BQ27Z746 [TI]

具有集成保护器、采用 Impedance Track™ 技术的电池包侧单节电池电量监测计;
BQ27Z746
型号: BQ27Z746
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成保护器、采用 Impedance Track™ 技术的电池包侧单节电池电量监测计

电池
文件: 总31页 (文件大小:1535K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ27Z746  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
适用于单芯锂离子电池组BQ27Z746 Impedance Track技术电池电量  
监测计和保护解决方案  
1 特性  
3 说明  
• 集成电池电量监测计和保护器  
• 闪存可编程定BQBMP RISC CPU  
德州仪器 (TI) BQ27Z746 Impedance Track电量监测  
计解决方案是高度集成的高精度单芯电池电量监测计和  
保护解决方案。  
– 安全散列算(SHA-256) 认证  
400kHz I2C 总线通信接口  
• 低电(2.0 V) 运行  
BQ27Z746 器件提供了一套基于电池组的完全集成式  
解决方案该解决方案具备闪存可编程的定制精简指令  
CPU (RISC)、安全保护、电池电量变化检测模拟输  
出以及身份验证功能适用于单芯锂离子和锂聚合物电  
池组。  
2 16 位独立高精ADC  
– 带有低1mΩ电流感测电阻的库仑计数  
ADC  
– 用于电池电压和外部部温度传感器的电压  
BQ27Z746 电量监测计通过一个与 I2C 兼容的接口进  
行通信并将超低功耗的 TI BQBMP 处理器、高精度  
模拟测量功能、集成式闪存、N 沟道高侧 FET 驱动器  
以及 SHA-2 身份验证变换响应器融合为一个完整的高  
性能电池管理解决方案。  
ADC  
• 基于获得专利Impedance Track阻抗跟踪)  
技术的电池电量监测  
– 用于电池续航能力精确预测的电池放电模拟曲线  
– 针对电池老化、温度以及额定引入效应进行自动  
调节  
器件信息  
1  
• 带有内置保护功能的电池开尔文检测差动模拟输出  
引脚  
• 高侧或低侧电流感测  
封装尺寸标称值)  
器件型号  
BQ27Z746  
YAH (15)  
1.7mm × 2.6mm  
• 基于硬件的可编程保护  
PACK+  
S2  
S1  
– 高FET 栅极驱动器  
G2  
G1  
RDSG  
– 过压和欠压OVP UVP)  
– 放电过流保护和充电过流保护OCD OCC)  
– 放电短(SCD)  
CHG  
DSG  
RPACK  
VDD  
BAT  
TS  
1.8V  
LDO  
CVDD  
1uF  
SRP  
SRN  
Battery  
Protection  
BAT  
– 基于固件的过(OT)  
• 典型功率降低模式  
PACK  
Li-Ion  
Cell  
BAT_SP  
BAT_SN  
BAT  
VSS  
Cell  
Sensing  
Buffer  
NTC  
– 睡眠模式20μA  
– 运输模式10μA  
– 货架模5μA  
VSS  
SRP  
VSS  
GPO/TS1  
SRP  
ENAB  
SCL  
Fuel  
Gauge  
RSNS  
1m  
SRN  
SRN  
– 关断模式0.2μA  
SDA  
• 超紧15 NanoFreeDSBGA  
PACK–  
2 应用  
BQ27Z746 简化版原理图  
1 芯可充电电池的任何终端设备  
智能手机  
平板电脑  
摄像头  
便携式可穿戴设备/医疗设备  
工业手持设备  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDW2  
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
Table of Contents  
7.4 Device Functional Modes..........................................20  
8 Applications and Implementation................................21  
8.1 Application Information............................................. 22  
8.2 Typical Applications.................................................. 22  
9 Power Supply Requirements........................................25  
10 Layout...........................................................................25  
10.1 Layout Guidelines................................................... 25  
10.2 Layout Example...................................................... 26  
11 Device and Documentation Support..........................27  
11.1 第三方产品免责声明................................................27  
11.2 Documentation Support.......................................... 27  
11.3 接收文档更新通知................................................... 27  
11.4 支持资源..................................................................27  
11.5 Trademarks............................................................. 27  
11.6 Electrostatic Discharge Caution..............................27  
11.7 术语表..................................................................... 27  
12 Mechanical, Orderable, and Packaging  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configurations and Functions.................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Digital I/O: DC Characteristics.................................. 12  
6.7 Digital I/O: Timing Characteristics.............................13  
6.8 Typical Characteristics..............................................15  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................16  
7.3 Feature Description...................................................17  
Information.................................................................... 27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2021) to Revision A (February 2022)  
Page  
Updated C2 pin name to GPO/TS1 Pin Configurations and Functions ............................................................. 3  
Updated Common Analog (LDO, LFO, HFO, REF1, REF2, I-WAKE) ...............................................................6  
Updated Gauge Measurements (ADC, CC, Temperature) ...............................................................................11  
Updated Digital I/O: DC Characteristics .......................................................................................................... 12  
Updated Typical Characteristics ...................................................................................................................... 15  
Updated Battery Sensing .................................................................................................................................19  
Updated Typical Applications ...........................................................................................................................22  
Updated Layout Guidelines ............................................................................................................................. 25  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ27Z746  
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
5 Pin Configurations and Functions  
Bottom View  
Top View  
1
2
3
1
2
3
SRP  
SRN  
SCL  
CHG  
DSG  
PACK  
E
D
C
B
A
A
B
C
D
E
VSS  
TS  
ENAB  
SDA  
VDD  
TS  
BAT  
BAT_SP  
BAT_SN  
SDA  
GPO/  
TS1  
GPO/  
TS1  
BAT_SN  
BAT_SP  
PACK  
VDD  
CHG  
BAT  
VSS  
SRP  
ENAB  
SRN  
DSG  
SCL  
0.5 mm  
(typ)  
0.2 mm  
(typ)  
0.4 mm  
(max)  
1.7 mm (typ)  
5-1. Pinout Diagram  
5-1. Pin Functions  
PIN  
NO.  
A1  
DESCRIPTION  
NAME  
TYPE(1)  
CHG  
AO  
Charge FET (CHG) driver  
Discharge FET (DSG) driver. Connect a series 10-MΩtypical resistor (RDSG) between DSG pin  
and PACK+ positive terminal.  
DSG  
PACK  
VDD  
A2  
A3  
B1  
AO  
IA  
P
Pack input voltage sensing pin. Connect a series 5-kΩtypical resistor (RPACK) between PACK  
pin and PACK+ positive terminal.  
LDO regulator input. Connect a 1-µF typical capacitor (CVDD) between VDD and VSS. Place the  
capacitor close to the gauge.  
BAT  
BAT_SP  
BAT_SN  
TS  
B2  
B3  
C3  
C1  
IA  
OA  
OA  
IA  
Battery voltage measurement sense input  
Cell sense output, positive  
Cell sense output, negative  
Thermistor input to ADC with internal 18-kΩpullup resistor  
General purpose output.  
Optional TS1 ADC input channel with internal 18-kΩpullup resistor  
GPO/TS1  
VSS  
C2  
D1  
D2  
D3  
I/O  
P
Device ground  
Active low digital input with weak internal pullup to VDD. If enabled for ultra-low power SHIP  
mode, driving this signal to the PACKnegative terminal will enable the device to wake up.  
ENAB  
SDA  
I
Digital input, open drain output for I2C serial data. Use with a typical 10-kΩpullup resistor.  
I/O  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ27Z746  
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
5-1. Pin Functions (continued)  
PIN  
NO.  
DESCRIPTION  
NAME  
TYPE(1)  
Digital input, open drain output for I2C serial clock. Use with a typical 10-kΩpullup resistor.  
SCL  
E3  
E1  
I/O  
This is the positive analog input pin connected to the internal coulomb-counter peripheral for  
integrating a small voltage between SRP (positive side) and SRN (negative side).  
SRP  
SRN  
IA  
IA  
This is the negative analog input pin connected to the internal coulomb-counter peripheral for  
integrating a small voltage between SRP (positive side) and SRN (negative side).  
E2  
(1) I/O = Digital input/output, IA = Analog input, AO= Analog output, P = Power connection  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
MAX  
UNIT  
Supply voltage range  
VDD  
6
8
V
PACK (limited to 4 mA max)  
PACK+ external battery pack input terminal with 5 kΩ  
24  
24  
0.3  
12  
resistor in series to device PACK input pin  
PACK+ external battery pack input terminal with a 5 kΩ  
resistor (RPACK) in series to device PACK pin and a 10  
Mresistor (RDSG) to device DSG pin  
Input voltage range  
V
BAT  
6
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
40  
65  
SDA, SCL, ENAB  
TS  
6
2
SRP, SRN  
BAT_SP, BAT_SN  
CHG, DSG  
VBAT + 0.3  
6
12  
Output voltage range  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
85  
°C  
°C  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM) on all pins, per ANSI/ESDA/  
JEDEC JS-001(1)  
±2000  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM) on all pins, per ANSI/ESDA/  
JEDEC JS-002(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Supply voltage  
range  
VDD  
2.0  
5.5  
V
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ27Z746  
 
 
 
 
 
 
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
0
12  
5.5  
PACK (with 5 kRPACK current limit)  
PACK (no RPACK current limit)  
0
BAT  
1.5  
0.3  
5.5  
Input voltage  
range  
V
SDA, SCL, ENAB  
TS  
VDD  
VSS  
1.8  
SRN, SRP  
VCC_CM + 0.1  
VDD +VOFFS  
1.8  
V
CC_CM 0.1  
2
BAT_SP, BAT_SN  
Output voltage GPO  
range  
VSS  
V
VDD+ (VDD ×  
CHG, DSG  
VSS  
1
AFETON  
)
External Decoupling Capacitor on VDD pin, CVDD  
External Decoupling Capacitor on TS pin, CTS  
µF  
µF  
0.01  
External Sense Resistor from PACK+ terminal to device PACK pin,  
RPACK  
5
kΩ  
External Sense Resistor from PACK+ terminal to device DSG pin,  
RDSG  
10  
MΩ  
External Sense Resistor from SRN to SRP pins, RSNS  
Operating Temperature, TA  
1
20  
85  
mΩ  
-40  
6.4 Thermal Information  
Over-operating free-air temperature range (unless otherwise noted)  
YAH (DSBGA)  
THERMAL METRIC(1)  
UNIT  
(15 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
70  
17  
20  
1
RθJC(top)  
RθJB  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
18  
NA  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
6.5.1 Supply Current  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85, no host communications, PROT On(1)  
,
VCHG and VDSG > 5 V, CLOAD = 8 nF (typical 20 nA), VDD = 4 V, Average current over 30 s with default firmware settings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INORMAL  
ISLEEP  
Standard operating conditions  
57  
µA  
µA  
20  
Measured current sleep current threshold  
VBAT = 3.0 V, Firmware SHIP mode enabled. 60 s  
average  
ISHIP  
10  
5
µA  
µA  
VBAT = 3.0 V, Firmware SHELF mode enabled. PROT  
Off . 60 s average  
ISHELF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ27Z746  
 
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
6.5.1 Supply Current (continued)  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85, no host communications, PROT On(1)  
,
VCHG and VDSG > 5 V, CLOAD = 8 nF (typical 20 nA), VDD = 4 V, Average current over 30 s with default firmware settings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Firmware SHUTDOWN mode enabled OR VBAT  
VSHUT, PROT Off  
ISHUT  
0.2  
1
µA  
(1) PROT On/Off. Protector block enabled with both DSG and CHG pins On or Off.  
6.5.2 Common Analog (LDO, LFO, HFO, REF1, REF2, I-WAKE)  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal 1.8-V LDO (REG18)  
VREG18  
Regulator output voltage  
1.6  
1.8  
2.0  
V
Regulator output change with  
temperature  
+1.2%  
ΔVREG18TEMP  
ΔVBAT/ΔTA, IREG18 = 10 mA  
1.2%  
Line regulation  
0.8%  
1.5%  
60  
ΔVREG18LINE  
ΔVREG18LOAD  
ISHORT  
0.8%  
1.5%  
18  
Load regulation  
IREG18 = 16 mA  
VREG18 = 0 V  
Short Circuit Current Limit  
mA  
dB  
ΔVBAT/ΔVREG18, IREG18 = 10 mA,  
VBAT > 2.5 V, f = 10 Hz  
PSRRREG18  
Power Supply Rejection Ratio  
50  
VPORth  
VPORhy  
POR threshold  
POR hysteresis  
Rising Threshold  
1.55  
0.7  
1.65  
0.1  
1.75  
V
V
ENAB turn-on voltage for  
LDO (1)  
VENAB  
Active low falling threshold  
0.4  
1.3  
V
RENAB  
ENAB pin pullup resistance (1) Internal pull-up to VDD  
1
65.536  
32.768  
MΩ  
Low Frequency Internal Oscillator (LFO)  
fLFO  
LFO Operating frequency  
LFO Frequency error  
LFO operating frequency  
LFO frequency error  
kHz  
kHz  
Normal operating mode  
Low power mode  
fLFO(ERR)  
fLFO32  
+2.5%  
+5%  
2.5%  
5%  
fLFO32(ERR)  
High Frequency Internal Oscillator (HFO)  
fHFO  
HFO operating frequency  
16.78  
MHz  
2.5%  
3.5%  
TA = 20°C to 70°C  
TA = 40°C to 85°C  
2.5%  
3.5%  
fHFO(ERR)  
HFO frequency error  
TA = 40°C to 85°C,  
CLKCTL[HFRAMP] = 1, oscillator  
frequency within +/- 3% of nominal  
frequency or a power-on reset  
tHFOSTART  
HFO start-up time  
4
ms  
V
Voltage Reference1 (VREF1)  
VREF1  
Internal reference voltage  
1.195  
1.21  
1.21  
1.227  
REF1 is for protection circuits, LDO,  
and CC  
Internal Reference Voltage  
Drift  
VREF1_DRIFT  
+80 PPM/°C  
80  
Voltage Reference2 (VREF2)  
VREF2  
Internal Reference Voltage  
1.2  
1.22  
V
REF2 is for the ADC  
Internal Reference Voltage  
Drift  
VREF2_DRIFT  
+20 PPM/°C  
20  
Wake-Up Comparator (I-WAKE)  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ27Z746  
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
6.5.2 Common Analog (LDO, LFO, HFO, REF1, REF2, I-WAKE) (continued)  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Sense resistor voltage  
threshold range to wake-up  
500 µV step. Data Flash firmware  
VWAKE  
mV  
1.5  
2.0  
2.5  
gauge from low-power states default is 2 mV typical  
(2)  
Ideal RSNS = 1 mΩ  
1000  
500  
200  
3000  
1500  
600  
Effective wake-up current  
Ideal RSNS = 2 mΩ  
threshold range  
IWAKE  
mA  
Ideal RSNS = 5 mΩ  
Wake-up detection accuracy  
VWAKE_ACC  
250  
µV  
ms  
250  
(2)  
Configurable with two delay options.  
Data Flash firmware default is 12 ms  
typical  
9.6  
12  
24  
14.4  
28.8  
I-WAKE detection delay  
options (1)  
tWAKE  
19.2  
(1) Specified by design  
(2) Data flash is configurable in FULL ACCESS mode and locked in SEALED. Accuracy is assured by factory trim at specified default  
threshold. A change in the factory threshold requires device calibration in the field.  
6.5.3 Battery Protection (CHG, DSG)  
Protection hardware circuits operating over free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
N-CH FET DRIVER, CHG AND DSG  
VDRIVER  
Gate Driver Voltage, VCHG or VDSG  
CLOAD = 8 nF  
2 × VDD  
1.0  
V
FET driver gain factor, Vgs voltage to  
FET  
AFETON = (Vdriver VDD)/VDD,  
CLOAD = 8 nF, UVP < VDD < 3.8 V  
AFETON  
0.9  
1.2  
V/V  
VDSGOFF  
VCHGOFF  
DSG FET driver off output voltage  
CHG FET driver off output voltage  
0.2  
0.2  
V
V
VDSGOFF = VDSG PACK, CL= 8 nF  
VCHGOFF = VCHG VSS , CL= 8 nF  
CL = 8 nF, (Vdriver VDD)/VDD = 1x  
VFETON changes from VDD to 2×VDD  
trise  
FET driver rise time (1)  
FET driver fall time (1)  
400  
50  
800  
200  
us  
us  
CL = 8 nF, VFETON changes from  
VFETMAX to VFETOFF  
tfall  
Firmware FET driver shut down  
voltage (2) (4)  
VFET_SHUT  
2000  
2000  
2100  
2300  
5000  
mV  
Configurable with 1-mV steps  
VFET_SHUT_RE Firmware FET driver shut down  
5000  
10  
mV  
uA  
release (2) (4)  
L
ILOAD  
FET driver maximum loading  
VOLTAGE PROTECTION  
Hardware overvoltage protection  
3500  
5000  
(OVP) detection range (3)  
Recommended threshold range.  
Factory trimmed in 50-mV steps  
VOVP  
mV  
Factory default trimmed threshold(3)  
4525  
TA = 25oC,  
CLOAD at CHG/DSG < 1 μA  
15  
25  
50  
mV  
mV  
mV  
15  
25  
50  
TA = 0oC to 60oC,  
CLOAD at CHG/DSG < 1 μA  
VOVP_ACC  
Hardware OVP detection accuracy (3)  
Firmware OVP detection range (4)  
TA = 40oC to 85oC,  
CLOAD at CHG/DSG < 1 μA  
VFW_OVP  
2000  
2000  
4490  
4290  
5000  
5000  
mV  
mV  
Configurable with 1-mV steps  
VFW_OVP_REL Firmware OVP release range (4)  
Hardware undervoltage (UVP)  
2000  
4000  
detection range (3)  
VUVP  
Recommended threshold range.  
Factory trimmed in 50-mV steps  
mV  
Factory default trimmed threshold(3)  
2300  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ27Z746  
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
6.5.3 Battery Protection (CHG, DSG) (continued)  
Protection hardware circuits operating over free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA = 25oC,  
MIN  
TYP  
MAX  
UNIT  
20  
mV  
20  
CLOAD at CHG/DSG < 1 μA  
TA = 0oC to 60oC,  
CLOAD at CHG/DSG < 1uA  
VUVP_ACC  
Hardware UVP detection accuracy (3)  
30  
50  
mV  
mV  
30  
50  
TA = 40oC to 85oC,  
CLOAD at CHG/DSG < 1uA  
VFW_UVP  
Firmware UVP detection range (4)  
2000  
2000  
100  
2500  
2900  
300  
5000  
5000  
550  
Configurable with 1 mV steps  
SHUTDOWN mode only  
VFW_UVP_REL Firmware UVP release range (4)  
mV  
RPACK-VSS  
VRCP  
Resistance between PACK and VSS  
Reverse Charge Protection limit  
kΩ  
10V Continuous Operating, 12 V  
ABS MAX  
V
10  
CURRENT PROTECTION  
Sense voltage threshold range for  
1
100  
Recommended threshold range.  
Factory trimmed in 1-mV steps  
Overcurrent in Charge (OCC) (3) (4)  
Factory default trimmed threshold(3)  
OCC 2-mV step design option  
VOCC  
mV  
mV  
14  
VOCC  
2 mV step configuration option  
Ideal RSNS = 1 mΩ  
2
4
256  
100  
50  
14  
7
Effective OCC current threshold range  
from VOCC  
IOCC  
2
A
Ideal RSNS = 2 mΩ  
(1) (4)  
0.8  
0
2.8  
20  
Ideal RSNS = 5 mΩ  
IFW_OCC  
Firmware OCC detection range (4)  
Configurable with 1 mA steps  
12000 +ICC_IN  
mA  
mV  
mV  
Sense voltage threshold range for  
Overcurrent in discharge (OCD) (3) (4)  
4  
100  
Recommended threshold range.  
Factory trimmed in 1-mV steps  
VOCD  
Factory default trimmed threshold(3)  
16  
VOCD  
OCD 2-mV step design option  
±2 mV step configuration option  
Ideal RSNS = 1 mΩ  
2  
4  
256  
16  
8  
100  
50  
20  
Effective OCD current threshold range  
IOCD  
A
Ideal RSNS = 2 mΩ  
2  
(1) (4)  
from VOCD  
Ideal RSNS = 5 mΩ  
0.8  
3.2  
IFW_OCD  
Firmware OCD detection range (4)  
Configurable with 1-mA steps  
mA  
ICC_IN 7000  
0
Sense voltage threshold range for  
Short circuit current in discharge  
(SCD) (3) (4)  
5  
120  
Threshold factory trimmed with 1-mV  
steps  
VSCD  
mV  
A
Factory default trimmed threshold(3)  
20  
Ideal RSNS = 1 mΩ  
Ideal RSNS = 2 mΩ  
Ideal RSNS = 5 mΩ  
<20 mV, TA = 25°C to 60oC  
<20 mV  
5  
2.5  
1  
20  
10  
4  
120  
60  
24  
2.1  
2.1  
3
Effective SCD current threshold range  
ISCD  
(1) (4)  
from VSCD  
-2.1  
2.1  
3  
Overcurrent (OCC, OCD, SCD)  
detection accuracy (3)  
VOC_ACC  
mV  
20 mV55 mV  
56 mV100 mV  
>100 mV  
5
5  
12  
12  
Current sink between PACK and VDD  
during current fault  
IPACK-VDD  
Load removal detection in firmware  
15  
μA  
OCC fault release threshold  
100  
mV  
mV  
VOC_REL  
(VPACK VBAT  
)
OCD, SCD fault release threshold  
400  
OVERTEMPERATURE PROTECTION  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ27Z746  
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
6.5.3 Battery Protection (CHG, DSG) (continued)  
Protection hardware circuits operating over free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
40.0  
40.0  
40.0  
40.0  
40.0  
40.0  
40.0  
40.0  
TYP  
55.0  
50.0  
60.0  
55.0  
0.0  
MAX  
150.0  
150.0  
150.0  
150.0  
150.0  
150.0  
150.0  
150.0  
UNIT  
°C  
TOTC_TRIP  
TOTC_REL  
TOTD_TRIP  
TOTD_REL  
TUTC_TRIP  
TUTC_REL  
TUTD_TRIP  
TUTD_REL  
OTC trip/release threshold (2) (4)  
°C  
°C  
OTD trip/release threshold (2) (4)  
UTC trip/release threshold (2) (4)  
UTD trip/release threshold (2) (4)  
°C  
Firmware-based and configurable in  
0.1°C steps  
°C  
5.0  
°C  
0.0  
°C  
5.0  
°C  
PROTECTION DELAY(1)  
Configurable with 4095 delay options  
in 1.953-ms steps. Factory default =  
1000 ms (512 counts) typical  
OVP detection delay (debounce)  
tOVP  
tUVP  
tOCD  
tOCC  
tSCD  
1.953  
1.953  
1.953  
0.244  
122  
1000  
127  
7.8  
7998  
248  
ms  
ms  
ms  
ms  
µs  
options (1) (4)  
Configurable with 127-delay options in  
1.953-ms steps. Factory default = 127  
ms (65 counts) typical  
UVP detection delay (debounce)  
options (1) (4)  
Configurable with 31 delay options in  
1.953-ms steps. Factory default = 7.8  
ms (4 counts) typical  
OCD detection delay (debounce)  
options (1) (4)  
60.5  
62.3  
854  
Configurable with 255 delay options in  
0.244-ms steps. Factory default = 15.9  
ms (65 counts) typical  
OCC detection delay (debounce)  
options (1) (4)  
15.9  
244  
Configurable with seven delay options  
in 122-µs steps. Factory default = 244-  
µs (2 counts) typical  
SCD detection delay (debounce)  
options (1) (4)  
TOTC_DLY  
TOTD_DLY  
TUTC_DLY  
TUTD_DLY  
OTC trip delay(2) (4)  
OTD trip delay(2) (4)  
UTC trip delay(2) (4)  
UTD trip delay(2) (4)  
0
0
0
0
2
2
2
2
255  
255  
255  
255  
s
s
s
s
Firmware-based and configurable in 1-  
s steps.  
The typical value is the data flash  
factory default.  
ZERO VOLT (LOW VOLTAGE) CHARGING  
Charger voltage requires to start zero-  
volt charging  
V0CHGR  
1.6  
V
V
V
PACK VSS  
Battery voltage that inhibits zero-volt  
charging  
V0INH  
1.0  
1.1  
VDD VSS  
(1) Specified by design. Not production tested.  
(2) Firmware-based parameter. Not production tested.  
(3) Accuracy assured by factory trim at specified default threshold. A change from the default threshold requires device calibration in the  
field. Refer to the BQ27Z746 Technical Reference Manual.  
(4) Specified typical value is the factory default. Not production tested. The data flash configuration value can be changed in FULL  
ACCESS mode and is locked in SEALED mode. Refer to the BQ27Z746 Technical Reference Manual.  
6.5.4 Cell Sensing Output (BAT_SP, BAT_SN)  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Static Response  
VBAT @ 1500 mV and 2400 mV DC,  
PACK-BAT_SP 200 mV,  
BAT_SP load: Hi-Z to 1 k,  
BAT_SN load: 1 kto 10 kΩ  
1450  
2350  
1500  
2400  
1550  
2450  
Buffer accuracy  
(BAT_SP BAT_SN)  
VBUFACC  
mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ27Z746  
 
 
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
6.5.4 Cell Sensing Output (BAT_SP, BAT_SN) (continued)  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85℃  
PARAMETER  
TEST CONDITIONS  
MIN  
370  
TYP  
400  
200  
0
MAX  
UNIT  
400-mV option, VBAT = 1.5 V to 2.5 V  
200-mV option, VBAT = 2.0 V to 2.5 V  
0-mV option, VBAT = 2.0 V to 2.5 V  
600-mV option, VBAT = 2.0 to 2.5 V  
430  
230  
30  
170  
BAT_SN common mode shift  
(BAT_SN VSS)  
VBUFOFFS  
mV  
30  
550  
600  
650  
VBAT = 1.5 to 2.5 V, no load, BAT_SP  
BAT_SN, VPACK VBAT = 1.0 V  
Buffer line regulation  
Buffer load regulation  
10  
mV  
mV  
ΔVBUF_LINE  
ΔVBUF_LOAD  
VRLOACC  
VBAT = 2.4 V, load = 1 mA, BAT_SP –  
BAT_SN, VPACK - VBAT = 1.0 V  
1.2  
RLO mode accuracy  
(BAT_SP BAT_SN)  
+7  
+5  
+5  
7  
5  
5  
VBAT = 3000-mV to 5000-mV DC,  
For stability, 0-mV buffer option  
enabled  
BAT_SP load: Hi-Z to 1 kΩ  
BAT_SN load: 1 kto 10 kΩ  
RLO mode accuracy  
(BAT_SP VSS)  
VRLOACCP  
VRLOACCN  
mV  
RLO mode accuracy  
(BAT_SN VSS)  
160  
459  
160  
459  
200  
510  
200  
510  
260  
561  
260  
561  
200-option, DSG FET = ON  
510-option, DSG FET = ON  
200-option, DSG FET = ON  
510-option, DSG FET = ON  
BAT_SP low resistance  
mode  
RLO_SP  
BAT_SN low resistance  
mode  
RLO_SN  
BAT_SP high impedance  
mode  
RHIZ_SP  
RHIZ_SN  
tBUF_OFF  
0.6  
0.6  
1.0  
1.0  
1.3  
1.3  
CHG FET = OFF  
MΩ  
BAT_SN high impedance  
mode  
Buffer disable timing respect to DSG  
FET turn-on  
Buffer turn-off timing (1)  
500  
us  
pF  
CBUF_SP  
CBUF_SN  
150  
150  
BAT_SP to SRN (PACK)  
BAT_SN to SRN (PACK)  
Max external capacitance for  
stable operation (1)  
Buffer unity gain bandwidth  
BBUF_BW  
Buffer enabled  
30  
kHz  
(1)  
BAT_SP BAT +Fault  
+100  
+250  
(BCP) Threshold Range(1)  
Recommended threshold range.  
VBCP  
Factory default trimmed  
threshold(3)  
Factory trimmed in 2-mV steps  
+200  
mV  
RLO mode enabled,  
Step size 10 mV  
BAT_SP BAT +Fault  
VBCP_ACC  
+10  
10  
Accuracy (3)  
BAT_SP BAT Fault  
250  
100  
(BDP) Threshold Range(1)  
Recommended threshold range.  
VBDP  
Factory trimmed in 2-mV steps  
Factory default trimmed  
threshold(3)  
mV  
mV  
200  
RLO mode enabled,  
Step size 10 mV  
BAT_SP BAT Fault  
VBDP_ACC  
+10  
10  
Accuracy (3)  
BAT_SN VSS +Fault  
+100  
+250  
(BCN) Threshold Range(1)  
Recommended threshold range.  
Factory trimmed in 2-mV steps  
VBCN  
Factory default trimmed  
threshold(3)  
+200  
RLO mode enabled,  
Step size 10 mV  
BAT_SN VSS +Fault  
VBCN_ACC  
+10  
10  
Accuracy (3)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ27Z746  
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
6.5.4 Cell Sensing Output (BAT_SP, BAT_SN) (continued)  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BAT_SN VSS Fault  
250  
100  
(BDN) Threshold Range(1)  
Recommended threshold range.  
VBDN  
Factory trimmed in 2-mV steps  
Factory default trimmed  
threshold(3)  
mV  
200  
RLO mode enabled,  
Step size 10 mV  
BAT_SN VSS Fault  
VBDN_ACC  
+10  
10  
Accuracy (3)  
8-ms delay  
8
ms  
ms  
BAT_SP / BAT_SN  
tLO_FAULT_DLY  
fault comparator delay(1)  
100-ms delay  
100  
BAT_SP / BAT_SN  
tLO_FAULT_STRT  
1000  
ms  
fault restart time (1) (2)  
Transient Response  
VLOAD_SP  
BAT_SP load transient (1)  
VLOAD_SN  
300  
200  
mV  
mV  
300  
200  
No load 1 KNo load,  
Transition time 1 μs  
BAT_SN load transient (1)  
BAT_SN line transient (1)  
VBAT = 1.5 V 2.4 V 1.5 V,  
Transition slope 500 mV / 10 us  
VLINE_SN  
VTRANS  
30  
50  
mV  
mV  
30  
Firmware commanded transition from  
BUF mode to RLO mode  
(BAT_SP BAT_SN)  
700  
transition transient (1)  
(1) Specified by Design. Not production tested.  
(2) Firmware-based parameter. Not production tested.  
(3) Accuracy assured by factory trim at specified default threshold. A change from the default threshold requires device calibration in the  
field. Refer to the BQ27Z746 Technical Reference Manual.  
6.5.5 Gauge Measurements (ADC, CC, Temperature)  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analog Digital Converter (ADC)  
Battery Voltage ADC  
VBAT_RES  
Signed data format, ±15 bits  
16  
bits  
V
Resolution (bits)  
Battery Measurement Full  
VBAT_FS  
5.5  
0.2  
Scale Range  
±1  
±2  
TA = +25, VBAT = 4.0 VDC  
VBAT_ERR  
Battery Voltage ADC Error  
mV  
VBAT = 2.5 to 5.0 VDC  
RBAT  
Effective input resistance  
8
MΩ  
ms  
Battery Voltage Conversion  
Time  
tBAT  
11.7  
15  
VADC_RES  
Effective Resolution  
VBAT  
14  
bits  
Coulomb Counter (CC)  
Common mode voltage  
VCC_CM  
VSS  
VBAT  
V
V
VSS = 0V, 2V VBAT 5V  
range  
VCC_IN  
Input voltage range  
VCC_CM+0.1  
V
CC_CM0.1  
Ideal RSNS = 1 m(16-bit data  
limited)  
±32,768  
Effective input current sense  
range (1) (2)  
ICC_IN  
mA  
Ideal RSNS = 2 m(16-bit data  
limited)  
±20,000  
1000  
16  
Ideal RSNS = 5 mΩ  
tCC_CONV  
Conversion time  
Single conversion  
ms  
bits  
µV  
CCADC_RES  
Effective Resolution  
1 LSB = VREF1/10/(±215  
)
±3.7  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ27Z746  
 
 
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
6.5.5 Gauge Measurements (ADC, CC, Temperature) (continued)  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mA  
Ideal RSNS = 1.0 m, 10.0 A, TA =  
25 ℃  
26  
Effective current  
measurement error  
ICC_ERR  
Ideal RSNS = 1.0 m, 10.0 A, TA  
= 25 ℃  
29  
CCOSE  
Offset error  
16- bit Post-Calibration  
-2.6  
1.3  
+2.6  
LSB  
CCOSE_DRIFT  
Offset error drift  
15-bit + sign, Post Calibration  
0.04  
0.07 LSB/°C  
15-bit + sign, Over input voltage  
range  
CCGE  
Gain Error  
-492  
7
131  
+492  
LSB  
RCC_IN  
Effective input resistance  
MΩ  
NTC Thermistor Measurement  
Factory Trimmed, Firmware  
compensated  
RNTC(PU)  
Internal Pullup Resistance  
14.4  
250  
2  
18  
120  
±1  
21.6  
0
kΩ  
Resistance drift over  
temperature  
RNTC(DRIFT)  
Firmware compensated  
PPM/°C  
Ideal 10K103AT NTC, TA = 10  
to 70℃  
+2  
External NTC Thermistor  
Temperature Measurement  
Error with Linearization  
RNTC_ERR  
Ideal 10K103AT NTC, TA = 40  
to 85℃  
±2  
+3  
3  
Internal Temperature Sensor  
Internal Temperature sensor  
V(TEMP)  
VTEMPP  
1.65  
0.17  
1.73  
0.18  
1.8 mV/°C  
0.19 mV/°C  
voltage drift  
Internal Temperature sensor  
voltage drift  
V
TEMPP VTEMPN (specified by  
V(TEMP)  
design)  
(1) Firmware-based parameter. Not production tested.  
(2) Limited by 16-bit twos-complement numeric format  
6.5.6 Flash Memory  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85℃  
PARAMETER  
TEST CONDITIONS  
MIN  
10  
TYP  
100  
MAX  
UNIT  
Years  
Cycles  
Cycles  
µs  
Data retention  
Data Flash  
20000  
1000  
Flash programming write  
cycles  
Instruction Flash  
t(ROWPROG)  
t(MASSERASE)  
t(PAGEERASE)  
IFLASHREAD  
IFLASHWRTIE  
IFLASHERASE  
Row programming time  
Mass-erase time  
40  
40  
40  
1
ms  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
Page-erase time  
ms  
Flash Read Current  
Flash Write Current  
Flash Erase Current  
mA  
5
mA  
15  
mA  
6.6 Digital I/O: DC Characteristics  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85, VREG18 = 1.8 V  
PARAMETER  
I2C Pins (SCL, SDA/HDQ)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIH  
VIL  
High-level input voltage  
Low-level input voltage low  
Low-level output voltage  
SCL, SDA pins  
1.26  
V
V
V
SCL, SDA pins  
0.54  
0.36  
VOL  
SCL, SDA pins, IOL = 1 mA  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ27Z746  
 
 
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
6.6 Digital I/O: DC Characteristics (continued)  
Unless otherwise noted, characteristics noted under conditions of TA = 40 to 85, VREG18 = 1.8 V  
PARAMETER  
Input capacitance  
Input leakage current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
pF  
CI  
SCL, SDA pins  
10  
Ilkg  
SCL, SDA pins  
1
µA  
Push-Pull Pins (GPO)  
VIH  
VIL  
VOH  
VOL  
CI  
High-level input voltage  
Push-Pull pins  
1.15  
1.08  
V
V
Low-level input voltage low  
Output voltage high  
Output voltage low  
Push-Pull pins  
0.54  
Push-Pull pins, IOH = -1 mA  
Push-Pull pins, IOL = 1 mA  
Push-Pull pins  
V
0.36  
10  
V
Input capacitance  
pF  
µA  
Ilkg  
Input leakage current  
Push-Pull pins  
1
6.7 Digital I/O: Timing Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
I2C Timing 100 kHz  
fSCL  
Clock Operating Frequency SCL duty cycle = 50%  
100  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
START Condition Hold Time  
Low period of the SCL Clock  
High period of the SCL Clock  
Setup repeated START  
Data hold time (SDA input)  
Data setup time (SDA input)  
Clock Rise Time  
4.0  
4.7  
4.0  
4.7  
0
250  
10% to 90%  
90% to 10%  
1000  
300  
tf  
Clock Fall Time  
tSU:STO  
Setup time STOP Condition  
4.0  
4.7  
Bus free time STOP to  
START  
tBUF  
µs  
I2C Timing 400 kHz  
fSCL  
Clock Operating Frequency SCL duty cycle = 50%  
START Condition Hold Time  
Low period of the SCL Clock  
High period of the SCL Clock  
Setup repeated START  
400  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
0.6  
1.3  
600  
600  
0
Data hold time (SDA input)  
Data setup time (SDA input)  
100  
Clock Rise Time  
10% to 90%  
90% to 10%  
300  
300  
tf  
Clock Fall Time  
tSU:STO  
Setup time STOP Condition  
0.6  
1.3  
Bus free time STOP to  
START  
tBUF  
µs  
HDQ Timing  
tB  
Break Time  
190  
40  
µs  
µs  
µs  
µs  
µs  
tBR  
Break Recovery Time  
Host Write 1 Time  
Host Write 0 Time  
Cycle Time, Host to device  
tHW1  
tHW0  
tCYCH  
Host drives HDQ  
Host drives HDQ  
device drives HDQ  
0.5  
86  
50  
145  
190  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ27Z746  
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
6.7 Digital I/O: Timing Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
190  
32  
NOM  
MAX  
UNIT  
µs  
tCYCD  
tDW1  
Cycle Time, device to Host  
Device Write 1 Time  
Device Write 0 Time  
Device Response Time  
device drives HDQ  
device drives HDQ  
device drives HDQ  
device drives HDQ  
205  
250  
50  
µs  
tDW0  
80  
145  
950  
µs  
tRSPS  
190  
µs  
Host drives HDQ after device drives  
HDQ  
tTRND  
tRISE  
tRST  
Host Turn Around Time  
250  
2.2  
µs  
µs  
s
HDQ Line Rising Time to  
Logic 1  
1.8  
Host drives HDQ low before device  
reset  
HDQ Reset  
SDA  
t
BUF  
t
t
LOW  
t
f
HD;STA  
t
r
t
t
SP  
t
r
f
SCL  
t
t
SU;STA  
t
SU;STO  
HD;STA  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
6-1. I2C Timing  
1.2V  
t
t
(R ISE)  
(BR )  
t
(B)  
(b) H D Q line rise tim e  
(a) Break and Break R ecovery  
t
(D W 1)  
t
(H W 1)  
t
(D W 0)  
(C YC D )  
t
(H W 0)  
(C YC H )  
t
t
(d) Gauge Transm itted Bit  
(c) H ost Transm itted Bit  
7-bit address  
1-bit  
R/W  
8-bit data  
Break  
t
(R SPS)  
(e) Gauge to Host Response  
t
(R ST )  
(f) H D Q R eset  
a . H D Q Bre a kin g  
b . R ise tim e o f H D Q lin e  
c. H D Q H o st to fu e l g a u g e co m m u n ica tio n  
d . Fu e l g a u g e to H o st co m m u n ica tio n  
e . Fu e l g a u g e to H o st re sp o n se fo rm a t  
f. H D Q H o st to fu e l g a u g e  
6-2. HDQ Timing  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ27Z746  
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
6.8 Typical Characteristics  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
30 A  
10 A  
2 A  
30 A  
10 A  
2 A  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (èC)  
Temperature (èC)  
D003  
D002  
6-3. Charge Current Error vs Temperature and  
6-4. Discharge Current Error vs Temperature  
Charger Current with 1-mΩsense, No Calibration and Load Current with 1mΩSense, No Calibration  
1
0.8  
0.6  
0.4  
0.2  
0
2
0
2.5-V Common Mode  
4.0-V Common Mode  
5.5 V Common Mode  
-2  
-4  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-6  
2.0 V  
3.6 V  
5.0 V  
-8  
-10  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (C)  
Temperature (èC)  
D001  
6-5. 2.2A Current Error vs CC ADC Input  
Common Mode Voltage and Temperature, No  
Calibration  
6-6. Cell Voltage Error vs Battery Voltage and  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ27Z746  
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
7 Detailed Description  
7.1 Overview  
The BQ27Z746 gas gauge is a fully integrated battery manager that employs flash-based firmware to provide a  
complete solution for battery-stack architectures composed of 1-series cells. The BQ27Z746 device interfaces  
with a host system through an I2C or HDQ protocol. High-performance, integrated analog peripherals enable  
support for a sense resistor down to 1 mΩ, and simultaneous current/voltage data conversion for instant power  
calculations. The following sections detail all of the major component blocks included as part of the BQ27Z746  
device.  
7.2 Functional Block Diagram  
Updated:21 Feb 2019  
PACK+  
S1  
S2  
R
DSG  
10M  
G2  
G1  
CHG  
DSG  
R
PACK  
5Kꢀ  
REF1  
VDD  
PACK  
DSG Load  
Detection  
REF1  
Charge Pump and  
nFET Driver  
PACK  
VREG  
VDD  
I
PACK-VDD  
1.8V  
LDO  
Super  
Comparator  
C
BAT  
BAT  
1uF  
(OV, UV, OCC,  
OCD, SCD)  
Protection  
Logic  
SRP-SRN  
PACK  
Pack  
Detection  
POR  
ENAB  
PACK  
BAT_SP  
BAT_SN  
BAT  
VSS  
BAT  
TS  
Pack  
Divider  
Direct Battery  
Sensing Output  
VREG  
18kꢀ  
NTC  
Bias  
+
Internal Die  
Temp Sensor  
Li-Ion  
Cell  
VDD  
Weak PU  
ADC MUX  
REF1  
REF1  
NTC  
-
VSS  
ENAB  
ENAB  
16-bit  
CC  
16-bit  
ADC  
REF2  
HFO  
LFO  
R
SNP  
100ꢀ  
SRP  
SRN  
Test  
Interface  
IO and  
Interrupt  
Controller  
R
SNS  
Data Flash  
4-kBytes  
Data SRAM  
2-kBytes  
CC/ADC  
Digital Filter  
0.1uF  
1mꢀ  
R
SNN  
100ꢀ  
DMData (8b)  
DMAddr (16b)  
GPO  
bqBMP  
CPU  
Push Pull  
PMData (8b)  
SDA  
SCL  
Open Drain  
Open Drain  
PMAddr (16b)  
Timers  
COMM  
Engine  
Program Flash  
32-kBytes  
ROM  
20-kBytes  
PACKœ  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ27Z746  
 
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
7.3 Feature Description  
7.3.1 BQ27Z746 Processor  
The BQ27Z746 device uses a custom TI-proprietary processor design that features a Harvard architecture and  
operates at frequencies up to 4.2 MHz. Using an adaptive, three-stage instruction pipeline, the BQ27Z746  
processor supports variable instruction lengths of 8, 16, or 24 bits.  
7.3.2 Battery Parameter Measurements  
The BQ27Z746 device measures cell voltage and current simultaneously, and also measures temperature to  
calculate the information related to remaining capacity, full charge capacity, state-of-health, and other gauging  
parameters.  
7.3.2.1 Coulomb Counter (CC) and Digital Filter  
The first ADC is an integrating analog-to-digital converter designed specifically for tracking charge and discharge  
activity, or coulomb counting, of a rechargeable battery. It features a single-channel differential input that  
converts the voltage difference across a sense resistor between the SRP and SRN terminals with a resolution of  
3.74 µV. The differential input common mode voltage range is from VSS to VBAT and supports a 1-series cell  
high-side or low-side sensing option with ±0.1-V input range. The CC digital filter generates a 16-bit conversion  
value from the delta-sigma CC front-end. New conversions are available every 1 s.  
7.3.2.2 ADC Multiplexer  
The ADC multiplexer provides selectable connections to the external pins, BAT and TS, as well as the internal  
temperature sensor. In addition, the multiplexer can independently enable the TS input connection to the internal  
thermistor biasing circuitry, and enables the user to short the multiplexer inputs for test and calibration purposes.  
7.3.2.3 Analog-to-Digital Converter (ADC)  
The second ADC is a 16-bit delta-sigma converter designed for general-purpose measurements. The ADC  
automatically scales the input voltage range during sampling based on channel selection. The converter  
resolution is a function of its full-scale range and number of bits, yielding a 38-µV resolution.  
7.3.2.4 Internal Temperature Sensor  
An internal temperature sensor is available on the BQ27Z746 device to reduce the cost, power, and size of the  
external components necessary to measure temperature. It is available for connection to the ADC using the  
multiplexer, and is ideal for quickly determining pack temperature under a variety of operating conditions.  
7.3.2.5 External Temperature Sensor Support  
The TS input is enabled with an internal 18-kΩ(Typ.) linearization pull-up resistor to support the use of a 10-kΩ  
(25°C) NTC external thermistor, such as the Semitec 103AT-2. The NTC thermistor should be connected  
between VSS and the individual TS pin. The analog measurement is then taken by the ADC through its input  
multiplexer. If a different thermistor type is required, then changes to configurations may be required.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ27Z746  
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
REG18  
TS  
ADC  
NTC  
7-1. External Thermistor Biasing  
7.3.3 Power Supply Control  
The BQ27Z746 device uses the VDD pin as its power source. VDD powers the internal voltage sources that  
supply references for the device. The BAT pin is a non-current carrying path and used as a Kelvin sense  
connection to the battery cell.  
7.3.4 Bus Communication Interface  
The BQ27Z746 device has an I2C bus communication interface. Alternatively, the device can be configured to  
communicate through the HDQ pin (shared with SDA).  
备注  
Once the device is switched to the HDQ protocol, it is not reversible.  
7.3.5 Low Frequency Oscillator  
The BQ27Z746 device includes a low frequency oscillator (LFO) running at 65.536 kHz.  
7.3.6 High Frequency Oscillator  
The BQ27Z746 includes a high frequency oscillator (HFO) running at 16.78 MHz. It is frequency locked to the  
LFO output and scaled down to 8.388 MHz with a 50% duty cycle.  
7.3.7 1.8-V Low Dropout Regulator  
The BQ27Z746 device contains an integrated capacitor-less 1.8-V LDO (REG18) that provides regulated supply  
voltage for the device CPU and internal digital logic.  
7.3.8 Internal Voltage References  
The BQ27Z746 device provides two internal voltage references. REF1 is used by REG18, oscillators, and CC.  
REF2 is used by the ADC.  
7.3.9 Overcurrent in Discharge Protection  
The overcurrent in discharge (OCD) function detects abnormally high current in the discharge direction. The  
overload in discharge threshold and delay time are configurable through the firmware register. The thresholds  
and timing can be fine-tuned even further based on a sense resistor with lower resistance or wider tolerance  
through calibration. When an OCD event occurs, the Safety Status flag is set to 1 and is latched until it is  
cleared and the fault condition his removed.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ27Z746  
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
7.3.10 Overcurrent in Charge Protection  
The short-circuit current in charge (OCC) function detects catastrophic current conditions in the charge direction.  
The short-circuit in charge threshold and delay time are configurable through the firmware register. The  
thresholds and timing can be fine-tuned even further based on a sense resistor with lower resistance or wider  
tolerance through calibration. The detection circuit also incorporates a blanking delay before disabling the CHG  
and DSG FETs. When an OCC event occurs, the Safety Status flag bit is set to 1 and is latched until it is  
cleared and the fault condition is removed.  
7.3.11 Short-Circuit Current in Discharge Protection  
The short-circuit current in discharge (SCD) function detects catastrophic current conditions in the discharge  
direction. The short-circuit in discharge thresholds and delay times are configurable through the firmware  
register. The thresholds and timing can be fine-tuned even further based on a sense resistor with lower  
resistance or wider tolerance with calibration. The detection circuit also incorporates a delay before disabling the  
CHG and DSG FETs. When an SCD event occurs, the Safety Status flag bit is set to 1 and is latched until it is  
cleared and the fault condition is removed.  
7.3.12 Primary Protection Features  
The BQ27Z746 gas gauge supports the following battery and system level protection features, which can be  
configured using firmware:  
Cell Undervoltage Protection  
Cell Overvoltage Protection  
Overcurrent in CHARGE Mode  
Overcurrent in DISCHARGE Mode  
Overload in DISCHARGE Mode  
Short Circuit in DISCHARGE Mode  
Overtemperature in CHARGE Mode  
Overtemperature in DISCHARGE Mode  
Precharge Timeout  
Fast Charge Timeout  
7.3.13 Battery Sensing  
The BQ27Z746 offers direct battery sensing through differential battery sensing pins BAT_SP and BAT_SN for  
accurate battery voltage measurement and detection. BQ27Z746 battery sensing path includes protection and  
isolation to minimize any leakage and coupling issue. The cell isolation includes a combination of buffered and  
resistive options. Firmware configuration allows seamless auto-transition between the two sensing schemes.  
The battery sensing buffer is powered from the PACK pin.  
For accurate battery voltage sensing when using the sensing buffer, the PACK pin must be powered and VPACK  
> VBAT + 0.7 V. The sensing protection thresholds (BCP, BCN, BDP, and BDN) provide short detection for the  
battery sensing output pins, and places the battery sensing output pins in a high impedance state when  
triggered. The BQ27Z746 battery sensing has firmware programmable offset options for applications where  
differential output voltage needs to be shifted to overcome an input range limitation. The offset voltage selected  
should never exceed the sensing protection thresholds, because this causes false battery sensing faults.  
7.3.14 Gas Gauging  
This device uses the Impedance Tracktechnology to measure and determine the available charge in battery  
cells. See the Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm Application  
Report for further details.  
7.3.15 Zero Volt Charging (ZVCHG)  
ZVCHG (0-V charging) is a special function that allows charging a severely depleted battery that is below the  
FET driver charge pump shutdown voltage (VFET_SHUT). The BQ27Z746 has ZVCHG enabled. If VBAT > V0INH  
and VBAT < VFET_SHUT and the charger voltage at PACK+ is > V0CHGR, then the CHG output will be driven to the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ27Z746  
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
voltage of the PACK pin, allowing charging. ZVCHG mode in the BQ27Z746 is exited when VBAT  
>
VFET_SHUT_REL, at which point the charge pump is enabled, and CHG transitions to being driven by the charge  
pump. For BQ27Z746, when the voltage on VDD is below V0INH, the CHG output becomes high impedance, and  
any leakage current flowing through the CHG FET may cause this voltage to rise and reenable charging. If this is  
undesired, a high impedance resistor can be included between the CHG FET gate and source to overcome any  
leakage and ensure the FET remains disabled in this case. This resistance should be as high as possible while  
still ensuring the FET is disabled, since it will increase the device operating current when the CHG driver is  
enabled. Because gate leakage is typically extremely low, a gate-source resistance of 50 MΩto 100 MΩmay  
be sufficient to overcome the leakage.  
7.3.16 Charge Control Features  
This device supports charge control features, such as:  
Reports charging voltage and charging current based on the active temperature rangeJEITA temperature  
ranges T1, T2, T3, T4, T5, and T6  
Provides more complex charging profiles, including sub-ranges within a standard temperature range  
Reports the appropriate charging current required for constant current charging, and the appropriate charging  
voltage needed for constant voltage charging to a smart charger, using the bus communication interface  
Selects the chemical state-of-charge of each battery cell using the Impedance Track method  
Provides pre-charging/zero-volt charging  
Employs charge inhibit and charge suspend if battery pack temperature is out of programmed range  
Activates charge and discharge alarms to report charging faults and to indicate charge status  
7.3.17 Authentication  
This device supports security with the following features, which can be enabled if desired:  
Authentication by the host using the SHA-256 method  
The gas gauge requires SHA-256 authentication before the device can be unsealed or allow full access.  
7.4 Device Functional Modes  
This device supports five modes, but the current consumption varies, based on firmware control of certain  
functions and modes of operation:  
NORMAL mode: In this mode, the device performs measurements, calculations, protections, and data  
updates every 250-ms intervals. Between these intervals, the device operates in a reduced power state to  
minimize total average current consumption. Battery protections are continuously monitored and both  
protection NFETs are typically on.  
SLEEP mode: In this mode, the device performs measurements, calculations, and data updates in adjustable  
time intervals. Between these intervals, the device operates in a reduced power stage to minimize total  
average current consumption. Battery protections are continuously monitored and both protection NFETs are  
typically on.  
SHIP mode: In this mode, the device measures voltage and temperature very infrequently and at shorter  
ADC conversion times, and current is not measured or coulomb counted. Current is assumed to be, and  
reported as, 0 mA. Therefore, the device tracks the battery's state-of-charge from OCVs. The measurements  
performed each interval are cell voltage, temperature, and PACK voltage (every fourth interval). Processing is  
minimized by reducing the number of calculations. Some calculations are performed less frequently: only  
after voltage and temperature are measured. These less frequent calculations include updating firmware-  
based protections, lifetime data, and the voltage and temperature ranges of the advanced charge algorithm.  
Other calculations, such as updating RemainingCapacity() and FullChargeCapacity(), are not performed at all  
with the assumption the system is off and will not communicate with the gauge. Battery protections are  
continuously monitored and both protection NFETs remain on, typically.  
SHELF mode: In this mode, power consumption is reduced even further from SHIP mode by turning off the  
CHG and DSG NFETs and all hardware-based protections. Due to this, no external power is available to the  
system in SHELF mode. The device measures voltage and temperature very infrequently and at shorter ADC  
conversion times, and current is not measured or coulomb counted. Current is assumed to be, and reported  
as, 0 mA. Therefore, the device tracks the battery's state-of-charge from voltage measurements. The  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ27Z746  
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
measurements performed each interval are cell voltage, temperature and PACK voltage (every fourth  
interval). Processing is minimized by reducing the number of calculations. Some calculations are performed  
less frequently: only after voltage and temperature are measured. These less frequent calculations include  
updating firmware-based protections, lifetime data, and the voltage and temperature ranges of the advanced  
charge algorithm. Other calculations, such as updating RemainingCapacity() and FullChargeCapacity(), are  
not performed at all with the assumption the system is off and will not communicate with the gauge.  
SHUTDOWN mode: In this mode, the device is completely disabled to minimize power consumption and to  
avoid depleting the battery.  
7.4.1 Lifetime Logging Features  
The device supports data logging of several key parameters for warranty and analysis:  
Maximum and minimum cell temperature  
Maximum current in CHARGE or DISCHARGE mode  
Maximum and minimum cell voltages  
Safety events and number of occurrences  
7.4.2 Configuration  
The device supports accurate data measurements and data logging of several key parameters.  
7.4.2.1 Coulomb Counting  
The device uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement. The ADC  
measures charge/discharge flow of the battery by measuring the voltage across a very small external sense  
resistor. The integrating ADC measures a bipolar signal from a range of 100 mV to 100 mV, with a positive  
value when V(SRP) V(SRN), indicating charge current and a negative value indicating discharge current.  
The current measurement is performed by measuring the voltage drop across the external sense resistor, which  
can be as low as 1 mΩ, and the polarity of the differential voltage determines if the cell is in the CHARGE or  
DISCHARGE mode.  
7.4.2.2 Cell Voltage Measurements  
The BQ27Z746 gas gauge measures the cell voltage at 1-s intervals using the ADC. This measured value is  
internally scaled for the ADC and is calibrated to reduce any errors due to offsets. This data is also used for  
calculating the impedance of the cell for Impedance Track gas gauging.  
7.4.2.3 Auto Calibration  
The auto-calibration feature helps to cancel any voltage offset across the SRP and SRN pins for accurate  
measurement of the cell voltage, charge/discharge current, and thermistor temperature. The auto-calibration is  
performed when there is no communication activity for a minimum of 5 s on the bus lines.  
7.4.2.4 Temperature Measurements  
This device has an internal sensor for on-die temperature measurements, and the ability to support an external  
temperature measurement through the external NTC on the TS pin. These two measurements are individually  
enabled and configured.  
8 Applications and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ27Z746  
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
8.1 Application Information  
The BQ27Z476 can be used with a 1-series Li-ion/Li polymer battery pack. To implement and design a  
comprehensive set of parameters for a specific battery pack, the user needs Battery Management Studio  
(BQStudio), which is a graphical user-interface tool installed on a PC during development. The firmware installed  
in the product has default values, which are summarized in the associated BQ27Z476 Technical Reference  
Manual (SLUUCA6). Using the BQStudio tool, these default values can be changed to cater to specific  
application requirements during development once the system parameters, such as enable or disable certain  
features for operation, cell configuration, chemistry that best matches the cell used, and more. The final flash  
image, which is extracted once configuration and testing are complete, is used for mass production and is  
referred to as the "golden image."  
8.2 Typical Applications  
The following is an example BQ27Z476 application schematic for a single-cell battery pack.  
C7  
F
C6  
0.1  
1
0.1  
F
= Recommended for IEC ESD  
1
PACKP  
C5  
0.1  
R7  
10 M  
F
F
1
C4  
0.1  
R6  
5 k  
DSG  
R1  
10  
CHG  
1
PACKN  
VDD  
C1  
1.0 uF  
PACK  
BQ27Z746  
1
BAT_SP  
BAT_SN  
BAT_SP  
BAT_SN  
BAT  
TS  
CELLP  
R2  
1
1 K  
Li-Ion  
Cell  
C2  
GPO/TS1  
ENAB  
0.01  
RT1  
103AT  
F
CELLN  
VSS  
SRP  
R9  
100  
SCL  
SCL  
SDA  
R4  
100  
R3  
2 m  
SDA/HDQ  
C3  
F
R8  
100  
0.1  
SRN  
R5  
100  
PACKN  
8-1. BQ27Z746 1-Series Cell Low Side Current Sensing Typical Implementation  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ27Z746  
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
C7  
F
C6  
0.1  
1
0.1  
F
= Recommended for IEC ESD  
1
PACKP  
C5  
R7  
10 M  
0.1  
F
F
1
C4  
0.1  
R6  
5 k  
DSG  
R1  
10  
CHG  
1
PACKN  
VDD  
C1  
1.0 uF  
PACK  
R3  
2 m  
BQ27Z746  
1
BAT_SP  
BAT_SN  
BAT_SP  
BAT_SN  
BAT  
TS  
CELLP  
R2  
1
1 K  
Li-Ion  
Cell  
C2  
GPO/TS1  
ENAB  
0.01  
F
CELLN  
RT1  
103AT  
VSS  
SRP  
R9  
R4  
100  
100  
SCL  
SCL  
SDA  
C3  
F
SDA/HDQ  
0.1  
R8  
100  
SRN  
R5  
100  
PACKN  
8-2. BQ27Z746 1-Series Cell High Side Current Sensing Typical Implementation  
8.2.1 Design Requirements (Default)  
Design Parameter  
Example  
1s1p (1 series with 1 parallel)  
5300 mAh  
Cell Configuration  
Design Capacity  
Device Chemistry  
Design Voltage  
Li-Ion  
4000 mV  
Cell Low Voltage  
2500 mV  
8.2.2 Detailed Design Procedure  
8.2.2.1 Changing Design Parameters  
For the firmware settings needed for the design requirements, refer to the BQ27Z746 Technical Reference  
Manual (SLUUCA6).  
To change design capacity, set the data flash value (in mAh) in the Gas Gauging: Design: Design Capacity  
register.  
To set device chemistry, go to the data flash I2C Configuration: Data: Device Chemistry. The BQStudio  
software automatically populates the correct chemistry identification. This selection is derived from using the  
BQCHEM feature in the tools and choosing the option that matches the device chemistry from the list.  
To set the design voltage, go to Gas Gauging: Design: Design Voltage register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ27Z746  
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
To set the cell Low Voltage or clear the cell Low Voltage, use Settings: Configuration: Init Voltage Low  
Set or Clear. This is used to set the cell voltage level that will set (clear) the [VOLT_LO] bit in the Interrupt  
Status register.  
To enable the internal temperature and the external temperature sensors: Set Settings:Configuration:  
Temperature Enable: Bit 0 (TSInt) = 1 for the internal sensor; set Bit 1 (TS1) = 1 for the external sensor.  
8.2.3 Calibration Process  
The calibration of current, voltage, and temperature readings is accessible by writing 0xF081 or 0xF082 to  
ManufacturerAccess(). A detailed procedure is included in the BQ27Z746 Technical Reference Manual  
(SLUUCA6) in the Calibration section. The description allows for calibration of cell voltage measurement offset,  
battery voltage, current calibration, coulomb counter offset, PCB offset, CC gain/capacity gain, and temperature  
measurement for both internal and external sensors.  
8.2.4 Gauging Data Updates  
When a battery pack enabled with the BQ27Z746 gas gauge is cycled, the value of FullChargeCapacity()  
updates several times, including the onset of charge or discharge, charge termination, temperature delta,  
resistance updates during discharge, and relaxation. 8-3 shows actual battery voltage, load current, and  
FullChargeCapacity() when some of those updates occur during a single application cycle.  
Update points from the plot include:  
Charge termination at 7900 s  
Relaxation at 9900 s  
Resistance update at 11500 s  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ27Z746  
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
8.2.4.1 Application Curve  
8-3. Full Charge Capacity Tracking (X-Axis Is Seconds)  
9 Power Supply Requirements  
The BQ27Z746 device uses the VDD pin as its power source. VDD pin powers the internal voltage sources that  
supply references for the device. The VDD pin connects to 1-series battery cells' positive terminal and supports  
a minimum of 2 V to a maximum of 5 V. The BAT pin is a noncurrent carrying path and is used as a battery  
voltage Kelvin sense connection to the 1-series battery cells' positive terminal.  
10 Layout  
10.1 Layout Guidelines  
The quality of the Kelvin connections at the sense resistor is critical. The sense resistor must have a  
temperature coefficient no greater than 50 ppm to minimize current measurement drift with temperature.  
Choose the value of the sense resistor to correspond to the available overcurrent and short-circuit ranges of  
the BQ27Z746 gas gauge. Select the smallest value possible to minimize thermal dissipation and still  
maintain required measurement accuracy. The value of the sense resistor impacts the differential voltage  
generated across the BQ27Z746 SRP and SRN nodes during a short circuit. These pins have a differential  
voltage should not exceed VCC_IN of ± 0.1 V for normal operation. Parallel sense resistors can be used as  
long as good Kelvin sensing is ensured. The device is designed to support a 1-mΩto 20-mΩsense resistor.  
BAT should be tied directly to the positive connection of the battery with a series 1-kΩresistor. It should not  
share a path with the VDD pin and its 10-Ωseries resistor.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ27Z746  
 
 
 
 
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
In reference to the gas gauge circuit, the following features require attention for component placement and  
layout: VDD bypass capacitor, SRN and SRP differential low-pass filter, and I2C communication ESD external  
protection.  
The BQ27Z746 gas gauge uses an integrating delta-sigma ADC for current measurements. Add a 100-Ω  
resistor from the sense resistor to the SRP and SRN inputs of the device. Place a 0.1-μF filter capacitor  
across the SRP and SRN inputs. Place all filter components as close as possible to the device. Route the  
traces from the sense resistor as differential pairs to the filter circuit. Adding a ground plane around the filter  
network can provide additional noise immunity.  
The BQ27Z746 has an internal LDO that is internally compensated and does not require an external  
decoupling capacitor.  
The I2C clock and data pins have integrated high-voltage ESD protection circuits; however, adding a Zener  
diode and series resistor provides more robust ESD performance. The I2C clock and data lines have an  
internal pulldown. When the gas gauge senses that both lines are low (such as during removal of the pack),  
the device performs auto-offset calibration and then goes into SLEEP mode to conserve power.  
10.2 Layout Example  
RPACK  
RDSG  
RSRN  
RSNS  
CSNS  
S1  
RSRP  
DSG G1  
CHG G2  
CTS  
Common  
Drain  
NFET  
Pair  
S2  
CVDD  
RBAT  
RVDD  
NTC  
Weld  
Tab  
Weld  
Tab  
CELL+  
CELL-  
Battery  
10-1. BQ27Z746 Key Trace Board Layout  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ27Z746  
 
BQ27Z746  
www.ti.com.cn  
ZHCSP94A NOVEMBER 2021 REVISED FEBRUARY 2022  
11 Device and Documentation Support  
11.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Documentation Support  
11.2.1 Related Documentation  
BQ27Z746 Technical Reference Manual  
Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm Application Report  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
Impedance Track, NanoFree, and TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Orderable, and Packaging Information  
The following pages include mechanical, orderable, and packaging information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ27Z746  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ27Z746YAHR  
ACTIVE  
DSBGA  
YAH  
15  
3000 RoHS & Green  
SAC396  
Level-1-260C-UNLIM  
-40 to 85  
BQ27Z746  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ27Z746YAHR  
DSBGA  
YAH  
15  
3000  
180.0  
12.4  
1.88  
2.76  
0.55  
4.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YAH 15  
SPQ  
Length (mm) Width (mm) Height (mm)  
182.0 182.0 20.0  
BQ27Z746YAHR  
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

BQ27Z746YAHR

具有集成保护器、采用 Impedance Track™ 技术的电池包侧单节电池电量监测计 | YAH | 15 | -40 to 85
TI

BQ28400

Tablet PC and Netbook 2-Series Cell Li-Ion Battery Gas Gauge and Protection
TI

BQ28400PW

Tablet PC and Netbook 2-Series Cell Li-Ion Battery Gas Gauge and Protection
TI

BQ28400PWR

Tablet PC and Netbook 2-Series Cell Li-Ion Battery Gas Gauge and Protection
TI

BQ28550

bq28550 Single Cell Li-Ion Battery Gas Gauge and Protection
TI

bq28550DRZR

bq28550 Single Cell Li-Ion Battery Gas Gauge and Protection
TI

bq28550DRZT

bq28550 Single Cell Li-Ion Battery Gas Gauge and Protection
TI

BQ28Z560-R1

Single Cell Li-Ion Battery Gas Gauge and Protection
TI

BQ28Z610

适用于 1-2 节串联电池组并具有集成保护器的电池电量监测计
TI

BQ28Z610-R1

适用于 1-2 节串联电池组并具有集成保护器的电池电量监测计
TI

BQ28Z610DRZR

适用于 1-2 节串联电池组并具有集成保护器的电池电量监测计 | DRZ | 12 | -40 to 85
TI

BQ28Z610DRZR-R1

适用于 1-2 节串联电池组并具有集成保护器的电池电量监测计 | DRZ | 12 | -40 to 85
TI