BQ29209-Q1 [TI]

具有自动电池均衡功能的汽车电压保护,用于 2 节锂离子电池,OVP=4.30V;
BQ29209-Q1
型号: BQ29209-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有自动电池均衡功能的汽车电压保护,用于 2 节锂离子电池,OVP=4.30V

电池
文件: 总24页 (文件大小:1506K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
适用2 节串联锂离子电池且具有自动电池平衡功能BQ29209-Q1  
电压保护  
1 特性  
3 说明  
2 节串联电池二级保护  
BQ29209-Q1 器件是一款用于 2 节串联锂离子电池组  
的二级过压保护 IC具有高精度精密过压检测电路和  
自动电量失衡校正功能。  
• 带外部使能控制的自动电量失衡校正  
±30mV 使能阈值0mV 禁用阈值典型值)  
• 外部电容控制的延迟计时器  
IC 2 节串联电池组中每节电池的电压与出厂设定  
的内部参考电压进行比较。如果任一电池达到过压状  
OUT 引脚由低电平转换为高电平状态。  
• 外部电阻控制的电量平衡电流  
• 低功ICC < 3µA典型值)(VCELL总电压<  
VPROTECT  
BQ29209-Q1 可执行基于电压的自动电量失衡校正。  
当电池电压与内部参考电压相差 30mV 或以上时启  
动电量平衡当电池电压与内部参考电压相差 0mV  
停止电量平衡。电量平衡功能CB_EN 引脚启用  
和禁用。  
• 内部电量平衡功能可处理  
15mA 的电流  
• 支持外部电量平衡模式  
• 高精度过压保护:  
±25mVTA = 0°C 60°C)  
• 固定过压保护阈值:  
器件信息  
4.30V  
器件型(1)  
BQ29209-Q1  
封装尺寸标称值)  
封装  
• 小8 DRB 封装  
提供功能安全型  
VSON (8)  
3.00mm × 3.00mm  
可帮助进行功能安全系统设计的文档  
• 符合汽车AEC Q100 2 级标准  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
PACK+  
2 应用  
RIN2  
• 锂离子电池组二级保护  
RVD  
VC2  
VC1  
OUT  
VDD  
1
2
3
8
7
6
5
CELL2  
CELL1  
CIN  
CIN  
– 紧急呼(eCall)  
– 笔记本电脑  
– 电动工具  
– 便携式设备和仪器  
– 备用电池系统  
RIN1  
VC1_CB CB_EN  
4 CD  
GND  
PWR PAD  
CVD  
RCBext  
CCD  
PACK-  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSC62  
 
 
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................11  
9 Application and Implementation.................................. 11  
9.1 Application Information..............................................11  
9.2 Typical Applications.................................................. 12  
9.3 System Example.......................................................13  
10 Power Supply Recommendations..............................14  
11 Layout...........................................................................14  
11.1 Layout Guidelines................................................... 14  
11.2 Layout Example...................................................... 14  
12 Device and Documentation Support..........................15  
12.1 Documentation Support.......................................... 15  
12.2 接收文档更新通知................................................... 15  
12.3 支持资源..................................................................15  
12.4 Trademarks.............................................................15  
12.5 静电放电警告.......................................................... 15  
12.6 术语表..................................................................... 15  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Options................................................................ 3  
6 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
7 Specifications.................................................................. 3  
7.1 Absolute Maximum Ratings........................................ 3  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................4  
7.6 Recommended Cell Balancing Configurations........... 6  
7.7 Typical Characteristics................................................6  
8 Detailed Description........................................................7  
8.1 Overview.....................................................................7  
8.2 Functional Block Diagram...........................................7  
8.3 Feature Description.....................................................7  
Information.................................................................... 15  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (December 2018) to Revision D (September 2020)  
Page  
• 添加了“提供功能安全型”信息......................................................................................................................... 1  
Changes from Revision B (November 2018) to Revision C (December 2018)  
Page  
Added a clarification regarding operation if GND is not connected first in sequence.........................................8  
Changes from Revision A (March 2016) to Revision B (November 2018)  
Page  
• 更改了简化版原理中的元件名....................................................................................................................1  
Changed a component name in Recommended Operating Conditions ............................................................ 4  
Added the value of internal cell balancing switch resistances to Electrical Characteristics ...............................4  
Changed resistor names ....................................................................................................................................6  
Added 8-2 to clarify the cell balancing description; updated the equations .................................................. 9  
Changed values and component names in 9-1 ...........................................................................................12  
Changed component names and values used in the design example ............................................................ 12  
Changed external cell balancing figure, equations, and description.................................................................13  
Changes from Revision * (June 2015) to Revision A (March 2016)  
Page  
• 更改了电阻RVD 位置简化版原理中添加PACK+ PACK........................................................... 1  
Deleted the Lead Temperature (soldering) from the 7.1 table .......................................................................3  
Changed resistor RVD location in 9-1 ..........................................................................................................12  
Added title to 9-1 .........................................................................................................................................12  
Changed resistor RVD location, added PACK+ and PACKin 9-3 ............................................................ 13  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ29209-Q1  
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
5 Device Options  
TA  
PART NUMBER  
OVP  
BQ29209-Q1  
4.3 V  
40°C to +105°C  
6 Pin Configuration and Functions  
1
2
3
4
8
7
6
5
VC2  
VC1  
OUT  
VDD  
PWR PAD  
VC1_CB  
CD  
CB_EN  
GND  
6-1. DRB Package 8-Pin VSON Top View  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
CB_EN  
CD  
NO.  
6
Cell balance enable  
4
Connection to external capacitor for programmable delay time  
GND  
5
Ground pin  
Output  
OUT  
8
Thermal Pad  
VC1  
PWR PAD GND pin to be connected to the PWRPAD on the printed circuit board for proper operation  
2
3
1
7
Sense voltage input for bottom cell  
Cell balance input for bottom cell  
Sense voltage input for top cell  
Power supply  
VC1_CB  
VC2  
VDD  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over-operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage range, VMAX  
16  
V
V
V
V
V
VDDGND  
0.3  
0.3  
0.3  
0.3  
0.3  
16  
VC2GND, VC1GND  
Input voltage range, VIN  
8
16  
VC2VC1, CDGND  
CB_ENGND  
Output voltage range, VOUT  
16  
OUTGND  
Continuous total power dissipation, PTOT  
Storage temperature , Tstg  
See 7.4.  
150  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ29209-Q1  
 
 
 
 
 
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (VC2, CD,  
OUT, and GND)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
4
NOM  
MAX UNIT  
Supply voltage, VDD  
10  
5
V
V
Input voltage range  
0
VC2VC1, VC1GND  
CCD (See 9-1.)  
Delay time capacitance, td(CD)  
Voltage monitor filter resistance  
Voltage monitor filter capacitance  
Supply voltage filter resistance  
Supply voltage filter capacitance  
Cell balance resistance  
0.1  
1K  
µF  
100  
RIN (See 9-1.)  
Ω
0.01  
0.1  
100  
0.1  
µF  
CIN (See 9-1.)  
1K  
RVD (See 9-1.)  
Ω
µF  
CVD (See 9-1.)  
100  
4.7K  
105  
RCBext (See 9-1 and 8.3.1.)  
Ω
Operating ambient temperature range, TA  
°C  
40  
7.4 Thermal Information  
BQ29209-Q1  
DRB  
THERMAL METRIC(1)  
UNIT  
8 PINS  
50.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
25.1  
19.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
0.7  
ψJT  
18.9  
ψJB  
RθJC(bot)  
5.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
Typical values stated where TA = 25°C and VDD = 7.2 V. Minimum and maximum values stated where TA = 40°C to 105°C  
and VDD = 4 V to 10 V (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
Overvoltage detection  
voltage  
VPROTECT  
VHYS  
4.3  
V
Overvoltage detection  
hysteresis  
200 300 400  
mV  
mV  
Overvoltage detection  
accuracy  
VOA  
TA = 25°C  
10  
10  
TA = 0°C to 60°C  
0.4  
0.6  
0.4  
0.6  
Overvoltage threshold  
temperature drift  
VOA_DRIFT  
mV°/C  
TA = 40°C to 110°C  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ29209-Q1  
 
 
 
 
 
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Typical values stated where TA = 25°C and VDD = 7.2 V. Minimum and maximum values stated where TA = 40°C to 105°C  
and VDD = 4 V to 10 V (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
TA = 0°C to 60°C  
Note: Does not include external capacitor variation.  
6
9
9
12  
Overvoltage delay time  
scale factor  
XDELAY  
s/µF  
TA = 40°C to 110°C  
Note: Does not include external capacitor variation.  
5.5  
13.5  
Overvoltage delay time  
scale factor in Customer  
Test Mode  
(1)  
XDELAY_CTM  
0.08  
s/µF  
Overvoltage detection  
charging current  
ICD(CHG)  
ICD(DSG)  
150  
60  
nA  
µA  
Overvoltage detection  
discharging current  
Overvoltage detection  
external capacitor  
comparator threshold  
VCD  
ICC  
1.2  
V
Supply current  
3
6
µA  
V
(VC2VC1) = (VC1GND) = 3.5 V (See 8-5.)  
(VC2VC1) or (VC1GND) > VPROTECT  
,
6
8.25  
9.5  
VDD = 10 V, IOH = 0  
(VC2VC1) or (VC1GND) = VPROTECT, VDD = VPROTECT  
IOH = 100 µA, TA = 0°C to 60°C  
,
1.75  
2.5  
0
V
VOUT  
OUT pin drive voltage  
(VC2VC1) and (VC1GND) < VPROTECT  
,
200  
mV  
IOL = 100 µA, TA = 25°C  
(VC2VC1) and (VC1GND) < VPROTECT  
,
10  
mV  
mV  
µA  
IOL = 0 µA, TA = 25°C  
VC2 = VC1 = VDD = 4 V, IOL = 100 µA  
200  
OUT = 1.75 V, (VC2VC1) or (VC1GND) = VPROTECT  
VDD = VPROTECT to 10 V, TA = 0°C to 60°C  
,
,
IOH  
High-level output current  
Low-level output current  
100  
OUT = 0.05 V, (VC2VC1) or (VC1GND) < VPROTECT  
IOL  
30  
85  
8  
0.2  
µA  
mA  
µA  
µA  
VDD = VPROTECT to 10 V, TA = 0°C to 60°C  
High-level short-circuit  
output current  
OUT = 0 V, (VC2VC1) = (VC1GND) = VPROTECT  
VDD = 4 to 10 V  
IOH_ZV  
Measured at VC1, (VC2VC1) = (VC1GND) = 3.5 V,  
TA = 0°C to 60°C (See 8-5.)  
0.2  
IIN  
Input current at VCx pins  
Measured at VC2, (VC2VC1) = (VC1GND) = 3.5 V,  
TA = 0°C to 60°C (See 8-5.)  
2.5  
45  
9
Cell mismatch detection  
threshold for turning ON  
(VC2VC1) versus (VC1GND) and vice-versa when cell  
balancing is enabled. VC2 = VDD = 7.6 V  
VMM_DET_ON  
17  
30  
0
mV  
mV  
V
Cell mismatch detection  
threshold for turning OFF  
Delta between (VC2VC1) and (VC1GND) when cell  
balancing is disabled. VC2 = VDD = 7.6 V  
VMM_DET_OFF  
VCB_EN_ON  
VCB_EN_OFF  
ICB_EN  
9  
Cell balance enable ON  
threshold  
Active LOW pin at CB_EN  
Active HIGH at CB_EN  
CB_EN = GND (See 8-6.)  
CB_EN = GND  
1
Cell balance enable OFF  
threshold  
2.2  
V
Cell balance enable ON  
input current  
0.2  
µA  
Ω
Ω
Internal cell balance  
switch resistance  
RCB1int  
300  
235  
Internal cell balance  
switch resistance  
RCB2int  
CB_EN = GND  
(1) Specified by design. Not 100% tested in production.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ29209-Q1  
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7.6 Recommended Cell Balancing Configurations  
Typical values stated where TA = 25°C and (VC2VC1), (VC1GND) = 3.8 V. Minimum and maximum values stated where  
TA = 40°C to 105°C, VDD = 4 V to 10 V, and (VC2VC1), (VC1GND) = 3 V to 4.2 V. All values assume recommended  
supply voltage filter resistance RVD of 100 Ωand 5% accurate or better cell balance resistor RCBext  
.
MIN NOM MAX  
UNIT  
0.5 0.75  
1
2
RCBext = 4700 Ω  
RCBext = 2200 Ω  
RCBext = 910 Ω  
1
2
1.5  
3
4
3
4.5  
6
6
ICB  
Cell balance input current  
mA  
RCBext = 560 Ω  
RCBext = 360 Ω  
RCBext = 240 Ω  
RCBext = 120 Ω  
3.5  
4
8.5  
11  
15  
7.5  
10  
5
7.7 Typical Characteristics  
7-1. ICD Charge Current  
7-2. ICD Discharge Current  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
-40  
0
25  
60  
110  
Operating Temperature (°C)  
C002  
7-3. Average ICC During Normal Operation Across Operational Temperature  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ29209-Q1  
 
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The BQ29209-Q1 provides overvoltage protection and cell balancing for 2-series cell lithium-ion battery packs.  
8.1.1 Voltage Protection  
Each cell voltage is continuously compared to a factory configured internal reference threshold. If either cell  
reaches an overvoltage condition, the BQ29209-Q1 device starts a timer that provides a delay proportional to  
the capacitance on the CD pin. Upon expiration of the internal timer, the OUT pin changes from a low to high  
state.  
8.1.2 Cell Balancing  
If enabled, the BQ29209-Q1 performs automatic cell-balance correction where the two cells are automatically  
corrected for voltage imbalance by loading the cell with the higher voltage with a small balancing current. When  
the cells are measured to be equal within nominally 0 mV, the load current is removed. It will be re-applied if the  
imbalance exceeds nominally 30 mV. The cell mismatch correction circuitry is enabled by pulling the CB_EN pin  
low, and disabled when CB_EN is pulled to greater than 2.2 V, for example, VDD.  
If the internal cell balancing current of up to 15 mA is insufficient, the BQ29209-Q1 may be configured via  
external circuitry to support much higher external cell balancing current.  
8.2 Functional Block Diagram  
VDD  
5-V LDO  
and POR  
VC2  
CTRL  
+
Hys.  
CB2_EN  
CB1 _EN  
CB  
Logic  
ICD =  
150 nA  
VC1  
VC1_CB  
+
OUT  
GND  
CB_EN  
CD  
0.1 µF  
8.3 Feature Description  
8.3.1 Protection (OUT) Timing  
Sizing the external capacitor is based on the desired delay time as follows:  
td  
CCD  
=
XDELAY  
Where td is the desired delay time and XDELAY is the overvoltage delay time scale factor, expressed in seconds  
per microfarad. XDELAY is nominally 9 s/µF. For example, if a nominal delay of 3 seconds is desired, use a CCD  
capacitor that is 3 s / 9 s/µF = 0.33 µF.  
The delay time is calculated as follows:  
td = CCD ´ XDELAY  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ29209-Q1  
 
 
 
 
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
If the cell overvoltage condition is removed before the external capacitor reaches the reference voltage, the  
internal current source is disabled and an internal discharge block is employed to discharge the external  
capacitor down to 0 V. In this instance, the OUT pin remains in a low state.  
8.3.2 Cell Voltage > VPROTECT  
When one or both of the cell voltages rises above VPROTECT, the internal comparator is tripped, and the delay  
begins to count to td. If the input remains above VPROTECT for the duration of td, the BQ29209-Q1 output changes  
from a low to a high state, by means of an internal pull-up network, to a regulated voltage of no more than 9.5 V  
when IOH = 0 mA.  
The external delay capacitor should charge up to no more than the internal LDO voltage (approximately 5 V  
typically), and will fully discharge in approximately under 100 ms when the overvoltage condition is removed.  
VPROTECT  
-
VPROTECT VHYS  
Cell Voltage  
VC2 1,  
VC1 GND  
VC  
t
d
L
H
OUT  
8-1. Timing for Overvoltage Sensing  
8.3.3 Cell Connection Sequence  
Note  
Before connecting the cells, populate the overvoltage delay timing capacitor, CCD  
.
The recommended cell connection sequence begins from the bottom of the stack, as follows:  
1. GND  
2. VC1  
3. VC2  
While not advised, connecting the cells in a sequence other than that described above does not result in errant  
activity on the OUT pin. For example:  
1. GND  
2. VC2 or VC1  
3. Remaining VCx pin  
Note  
Using any cell connection sequence that does not connect GND first may result in increased leakage  
current drawn by the VDD pin.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ29209-Q1  
 
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.3.4 Cell Balance Enable Control  
To avoid prematurely discharging the cells, it is recommended to turn off (pull high) the active-low Cell Balance  
Enable Control pin at lower state-of-charge (SOC) levels.  
8.3.5 Cell Balance Configuration  
The following cell balancing details relate to 8-2.  
PACK+  
RIN2  
RVDD  
VC2  
OUT  
VDD  
1
2
3
4
8
7
6
5
+
CIN2  
CIN1  
RCB2int  
VCELL2  
-
VC1  
RIN1  
VC1_CB  
CB_EN  
RCB1int  
GND  
CD  
CVDD  
+
RCBext  
VCELL1  
PWR PAD  
-
CCD  
PACK-  
8-2. Simplified Schematic for Cell Balancing Description  
The cell balancing current may be calculated as follows:  
For Cell 1 balancing current, ICB1  
:
VCELL1  
ICB1  
=
RCBext + RCB1int  
(1)  
For Cell 2 balancing current, ICB2  
:
VCELL2  
ICB2  
=
RCBext + RCB2int + RVDD  
(2)  
Where:  
RCBext = resistor connected between the top of Cell 1 and the VC1_CB pin  
RIN1 = resistor connected between the top of Cell 1 and the VC1 pin  
RIN2 = resistor connected between the top of Cell 2 and the VC2 pin  
RVDD = resistor connected between the top of Cell 2 and the VDD pin  
8.3.6 Cell Imbalance Auto-Detection (Via Cell Voltage)  
The VMM_DET_ON and VMM_DET_OFF specifications are calibrated where VDD = VC2 = 7.6 V and VC1 = 3.8 V. The  
recommended range of cell balancing is VC2 and VDD between 6.0 V and 8.4 V, and VC1 between 3 V and 4.2  
V. Below VDD = 6 V, it is recommended to pull CB_EN high to disable the cell balancing function.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ29209-Q1  
 
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
111%  
100%  
79%  
VC2  
8.4 V  
7.6 V  
6 V  
8-3. VMM_DET_ON and VMM_DET_OFF Threshold  
8.3.7 Customer Test Mode  
Customer Test Mode (CTM) helps to greatly reduce the overvoltage detection delay time and enable quicker  
customer production testing. This mode is intended for quick-pass board-level verification tests, and, as such,  
individual cell overvoltage levels may deviate slightly from the specifications (VPROTECT, VOA). If accurate  
overvoltage thresholds are to be tested, use the standard delay settings that are intended for normal use.  
To enter CTM, VDD should be set to approximately 9.5 V higher than VC2. When CTM is entered, the device  
switches from the normal overvoltage delay time scale factor, XDELAY, to a significantly reduced factor of  
approximately 0.08, thereby reducing the delay time during an overvoltage condition.  
CAUTION  
Avoid exceeding any Absolute Maximum Voltages on any pins when placing the part into CTM. Also,  
avoid exceeding absolute maximum voltages for the individual cell voltages (VC1GND) and  
(VC2VC1). Stressing the pins beyond the rated limits may cause permanent damage to the  
device.  
To exit CTM, power off the device and then power it back on.  
15 V  
VDD  
Test Mode Entered  
VC2  
> 10 ms  
4.5 V  
V
PROTECT  
(VC2–VC1)  
or  
(VC1–GND)  
V
V
PROTECT – HYST  
4 V  
<<t  
OUT  
d
8-4. Voltage Test Limits  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ29209-Q1  
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.3.8 Test Conditions  
IIN  
VC2  
OUT  
8
1
IIN  
2 VC1  
VDD 7  
______  
CB_EN  
Icc  
3
6
VC1_CB  
4 CD  
GND 5  
8-5. ICC, IIN Measurement  
VCELL  
VC2  
OUT  
VDD  
1
2
3
8
VC1  
7
6
5
ICB  
______  
CB_EN  
ICB  
VC1_CB  
ICB_EN  
VCELL VCB  
4 CD  
GND  
8-6. ICB Measurement  
8.4 Device Functional Modes  
This device monitors the voltage of the cells connected to the VCx pins and depending on these voltages and  
the overall battery voltage at VDD the device enters different operating modes.  
8.4.1 NORMAL Mode  
The device is operating in NORMAL mode when the cell voltage range is between the over-charge detection  
threshold (VPROTECT) and the minimum supply voltage.  
If this condition is satisfied, the device turns OFF the OUT pin.  
8.4.2 PROTECTION Mode  
The device is operating in PROTECTION mode when the cell over voltage protection feature has been triggered.  
See 8.3.2 for more details on this feature.  
If this condition is satisfied, the device turns ON the OUT pin.  
9 Application and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The BQ29209-Q1 is designed to be used in 2-series Li-Ion battery packs and with the option to include voltage-  
based cell balancing. The number of parallel cells or the overall capacity of the battery only affects the cell  
balancing circuit due to the level of potential imbalance that needs to be corrected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ29209-Q1  
 
 
 
 
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
9.2 Typical Applications  
9.2.1 Battery Connection  
9-1 shows the configuration for the 2-series cell battery connection with cell balancing enabled.  
FUSE  
PACK+  
100Ω  
260 Ω  
1 kΩ  
Si1406  
1
2
3
4
VC2  
OUT  
VDD  
8
7
6
5
CELL2  
CELL1  
0.1 μF  
0.1 μF  
VC1  
260Ω  
440Ω  
VC1_CB  
CB_ EN  
GND  
CD  
0.1 μF  
PWR PAD  
PACK–  
0.33 μF  
9-1. 2-Series Cell Configuration  
9.2.1.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE at TA = 25°C  
Input voltage range  
4 V to 10 V  
4.3 V  
Overvoltage Protection (OVT)  
Overvoltage detection delay time  
Overvoltage detection delay timer capacitor  
Cell Balancing Enabled  
3 s  
0.33 µF  
Yes  
Cell Balancing Current, ICB1 and ICB2  
Cell Balancing Resistors, RCBext, RIN1, RIN2 and RVD  
5 mA (targeted at a nominal cell voltage of 3.8 V)  
RCBext = 440 Ω, RIN1 = 260 Ω, RIN2 = 260 Ω, RVD = 100 Ω  
9.2.1.2 Detailed Design Procedure  
The BQ29209-Q1 has limited features but there are some key calculations to be made when selecting external  
component values.  
Calculate the required CCD capacitor value for the voltage protection delay time. Care should be taken to  
evaluate the tolerances of the capacitor and the BQ29209-Q1 to ensure system specifications are met.  
Calculate the cell balancing resistor values to provide a suitable level of balancing current that will, at a  
minimum, counter act an increase in imbalance during normal operation of the battery. Care should be taken  
to ensure any connectivity resistance is also considered as this will also reduce the balancing current level.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ29209-Q1  
 
 
 
 
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
9.2.1.3 Application Curve  
2
1
0
œ1  
œ2  
œ3  
œ4  
œ5  
œ6  
VC1 V(PROTECT)  
VC2 V(PROTECT)  
-40  
0
25  
60  
110  
Operating Temperature (°C)  
C001  
9-2. Average VPROTECT Accuracy (VOA) Across Operation Temperature  
9.3 System Example  
9.3.1 External Cell Balancing  
Higher cell balancing currents can be supported by means of a simple external network, as shown in 9-3.  
PACK+  
RVD  
1
2
8
OUT  
VC2  
RIN2  
RIN1  
CIN  
CIN  
VCELL2  
VC1  
VDD 7  
CB_ EN 6  
GND 5  
3
VC1_CB  
CD  
VCELL1  
RCBext  
Q1  
Q2  
4
PWR PAD  
RCLAMP  
CVD  
CCD  
PACK–  
9-3. External Cell Balancing Configuration  
The VC1_CB pin is tri-stated when cell balancing is disabled, is driven low by the internal logic to enable  
balancing on CELL1, and is driven high by the internal logic to enable balancing on CELL2. RCLAMP ensures that  
both Q1 and Q2 remain off when balancing is disabled, and should be sized above 2 kΩ to prevent excessive  
internal device current when the balancing network is activated. If RCLAMP is too small, then the gate-source  
voltage required to enable the external FETs cannot be achieved. RCBext determines the value of the balancing  
current, and is dependent on the voltage of the balanced cell and the specific Q1 and Q2 transistors used in the  
design (due to the transistors operating in saturation mode during balancing). The balancing currents (assuming  
the current through RCLAMP is not significant) are given as follows:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ29209-Q1  
 
 
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
( VCELL1 - VSG_Q2  
)
ICB1  
=
=
RCBext  
(3)  
( VCELL2 - VGS_Q1  
RCBext  
)
ICB2  
(4)  
10 Power Supply Recommendations  
The recommended power supply for this device is a maximum 10-V operation on the VDD input pin.  
11 Layout  
11.1 Layout Guidelines  
The following are the recommended layout guidelines:  
1. Ensure the input filters to the VC1 and VC2 pins are as close to the IC as possible to improve noise  
immunity.  
2. If the OUT pin is used to control a high current path, for example: to blow a chemical fuse, then care should  
be taken to ensure the high current path creates minimal interference of the BQ29209-Q1 voltage sense  
inputs.  
3. The input RC filter on the VDD pin should be close to the terminal of the IC.  
11.2 Layout Example  
Additional circuitry required based on usage of the OUT pin  
1
Via connects between two layers  
8
VC2  
VC1  
OUT  
VDD  
1
2
1
PWRPAD  
PACK +  
PACK -  
7
CB_EN  
GND  
6
5
3
4
VC1_CB  
CD  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ29209-Q1  
 
 
 
 
BQ29209-Q1  
ZHCSDT4D JUNE 2015 REVISED SEPTEMBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
For additional information, see the following related document:  
BQ29209-Q1 Functional Safety FIT Rate, FMD, and Pin FMA Application Report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ29209-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ29209TDRBRQ1  
BQ29209TDRBTQ1  
ACTIVE  
ACTIVE  
SON  
SON  
DRB  
DRB  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
209Q1  
209Q1  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ29209TDRBRQ1  
BQ29209TDRBTQ1  
SON  
SON  
DRB  
DRB  
8
8
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ29209TDRBRQ1  
BQ29209TDRBTQ1  
SON  
SON  
DRB  
DRB  
8
8
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRB0008B  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
1.65 0.05  
(0.2) TYP  
4
5
2X  
1.95  
2.4 0.05  
8
1
6X 0.65  
0.35  
0.25  
8X  
PIN 1 ID  
0.1  
C A B  
C
0.5  
0.3  
8X  
(OPTIONAL)  
0.05  
4218876/A 12/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
SYMM  
8X (0.6)  
1
8
8X (0.3)  
(2.4)  
(0.95)  
6X (0.65)  
4
5
(R0.05) TYP  
(0.575)  
(2.8)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218876/A 12/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.6)  
8X (0.3)  
1
8
(0.63)  
SYMM  
(1.06)  
6X (0.65)  
5
4
(R0.05) TYP  
(1.47)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218876/A 12/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

BQ29209DRBR

Voltage Protection with Automatic Cell Balance for 2-Series Cell Li-Ion Batteries
TI

BQ29209DRBT

Voltage Protection with Automatic Cell Balance for 2-Series Cell Li-Ion Batteries
TI

BQ29209TDRBRQ1

具有自动电池均衡功能的汽车电压保护,用于 2 节锂离子电池,OVP=4.30V | DRB | 8 | -40 to 105
TI

BQ29209TDRBTQ1

具有自动电池均衡功能的汽车电压保护,用于 2 节锂离子电池,OVP=4.30V | DRB | 8 | -40 to 105
TI

BQ29311

THREE AND FOUR CELL LITHIUM ION OR LITHIUM POLYMER BATTERY PROTECTION IC
TI

BQ29311PW

THREE AND FOUR CELL LITHIUM ION OR LITHIUM POLYMER BATTERY PROTECTION IC
TI

BQ29311PWG4

3-, 4-Cell Lithium-Ion Protection IC for Use With BQ2083/5 24-TSSOP -25 to 85
TI

BQ29311PWR

THREE AND FOUR CELL LITHIUM ION OR LITHIUM POLYMER BATTERY PROTECTION IC
TI

BQ29311PWRG4

FOUR-CELL LITHIUM-ION
TI

BQ29311_15

FOUR-CELL LITHIUM-ION
TI

BQ29312

THREE AND FOUR CELL LITHIUM-LON ORLITHIUM-POLYMER BATTERY PROTECTION AFE
TI

BQ29312A

TWO-CELL, THREE-CELL, AND FOUR-CELL LITHIUM-ION OR LITHIUM-POLYMER BATTERY PROTECTION AFE
TI