BQ4015MA-120 [TI]

512Kx8 Nonvolatile SRAM; 512Kx8非易失SRAM
BQ4015MA-120
型号: BQ4015MA-120
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

512Kx8 Nonvolatile SRAM
512Kx8非易失SRAM

存储 内存集成电路 静态存储器
文件: 总13页 (文件大小:518K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
bq4015/Y  
512Kx8 Nonvolatile SRAM  
is unconditionally write-protected to  
prevent an inadvertent write opera-  
tion.  
- Snap-on power-source for  
Features  
lithium battery backup  
Data retention for at least 10  
years without power  
- Replaceable power-source  
At this time the integral energy  
source is switched on to sustain the  
memory until after VCC returns  
valid.  
(part number: bq40MS)  
Automatic write-protection during  
power-up/power-down cycles  
General Description  
Conventional SRAM operation,  
including unlimited write cycles  
The bq4015/Y uses extremely low  
standby current CMOS SRAMs, cou-  
pled with small lithium coin cells to  
provide nonvolatility without long  
write-cycle times and the write-cycle  
limitations associated with EE-  
PROM.  
The CMOS bq4015/Y is a nonvola-  
tile 4,194,304-bit static RAM organ-  
ized as 524,288 words by 8 bits. The  
integral control circuitry and lith-  
ium energy source provide reliable  
nonvolatility coupled with the un-  
limited write cycles of standard  
SRAM.  
Internal isolation of battery be-  
fore power application  
Industry standard 32-pin DIP  
pinout  
34-pin LIFETIME LITHIUM™  
The bq4015/Y requires no external  
circuitry and is compatible with the  
industry-standard 4Mb SRAM pin-  
out.  
module  
The control circuitry constantly  
monitors the single 5V supply for an  
out-of-tolerance condition. When  
VCC falls out of tolerance, the SRAM  
- Module completely  
surface-mounted  
Pin Connections  
Pin Names  
A0–A18  
Address inputs  
DQ0–DQ7 Data input/output  
A
32  
1
V
CC  
18  
A
A
31  
30  
2
3
4
A
A
WE  
16  
14  
15  
17  
NC  
A15  
A16  
A18  
1
2
34  
CE  
Chip enable input  
Output enable input  
Write enable input  
No connect  
33 A17  
A
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
12  
3
32 A14  
31 A13  
30 A12  
29 A11  
28 A10  
27 A9  
5
A
A
A
A
A
A
A
13  
NC  
4
7
6
5
4
3
2
VCC  
WE  
OE  
5
OE  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A
A
9
A
OE  
A
CE  
DQ  
DQ  
DQ  
DQ  
DQ  
8
6
7
8
CE  
11  
WE  
NC  
VCC  
VSS  
DQ7  
A8  
25 A7  
9
26  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
VSS  
10  
11  
12  
24  
23  
22  
21  
20  
19  
A6  
A5  
A4  
A3  
A2  
A1  
10  
A
1
0
0
1
2
13  
14  
15  
16  
17  
A
DQ  
DQ  
DQ  
7
6
5
4
3
Supply voltage input  
Ground  
18 A0  
V
SS  
34-Pin LIFETIME LITHIUM Module  
PN4015Yncm.eps  
32-Pin DIP Module  
PN401501.eps  
Selection Guide  
Maximum  
Access  
Time (ns)  
Negative  
Supply  
Tolerance  
Maximum  
Negative  
Supply  
Tolerance  
Part  
Number  
Part  
Number  
Access  
Time (ns)  
bq4015x -70  
bq4015x -85  
70  
85  
-5%  
-5%  
bq4015Yx -70  
bq4015Yx -85  
70  
85  
-10%  
-10%  
Note: x = MA for PDIP or MS for LIFETIME LITHIUM module.  
5/99 E  
1
bq4015/Y  
As VCC falls past VPFD and approaches 3V, the control  
circuitry switches to the internal lithium backup supply,  
which provides data retention until valid VCC is applied.  
Functional Description  
When power is valid, the bq4015/Y operates as a stan-  
dard CMOS SRAM. During power-down and power-up  
cycles, the bq4015/Y acts as a nonvolatile memory, auto-  
matically protecting and preserving the memory con-  
tents.  
When VCC returns to a level above the internal backup  
cell voltage, the supply is switched back to VCC  
. After  
VCC ramps above the VPFD threshold, write-protection  
continues for a time tCER (120ms maximum) to allow for  
processor stabilization. Normal memory operation may  
resume after this time.  
Power-down/power-up control circuitry constantly moni-  
tors the VCC supply for a power-fail-detect threshold  
V
PFD. The bq4015 monitors for VPFD = 4.62V typical for  
The internal coin cells used by the bq4015/Y have an ex-  
tremely long shelf life and provide data retention for  
more than 10 years in the absence of system power.  
use in systems with 5% supply tolerance. The bq4015Y  
monitors for VPFD = 4.37V typical for use in systems  
with 10% supply tolerance.  
As shipped from Unitrode, the integral lithium cells of  
the MT-type module are electrically isolated from the  
memory. (Self-discharge in this condition is approxi-  
mately 0.5% per year.) Following the first application of  
When VCC falls below the VPFD threshold, the SRAM  
automatically write-protects the data. All outputs be-  
come high impedance, and all inputs are treated as  
“don’t care.” If a valid access is in process at the time of  
power-fail detection, the memory cycle continues to com-  
pletion. If the memory cycle fails to terminate within  
time tWPT, write-protection takes place.  
V
CC, this isolation is broken, and the lithium backup  
provides data retention on subsequent power-downs.  
The LIFETIME LITHIUM package option is shipped as  
two parts.  
Block Diagram  
OE  
A –A  
0
18  
1024K x 8  
SRAM  
WE  
Block  
DQ –DQ  
0
7
CE  
CON  
Power  
CE  
V
Power-Fail  
Control  
CC  
Lithium  
Cell  
BD4015.eps  
2
bq4015/Y  
Truth Table  
Mode  
CE  
H
L
WE  
X
OE  
X
I/O Operation  
High Z  
High Z  
DOUT  
Power  
Standby  
Active  
Active  
Active  
Not selected  
Output disable  
Read  
H
H
L
L
H
Write  
L
L
X
DIN  
Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
Conditions  
VCC  
DC voltage applied on VCC relative to VSS  
-0.3 to 7.0  
V
DC voltage applied on any pin excluding VCC  
relative to VSS  
VT  
VT VCC + 0.3  
-0.3 to 7.0  
V
0 to +70  
-40 to +85  
-40 to +70  
-40 to +85  
-10 to +70  
-40 to +85  
+260  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
Commercial  
TOPR  
Operating temperature  
Storage temperature  
Temperature under bias  
Industrial “N”  
Commercial  
TSTG  
Industrial “N”  
Commercial  
TBIAS  
Industrial “N”  
For 10 seconds  
TSOLDER Soldering temperature  
Note:  
Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation  
should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to con-  
ditions beyond the operational limits for extended periods of time may affect device reliability.  
3
bq4015/Y  
Recommended DC Operating Conditions (T = T  
)
OPR  
A
Symbol  
Parameter  
Minimum  
4.5  
Typical  
Maximum  
Unit  
V
Notes  
bq4015Y  
bq4015  
5.0  
5.0  
0
5.5  
5.5  
VCC  
Supply voltage  
4.75  
0
V
VSS  
VIL  
VIH  
Supply voltage  
0
V
Input low voltage  
Input high voltage  
-0.3  
-
0.8  
V
2.2  
-
VCC + 0.3  
V
Note:  
Typical values indicate operation at TA = 25°C.  
DC Electrical Characteristics (T = T  
, V  
OPR CCmin  
V  
V  
)
CCmax  
A
CC  
Symbol  
Parameter  
Minimum Typical  
Maximum  
Unit  
Conditions/Notes  
VIN = VSS to VCC  
ILI  
Input leakage current  
-
-
1
µA  
CE = VIH or OE = VIH or  
WE = VIL  
ILO  
Output leakage current  
-
-
1
µA  
VOH  
VOL  
ISB1  
Output high voltage  
Output low voltage  
Standby supply current  
2.4  
-
-
-
0.4  
5
V
V
IOH = -1.0 mA  
IOL = 2.1 mA  
CE = VIH  
-
-
3
mA  
CE VCC - 0.2V,  
0V VIN 0.2V,  
or VIN VCC - 0.2  
ISB2  
Standby supply current  
Operating supply current  
-
-
0.1  
-
1
mA  
mA  
Min. cycle, duty = 100%,  
CE = VIL, II/O = 0mA,  
A17 < VIL or A17 > VIH  
A18 < VIL or A18 > VIH  
ICC  
90  
,
4.55  
4.30  
-
4.62  
4.37  
3
4.75  
4.50  
-
V
V
V
bq4015  
VPFD  
Power-fail-detect voltage  
Supply switch-over voltage  
bq4015Y  
VSO  
Note:  
Typical values indicate operation at TA = 25°C, VCC = 5V.  
Capacitance (T = 25°C, F = 1MHz, V  
= 5.0V)  
CC  
A
Symbol  
CI/O  
CIN  
Parameter  
Input/output capacitance  
Input capacitance  
Minimum  
Typical  
Maximum  
Unit  
pF  
pF  
Conditions  
Output voltage = 0V  
Input voltage = 0V  
-
-
-
-
8
10  
Note:  
These parameters are sampled and not 100% tested.  
4
bq4015/Y  
AC Test Conditions  
Parameter  
Test Conditions  
0V to 3.0V  
5 ns  
Input pulse levels  
Input rise and fall times  
Input and output timing reference levels  
Output load (including scope and jig)  
1.5 V (unless otherwise specified)  
See Figures 1 and 2  
Figure 1. Output Load A  
Figure 2. Output Load B  
Read Cycle (T = T  
A
, V  
V  
CC  
V  
)
OPR CCmin  
CCmax  
-70  
-85/-85N  
-120/-120N  
Min. Max. Min. Max. Min. Max.  
Symbol  
Parameter  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Conditions  
tRC  
Read cycle time  
70  
-
-
85  
-
-
120  
-
-
120  
120  
60  
-
tAA  
Address access time  
70  
70  
35  
-
85  
85  
45  
-
Output load A  
Output load A  
Output load A  
Output load B  
Output load B  
Output load B  
Output load B  
Output load A  
tACE  
tOE  
Chip enable access time  
-
-
-
Output enable to output valid  
Chip enable to output in low Z  
-
-
-
tCLZ  
tOLZ  
tCHZ  
tOHZ  
tOH  
5
5
0
0
10  
5
0
0
0
10  
5
Output enable to output in low Z  
Chip disable to output in high Z  
Output disable to output in high Z  
Output hold from address change  
-
-
0
-
25  
25  
-
35  
25  
-
0
45  
35  
-
0
10  
5
bq4015/Y  
Read Cycle No. 1 (Address Access) 1, 2  
Read Cycle No. 2 (CE Access) 1, 2, 3  
1,5  
Read Cycle No. 3 (OE Access)  
Notes:  
1. WE is held high for a read cycle.  
2. Device is continuously selected: CE = OE = VIL  
.
3. Address is valid prior to or coincident with CE transition low.  
4. OE = VIL  
5. Device is continuously selected: CE = VIL  
.
.
6
bq4015/Y  
Write Cycle (T = T  
, V  
OPR CCmin  
V  
CC  
V  
)
CCmax  
A
-70  
-85/-85N  
-120/-120N  
Min. Max. Min. Max. Min. Max.  
Symbol  
tWC  
Parameter  
Write cycle time  
Chip enable to end of write  
Units  
ns  
Conditions/Notes  
70  
65  
65  
-
-
-
85  
75  
75  
-
-
-
120  
100  
100  
-
-
-
tCW  
ns  
(1)  
(1)  
tAW  
Address valid to end of write  
ns  
Measured from address  
valid to beginning of  
write. (2)  
tAS  
Address setup time  
0
55  
5
-
-
-
-
-
-
-
0
65  
5
-
-
-
-
-
-
-
0
85  
5
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Measured from begin-  
ning of write to end of  
write. (1)  
tWP  
Write pulse width  
Measured from WE go-  
ing high to end of write  
cycle. (3)  
Write recovery time  
(write cycle 1)  
tWR1  
tWR2  
tDW  
tDH1  
Measured from CE going  
high to end of write cy-  
cle. (3)  
Write recovery time  
(write cycle 2)  
15  
30  
0
15  
35  
0
15  
45  
0
Measured to first low-  
to-high transition of ei-  
ther CE or WE.  
Data valid to end of write  
Measured from WE go-  
ing high to end of write  
cycle. (4)  
Data hold time  
(write cycle 1)  
Measured from CE going  
high to end of write cy-  
cle. (4)  
Data hold time  
(write cycle 2)  
tDH2  
10  
10  
10  
Write enabled to output in  
high Z  
I/O pins are in output  
state. (5)  
tWZ  
0
5
25  
-
0
0
30  
-
0
0
40  
-
ns  
ns  
Output active from end of  
write  
I/O pins are in output  
state. (5)  
tOW  
Notes:  
1. A write ends at the earlier transition of CE going high and WE going high.  
2. A write occurs during the overlap of a low CE and a low WE. A write begins at the later transition  
of CE going low and WE going low.  
3. Either tWR1 or tWR2 must be met.  
4. Either tDH1 or tDH2 must be met.  
5. If CE goes low simultaneously with WE going low or after WE going low, the outputs remain in  
high-impedance state.  
7
bq4015/Y  
1,2,3  
Write Cycle No. 1 (WE-Controlled)  
1,2,3,4,5  
Write Cycle No. 2 (CE-Controlled)  
Notes:  
1. CE or WE must be high during address transition.  
2. Because I/O may be active (OE low) during this period, data input signals of opposite polarity to the  
outputs must not be applied.  
3. If OE is high, the I/O pins remain in a state of high impedance.  
4. Either tWR1 or tWR2 must be met.  
5. Either tDH1 or tDH2 must be met.  
8
bq4015/Y  
Power-Down/Power-Up Cycle (T = T  
)
OPR  
A
Symbol  
tPF  
Parameter  
Minimum  
Typical  
Maximum  
Unit  
µs  
Conditions  
VCC slew, 4.75 to 4.25 V  
VCC slew, 4.25 to VSO  
300  
10  
0
-
-
-
-
-
-
tFS  
µs  
tPU  
VCC slew, VSO to VPFD (max.)  
µs  
Time during which  
SRAM is write-protected  
after VCC passes VPFD on  
power-up.  
tCER  
Chip enable recovery time  
40  
10  
40  
80  
-
120  
-
ms  
years  
µs  
Data-retention time in  
absence of VCC  
T
A = 25°C. (2)  
tDR  
Delay after VCC slews  
down past VPFD before  
SRAM is write-  
tWPT  
Write-protect time  
100  
150  
protected.  
Notes:  
1. Typical values indicate operation at TA = 25°C, VCC = 5V.  
2. Batteries are disconnected from circuit until after VCC is applied for the first time. tDR is the  
accumulated time in absence of power beginning when power is first applied to the device.  
Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode  
may affect data integrity.  
Power-Down/Power-Up Timing  
9
bq4015/Y  
MA: 32-Pin A-Type Module  
(
)
32-Pin MA A-Type Module  
Dimension  
Minimum  
0.365  
0.015  
0.017  
0.008  
1.670  
0.710  
0.590  
0.090  
0.120  
0.075  
Maximum  
0.375  
-
A
A1  
B
C
D
E
e
0.023  
0.013  
1.700  
0.740  
0.630  
0.110  
0.150  
0.110  
G
L
S
All dimensions are in inches.  
MS: 34-Pin Leaded Chip carrier for LIFETIME LITHIUM Module  
34-Pin LCR LIFETIME LITHIUM Module  
Dimension  
Minimum  
0.920  
0.980  
-
Maximum  
0.930  
0.995  
0.080  
0.060  
0.055  
0.025  
0.030  
0.090  
0.073  
A
B
C
D
E
F
G
H
J
0.052  
0.045  
0.015  
0.020  
-
0.053  
All dimensions are in inches.  
1
2
3
Centerline of lead within ±±0±±ꢀ of true position0  
Leads coplanar within ±±0±±ꢁ at seatinꢂ plane0  
Components and location may vary0  
10  
bq4015/Y  
MS: LIFETIME LITHIUM Module Housing  
LIFETIME LITHIUM Module Housing  
Dimension  
Minimum  
0.845  
Maximum  
0.855  
A
B
C
D
E
0.955  
0.965  
0.210  
0.220  
0.065  
0.075  
0.065  
0.075  
All dimensions are in inches.  
1
Edꢂes coplanar within ±±0±2ꢀ0  
MS: LIFETIME LITHIUM Module with LCR attached  
LIFETIME LITHIUM Module  
Dimension  
Minimum  
0.955  
Maximum  
0.965  
A
B
C
D
E
F
0.980  
0.995  
0.240  
0.250  
0.052  
0.060  
0.045  
0.055  
0.015  
0.025  
All dimensions are in inches.  
1
2
Leads coplanar within ±±0±±ꢁ at seatinꢂ plane0  
Components and location may vary0  
11  
bq4015/Y  
Data Sheet Revision History  
Change No.  
Page No.  
3
Description  
ICC test conditions  
Nature of Change  
Clarification  
Addition  
1
2
1, 2, 3, 4, 7, 8, 10  
bq4015MA part  
Added industrial temperature  
range  
Addition  
3
2, 10  
4
5
1, 3, 10  
1, 10  
Removed MB package selection  
Added MS package  
Deletion  
Addition  
Notes:  
Change 1 = Sept. 1992 B changes from Sept. 1990 A.  
Change 2 = Nov. 1993 C changes from Sept. 1992 B.  
Change 3 = June 1995 C changes from Nov. 1993 C.  
Change 4 = Nov. 1997 D changes from June 1995 C.  
Change 5 = May 1999 E changes from Nov. 1997 D.  
Ordering Information  
bq4015 xx -  
Temperature:  
blank = Commercial (0 to +70°C)  
N = Industrial (-40 to +85°C)1  
Speed Options:  
70 = 70 ns  
85 = 85 ns  
120 = 120 ns  
Package Option:  
MA = A-type Module  
MS = LIFETIME LITHIUM LCR34 (preliminary package option)2  
Supply Tolerance:  
no mark = 5% negative supply tolerance  
Y = 10% negative supply tolerance  
Device:  
bq4013 128K x 8 NVSRAM  
Notes:  
1. Only 10% supply (“Y-MA”) version is available in industrial  
temperature range; contact factory for speed grade availability.  
2. The LIFETIME LITHIUM module is ordered seperately under  
part number bq40MS.  
12  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

BQ4015MA-120N

512Kx8 Nonvolatile SRAM
TI

BQ4015MA-70

512Kx8 Nonvolatile SRAM
TI

BQ4015MA-70N

512Kx8 Nonvolatile SRAM
TI

BQ4015MA-85

512Kx8 Nonvolatile SRAM
TI

BQ4015MA-85N

512Kx8 Nonvolatile SRAM
TI

BQ4015MB-120

512KX8 NON-VOLATILE SRAM, 120ns, DMA32
TI

BQ4015MB-85

512KX8 NON-VOLATILE SRAM, 85ns, DMA32
TI

BQ4015MS-120

512Kx8 Nonvolatile SRAM
TI

BQ4015MS-120N

512Kx8 Nonvolatile SRAM
TI

BQ4015MS-70

512Kx8 Nonvolatile SRAM
TI

BQ4015MS-70N

512Kx8 Nonvolatile SRAM
TI

BQ4015MS-85

512Kx8 Nonvolatile SRAM
TI