BQ40Z60RHBR [TI]

完整的多节电池管理器 | 电池电量监测计 | RHB | 32 | -40 to 85;
BQ40Z60RHBR
型号: BQ40Z60RHBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

完整的多节电池管理器 | 电池电量监测计 | RHB | 32 | -40 to 85

电池
文件: 总46页 (文件大小:2032K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
bq40z60 可编程电池管理单元  
1 特性  
3 说明  
1
全集成 2 节至 4 节串联锂离子或锂聚合物电池管理  
单元  
德州仪器 (TI) bq40z60 器件是一款可编程的电池管理  
单元,其集成有电池充电控制输出、电量监测和相关保  
护功能,能够完全自主地操作 2 4 节串联锂离子和  
锂聚合物电池组。此架构在电量监测处理器与电池充电  
器控制器之间实现内部通信,从而在系统负载瞬变和适  
配器电流限制期间根据外部负载条件和电源路径来源管  
理来优化充电量。可通过 NFET、电感和感测电阻等外  
部元件针对具体功率传输情况来调节充电电流效率。  
Pack+ 上的输入电压范围:2.5V 25V  
电池充电器效率 > 92%  
电池充电器工作范围:4V 25V  
针对外部 N 沟道场效应晶体管 (NFET) 的电池充电  
1MHz 同步降压控制器  
软启动,限制浪涌电流  
外部开关限流保护  
可编程充电  
器件信息(1)  
器件型号  
bq40z60  
封装  
VQFN (32)  
封装尺寸(标称值)  
支持 JEITA/增强型充电模式  
5.00mm × 5.00mm  
电量监测  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
用于库伦计数器的 16 位高分辨率积分器  
16 位模数转换器 (ADC),通过 16 通道多路复  
用器实现电压、电流和温度的精密测量  
简化电路原理图  
Power  
同步恒流 (CC) ADC 采样支持(功率转换)  
支持两线制 SMBus v2.0 接口,工作频率选项  
最高可设定为 400kHz  
Adapter  
FUSE  
SHA-1 哈希消息验证码 (HMAC) 响应器,用于  
提高电池组安全性  
存储在安全存储器中的分裂密钥 (Split Key)  
(2 × 64)  
AFEFUSE  
SMBD  
SMBC  
SMBD  
SMBC  
DSG  
CHG  
支持字段更新  
GPIO0  
GPIO1  
GPIO0  
GPIO1  
BAT  
VC4  
模拟前端 (AFE) 保护  
可编程电流保护  
VC3  
VC2  
VC1  
放电过流  
充电短路  
放电短路  
Pack–  
N-FET 高侧保护 FET 驱动  
Copyright © 2017, Texas Instruments Incorporated  
支持 4 个发光二极管 (LED)  
负温度系数 (NTC) 热敏电阻输入  
32 引脚紧凑型四方扁平无引脚 (QFN) 封装 (RHB)  
2 应用  
笔记本电脑、超极本、上网本、平板电脑和超便携  
移动个人电脑 (UMPC)  
医疗与测试设备  
便携式仪表  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSAW3  
 
 
 
 
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
目录  
7.32 Battery Charger Current Sense (HSRP, HSRN)... 14  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Supply Voltage.......................................................... 6  
7.6 Supply Current .......................................................... 7  
7.7 Power Supply Control ............................................... 7  
7.8 Low-Voltage General Purpose I/O (TSx) .................. 7  
7.9 High-Voltage General Purpose I/O (GPIO0, GPIO1) 8  
7.10 AFE Power-On Reset ............................................. 8  
7.11 Internal 1.8-V LDO................................................. 8  
7.12 Current Wake Comparator...................................... 9  
7.13 Coulomb Counter.................................................... 9  
7.14 CC Digital Filter....................................................... 9  
7.15 ADC......................................................................... 9  
7.16 ADC Digital Filter .................................................. 10  
7.17 ADC Multiplexer .................................................... 10  
7.18 Cell Balancing Support ......................................... 10  
7.19 Cell Detach Detection ........................................... 10  
7.20 Internal Temperature Sensor ................................ 11  
7.21 NTC Thermistor Measurement Support (ADCx)... 11  
7.22 High-Frequency Oscillator..................................... 11  
7.23 Low-Frequency Oscillator ..................................... 11  
7.24 Voltage Reference 1 ............................................. 11  
7.25 Voltage Reference 2 ............................................. 12  
7.26 Instruction Flash.................................................... 12  
7.27 Data Flash............................................................. 12  
7.28 Current Protection Thresholds .............................. 12  
7.29 N-CH FET Drive (CHG, DSG)............................... 13  
7.30 FUSE Drive (AFEFUSE) ....................................... 14  
7.31 Battery Charger Voltage Regulation (VFB)........... 14  
7.33 Battery Charger Precharge Current Sense (HSRP,  
HSRN)...................................................................... 15  
7.34 AC Adapter Fault Detect (HSRN, VCC)................ 15  
7.35 Battery Charger Overcurrent Detection (V)HSRP  
(V)HSRN..................................................................... 15  
7.36 Battery Charger Undercurrent Detection (V)HSRP  
,
,
(V)HSRN..................................................................... 15  
7.37 System Operation Detection (V)HSRN.................... 15  
7.38 Battery Overvoltage Comparator (VFB)................ 15  
7.39 Regulator (REGN)................................................. 16  
7.40 PWM High-Side Driver (HiDRV) ........................... 16  
7.41 PWM Low-Side Driver (LoDRV)............................ 16  
7.42 PWM Information .................................................. 16  
7.43 Charger Power-Up Sequence............................... 16  
7.44 Thermal Shutdown Comparator............................ 16  
7.45 SMBus High Voltage I/O....................................... 17  
7.46 SMBus................................................................... 17  
7.47 SMBus XL ............................................................. 17  
7.48 Timing Requirements............................................ 18  
7.49 Typical Characteristics ......................................... 18  
Detailed Description ............................................ 19  
8.1 Overview ................................................................. 19  
8.2 Functional Block Diagram ....................................... 20  
8.3 Feature Description................................................. 21  
Application and Implementation ........................ 29  
9.1 Application Information .......................................... 29  
9.2 Typical Applications ................................................ 30  
8
9
10 Power Supply Recommendations ..................... 34  
11 Layout................................................................... 34  
11.1 Layout Guidelines ................................................. 34  
11.2 Layout Example ................................................... 36  
12 器件和文档支持 ..................................................... 37  
12.1 相关文档ꢀ ............................................................ 37  
12.2 社区资源................................................................ 37  
12.3 ....................................................................... 37  
12.4 静电放电警告......................................................... 37  
12.5 Glossary................................................................ 37  
13 机械、封装和可订购信息....................................... 37  
4 修订历史记录  
Changes from Revision C (July 2015) to Revision D  
Page  
已更改 简化电路原理图........................................................................................................................................................... 1  
Changed Pin Configuration and Functions............................................................................................................................. 3  
Changed Absolute Maximum Ratings ................................................................................................................................... 5  
Changed Recommended Operating Conditions .................................................................................................................... 6  
Changed High-Voltage General Purpose I/O (GPIO0, GPIO1) ............................................................................................. 8  
Changed Detailed Description Overview ............................................................................................................................. 19  
Changed Functional Block Diagram .................................................................................................................................... 20  
Changed Internal Power Source Selection........................................................................................................................... 22  
Changed Power Path Overview .......................................................................................................................................... 25  
2
Copyright © 2014–2017, Texas Instruments Incorporated  
 
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
修订历史记录 (continued)  
已更改 Typical Application Schematic ................................................................................................................................. 30  
5 说明 (续)  
该器件提供了电池阵列和系统安全功能,包括电池放电过流、充电短路和放电短路保护,以及针对 N 沟道 FET 的  
FET 保护、内部 AFE 看门狗和电池断开连接检测。器件可通过固件提供更多保护 功能, 包括过压、欠压、过热  
等。  
6 Pin Configuration and Functions  
QFN Package (RHB)  
32 Pins  
'()  
+'0  
&
2
3
*
6
9
7
5
2*  
23  
22  
2&  
2/  
&#  
&5  
&7  
+",-  
1ꢀ",  
$    
$ *  
$ 3  
$ 2  
$ &  
%1,  
%1+  
(ꢁꢀꢁ4%ꢀ  
!%1+  
!%1,  
$ꢁ'  
)CBDE@A  
+@F  
%;'  
,<= =< >?@AB  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
BAT  
NUMBER  
I/O(1)  
P
1
2
Battery input pin. Primary power supply  
Power supply backup input pin  
PBI  
P
Sense voltage input pin for the most positive cell, balance current input for the most positive cell,  
and battery stack measurement input  
VC4  
3
4
5
6
7
8
IA  
IA  
IA  
IA  
IA  
IA  
Sense voltage input pin for the third most positive cell, balance current input for the third most  
positive cell, and return balance current for the most positive cell  
VC3  
VC2  
VC1  
SRN  
SRP  
Sense voltage input pin for the second most positive cell, balance current input for the second  
most positive cell, and return balance current for the most positive cell  
Sense voltage input pin for the least positive cell, balance current input for the least positive cell,  
and return balance current for the second most positive cell  
Analog input pin connected to the internal coulomb counter peripheral for integrating a small  
voltage between SRP and SRN, where SRP is the top of the sense resistor.  
Analog input pin connected to the internal coulomb counter peripheral for integrating a small  
voltage between SRP and SRN, where SRP is the top of the sense resistor.  
VSS  
TS1  
TS2  
TS3  
TS4  
9
P
Device ground  
10  
11  
12  
13  
IA  
IA  
IA  
IA  
Thermistor input for temperature sensor channel 1  
Thermistor input for temperature sensor channel 2  
Thermistor input for temperature sensor channel 3  
Thermistor input for temperature sensor channel 4  
Multi-function I/O (open drain). For more information, see IO Configuration in the bq40z60  
Technical Reference Manual (SLUUA04).  
GPIO0  
14  
I/O  
(1) P = Power Connection, O = Digital Output, IA = Analog Input, I = Digital Input, I/OD = Digital Input/Output  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
DESCRIPTION  
NAME  
GPIO1  
NUMBER  
I/O(1)  
Multi-function I/O (open drain). See IO Configuration in the bq40z60 Technical Reference Manual  
(SLUUA04).  
15  
I/O  
SMBD  
SMBC  
VFB  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/OD  
I/OD  
IA  
IA  
IA  
O
SMBus data pin  
SMBus clock pin  
Feedback sense input for charger control loop  
High sense resistor negative node input  
High sense resistor positive node input  
Fuse drive output pin  
HSRN  
HSRP  
AFEFUSE  
VCC  
P
Power supply input  
REGN  
PGND  
LODRV  
PH  
O
Charger FET gate drive regulator  
Power ground  
P
O
Low side charging FET gate control output  
Charger phase signal input  
High side charging FET gate control output  
High side bootstrap capacitor input  
AC FET gate control output  
N-CH FET drive output pin  
Adapter input pin  
I/O  
O
HIDRV  
BTST  
ACFET  
DSG  
IA  
O
O
ACP  
IA  
O
CHG  
N-CH FET drive output pin  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over-operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
TYP  
MAX  
UNIT  
V
BAT, VCC, PBI  
30  
Supply voltage  
range, VSupply  
REGN  
7
V
ACP, SMBC, SMBD, GPIO0, GPIO1  
30  
V
TS1, TS2, TS3, TS4  
SRP, SRN  
HSRP, HSRN  
PH  
VREG + 0.3  
V
0.3  
30  
32  
16  
V
V
V
VFB  
V
Input voltage range,  
VIN  
VC3 + 8.5 V,  
or VSS + 30  
VC4  
VC3  
VC2  
VC1  
VC3 – 0.3  
VC2 – 0.3  
VC1 – 0.3  
VSS – 0.3  
V
V
V
V
VC2 + 8.5 V,  
or VSS + 30  
VC1 + 8.5 V,  
or VSS + 30  
VSS + 8.5 V,  
or VSS + 30  
CHG, DSG  
–0.3  
–0.3  
–0.3  
–0.3  
32  
36  
7
V
V
HIDRV, BTST, ACFET  
LODRV  
Output voltage  
range, VO  
V
AFEFUSE  
30  
V
Maximum VSS current, ISS  
50  
mA  
°C  
Functional Temperature, TFUNC  
–40  
110  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
HBM(1)  
CDM(2)  
V(ESD) Rating  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
2.2  
0
NOM  
MAX UNIT  
BAT, VCC, PBI  
ACFET, BTST  
26  
35  
V
V
V
V
V
VSupply  
Supply voltage  
REGN  
0
6.5  
VSHUTDOWN–  
Shutdown voltage  
VACP < VSHUTDOWN–  
VACP > VSHUTDOWN– + VHYS  
1.8  
2.05  
2.0  
2.2  
VSHUTDOWN+ Start-up voltage  
2.25  
2.45  
Shutdown voltage  
hysteresis  
VHYS  
VSHUTDOWN+ – VSHUTDOWN–  
250  
mV  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
ACP, SMBC, SMBD, GPIO0, GPIO1  
26  
VREG  
0.2  
TSx  
SRP, SRN  
–0 .2  
–0 .5  
–2  
HSRP, HSRN  
0.5  
PH  
VACP  
VIN  
Input voltage range  
V
VFB  
0
14  
VC4  
VVC3  
VVC2  
VVC1  
VVSS  
VVC3 + 5  
VC3  
VVC2 + 5  
VVC1 + 5  
VVSS + 5  
26  
VC2  
VC1  
CHG, DSG, AFEFUSE  
HIDRV  
V
V
V
Output voltage  
range  
VO  
35  
LODRV  
0
6.5  
External PBI  
capacitor  
CPBI  
2.2  
µF  
°C  
Operating  
temperature  
TOPR  
–40  
85  
7.4 Thermal Information  
bq40z60  
THERMAL METRIC(1)  
RHB (VQFN)  
UNIT  
32 PINS  
36  
RθJA, High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
31.5  
8
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
0.5  
ψJB  
7.9  
RθJCbot  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Supply Voltage  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Operation with charger enabled  
Operation with charger disabled  
VCC falling  
MIN  
4.0  
2.5  
2.2  
TYP  
MAX  
25  
UNIT  
VCC  
Device Operating Range  
V
25  
VCC-UV Undervoltage lock out  
2.45  
V
6
Copyright © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
7.6 Supply Current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CPU = ACTIVE, HFO = ON, ADC_FILTER = ON,  
CC_FILTER = ON, LFO = ON, REG18 = ON, CHG  
= ON, DSG = ON, ADC = ON, CC = ON, Charger  
Enabled, No Communication  
1250  
1850  
INORMAL  
NORMAL mode(1)  
µA  
CPU = HALT, HFO = ON, ADC_FILTER = ON,  
CC_FILTER = ON, LFO = ON, REG18 = ON, CHG  
= ON, DSG = ON, ADC = ON, CC = ON, Charger  
Disabled, No Communication  
310  
122  
92  
445  
183  
138  
128  
83  
CPU = HALT, HFO = ON, ADC_FILTER = OFF,  
CC_FILTER = OFF, LFO = ON, REG18 = ON, CHG  
= ON, DSG = ON, ADC = OFF, CC = OFF, Charger  
Disabled, No Communication  
CPU = HALT, HFO = OFF, ADC_FILTER = OFF,  
CC_FILTER = OFF, LFO = ON, REG18 = ON, CHG  
= ON, DSG = ON, ADC = OFF, CC = OFF, Charger  
Disabled, No Communication  
ISLEEP  
SLEEP mode(1)  
µA  
CPU = HALT, HFO = ON, ADC_FILTER = OFF,  
CC_FILTER = OFF, LFO = ON, REG18 = ON, CHG  
= OFF, DSG = OFF, ADC = OFF, CC = OFF,  
Charger Disabled, No Communication  
82  
CPU = HALT, HFO = OFF, ADC_FILTER = OFF,  
CC_FILTER = OFF, LFO = ON, REG18 = ON, CHG  
= OFF, DSG = OFF, ADC = OFF, CC = OFF,  
Charger Disabled, No Communication  
52  
CPU = HALT, HFO = OFF, ADC_FILTER = OFF,  
CC_FILTER = OFF, LFO = OFF, REG18 = OFF,  
CHG = OFF, DSG = OFF, ADC = OFF, CC = OFF,  
Charger Disabled, No Communication  
ISHUTDOWN  
SHUTDOWN mode  
0.5  
2
µA  
(1)  
VCC 20 V when CHG = ON and DSG = ON  
7.7 Power Supply Control  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VBAT < VSWITCHOVER–  
VBAT > VSWITCHOVER– + VHYS  
MIN  
TYP  
MAX UNIT  
BAT to VCC  
VSWITCHOVER–  
VSWITCHOVER+  
VHYS  
2.0  
2.1  
2.2  
3.2  
V
V
switchover voltage  
VCC to BAT  
3.0  
3.1  
switchover voltage  
Switchover voltage  
hysteresis  
VSWITCHOVER+ – VSWITCHOVER–  
1000  
mV  
BAT pin, BAT = 0 V, VCC = 25 V  
VCC pin, BAT = 25 V, VCC = 0 V  
1
1
Input leakage  
current  
ILKG  
µA  
BAT and VCC pins, BAT = 0 V, VCC = 0 V, PBI =  
25 V  
1
Internal pulldown  
resistance  
RPD  
ACP  
30  
40  
50  
kΩ  
7.8 Low-Voltage General Purpose I/O (TSx)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
High-level input  
Low-level input  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
0.65 × VREG  
V
0.35 × VREG  
V
V
V
IOH = –1.0 mA  
IOH = –10 µA  
IOL = 1.0 mA  
VOH  
VOL  
Output voltage high  
Output voltage low  
0.75 × VREG  
0.2 × VREG  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Low-Voltage General Purpose I/O (TSx) (continued)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CIN  
Input capacitance  
Input leakage current  
5
pF  
ILKG  
1
µA  
7.9 High-Voltage General Purpose I/O (GPIO0, GPIO1)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
High-level input  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
1.3  
V
Low-level input  
0.55  
0.4  
1
V
VBAT > 5.5 V, IOH = –0 µA  
3.5  
1.8  
Output voltage  
high  
VOH  
V
VBAT > 5.5 V, IOH = –10 µA  
Output voltage  
low  
VOL  
CIN  
ILKG  
RO  
IOL = 1.5 mA  
V
Input  
capacitance  
5
pF  
µA  
kΩ  
Input leakage  
current  
Output reverse  
resistance  
Between GPIO0/1 and PBI  
5
7.10 AFE Power-On Reset  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Negative-going  
voltage input  
VREGIT–  
VREG  
VREGIT+ – VREGIT–  
1.51  
1.55  
1.59  
V
Power-on reset  
hysteresis  
VHYS  
tRST  
70  
100  
300  
130  
400  
mV  
µs  
Power-on reset time  
200  
7.11 Internal 1.8-V LDO  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Regulator voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VREG  
1.6  
1.8  
2.0  
V
Regulator output  
over temperature  
ΔVO(TEMP)  
ΔVREG/ΔTA, IREG = 10 mA  
±0.25%  
ΔVO(LINE)  
ΔVO(LOAD)  
Line regulation  
Load regulation  
ΔVREG/ΔVBAT, VBAT = 10 mA  
–0 .6%  
–1.5%  
0.5%  
1.5%  
ΔVREG/ΔIREG, IREG = 0 mA to 10 mA  
Regulator output  
current limit  
IREG  
VREG = 0.9 × VREG(NOM), VIN > 2.2 V  
VREG = 0 × VREG(NOM)  
20  
25  
mA  
mA  
dB  
Regulator short-  
circuit current limit  
ISC  
40  
40  
50  
Power supply  
rejection ratio  
PSRRREG  
ΔVBAT/ΔVREG, IREG = 10 mA ,VIN > 2.5 V, f = 10 Hz  
Slew rate  
VSLEW  
enhancement  
voltage threshold  
1.58  
1.65  
V
8
Copyright © 2014–2017, Texas Instruments Incorporated  
 
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
7.12 Current Wake Comparator  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VWAKE = VSRP – VSRN  
MIN  
±0.3  
±0.6  
±1.2  
±2.4  
TYP  
±0.625  
±1.25  
±2.5  
MAX UNIT  
±0.9  
VWAKE = VSRP – VSRN  
VWAKE = VSRP – VSRN  
VWAKE = VSRP – VSRN  
±1.8  
mV  
Wake voltage  
threshold  
VWAKE  
±3.6  
±5.0  
±7.2  
Temperature drift  
of VWAKE accuracy  
VWAKE(DRIFT)  
0.5%  
0.25  
500  
°C  
Time from  
application of  
current to wake  
tWAKE  
0.5  
ms  
µs  
Wake comparator  
startup time  
tWAKE(SU)  
1000  
7.13 Coulomb Counter(1)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Input voltage range  
TEST CONDITIONS  
MIN  
–0.1  
TYP  
MAX  
0.1  
UNIT  
V
Full scale range  
Integral nonlinearity(2)  
Offset error  
–VREF1/10  
VREF1/10  
±22.3  
±10  
V
16-bit, Best fit over input voltage range  
16-bit, Post-calibration  
±5.2  
±5  
LSB  
µV  
Offset error drift  
Gain error  
15-bit + sign, Post-calibration  
0.2  
0.3  
µV/°C  
15-bit + sign, Over input voltage range  
15-bit + sign, Over input voltage range  
±0.2%  
±0.8% FSR(3)  
150 PPM/°C  
MΩ  
Gain error drift  
Effective input resistance  
2.5  
(1) Coulomb counter electrical specifications are assured when battery charging function is disabled.  
(2) 1 LSB = VREF1/(10 × 2N) = 1.215/(10 × 215) = 3.71 µV  
(3) Full-scale reference  
7.14 CC Digital Filter  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Conversion time  
TEST CONDITIONS  
Single conversion  
Single conversion  
MIN  
TYP  
MAX  
UNIT  
ms  
250  
Effective resolution  
15  
Bits  
7.15 ADC(1)  
Over-operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Internal reference (VREF1  
External reference (VREG  
VFS = VREF1 or VREG  
MIN  
–0.2  
–0.2  
–VFS  
TYP  
MAX  
1
UNIT  
V
)
Input voltage range  
)
0.8 × VREG  
VFS  
Full scale range  
Integral nonlinearity(2)  
Offset error(3)  
V
16-bit, Best fit, –0.1 V to 0.8 × VREF1  
16-bit, Best fit, –0.2 V to –0.1 V  
16-bit, Post-calibration, VFS = VREF1  
±6.6  
LSB  
µV  
±13.1  
±157  
±67  
(1) ADC electrical specifications are assured when battery charging function is disabled.  
(2) 1 LSB = VREF1/(2N) = 1.225/(215) = 37.4 µV (when ADCTL[SPEED1, SPEED0] = 0, 0)  
(3) For VC1–VSS, VC2–VC1, VC3–VC2, VC3–VSS, ACP–VSS, and VREF1/2, the offset error is multiplied by (1/ADC multiplexer scaling  
factor (K)).  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
ADC(1) (continued)  
Over-operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Offset error drift  
TEST CONDITIONS  
16-bit, Post-calibration, VFS = VREF1  
16-bit, –0.1 V to 0.8 × VFS  
MIN  
TYP  
0.6  
MAX  
UNIT  
µV/°C  
FSR  
3
Gain error  
±0.2%  
±0.8%  
Gain error drift  
16-bit, –0.1 V to 0.8 × VFS  
150 PPM/°C  
Effective input resistance  
8
MΩ  
7.16 ADC Digital Filter  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
ADCTL[SPEED1, SPEED0] = 0, 0  
MIN  
TYP  
31.25  
15.63  
7.81  
MAX  
UNIT  
ADCTL[SPEED1, SPEED0] = 0, 1  
Conversion time  
ms  
ADCTL[SPEED1, SPEED0] = 1, 0  
ADCTL[SPEED1, SPEED0] = 1, 1  
1.95  
Resolution  
No missing codes, ADCTL[SPEED1, SPEED0] = 0, 0  
With sign, ADCTL[SPEED1, SPEED0] = 0, 0  
With sign, ADCTL[SPEED1, SPEED0] = 0, 1  
With sign, ADCTL[SPEED1, SPEED0] = 1, 0  
With sign, ADCTL[SPEED1, SPEED0] = 1, 1  
16  
14  
13  
11  
9
Bits  
Bits  
15  
14  
12  
10  
Effective resolution  
7.17 ADC Multiplexer  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.1980  
0.049  
0.490  
0.049  
–0.2  
TYP  
0.2000  
0.050  
0.500  
0.050  
MAX  
0.2020  
0.051  
UNIT  
VC1–VSS, VC2–VC1, VC3–VC2, VC4–VC3  
VC4–VSS, ACP–VSS  
K
Scaling factor  
VREF2  
0.510  
HSRN–VSS  
0.051  
VC4–VSS, ACP–VSS  
20  
VIN  
Input voltage range  
Input leakage current  
TSx  
TSx  
–0.2  
0.8 × VREF1  
0.8 × VREG  
V
–0.2  
VC1, VC2, VC3, VC4, cell balancing off, cell  
detach detection off, ADC multiplexer off  
ILKG  
1
µA  
7.18 Cell Balancing Support  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal cell balance  
resistance  
RCB  
RDS(ON) for internal FET switch at 2 V < VDS < 4 V  
200  
Ω
7.19 Cell Detach Detection  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal cell detach  
check current  
ICD  
VCx > VSS + 0.8 V  
30  
50  
70  
µA  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
7.20 Internal Temperature Sensor  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
–1.9  
TYP  
–2.0  
MAX  
–2.1  
UNIT  
VTEMPP  
VTEMPP – VTEMPN, assured by design  
Internal temperature  
sensor voltage drift  
VTEMP  
mV/°C  
0.177  
0.178  
0.179  
7.21 NTC Thermistor Measurement Support (ADCx)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal pullup  
resistance  
RNTC(PU)  
14.4  
18  
21.6  
kΩ  
Resistance drift over  
temperature  
RNTC(DRIFT)  
–360  
–280  
–200 PPM/°C  
7.22 High-Frequency Oscillator  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fHFO  
Operating frequency  
16.78  
MHz  
TA = –20°C to 70°C, includes frequency drift  
TA = –40°C to 85°C, includes frequency drift  
–2.5% ±0.25%  
–3.5% ±0.25%  
2.5%  
3.5%  
fHFO(ERR)  
Frequency error  
Start-up time  
TA = –20°C to 85°C, CLKCTL[HFRAMP] = 1, oscillator  
frequency within +/–3% of nominal  
4
ms  
µs  
tHFO(SU)  
CLKCTL[HFRAMP] = 0, oscillator frequency within +/–3%  
of nominal  
100  
7.23 Low-Frequency Oscillator  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Operating frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fLFO  
262.144  
kHz  
TA = –20°C to 70°C, includes frequency drift  
TA = –40°C to 85°C, includes frequency drift  
–1.5% ±0.25%  
1.5%  
2.5  
fLFO(ERR)  
Frequency error  
–2.5  
±0.25  
Failure detection  
frequency  
fLFO(FAIL)  
30  
80  
100  
kHz  
7.24 Voltage Reference 1  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
voltage  
VREF1  
TA = 25°C, after trim  
1.21  
1.215  
1.22  
V
TA = 0°C to 60°C, after trim  
TA = –40°C to 85°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF1(DRIFT)  
PPM/°C  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
7.25 Voltage Reference 2  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
voltage  
VREF2  
TA = 25°C, after trim  
1.22  
1.225  
1.23  
V
TA = 0°C to 60°C, after trim  
TA = –40°C to 85°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF2(DRIFT)  
PPM/°C  
7.26 Instruction Flash  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Data retention  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
10  
Years  
Flash programming  
write cycles  
1000  
Cycles  
µs  
Word programming  
time  
tPROGWORD  
TA = –40°C to 85°C  
40  
tMASSERASE  
tPAGEERASE  
IFLASHREAD  
IFLASHWRITE  
IFLASHERASE  
Mass-erase time  
Page-erase time  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
40  
40  
2
ms  
ms  
mA  
mA  
mA  
Flash-read current TA = –40°C to 85°C  
Flash-write current TA = –40°C to 85°C  
Flash-erase current TA = –40°C to 85°C  
5
15  
7.27 Data Flash  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Data retention  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
10  
Years  
Flash programming  
write cycles  
20000  
Cycles  
µs  
Word programming  
time  
tPROGWORD  
TA = –40°C to 85°C  
40  
tMASSERASE  
tPAGEERASE  
IFLASHREAD  
IFLASHWRITE  
IFLASHERASE  
Mass-erase time  
Page-erase time  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
40  
40  
1
ms  
ms  
mA  
mA  
mA  
Flash-read current TA = –40°C to 85°C  
Flash-write current TA = –40°C to 85°C  
Flash-erase current TA = –40°C to 85°C  
5
15  
7.28 Current Protection Thresholds  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OCD detection  
VOCD = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 1  
–16.6  
–100  
VOCD  
ΔVOCD  
VSCC  
threshold voltage  
range  
mV  
VOCD = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 0  
VOCD = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 1  
VOCD = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 0  
VSCC = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 1  
VSCC = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 0  
–8.3  
–50  
OCD detection  
threshold voltage  
program step  
–5.56  
–2.78  
mV  
mV  
SCC detection  
threshold voltage  
range  
44.4  
22.2  
200  
100  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
Current Protection Thresholds (continued)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SCC detection  
VSCC = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 1  
22.2  
ΔVSCC  
threshold voltage  
program step  
mV  
VSCC = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 0  
VSCD1 = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 1  
VSCD1 = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 0  
VSCD1 = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 1  
VSCD1 = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 0  
VSCD2 = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 1  
VSCD2 = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 0  
VSCD2 = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 1  
VSCD2 = VSRP – VSRN, PROTECTION_CONTROL[RSNS] = 0  
11.1  
SCD1 detection  
threshold voltage  
range  
–44.4  
–22.2  
–200  
–100  
VSCD1  
mV  
mV  
mV  
SCD1 detection  
threshold voltage  
program step  
–22.2  
–11.1  
ΔVSCD1  
SCD2 detection  
threshold voltage  
range  
–44.4  
–22.2  
–200  
–100  
VSCD2  
SCD2 detection  
threshold voltage  
program step  
–22.2  
–11.1  
ΔVSCD2  
mV  
mV  
OCD, SCC, and  
SCDx offset error  
VOFFSET  
VSCALE  
Post-trim  
–2.5  
2.5  
No trim  
–10%  
–5%  
10%  
5%  
OCD, SCC, and  
SCDx scale error  
Post-trim  
7.29 N-CH FET Drive (CHG, DSG)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RatioDSG = (VDSG – VBAT)/VBAT, 2.2 V < VBAT  
4.07 V, 10 MΩ between HSRN and DSG  
<
<
2.133  
2.333  
2.533  
RatioCHG = (VCHG – VBAT)/VBAT, 2.2 V < VBAT  
4.07 V, 10 MΩ between BAT and CHG  
Output voltage ratio  
2.133  
2.133  
9.0  
2.333  
2.333  
9.5  
2.533  
2.533  
10  
RatioACFET = (VACFET – VBAT)/VBAT, 2.2 V < VBAT  
< 4.07 V, 10 MΩ between ACP and ACFET  
VDSG(ON) = VDSG – VBAT, VBAT 4.07 V, 10 MΩ  
between VHSRN and DSG, VBAT = 18 V  
Output voltage, CHG and  
DSG on  
VCHG(ON) = VCHG – VBAT, VBAT 4.07 V, 10 MΩ  
between BAT and CHG, VBAT = 18 V  
V(FETON)  
9.0  
9.5  
10  
V
V
VACFET(ON) = VACFET – VBAT, VBAT 4.07 V, 10  
MΩ between ACP and ACFET, VBAT = 18 V  
ACFET  
9.0  
9.5  
10  
VDSG(OFF) = VDSG – VACP, 10 MΩ between HSRN  
and DSG  
–0.4  
–0.4  
–0.4  
0.4  
Output voltage, CHG and  
DSG off  
VCHG(OFF) = VCHG – VBAT, 10 MΩ between BAT  
and CHG  
V(FETOFF)  
0.4  
VACFET(OFF) = VACFET – VACP, VBAT 4.07 V, 10  
MΩ between ACP and ACFET, VBAT = 18 V  
ACFET  
0.4  
VDSG from 0% to 35% VDSG(ON)(TYP), VACP 2.2 V,  
CL = 4.7 nF between DSG and VHSRN, 5.1 kΩ  
between DSG and CL, 10 MΩ between VHSRN and  
DSG  
200  
200  
200  
500  
500  
500  
VCHG from 0% to 35% VCHG(ON)(TYP), VACP 2.2  
V, CL = 4.7 nF between CHG and BAT, 5.1 kΩ  
between CHG and CL, 10 MΩ between BAT and  
CHG  
tR  
Rise time  
µs  
VACFET from 0% to 35% VACFET(ON)(TYP), VACP  
2.2 V, CL = 4.7 nF between ACFET and ACP, 5.1  
kΩ between CHG and CL, 10 MΩ between ACP  
and ACFET  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
N-CH FET Drive (CHG, DSG) (continued)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDSG from VDSG(ON)(TYP) to 1 V, VACP 2.2 V, CL  
= 4.7 nF between DSG and ACP, 5.1 kΩ between  
DSG and CL, 10 MΩ between ACP and DSG  
40  
300  
VCHG from VCHG(ON)(TYP) to 1 V, VACP 2.2 V, CL  
= 4.7 nF between CHG and BAT, 5.1 kΩ between  
CHG and CL, 10 MΩ between BAT and CHG  
40  
40  
200  
200  
tF  
Fall time  
µs  
VACFET from VACFET(ON)(TYP) to 1 V, VACP 2.2 V,  
CL = 4.7 nF between ACFET and ACP, 5.1 kΩ  
between CHG and CL, 10 MΩ between ACP and  
ACFET  
7.30 FUSE Drive (AFEFUSE)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
8.65  
VBAT  
2.5  
UNIT  
V
BAT 8 V, CL = 1 nF, IAFEFUSE = 0 µA  
6
VBAT – 0.1  
1.5  
7
VOH  
VIH  
Output voltage high  
V
VBAT < 8 V, CL = 1 nF, IAFEFUSE = 0 µA  
High-level input  
2.0  
150  
2.6  
5
V
IAFEFUSE(PU) Internal pullup current  
V
BAT 8 V, VAFEFUSE = VSS  
330  
3.2  
nA  
kΩ  
pF  
µs  
µs  
RAFEFUSE  
CIN  
tDELAY  
tRISE  
Output impedance  
2
Input capacitance  
Fuse trip detection delay  
Fuse output rise time  
128  
256  
20  
V
BAT 8 V, CL = 1 nF, VOH = 0 V to 5 V  
5
7.31 Battery Charger Voltage Regulation (VFB)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VFB  
Regulation range  
Based on internal DAC reference setting  
0.61  
1.22  
V
Voltage feedback  
accuracy  
VFBACC  
VFB = 1.22 V  
–2%  
2%  
Programmable regulation  
steps  
VFB(STEPS)  
RVFB  
2.5  
mV  
Total feedback resistor  
divider range  
500  
700  
kΩ  
7.32 Battery Charger Current Sense (HSRP, HSRN)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DAC range for current measurement  
VHSRP – VHSRN = 50 mV, RSense= 10 mΩ  
MIN  
TYP  
MAX  
100  
5%  
UNIT  
VIN(Normal  
range)  
Differential Input range  
Measurement accuracy  
2
mV  
VACC  
–5%  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
7.33 Battery Charger Precharge Current Sense (HSRP, HSRN)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN(Normal  
range)  
Differential Input range  
DAC range for current measurement  
2
20  
mV  
VHSRP – VHSRN = 2 mV, RSense= 10 mΩ  
(VHSRN > 2.3 V)  
VACC  
Measurement accuracy  
–70%  
70%  
7.34 AC Adapter Fault Detect (HSRN, VCC)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Battery > AC adapter input (Falling)  
AC adapter input > Battery (Rising)  
MIN  
150  
50  
TYP  
225  
100  
MAX  
UNIT  
AC adapter input fault  
detect  
VHSRN – VCC  
VHys  
300  
mV  
Recovery hysteresis  
150  
mV  
7.35 Battery Charger Overcurrent Detection (V)HSRP, (V)HSRN  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Charger overcurrent  
threshold  
Charging current as a percentage of max sense  
voltage range  
IOC(max)  
IOC(min)  
180  
200  
mV  
Charger overcurrent  
threshold  
Minimum charging overcurrent detected  
45  
55  
mV  
7.36 Battery Charger Undercurrent Detection (V)HSRP, (V)HSRN  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Detect under current for  
negative inductor current  
VHSRP – VHSRN < 0 mV, for negative inductor  
current, VHSRP > 2.3 V  
IUC(Detect)  
1
5
16  
mV  
Minimum sense voltage to  
IUC(Non-synch) enter non-synchronous  
mode  
1.7  
mV  
7.37 System Operation Detection (V)HSRN  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.05  
100  
TYP  
2.15  
150  
MAX  
2.25  
200  
UNIT  
V
VHSRN  
VHys  
Input voltage for operation VHSRN Falling  
Recovery hysteresis  
VHSRN Rising  
mV  
7.38 Battery Overvoltage Comparator (VFB)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VFB > Set value (Rising)  
VFB < VOV (Falling)  
MIN  
TYP  
MAX  
UNIT  
Battery over-voltage  
detection  
VOV(max)  
106%  
Battery over-voltage  
recovery  
VOV(Recovery)  
103%  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
7.39 Regulator (REGN)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Gate drive for low side  
charger FET  
VLODRV  
VCC > 10 V, ILoad = 0 to 60 mA  
5.7  
6.0  
6.3  
V
I SC  
Short circuit current limit  
Power good indicator  
Hysteresis  
VLODRV = 0 V  
VREGN Rising  
VREGN Falling  
60  
3.6  
mA  
V
VREGN  
VHys  
3.68  
260  
3.75  
280  
240  
mV  
7.40 PWM High-Side Driver (HiDRV)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
6.0  
2.5  
2.9  
4.1  
MAX  
8.6  
UNIT  
Ω
RON  
Driver turn ON resistance VBTST – VPH 5.5 V  
ROFF  
Driver turn OFF resistance VFB < VOV (Falling)  
3.3  
Ω
VCC = 4 V to 6 V  
VCC > 6 V  
2.6  
3.9  
V
Bootstrap refresh  
comparator  
VBOOTSTRAP  
V
7.41 PWM Low-Side Driver (LoDRV)  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RON  
Driver turn ON resistance VREGN – VPGND 5.5 V  
5.2  
7.6  
Ω
Driver turn OFF  
VFB < VOV (Falling)  
resistance  
ROFF  
1.9  
2.4  
Ω
7.42 PWM Information  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Deadtime between FET  
driver output switching  
tDEADTIME  
30  
ns  
Duty cycle  
fSW  
99.5%  
1.1  
PWM switching frequency  
0.8  
1.0  
MHz  
7.43 Charger Power-Up Sequence  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tDELAY  
Power-up sequence  
Soft start steps  
8
8
2
ms  
tSS(STEPS)  
tSS(STEP TIME) Soft start time  
ms  
7.44 Thermal Shutdown Comparator  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
135  
12  
MAX  
UNIT  
C
TSHUTDOWN  
THys  
145  
C
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
7.45 SMBus High Voltage I/O  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SMBC, SMBD, VREG = 1.8 V  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
Input voltage high  
Input voltage low  
Output low voltage  
Input capacitance  
Input leakage current  
pulldown resistance  
1.3  
VIL  
SMBC, SMBD, VREG = 1.8 V  
0.8  
0.4  
V
VOL  
CIN  
ILKG  
RPD  
SMBC, SMBD, VREG = 1.8 V, IOL = 1.5 mA  
V
5
pF  
µA  
MΩ  
1
0.7  
1.0  
1.3  
7.46 SMBus  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SMBus operating  
frequency  
fSMB  
SLAVE mode, SMBC 50% duty cycle  
10  
100  
kHz  
SMBus master clock  
frequency  
fMAS  
MASTER mode, no clock low slave extend  
51.2  
kHz  
µs  
Bus free time between  
start and stop  
tBUF  
4.7  
4.0  
4.7  
Hold time after  
(repeated) start  
tHD(START)  
tSU(START)  
µs  
Repeated start setup  
time  
µs  
tSU(STOP)  
tHD(DATA)  
tSU(DATA)  
tTIMEOUT  
tLOW  
Stop setup time  
Data hold time  
4.0  
300  
250  
25  
µs  
ns  
ns  
ms  
µs  
µs  
ns  
ns  
Data setup time  
Error signal detect time  
Clock low period  
Clock high period  
Clock rise time  
35  
4.7  
4.0  
tHIGH  
50  
1000  
300  
tR  
10% to 90%  
90% to 10%  
tF  
Clock fall time  
Cumulative clock low  
slave extend time  
tLOW(SEXT)  
tLOW(MEXT)  
25  
10  
ms  
ms  
Cumulative clock low  
master extend time  
7.47 SMBus XL  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSMBXL  
tBUF  
SMBus XL operating frequency SLAVE mode  
40  
400  
kHz  
Bus free time between start and  
stop  
4.7  
µs  
tHD(START)  
tSU(START)  
tSU(STOP)  
tTIMEOUT  
tLOW  
Hold time after (repeated) start  
Repeated start setup time  
Stop setup time  
4.0  
4.7  
4.0  
5
µs  
µs  
µs  
ms  
µs  
µs  
Error signal detect time  
Clock low period  
20  
20  
20  
tHIGH  
Clock high period  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
7.48 Timing Requirements  
Typical values stated where TA = 25°C and VCC = 10.8 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
CURRENT PROTECTION TIMING  
OCD detection delay  
time  
tOCD  
1
31  
ms  
ms  
µs  
OCD detection delay  
ΔtOCD  
2
time program step  
SCC detection delay  
time  
tSCC  
0
915  
SCC detection delay  
ΔtSCC  
61  
µs  
time program step  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
0
0
915  
SCD1 detection delay  
time  
tSCD1  
µs  
µs  
µs  
1850  
61  
SCD1 detection delay  
ΔtSCD1  
time program step  
121  
0
0
458  
915  
SCD2 detection delay  
time  
tSCD2  
30.5  
61  
SCD2 detection delay  
ΔtSCD2  
µs  
µs  
time program step  
Current fault detect  
time  
VSRP – VSRN = VT – 3 mV for OCD, SCD1, and SC2,  
VSRP – VSRN = VT + 3 mV for SCC  
tDETECT  
160  
Current fault delay time  
accuracy  
tACC  
Max delay setting  
–10%  
10%  
7.49 Typical Characteristics  
1050000  
Typical Charger Switching Frequency  
1040000  
1030000  
1020000  
1010000  
1000000  
990000  
980000  
970000  
960000  
950000  
-40  
10  
Temperature (°C)  
60  
C001  
Figure 1. Charger Switching Frequency Across Temperature  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
8 Detailed Description  
8.1 Overview  
The bq40z60 is a fully integrated battery manager that employs flash-based firmware and integrated hardware  
protection to provide a complete solution for 2-series to 4-series cell battery stack architectures. The bq40z60  
interfaces with a host system via an SBS v1.1-compliant SMBus interface, and processes instructions and data  
using a state-of-the-art, ultra-low-power TI bqBMP CPU. High-performance, integrated analog peripherals enable  
support for a sense resistor down to 5 mΩ, battery charge control, and simultaneous current/voltage data  
conversion for instant power calculations.  
The bq40z60 controls the cell charging profile based on user-programmed data flash parameters for charging  
current and voltage based on temperature and cell voltage. The gas gauge provides the cell voltage and  
charging information to the battery charging through an internal communication bus. The charger function is  
controlled based on cell voltage measurements both on individual cell and total series stack readings.  
The analog front end provides this voltage-based information to the charging circuit to set the profiles pre-  
programmed in the data flash settings, which are useful for zero voltage and PRECHARGE mode operation. The  
following sections detail all of the major component blocks in the bq40z60 device.  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.2 Functional Block Diagram  
Cell  
Balancing  
Cell Detach  
Detection  
Cell, Stack,  
Pack  
Voltage  
High-Side  
N-CH FET  
Drive  
Power Mode  
Control  
Zero-Volt  
Charge  
Control  
Power On  
Reset  
Fuse  
Control  
AFEFUSE  
AC FET High  
Side N-CH  
FET Drive  
ACFET  
High  
Voltage I/O  
GPIO1  
GPIO0  
Watchdog  
Timer  
VCC  
Wake  
Comparator  
High-Side  
Current Sense/  
Voltage  
HSRP  
HSRN  
VFB  
SRP  
SRN  
Voltage  
Reference2  
Feedback  
Short Circuit  
Comparator  
High-Side  
N-CH FET  
Drive  
HIDRV  
BTST  
Over  
Current  
Comparator  
Random  
Number  
Generator  
PH  
Low-Side  
N-CH FET  
Drive  
LODRV  
PGND  
NTC Bias  
Internal  
Temp  
Sensor  
TS1  
TS2  
TS3  
TS4  
Regulated  
Supply  
REGN  
Voltage  
Reference1  
AFE Control  
ADC MUX  
1.8-V LDO  
Regulator  
Low  
Frequency  
Oscillator  
High  
Voltage  
Translation  
SMBD  
SMBC  
ADC/CC  
FRONTEND  
AFE COM  
Engine  
High  
Frequency  
Oscillator  
Low  
Voltage I/O  
I/O  
I/O &  
Interrupt  
Controller  
ADC/CC  
Digital Filter  
Timers &  
PWM  
AFE COM  
Engine  
In-Circuit  
Emulator  
COM  
Engine  
Data (8bit)  
DMAddr (16bit)  
bqBMP  
CPU  
PMInstr  
)
PMAddr  
(16 bit)  
(8 bit  
Program  
Flash  
EEPROM  
Data Flash  
EEPROM  
Data  
SRAM  
Copyright © 2017, Texas Instruments Incorporated  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
8.3 Feature Description  
The bq40z60 consists of an integrated analog front end, charge controller, and fuel gauge. The following sections  
provide an overview of the device features. For additional details, refer to the bq40z60 Technical Reference  
Manual (SLUUA04).  
8.3.1 Safety Features  
The bq40z60 provides support for primary safety, including:  
Cell Over/Undervoltage Protection  
Charge and Discharge Overcurrent  
Short Circuit Protection  
Charge and Discharge Overtemperature  
The secondary safety features of the bq40z60 can be used to indicate more serious faults via the FUSE pin. This  
pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. The  
secondary safety features provide protection against:  
Safety Over/Undervoltage Permanent Failure  
Safety Overtemperature Permanent Failure  
Safety FET Overtemperature Permanent Failure  
Qmax Imbalance Permanent Failure  
Impedance Imbalance Permanent Failure  
Capacity Degradation Permanent Failure  
Cell Balancing Permanent Failure  
Fuse Failure Permanent Failure  
Voltage Imbalance at Rest Permanent Failure  
Voltage Imbalance Active Permanent Failure  
Charge/Discharge FET Permanent Failure  
Second Level Protector Permanent Failure  
Instruction Flash Checksum Permanent Failure  
Open Cell Connection Permanent Failure  
Data Flash Permanent Failure  
Open Thermistor Permanent Failure  
8.3.2 Analog Front End (AFE) Details  
The analog front end (AFE) consists of circuits responsible for managing internal power and interfacing to outside  
components for measuring current, voltage, and temperature. The bq40z60 AFE includes an active-high interrupt  
output connected internally to the fuel gauge to notify it of important changes in some of the AFE registers.  
The bq40z60 manages its supply voltage dynamically according to operating conditions. When VBAT  
VSWITCHOVER– + VHYS, the AFE connects an internal switch to BAT and uses this pin to supply power to its internal  
1.8-V LDO, which subsequently powers all device logic and flash operations. Once BAT decreases to VBAT  
>
<
VSWITCHOVER–, the AFE disconnects its internal switch from BAT and connects another switch to VCC, allowing  
sourcing of power from a charger (if present). An external capacitor connected to PBI provides a momentary  
supply voltage to help guard against system brownouts due to transient short-circuit or overload events that pull  
VBAT below VSWITCHOVER–  
.
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
ACP  
AC  
FET  
ACP  
ACFET  
VCC  
VSWITCHOVER  
BAT  
SRP  
SRN  
Power Regulator  
Pack–  
Copyright © 2016, Texas Instruments Incorporated  
Figure 2. Internal Power Source Selection  
In the event of a power-cycle, the bq40z60 AFE will hold its internal RESET output pin high for tRST duration to  
allow its internal 1.8-V LDO and LFO to stabilize before running the analog gas gauge (AGG). The AFE enters  
power-on reset when the voltage at VREG falls below VREGIT–, and exits reset when VREG rises above VREGIT–  
VHYS for tRST time. After tRST, the bq40z60 AGG writes its trim values to the AFE.  
+
tRST  
normal operation  
(untrimmed)  
normal operation  
(trimmed)  
tOSU  
VIT+  
1.8-V Regulator  
LFO  
VIT–  
AFE RESET  
AGG writes trim values to  
AFE  
Figure 3. Power-On Reset Operation  
The bq40z60 AFE includes a low frequency oscillator (LFO) running at 262.144 kHz. The AFE monitors the LFO  
frequency and indicates a failure via LATCH_STATUS[LFO] if the output frequency is much lower than normal.  
The bq40z60 AFE provides two internal voltage references: VREF1, used by the ADC and CC, and VREF2 used by  
the LDO, LFO, current wake comparator, and over- and short-current protection circuitry.  
8.3.2.1 Wake Up Comparator  
The internal wake comparator can be used to wake the bq40z60 from a HALT state if a configurable threshold is  
detected across SRP and SRN.  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
8.3.2.2 Cell Balancing Support  
The integrated cell balancing FETs included in the bq40z60 device allow the AFE to bypass cell current around a  
given cell or numerous cells to effectively balance the entire battery stack. External series resistors placed  
between the cell connections and the VCx input pins set the balancing current magnitude. The cell balancing  
circuitry can be enabled or disabled via the CELL_BAL_DET[CB3, CB2, CB1] control register. Series input  
resistors between 100 Ω and 1 kΩ are recommended for effective cell balancing.  
BAT  
VC4  
VC3  
VC2  
VC1  
SRP  
SRN  
Pack–  
Figure 4. Cell Balancing Configuration  
8.3.2.3 FET Drive  
The bq40z60 controls two external N-CH MOSFETs in a back-to-back configuration for battery protection. The  
charge (CHG) and discharge (DSG) FETs are automatically disabled if a safety fault is detected and can also be  
manually turned off using AFE_CONTROL[CHGEN, DSGEN] = 0, 0. When the gate drive is disabled, an internal  
circuit discharges CHG to BAT and DSG to HSRN.  
The AC FET (N-CH MOSFET) controls power input from the AC adaptor to the battery charging system by  
monitoring the voltage at the VCC pin, and turning ON the ACFET if the voltage exceeds the VHSRN voltage. The  
following register command sets the AC FET gate drive output control, AFE_STATUS register (0x01) ACFET  
(Pin 2): Setting this pin to 1 allows the AC FET gate drive to be on if other conditions are satisfied.  
8.3.2.4 Fuse Drive  
The bq40z60 AFE has the ability to blow an external fuse in the event of a permanent failure. The fuse drive  
itself is supplied from the BAT input pin and its state can be monitored using the AFE_STATUS[FUSE_RAW]  
register. If AFE_STATUS[FUSE_RAW} = 1 for tDELAY duration, then LATCH_STATUS[FUSE] is set to 1, and after  
an additional 500 ms, the CHG and DSG FET drive outputs will be disabled if LATCH_STATUS[FUSE] has not  
been cleared by then. If the AFEFUSE output is not used, it should be connected to VSS. When AFEFUSE is in  
the low state, it uses an internal weak pullup to enable detection of disconnection between the AFEFUSE pin and  
the fuse drive circuitry.  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 Charge Controller Details  
The charge controller, under control from the fuel gauge's processor, provides autonomous control over the  
charging of the battery pack. The controller uses a 1-MHz buck architecture using external FETs driven by  
internal gate drivers. The charge voltage and current can be adjusted via data flash values to account for the  
temperature and voltage of the battery cells, allowing for a JEITA type charge profile. The voltage and current  
may also be directly written to the charge controller from an external host, allowing for a user-defined charging  
profile. The charger runs in Narrow Voltage DC, that is, the output voltage of the charger will only exceed the  
battery voltage by a small amount; by contrast, a charger that does not run in Narrow Voltage DC mode will  
output the adapter voltage to the system.  
The charger is designed to enable the system to continue to run while the battery is charged. If the system  
requires more current than the charger is able to provide, the battery supplements the current to the system. The  
charger can support an external precharge FET, allowing the VSYS to remain above a minimum voltage needed  
for the system to operate.  
The charger supports precharge, constant current/constant voltage, and termination, as shown below. The  
voltage and current thresholds for precharge and termination are controlled by data flash values. Refer to the  
bq40z60 Technical Reference Manual (SLUUA04) for more information.  
Pre  
Constant  
Constant  
Voltage  
Termination  
Charge Current  
I
CHG  
I
BAT  
I
/
PRECHG  
I
TERM  
0mA  
Termination Detect  
Current Loop  
Voltage Loop  
V
SYS  
V
BAT  
VSYS = VBAT + IBAT · (RBAT+RSNS  
)
V
PRECHG  
CHGR  
Figure 5. Normal Charge Profile  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
The charger maintains a cycle-by-cycle current limit by sensing across a resistor in series with the inductor  
(shown in Figure 6 as RCHG). In precharge and constant voltage, the DC current is regulated by sensing the  
current across the sense resistor at the bottom on of the cell stack. When the charger is enabled, the initial  
current is set for either the Precharge or Constant Current/Constant Voltage (CC/CV) value, based on the  
minimum cell voltage. Once the charger enters CONSTANT CURRENT mode, the temperature and maximum  
cell voltage-adjusted–charging current is set, and the voltage output of the charger is automatically regulated to  
maintain the current across RCHG. Once the temperature-adjusted voltage is reached by the charger output, the  
current starts to taper.  
Throughout the charge cycle, the current available from the charger is limited by the ChargingCurrent() value.  
The system draws more current, however, with the battery supplementing the difference. Once battery charging  
is terminated, the charger is capable of supplying all of the current defined by the Advanced Charge  
Algorithm:Maximum Current Register value. Refer to the bq40z60 Technical Reference Manual (SLUUA04) for  
more information.  
Figure 6 shows the system power path with the adaptor current and battery current overlaid. Further information  
is available in Application and Implementation.  
Power  
I
ADAPTER  
Path  
RCHG  
R1  
R2  
I
AC  
FET  
BAT  
Path  
Adapter  
GND  
ACFET  
ACP  
VCC  
HIDRV  
LODRV  
HSRP  
HSRN FB  
DSG  
FET  
Charger  
Current Sense  
DSG  
Protection  
FET  
Control  
Charger PWM  
Control  
CHG  
FET  
CHG  
BAT  
Zero Volt  
Charge Enable  
SRN  
SRP  
Pack–  
RSNS  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6. Power Path Overview  
8.3.3.1 Precharge Modes  
The charge controller is designed to allow for both internal precharge control and external precharge control. The  
device can operate in precharge with external FETs and a current limiting resistor. Refer to the bq40z60  
Technical Reference Manual (SLUUA04) for more information.  
8.3.3.2 Zero-Volt Charge Support  
This mode of operation is similar to PRECHARGE mode switched charging, but with the charge FET operation in  
the saturation region. The NVDC out is connected to the CHG gate drive output internally to allow for precharge  
current from the charger through the CHG FET. This current is limited based on the value of the external Rsense  
(10-mΩ resistor the lowest precharge current = 200 mA). This will increase the power dissipation of the charge  
FET and will require thermal heat management and protection to ensure correct operation.  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
 
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.3.3 Charge Termination  
Once the highest cell voltage reaches the value specified in the data flash, the charger output voltage will no  
longer increase and the current will start to taper. Once the highest cell voltage is within the Charge Term  
Voltage window and the measured current is below Charge Term Taper Current for 40 s or more, the charger  
will terminate by disabling the CHG FET and setting the appropriate flags. Refer to the bq40z60 Technical  
Reference Manual (SLUUA04) for more information.  
The system can still provide load current from the battery pack if the adaptor current cannot support the system  
load. The diode of the CHG FET starts to conduct as the system voltage decreases to a point where the pack  
voltage is greater than the system regulation voltage – Vdiode. If the average discharge current is high, the system  
can turn ON the CHG FET for improved efficiency and minimized line losses during the discharge phase.  
8.3.4 Fuel Gauge and Control Details  
The bq40z60 uses the Impedance Track™ algorithm to measure and calculate the available capacity in battery  
cells. The bq40z60 accumulates a measure of charge and discharge currents and compensates the charge  
current measurement for the temperature and state-of-charge of the battery. The bq40z60 estimates self-  
discharge of the battery and also adjusts the self-discharge estimation based on temperature. The device also  
has TURBO BOOST mode support, which enables the bq40z60 to provide the necessary data for the MCU to  
determine what level of peak power consumption can be applied without causing a system reset or a transient  
battery voltage level spike to trigger termination flags. See the bq40z60 Technical Reference Manual (SLUUA04)  
for further details.  
8.3.4.1 Battery Trip Point (BTP)  
Required for WIN8 OS, the Battery Trip Point (BTP) feature indicates when the RSOC of a battery pack has  
depleted to a certain value set in a DF register. This feature allows a host to program two capacity-based  
thresholds that govern triggering a BTP interrupt on the BTP_INT pin, and setting or clearing the  
OperationStatus[BTP_INT] on the basis of RemainingCapacity().  
An internal weak pullup is applied when the BTP feature is active. Depending on the system design, an external  
pullup may be required to put on the BTP_INT pin. See High-Voltage General Purpose I/O (GPIO0, GPIO1) for  
details.  
8.3.4.2 Lifetime Data Logging Features  
The bq40z60 offers lifetime data logging for several critical battery parameters. The following parameters are  
updated every 10 hours if a difference is detected between values in RAM and data flash:  
Maximum and Minimum Cell Voltages  
Maximum Delta Cell Voltage  
Maximum Charge Current  
Maximum Discharge Current  
Maximum Average Discharge Current  
Maximum Average Discharge Power  
Maximum and Minimum Cell Temperature  
Maximum Delta Cell Temperature  
Maximum and Minimum Internal Sensor Temperature  
Maximum FET Temperature  
Number of Safety Events Occurrences and the Last Cycle of the Occurrence  
Number of Valid Charge Termination and the Last Cycle of the Valid Charge Termination  
Number of Qmax and Ra Updates and the Last Cycle of the Qmax and Ra Updates  
Number of Shutdown Events  
Cell Balancing Time for Each Cell  
(This data is updated every 2 hours if a difference is detected.)  
Total FW Runtime and Time Spent in Each Temperature Range  
(This data is updated every 2 hours if a difference is detected.)  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
8.3.5 Authentication  
The bq40z60 supports authentication by the host using SHA-1. More information about the algorithm can be  
found in the bq40z60 Technical Reference Manual (SLUUA04).  
8.3.6 LED Display  
The bq40z60 can drive a 4-segment LED display for remaining capacity indication and/or a permanent fail (PF)  
error code indication.  
8.3.7 Internal Temperature Sensor  
An internal temperature sensor is available on the bq40z60 to reduce the cost, power, and size of the external  
components necessary to measure temperature. It is available for connection to the ADC using the multiplexer,  
and is ideal for determining pack temperature during storage and IC temperature during normal operation.  
8.3.8 External Temperature Sensor Support  
Each of the TSx input pins can be enabled with an 18-kΩ (Typ.) linearization pullup resistor to support using a 10  
kΩ (25°C) NTC external thermistor, such as the Semitec 103AT–2. One or more thermistors can be connected  
between VSS and the individual RCx pin. The analog measurement is then taken via the ADC through its input  
multiplexer. If a different thermistor type is required, then changes to the external support components may be  
required.  
&%"#  
 )ꢁ+*)'  
$!%  
! "  
!"#$ꢀ $  
Figure 7. Thermistor Pin Configuration  
8.3.9 High Frequency Oscillator  
The bq40z60 includes a high frequency oscillator (HFO) running at 16.78 MHz. It is synthesized from the LFO  
output and scaled down to 8.388 MHz with 50% duty cycle. There is no need for external oscillator components.  
8.3.10 Communications  
The bq40z60 uses SMBus v1.1 with MASTER mode and packet error checking (PEC) options per the SBS  
specification.  
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.10.1 SMBus On and Off State  
The bq40z60 detects an SMBus off state when SMBC and SMBD are low for two or more seconds. Clearing this  
state requires that either SMBC or SMBD transition high. The communication bus will resume activity within  
1 ms.  
8.3.10.2 SBS Commands  
The ManufacturerAccess() Command List shows the supported Manufacturer Access and SBS commands. See  
the bq40z60 Technical Reference Manual (SLUUA04) for further details.  
Table 1. ManufacturerAccess() Command List  
MANUFACTURER  
SBS  
COMMAND  
DATA READ ON  
0x44 OR 0x23  
AVAILABLE IN  
SEALED MODE  
FUNCTION  
ACCESS  
COMMAND  
ACCESS  
FORMAT  
DeviceType  
FirmwareVersion  
HardwareVersion  
IFChecksum  
0x0001  
0x0002  
0x0003  
0x0004  
0x0005  
0x0006  
0x0008  
0x0009  
0x0010  
0x0011  
0x0013  
0x001D  
0x001E  
0x001F  
0x0020  
0x0021  
0x0022  
0x0023  
0x0024  
0x0025  
0x0026  
0x0028  
R
R
Block  
Block  
Block  
Block  
Block  
Block  
Block  
Block  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
R
R
StaticDFSignature  
ChemID  
R
R
StaticChemDFSignature  
AllDFSignature  
ShutdownMode  
SleepMode  
R
R
W
W
W
W
W
W
W
W
W
W
W
W
W
W
AutoCCOfset  
FuseToggle  
PrechargeFET  
ChargeFET  
DischargeFET  
Gauging  
FETControl  
LifetimeDataCollection  
PermanentFailure  
BlackBoxRecorder  
Fuse  
LifetimeDataReset  
PermanentFailureData  
Reset  
0x0029  
0x002E  
0x002F  
W
W
W
LifetimeDataFlush  
LifetimeDataSpeedUp  
Mode  
BlackBoxRecorderReset  
CalibrationMode  
SealDevice  
0x002A  
0x002D  
0x0030  
0x0035  
0x0037  
0x0041  
0x0050  
0x0051  
0x0052  
0x0053  
0x0054  
0x0055  
0x0056  
W
W
W
R/W  
R/W  
W
R
SecurityKeys  
AuthenticationKey  
DeviceReset  
Block  
Block  
Yes  
SafetyAlert  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
Block  
Block  
Block  
Block  
Block  
Block  
Block  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SafetyStatus  
R
PFAlert  
R
PFStatus  
R
OperationStatus  
ChargingStatus  
GaugingStatus  
R
R
R
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
Table 1. ManufacturerAccess() Command List (continued)  
MANUFACTURER  
ACCESS  
SBS  
COMMAND  
DATA READ ON  
0x44 OR 0x23  
AVAILABLE IN  
SEALED MODE  
FUNCTION  
ACCESS  
FORMAT  
COMMAND  
ManufacturingStatus  
AFERegister  
0x0057  
0x0058  
0x0060  
0x0061  
0x0062  
0x0070  
0x0071  
0x0072  
0x0073  
0x0074  
0x0075  
0x0077  
0x00C0  
0x00C1  
0x00C2  
0x00C3  
0x0F00  
0xF080  
0x57  
0x58  
0x60  
0x61  
0x62  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
R
R
Block  
Block  
Block  
Block  
Block  
Block  
Block  
Block  
Block  
Block  
Block  
Block  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
LifetimeDataBlock1  
LifetimeDataBlock2  
LifetimeDataBlock3  
ManufacturerInfo  
DAStatus1  
R
R
R
R
R
DAStatus2  
R
GaugeStatus1  
GaugeStatus2  
GaugeStatus3  
StateofHealth  
CHGR_EN  
R
R
R
R
W
W
W
W
W
R/W  
CVRD_ARM  
Yes  
No  
ACFETEST  
CHGONTEST  
ROMMode  
No  
ExitCalibrationOutput  
Block  
Yes  
OutputCCandADCfor  
Calibration  
0xF081  
0xF082  
R/W  
R/W  
Block  
Block  
Yes  
Yes  
OutputShortedCCand  
ADCforCalibration  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The bq40z60 is a monolithic charger and gas gauge solution for multi-cell battery packs. By integrating these  
devices, software control can be handed off from the host microcontroller to the gas gauge controller, providing  
for potential energy savings that correlate to runtime.  
版权 © 2014–2017, Texas Instruments Incorporated  
29  
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
9.2 Typical Applications  
, 3 2 , 1  
, 3 2 , 1  
, 3 2 , 1  
8 , 7  
, 6 , 5  
8 , 7  
, 6 , 5  
8 , 7  
, 6 , 5  
2
3
4
4
1
3
2
3
3
3
3
2
2
2
2
2
4
3
2
m h o k 0 . 0 1  
t °  
m h o k 0 . 0 1  
t °  
m h o k 0 . 0 1  
t °  
m h o k 0 . 0 1  
t °  
A P D  
8. Typical Application Schematic  
30  
版权 © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
Typical Applications (接下页)  
The feedback resistor to VFB from charging output will have different values based on the  
number of series cells configured for charging the pack.  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 2 as the input parameters.  
2. Design Parameters  
Design Parameter  
Input Voltage Range  
Example Value  
15–22 V  
3-Cell Battery Voltage Range  
4-Cell Battery Voltage Range  
Operating Frequency  
9 V–12.6 V  
12 V–16.8 V  
1000 kHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The bq40z60 has a 1000-kHz switching frequency to allow the use of small inductor and capacitor values.  
Inductor saturation current should be higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
I
³ I  
+ (1/2) I  
SAT  
CHG RIPPLE  
(1)  
The inductor ripple current depends on input voltage (VIN), duty cycle (D = VOUT/VIN), switching frequency (fs) and  
inductance (L):  
V
´ D ´ (1 - D)  
IN  
IRIPPLE  
=
fS ´ L  
(2)  
The maximum inductor ripple current happens with D = 0.5 or close to 0.5. For example, the battery charging  
voltage range is from 9 V to 12.6 V for a 3-cell battery pack. For 20-V adaptor voltage, 10-V battery voltage gives  
the maximum inductor ripple current. Another example is a 4-cell battery: The battery voltage range is from 12 V  
to 16.8 V, and 12-V battery voltage gives the maximum inductor ripple current.  
Usually inductor ripple is designed in the range of (20%–40%) maximum charging current as a trade-off between  
inductor size and efficiency for a practical design.  
The bq40z60 has cycle-by-cycle charge undercurrent protection (UCP) by monitoring the charging-current  
sensing resistor to prevent negative inductor current. The typical UCP threshold is 5-mV falling edge  
corresponding to 0.5-A falling edge for a 10-mΩ charging-current sensing resistor.  
9.2.2.2 Input Capacitor  
The input capacitor should have enough ripple-current rating to absorb input switching ripple current. The worst-  
case RMS ripple current is half of the charging current when the duty cycle is 0.5. If the converter does not  
operate at 50% duty cycle, then the worst-case capacitor RMS current ICIN occurs where the duty cycle is closest  
to 50% and can be estimated using the following equation:  
ICIN = ICHG  
´
D ´ (1-D)  
(3)  
A low-ESR ceramic capacitor such as X7R or X5R is preferred for the input-decoupling capacitor and should be  
placed to the drain of the high-side MOSFET and source of the low-side MOSFET as close as possible. The  
voltage rating of the capacitor must be higher than the normal input voltage level. A 25-V or higher-rating  
capacitor is preferred for 20-V input voltage. 10-µF to 20-µF capacitance is suggested for typical of 3-A to 4-A  
charging current.  
版权 © 2014–2017, Texas Instruments Incorporated  
31  
 
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
9.2.2.3 Output Capacitor  
Output capacitor also should have enough ripple-current rating to absorb the output switching ripple current. The  
output capacitor RMS current ICOUT is given:  
I
RIPPLE  
I
=
» 0.29 ´ I  
RIPPLE  
COUT  
2 ´  
3
(4)  
The output capacitor voltage ripple can be calculated as follows:  
2
æ
ç
ç
è
ö
÷
÷
ø
VBAT  
1
DVo =  
V
-
BAT  
2
V
8LCfs  
IN  
(5)  
At a certain input/output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC. The bq40z60 has an internal loop compensator. To get good loop stability, the resonant  
frequency of the output inductor and output capacitor should be designed between 21 kHz and 27 kHz. The  
preferred ceramic capacitor has a 25-V or higher rating, X7R or X5R for a 4-cell application.  
9.2.2.4 Power MOSFETs Selection  
Two external N-CH MOSFETs are used for a synchronous switching battery charger. The gate drivers are  
internally integrated into the IC with 6 V of gate drive voltage. 30-V or higher voltage rating MOSFETs are  
preferred for 20-V input voltage, and 40 V or higher-rating MOSFETs are preferred for 20-V to 28-V input  
voltage.  
Figure-of-merit (FOM) is usually used for selecting the proper MOSFET based on a tradeoff between the  
conduction loss and switching loss. For a top-side MOSFET, FOM is defined as the product of the MOSFET on-  
resistance, rDS(on), and the gate-to-drain charge, QGD. For a bottom-side MOSFET, FOM is defined as the product  
of the MOSFET on-resistance, rDS(on), and the total gate charge, QG.  
FOMtop = RDS(on) ´ QGD  
FOMbottom = RDS(on) ´ QG  
(6)  
The lower the FOM value, the lower the total power loss. Usually a lower rDS(on) has a higher cost with the same  
package size.  
The top-side MOSFET loss includes conduction loss and switching loss. It is a function of duty cycle (D =  
VOUT/VIN), charging current (ICHG), the MOSFET on-resistance tDS(on)), input voltage (VIN), switching frequency  
(fS), turn-on time (ton), and turn-off time (toff):  
1
2
= D ´ ICHG ´ RDS(on)  
P
+
´ V ´ ICHG  
´
ton+ toff ´ f  
S
(
)
top  
IN  
2
(7)  
The first item represents the conduction loss. Usually MOSFET rDS(on) increases by 50% with 100°C junction  
temperature rise. The second term represents the switching loss. The MOSFET turn-on and turn-off times are  
given by:  
Q
Q
SW  
SW  
t
=
, t  
=
off  
on  
I
I
on  
off  
(8)  
where Qsw is the switching charge, Ion is the turn-on gate-driving current, and Ioff is the turn-off gate driving  
current. If the switching charge is not given in the MOSFET data sheet, it can be estimated by gate-to-drain  
charge (QGD) and gate-to-source charge (QGS):  
1
Q
= Q  
+
´ Q  
GS  
SW  
GD  
2
(9)  
Total gate-driving current can be estimated by the REGN voltage (VREGN), MOSFET plateau voltage (Vplt), total  
turn-on gate resistance (Ron), and turn-off gate resistance (Roff) of the gate driver:  
VREGN - Vplt  
Vplt  
Ion  
=
, Ioff =  
Ron  
Roff  
(10)  
The conduction loss of the bottom-side MOSFET is calculated with the following equation when it operates in  
synchronous continuous-conduction mode:  
2
= (1 - D) ´ ICHG ´ RDS(on)  
P
bottom  
(11)  
32  
版权 © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
If the HSRP–HSRN voltage decreases below 5 mV (the charger is also forced into non-synchronous mode when  
the average HSRP–HSRN voltage is lower than 1.7 mV), the low-side FET is turned off for the remainder of the  
switching cycle to prevent negative inductor current. As a result, all the freewheeling current goes through the  
body diode of the bottom-side MOSFET. The maximum charging current in non-synchronous mode can be up to  
1.6 A (0.5 A typ) for a 10-mΩ charging-current sensing resistor, considering IC tolerance. Choose the bottom-  
side MOSFET with either an internal Schottky or body diode capable of carrying the maximum non-synchronous  
mode charging current.  
MOSFET gate-driver power loss contributes to the dominant losses on the controller IC when the buck converter  
is switching. The combined high side and low side MOSFET gate charge, Qg_total, is proportional to the power  
dissipation of the IC, as shown in 公式 12:  
P
= V ×Qg_total ×fs  
IN  
ICLoss_driver  
(12)  
Choosing FETs with a lower Qg_total will reduce power loss.  
9.2.2.5 Input Filter Design  
During adaptor hot plug-in, the parasitic inductance and input capacitor from the adaptor cable form a second-  
order system. The voltage spike at the VCC pin may be beyond the IC maximum voltage rating and damage the  
IC. The input filter must be carefully designed and tested to prevent an overvoltage event on the VCC pin.  
There are several methods for damping or limiting the overvoltage spike during adaptor hot plug-in. An  
electrolytic capacitor with high ESR as an input capacitor can damp the overvoltage spike well below the IC  
maximum pin voltage rating. A high-current-capability TVS Zener diode can also limit the overvoltage level to an  
IC safe level. However, these two solutions may not have low cost or small size.  
9 shows a cost-effective and small size solution. The R1 and C1 are composed of a damping RC network to  
damp the hot plug-in oscillation. As a result, the overvoltage spike is limited to a safe level. D1 is used for  
reverse voltage protection for the VCC pin (it can be the body diode of input ACFET). C2 is a VCC pin-  
decoupling capacitor and it should be placed as close as possible to the VCC pin. R2 and C2 form a damping  
RC network to further protect the IC from high dv/dt and high-voltage spike. The C2 value should be less than  
the C1 value so R1 can be dominant over the ESR of C1 to get enough of a damping effect for hot plug-in. The  
R1 and R2 packages must be sized to handle inrush-current power loss according to the resistor manufacturer’s  
datasheet. The filter component values always must be verified with the real application, and minor adjustments  
may be needed to fit in the real application circuit.  
D1  
(1206)  
R2  
1 Ω  
R1  
2 Ω  
(2010)  
Adapter  
connector  
VCC pin  
C1  
2.2 µF  
C2  
0.1-1 µF  
9. Input Filter  
版权 © 2014–2017, Texas Instruments Incorporated  
33  
 
 
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
9.2.3 Application Curves  
!
$&$% "  
 
"#  
!
'(%% #&  
1 A/div (on both channels)  
4 s/div Timescale  
10 V/div  
400 ns/div Timescale  
10. Battery Current with Load Steps  
11. Charge Controller Phase (Switch) Node Operation  
During Constant Current Charging  
10 Power Supply Recommendations  
The bq40z60 is designed to operate from a well-regulated input voltage supply range between 4.0 V and 25 V;  
however, with a multi-cell pack, the input voltage should be a minimum of 1 V above the maximum stack voltage.  
If the input supply is more than a few inches from the bq40z60, additional bulk capacitance in the form of a 47-µF  
electrolytic capacitor should be used.  
11 Layout  
11.1 Layout Guidelines  
The following information is related to external component selection and guidelines for PCB layout.  
11.1.1 PCB Layout  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high-frequency current-path loop (see 12) is important to prevent electrical and  
magnetic field radiation and high-frequency resonant problems. The following is a PCB layout priority list for  
proper layout. Layout of the PCB according to this specific order is essential.  
1. Place the input capacitor as close as possible to the switching MOSFET supply and ground connections and  
use the shortest possible copper trace connection. The capacitors should be placed on the same layer as the  
FETs instead of using vias to connect the capacitor and the FETs. Additionally, any vias connecting the input  
capacitor to the adaptor node should not be placed between the capacitor and the FETs; the capacitor  
should have a solid copper path to the FET.  
2. The IC should be placed close to the switching MOSFET gate pins to keep the gate-drive signal traces short  
for a clean MOSFET drive. The IC can be placed on the other side of the PCB from the switching MOSFETs.  
3. Place the inductor input pin as close as possible to the switching MOSFET output pin. Minimize the copper  
area of this trace to lower electrical and magnetic field radiation, but make the trace wide enough to carry the  
charging current. Do not use multiple layers in parallel for this connection. Minimize parasitic capacitance  
from this area to any other trace or plane.  
4. The charging-current sensing resistor should be placed right next to the inductor output. Route the sense  
leads connected across the sensing resistor back to the IC in same layer, close to each other (minimize loop  
34  
版权 © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
Layout Guidelines (接下页)  
area) and do not route the sense leads through a high-current path (see 13 for Kelvin connection for best  
current accuracy). Place the decoupling capacitor on these traces next to the IC.  
5. Place the output capacitor next to the sensing resistor output and ground.  
6. Output capacitor ground connections must be tied to the same copper that connects to the input capacitor  
ground before connecting to system ground.  
7. Place the sense resistor and filter components, R1, C2, and C3, as close as possible to the IC and directly  
adjacent to the decoupling capacitor between HSRN and HSRP.  
8. Route the analog ground separately from the power ground and use a single ground connection to tie the  
charger power ground to the charger analog ground. Just beneath the IC, use the copper-pour for analog  
ground, but avoid power pins to reduce inductive and capacitive noise coupling. Connect analog ground to  
GND. Connect analog ground and power ground together using the thermal pad as the single ground  
connection point. Or use a 0-Ω resistor to tie analog ground to power ground (thermal pad should tie to  
analog ground in this case). A star connection under the thermal pad is highly recommended.  
9. It is critical that the exposed thermal pad on the back side of the IC package be soldered to the PCB ground.  
Ensure that there are sufficient thermal vias directly under the IC connecting to the ground plane on the other  
layers.  
10. Place decoupling capacitors next to the IC pins and make the trace connection as short as possible.  
11. Size and number of all vias should be enough for a given current path.  
L1  
R1  
V
BAT  
SW  
High  
Frequency  
Current  
Path  
V
BAT  
IN  
C2  
C3  
C1  
PGND  
12. High-Frequency Current Path  
Current Direction  
R
SNS  
Current Sensing Direction  
To SRP – SRN pin or HSRP – HSRN pin  
13. Sensing Resistor PCB Layout  
For the recommended component placement with trace and via locations, see the bq40z60EVM SBS 1.1  
Impedance Track™ Technology Enabled Battery Management Solution Evaluation Module User's Guide  
(SLUUB71).  
For the QFN information, see the Quad Flatpack No-Lead Logic Packages Application Note (SCBA017) and the  
QFN/SON PCB Attachment Application Note (SLUA271).  
版权 © 2014–2017, Texas Instruments Incorporated  
35  
 
bq40z60  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
11.2 Layout Example  
*6.02ꢀ58:>=ꢀ0.:ꢀ069<2ꢀ=9ꢀ',ꢀ%$-ꢀ@5=4ꢀ  
89ꢀ?5.<ꢀ/2=@228ꢁ  
('  
! %  
"$  
! %  
+
*'  
!1.:=2;  
+
(58575A2ꢀ">ꢀ15<=.802ꢀ  
/2=@228ꢀ%$-<ꢀ.81ꢀ581>0=9;  
#$  
! %  
*'  
+
#
&)#  
&)#  
',+*  
',+)  
(58575A2ꢀ699:ꢀ.;2.ꢀ93ꢀ=42ꢀ  
',+* ',+)ꢀ098820=598<  
14. Board Layout Example  
36  
版权 © 2014–2017, Texas Instruments Incorporated  
bq40z60  
www.ti.com.cn  
ZHCSDZ3D DECEMBER 2014REVISED JANUARY 2017  
12 器件和文档支持  
12.1 相关文档ꢀ  
如需相关文档,请参阅bq40z60 技术参考手册》(文献编号:SLUUA04)。  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
Impedance Track, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
版权 © 2014–2017, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ40Z60RHBR  
BQ40Z60RHBT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
BQ40Z60  
BQ40Z60  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ40Z60RHBR  
BQ40Z60RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ40Z60RHBR  
BQ40Z60RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

BQ40Z60RHBT

完整的多节电池管理器 | 电池电量监测计 | RHB | 32 | -40 to 85
TI

BQ40Z80

采用 Impedance Track™ 电量监测技术的 2 节至 7 节电池组管理器
TI

BQ40Z80RSMR

采用 Impedance Track™ 电量监测技术的 2 节至 7 节电池组管理器 | RSM | 32 | -40 to 85
TI

BQ40Z80RSMT

采用 Impedance Track™ 电量监测技术的 2 节至 7 节电池组管理器 | RSM | 32 | -40 to 85
TI

BQ4115YMA-150

NVRAM (Battery Based)
ETC

BQ4285

Real-Time Clock RTC With NVRAM Control
TI

BQ4285E

Enhanced RTC With NVRAM Control
TI

BQ4285EP

Enhanced RTC With NVRAM Control
TI

BQ4285EPN

暂无描述
TI

BQ4285ES

Enhanced RTC With NVRAM Control
TI

BQ4285E_14

Enhanced RTC With NVRAM Control
TI

BQ4285L

Enhanced RTC With NVRAM Control
TI