BQ27620-G1 [TI]

具有动态电压相关性的系统侧电池电量监测计;
BQ27620-G1
型号: BQ27620-G1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有动态电压相关性的系统侧电池电量监测计

电池
文件: 总45页 (文件大小:796K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
具有动态电压修正的系统侧 Impedance Track™ 电量计  
查询样品: bq27620-G1  
1 介绍  
1.1 特性  
1.2 应用范围  
123  
用于单节串联锂离子应用的电池电量计,此电量计  
基于已获专利的 Impedance Track™ 技术且具有动  
态电压修正 (IT-DVC) 功能  
智能电话  
数码相机与数码摄像机  
手持终端设备  
驻留在系统主板上  
无需感测电阻器  
MP3 或多媒体播放器  
由带有集成低压降稳压器 (LDO) 的电池直接供电  
支持嵌入式或可拆除电池组  
系统侧电量计提供:  
1.3 说明  
德州仪器 (TI) bq27620-G1 系统侧是一款易于配置的  
微控制器外设,此外设提供针对单节锂离子电池组的电  
池电量监测。 此器件要求最小用户配置和系统微控制  
器固件开发。  
准确的电池电量监测;针对准确巡航时间预测生  
成模拟电池放电曲线  
可针对电池老化、电池自放电以及温度/速率低效  
情况进行自动调节  
bq27620-G1 使用已获专利的支持动态电压修正的  
Impedance Track™ 算法来进行电量监测。 这个已获  
专利的工艺在计算剩余电池电量 (mAh),充电状态  
(%),续航时间(分钟),电池电压 (mV),温度 (°C)  
和电池健康状态时免除了对于感测电阻的需要。  
支持电池温度报告的内部温度传感器  
电池电量低时的中断警告  
电池插入指示器  
可配置充电状态 (SOC) 中断  
健康状态指示器  
通过 bq27620-G1 进行电池电量监测只需将 PACK+  
(P+)PACK-(P-) 以及热敏电阻 (T) 连接至可拆卸的电  
池组或嵌入式电池电路。 CSP 选项采用 2610µm ×  
1956µm 15 焊球封装,引线间距为 0.5mm。 它是空  
间受限应用的理想选择。  
– 32 字节非易失性便签闪存  
• 400kHz I2C™ 用于与系统微处理器端口相连接的接  
采用 15 引脚 NanoFree™ (CSP) 封装内  
典型应用  
Host System  
Single Cell Li-lon  
Battery Pack  
VCC  
CE  
LDO  
PACK+  
PROTECTION  
IC  
Voltage  
Sense  
Battery  
Low  
Temp  
Sense  
I2C  
DATA  
Power  
Management  
Controller  
T
bq27620  
CHG  
DSG  
FETs  
PACK-  
BAT_GD  
SOC_INT  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Impedance Track, NanoFree are trademarks of Texas Instruments.  
2
3
I2C is a trademark of NXP B.V. Corp Netherlands.  
PRODUCTION DATA information is current as of publication date. Products conform to  
specifications per the terms of the Texas Instruments standard warranty. Production  
processing does not necessarily include testing of all parameters.  
版权 © 2012, Texas Instruments Incorporated  
English Data Sheet: SLUSAE3  
 
 
 
 
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
1
2
3
介绍 ......................................................... 1  
1.1 特性 .................................................. 1  
1.2 应用范围 ............................................. 1  
1.3 说明 .................................................. 1  
DEVICE INFORMATION ................................ 3  
2.1 AVAILABLE OPTIONS .............................. 3  
2.2 THERMAL INFORMATION .......................... 3  
4.2 DATA FLASH INTERFACE ........................ 19  
4.3  
MANUFACTURER INFORMATION BLOCK ....... 20  
4.4 ACCESS MODES .................................. 21  
4.5 SEALING/UNSEALING DATA FLASH ............. 21  
4.6 DATA FLASH SUMMARY .......................... 22  
FUNCTIONAL DESCRIPTION ........................ 26  
5.1 FUEL GAUGING ................................... 26  
5.2 IMPEDANCE TRACK™ VARIABLES .............. 27  
5.3 DETAILED PIN DESCRIPTION .................... 29  
5.4 TEMPERATURE MEASUREMENT ................ 34  
5.5 OVERTEMPERATURE INDICATION .............. 34  
5
2.3  
PIN ASSIGNMENT AND PACKAGE DIMENSIONS  
4
ELECTRICAL SPECIFICATIONS ..................... 5  
3.1 ABSOLUTE MAXIMUM RATINGS .................. 5  
3.2  
RECOMMENDED OPERATING CONDITIONS ..... 5  
5.6  
CHARGING AND CHARGE-TERMINATION  
3.3 SUPPLY CURRENT ................................. 5  
3.4  
INDICATION ........................................ 34  
DIGITAL INPUT AND OUTPUT DC  
CHARACTERISTICS ................................ 6  
5.7 POWER MODES ................................... 35  
3.5 POWER-ON RESET ................................. 6  
3.6 2.5V LDO REGULATOR ............................. 6  
3.7 INTERNAL CLOCK OSCILLATORS ................ 6  
6
7
APPLICATION-SPECIFIC INFORMATION ......... 36  
6.1  
BATTERY PROFILE STORAGE AND SELECTION  
...................................................... 36  
COMMUNICATIONS ................................... 37  
7.1 I2C INTERFACE .................................... 37  
7.2 I2C Time Out ....................................... 37  
7.3 I2C Command Waiting Time ........................ 38  
7.4 I2C Clock Stretching ................................ 38  
REFERENCE SCHEMATICS ......................... 39  
8.1 SCHEMATIC ........................................ 39  
3.8  
ADC (TEMPERATURE AND CELL  
MEASUREMENT) CHARACTERISTICS ............ 7  
3.9  
DATA FLASH MEMORY CHARACTERISTICS ..... 8  
3.10 I2C-COMPATIBLE INTERFACE COMMUNICATION  
TIMING CHARACTERISTICS ....................... 8  
4
GENERAL DESCRIPTION ............................. 9  
8
4.1 DATA COMMANDS ................................ 10  
2
内容  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
2 DEVICE INFORMATION  
2.1 AVAILABLE OPTIONS  
FIRMWARE  
TAPE and REEL  
QUANTITY  
PART NUMBER  
PACKAGE(1)  
TA  
COMMUNICATION FORMAT  
VERSION(1)  
bq27620YZFR-G1  
1.06  
3000  
250  
I2C  
CSP-15  
–40°C to 85°C  
(0x106)  
bq27620YZFT-G1  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
2.2 THERMAL INFORMATION  
bq27620-G1  
THERMAL METRIC(1)  
UNITS  
YZF(15 PINS)  
θJA  
Junction-to-ambient thermal resistance  
70  
17  
20  
1
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
18  
n/a  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953  
Copyright © 2012, Texas Instruments Incorporated  
DEVICE INFORMATION  
3
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
2.3 PIN ASSIGNMENT AND PACKAGE DIMENSIONS  
(TOP VIEW)  
(BOTTOM VIEW)  
A3  
A2  
A1  
B3  
B2  
B1  
C3  
C2  
C1  
E3  
E2  
E1  
E3  
E2  
E1  
D3  
D2  
D1  
C3  
C2  
C1  
B3  
B2  
B1  
A3  
A2  
A1  
D3  
D2  
D1  
Pin A1  
Index Area  
D
DIM  
MIN  
TYP  
MAX  
2640  
1986  
UNITS  
D
E
2580  
1926  
2610  
1956  
m  
Table 2-1. PIN FUNCTIONS  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
A1, B1,  
C1, C2  
VSS  
VCC  
P
Device ground  
D1  
E1  
A2  
P
P
O
Regulator output and bq27620-G1 processor power. Decouple with 1μF ceramic capacitor to Vss.  
Regulator input. Decouple with 0.1μF ceramic capacitor to Vss.  
REGIN  
SOC_INT  
SOC state interrupts output. Generates a pulse under the conditions specified by Table 5-7. Open drain output. (RA3)  
Battery-good indicator. Active-low by default, though polarity can be configured through the [BATG_POL] bit of  
Operation Configuration. Push-pull output. (RC1)  
BAT_GD  
B2  
O
CE  
D2  
E2  
I
I
Chip Enable. Internal LDO is disconnected from REGIN when driven low.  
BAT  
Cell-voltage measurement input. ADC input. Recommend 4.8V maximum for conversion accuracy. (RC3)  
Slave I2C serial communications clock input line for communication with system (Master). Use with 10kpull-up  
resistor (typical). (RA2)  
SCL  
SDA  
A3  
B3  
I
Slave I2C serial communications data line for communication with system (Master). Open-drain I/O. Use with 10kΩ  
pull-up resistor (typical). (RA1)  
I/O  
Battery Low output indicator. Active high by default, though polarity can be configured through the [BATL_POL] bit of  
Operation Configuration. Push-pull output. (RC0)  
BAT_LOW  
TS  
C3  
D3  
E3  
O
IA  
Pack thermistor voltage sense (use 103AT-type thermistor). ADC input. (RC2)  
Battery-insertion detection input. Power pin for pack thermistor network. Thermistor-multiplexer control pin. Use with  
pull-up resistor >1M(1.8 Mtypical). (RA0)  
BI/TOUT  
I/O  
(1) I/O = Digital input/output, IA = Analog input, P = Power connection  
4
DEVICE INFORMATION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
3 ELECTRICAL SPECIFICATIONS  
3.1 ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
VALUE  
–0.3 to 5.5  
UNIT  
V
VREGIN  
Regulator input range  
(2)  
–0.3 to 6.0  
–0.3 to 2.75  
–0.3 to 5.5  
–0.3 to 5.5  
V
VCC  
Supply voltage range  
V
VIOD  
VBAT  
Open-drain I/O pins (SDA, SCL, SOC_INT )  
BAT input pin  
V
V
(2)  
–0.3 to 6.0  
–0.3 to VCC + 0.3  
1.5  
V
VI  
Input voltage range to all other pins ( BI/TOUT , TS , BAT_GD )  
Human-body model (HBM), BAT pin  
Human-body model (HBM), all other pins  
Operating free-air temperature range  
Functional temperature range  
V
ESD  
kV  
2
TA  
–40 to 85  
–40 to 100  
–65 to 150  
°C  
°C  
°C  
TF  
Tstg  
Storage temperature range  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Condition not to exceed 100 hours at 25 °C lifetime.  
3.2 RECOMMENDED OPERATING CONDITIONS  
TA = -40°C to 85°C, VREGIN = VBAT = 3.6V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.8  
TYP  
MAX  
4.5  
UNIT  
No operating restrictions  
VREGIN  
Supply voltage  
V
No FLASH writes  
2.45  
2.8  
External input capacitor for internal  
LDO between REGIN and VSS  
CREGIN  
CLDO25  
tPUCD  
0.1  
μF  
Nominal capacitor values specified.  
Recommend a 5% ceramic X5R type  
capacitor located close to the device.  
External output capacitor for internal  
LDO between VCC and VSS  
0.47  
1
μF  
Power-up communication delay  
250  
ms  
3.3 SUPPLY CURRENT  
TA = 25°C and VREGIN = VBAT = 3.6V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Normal operating-mode  
current(1)  
Fuel gauge in NORMAL mode.  
ILOAD > Sleep Current  
ICC  
118  
μA  
Low-power storage-mode  
current(1)  
Fuel gauge in SLEEP mode.  
ILOAD < Sleep Current  
ISLP  
IHIB  
23  
8
μA  
μA  
Hibernate operating-mode  
current(1)  
Fuel gauge in HIBERNATE mode.  
ILOAD < Hibernate Current  
(1) Specified by design. Not production tested.  
Copyright © 2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
5
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
3.4 DIGITAL INPUT AND OUTPUT DC CHARACTERISTICS  
TA = –40°C to 85°C, typical values at TA = 25°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOL = 3 mA  
MIN  
TYP  
MAX  
UNIT  
Output voltage, low (SCL, SDA,  
SOC_INT , BAT_LOW ,  
BAT_GD )  
VOL  
0.4  
V
VOH(PP)  
Output voltage, high  
IOH = –1 mA  
VCC  
(BAT_LOW , BAT_GD )  
0.5  
V
V
V
Output voltage, high (SDA,  
SCL, SOC_INT )  
External pullup resistor connected to  
VCC  
VCC  
VOH(OD)  
0.5  
Input voltage, low (SDA, SCL  
pins)  
0.6  
0.6  
–0.3  
VIL  
Input voltage, low ( BI/TOUT  
pin)  
BAT INSERT CHECK MODE active  
–0.3  
1.2  
Input voltage, high (SDA, SCL  
pins)  
VIH  
Input voltage, high ( BI/TOUT  
pin)  
VCC  
+
BAT INSERT CHECK MODE active  
VREGIN = 2.8 to 4.5V  
1.2  
0.3  
VIL(CE)  
VIH(CE)  
Ilkg  
Input voltage, low (CE pin)  
0.8  
V
VREGIN  
Input voltage, high (CE pin)  
0.5  
Input leakage current (I/O pins)  
0.3  
μA  
(1)  
(1) Specified by design. Not production tested.  
3.5 POWER-ON RESET  
TA = –40°C to 85°C, typical values at TA = 25°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIT+  
Positive-going battery voltage  
input at VCC  
2.05  
2.15  
2.20  
V
VHYS  
Power-on reset hysteresis  
45  
115  
185  
mV  
3.6 2.5V LDO REGULATOR  
TA = –40°C to 85°C, CLDO25 = 1μF, VREGIN = 3.6V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
NOM  
MAX  
UNIT  
2.8V VREGIN 4.5V, IOUT 16mA  
2.45V VREGIN < 2.8V (low battery),  
2.3  
2.5  
2.6  
V
VREG25  
Regulator output voltage  
2.3  
V
IOUT 3mA  
3.7 INTERNAL CLOCK OSCILLATORS  
TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.097  
MAX  
UNIT  
MHz  
kHz  
fOSC  
High Frequency Oscillator  
Low Frequency Oscillator  
fLOSC  
32.768  
6
ELECTRICAL SPECIFICATIONS  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
3.8 ADC (TEMPERATURE AND CELL MEASUREMENT) CHARACTERISTICS  
TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VA1  
VA2  
Input voltage range (TS )  
VSS  
0.125  
2
V
Input voltage range (BAT)  
Input voltage range  
VSS  
0.125  
5
1
V
VIN(ADC)  
GTEMP  
0.05  
V
Internal temperature sensor  
voltage gain  
–2  
1
mV/°C  
tADC_CONV  
Conversion time  
Resolution  
125  
15  
ms  
bits  
mV  
14  
VOS(ADC)  
ZADC1  
Input offset  
Effective input resistance  
(TS )(1)  
8
8
MΩ  
MΩ  
bq27620-G1 not measuring cell  
voltage  
Effective input resistance  
(BAT)(1)  
ZADC2  
bq27620-G1 measuring cell voltage  
100  
kΩ  
μA  
Ilkg(ADC)  
Input leakage current(1)  
0.3  
(1) Specified by design. Not tested in production.  
Copyright © 2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
7
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
3.9 DATA FLASH MEMORY CHARACTERISTICS  
TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)  
PARAMETER  
Data retention(1)  
TEST CONDITIONS  
MIN  
10  
TYP  
MAX  
UNIT  
Years  
Cycles  
tDR  
Flash-programming write  
cycles(1)  
20,000  
tWORDPROG  
ICCPROG  
tDFERASE  
tIFERASE  
Word programming time(1)  
Flash-write supply current(1)  
Data flash master erase time(1)  
2
ms  
mA  
ms  
ms  
5
10  
200  
200  
Instruction flash master erase  
time(1)  
tPGERASE  
Flash page erase time(1)  
20  
ms  
(1) Specified by design. Not production tested  
3.10 I2C-COMPATIBLE INTERFACE COMMUNICATION TIMING CHARACTERISTICS  
TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
300  
UNIT  
ns  
tr  
SCL/SDA rise time  
SCL/SDA fall time  
tf  
300  
ns  
tw(H)  
SCL pulse duration (high)  
SCL pulse duration (low)  
Setup for repeated start  
Start to first falling edge of SCL  
Data setup time  
600  
1.3  
600  
600  
100  
0
ns  
tw(L)  
μs  
ns  
tsu(STA)  
td(STA)  
tsu(DAT)  
th(DAT)  
tsu(STOP)  
t(BUF)  
ns  
ns  
Data hold time  
ns  
Setup time for stop  
600  
66  
ns  
Bus free time between stop and  
start  
μs  
(1)  
fSCL  
Clock frequency  
400  
kHz  
(1) If the clock frequency (fSCL) is > 100 kHz, use 1-byte write commands for proper operation. All other transactions types are supported at  
400 kHz. (Refer to Section 7.1 and Section 7.3)  
Figure 3-1. I2C-Compatible Interface Timing Diagrams  
8
ELECTRICAL SPECIFICATIONS  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
4 GENERAL DESCRIPTION  
The bq27620-G1 accurately predicts the battery capacity and other operational characteristics of a single  
Li-based rechargeable cell. It can be interrogated by a system processor to provide cell information, such  
as time-to-empty (TTE), time-to-full (TTF) and state-of-charge (SOC) as well as SOC interrupt signal to the  
host.  
Information is accessed through a series of commands, called Standard Commands. Further capabilities  
are provided by the additional Extended Commands set. Both sets of commands, indicated by the general  
format Command( ), are used to read and write information contained within the device control and status  
registers, as well as its data flash locations. Commands are sent from system to gauge using the  
bq27620-G1’s I2C serial communications engine, and can be executed during application development,  
system manufacture, or end-equipment operation.  
Cell information is stored in the device in non-volatile flash memory. Many of these data flash locations are  
accessible during application development. They cannot, generally, be accessed directly during end-  
equipment operation. Access to these locations is achieved by either use of the bq27620-G1’s companion  
evaluation software, through individual commands, or through a sequence of data-flash-access  
commands. To access a desired data flash location, the correct data flash subclass and offset must be  
known.  
The bq27620-G1 provides a 32-byte user-programmable data flash Manufacturer Info Block. This data  
space is accessed through a data flash interface. For specifics on accessing the data flash,  
MANUFACTURER INFORMATION BLOCKS.  
The key to the bq27620-G1’s high-accuracy gas gauging prediction is Texas Instrument’s proprietary  
Impedance Track™ algorithm with Dynamic Voltage Correlation (IT-DVC). This algorithm uses cell  
measurements, characteristics, and properties to create state-of-charge predictions that can achieve less  
than 5% error across a wide variety of operating conditions and over the lifetime of the battery.  
The device utilizes a comprehensive battery model to estimate the average current in real time,  
eliminating the need of a sense resistor. When a cell is attached to the device, cell impedance is  
computed, open-circuit voltage (OCV), and cell voltage under loading conditions.  
The device external temperature sensing is optimized with the use of a high accuracy negative  
temperature coefficient (NTC) thermistor with R25 = 10.0k±1%. B25/85 = 3435K ± 1% (such as Semitec  
NTC 103AT). The bq27620-G1 can also be configured to use its internal temperature sensor. When an  
external themistor is used, a 18.2k pull up resistor between BT/TOUT and TS pins is also required. The  
bq27620-G1 uses temperature to monitor the battery-pack environment, which is used for fuel gauging  
and cell protection functionality.  
To minimize power consumption, the device has different power modes: NORMAL, SLEEP, HIBERNATE,  
and BAT INSERT CHECK. The bq27620-G1 passes automatically between these modes, depending upon  
the occurrence of specific events, though a system processor can initiate some of these modes directly.  
More details can be found in POWER MODES.  
NOTE  
FORMATTING CONVENTIONS IN THIS DOCUMENT:  
Commands: italics with parentheses and no breaking spaces, e.g., RemainingCapacity( )  
Data flash: italics, bold, and breaking spaces, e.g., Design Capacity  
Register bits and flags: brackets and italics, e.g., [TDA]  
Data flash bits: brackets, italics and bold, e.g., [LED1]  
Modes and states: ALL CAPITALS, e.g., UNSEALED mode.  
Copyright © 2012, Texas Instruments Incorporated  
GENERAL DESCRIPTION  
9
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
4.1 DATA COMMANDS  
4.1.1 STANDARD DATA COMMANDS  
The bq27620-G1 uses a series of 2-byte standard commands to enable system reading and writing of  
battery information. Each standard command has an associated command-code pair, as indicated in  
Table 4-1. Because each command consists of two bytes of data, two consecutive I2C transmissions must  
be executed both to initiate the command function, and to read or write the corresponding two bytes of  
data. Additional options for transferring data, such as spooling, are described in Section of  
Communication. Read/Write permissions depend on the active access mode, SEALED or UNSEALED  
(for details on the SEALED and UNSEALED states, see Section 4.4 , Access Modes.)  
Table 4-1. Standard Commands  
SEALED  
ACCESS  
NAME  
COMMAND CODE  
UNITS  
Control( )  
CNTL  
0x00 / 0x01  
0x02 / 0x03  
0x04 / 0x05  
0x06 / 0x07  
0x08 / 0x09  
0x0a / 0x0b  
0x0c / 0x0d  
0x0e / 0x0f  
0x10 / 0x11  
0x12 / 0x13  
0x14 / 0x15  
0x16 / 0x17  
0x18 / 0x19  
0x1a / 0x1b  
0x1c / 0x1d  
0x1e / 0x1f  
0x20 / 0x21  
0x22 / 0x23  
0x24 / 0x25  
0x26 / 0x27  
0x28 / 0x29  
0x2A / 0x2B  
0x2c / 0x2d  
0x36 / 0x37  
0x3A / 0x3B  
0x6A / 0x6B  
N/A  
mA  
R/W  
R/W  
R
AtRate( )  
AtRateTimeToEmpty( )  
Temperature( )  
Voltage( )  
Minutes  
0.1 K  
mV  
TEMP  
VOLT  
R/W  
R
Flags( )  
FLAGS  
N/A  
R
NominalAvailableCapacity( )  
FullAvailableCapacity( )  
RemainingCapacity( )  
FullChargeCapacity( )  
EffectiveCurrent( )  
mAh  
R
mAh  
R
RM  
mAh  
R
FCC  
mAh  
R
mA  
R
TimeToEmpty( )  
Minutes  
Minutes  
mA  
R
TimeToFull( )  
R
StandbyCurrent( )  
R
StandbyTimeToEmpty( )  
MaxLoadCurrent( )  
MaxLoadTimeToEmpty( )  
AvailableEnergy( )  
AveragePower( )  
Minutes  
mA  
R
R
Minutes  
mWh  
mW  
R
R
R
TTEatConstantPower( )  
StateOfHealth( )  
Minutes  
% / num  
num  
R
SOH  
SOC  
R
CycleCount( )  
R
StateOfCharge( )  
%
R
InternalTemperature( )  
OperationConfiguration( )  
ApplicationStatus()  
0.1 K  
N/A  
R
R
N/A  
R
10  
GENERAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
 
 
 
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
4.1.1.1 Control( ): 0x00/0x01  
Issuing a Control( ) command requires a subsequent 2-byte subcommand. These additional bytes specify  
the particular control function desired. The Control( ) command allows the system to control specific  
features of the bq27620-G1 during normal operation and additional features when the device is in different  
access modes, as described in Table 4-2.  
Table 4-2. Control( ) Subcommands  
CNTL  
DATA  
SEALED  
ACCESS  
CNTL FUNCTION  
DESCRIPTION  
CONTROL_STATUS  
DEVICE_TYPE  
FW_VERSION  
HW_VERSION  
PREV_MACWRITE  
CHEM_ID  
0x0000  
0x0001  
0x0002  
0x0003  
0x0007  
0x0008  
0x000c  
0x000d  
0x000e  
0x0011  
0x0012  
0x001F  
0x0020  
0x0030  
0x0041  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Reports the status of DF checksum, hibernate, IT, etc.  
Reports the device type in hex digits. (type = 0x0620)  
Reports the firmware version on the device type  
Reports the hardware version of the device type  
Returns previous MAC subcommand code  
Reports the chemical identifier of the Impedance Track™ configuration  
Request the gauge to take a OCV measurement  
Forces the BAT_DET bit set when the [BIE] bit is 0  
Forces the BAT_DET bit clear when the [BIE] bit is 0  
Forces CONTROL_STATUS [HIBERNATE] to 1  
Forces CONTROL_STATUS [HIBERNATE] to 0  
Returns the Data Flash Version code  
OCV_CMD  
BAT_INSERT  
BAT_REMOVE  
SET_HIBERNATE  
CLEAR_HIBERNATE  
DF_VERSION  
SEALED  
Places the bq27620-G1 in SEALED access mode  
Sets the OPTIMIZ bit and enables the optimization cycle  
Forces a full reset of the bq27620-G1  
OPTIMIZ  
No  
RESET  
No  
Copyright © 2012, Texas Instruments Incorporated  
GENERAL DESCRIPTION  
11  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
 
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
4.1.1.1.1 CONTROL_STATUS: 0x0000  
Instructs the fuel gauge to return status information to control addresses 0x00/0x01. The status word  
includes the following information.  
Table 4-3. CONTROL_STATUS Bit Definitions  
bit7  
bit6  
FAS  
bit5  
SS  
bit4  
bit3  
-
bit2  
-
bit1  
OCVCMDCOMP  
VOK  
bit0  
High byte  
Low byte  
-
RSVD  
SLEEP  
OCVFAIL  
OPTMIZ  
INITCOMP  
HIBERNATE  
RLearn  
LDMD  
RUP_DIS  
FAS = Status bit indicating the bq27620-G1 is in FULL ACCESS SEALED state. Active when set.  
SS = Status bit indicating the bq27620-G1 is in SEALED state. Active when set.  
OCVCMDCOMP = Status bit indicating the bq27620-G1 has executed the OCV command. This bit can only be set with battery’s presence.  
True when set.  
OCVFAIL = Status bit indicating bq27620-G1 OCV reading is failed due to the current. This bit can only be set with battery’s presence. True  
when set.  
INITCOMP = Initialization completion bit indicating the initialization completed. This bit can only be set with battery’s presence. True when  
set.  
HIBERNATE = Status bit indicating a request for entry into HIBERNATE from SLEEP mode. True when set. Default is 0.  
RLean = Indicates that resistance has been learned. True when set.  
LDMD = Status bit indicating the bq27620-G1 Impedance Track™ algorithm is using constant-power mode. True when set. Default is 0  
(constant-current mode).  
RUP_DIS = Status bit indicating the bq27620-G1 Ra table updates are disabled. Updates disabled when set.  
VOK = Status bit indicating that a relaxed OCV measurement has occurred, always clears at the onset of charge or discharge currents.  
True when set.  
OPTMIZ = Status bit indicating the bq27620-G1 is in an optimization mode; when set the gauge is in its optimization mode of operation for  
determining Qmax. True when set.  
4.1.1.1.2 DEVICE_TYPE: 0x0001  
Instructs the fuel gauge to return the device type to addresses 0x00/0x01.  
4.1.1.1.3 FW_VERSION: 0x0002  
Instructs the fuel gauge to return the firmware version to addresses 0x00/0x01. Refer to Available Options  
for the expected data value.  
4.1.1.1.4 HW_VERSION: 0x0003  
Instructs the fuel gauge to return the hardware version to addresses 0x00/0x01.  
4.1.1.1.5 PREV_MACWRITE: 0x0007  
Instructs the fuel gauge to return the previous subcommand written to addresses 0x00/0x01. Note: This  
subcommand is only supported for previous subcommand codes 0x0000 through 0x0014. For  
subcommand codes greater than 0x0009, a value of 0x0007 is returned.  
4.1.1.1.6 CHEM_ID: 0x0008  
Instructs the fuel gauge to return the chemical identifier for the Impedance Track™ configuration to  
addresses 0x00/0x01.  
4.1.1.1.7 OCV CMD: 0X000C  
This command is to request the gauge to take a OCV reading. This command can only be issued after the  
[INICOMP] has been set, indicating the initialization has been completed. The OCV measurement take  
place at the beginning of the next repeated 1s firmware synchronization clock. During the same time  
period, the SOC_INT will pulse. The host should use this signal to reduce the load current below the C/20  
in 8ms for a valid OCV reading. The OCV command [OCVFAIL] bit will be set if the OCV_CMD is issued  
when [CHG_INH] is set.  
12  
GENERAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
4.1.1.1.8 BAT_INSERT: 0X000D  
This command is to force the BAT_DET bit to be set when the battery insertion detection is disabled.  
When the BIE is set to 0, the battery insertion detection is disabled. The gauge relies on the host to inform  
the battery insertion with this command to set the BAT_DET bit.  
4.1.1.1.9 BAT_REMOVE: 0X000E  
This command is to force the BAT_DET bit to be clear when the battery insertion detection is disabled.  
When the BIE is set to 0, the battery insertion detection is disabled. The gauge relies on the host to inform  
it of the battery removal with this command to clear the BAT_DET bit.  
4.1.1.1.10 SET_HIBERNATE: 0x0011  
Instructs the fuel gauge to force the CONTROL_STATUS [HIBERNATE] bit to 1. This will allow the gauge  
to enter the HIBERNATE power mode after the transition to SLEEP power state is detected. The  
[HIBERNATE] bit is automatically cleared upon exiting from HIBERNATE mode.  
4.1.1.1.11 CLEAR_HIBERNATE: 0x0012  
Instructs the fuel gauge to force the CONTROL_STATUS [HIBERNATE] bit to 0. This prevents the gauge  
from entering the HIBERNATE power mode after the transition to the SLEEP power state is detected. It  
can also be used to force the gauge out of HIBERNATE mode.  
4.1.1.1.12 DF_VERSION: 0x001F  
Instructs the fuel gauge to return the 16-bit data flash revision code to addresses 0x00/0x01. The code is  
stored inData Flash Version and provides a simple method for the customer to control data flash  
revisions. The default DF_VERSION is 0x0000.  
4.1.1.1.13 SEALED: 0x0020  
Instructs the fuel gauge to transition from the UNSEALED state to the SEALED state. The fuel gauge must  
always be set to the SEALED state for use in end equipment.  
4.1.1.1.14 OPTIMIZ: 0x0030  
This MAC command should be issued at the end of full charge cycle before the full discharge cycle  
begins. This command will set bit 0 (OPTMIZ) of the Control/Status register. When the bit is set and the  
gauge detects discharge it will stop using estimated current for Q measurement. Instead it will use  
DataFlash IT.LearnCurrent and accumulate charge using that current until discharge termination is  
detected from the current estimation engine. At that point the current used by the gauge defaults to zero  
mA. This command is only available when the fuel gauge is UNSEALED.  
4.1.1.1.15 RESET: 0x0041  
This command instructs the fuel gauge to perform a full reset. This command is only available when the  
fuel gauge is UNSEALED.  
4.1.1.2 AtRateTimeToEmpty( ): 0x04/0x05  
This read-word function returns an unsigned integer value of the predicted remaining operating time if the  
battery is discharged at the AtRate( ) value in minutes with a range of 0 to 65,534. A value of 65,535  
indicates AtRate( ) = 0. The fuel gauge updates AtRateTimeToEmpty( ) within 1 s after the system sets the  
AtRate( ) value. The fuel gauge automatically updates AtRateTimeToEmpty( ) based on the AtRate( )  
value every 1 s. Both the AtRate( ) and AtRateTimeToEmpty( ) commands must only be used in NORMAL  
mode.  
Copyright © 2012, Texas Instruments Incorporated  
GENERAL DESCRIPTION  
13  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
4.1.1.3 Temperature( ): 0x06/0x07  
This read-/write-word function returns an unsigned integer value of the temperature in units of 0.1 K  
measured by the fuel gauge. If [WRTEMP] bit = 1, a write command sets the temperature to be used for  
gauging calculations while a read command returns to temperature previously written. If [WRTEMP] bit = 0  
and [TEMPS] bit = 0, a read command will return the internal temperature sensor value.  
4.1.1.4 Voltage( ): 0x08/0x09  
This read-word function returns an unsigned integer value of the measured cell-pack voltage in mV with a  
range of 0 to 6000 mV.  
4.1.1.5 Flags( ): 0x0a/0x0b  
This read-word function returns the contents of the fuel-gauge status register, depicting the current  
operating status.  
Table 4-4. Flags Bit Definitions  
bit7  
OTC  
bit6  
OTD  
bit5  
bit4  
bit3  
bit2  
bit1  
FC  
bit0  
CHG  
DSG  
High byte  
Low byte  
CALEN  
NEEDID  
CHG_INH  
BATTDET  
XCHG  
SOC1  
OCVGD  
SYSDOWN  
OTC = Overtemperature in charge condition is detected. True when set. SOC_INT will toggle once if set.  
OTD = Overtemperature in discharge condition is detected. True when set. SOC_INT will toggle once if set.  
CALEN = Status bit indicating the calibration function is enabled. True when set.  
CHG_INH = Charge inhibit: unable to begin charging (temperature outside the range [Charge Inhibit Temp Low, Charge Inhibit Temp  
High]). True when set.  
XCHG = Charge suspend alert (temperature outside the range [Suspend Temperature Low, Suspend Temperature High]). True when  
set.  
FC = Full-charged condition reached. Set when charge termination condition is met. (RMFCC=1; Set FC_Set % = -1% when RMFCC = 0).  
True when set  
CHG = (Fast) charging allowed. True when set.  
OCVGD = Good OCV measurement taken. True when set.  
NEEDID = Waiting to identify inserted battery. True when set.  
BATTDET = Battery detected. True when set.  
SOC1 = State-of-charge threshold 1 (SOC1 Set) reached. The flag is enabled when BL_INT bit in Operation Configuration B is set. True  
when set.  
SysDown = SystemDown bit indicating the system shut down. SOC_INT will toggle once if set.  
DSG = Discharging detected. True when set.  
4.1.1.6 NominalAvailableCapacity( ): 0x0c/0x0d  
This read-only command pair returns the uncompensated (less than C/20 load) battery capacity  
remaining. Units are mAh.  
4.1.1.7 FullAvailableCapacity( ): 0x0e/0x0f  
This read-only command pair returns the uncompensated (less than C/20 load) capacity of the battery  
when fully charged. Units are mAh. FullAvailableCapacity( ) is updated at regular intervals, as specified by  
the IT algorithm.  
4.1.1.8 RemainingCapacity( ): 0x10/0x11  
This read-only command pair returns the remaining battery capacity which is compensated for the present  
conditions of load, temperature and battery age. RemainingCapacity( ) is typically lower than the  
uncompensated NominalAvailableCapacity( ). Units are mAh.  
4.1.1.9 FullChargeCapacity( ): 0x12/13  
This read-only command pair returns the capacity of the battery when fully charged with compensation for  
the present conditions of temperature and battery age. FullChargeCapacity( ) is updated at regular  
intervals, as specified by the IT algorithm typically lower than the uncompensated  
FullAvailableCapacity( )and . Units are mAh.  
14  
GENERAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
4.1.1.10 EffectiveCurrent( ): 0x14/0x15  
This read-only command pair returns a signed integer value that is taken from the Effective current  
Calculation being used by DVC algorithm. Units are mA.  
4.1.1.11 TimeToEmpty( ): 0x16/0x17  
This read-only function returns an unsigned integer value of the predicted remaining battery life at the  
present rate of discharge, in minutes. A value of 65,535 indicates battery is not being discharged.  
4.1.1.12 TimeToFull( ): 0x18/0x19  
This read-only function returns an unsigned integer value of predicted remaining time until the battery  
reaches full charge, in minutes, based upon EffectiveCurrent( ). The computation accounts for the taper  
current time extension from the linear TTF computation based on a fixed EffectiveCurrent( ) rate of charge  
accumulation. A value of 65,535 indicates the battery is not being charged.  
4.1.1.13 StandbyCurrent( ): 0x1a/0x1b  
This read-only function returns a signed integer value of the measured standby current from the Effective  
Current Calculation. The StandbyCurrent( ) is an adaptive measurement. Initially it reports the standby  
current programmed in Initial Standby, and after spending several seconds in standby, reports the  
measured standby current.  
The register value is updated every 1 second when the effective current is above the Deadband and is  
less than or equal to 2 × Initial Standby. The first and last values that meet this criteria are not averaged  
in, since they may not be stable values. To approximate a 1 minute time constant, each new  
StandbyCurrent( ) value is computed by taking approximate 93% weight of the last standby current and  
approximate 7% of the effective current calculation.  
4.1.1.14 StandbyTimeToEmpty( ): 0x1c/0x1d  
This read-only function returns an unsigned integer value of the predicted remaining battery life at the  
standby rate of discharge, in minutes. The computation uses Nominal Available Capacity (NAC), the  
uncompensated remaining capacity, for this computation. A value of 65,535 indicates battery is not being  
discharged.  
4.1.1.15 MaxLoadCurrent( ): 0x1e/0x1f  
This read-only function returns a signed integer value, in units of mA, of the maximum load conditions.  
The MaxLoadCurrent( ) is an adaptive measurement which is initially reported as the maximum load  
current programmed in Initial Max Load Current. If the effective current calculation is ever greater than  
Initial Max Load Current, then MaxLoadCurrent(  
) updates to the new current calculation.  
MaxLoadCurrent( ) is reduced to the average of the previous value and Initial Max Load Current whenever  
the battery is charged to full after a previous discharge to an SOC less than 50%. This prevents the  
reported value from maintaining an unusually high value.  
4.1.1.16 MaxLoadTimeToEmpty( ): 0x20/0x21  
This read-only function returns an unsigned integer value of the predicted remaining battery life at the  
maximum load current discharge rate, in minutes. A value of 65,535 indicates that the battery is not being  
discharged.  
4.1.1.17 AvailableEnergy( ): 0x22/0x23  
This read-only function returns an unsigned integer value of the predicted charge or energy remaining in  
the battery. The value is reported in units of mWh.  
Copyright © 2012, Texas Instruments Incorporated  
GENERAL DESCRIPTION  
15  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
4.1.1.18 AveragePower( ): 0x24/0x25  
This read-only function returns an signed integer value of the average power during battery charging and  
discharging. It is negative during discharge and positive during charge. A value of 0 indicates that the  
battery is not being discharged. The value is reported in units of mW.  
4.1.1.19 TimeToEmptyAtConstantPower( ): 0x26/0x27  
This read-only function returns an unsigned integer value of the predicted remaining operating time if the  
battery is discharged at the AveragePower( ) value in minutes. A value of 65,535 indicates  
AveragePower( ) = 0. The fuel gauge automatically updates TimeToEmptyatContantPower( ) based on the  
AveragePower( ) value every 1 s.  
4.1.1.20 StateofHealth( ): 0x28/0x29  
0x28 SOH percentage: this read-only function returns an unsigned integer value, expressed as a  
percentage of the ratio of predicted FCC(25°C, SOH LoadI) over the DesignCapacity(). The FCC(25°C,  
SOH LoadI) is the calculated full charge capacity at 25°C and the SOH LoadI which is specified in the  
data flash. The range of the returned SOH percentage is 0x00 to 0x64, indicating 0 to 100%  
correspondingly.  
0x29 SOH Status: this read-only function returns an unsigned integer value, indicating the status of the  
SOH percentage. The meanings of the returned value are:  
0x00: SOH not valid (initialization)  
0x01: SOH initial value for unidentified pack  
0x02: SOH final value, pack identified  
4.1.1.21 CycleCount( ): 0x2a/0x2b  
This read-only function returns an unsigned integer value of the number of cycles that the active cell has  
experienced with a range of 0 to 65535. One cycle occurs when accumulated discharge CC Threshold.  
The gauge maintains a separate cycle counter for both cell profiles and will reset to zero if the insertion of  
a new pack has been detected.  
4.1.1.22 StateOfCharge( ): 0x2c/0x2d  
This read-only function returns an unsigned integer value of the predicted remaining battery capacity  
expressed as a percentage of FullChargeCapacity( ), with a range of 0 to 100%.  
4.1.1.23 InternalTemperature( ): 0x36/0x37  
This read-only function returns an unsigned integer value of the internal temperature sensor in units of 0.1  
K measured by the fuel gauge. This function can be useful as an additional system-level temperature  
monitor if the main Temperature( ) function is configured for external or host reported temperature.  
4.1.1.24 OperationConfiguration( ): 0x3a/0x3b  
This read-only function returns the contents of the data flash Operation Configuration register and is  
most useful for system level debug to quickly determine device configuration.  
4.1.1.25 ApplicationStatus(): 0x6a/0x6b  
This read-only function returns the contents of the data flash Host Cfg register.  
16  
GENERAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
4.1.2 EXTENDED DATA COMMANDS  
Extended commands offer additional functionality beyond the standard set of commands. They are used in  
the same manner; however, unlike standard commands, extended commands are not limited to 2-byte  
words. The number of commands bytes for a given extended command ranges in size from single to  
multiple bytes, as specified in Table 4-5.  
Table 4-5. Extended Data Commands  
COMMAND  
CODE  
SEALED  
UNSEALED  
NAME  
UNITS  
ACCESS(1) (2)  
ACCESS(1) (2)  
Reserved  
0x34...0x3b  
0x3c / 0x3d  
0x3e  
N/A  
mAh  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
R
R
R
DesignCapacity( )  
DataFlashClass( ) (2)  
DataFlashBlock( ) (2)  
BlockData( )  
R
N/A  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x3f  
0x40…0x5f  
0x60  
BlockDataCheckSum( )  
BlockDataControl( )  
ApplicationStatus( )  
Reserved  
R/W  
N/A  
R
0x61  
0x6a  
0x6b...0x7f  
R
R
(1) SEALED and UNSEALED states are entered via commands to Control() 0x00/0x01.  
(2) In sealed mode, data flash CANNOT be accessed through commands 0x3e and 0x3f.  
4.1.2.1 DesignCapacity( ): 0x3c/0x3d  
SEALED and UNSEALED Access: This command returns the value is stored in Design Capacity and is  
expressed in mAh. This is intended to be the theoretical or nominal capacity of a new pack, but has no  
bearing on the operation of the fuel gauge functionality.  
4.1.2.2 DataFlashClass( ): 0x3e  
UNSEALED Access: This command sets the data flash class to be accessed. The class to be accessed  
must be entered in hexadecimal.  
SEALED Access: This command is not available in SEALED mode.  
4.1.2.3 DataFlashBlock( ): 0x3f  
UNSEALED Access: This command sets the data flash block to be accessed. When 0x00 is written to  
BlockDataControl( ), DataFlashBlock( ) holds the block number of the data flash to be read or written.  
Example: writing a 0x00 to DataFlashBlock( ) specifies access to the first 32-byte block, a 0x01 specifies  
access to the second 32-byte block, and so on.  
SEALED Access: This command directs which data flash block is accessed by the BlockData( )  
command. Writing a 0x01 or 0x02 instructs the BlockData( ) command to transfer the Manufacturer Info  
Block. All other DataFlashBlock( ) values are reserved.  
4.1.2.4 BlockData( ): 0x40…0x5f  
UNSEALED Access: This data block is the remainder of the 32 byte data block when accessing data  
flash.  
SEALED Access: This data block is the remainder of the 32 byte data block when accessing  
Manufacturer Block Info.  
4.1.2.5 BlockDataChecksum( ): 0x60  
UNSEALED Access: This byte contains the checksum on the 32 bytes of block data read or written to  
data flash. The least-significant byte of the sum of the data bytes written must be complemented  
([255 – x], for x the least-significant byte) before being written to 0x60.  
Copyright © 2012, Texas Instruments Incorporated  
GENERAL DESCRIPTION  
17  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
 
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
SEALED Access: This byte contains the checksum for the 32 bytes of block data written to the  
Manufacturer Info Block. The least-significant byte of the sum of the data bytes written must be  
complemented ([255 – x], for x the least-significant byte) before being written to 0x60.  
4.1.2.6 BlockDataControl( ): 0x61  
UNSEALED Access: This command is used to control data flash access mode. Writing 0x00 to this  
command enables BlockData( ) to access general data flash. Writing a 0x01 to this command enables  
SEALED mode operation of DataFlashBlock( ).  
SEALED Access: This command is not available in SEALED mode.  
4.1.2.7 ApplicationStatus( ): 0x6a  
This byte function allows the system to read the bq27620-G1 Host Cfg data flash location. See Table 6-1  
for specific bit definitions.  
4.1.2.8 Reserved — 0x6b–0x7f  
18  
GENERAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
4.2 DATA FLASH INTERFACE  
4.2.1 ACCESSING THE DATA FLASH  
The bq27620-G1 data flash is a non-volatile memory that contains bq27620-G1 initialization, default, cell  
status, calibration, configuration, and user information. The data flash can be accessed in several different  
ways, depending on what mode the bq27620-G1 is operating in and what data is being accessed.  
Commonly accessed data flash memory locations, frequently read by a system, are conveniently  
accessed through specific instructions, already described in Section 4.1, DATA COMMANDS . These  
commands are available when the bq27620-G1 is either in UNSEALED or SEALED modes.  
Most data flash locations, however, are only accessible in UNSEALED mode by use of the bq27620-G1  
evaluation software or by data flash block transfers. These locations should be optimized and/or fixed  
during the development and manufacture processes. They become part of a golden image file and can  
then be written to multiple battery packs. Once established, the values generally remain unchanged during  
end-equipment operation.  
To access data flash locations individually, the block containing the desired data flash location(s) must be  
transferred to the command register locations, where they can be read to the system or changed directly.  
This is accomplished by sending the set-up command BlockDataControl( ) (0x61) with data 0x00. Up to 32  
bytes of data can be read directly from the BlockData( ) (0x40…0x5f), externally altered, then rewritten to  
the BlockData( ) command space. Alternatively, specific locations can be read, altered, and rewritten if  
their corresponding offsets are used to index into the BlockData( ) command space. Finally, the data  
residing in the command space is transferred to data flash, once the correct checksum for the whole block  
is written to BlockDataChecksum( ) (0x60).  
Occasionally, a data flash CLASS will be larger than the 32-byte block size. In this case, the  
DataFlashBlock( ) command is used to designate which 32-byte block the desired locations reside in. The  
correct command address is then given by 0x40 + offset modulo 32. For example, to access Terminate  
Voltage in the Gas Gauging class, DataFlashClass( ) is issued 80 (0x50) to set the class. Because the  
offset is 44, it must reside in the second 32-byte block. Hence, DataFlashBlock( ) is issued 0x01 to set the  
block offset, and the offset used to index into the BlockData( ) memory area is 0x40 + 44 modulo 32 =  
0x40 + 12 = 0x40 + 0x0C = 0x4C.  
Reading and writing subclass data are block operations up to 32 bytes in length. If during a write the data  
length exceeds the maximum block size, then the data is ignored.  
None of the data written to memory are bounded by the bq27620-G1 – the values are not rejected by the  
fuel gauge. Writing an incorrect value may result in hardware failure due to firmware program  
interpretation of the invalid data. The written data is persistent, so a power-on reset does resolve the fault.  
Copyright © 2012, Texas Instruments Incorporated  
GENERAL DESCRIPTION  
19  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
 
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
4.3 MANUFACTURER INFORMATION BLOCK  
The bq27620-G1 contains 32 bytes of user programmable data flash storage called the Manufacturer  
Info Block. The method for accessing these memory locations is slightly different, depending on whether  
the device is in UNSEALED or SEALED modes.  
When in UNSEALED mode and when and 0x00 has been written to BlockDataControl( ), accessing the  
manufacturer information blocks is identical to accessing general data flash locations. First, a  
DataFlashClass( ) command is used to set the subclass, then a DataFlashBlock( ) command sets the  
offset for the first data flash address within the subclass. The BlockData( ) command codes contain the  
referenced data flash data. When writing the data flash, a checksum is expected to be received by  
BlockDataChecksum( ). Only when the checksum is received and verified is the data actually written to  
data flash.  
When in SEALED mode or when 0x01 BlockDataControl( ) does not contain 0x00, data flash is no longer  
available in the manner used in UNSEALED mode. Rather than issuing subclass information, a  
designated Manufacturer Information Block is selected with the DataFlashBlock( ) command. Issuing a  
0x01 or 0x02 with this command causes the corresponding information blockto be transferred to the  
command space 0x40…0x5f for editing or reading by the system. Upon successful writing of checksum  
information to BlockDataChecksum( ), the modified block is returned to data flash. Note: The  
Manufacturer Info Block is read-only when in SEALED mode.  
20  
GENERAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
4.4 ACCESS MODES  
The bq27620-G1 provides three security modes (FULL ACCESS, UNSEALED, and SEALED) that control  
data flash access permissions, according to Table 4-6. Data Flash refers to those data flash locations,  
specified in Section 4.6, that are accessible to the user.  
Table 4-6. Data Flash Access  
Security Mode  
FULL ACCESS  
UNSEALED  
SEALED  
Data Flash  
R/W  
Manufacture Info Block  
R/W  
R/W  
R
R/W  
None  
Although FULL ACCESS and UNSEALED modes appear identical, only FULL ACCESS allows the  
bq27620-G1 to write access-mode transition keys.  
4.5 SEALING/UNSEALING DATA FLASH  
The bq27620-G1 implements a key-access scheme to transition between SEALED, UNSEALED, and  
FULL-ACCESS modes. Each transition requires that a unique set of two keys be sent to the bq27620-G1  
via the Control( ) control command. The keys must be sent consecutively, with no other data being written  
to the Control( ) register in between. Note that to avoid conflict, the keys must be different from the codes  
presented in the CNTL DATA column of Table 4-2 subcommands.  
When in SEALED mode, the CONTROL_STATUS [SS] bit is set, but when the UNSEAL keys are  
correctly received by the bq27620-G1, the [SS] bit is cleared. When the full-access keys are correctly  
received, then the CONTROL_STATUS [FAS] bit is cleared.  
Both the sets of keys for each level are 2 bytes each in length and are stored in data flash. The UNSEAL  
key (stored at Unseal Key 0 and Unseal Key 1) and the FULL-ACCESS key (stored at Full-Access Key  
0 and Full-Access Key 1) can only be updated when in FULL-ACCESS mode. The order of the keys is  
Key 1 followed by Key 0. The order of the bytes entered through the Control( ) command is the reverse of  
what is read from the part. For example, if the Key 1 and Key 0 of the Unseal Keys returns 0x1234 and  
0x5678, then the Control( ) should supply 0x3412 and 0x7856 to unseal the part.  
Copyright © 2012, Texas Instruments Incorporated  
GENERAL DESCRIPTION  
21  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
 
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
4.6 DATA FLASH SUMMARY  
The following table summarizes the data flash locations available to the user, including their default,  
minimum, and maximum values.  
Table 4-7. Data Flash Summary  
Subclass  
ID  
Data  
Type  
Units (EVSW  
Units)*  
Class  
Subclass  
Safety  
Safety  
Safety  
Safety  
Safety  
Safety  
Offset Name  
Min Value  
Max Value  
1200  
60  
Default Value  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
2
2
2
2
2
2
0
2
3
5
7
8
OT Chg  
I2  
U1  
I2  
0
0
0
0
0
0
550  
2
0.1°C  
s
OT Chg Time  
OT Chg Recovery  
OT Dsg  
1200  
1200  
60  
500  
600  
2
0.1°C  
0.1°C  
s
I2  
OT Dsg Time  
OT Dsg Recovery  
U1  
I2  
1200  
550  
0.1°C  
Configuration  
Configuration  
Configuration  
32  
32  
32  
Charge Inhibit Cfg  
Charge Inhibit Cfg  
Charge Inhibit Cfg  
0
2
4
Chg Inhibit Temp Low  
Chg Inhibit Temp High  
Temp Hys  
I2  
I2  
I2  
-400  
-400  
0
1200  
1200  
100  
0
0.1°C  
0.1°C  
0.1°C  
450  
50  
Configuration  
Configuration  
Configuration  
Configuration  
34  
34  
34  
34  
Charge  
Charge  
Charge  
Charge  
0
2
4
6
Charging Voltage  
Delta Temp  
I2  
I2  
I2  
I2  
0
4600  
500  
4200  
50  
mV  
0
0.1°C  
0.1°C  
0.1°C  
Suspend Low Temp  
Suspend High Temp  
-400  
-400  
1200  
1200  
-50  
550  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
36  
36  
36  
36  
36  
36  
36  
Charge Termination  
Charge Termination  
Charge Termination  
Charge Termination  
Charge Termination  
Charge Termination  
Charge Termination  
0
2
Taper Current  
I2  
I2  
0
0
1000  
1000  
1000  
60  
100  
25  
mA  
mAh  
mV  
s
Min Taper Capacity  
Taper Voltage  
4
I2  
0
100  
40  
6
Current Taper Window  
FC Set %  
U1  
I1  
0
9
-1  
-1  
0
100  
-1  
%
10  
11  
FC Clear %  
I1  
100  
98  
%
DODatEOC Delta T  
I2  
1000  
50  
0.1°C  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
48  
48  
48  
48  
48  
48  
48  
48  
48  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
0
1
Initial Standby  
Initial MaxLoad  
CC Threshold  
Design Capacity  
Design Voltage  
SOH LoadI  
I1  
I2  
-256  
0
0
-10  
-750  
mA  
mA  
-32767  
3
I2  
100  
32767  
32767  
32767  
0
1050  
mAh  
mA  
6
I2  
0
1140  
10  
12  
14  
16  
18  
I2  
0
-32767  
0
3600  
MilliVolt  
mA  
I2  
-400  
Default Temp  
Data Flash Version  
Device Name  
I2  
3050  
0xffff  
x
2982  
°K  
H2  
S8  
0x0000  
x
0x0000  
bq27620  
-
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
49  
49  
49  
49  
49  
49  
49  
49  
Discharge  
Discharge  
Discharge  
Discharge  
Discharge  
Discharge  
Discharge  
Discharge  
0
1
SOC1 Set Threshold  
SOC1 Clear Threshold  
SysDown Set Volt Threshold  
SysDown Set Volt Time  
SysDown Clear Volt  
U1  
U1  
I2  
0
255  
255  
150  
175  
3150  
2
mA  
mA  
mV  
s
0
0
5
4200  
60  
7
U1  
I2  
0
8
0000  
0
4200  
16384  
32767  
32767  
3400  
0
mV  
15  
17  
19  
Def Cell 0 DOD at EOC  
Def Avg I Last Run  
I2  
I2  
-32768  
-32768  
-50  
-50  
mA  
Def Avg P Last Run  
I2  
mWatt  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
64  
64  
64  
64  
64  
64  
64  
Registers  
Registers  
Registers  
Registers  
Registers  
Registers  
Registers  
0
2
3
4
6
7
8
Op Config  
H2  
U1  
U1  
U2  
H1  
H1  
H1  
0x0000  
0
0xffff  
25  
0x0853  
1
SOC Delta  
i2c Timeout  
DF Wr Ind Wait  
OpConfig B  
OpConfig C  
Clk Ctl Reg  
%
%
%
0
7
4
0
65535  
0xff  
0xff  
0x0f  
0
0x00  
0x00  
0x00  
0x4b  
0x28  
0x09  
Hex  
Configuration  
Configuration  
Configuration  
68  
68  
68  
Power  
Power  
Power  
0
4
6
Flash Update OK Voltage  
Sleep Current  
I2  
I2  
0
0
0
4200  
100  
2800  
10  
mV  
mA  
s
Sleep Time  
U1  
100  
20  
22  
GENERAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
 
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
Table 4-7. Data Flash Summary (continued)  
Subclass  
ID  
Data  
Type  
Units (EVSW  
Units)*  
Class  
Subclass  
Power  
Offset Name  
Min Value  
Max Value  
700  
Default Value  
Configuration  
Configuration  
68  
68  
7
9
Hibernate I  
U2  
0
8
mA  
Power  
Hibernate V  
Block [0-31]  
U2  
2400  
3000  
2550  
mV  
System Data  
57  
Manufacturer Info  
0-31  
H1  
0x00  
0xff  
[Table]  
-
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
IT Cfg  
0
Load Select  
U1  
U1  
U1  
U1  
U2  
I2  
0
255  
255  
1
0
1
Load Mode  
0
21  
22  
24  
44  
46  
49  
53  
55  
57  
59  
64  
68  
70  
72  
74  
76  
83  
Max Res Factor  
Min Res Factor  
Ra Filter  
0
255  
15  
5
0
255  
0
1000  
32767  
4200  
65534  
-100  
800  
3200  
200  
500  
0
Terminate Voltage  
Term V Delta  
-32768  
mV  
mV  
s
I2  
0
ResRelax Time  
User Rate-mA  
User Rate-mW  
Reserve Cap-mAh  
Reserve Cap-mWh  
Min Delta Voltage  
Ra Max Delta  
U2  
I2  
0
-2000  
mA  
cW  
I2  
-7200  
-350  
0
I2  
0
9000  
14000  
32000  
65535  
65535  
32767  
32767  
100  
0
mA  
10mW  
I2  
0
0
I2  
-32000  
0
U2  
U2  
U2  
U2  
U1  
U1  
0
0
0
0
0
0
44  
10  
5000  
200  
10  
80  
mΩ  
mV  
Num  
Num  
%
DeltaV Max dV  
Max Res Scale  
Min Res Scale  
Fast Scale Start SOC  
LC Dection Sensitivity  
100  
%
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
81  
81  
81  
81  
81  
81  
Current Thresholds  
Current Thresholds  
Current Thresholds  
Current Thresholds  
Current Thresholds  
Current Thresholds  
6
8
Dsg Relax Time  
U2  
U1  
U1  
U1  
U1  
U2  
0
0
0
0
0
0
8191  
255  
63  
60  
60  
s
s
s
Chg Relax Time  
9
Quit Relax Time  
1
10  
11  
12  
Transient Factor Charge  
Transient Factor Discharge  
Max IR Correct  
255  
255  
1000  
128  
128  
400  
mV  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
Gas Gauging  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
State  
State  
State  
State  
State  
State  
State  
State  
State  
State  
0
1
Host Cfg  
H1  
I2  
0x01  
0xff  
0x00  
Qmax Cell 0  
Cycle Count0  
Qmax Cell 1  
Cycle Count 1  
Chg DoD0 C 0  
Chg DoD0 C 1  
DoDatEOC  
0
0
0
0
0
0
0
0
0
32767  
65535  
32767  
65535  
65535  
65535  
65535  
65535  
65535  
16384  
rate  
rate  
3
U2  
I2  
0
5
16384  
7
U2  
U2  
U2  
U2  
U2  
U2  
0
0
9
11  
15  
25  
27  
0
0
T Rise  
20  
1000  
Num  
Num  
T Time Constant  
OCV Table  
83  
85  
OCVa Table  
Def Ra  
0
0
Chem ID  
H2  
H1  
0x0000  
0x00  
0xffff  
0x00  
0x1124  
0x55  
hex  
-
Default Ra  
Tables  
Cell0 R_a flag  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Default Ra  
Tables  
85  
85  
85  
85  
85  
85  
85  
Def Ra  
Def Ra  
Def Ra  
Def Ra  
Def Ra  
Def Ra  
Def Ra  
1
3
Cell0 R_a 0  
Cell0 R_a 1  
Cell0 R_a 2  
Cell0 R_a 3  
Cell0 R_a 4  
Cell0 R_a 5  
Cell0 R_a 6  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
1
1
1
1
1
1
1
32767  
32767  
32767  
32767  
32767  
32767  
32767  
424  
509  
538  
535  
461  
460  
509  
Default Ra  
Tables  
Default Ra  
Tables  
5
Default Ra  
Tables  
7
Default Ra  
Tables  
9
Default Ra  
Tables  
11  
13  
Default Ra  
Tables  
Copyright © 2012, Texas Instruments Incorporated  
GENERAL DESCRIPTION  
23  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
Units (EVSW  
Table 4-7. Data Flash Summary (continued)  
Subclass  
Data  
Class  
ID  
Subclass  
Offset Name  
Cell0 R_a 7  
Type  
Min Value  
Max Value  
Default Value  
Units)*  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Default Ra  
Tables  
85  
Def Ra  
15  
17  
19  
21  
23  
25  
27  
29  
I2  
1
32767  
578  
Default Ra  
Tables  
85  
85  
85  
85  
85  
85  
85  
Def Ra  
Def Ra  
Def Ra  
Def Ra  
Def Ra  
Def Ra  
Def Ra  
Cell0 R_a 8  
Cell0 R_a 9  
Cell0 R_a 10  
Cell0 R_a 11  
Cell0 R_a 12  
Cell0 R_a 13  
Cell0 R_a 14  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
1
1
1
1
1
1
1
32767  
32767  
32767  
32767  
32767  
32767  
32767  
563  
Default Ra  
Tables  
544  
Default Ra  
Tables  
574  
Default Ra  
Tables  
726  
Default Ra  
Tables  
956  
Default Ra  
Tables  
1222  
8099  
Default Ra  
Tables  
Ra Table  
Ra Table  
88  
88  
R_a0  
R_a0  
0
1
Cell0 R_a flag  
Cell0 R_a 0  
H1  
I2  
0x00  
1
0x255  
32767  
0x55  
424  
-
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
88  
88  
88  
88  
88  
88  
88  
88  
88  
88  
88  
88  
88  
88  
R_a0  
R_a0  
R_a0  
R_a0  
R_a0  
R_a0  
R_a0  
R_a0  
R_a0  
R_a0  
R_a0  
R_a0  
R_a0  
R_a0  
3
Cell0 R_a 1  
Cell0 R_a 2  
Cell0 R_a 3  
Cell0 R_a 4  
Cell0 R_a 5  
Cell0 R_a 6  
Cell0 R_a 7  
Cell0 R_a 8  
Cell0 R_a 9  
Cell0 R_a 10  
Cell0 R_a 11  
Cell0 R_a 12  
Cell0 R_a 13  
Cell0 R_a 14  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
509  
538  
535  
461  
460  
509  
578  
563  
544  
574  
726  
956  
1222  
8099  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
Ra Table  
Ra Table  
89  
89  
R_a1  
R_a1  
0
1
Cell1 R_a flag  
Cell1 R_a 0  
H1  
I2  
0x00  
1
0x255  
32767  
0x55  
424  
-
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
89  
89  
89  
89  
89  
89  
89  
89  
89  
89  
89  
89  
89  
89  
R_a1  
R_a1  
R_a1  
R_a1  
R_a1  
R_a1  
R_a1  
R_a1  
R_a1  
R_a1  
R_a1  
R_a1  
R_a1  
R_a1  
3
Cell1 R_a 1  
Cell1 R_a 2  
Cell1 R_a 3  
Cell1 R_a 4  
Cell1 R_a 5  
Cell1 R_a 6  
Cell1 R_a 7  
Cell1 R_a 8  
Cell1 R_a 9  
Cell1 R_a 10  
Cell1 R_a 11  
Cell1 R_a 12  
Cell1 R_a 13  
Cell1 R_a 14  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
509  
538  
535  
461  
460  
509  
578  
563  
544  
574  
726  
956  
1222  
8099  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
Ra Table  
Ra Table  
90  
90  
R_a0x  
R_a0x  
0
1
xCell0 R_a flag  
xCell0 R_a 0  
H1  
I2  
0x00  
1
0x255  
32767  
0x55  
424  
-
2-10  
2-10  
Ω
Ra Table  
90  
R_a0x  
3
xCell0 R_a 1  
I2  
1
32767  
509  
Ω
24  
GENERAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
Table 4-7. Data Flash Summary (continued)  
Subclass  
ID  
Data  
Type  
Units (EVSW  
Units)*  
Class  
Subclass  
Offset Name  
Min Value  
Max Value  
Default Value  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ra Table  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
R_a0x  
5
xCell0 R_a 2  
I2  
1
32767  
538  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
R_a0x  
R_a0x  
R_a0x  
R_a0x  
R_a0x  
R_a0x  
R_a0x  
R_a0x  
R_a0x  
R_a0x  
R_a0x  
R_a0x  
7
xCell0 R_a 3  
xCell0 R_a 4  
xCell0 R_a 5  
xCell0 R_a 6  
xCell0 R_a 7  
xCell0 R_a 8  
xCell0 R_a 9  
xCell0 R_a 10  
xCell0 R_a 11  
xCell0 R_a 12  
xCell0 R_a 13  
xCell0 R_a 14  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
1
1
1
1
1
1
1
1
1
1
1
1
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
535  
461  
460  
509  
578  
563  
544  
574  
726  
956  
1222  
8099  
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
Ra Table  
Ra Table  
91  
91  
R_a1x  
R_a1x  
0
1
xCell1 R_a flag  
xCell1 R_a 0  
H1  
I2  
0x00  
1
0x255  
32767  
0x55  
424  
-
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
2-10  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
Ra Table  
91  
91  
91  
91  
91  
91  
91  
91  
91  
91  
91  
91  
91  
91  
R_a1x  
R_a1x  
R_a1x  
R_a1x  
R_a1x  
R_a1x  
R_a1x  
R_a1x  
R_a1x  
R_a1x  
R_a1x  
R_a1x  
R_a1x  
R_a1x  
3
xCell1 R_a 1  
xCell1 R_a 2  
xCell1 R_a 3  
xCell1 R_a 4  
xCell1 R_a 5  
xCell1 R_a 6  
xCell1 R_a 7  
xCell1 R_a 8  
xCell1 R_a 9  
xCell1 R_a 10  
xCell1 R_a 11  
xCell1 R_a 12  
xCell1 R_a 13  
xCell1 R_a 14  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
32767  
509  
538  
535  
461  
460  
509  
578  
563  
544  
574  
726  
956  
1222  
8099  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
Calibration  
Calibration  
Calibration  
104  
104  
104  
Data  
Data  
Data  
2
3
4
Int Temp Offset  
Ext Temp Offset  
Pack V Offset  
I1  
I1  
I1  
-128  
-128  
-128  
127  
127  
127  
0
0
0
Security  
Security  
Security  
112  
112  
112  
Codes  
Codes  
Codes  
0
4
8
Sealed to Unsealed  
Unsealed to Full  
FactRestore Key  
H4  
H4  
H4  
0x0000000  
0
0xffffffff  
0xffffffff  
0xffffffff  
0x00000000  
0x00000000  
0x00000000  
-
-
-
0x0000000  
0
0x0000000  
0
Copyright © 2012, Texas Instruments Incorporated  
GENERAL DESCRIPTION  
25  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
5 FUNCTIONAL DESCRIPTION  
5.1 FUEL GAUGING  
The bq27620-G1 measures cell voltage and temperature to determine battery SOC. Current is not directly  
measured but is estimated by the Impedance Track™ with Dynamic Voltage Correlation (DVC) algorithm.  
When an application load is applied, the impedance of the cell is measured by comparing the OCV  
obtained from a predefined function for present SOC with the measured voltage under load.  
Measurements of OCV and battery impedance determine chemical state of charge. The bq27620-G1  
acquires and updates the battery-impedance profile during normal battery usage to determine  
FullChargeCapacity( ) and StateOfCharge( ), specifically for the present load and temperature.  
FullChargeCapacity( ) is reported as capacity available from a fully charged battery under the present load  
and temperature until Voltage( ) reaches the Terminate Voltage. NominalAvailableCapacity( ) and  
FullAvailableCapacity( ) are the uncompensated (no or light load) versions of RemainingCapacity( ) and  
FullChargeCapacity( ) respectively.  
The bq27620-G1 has two flags accessed by the Flags( ) function that warns when the battery’s SOC has  
fallen to critical levels. When RemainingCapacity( ) falls below the first capacity threshold, specified in  
SOC1 Set Threshold, the [SOC1] (State of Charge Initial) flag is set. The flag is cleared once  
RemainingCapacity( ) rises above SOC1 Set Threshold. All units are in mAh.  
When Voltage( ) falls below the system shut down threshold voltage, SysDown Set Volt Threshold, the  
[SYSDOWN] flag is set, serving as a final warning to shut down the system. The SOC_INT also signals.  
When Voltage( ) rises above SysDown Clear Voltage and the [SYSDOWM] flag has already been set,  
the [SYSDOWN] flag is cleared. The SOC_INT also signals such change. All units are in mV.  
26  
FUNCTIONAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
5.2 IMPEDANCE TRACK™ VARIABLES  
The bq27620-G1 has several data flash variables that permit the user to customize the Impedance  
Track™ algorithm for optimized performance. These variables are dependent upon the power  
characteristics of the application as well as the cell itself.  
5.2.1 Load Mode  
Load Mode is used to select either the constant-current or constant-power model for the Impedance  
Track™ algorithm as used in Load Select (see Load Select). When Load Mode is 0, the Constant  
Current Model is used (default). When 1, the Constant Power Model is used. The [LDMD] bit of  
CONTROL_STATUS reflects the status of Load Mode.  
5.2.2 Load Select  
Load Select defines the type of power or current model to be used to compute load-compensated  
capacity in the Impedance Track™ algorithm. If Load Mode = 0 (Constant-Current) then the options  
presented in Table 5-1 are available.  
Table 5-1. Constant-Current Model Used When Load Mode = 0  
LoadSelect Value  
Current Model Used  
Average discharge current from previous cycle: There is an internal register that records the average discharge  
current through each entire discharge cycle. The previous average is stored in this register.  
0
Present average discharge current: This is the average discharge current from the beginning of this discharge cycle  
until present time.  
1(default)  
2
3
4
5
6
Average current: based on EffectiveCurrent( )  
Current: based off of a low-pass-filtered version of EffectiveCurrent( ) (τ =14 s)  
Design capacity / 5: C Rate based off of Design Capacity /5 or a C/5 rate in mA.  
AtRate (mA): Use whatever current is in AtRate( )  
User_Rate-mA: Use the value in User_Rate-mA. This mode provides a completely user-configurable method.  
If Load Mode = 1 (Constant Power) then the following options shown in Table 5-2 are available  
Table 5-2. Constant-Power Model Used When Load Mode = 1  
LoadSelect Value  
Power Model Used  
Average discharge power from previous cycle: There is an internal register that records the average discharge power  
through each entire discharge cycle. The previous average is stored in this register.  
0
Present average discharge power: This is the average discharge power from the beginning of this discharge cycle  
until present time.  
1(default)  
2
3
4
5
6
Average current × voltage: based off the EffectiveCurrent( ) and Voltage( ).  
Current × voltage: based off of a low-pass-filtered version of EffectiveCurrent( ) (τ=14 s) and Voltage( )  
Design energy / 5: C Rate based off of Design Energy /5 or a C/5 rate in mA.  
AtRate (10 mW): Use whatever value is in AtRate( ).  
User_Rate-10mW: Use the value in User_Rate-10mW. This mode provides a completely user-configurable method.  
5.2.3 Reserve Cap-mAh  
Reserve Cap-mAh determines how much actual remaining capacity exists after reaching  
0
RemainingCapacity( ), before Terminate Voltage is reached. A no-load rate of compensation is applied  
to this reserve.  
5.2.4 Reserve Cap-mWh  
Reserve Cap-mWh determines how much actual remaining capacity exists after reaching  
0
AvailableEnergy( ), before Terminate Voltage is reached. A no-load rate of compensation is applied to  
this reserve capacity.  
Copyright © 2012, Texas Instruments Incorporated  
FUNCTIONAL DESCRIPTION  
27  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
 
 
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
5.2.5 Dsg Current Threshold Rate  
This register is used as a threshold by many functions in the bq27620-G1 to determine if actual discharge  
current is flowing into or out of the cell. The default for this register is in Section 4.6, which should be  
sufficient for most applications. This threshold should be set low enough to be below any normal  
application load current but high enough to prevent noise or drift from affecting the measurement.  
5.2.6 Chg Current Threshold Rate  
This register is used as a threshold by many functions in the bq27620-G1 to determine if actual charge  
current is flowing into or out of the cell. The default for this register is in Section 4.6, which should be  
sufficient for most applications. This threshold should be set low enough to be below any normal charge  
current but high enough to prevent noise or drift from affecting the measurement.  
5.2.7 Quit Current, DSG Relax Time, CHG Relax Time, and Quit Relax Time  
The Quit Current is used as part of the Impedance Track™ algorithm to determine when the bq27620-G1  
enters relaxation mode from a current-flowing mode in either the charge direction or the discharge  
direction. The value of Quit Current is set to a default value in Section 4.6 and should be above the  
standby current of the system.  
Either of the following criteria must be met to enter relaxation mode:  
| EffectiveCurrent( ) | < | Quit Current | for Dsg Relax Time  
| EffectiveCurrent( ) | < | Quit Current | for Chg Relax Time  
After about 5 minutes in relaxation mode, the bq27620-G1 attempts to take accurate OCV readings. An  
additional requirement of dV/dt < 1 μV/s is required for the bq27620-G1 to perform optimization cycle.  
These updates are used in the Impedance Track™ algorithms. It is critical that the battery voltage be  
relaxed during OCV readings to and that the current is not be higher than C/20 when attempting to go into  
relaxation mode.  
Quit Relax Time specifies the minimum time required for EffectiveCurrent( ) to remain above the  
QuitCurrent threshold before exiting relaxation mode.  
5.2.8 Delta Voltage  
The bq27620-G1 stores the maximum difference of Voltage( ) during short load spikes and normal load,  
so the Impedance Track™ algorithm can calculate remaining capacity for pulsed loads. It is not  
recommended to change this value.  
5.2.9 Default Ra and Ra Tables  
These tables contain encoded data and, with the exception of the Default Ra Tables, are automatically  
updated during device operation. Arbitrations happen on pack insert and based on a Ra measurement. No  
user changes should be made except for reading/writing the values from a pre-learned pack (part of the  
process for creating golden image files).  
28  
FUNCTIONAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
5.3 DETAILED PIN DESCRIPTION  
5.3.1 The Operation Configuration Register  
Some bq27620-G1 pins are configured via the Operation Configuration data flash register, as indicated  
in Table 5-3. This register is programmed/read via the methods described in Section 4.2.1, Accessing the  
Data Flash. The register is located at subclass = 64, offset = 0.  
Table 5-3. Operation Configuration Bit Definition  
bit7  
RESCAP  
0
bit6  
BATG_OVR  
0
bit5  
INT_BREM  
0
bit4  
PFC1  
0
bit3  
PFC2  
1
bit2  
bit1  
bit0  
High Byte  
Default =  
-
0
0
0
0x08  
0x73  
Low Byte  
Default =  
INT_FOCV  
0
IDSELEN  
1
LDODEOC  
1
RMFCC  
1
SOCPOL  
0
BATGPOL  
0
BATLPOL  
1
TEMPS  
1
RESCAP = No-load rate of compensation is applied to the reserve capacity calculation. True when set.  
BATG_OVR = BAT_GD override bit. If the gauge enters Hibernate only due to the cell voltage, the BAT_GD pin will not negate. True when  
set.  
INT_BERM = Battery removal interrupt bit. The SOC_INT pulses 1ms when the battery removal interrupt is enabled. True when set.  
PFC1/PFC2 = Pin function code (PFC) mode selection: PFC 0, 1, or 2 selected by 0/0, 0/1, or 1/0, respectively.  
INT_FOCV = Indication of the measurement of the OCV during the initialization. The SOC_INT will pulse during the first measurement if this  
bit is set. True when set.  
IDSELEN = Enables cell profile selection feature. True when set.  
LDODEOC = Learned Dod at EOC is the recording of DoD at EOC when set. If cleared the bq27620 records the the V_charger voltage and  
uses it to dynamically compute DoD at EOC based on the current temperature. True when set.  
RMFCC = RM is updated with the value from FCC, on valid charge termination. True when set.  
SOCPOL = SOC interrupt polarity is active-low. True when cleared.  
BATGPOL = BAT_GD pin is active-low. True when cleared.  
BATLPOL = BAT_LOW pin is active-high. True when set.  
TEMPS = Selects external thermistor for Temperature( ) measurements. True when set.  
Copyright © 2012, Texas Instruments Incorporated  
FUNCTIONAL DESCRIPTION  
29  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
 
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
Some bq27620-G1 pins are configured via the Operation Configuration B data flash register, as  
indicated in Table 5-4. This register is programmed/read via the methods described in Section 4.2.1:  
Accessing the Data Flash. The register is located at subclass = 64, offset = 9.  
Table 5-4. Operation Configuration B Bit Definition  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
Byte  
WRTEMP  
BIE  
BL_INT  
GNDSEL  
FCE  
DFWrIndBL RFACTSTE INDFACRE  
P
1
S
1
Default=  
0
1
0
0
1
0
0x4B  
WRTEMP = Enables the temperature write. The temperature could be written by the host. True when set.  
BIE = Battery insertion detection enable. When the battery insertion detection is disabled, the gauge relies on the host command to set the  
BAT_DET bit. True when set.  
BL_INT = Battery low interrupt enable. True when set.  
GNDSEL = The ADC ground select control. The Vss (Pin D1) is selected as ground reference when the bit is clear. Pin A1 is selected when  
the bit is set.  
FCE = The Fast Convergence Enabled.  
DFWrIndBL = DataFlash Write Indication. SOC_INT is used for indication if the bit is clear. BAT_LOW is used for indication if the bit is set.  
RFACTSTEP = Enables Ra Step up/down to Min/Max Res Factor before disabling Ra updates.  
INDFACRES = Although the default is '1', the function associated with this bit has been removed from firmware.  
Table 5-5. Operation Configuration C Bit Definition  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
Byte  
BATGSPUE BATGWPU BATLSPUE BATLWPUE  
VCCE  
DeltaVOpt1 DeltaVOpt0  
N
0
EN  
0
N
1
N
0
Default =  
1
0
0
0
0x28  
BATGSPUEN = BAT_GD pin strong pull-up enable.  
BATGWPUEN = BAT_GD pin weak pull-up enable.  
BATLSPUEN = BAT_LOW pin strong pull-up enable.  
BATLWPUEN = BAT_LOW pin weak pull-up enable.  
VCCE = Voltage Consistency Check Enable.  
DeltaVOpt[1:0] = Configures options for determination of Delta Voltage which is defined as the maximum difference in Voltage( ) during  
normal load and short load spikes. Delta Voltage is a used as a compensation factor for calculating for RemainingCapacity( ) under pulsed  
loads.  
0/0 = Standard DeltaV. Average variance from steady state voltage used to determine end of discharge voltage. (Default)  
0/1 = No Averaging. The last instantaneous change in Voltage( ) from steady state is used to determine the end of discharge voltage.  
1/0 = Use the value in Min Delta Voltage.  
1/1 = Not used.  
5.3.2 Pin Function Code Descriptions  
This fuel gauge has several pin-function configurations available for the end application. Each  
configuration is assigned a pin function code, or PFC, specified by Op Config [PFC_CFG1, PFC_CFG0].  
(see Table 5-6 below.) If the fuel gauge is configured to measure external temperature via Op Config  
[TEMPS], a voltage bias of approximately 125 mSec will be applied periodically to the external thermistor  
network in order to make a temperature measurement.  
30  
FUNCTIONAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
 
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
Table 5-6. Pin Function Code Summary  
External Thermistor Bias Rate  
([TEMPS]=1 only)  
PFC_CFG  
Dis-  
BAT_GD pin  
PFC  
[1:0]  
charge  
Charge  
Sleep  
Usage for PFC Pin Function Description  
0
0/0  
1 / sec  
1 / sec  
1 / 20  
sec  
N/A  
A dedicated external thermistor is used for the fuel gauge to monitor battery  
temperature in all conditions. The BAT_GD pin is not used to interface with a charger  
IC.  
1
2
3
0/1  
1/0  
1/1  
Temperature-  
A dedicated external thermistor is used for the fuel gauge to monitor battery  
based Charge temperature in all conditions. If battery charging temperature falls outside of the  
Inhibit.  
preset range defined in data flash, a charger can be disabled via the BAT_GD pin  
until cell temperature recovers. See Charge Inhibit and Suspend, for additional  
details.  
None  
N/A  
A shared external thermistor is supported between the fuel gauge and a charger IC;  
however, the BAT_GD pin is not used to interface with the charger IC. The fuel gauge  
will bias the thermistor for battery temperature measurement and BAT INSERT  
CHECK mode (If OpConfig B [BIE] = 1) under discharge and relaxation conditions  
only so the charger IC can separately bias the thermistor during charge mode.  
1 / sec  
Follows Flags( ) Used to disable a battery charger IC when fuel gauge has determined the battery is  
[FC] flags bit.  
fully charged. The BAT_GD pin reflects the logical status of the Flags( ) [FC] bit and  
is typically connected directly to the charger's Charge Enable/Disable (CE/CD) pin or  
via a network to drive the charger's Temperature Sense (TS) pin.  
5.3.3 BAT_LOW Pin  
The BAT_LOW pin provides a system processor with an electrical indicator of battery status. The signaling  
on the BAT_LOW pin follows the status of the [SOC1] bit in the Flags( ) register. Note that the polarity of  
the BAT_LOW pin can be inverted via the [BATL_POL] bit of Operation Configuration.  
5.3.4 Power Path Control With the BAT_GD Pin  
The bq27620-G1 must operate in conjunction with other electronics in a system appliance, such as  
chargers or other ICs and application circuits that draw appreciable power. After a battery is inserted into  
the system, there should be no charging current or a discharging current higher than C/20, so that an  
accurate OCV can be read. The OCV is used for helping determine which battery profile to use, as it  
constitutes part of the battery impedance measurement  
When a battery is inserted into a system, the Impedance Track™ algorithm requires that no charging of  
the battery takes place and that any discharge is limited to less than C/20—these conditions are sufficient  
for the fuel gauge to take an accurate OCV reading. To disable these functions, the BAT_GD pin is merely  
negated from the default setting. Once an OCV reading has be made, the BAT_GD pin is asserted,  
thereby enabling battery charging and regular discharge of the battery. The Operation Configuration  
[BATG_POL] bit can be used to set the polarity of the battery good signal, should the default configuration  
need to be changed.  
Figure 5-1 details how the BAT_GD pin functions in the context of battery insertion and removal, as  
well as NORMAL vs. SLEEP modes.  
In PFC 1, the BAT_GD pin is also used to disable battery charging when the bq27620-G1 reads  
battery temperatures outside the range defined by [Charge Inhibit Temp Low, Charge Inhibit Temp  
High]. The BAT_GD line is asserted once temperature falls within the range [Charge Inhibit Temp  
Low + Temp Hys, Charge Inhibit Temp High – Temp Hys].  
Copyright © 2012, Texas Instruments Incorporated  
FUNCTIONAL DESCRIPTION  
31  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
POR  
Exit From HIBERNATE  
Battery Removed  
Exit From HIBERNATE  
Communication Activity  
AND Comm address is for bq27520  
BAT INSERT CHECK  
Check for battery insertion  
from HALT state.  
No gauging  
bq27520 clears Control Status  
[HIBERNATE] = 0  
Flags [BAT_DET] = 0  
Recommend Host also set Control  
Status [HIBERNATE] = 0  
Entry to NORMAL  
Exit From NORMAL  
Flags [BAT_DET] = 0  
Flags [BAT_DET] = 1  
Exit From SLEEP  
NORMAL  
Flags [BAT_DET] = 0  
Fuel gauging and data  
updated every1s  
HIBERNATE  
Wakeup From HIBERNATE  
Communication Activity  
AND  
Comm address is NOT for bq27620  
Disable all bq27620  
subcircuits except GPIO.  
Negate BAT_GD  
Exit From SLEEP  
| EffectiveCurrent( ) | > Sleep Current  
OR  
Entry to SLEEP  
Operation Configuration[SLEEP] = 1  
AND  
Current is Detected above IWAKE  
|
EffectiveCurrent | Sleep Current  
AND  
Control Status[SNOOZE] = 0  
Exit From WAIT_HIBERNATE  
Cell relaxed  
AND  
| EffectiveCurrent | < Hibernate  
Current  
WAIT_HIBERNATE  
SLEEP  
OR  
Fuel gauging and data  
updated every 20seconds  
BAT_GD unchanged  
Cell relaxed  
AND  
VCELL < Hibernate Voltage  
Fuel gauging and data  
updated every 20 seconds  
(LFO ON and HFO OFF)  
Exit From WAIT_HIBERNATE  
Host must set Control Status  
[HIBERNATE] = 0  
AND  
VCELL > Hibernate Voltage  
System Shutdown  
Exit FromSLEEP  
(Host has set Control Status  
[HIBERNATE] = 1  
OR  
VCELL < Hibernate Voltage  
System Sleep  
Figure 5-1. Power Mode Diagram  
5.3.5 Battery Detection Using the BI/TOUT Pin  
During power-up or hibernate activities, or any other activity where the bq27620-G1 needs to determine  
whether a battery is connected or not, the fuel gauge applies a test for battery presence. First, the  
BI/TOUT pin is put into high-Z status. The weak 1.8Mpull-up resistor will keep the pin high while no  
battery is present. When a battery is inserted (or is already inserted) into the system device, the BI/TOUT  
pin will be pulled low. This state is detected by the fuel gauge, which polls this pin every second when the  
gauge has power. A battery-disconnected status is assumed when the bq27620-G1 reads a thermistor  
voltage that is near 2.5V.  
5.3.6 SOC_INT pin  
The SOC_INT pin generates a pulse of different pulse widths under various conditions as indicated by the  
table below. After initialization only one SOC_INT pulse will be generated within any given one second  
time slot and therefore, may indicate multiple event conditions.  
32  
FUNCTIONAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
 
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
Table 5-7. SOC_INT Pulse Condition and Width  
Enable Condition  
SOC_Delta 0  
Always  
Pulse Width  
Comment  
During charge, when the SOC is greater than (>) the points, 100% - n  
× SOC_Delta and 100%;  
During discharge, when the SOC reaches () the points 100% - n ×  
SOC_Delta and 0%;  
where n is an integer starting from 0 to the number generating SOC no  
less than 0%  
SOC_Delta  
Point  
1 ms  
SOC1 Set  
1 ms  
1 ms  
1 ms  
When RSOC reached the SOC1 Set or Clear threshold set in the Data  
Flash and BL_INT bit in Operation Configuration B is set.  
SOC1 Clear Always  
SysDown Set Always  
When the Battery Voltage reached the SysDown Set or Clear threshold  
set in the Data Flash  
SysDown  
Always  
Clear  
1 ms  
1 ms  
State  
Change  
When there is a state change including charging, discharging and  
relaxation. This function is disabled when SOC_Delta is set to 0.  
SOC_Delta 0  
Battery  
Removal  
INT_BREM bit is set in  
OpConfig AND BIE bit is  
set  
1 ms  
This function is disabled when BIE is cleared.  
About 165ms. Same  
as the OCV  
command execution  
time period  
SOC_INT pulses for the OCV command after the initialization.  
OCV  
Command  
After Initialization  
About 165ms. Same  
as the OCV  
This command is to generate the SOC_INT pulse during the  
initialization.  
OCV  
INT_FOCV bit is set in  
Command  
OpConfig  
command execution  
time period  
Programmmable  
SOC_INT is used to indicate the data flash update. The gauge will wait  
Data Flash  
Write  
After Initialization AND  
DFWrIndWaitTime 0  
pulse width flash (see DFWrIndWaitTime times 5μs after the SOC_INT signal to start the  
comment)  
data flash update. This function is disabled if DFWrIndWaitTime is set  
to 0.  
OTC or OTD  
Flags  
1 ms  
Upon first assertion of Flags[OTC] or Flags[OTD] over temperature  
conditions.  
Always  
Copyright © 2012, Texas Instruments Incorporated  
FUNCTIONAL DESCRIPTION  
33  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
5.4 TEMPERATURE MEASUREMENT  
The bq27620-G1 measures battery temperature via its TS input, in order to supply battery temperature  
status information to the fuel gauging algorithm and charger-control sections of the gauge. Alternatively, it  
can also measure internal temperature via its on-chip temperature sensor, but only if the [TEMPS] bit of  
the Operation Configuration register is cleared. The [GNDSEL] bit of Operation Configuration B register  
selects the ground reference of the ADC converter for temperature measurement.  
Regardless of which sensor is used for measurement, a system processor can request the current battery  
temperature by calling the Temperature( ) function (see Section 4.1.1, Standard Data Commands, for  
specific information).  
The thermistor circuit requires the use of an external NTC 103AT-type thermistor. Additional circuit  
information for connecting this thermistor to the bq27620-G1 is shown in Section 8, Reference Schematic.  
5.5 OVERTEMPERATURE INDICATION  
5.5.1 Overtemperature: Charge  
If during charging, Temperature( ) reaches the threshold of OT Chg for a period of OT Chg Time and  
EffectiveCurrent( ) > Chg Current Threshold, then the [OTC] bit of Flags( ) is set. When Temperature( )  
falls to OT Chg Recovery, the [OTC] of Flags( ) is reset.  
If OT Chg Time = 0, then the feature is completely disabled.  
5.5.2 Overtemperature: Discharge  
If during discharging, Temperature( ) reaches the threshold of OT Dsg for a period of OT Dsg Time, and  
EffectiveCurrent( ) –Dsg Current Threshold, then the [OTD] bit of Flags( ) is set. When Temperature( )  
falls to OT Dsg Recovery, the [OTD] bit of Flags( ) is reset.  
If OT Dsg Time = 0, then feature is completely disabled.  
5.6 CHARGING AND CHARGE-TERMINATION INDICATION  
5.6.1 Detecting Charge Termination  
For proper bq27620-G1 operation, the cell charging voltage must be specified by the user. The default  
value for this variable is Charging Voltage Section 4.6.  
The bq27620-G1 detects charge termination when (1) during 2 consecutive periods of Current Taper  
Window, the EffectiveCurrent( ) is < Taper Current, (2) during the same periods, the accumulated  
change in capacity > Min Taper Charge /Current Taper Window, and (3) Voltage( ) > Charging  
Voltage – Taper Voltage. When this occurs, the [CHG] bit of Flags( ) is cleared. Also, if the [RMFCC] bit  
of Operation Configuration is set, then RemainingCapacity( ) is set equal to FullChargeCapacity( ).  
5.6.2 Charge Inhibit and Suspend  
The bq27620-G1 can indicate when battery temperature has fallen below or risen above predefined  
thresholds Charge Inhibit Temp Low or Charge Inhibit Temp High, respectively. In this mode, the  
[CHG_INT] bit is set and the BAT_GD pin is deserted to indicate this condition. The [CHG_INT] bit is  
cleared and the BAT_GD pin is asserted once the battery temperature returns to the range [Charge  
Inhibit Temp Low + Temp Hys, Charge Inhibit Temp High – Temp Hys].  
When PFC = 1, the bq27620-G1 can indicate when battery temperature has fallen below or risen above  
predefined thresholds Suspend Low Temp or Suspend High Temp, respectively. In this mode, the  
[XCHG] bit is set to indicate this condition. The [XCHG] bit is cleared once the battery temperature returns  
to the range [Charge Inhibit Temp Low + Temp Hys, Charge Inhibit Temp High – Temp Hys].  
34  
FUNCTIONAL DESCRIPTION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
The charging should not start when the temperature is below the Charge Inhibit Temp Low or above the  
Charge Inhibit Temp High. The charging can continue if the charging starts inside the window [Charge  
Inhibit Temp Low, Charge Inhibit Temp High] until the temperature is either below Suspend Low Temp or  
above the Suspend Low Temp. Therefore, the window [Charge Inhibit Temp Low, Charge Inhibit Temp  
High] must be inside the window of [Suspend Low Temp, Suspend High Temp].  
5.7 POWER MODES  
The bq27620-G1 has different power modes: BAT INSERT CHECK, NORMAL and HIBERNATE. In  
NORMAL mode, the bq27620-G1 is fully powered and can execute any allowable task. In HIBERNATE  
mode, the fuel gauge is in a low power state, but can be woken up by communication or certain I/O  
activity. Finally, the BAT INSERT CHECK mode is a powered-up, but low-power halted, state, where the  
bq27620-G1 resides when no battery is inserted into the system.  
The relationship between these modes is shown in Figure 5-1.  
5.7.1 BAT INSERT CHECK Mode  
This mode is a halted-CPU state that occurs when an adapter, or other power source, is present to power  
the bq27620-G1 (and system), yet no battery has been detected. When battery insertion is detected, a  
series of initialization activities begin, which include: OCV measurement, setting the BAT_GD pin, and  
selecting the appropriate battery profiles.  
Some commands, issued by a system processor, can be processed while the bq27620-G1 is halted in this  
mode. The gauge will wake up to process the command, then return to the halted state awaiting battery  
insertion.  
5.7.2 NORMAL MODE  
The fuel gauge is in NORMAL mode when not in any other power mode. During this mode,  
EffectiveCurrent( ), Voltage( ) and Temperature( ) measurements are taken, and the interface data set is  
updated. Decisions to change states are also made. This mode is exited by activating a different power  
mode.  
Because the gauge consumes the most power in NORMAL mode, the Impedance Track™ algorithm  
minimizes the time the fuel gauge remains in this mode.  
5.7.3 HIBERNATE MODE  
HIBERNATE mode should be used when the system equipment needs to enter a low-power state, and  
minimal gauge power consumption is required. This mode is ideal when a system equipment is set to its  
own HIBERNATE, SHUTDOWN, or OFF modes.  
Before the fuel gauge can enter HIBERNATE mode, the system must set the [HIBERNATE] bit of the  
CONTROL_STATUS register. The gauge waits to enter HIBERNATE mode until it has taken a valid OCV  
measurement and the magnitude of the average cell current has fallen below Hibernate Current. The  
gauge can also enter HIBERNATE mode if the cell voltage falls below Hibernate Voltage. The gauge will  
remain in HIBERNATE mode until the system issues a direct I2C command to the gauge or a POR occurs.  
I2C Communication that is not directed to the gauge will not wake the gauge.  
It is important that BAT_GD be de-asserted status (no battery charging/discharging). This prevents a  
charger application from inadvertently charging the battery before an OCV reading can be taken. It is the  
system’s responsibility to wake the bq27620-G1 after it has gone into HIBERNATE mode. After waking,  
the gauge can proceed with the initialization of the battery information (OCV, profile selection, etc.)  
Copyright © 2012, Texas Instruments Incorporated  
FUNCTIONAL DESCRIPTION  
35  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
6 APPLICATION-SPECIFIC INFORMATION  
6.1 BATTERY PROFILE STORAGE AND SELECTION  
6.1.1 Common Profile Aspects  
The bq27620-G1 maintains two chemistry profiles, PACK0 and PACK1. These profiles hold dynamic  
battery data, and keep track of the status for up to two of the most recent batteries used. When a battery  
pack is removed from host equipment, the bq27620-G1 selects the battery information when the battery is  
re-inserted. This way, Impedance Track™ algorithm has a means of recovering battery-status information,  
thereby maintaining good state-of-charge (SOC) estimates.  
The bq27620-G1 can manage the information on two removable battery packs. In addition, the gauge has  
two default battery profiles available to store battery information. The profiles are used to provide the  
Impedance Track™ algorithm with the default information on two possible battery types expected to be  
used with the end-equipment. If a new pack is inserted that replaces an older worn out pack, the gauge  
automatically selects from one of the default profiles and writes that data into the oldest of the PACK0 or  
PACK1 profile.  
6.1.2 Activities Upon Pack Insertion  
6.1.2.1 First OCV and Impedance Measurement  
At power-up the BAT_GD pin is inactive, so that the system might not obtain power from the battery (this  
depends on actual implementation). In this state, the battery should be put in a condition with load current  
less than C/20. Next, the bq27620-G1 measures its first open-circuit voltage (OCV) via the BAT pin. The  
[OCVCMDCOMP] bit will set once the OCV measurement is completed. Depending on the load current,  
the [OCVFAIL] bit indicates whether the OCV reading is valid. From the OCV(SOC) table, the SOC of the  
inserted battery is found. Then the BAT_GD pin is made active, and the impedance of the inserted battery  
is calculated from the measured voltage and the load current: Z(SOC) = ( OCV(SOC) – V ) / I. This  
impedance is compared with the impedance of the dynamic profiles, Packn, and the default profiles, Defn,  
for the same SOC (the letter n depicts either a 0 or 1).The [INITCOMP] bit will be set afterwards and the  
OCV command could be issued  
6.1.3 Reading HostCfg  
The HostCfg data flash location contains cell profile status information, and can be read using the  
ApplicationStatus( ) extended command (0x6a). The bit configuration of this function/location is shown in  
Table 6-1.  
Table 6-1. HostCfg Bit Definitions.  
HostCfg  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
Byte  
OPTCMP  
LU_ PROF  
LU_PROF = Last profile used by fuel gauge. Cell0 last used when cleared. Cell1 last used when set. Default is 0.  
OPTCMP = OPTMIZ bit is set. Default is 0.  
36  
APPLICATION-SPECIFIC INFORMATION  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
 
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
7 COMMUNICATIONS  
7.1 I2C INTERFACE  
The bq27620-G1 supports the standard I2C read, incremental read, quick read, one byte write, and  
incremental write functions. The 7 bit device address (ADDR) is the most significant 7 bits of the hex  
address and is fixed as 1010101. The first 8-bits of the I2C protocol will; therefore, be 0xAA or 0xAB for  
write or read, respectively.  
Host generated  
ADDR[6:0] 0 A  
Gauge generated  
S
CMD[7:0]  
(a) 1-byte write  
A
DATA [7:0]  
A
P
S
ADDR[6:0]  
1
A
DATA [7:0]  
(b) quick read  
DATA [7:0]  
N P  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
Sr  
ADDR[6:0]  
1
A
N P  
(c) 1- byte read  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
Sr  
ADDR[6:0]  
1
A
DATA [7:0]  
A
A
. . .  
DATA [7:0]  
A . . . A P  
N P  
(d) incremental read  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
DATA [7:0]  
DATA [7:0]  
(e) incremental write  
(S = Start, Sr = Repeated Start, A = Acknowledge, N = No Acknowledge , and P = Stop).  
The “quick read” returns data at the address indicated by the address pointer. The address pointer, a  
register internal to the I2C communication engine, will increment whenever data is acknowledged by the  
bq27620-G1 or the I2C master. “Quick writes” function in the same manner and are a convenient means of  
sending multiple bytes to consecutive command locations (such as two-byte commands that require two  
bytes of data)  
The following command sequences are not supported:  
Attempt to write a read-only address (NACK after data sent by master):  
Attempt to read an address above 0x6B (NACK command):  
7.2 I2C Time Out  
The I2C engine will release both SDA and SCL if the I2C bus is held low for 2 seconds. If the bq27620-G1  
was holding the lines, releasing them will free them for the master to drive the lines. If an external  
condition is holding either of the lines low, the I2C engine will enter the low power sleep mode.  
Copyright © 2012, Texas Instruments Incorporated  
COMMUNICATIONS  
37  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
ZHCSAF3 OCTOBER 2012  
www.ti.com.cn  
7.3 I2C Command Waiting Time  
To ensure proper operation at 400 kHz, a t(BUF) 66 μs bus free waiting time should be inserted between  
all packets addressed to the bq27620-G1 . In addition, if the SCL clock frequency (fSCL) is > 100 kHz, use  
individual 1-byte write commands for proper data flow control. The following diagram shows the standard  
waiting time required between issuing the control subcommand the reading the status result. For read-  
write standard command, a minimum of 2 seconds is required to get the result updated. For read-only  
standard commands, there is no waiting time required, but the host should not issue all standard  
commands more than two times per second. Otherwise, the gauge could result in a reset issue due to the  
expiration of the watchdog timer.  
S
S
S
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
CMD [7:0]  
CMD [7:0]  
CMD [7:0]  
A
A
A
DATA [7:0]  
DATA [7:0]  
ADDR [6:0]  
A
A
P
P
66ms  
66ms  
Sr  
1
A
DATA [7:0]  
A
DATA [7:0]  
N P  
66ms  
Waiting time inserted between two 1-byte write packets for a subcommand and reading results  
(required for 100 kHz < fSCL £ 400 kHz)  
S
S
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
CMD [7:0]  
CMD [7:0]  
A
A
DATA [7:0]  
ADDR [6:0]  
A
DATA [7:0]  
DATA [7:0]  
A
P
66ms  
DATA [7:0]  
Sr  
1
A
A
N P  
66ms  
Waiting time inserted between incremental 2-byte write packet for a subcommand and reading results  
(acceptable for fSCL £ 100 kHz)  
S
ADDR [6:0] 0 A  
DATA [7:0]  
CMD [7:0]  
DATA [7:0]  
A
Sr  
ADDR [6:0]  
66ms  
1
A
DATA [7:0]  
A
DATA [7:0]  
A
A
N P  
Waiting time inserted after incremental read  
7.4 I2C Clock Stretching  
A clock stretch can occur during all modes of fuel gauge operation. In SLEEP and HIBERNATE modes, a  
short clock stretch will occur on all I2C traffic as the device must wake-up to process the packet. In the  
other modes ( BAT INSERT CHECK , NORMAL) clock stretching will only occur for packets addressed for  
the fuel gauge. The majority of clock stretch periods are small as the I2C interface performs normal data  
flow control. However, less frequent yet more significant clock stretch periods may occur as blocks of Data  
Flash are updated. The following table summarizes the approximate clock stretch duration for various fuel  
gauge operating conditions.  
Approximate  
Gauging Mode  
Operating Condition / Comment  
Duration  
SLEEP  
Clock stretch occurs at the beginning of all traffic as the device wakes up.  
4 ms  
HIBERNATE  
BAT INSERT  
CHECK  
NORMAL  
Clock stretch occurs within the packet for flow control. (after a start bit, ACK or first data bit)  
Normal Ra table Data Flash updates.  
4 ms  
24 ms  
Data Flash block writes.  
72 ms  
Restored Data Flash block write after loss of power.  
End of discharge Ra table Data Flash update.  
116 ms  
144 ms  
38  
COMMUNICATIONS  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
bq27620-G1  
www.ti.com.cn  
ZHCSAF3 OCTOBER 2012  
8 REFERENCE SCHEMATICS  
8.1 SCHEMATIC  
Copyright © 2012, Texas Instruments Incorporated  
REFERENCE SCHEMATICS  
39  
Submit Documentation Feedback  
Product Folder Links: bq27620-G1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ27620YZFR-G1  
BQ27620YZFT-G1  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YZF  
YZF  
15  
15  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ27620G  
BQ27620G  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
YZF0015  
DSBGA - 0.625 mm max height  
SCALE 6.500  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
0.35  
0.15  
BALL TYP  
1 TYP  
SYMM  
E
D
SYMM  
2
TYP  
C
B
0.5  
TYP  
A
1
2
3
0.35  
0.25  
C A B  
15X  
0.5 TYP  
0.015  
4219381/A 02/2017  
NanoFree Is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. NanoFreeTM package configuration.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YZF0015  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
15X ( 0.245)  
(0.5) TYP  
1
3
2
A
B
SYMM  
C
D
E
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MAX  
0.05 MIN  
(
0.245)  
METAL  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
EXPOSED  
METAL  
(
0.245)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219381/A 02/2017  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YZF0015  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
(R0.05) TYP  
15X ( 0.25)  
1
2
3
A
B
(0.5)  
TYP  
METAL  
TYP  
SYMM  
C
D
E
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:40X  
4219381/A 02/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

BQ27620YZFR-G1

具有动态电压相关性的系统侧电池电量监测计 | YZF | 15 | -40 to 85
TI

BQ27620YZFT-G1

具有动态电压相关性的系统侧电池电量监测计 | YZF | 15 | -40 to 85
TI

BQ27621-G1

System-Side Impedance Track Fuel Gauge With Dynamic Voltage Correlation
TI

BQ27621-G1_16

System-Side Fuel Gauge With Dynamic Voltage Correlation
TI

BQ27621YZFR-G1

IC POWER SUPPLY MANAGEMENT CKT, Power Management Circuit
TI

BQ27621YZFR-G1A

System-Side Impedance Track Fuel Gauge With Dynamic Voltage Correlation
TI

BQ27621YZFT-G1A

System-Side Impedance Track Fuel Gauge With Dynamic Voltage Correlation
TI

BQ27741-G1

Single Cell Li-Ion Battery Fuel Gauge with Integrated Protection
TI

BQ27741-G1_14

Single Cell Li-Ion Battery Fuel Gauge with Integrated Protection
TI

BQ27741YZFR-G1

Single Cell Li-Ion Battery Fuel Gauge with Integrated Protection
TI

BQ27741YZFT-G1

Single Cell Li-Ion Battery Fuel Gauge with Integrated Protection
TI

BQ27742-G1

具有集成保护功能的单节锂离子电池电量监测计 | 电池电量监测计
TI