZF (9)(1)  
1.62mm x 1.58mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
智能手机、功能型手机平板电脑  
可穿戴设备  
楼宇自动化  
便携式医疗/工业手持终端  
便携式音频设备  
游戏  
SRX  
SCL  
VSYS  
2
I C  
Bus  
Coulomb  
Counter  
Integrated  
Sense  
SDA  
Resistor  
CPU  
Battery Pack  
GPOUT  
BIN  
PACKP  
BAT  
ADC  
Li-Ion  
Cell  
T
Protection  
IC  
VDD  
VSS  
1 µF  
PACKN  
2.2 µF  
1.8 V  
LDO  
NFET NFET  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEB5  
 
 
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
6.13 SHUTDOWN and WAKE-UP Timing........................ 9  
6.14 Typical Characteristics..............................................9  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................12  
8 Application and Implementation..................................13  
8.1 Application Information............................................. 13  
8.2 Typical Applications.................................................. 13  
9 Power Supply Recommendation..................................15  
9.1 Power Supply Decoupling.........................................15  
10 Layout...........................................................................16  
10.1 Layout Guidelines................................................... 16  
10.2 Layout Example...................................................... 16  
11 Device and Documentation Support..........................17  
11.1 Documentation Support.......................................... 17  
11.2 Trademarks............................................................. 17  
11.3 Electrostatic Discharge Caution..............................17  
11.4 术语表..................................................................... 17  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Supply Current............................................................6  
6.6 Digital Input and Output DC Characteristics............... 6  
6.7 LDO Regulator, Wake-up, and Auto-Shutdown  
DC Characteristics........................................................ 6  
6.8 LDO Regulator, Wake-up, and Auto-Shutdown  
AC Characteristics.........................................................6  
6.9 ADC (Temperature and Cell Measurement)  
Characteristics...............................................................7  
6.10 Integrating ADC (Coulomb Counter)  
Characteristics ..............................................................7  
6.11 Integrated Sense Resistor Characteristics,  
Information.................................................................... 17  
-40°C to 85 °C............................................................... 7  
6.12 I2C-Compatible Interface Communication  
Timing Characteristics...................................................8  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ27427  
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
3
2
1
C
B
A
5-1. Top View  
1
2
3
C
B
A
5-2. Bottom View  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NUMBER  
LDO regulator input and battery voltage measurement input. Kelvin sense connect to positive  
battery terminal (PACKP). Connect a capacitor (1 µF) between BAT and VSS. Place the capacitor  
close to the gauge.  
BAT  
C3  
PI, AI  
Battery insertion detection input. If OpConfig [BI_PU_EN] = 1 (default), a logic low on the pin is  
detected as battery insertion. For a removable pack, the BIN pin can be connected to VSS  
through a pulldown resistor on the pack, typically the 10-kΩthermistor; the system board should  
use a 1.8-MΩpullup resistor to VDD to ensure the BIN pin is high when a battery is removed. If  
the battery is embedded in the system, it is recommended to leave [BI_PU_EN] = 1 and use a  
10-kΩpulldown resistor from BIN to VSS. If [BI_PU_EN] = 0, then the host must inform the  
gauge of battery insertion and removal with the BAT_INSERT and BAT_REMOVE  
subcommands.  
BIN  
B1  
DI  
A 10-kΩpulldown resistor should be placed between BIN and VSS, even if this pin is unused.  
NOTE: The BIN pin must not be shorted directly to VCC or VSS and any pullup resistor on the BIN  
pin must be connected only to VDD and not an external voltage rail. If an external thermistor is  
used for temperature input, the thermistor should be connected between this pin and VSS  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ27427  
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NUMBER  
This open-drain output can be configured to indicate BAT_LOW when the OpConfig  
[BATLOWEN] bit is set. By default [BATLOWEN] is cleared and this pin performs an interrupt  
function (SOC_INT) by pulsing for specific events, such as a change in state-of-charge. Signal  
polarity for these functions is controlled by the [GPIOPOL] configuration bit. This pin should not  
be left floating, even if unused; therefore, a 10-kΩpullup resistor is recommended. If the device  
is in SHUTDOWN mode, toggling GPOUT will make the gauge exit SHUTDOWN.  
GPOUT  
A1  
DO  
It is recommended to connect GPOUT to a GPIO of the host MCU so that in case of any  
inadvertent shutdown condition, the gauge can be commanded to come out of SHUTDOWN.  
SCL  
SDA  
A3  
A2  
DIO  
DIO  
Peripheral I2C serial bus for communication with system (primary). Open-drain pins. Use with  
external 10-kpullup resistors (typical) for each pin. If the external pullup resistors will be  
disconnected from these pins during normal operation, recommend using external 1-MΩ  
pulldown resistors to VSS at each pin to avoid floating inputs.  
Integrated high-side sense resistor and coulomb counter input, connected between battery pack  
and system power rail VSYS.  
SRX  
C2  
AI  
1.8-V regulator output. Decouple with 2.2-μF ceramic capacitor to VSS. This pin is not intended  
to provide power for other devices in the system.  
VDD  
VSS  
B3  
PO  
PI  
B2, C1  
Ground pin  
(1) IO = Digital input-output, AI = Analog input, P = Power connection  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ27427  
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
BAT 0.3  
0.3  
0.3  
0.3  
40  
MAX  
UNIT  
V
VBAT  
VSRX  
VDD  
BAT pin input voltage range  
6
SRX pin input voltage range  
VBAT + 0.3  
V
V
VDD pin supply voltage range (LDO output)  
Open-drain IO pins (SDA, SCL)  
Push-pull IO pins (BIN)  
2
6
V
VIOD  
VIOPP  
TA  
V
VDD + 0.3  
85  
V
Operating free-air temperature range  
°C  
°C  
Storage temperature, Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1500  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification ANSI/ESDA/  
JEDEC JS-002(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
TA = 30°C and VREGIN = VBAT = 3.6 V (unless otherwise noted)  
MIN NOM  
MAX  
UNIT  
(1)  
CBAT  
External input capacitor for internal Nominal capacitor values specified. Recommend a  
0.1  
2.2  
μF  
LDO between BAT and VSS  
5% ceramic X5R-type capacitor located close to  
the device.  
(1)  
CLDO18  
External output capacitor for internal  
LDO between VDD and VSS  
μF  
(1)  
VPU  
External pullup voltage for open-  
drain pins (SDA, SCL, GPOUT)  
1.62  
3.6  
V
(1) Specified by design. Not production tested.  
6.4 Thermal Information  
BQ27427  
THERMAL METRIC(1)  
YZF (DSBGA)  
9 PINS  
107.8  
0.7  
UNIT  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
60.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.5  
60.4  
ψJB  
RθJCbot  
NA  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics Application Report, SPRA953.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ27427  
 
 
 
 
 
 
 
 
 
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
6.5 Supply Current  
TA = 30°C and VREGIN = VBAT = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
50  
9
MAX  
UNIT  
μA  
ILOAD > Sleep Current (2)  
ILOAD < Sleep Current (2)  
(1)  
ICC  
NORMAL mode current  
SLEEP mode current  
(1)  
ISLP  
μA  
Fuel gauge in host commanded  
SHUTDOWN mode.  
(1)  
ISD  
SHUTDOWN mode current  
0.6  
μA  
(LDO regulator output disabled)  
(1) Specified by design. Not production tested.  
(2) Wake Comparator Disabled.  
6.6 Digital Input and Output DC Characteristics  
TA = 40°C to 85°C, typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)(Force Note1)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
VPU × 0.7  
1.4  
TYP  
MAX  
UNIT  
V
VIH(OD)  
VIH(PP)  
VIL  
Input voltage, high(2)  
External pullup resistor to VPU  
Input voltage, high (3)  
Input voltage, low(2) (3)  
Output voltage, low(2)  
Output source current, high(2)  
Output sink current, low(2)  
Input capacitance(2) (3)  
V
0.6  
0.6  
0.5  
3  
5
V
VOL  
V
IOH  
mA  
mA  
pF  
IOL(OD)  
(1)  
CIN  
Input Leakage Current (SCL, SDA,  
BIN, GPOUT)  
Ilkg  
1
μA  
(1) Specified by design. Not production tested.  
(2) Open Drain pins: (SCL, SDA, GPOUT)  
(3) Push-Pull pin: (BIN)  
6.7 LDO Regulator, Wake-up, and Auto-Shutdown DC Characteristics  
TA = 40°C to 85°C, typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)(Force Note1)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VBAT  
VDD  
BAT pin regulator input  
Regulator output voltage  
2.45  
4.5  
1.85  
2
V
VBAT undervoltage lock-out  
LDO wake-up rising threshold  
UVLOIT+  
UVLOIT–  
V
V
V
VBAT undervoltage lock-out  
LDO auto-shutdown falling threshold  
1.95  
GPOUT (input) LDO Wake-up rising LDO Wake-up from SHUTDOWN  
edge threshold(2)  
mode  
(1)  
VWU+  
1.2  
(1) Specified by design. Not production tested.  
(2) If the device is commanded to SHUTDOWN via I2C with VBAT > UVLOIT+, a wake-up rising edge trigger is required on GPOUT.  
6.8 LDO Regulator, Wake-up, and Auto-Shutdown AC Characteristics  
TA = 40°C to 85°C, typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Time delay from SHUTDOWN  
command to LDO output disable.  
(1)  
(1)  
tSHDN  
tSHUP  
SHUTDOWN entry time  
250  
ms  
Minimum low time of GPOUT (input)  
in SHUTDOWN before WAKEUP  
SHUTDOWN GPOUT low time  
Initial VDD output delay  
10  
μs  
(1)  
tVDD  
13  
ms  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ27427  
 
 
 
 
 
 
 
 
 
 
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
6.8 LDO Regulator, Wake-up, and Auto-Shutdown AC Characteristics (continued)  
TA = 40°C to 85°C, typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Time delay from rising edge of  
GPOUT (input) to nominal VDD  
output  
(1)  
tWUVDD  
Wake-up VDD output delay  
8
ms  
Time delay from rising edge of  
REGIN to the Active state. Includes  
firmware initialization time  
tPUCD  
Power-up communication delay  
250  
ms  
(1) Specified by design. Not production tested.  
6.9 ADC (Temperature and Cell Measurement) Characteristics  
TA = 40°C to 85°C; typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted) (Force Note1)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIN(BAT)  
BAT pin voltage measurement range Voltage divider enabled  
2.45  
4.5  
tADC_CONV Conversion time  
Effective resolution  
125  
15  
ms  
bits  
(1) Specified by design. Not tested in production.  
6.10 Integrating ADC (Coulomb Counter) Characteristics  
TA = 40°C to 85°C; typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)(Force Note1)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSR  
Input voltage range from BAT to SRX  
pins  
BAT ± 25  
mV  
tSR_CONV  
Conversion time  
Single conversion  
Single conversion  
1
s
Effective Resolution  
16  
bits  
(1) Specified by design. Not tested in production.  
6.11 Integrated Sense Resistor Characteristics, -40°C to 85 °C  
TA = 40°C to 85°C; typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted) (Force Note1)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(2)  
SRXRES  
Resistance of Integrated Sense  
Resistor from SRX to VSS  
TA = 30°C  
7
mΩ  
(1)  
ISRX  
Recommended Sense Resistor  
input current.  
Long term RMS, average device  
utilization.  
2000  
mA  
Peak RMS current, 10% device  
3500  
2500  
4500  
3500  
utilization, 40°C to 70°C.(3)  
Peak RMS current, 10% device  
utilization, 40°C to 85°C.(3)  
mA  
mA  
Peak pulsed current, 250 ms max, 1%  
device utilization, 40°C to 70°C, (3)  
Peak pulsed current, 250 ms max, 1%  
device utilization,40°C to 85°C.(3)  
(1) Specified by design. Not tested in production.  
(2) Firmware compensation applied for temperature coefficient of resistor.  
(3) Device utilization is the long term usage profile at a specific condition compared to the average condition.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ27427  
 
 
 
 
 
 
 
 
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
6.12 I2C-Compatible Interface Communication Timing Characteristics  
TA = 40°C to 85°C; typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted) (Force Note1)(1)  
MIN  
NOM  
MAX  
UNIT  
Standard Mode (100 kHz)  
td(STA) Start to first falling edge of SCL  
tw(L)  
4
4.7  
4
μs  
μs  
μs  
μs  
ns  
SCL pulse duration (low)  
SCL pulse duration (high)  
Setup for repeated start  
Data setup time  
tw(H)  
tsu(STA)  
tsu(DAT)  
th(DAT)  
tsu(STOP)  
t(BUF)  
tf  
4.7  
250  
0
Host drives SDA  
Host drives SDA  
Data hold time  
ns  
Setup time for stop  
4
μs  
μs  
ns  
Bus free time between stop and start Includes Command Waiting Time  
SCL or SDA fall time(1)  
66  
300  
300  
100  
tr  
SCL or SDA rise time(1)  
ns  
fSCL  
Clock frequency(2)  
kHz  
Fast Mode (400 kHz)  
td(STA) Start to first falling edge of SCL  
tw(L)  
600  
1300  
600  
600  
100  
0
ns  
ns  
SCL pulse duration (low)  
SCL pulse duration (high)  
Setup for repeated start  
Data setup time  
tw(H)  
ns  
tsu(STA)  
tsu(DAT)  
th(DAT)  
tsu(STOP)  
t(BUF)  
tf  
ns  
Host drives SDA  
Host drives SDA  
ns  
Data hold time  
ns  
Setup time for stop  
600  
66  
ns  
Bus free time between stop and start Includes Command Waiting Time  
SCL or SDA fall time(1)  
μs  
ns  
300  
300  
400  
tr  
SCL or SDA rise time(1)  
ns  
fSCL  
Clock frequency(2)  
kHz  
(1) Specified by design. Not production tested.  
(2) If the clock frequency (fSCL) is > 100 kHz, use 1-byte write commands for proper operation. All other transactions types are supported  
at 400 kHz. (See 7.3.1.1 and 7.3.1.3.)  
t
t
t
t
t
f
t
r
(BUF)  
SU(STA)  
w(H)  
w(L)  
SCL  
SDA  
t
t
t
d(STA)  
su(STOP)  
f
t
r
t
t
su(DAT)  
h(DAT)  
REPEATED  
START  
STOP  
START  
6-1. I2C-Compatible Interface Timing Diagrams  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ27427  
 
 
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
6.13 SHUTDOWN and WAKE-UP Timing  
tPUCD  
tSHUP  
tPUCD  
tVDD  
tSHDN  
tWUVDD  
REGIN  
VDD  
SHUTDOWN_  
ENABLE  
I2C Bus  
SHUTDOWN  
*
GPOUT  
Off  
WAKE-UP  
Active  
SHUTDOWN  
WAKE-UP  
Active  
State  
*
GPOUT is configured as an input for wake-up signaling.  
6-2. SHUTDOWN and WAKE-UP Timing Diagram  
6.14 Typical Characteristics  
0
10%  
5%  
-0.05%  
-0.1%  
0
-0.15%  
-0.2%  
-5%  
-10%  
-15%  
-0.25%  
-40  
-20  
0
20 40  
Temperature (èC)  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
D001  
Temperature (èC)  
D002  
6-3. Voltage Accuracy Error  
6-4. Internal Temperature Accuracy Error  
0.7%  
0.6%  
0.5%  
0.4%  
0.3%  
0.2%  
0.1%  
0
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
D003  
6-5. Current Accuracy Error  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ27427  
 
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The BQ27427 fuel gauge accurately predicts the battery capacity and other operational characteristics of a  
single Li-based rechargeable cell. It can be interrogated by a system processor to provide cell information, such  
as state-of-charge (SOC).  
备注  
The following formatting conventions are used in this document:  
Commands: italics with parentheses() and no breaking spaces, for example, Control().  
Data flash: italics, bold, and breaking spaces, for example, Design Capacity.  
Register bits and flags: italics with brackets [ ], for example, [TDA]  
Data flash bits: italics, bold, and brackets [ ], for example, [LED1]  
Modes and states: ALL CAPITALS, for example, UNSEALED mode  
7.2 Functional Block Diagram  
SRX  
SCL  
SDA  
VSYS  
2
I C  
Coulomb  
Counter  
Integrated  
Sense  
Bus  
Resistor  
CPU  
Battery Pack  
GPOUT  
BIN  
PACKP  
T
BAT  
ADC  
Li-Ion  
Cell  
Protection  
IC  
VDD  
VSS  
1 µF  
2.2 µF  
1.8 V  
LDO  
PACKN  
NFET NFET  
7.3 Feature Description  
Information is accessed through a series of commands, called Standard Commands. Further capabilities are  
provided by the additional Extended Commands set. Both sets of commands, indicated by the general format  
Command), are used to read and write information contained within the control and status registers, as well as  
its data locations. Commands are sent from system to gauge using the I2C serial communications engine, and  
can be executed during application development, system manufacture, or end-equipment operation.  
The key to the high-accuracy gas gauging prediction is Texas Instruments proprietary Impedance Track™  
algorithm. This algorithm uses cell measurements, characteristics, and properties to create state-of-charge  
predictions that can achieve high accuracy across a wide variety of operating conditions and over the lifetime of  
the battery.  
The fuel gauge measures the charging and discharging of the battery by monitoring the voltage across an  
integrated small-value sense resistor. When a cell is attached to the fuel gauge, cell impedance is computed  
based on cell current, cell open-circuit voltage (OCV), and cell voltage under loading conditions.  
The fuel gauge uses an integrated temperature sensor for estimating cell temperature. Alternatively, the host  
processor can provide temperature data for the fuel gauge.  
For more details, see the BQ27427 Technical Reference Manual.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ27427  
 
 
 
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
7.3.1 Communications  
7.3.1.1 I2C Interface  
The fuel gauge supports the standard I2C read, incremental read, quick read, one-byte write, and incremental  
write functions. The 7-bit device address (ADDR) is the most significant 7 bits of the hex address and is fixed as  
1010101. The first 8 bits of the I2C protocol are, therefore, 0xAA or 0xAB for write or read, respectively.  
Host generated  
ADDR[6:0] 0 A  
Gauge generated  
S
CMD[7:0]  
(a) 1-byte write  
A
DATA [7:0]  
A
P
S
ADDR[6:0]  
1
A
DATA [7:0]  
(b) quick read  
DATA [7:0]  
N P  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
Sr  
ADDR[6:0]  
1
A
N P  
(c) 1- byte read  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
Sr  
ADDR[6:0]  
1
A
DATA [7:0]  
A
A
. . .  
DATA [7:0]  
A . . . A P  
N P  
(d) incremental read  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
DATA [7:0]  
DATA [7:0]  
(e) incremental write  
(S = Start, Sr = Repeated Start, A = Acknowledge, N = No Acknowledge , and P = Stop).  
7-1. I2C Interface  
The quick read returns data at the address indicated by the address pointer. The address pointer, a register  
internal to the I2C communication engine, increments whenever data is acknowledged by the fuel gauge or the  
I2C primary. Quick writesfunction in the same manner and are a convenient means of sending multiple  
bytes to consecutive command locations (such as two-byte commands that require two bytes of data).  
The following command sequences are not supported:  
7-2. Attempt To Write a Read-only Address (NACK After Data Sent By Primary)  
7-3. Attempt To Read an Address Above 0x6B (NACK Command)  
7.3.1.2 I2C Time Out  
The I2C engine releases SDA and SCL if the I2C bus is held low for two seconds. If the fuel gauge is holding the  
lines, releasing them frees them for the primary to drive the lines. If an external condition is holding either of the  
lines low, the I2C engine enters the low-power SLEEP mode.  
7.3.1.3 I2C Command Waiting Time  
To ensure proper operation at 400 kHz, a t(BUF) 66 μs bus-free waiting time must be inserted between all  
packets addressed to the fuel gauge. In addition, if the SCL clock frequency (fSCL) is > 100 kHz, use individual 1-  
byte write commands for proper data flow control. The following diagram shows the standard waiting time  
required between issuing the control subcommand the reading the status result. For read-write standard  
command, a minimum of 2 seconds is required to get the result updated. For read-only standard commands,  
there is no waiting time required, but the host must not issue any standard command more than two times per  
second. Otherwise, the gauge could result in a reset issue due to the expiration of the watchdog timer.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ27427  
 
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
S
S
S
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
CMD [7:0]  
CMD [7:0]  
CMD [7:0]  
A
A
A
DATA [7:0]  
DATA [7:0]  
ADDR [6:0]  
A
A
P
P
66ms  
66ms  
Sr  
1
A
DATA [7:0]  
A
DATA [7:0]  
N P  
66ms  
Waiting time inserted between two 1-byte write packets for a subcommand and reading results  
(required for 100 kHz < fSCL £ 400 kHz)  
S
S
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
CMD [7:0]  
CMD [7:0]  
A
A
DATA [7:0]  
ADDR [6:0]  
A
DATA [7:0]  
DATA [7:0]  
A
P
66ms  
DATA [7:0]  
Sr  
1
A
A
N P  
66ms  
Waiting time inserted between incremental 2-byte write packet for a subcommand and reading results  
(acceptable for fSCL £ 100 kHz)  
S
ADDR [6:0] 0 A  
DATA [7:0]  
CMD [7:0]  
DATA [7:0]  
A
Sr  
ADDR [6:0]  
66ms  
1
A
DATA [7:0]  
A
DATA [7:0]  
A
A
N P  
Waiting time inserted after incremental read  
7-4. I2C Command Waiting Time  
7.3.1.4 I2C Clock Stretching  
A clock stretch can occur during all modes of fuel gauge operation. In SLEEP mode, a short 100-µs clock  
stretch occurs on all I2C traffic as the device must wake-up to process the packet. In the other modes  
(INITIALIZATION, NORMAL), a 4-ms clock stretching period may occur within packets addressed for the fuel  
gauge as the I2C interface performs normal data flow control.  
7.4 Device Functional Modes  
To minimize power consumption, the fuel gauge has several power modes:  
INITIALIZATION  
NORMAL  
SLEEP  
and SHUTDOWN  
The fuel gauge passes automatically between these modes, depending upon the occurrence of specific events,  
though a system processor can initiate some of these modes directly. For more details, see the BQ27427  
Technical Reference Manual.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ27427  
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The BQ27427 fuel gauge is a microcontroller peripheral that provides system-side fuel gauging for single-cell Li-  
Ion batteries. Battery fuel gauging with the fuel gauge requires connections only to PACK+ and PACKfor a  
removable battery pack or embedded battery circuit. To allow for optimal performance in the end application,  
special considerations must be taken to ensure minimization of measurement error through proper printed circuit  
board (PCB) board layout. Such requirements are detailed in 8.2.1.  
8.2 Typical Applications  
The BQ27427 device can be used with a high-side current sense resistor (as shown in the schematic below).  
Ext VCC  
EXT_VCC  
GND  
TP4  
EXT_VCC  
J3  
VDD  
VDD  
J4  
R2  
1.8 Meg  
PGND  
EXT_VCC  
BIN  
JP1  
JP2  
EXT_VCC  
R3  
5.1k  
J2  
R4 R5  
10.0k 10.0k  
GPOUT  
GPOUT  
J1  
4
3
2
1
SDA  
SDA  
SCL  
SCL  
VSS  
U1  
VDD  
TP5  
C3  
B3  
BAT  
VDD  
VDD  
C1  
0.47 µF 2.2 µF  
PGND  
A3  
A2  
C1  
C2  
SCL  
SDA  
SRP  
SRN  
C3  
Recommended to be connected  
to a GPIO on the host.  
A1  
B1  
GPOUT  
BIN  
GPOUT  
BIN  
B2  
VSS  
PGND PGND  
Pack+  
TP1  
J6  
Load+  
TP2  
Load+(Host)  
Charger+  
PGND  
R1  
0.01  
Pack+  
1
2
3
BIN  
BIN  
Pack-  
J5  
C2  
1 µF  
Load-  
TP3  
J7  
Charger-  
Load-(Host)  
PGND  
PGND  
8-1. Typical Application with High-Side Current Sense Resistor  
8.2.1 Design Requirements  
As shipped from the Texas Instruments factory, the BQ27427 fuel gauge comes with three preprogrammed  
chemistry profiles and gauging parameters in ROM. Upon device reset, the contents of ROM are copied to  
associated volatile RAM-based data memory blocks. For proper operation, all parameters in RAM-based data  
memory require initialization. This can be done by updating data memory parameters in a lab/evaluation  
situation or by downloading the parameters from a host. The BQ27427 Technical Reference Manual shows the  
default and typically expected values appropriate for most applications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ27427  
 
 
 
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 BAT Voltage Sense Input  
A ceramic capacitor at the input to the BAT pin is used to bypass AC voltage ripple to ground, greatly reducing  
its influence on battery voltage measurements. It proves most effective in applications with load profiles that  
exhibit high-frequency current pulses (that is, cell phones) but is recommended for use in all applications to  
reduce noise on this sensitive high-impedance measurement node.  
8.2.2.2 Integrated LDO Capacitor  
The fuel gauge has an integrated LDO with an output on the VDD pin of approximately 1.8 V. A capacitor of value  
at least 2.2 μF should be connected between the VDD pin and VSS. The capacitor must be placed close to the  
gauge IC and have short traces to both the VDD pin and VSS. This regulator must not be used to provide power  
for other devices in the system.  
8.2.3 External Thermistor Support  
The fuel gauge temperature sensing circuitry is designed to work with a negative temperature coefficient-type  
(NTC) thermistor with a characteristic 10-kΩ resistance at room temperature (25°C). The default curve-fitting  
coefficients configured in the fuel gauge specifically assume a Semitec 103AT type thermistor profile and so that  
is the default recommendation for thermistor selection purposes. Moving to a separate thermistor resistance  
profile (for example, JT-2 or others) requires an update to the default thermistor coefficients which can be  
modified in RAM to ensure highest accuracy temperature measurement performance.  
8.2.4 Application Curves  
0
-0.05%  
-0.1%  
10%  
5%  
0
-0.15%  
-0.2%  
-5%  
-10%  
-15%  
-0.25%  
-40  
-20  
0
20 40  
Temperature (èC)  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
D001  
Temperature (èC)  
D002  
8-2. Voltage Accuracy Error  
8-3. Internal Temperature Accuracy Error  
0.7%  
0.6%  
0.5%  
0.4%  
0.3%  
0.2%  
0.1%  
0
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
D003  
8-4. Current Accuracy Error  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ27427  
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
9 Power Supply Recommendation  
9.1 Power Supply Decoupling  
The battery connection on the BAT pin is used for two purposes:  
To supply power to the fuel gauge  
To provide an input for voltage measurement of the battery.  
A capacitor of value of at least 1 µF should be connected between BAT and VSS. The capacitor should be placed  
close to the gauge IC and have short traces to both the BAT pin and VSS  
.
The fuel gauge has an integrated LDO with an output on the VDD pin of approximately 1.8 V. A capacitor of value  
at least 0.47 µF should be connected between the VDD pin and VSS. The capacitor should be placed close to the  
gauge IC and have short traces to both the VDD pin and VSS. This regulator must not be used to provide power  
for other devices in the system.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ27427  
 
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
A capacitor of a value of at least 2.2 µF is connected between the VDD pin and VSS. The capacitor should be  
placed close to the gauge IC and have short traces to both the VDD pin and VSS. This regulator must not be  
used to provide power for other devices in the system.  
It is required to have a capacitor of at least 1.0 µF connect between the BAT pin and VSS if the connection  
between the battery pack and the gauge BAT pin has the potential to pick up noise. The capacitor should be  
placed close to the gauge IC and have short traces to both the VDD pin and VSS  
.
If the external pullup resistors on the SCL and SDA lines will be disconnected from the host during low-power  
operation, it is recommended to use external 1-MΩpulldown resistors to VSS to avoid floating inputs to the  
I2C engine.  
The value of the SCL and SDA pullup resistors should take into consideration the pullup voltage and the bus  
capacitance. Some recommended values, assuming a bus capacitance of 10 pF, can be seen in 10-1.  
10-1. Recommended Values for SCL and SDA Pullup Resistors  
VPU  
1.8 V  
3.3 V  
Range  
400 ΩRPU 37.6 kΩ  
Typical  
Range  
900 ΩRPU 29.2 kΩ  
Typical  
RPU  
10 kΩ  
5.1 kΩ  
If the host is not using the GPOUT functionality, then it is recommended that GPOUT be connected to a  
GPIO of the host so that in cases where the device is in SHUTDOWN, toggling GPOUT can wake the gauge  
up from the SHUTDOWN state.  
If the battery pack thermistor is not connected to the BIN pin, the BIN pin should be pulled down to VSS with a  
10-kΩresistor.  
The BIN pin should not be shorted directly to VDD or VSS  
The actual device ground is pin 3 (VSS).  
.
Kelvin connects the BAT pin to the battery PACKP terminal.  
10.2 Layout Example  
10-1. BQ27427 Board Layout  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ27427  
 
 
 
 
BQ27427  
ZHCSRB7 DECEMBER 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Related Documentation  
BQ27427 Technical Reference Manual  
Single Cell Gas Gauge Circuit Design  
Single Cell Impedance Track Printed-Circuit Board Layout Guide  
ESD and RF Mitigation in Handheld Battery Electronics  
11.2 Trademarks  
Impedance Trackand NanoFreeare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.4 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ27427  
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ27427YZFR  
ACTIVE  
DSBGA  
YZF  
9
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
BQ27427  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ27427YZFR  
DSBGA  
YZF  
9
3000  
180.0  
8.4  
1.78  
1.78  
0.69  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YZF  
SPQ  
Length (mm) Width (mm) Height (mm)  
182.0 182.0 20.0  
BQ27427YZFR  
9
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YZF0009  
DSBGA - 0.625 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.35  
0.15  
1 TYP  
SYMM  
C
1
TYP  
SYMM  
B
A
D: Max = 1.651 mm, Min = 1.59 mm  
E: Max = 1.61 mm, Min = 1.55 mm  
0.5  
TYP  
3
1
2
0.35  
0.25  
9X  
0.015  
0.5 TYP  
C A B  
4219558/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YZF0009  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
9X ( 0.245)  
(0.5) TYP  
1
2
3
A
SYMM  
B
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 40X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.245)  
METAL  
(
0.245)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219558/A 10/2018  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YZF0009  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
(R0.05) TYP  
3
9X ( 0.25)  
1
2
A
B
(0.5) TYP  
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 40X  
4219558/A 10/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

BQ27441-G1

System-Side Impedance Track Fuel Gauge
TI

BQ27441DRZR-G1A

System-Side Impedance Track Fuel Gauge
TI

BQ27441DRZR-G1B

System-Side Impedance Track Fuel Gauge
TI

BQ27441DRZT-G1A

System-Side Impedance Track Fuel Gauge
TI

BQ27441DRZT-G1B

System-Side Impedance Track Fuel Gauge
TI

BQ27500

System-Side Impedance Track⑩ Fuel Gauge
TI

BQ27500-V100

System-Side Impedance TracTM Fuel Gauge
TI

BQ27500-V120

System-Side Impedance Track™ Fuel Gauge
TI

BQ27500-V130

System-Side Impedance Track Fuel Gauge
TI

BQ27500CSPR-V130

1-CHANNEL POWER SUPPLY SUPPORT CKT, BGA12, CSP-12
TI

BQ27500CSPT-V130

1-CHANNEL POWER SUPPLY SUPPORT CKT, BGA12, CSP-12
TI

BQ27500DRZR

System-Side Impedance Track⑩ Fuel Gauge
TI