CC1050T [TI]

Single Chip Very Low Power RF Transmitter; 单芯片超低功耗射频发射器
CC1050T
型号: CC1050T
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Single Chip Very Low Power RF Transmitter
单芯片超低功耗射频发射器

射频
文件: 总39页 (文件大小:583K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC1050  
CC1050  
Single Chip Very Low Power RF Transmitter  
Applications  
Very low power UHF wireless data  
transmitters  
RKE – Remote Keyless Entry  
Home automation  
315 / 433 / 868 and 915 MHz ISM/SRD  
band systems  
Wireless alarm and security systems  
AMR – Automatic Meter Reading  
Low power telemetry  
Game Controllers and advanced toys  
Product Description  
CC1050 is a true single-chip UHF trans-  
mitter designed for very low power and  
very low voltage wireless applications. The  
circuit is mainly intended for the ISM  
(Industrial, Scientific and Medical) and  
SRD (Short Range Device) frequency  
bands at 315, 433, 868 and 915 MHz, but  
can easily be programmed for operation at  
other frequencies in the 300-1000 MHz  
range.  
CC1050 is based on Chipcon’s SmartRF®  
technology in 0.35 µm CMOS.  
The main operating parameters of CC1050  
can be programmed via an easy-to-  
interface serial bus, thus making CC1050 a  
very flexible and easy to use transmitter.  
In a typical system CC1050 will be used  
together with a microcontroller and a few  
external passive components.  
Features  
True single chip UHF RF transmitter  
Very low current consumption  
Frequency range 300 – 1000 MHz  
Programmable output power –20 to  
12 dBm  
Small size (TSSOP-24 package)  
Low supply voltage (2.1 V to 3.6 V)  
Very few external components required  
Single-ended antenna connection  
FSK data rate up to 76.8 kBaud  
Complies with EN 300 220 and FCC  
CFR47 part 15  
Programmable frequency in 250 Hz  
steps makes crystal temperature drift  
compensation possible without TCXO  
Suitable  
for  
frequency  
hopping  
protocols  
Development Kit available  
Easy-to-use software for generating the  
CC1050 configuration data  
SWRS044  
Page 1 of 40  
CC1050  
Table of Contents  
Absolute Maximum Ratings .......................................................................................................4  
Operating Conditions .................................................................................................................4  
Electrical Specifications .............................................................................................................4  
Pin Assignment ..........................................................................................................................7  
Application Circuit ......................................................................................................................9  
Configuration Overview............................................................................................................10  
Configuration Software.............................................................................................................11  
3-wire Serial Configuration Interface........................................................................................12  
Microcontroller Interface...........................................................................................................14  
Signal interface ........................................................................................................................15  
Frequency programming..........................................................................................................17  
VCO .........................................................................................................................................17  
VCO and PLL self-calibration...................................................................................................17  
VCO current control .................................................................................................................21  
Power management.................................................................................................................21  
Output Matching.......................................................................................................................24  
Output power programming .....................................................................................................25  
Crystal oscillator.......................................................................................................................26  
Optional LC Filter .....................................................................................................................27  
System Considerations and Guidelines ...................................................................................28  
PCB Layout Recommendations...............................................................................................29  
Antenna Considerations...........................................................................................................29  
Configuration registers.............................................................................................................30  
Package Description (TSSOP-24) ...........................................................................................38  
Soldering Information...............................................................................................................38  
Plastic Tube Specification........................................................................................................38  
SWRS044  
Page 2 of 40  
CC1050  
Carrier Tape and Reel Specification ........................................................................................38  
Ordering Information ................................................................................................................39  
General Information .................................................................................................................39  
Address Information.................................................................................................................40  
SWRS044  
Page 3 of 40  
CC1050  
Absolute Maximum Ratings  
Parameter  
Min.  
-0.3  
-0.3  
Max.  
Units  
V
V
Condition  
Supply voltage, VDD  
5.0  
VDD+0.3,  
max 5.0  
10  
Voltage on any pin  
Input RF level  
Storage temperature range  
Reflow soldering temperature  
dBm  
°C  
°C  
-50  
150  
260  
T = 10 s  
Under no circumstances the absolute  
maximum ratings given above should be  
violated. Stress exceeding one or more of  
the limiting values may cause permanent  
damage to the device.  
Caution! ESD sensitive device.  
Precaution should be used when handling  
the device in order to prevent permanent  
damage.  
Operating Conditions  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Condition / Note  
RF Frequency Range  
300  
-40  
1000  
85  
MHz  
Programmable in steps of 250 Hz  
Operating ambient temperature range  
Supply voltage  
°C  
2.1  
3.0  
3.6  
V
Note: The same supply voltage  
should be used for digital (DVDD)  
and analogue (AVDD) power.  
Electrical Specifications  
Tc = 25°C, VDD = 3.0 V if nothing else stated  
Parameter  
Min.  
Typ.  
Max.  
Unit Condition / Note  
Transmit Section  
Transmit data rate  
0.6  
0
76.8  
65  
kBaud NRZ or Manchester encoding.  
76.8 kBaud equals 76.8 kbit/s  
using NRZ coding. See page 15.  
Binary FSK frequency separation  
kHz  
The frequency separation is  
programmable in 250 Hz steps.  
65 kHz is the maximum  
guaranteed separation at 1 MHz  
reference frequency. Larger  
separations can be achieved at  
higher reference frequencies.  
Output power  
433 MHz  
868 MHz  
Delivered to 50 load.  
The output power is  
programmable.  
-20  
-20  
12  
8
dBm  
dBm  
RF output impedance  
433/868 MHz  
110 / 70  
Transmit mode. For matching  
details see p.24.  
SWRS044  
Page 4 of 40  
CC1050  
Parameter  
Min.  
Typ.  
Max.  
Unit Condition / Note  
Spurious emission  
-36  
dBm  
Complies with EN 300 220  
Harmonics  
-20  
dBc  
An external LC should be used to  
reduce harmonics emission to  
comply with SRD requirements.  
See p.27.  
Frequency Synthesiser  
Section  
Crystal Oscillator Frequency  
3
16  
MHz  
ppm  
Crystal frequency can be 3-4, 6-8  
or 9-16 MHz. Recommended  
frequencies are 3.6864, 7.3728,  
11.0592 and 14.7456. See page  
26 for details.  
Crystal frequency accuracy  
requirement  
433 MHz  
868 MHz  
± 50  
± 25  
The crystal frequency accuracy  
and drift (ageing and  
temperature dependency) will  
determine the frequency accuracy  
of the transmitted signal.  
Crystal operation  
Parallel  
C3 and C4 are loading  
capacitors, see page 26  
Crystal load capacitance  
12  
12  
12  
22  
16  
16  
30  
30  
16  
pF  
pF  
pF  
3-8 MHz, 22 pF recommended  
6-8 MHz, 16 pF recommended  
9-16 MHz, 16 pF recommended  
Crystal oscillator start-up time  
4
1.5  
2
ms  
ms  
ms  
3.6864 MHz, 16 pF load  
7.3728 MHz, 16 pF load  
16 MHz, 16 pF load  
Output signal phase noise  
PLL lock time  
-80  
dBc/Hz At 100 kHz offset from carrier  
200  
Up to 1 MHz frequency step  
Crystal oscillator running  
µs  
µs  
PLL turn-on time, crystal oscillator  
on in power down mode  
250  
Digital Inputs/Outputs  
Logic "0" input voltage  
Logic "1" input voltage  
Logic "0" output voltage  
0
0.7*VDD  
0
0.3*VDD  
VDD  
V
V
V
0.4  
Output current -2.5 mA,  
3.0 V supply voltage  
Logic "1" output voltage  
2.5  
VDD  
V
Output current 2.5 mA,  
3.0 V supply voltage  
Logic "0" input current  
Logic "1" input current  
DI setup time  
NA  
NA  
20  
-1  
1
Input signal equals GND  
Input signal equals VDD  
µA  
µA  
ns  
TX mode, minimum time DI must  
be ready before the positive edge  
of DCLK  
DI hold time  
10  
ns  
TX mode, minimum time DI must  
be held after the positive edge of  
DCLK  
SWRS044  
Page 5 of 40  
CC1050  
Parameter  
Min.  
Typ.  
Max.  
Unit Condition / Note  
Serial interface (PCLK, PDATA and  
PALE) timing specification  
See Table 2 page 13  
Current Consumption  
Power Down mode  
0.2  
1
Oscillator core off  
µA  
Current Consumption,  
transmit mode 433/868 MHz:  
P=0.01mW (-20dBm)  
P=0.3mW (-5dBm)  
P=1mW (0dBm)  
5.5/8.0  
7.3/10.0  
9.1/14.2  
13.3/17.7  
15.9/24.9  
23.3/NA  
mA  
mA  
mA  
mA  
mA  
mA  
The output power is delivered to a  
50load  
P=3mW (5dBm)  
P=6mW (8dBm)  
P=16mW (12dBm)  
Current Consumption, crystal osc.  
30  
80  
105  
3-8 MHz, 16 pF load  
9-14 MHz, 12 pF load  
14-16 MHz, 16 pF load  
µA  
µA  
µA  
Current Consumption, crystal osc.  
and bias  
400  
µA  
Current Consumption, crystal osc.,  
bias and synthesiser  
4.0  
5.5  
< 500 MHz  
> 500 MHz  
mA  
mA  
SWRS044  
Page 6 of 40  
CC1050  
Pin Assignment  
Pin no.  
Pin name  
AVDD  
AGND  
AGND  
AGND  
L1  
Pin type  
Power (A)  
Description  
1
2
3
4
5
6
7
8
Power supply (3 V) for analog modules (PA)  
Ground connection (0 V) for analog modules (PA)  
Ground connection (0 V) for analog modules (PA)  
Ground connection (0 V) for analog modules (VCO and prescaler)  
Connection no 1 for external VCO tank inductor  
Connection no 2 for external VCO tank inductor  
Power supply (3 V) for analog modules (VCO and prescaler)  
Charge pump current output when external loop filter is used  
The pin can also be used as PLL Lock indicator. Output is high  
when PLL is in lock.  
Ground (A)  
Ground (A)  
Ground (A)  
Analog input  
Analog input  
Power (A)  
L2  
AVDD  
CHP_OUT  
Analog output  
9
R_BIAS  
AGND  
AVDD  
Analog output  
Ground (A)  
Power (A)  
Connection for external precision bias resistor (82 k, ± 1%)  
Ground connection (0 V) for analog modules (backplane)  
Power supply (3 V) for analog modules (general)  
Ground connection (0 V) for analog modules (general)  
Crystal, pin 2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
AGND  
XOSC_Q2  
XOSC_Q1  
AGND  
DGND  
DVDD  
DGND  
DI  
Ground (A)  
Analog output  
Analog input  
Ground (A)  
Ground (D)  
Power (D)  
Ground (D)  
Digital input  
Digital output  
Digital input  
Digital  
Crystal, pin 1, or external clock input  
Ground connection (0 V) for analog modules (guard)  
Ground connection (0 V) for digital modules (substrate)  
Power supply (3 V) for digital modules  
Ground connection (0 V) for digital modules  
Data input in transmit mode  
Clock for data in transmit mode  
Programming clock for 3-wire bus  
Programming data for 3-wire bus. Programming data input for  
write operation, programming data output for read operation  
Programming address latch enable for 3-wire bus  
RF signal output to antenna  
DCLK  
PCLK  
PDATA  
input/output  
Digital input  
RF output  
23  
24  
PALE  
RF_OUT  
A=Analog, D=Digital  
(Top View)  
1
24  
AVDD  
RF_OUT  
23  
2
AGND  
PALE  
22  
3
AGND  
PDATA  
21  
4
AGND  
PCLK  
20  
DCLK  
19  
5
1C50  
L1  
6
L2  
DI  
7
18  
AVDD  
DGND  
17  
8
CHP_OUT  
9
DVDD  
16  
R_BIAS  
10  
DGND  
15  
AGND  
11  
AGND  
14  
AVDD  
12  
XOSC_Q1  
13  
AGND  
XOSC_Q2  
SWRS044  
Page 7 of 40  
CC1050  
Circuit Description  
CONTROL  
DI  
DCLK  
PDATA, PCLK, PALE  
3
/N  
PA  
RF_OUT  
BIAS  
R_BIAS  
XOSC_Q2  
XOSC_Q1  
CHARGE  
PUMP  
VCO  
PD  
/R  
OSC  
LPF  
~
L1 L2  
CHP_OUT  
Figure 1. Simplified block diagram  
The frequency synthesiser generates the  
local oscillator signal which is fed to the  
PA in transmit mode. The frequency  
synthesiser consists of a crystal oscillator  
(OSC), phase detector (PD), charge pump  
(CHARGE PUMP), VCO, and frequency  
dividers (/R and /N). An external crystal  
must be connected to XOSC, and only an  
external inductor is required for the VCO.  
A simplified block diagram of CC1050 is  
shown in Figure 1. Only signal pins are  
shown.  
The voltage controlled oscillator (VCO)  
output signal is fed directly to the power  
amplifier (PA). The RF output is frequency  
shift keyed (FSK) by the digital bit stream  
fed to the pin DI. The single ended PA  
makes the antenna interface and matching  
very easy.  
The 3-wire digital serial interface  
(CONTROL) is used for configuration.  
SWRS044  
Page 8 of 40  
 
CC1050  
Application Circuit  
Very few external components are  
required for the operation of CC1050. A  
typical application circuit is shown Figure  
2. Component values are shown in Table  
1.  
Crystal oscillator  
C3 and C4 are the loading capacitors for  
the crystal. See page 26 for details.  
Additional filtering  
Additional filtering (e.g. a low pass LC-  
filter) may be used in order to reduce the  
harmonic emission. See also Optional LC  
Filter p.27 for further information.  
Output matching  
C1, C2 and L2 are used to match the  
transmitter to 50 . See Output Matching  
p.24 for details.  
Power supply decoupling and filtering  
Power supply decoupling and filtering  
must be used (not shown in the  
application circuit). The placement and  
size of the decoupling capacitors and the  
power supply filtering are very important to  
achieve the optimum performance.  
Chipcon provides a reference design  
(CC1050EB) that should be followed very  
closely.  
VCO inductor  
The VCO is completely integrated except  
for the inductor L1. For further details see  
p. 17.  
Component values for the matching  
network and VCO inductor are easily  
calculated using the SmartRF® Studio  
software.  
AVDD=3V  
Antenna  
(50 Ohm)  
AVDD=3V  
L2  
C1  
1
24  
LC filter  
AVDD  
RF_OUT  
2
C2  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
Optional  
AGND  
PALE  
3
AGND  
PDATA  
PCLK  
4
1
AGND  
5
L1  
L2  
DCLK  
L1  
6
0
5
0
DI  
7
AVDD  
CHP_OUT  
R_BIAS  
AGND  
DGND  
DVDD  
DGND  
AGND  
DVDD=3V  
8
NC  
9
10  
11  
12  
R1  
AVDD  
XOSC_Q1  
XOSC_Q2  
AGND  
XTAL  
C4  
C3  
Figure 2. Typical CC1050 application circuit  
SWRS044  
Page 9 of 40  
 
CC1050  
Item  
C1  
C2  
C3*  
C4*  
L1  
315 MHz  
433 MHz  
868 MHz  
915 MHz  
5.6 pF, 5%, C0G, 0603  
8.2 pF, 5%, C0G, 0603  
15 pF, 5%, C0G, 0603  
15 pF, 5%, C0G, 0603  
56 nH, 5%, 0603  
12 pF, 5%, C0G, 0603  
6.8 pF, 5%, C0G, 0603  
15 pF, 5%, C0G, 0603  
15 pF, 5%, C0G, 0603  
33 nH, 5%, 0603  
4.7 pF, 5%, C0G, 0603  
5.6 pF, 5%, C0G, 0603  
15 pF, 5%, C0G, 0603  
15 pF, 5%, C0G, 0603  
5.6 nH, 5%, 0603  
4.7 pF, 5%, C0G, 0603  
5.6 pF, 5%, C0G, 0603  
15 pF, 5%, C0G, 0603  
15 pF, 5%, C0G, 0603  
5.6 nH, 5%, 0603  
L2  
20 nH, 10%, 0805  
6.2 nH, 10%, 0805  
2.5 nH, 10%, 0805  
2.5 nH, 10%, 0805  
R1  
XTAL  
82 k, 1%, 0603  
14.7456 MHz crystal,  
16 pF load  
82 k, 1%, 0603  
14.7456 MHz crystal,  
16 pF load  
82 k, 1%, 0603  
14.7456 MHz crystal,  
16 pF load  
82 k, 1%, 0603  
14.7456 MHz crystal,  
16 pF load  
Notes:  
Items shaded are different for different frequencies.  
Component values for 868 and 915 MHz are equal.  
*) C3 and C4 will depend on the crystal load capacitance, see page 26.  
Table 1. Bill of materials for the application circuit  
Configuration Overview  
frequency  
separation  
(deviation),  
CC1050 can be configured to achieve the  
best performance for different  
applications. Through the programmable  
configuration registers the following key  
parameters can be programmed:  
crystal oscillator reference frequency  
Crystal oscillator power-up / power  
down  
Data rate and data format (NRZ,  
Manchester coded or UART interface)  
Synthesiser lock indicator mode  
Modulation spectrum shaping  
Transmit mode / power-down / power-  
up mode  
RF output power  
Frequency  
synthesiser  
parameters: RF output frequency, FSK  
key  
SWRS044  
Page 10 of 40  
 
CC1050  
Configuration Software  
Chipcon provides users of CC1050 with a  
software program, SmartRF® Studio  
(Windows interface) that generates all  
necessary CC1050 configuration data  
based on the user's selections of various  
parameters. These hexadecimal numbers  
will then be the necessary input to the  
microcontroller for the configuration of  
CC1050. In addition the program will  
provide the user with the component  
values needed for the output matching  
circuit and the VCO inductor.  
Figure 3 shows the user interface of the  
CC1050 configuration software.  
Figure 3. SmartRF® Studio user interface  
SWRS044  
Page 11 of 40  
 
CC1050  
3-wire Serial Configuration Interface  
The timing for the programming is also  
shown in Figure 4 with reference to Table  
2. The clocking of the data on PDATA is  
done on the negative edge of PCLK.  
When the last bit, D0, of the 8 data-bits  
has been loaded, the data word is loaded  
in the internal configuration register.  
CC1050 is configured via a simple 3-wire  
interface (PDATA, PCLK and PALE).  
There are 19 8-bit configuration registers,  
each addressed by a 7-bit address. A  
Read/Write bit initiates a read or write  
operation. A full configuration of CC1050  
requires sending 19 data frames of 16 bits  
each (7 address bits, R/W bit and 8 data  
The configuration data is stored in internal  
RAM and is valid after power-down mode,  
but not when the power-supply is turned  
off. The registers can be programmed in  
any order.  
bits). The time needed for  
a
full  
configuration depend on the PCLK  
frequency. With a PCLK frequency of 10  
MHz the full configuration is done in less  
than 30 µs. Setting the device in power  
down mode requires sending one frame  
only and will in this case take less than 2  
µs. All registers are also readable.  
The configuration registers can also be  
read by the microcontroller via the same  
configuration interface. The seven address  
bits are sent first, then the R/W bit set low  
to initiate the data read-back. CC1050 then  
returns the data from the addressed  
register. PDATA is in this case used as an  
output and must be tri-stated (or set high n  
the case of an open collector pin) by the  
microcontroller during the data read-back  
(D7:0). The read operation is illustrated in  
Figure 5.  
In each write-cycle 16 bits are sent on the  
PDATA-line. The seven most significant  
bits of each data frame (A6:0) are the  
address-bits. A6 is the MSB (Most  
Significant Bit) of the address and is sent  
as the first bit. The next bit is the R/W bit  
(high for write, low for read). During  
address and R/W bit transfer the PALE  
(Program Address Latch Enable) must be  
kept low. The 8 data-bits are then  
transferred (D7:0). See Figure 4.  
TSA  
THA  
TSA  
TCH,min  
TCL,min  
THD  
TSD  
PCLK  
PDATA  
PALE  
Address  
Write mode  
Data byte  
6
5
4
3
2
1
0
W
7
6
5
4
3
2
1
0
Figure 4. Configuration registers write operation  
SWRS044  
Page 12 of 40  
 
CC1050  
PCLK  
PDATA  
PALE  
Address  
3
Read mode  
Data byte  
6
5
4
2
1
0
R
7
6
5
4
3
2
1
0
Figure 5. Configuration registers read operation  
Parameter Symbol  
Min  
Max  
Units  
Conditions  
PCLK, clock  
frequency  
FCLOCK  
-
10  
MHz  
PCLK low  
pulse  
duration  
TCL,min  
50  
50  
ns  
ns  
The minimum time PCLK must be low.  
The minimum time PCLK must be high.  
PCLK high  
pulse  
TCH,min  
duration  
PALE setup  
time  
TSA  
THA  
TSD  
THD  
10  
10  
10  
10  
-
-
-
-
ns  
ns  
ns  
ns  
The minimum time PALE must be low before  
negative edge of PCLK.  
PALE hold  
time  
The minimum time PALE must be held low after  
the positive edge of PCLK.  
PDATA setup  
time  
The minimum time data on PDATA must be ready  
before the negative edge of PCLK.  
PDATA hold  
time  
The minimum time data must be held at PDATA,  
after the negative edge of PCLK.  
Rise time  
Fall time  
Trise  
Tfall  
100  
100  
ns  
ns  
The maximum rise time for PCLK and PALE  
The maximum fall time for PCLK and PALE  
Note: The set-up- and hold-times refer to 50% of VDD.  
Table 2. Serial interface, timing specification  
SWRS044  
Page 13 of 40  
CC1050  
Microcontroller Interface  
Used in a typical system, CC1050 will  
Optionally the microcontroller can do  
data encoding / decoding.  
Optionally the microcontroller can  
monitor the frequency lock status from  
pin CHP_OUT (LOCK).  
interface to  
a
microcontroller. This  
microcontroller must be able to:  
Program CC1050 into different modes  
via the 3-wire serial configuration  
interface (PDATA, PCLK and PALE).  
Interface to the synchronous data  
signal interface (DI and DCLK).  
Connecting the microcontroller  
The microcontroller pins connected to  
PDATA and PCLK can be used for other  
purposes when the configuration interface  
is not used. PDATA and PCLK are high  
impedance inputs as long as PALE high.  
The microcontroller uses 3 output pins for  
the configuration interface (PDATA, PCLK  
and PALE). PDATA should be a bi-  
directional pin for data read-back. The DI  
pin is used for data to be transmitted.  
DCLK providing the data timing should be  
PALE has an internal pull-up resistor and  
should be left open (tri-stated by the  
microcontroller) or set to a high level  
during power down mode in order to  
prevent a trickle current flowing in the pull-  
up.  
connected to  
a microcontroller input.  
Optionally another pin can be used to  
monitor the LOCK signal (available at the  
CHP_OUT pin). This signal is logic level  
high when the PLL is in lock. See  
Figure 6.  
PDATA  
PCLK  
Micro-  
PALE  
controller  
CC1050  
DI  
DCLK  
(Optional)  
CHP_OUT  
(LOCK)  
Figure 6. Microcontroller interface  
SWRS044  
Page 14 of 40  
 
CC1050  
Signal interface  
The signal interface consists of DI and  
DCLK and is used for the data to be  
transmitted. DI is the data input line and  
the data rates 0.3, 0.6, 1.2, 2.4, 4.8, 9.6,  
19.2 or 38.4 kbit/s. The 38.4 kbit/s rate  
corresponds to the maximum 76.8 kBaud  
due to the Manchester encoding. See  
Figure 8.  
DCLK provides  
a synchronous clock  
during data transmission.  
Transparent Asynchronous UART mode.  
In transmit mode DI is used as data input.  
The data is modulated at RF without  
synchronisation or encoding. Data rates in  
the range from 0.6 to 76.8 kBaud can be  
used. See Figure 9.  
The CC1050 can be used with NRZ (Non-  
Return-to-Zero) data or Manchester (also  
known as bi-phase-level) encoded data.  
CC1050 can be configured for three  
different data formats:  
Manchester encoding  
In the Synchronous Manchester encoded  
Synchronous NRZ mode. CC1050 provides  
the data clock at DCLK, and DI is used as  
data input. Data is clocked into CC1050 at  
the rising edge of DCLK. The data is  
modulated at RF without encoding. CC1050  
can be configured for the data rates 0.6,  
1.2, 2.4, 4.8, 9.6, 19.2, 38.4 or 76.8 kbit/s.  
See Figure 7.  
mode CC1050 uses Manchester coding  
when  
Manchester code is based on transitions;  
“0” is encoded as low-to-high  
modulating  
the  
data.  
The  
a
a
transition, a “1” is encoded as a high-to-  
low transition. See Figure 10.  
The Manchester code ensures that the  
signal has a constant DC component,  
which is necessary in some FSK  
demodulators. Using this mode also  
ensures compatibility with CC400/CC900  
designs.  
Synchronous Manchester encoded mode.  
CC1050 provides the data clock at DCLK,  
and DI is used as data input. Data is  
clocked into CC1050 at the rising edge of  
DCLK and should be in NRZ format. The  
data is modulated at RF with Manchester  
code. The encoding is done by CC1050. In  
this mode CC1050 can be configured for  
DCLK  
DI  
Clock provided by CC1050  
Data provided by microcontroller  
“RF”  
FSK modulating signal (NRZ),  
internal in CC1050  
Figure 7. Synchronous NRZ mode  
SWRS044  
Page 15 of 40  
 
CC1050  
DCLK  
DI  
Clock provided by CC1050  
Data provided by microcontroller (NRZ)  
“RF”  
FSK modulating signal (Manchester encoded),  
internal in CC1050  
Figure 8. Synchronous Manchester encoded mode  
DCLK  
DI  
DCLK is not used  
Data provided by UART (TXD)  
“RF”  
FSK modulating signal,  
internal in CC1050  
Figure 9. Transparent Asynchronous UART mode  
1 0 1 1 0 0 0 1 1 0 1  
TX  
data  
Time  
Figure 10. Manchester encoding  
SWRS044  
Page 16 of 40  
CC1050  
Frequency programming  
The operation frequency is set by  
programming the frequency word in the  
configuration registers. There are two  
frequency words registers, termed A and  
B, which can be programmed to two  
different frequencies in order to switch fast  
FREQ + 8192  
fVCO = fref  
16384  
where the reference frequency is the  
crystal oscillator clock divided by REFDIV  
(4 bits in the PLL register), a number  
between 2 and 15:  
between  
two  
different  
channels.  
fxosc  
Frequency word A or B is selected by the  
F_REG bit in the MAIN register.  
fref  
=
REFDIV  
The equation above gives the VCO  
frequency, that is, fVCO is the f0 frequency  
for transmit mode (lower FSK frequency).  
The frequency word is 24 bits (3 bytes)  
located in FREQ_2A:FREQ_1A:FREQ_0A  
and FREQ_2B:FREQ_1B:FREQ_0B for  
the A and B word respectively.  
The upper FSK frequency is given by:  
f1 = f0 + fsep  
where fsep is set by the separation word:  
The FSK  
programmed in the FSEP1:FSEP0  
frequency separation is  
registers (11 bits).  
FSEP  
fsep = fref  
The frequency word FREQ is calculated  
by:  
16384  
VCO  
Only one external inductor (L1) is required  
for the VCO. The inductor will determine  
the operating frequency range of the  
circuit. It is important to place the inductor  
as close to the pins as possible in order to  
Typical tuning range for the integrated  
varactor is 20-25%.  
Component values for various frequencies  
are given in Table 1. Component values  
for other frequencies can be found using  
the SmartRF® Studio software.  
reduce  
stray  
inductance.  
It  
is  
recommended to use a high Q, low  
tolerance inductor for best performance.  
VCO and PLL self-calibration  
To compensate for supply voltage,  
temperature and process variations the  
VCO and PLL must be calibrated. The  
calibration is done automatically and sets  
maximum VCO tuning range and optimum  
charge pump current for PLL stability.  
After setting up the device at the operating  
frequency, the self-calibration can be  
initiated by setting the CAL_START bit.  
The calibration result is stored internally in  
the chip, and is valid as long as power is  
not turned off. If large supply voltage  
variations (more than 0.5 V) or  
temperature variations (more than 40  
degrees) occur after calibration, a new  
calibration should be performed.  
The self-calibration is controlled through  
the CAL register (see configuration  
registers description p. 30). The  
CAL_COMPLETE bit indicates complete  
calibration. The user can poll this bit, or  
simply wait for 26 ms (calibration wait time  
when CAL_WAIT = 1). The wait time is  
proportional to the internal PLL reference  
frequency. The lowest permitted reference  
frequency (1 MHz) gives 26 ms wait time,  
which is therefore the worst case.  
Reference  
Calibration time  
frequency [MHz]  
[ms]  
11  
13  
18  
26  
2.4  
2.0  
1.5  
1.0  
SWRS044  
Page 17 of 40  
CC1050  
The CAL_COMPLETE bit can also be  
monitored at the CHP_OUT (LOCK) pin  
(configured by LOCK_SELECT[3:0]) and  
used as an interrupt input to the  
microcontroller.  
MHz, or different VCO currents are used  
(VCO_CURRENT[3:0] in the CURRENT  
register) the calibration should be done  
separately. The CAL_DUAL bit in the CAL  
register controls dual or separate  
calibration.  
The CAL_START bit must be set to 0 by  
the microcontroller after the calibration is  
done.  
The single calibration algorithm using  
separate calibration for two frequencies is  
illustrated in Figure 11.  
There are separate calibration values for  
the two frequency registers. If the two  
frequencies, A and B, differ more than 1  
In Figure 12 the dual calibration algorithm  
is shown.  
SWRS044  
Page 18 of 40  
CC1050  
Start single calibration  
Write FREQ_A, FREQ_B  
If DR>=38kBd then {write TEST4: L2KIO=3Fh,  
PRESCALER = 04h}  
Write CAL: CAL_DUAL = 0  
Frequency register A and B are used for  
two different channels  
Frequency register A is calibrated first  
Write MAIN:  
F_REG = 0; TX_PD = 0; FS_PD = 0  
CORE_PD = 0; BIAS_PD = 0; RESET_N=1  
‘Current’ is the VCO current to be used  
for both frequencies  
PA is turned off to prevent spurious emission  
Write CURRENT:  
VCO_CURRENT = Current  
Write PA_POW = 00h  
The result of the calibration is stored for  
frequency FREQ_A and can be read from  
the status registers TEST0 and TEST2  
when F_REG = 0  
Write CAL:  
CAL_START=1  
Calibration time depend on the reference  
frequency, see text.  
Wait for maximum 26 ms, or  
Read CAL and wait until  
CAL_COMPLETE=1  
Write CAL:  
CAL_START=0  
Frequency register B is calibrated second  
Write MAIN: F_REG = 1  
The result of the calibration is stored for  
frequency FREQ_B and can be read from  
the status registers TEST0 and TEST2  
when F_REG = 1  
Write CAL:  
CAL_START=1  
Wait for 26 ms, or  
Read CAL and wait until  
CAL_COMPLETE=1  
Write CAL:  
CAL_START=0  
End of calibration  
Figure 11. Single calibration algorithm for two different frequencies  
SWRS044  
Page 19 of 40  
CC1050  
Start dual calibration  
Write FREQ_A, FREQ_B  
If DR>=38kBd then {write TEST4: L2KIO=3Fh,  
PRESCALER = 04h}  
Frequency registers A and B are both used  
Write CAL: CAL_DUAL = 1  
Either frequency register A or B is selected  
Write MAIN:  
F_REG = 0  
TX_PD = 0; FS_PD = 0  
CORE_PD = 0; BIAS_PD = 0; RESET_N=1  
Write CURRENT:  
VCO_CURRENT = Current  
Write PA_POW = 00h  
‘Current’ is the VCO current to be  
used for both frequencies  
The result of the calibration is stored for  
Both frequency FREQ_A and FREQ_B, and  
can be read from the status registers TEST0  
and TEST2  
Write CAL:  
CAL_START=1  
Wait for maximum 26 ms, or  
Read CAL and wait until  
CAL_COMPLETE=1  
Calibration time depend on the reference  
frequency, see text.  
Write CAL:  
CAL_START=0  
End of calibration  
Figure 12. Dual calibration algorithm  
SWRS044  
Page 20 of 40  
CC1050  
VCO current control  
The VCO current is programmable and  
should be set according to operating  
The bias current for the PA buffers are  
also  
programmable.  
Recommended  
frequency  
Recommended  
VCO_CURRENT bits in the CURRENT  
register are shown in the tables on page  
32.  
and  
output  
settings  
power.  
for the  
settings for the PA_DRIVE bits in the  
CURRENT register are shown in the  
tables on page 32.  
Power management  
A
typical power-on and initialising  
CC1050 offers great flexibility for power  
management in order to meet strict power  
consumption requirements in battery  
operated applications. Power Down mode  
is controlled through the MAIN register.  
There are separate bits to control the TX  
part, the frequency synthesiser and the  
crystal oscillator. This individual control  
can be used to optimise for lowest  
possible current consumption in a certain  
application.  
sequence for minimum power  
consumption is shown in Figure 13 and  
Figure 14.  
PALE should be tri-stated or set to a high  
level during power down mode in order to  
prevent a trickle current from flowing in the  
internal pull-up resistor.  
PA_POW should be set to 00h during  
power down mode to ensure lowest  
possible  
leakage  
current.  
SWRS044  
Page 21 of 40  
 
CC1050  
Power Off  
Power turned on  
Initialise and reset:  
MAIN:  
F_REG = 0  
Reset and turn on the  
crystal oscillator core  
TX_PD = 1  
FS_PD = 1  
CORE_PD = 0  
BIAS_PD = 1  
RESET_N = 0  
*Time to wait depends on the crystal frequency  
and the load capacitance  
MAIN: RESET_N = 1  
Wait 2 ms*  
Program all registers except MAIN  
Calibrate VCO and PLL  
Calibration is performed according  
to calibration algorithm  
PA_POW = 00h  
MAIN: TX_PD = 1, FS_PD = 1,  
CORE_PD = 1, BIAS_PD = 1  
Power Down  
Figure 13. Initializing sequence  
SWRS044  
Page 22 of 40  
CC1050  
Power Down  
Turn on crystal oscillator core  
MAIN: CORE_PD = 0  
Wait 2 ms*  
*Time to wait depends on the crystal frequency  
and the load capacitance  
Turn on bias generator  
BIAS_PD = 0  
Wait 200 µs  
Turn on TX:  
PA_POW = 00h  
MAIN: F_REG = 1  
FS_PD = 0  
Waiting for the PLL to lock  
Waiting for the PA to ramp up  
Wait 250 µs  
TX_PD = 0  
PA_POW = ‘Output power’  
Wait 20 µs  
TX mode  
Turn off TX:  
PA_POW = 00h  
MAIN: TX_PD = 1, FS_PD = 1,  
CORE_PD=1, BIAS_PD=1  
Power Down  
Figure 14. Sequence for activating TX mode  
SWRS044  
Page 23 of 40  
CC1050  
Output Matching  
A
few passive external components  
are given in Table 1. Component values  
for other frequencies can be found using  
the configuration software.  
ensures match in TX mode. The matching  
network is shown in Figure 15.  
Component values for various frequencies  
TO ANTENNA  
RF_OUT  
CC1050  
C2  
C1  
L2  
AVDD=3V  
Figure 15. Output matching network  
SWRS044  
Page 24 of 40  
 
CC1050  
Output power programming  
The RF output power is programmable  
and controlled by the PA_POW register.  
In power down mode the PA_POW should  
be set to 00h for minimum leakage  
current.  
Table 3 shows the closest programmable  
value for output powers in steps of 1 dB.  
The typical current consumption is also  
shown.  
Output power  
[dBm]  
RF frequency 433 MHz  
RF frequency 868 MHz  
PA_POW  
[hex]  
Current consumption,  
typ. [mA]  
PA_POW  
[hex]  
Current consumption,  
typ. [mA]  
-20  
-19  
-18  
-17  
-16  
-15  
-14  
-13  
-12  
-11  
-10  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
01  
5.5  
5.5  
5.5  
5.7  
5.7  
5.7  
5.7  
6.0  
6.0  
6.2  
6.2  
6.5  
6.5  
6.8  
7.0  
7.3  
7.5  
02  
8.0  
8.0  
8.0  
8.3  
8.3  
8.5  
8.5  
8.7  
8.7  
8.9  
8.9  
9.1  
9.4  
9.6  
9.8  
10.0  
10.4  
10.6  
10.9  
13.4  
14.2  
15.0  
15.7  
16.3  
17.0  
17.7  
19.1  
20.0  
24.9  
01  
01  
02  
02  
02  
02  
03  
03  
04  
04  
05  
05  
06  
07  
08  
09  
0A  
0C  
0D  
0F  
40  
50  
50  
60  
70  
80  
90  
A0  
C0  
E0  
F0  
FF  
02  
02  
03  
03  
04  
04  
05  
05  
06  
06  
07  
08  
09  
0A  
0B  
0D  
0E  
0F  
40  
50  
60  
70  
80  
90  
A0  
C0  
E0  
FF  
7.8  
8.3  
8.5  
9.1  
10.5  
11.5  
11.5  
12.4  
13.3  
14.7  
15.1  
15.9  
17.6  
19.2  
20.0  
23.3  
Table 3. Output power settings and typical current consumption  
SWRS044  
Page 25 of 40  
 
 
CC1050  
Crystal oscillator  
CC1050 has an advanced amplitude  
regulated crystal oscillator. A high current  
is used to start up the oscillations. When  
the amplitude builds up, the current is  
reduced to what is necessary to maintain  
a 600 mVpp amplitude. This ensures a  
DRnew  
fxtal _ new = fxtal  
DR  
Using the internal crystal oscillator, the  
crystal must be connected between  
XOSC_Q1 and XOSC_Q2. The oscillator  
is designed for parallel mode operation of  
the crystal. In addition loading capacitors  
(C3 and C4) for the crystal are required.  
The loading capacitor values depend on  
the total load capacitance, CL, specified for  
the crystal. The total load capacitance  
seen between the crystal terminals should  
equal CL for the crystal to oscillate at the  
specified frequency.  
fast  
start-up,  
keeps  
the  
current  
consumption as well as the drive level to a  
minimum and makes the oscillator  
insensitive to ESR variations.  
An external clock signal or the internal  
crystal oscillator can be used as main  
frequency reference. An external clock  
signal should be connected to XOSC_Q1,  
while XOSC_Q2 should be left open. The  
XOSC_BYPASS bit in the XOSC register  
should be set when an external clock  
signal is used.  
1
CL =  
+ Cparasitic  
1
1
+
C3 C4  
The crystal frequency should be in the  
range 3-4, 6-8 or 9-16 MHz. Because the  
crystal frequency is used as reference for  
the data rate (as well as other internal  
functions), the following frequencies are  
recommended: 3.6864, 7.3728, 11.0592  
or 14.7456 MHz. These frequencies will  
give accurate data rates. The crystal  
The parasitic capacitance is constituted by  
pin input capacitance and PCB stray  
capacitance. Typically the total parasitic  
capacitance is 8 pF. A trimming capacitor  
may be placed across C4 for initial tuning  
if necessary.  
frequency  
range  
is  
selected  
by  
The crystal oscillator circuit is shown in  
Figure 16. Typical component values for  
different values of CL are given in Table 4.  
XOSC_FREQ1:0 in the MODEM0 register.  
To operate in synchronous mode at data  
rates different from the standards at 1.2,  
2.4, 4.8 kBaud and so on, the crystal  
frequency can be scaled. The data rate  
(DR) will change proportionally to the new  
crystal frequency (f). To calculate the new  
crystal frequency:  
The initial tolerance, temperature drift,  
ageing and load pulling should be carefully  
specified in order to meet the required  
frequency  
accuracy  
in  
a
certain  
application.  
XOSC_Q1  
XOSC_Q2  
XTAL  
C3  
C4  
Figure 16. Crystal oscillator circuit  
Item  
C3  
CL= 12 pF  
6.8 pF  
CL= 16 pF  
15 pF  
CL= 22 pF  
27 pF  
C4  
6.8 pF  
15 pF  
27 pF  
Table 4. Crystal oscillator component values  
SWRS044  
Page 26 of 40  
 
 
CC1050  
Optional LC Filter  
An optional LC filter may be added  
between the antenna and the matching  
network in certain applications. The filter  
will reduce the emission of harmonics.  
A T-Type LC filter can be used to further  
attenuate harmonics if the Pi-type filter is  
not sufficient. A T-type filter provides much  
better stop-band attenuation than a Pi-  
type filter due to improved insulation  
between input and output. For more  
details refer to Application Note AN028 LC  
Filter with Improved High-Frequency  
Attenuation available from the Chipcon  
A Pi-type filter topology is shown in Figure  
17. Component values are given in Table  
5. The filter is designed for 50  
terminations. The component values may  
have to be tuned to compensate for layout  
parasitics.  
web  
site.  
L71  
C71  
C72  
Figure 17. LC filter  
Item  
C71  
C72  
L71  
315 MHz  
30 pF  
30 pF  
433 MHz  
20 pF  
20 pF  
868 MHz  
915 MHz  
10 pF  
10 pF  
10 pF  
10 pF  
5.6 nH  
15 nH  
12 nH  
4.7 nH  
Table 5. LC filter component values  
SWRS044  
Page 27 of 40  
 
 
CC1050  
System Considerations and Guidelines  
compensation of the crystal if the  
temperature drift curve is known and a  
temperature sensor is included in the  
system. Even initial adjustment can be  
done using the frequency programmability.  
This eliminates the need for an expensive  
TCXO and trimming in some applications.  
In less demanding applications a crystal  
with low temperature drift and low ageing  
SRD regulations  
International regulations and national laws  
regulate the use of radio receivers and  
transmitters. SRDs (Short Range Devices)  
for licence free operation are allowed to  
operate in the 433 and 868-870 MHz  
bands in most European countries. In the  
United States such devices operate in the  
260–470 and 902-928 MHz bands. CC1050  
is designed to meet the requirements for  
operation in all these bands. A summary  
of the most important aspects of these  
regulations can be found in Application  
Note AN001 SRD regulations for licence  
free transceiver operation, available from  
Chipcon’s web site.  
could  
be  
used  
without  
further  
compensation. A trimmer capacitor in the  
crystal oscillator circuit (in parallel with C4)  
could be used to set the initial frequency  
accurately.  
High output power systems  
The CHP_OUT (LOCK) pin can be  
configured to control an power amplifier.  
This is controlled by LOCK_SELECT in  
the LOCK register.  
Low cost systems  
In systems where low cost is of great  
importance the CC1050 is the ideal choice.  
Very few external components keep the  
total cost at a minimum. The oscillator  
crystal can then be a low cost crystal with  
50 ppm frequency tolerance.  
Frequency hopping spread spectrum  
systems  
Due to the very fast frequency shift  
properties of the PLL, the CC1050 is also  
suitable for frequency hopping systems.  
Hop rates of 1-100 hops/s are usually  
used depending on the bit rate and the  
amount of data to be sent during each  
transmission. The two frequency registers  
(FREQ_A and FREQ_B) are designed  
such that the ‘next’ frequency can be  
programmed while the ‘present’ frequency  
is used. The switching between the two  
frequencies is done through the MAIN  
register.  
Battery operated systems  
In low power applications the power down  
mode should be used when not being  
active. Depending on the start-up time  
requirement, the oscillator core can be  
powered during power down. See page 21  
for information on how effective power  
management can be implemented.  
Crystal drift compensation  
A unique feature in CC1050 is the very fine  
frequency resolution of 250 Hz. This can  
be used to do the temperature  
SWRS044  
Page 28 of 40  
CC1050  
PCB Layout Recommendations  
A two layer PCB is highly recommended.  
The bottom layer of the PCB should be the  
“ground-layer”. Chipcon provide reference  
designs that should be followed in order to  
achieve the best performance.  
Precaution should be used when placing  
the microcontroller in order to avoid  
interference with the RF circuitry.  
In certain applications where the ground  
plane for the digital circuitry is expected to  
be noisy, the ground plane may be split in  
an analogue and a digital part. All AGND  
pins and AVDD de-coupling capacitors  
should be connected to the analogue  
ground plane. All DGND pins and DVDD  
The top layer should be used for signal  
routing, and the open areas should be  
filled with metallisation connected to  
ground using several vias.  
The ground pins should be connected to  
ground as close as possible to the  
package pin using individual vias. The de-  
coupling capacitors should also be placed  
as close as possible to the supply pins  
and connected to the ground plane by  
separate vias.  
de-coupling  
capacitors  
should  
be  
connected to the digital ground. The  
connection between the two ground  
planes should be implemented as a star  
connection with the power supply ground.  
A development kit with a fully assembled  
PCB is available, and can be used as a  
guideline for layout.  
The external components should be as  
small as possible and surface mount  
devices should be used.  
Antenna Considerations  
difficult impedance matching because of  
their very low radiation resistance.  
CC1050 can be used together with various  
types of antennas. The most common  
antennas for short range communication  
are monopole, helical and loop antennas.  
For low power applications the λ/4-  
monopole antenna is recommended giving  
the best range and because of its  
simplicity.  
Monopole  
antennas  
are  
resonant  
antennas with a length corresponding to  
one quarter of the electrical wavelength  
(λ/4). They are very easy to design and  
can be implemented simply as a “piece of  
wire” or even integrated into the PCB.  
The length of the λ/4-monopole antenna is  
given by:  
L = 7125 / f  
Non-resonant monopole antennas shorter  
than λ/4 can also be used, but at the  
expense of range. In size and cost critical  
applications such an antenna may very  
well be integrated into the PCB.  
where f is in MHz, giving the length in cm.  
An antenna for 869 MHz should be 8.2  
cm, and 16.4 cm for 434 MHz.  
The antenna should be connected as  
close as possible to the IC. If the antenna  
is located away from the input pin the  
antenna should be matched to the feeding  
transmission line (50 ).  
Helical antennas can be thought of as a  
combination of a monopole and a loop  
antenna. They are a good compromise in  
size critical applications. But helical  
antennas tend to be more difficult to  
optimise than the simple monopole.  
For a more thorough primer on antennas,  
please refer to Application Note AN003  
SRD Antennas available from Chipcon’s  
web site.  
Loop antennas are easy to integrate into  
the PCB, but are less effective due to  
SWRS044  
Page 29 of 40  
CC1050  
Configuration registers  
Studio software. A complete description of  
the registers are given in the following  
tables. After a RESET is programmed all  
the registers have default values.  
The configuration of CC1050 is done by  
programming the 19 8-bit configuration  
registers. The configuration data based on  
selected system parameters are most  
easily found by using the SmartRF®  
REGISTER OVERVIEW  
ADDRESS  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
40h  
41h  
42h  
43h  
44h  
45h  
46h  
Byte Name  
MAIN  
Description  
MAIN Register  
FREQ_2A  
FREQ_1A  
FREQ_0A  
FREQ_2B  
FREQ_1B  
FREQ_0B  
FSEP1  
FSEP0  
CURRENT  
XOSC  
Frequency Register 2A  
Frequency Register 1A  
Frequency Register 0A  
Frequency Register 2B  
Frequency Register 1B  
Frequency Register 0B  
Frequency Separation Register 1  
Frequency Separation Register 0  
Current Consumption Control Register  
Crystal Oscillator Control Register  
PA Output Power Control Register  
PLL Control Register  
LOCK Status Register and signal select to CHP_OUT (LOCK) pin  
VCO Calibration Control and Status Register  
Not used  
Not used  
Modem Control Register  
Not used  
PA_POW  
PLL  
LOCK  
CAL  
Not used  
Not used  
MODEM0  
Not used  
FSCTRL  
Frequency Synthesiser Control Register  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PRESCALER Prescaler Control Register  
TEST6  
TEST5  
TEST4  
TEST3  
TEST2  
TEST1  
TEST0  
Test register for PLL LOOP  
Test register for PLL LOOP  
Test register for PLL LOOP (must be updated as specified)  
Test register for VCO  
Test register for Calibration  
Test register for Calibration  
Test register for Calibration  
SWRS044  
Page 30 of 40  
CC1050  
MAIN Register (00h)  
REGISTER  
NAME  
Default Active Description  
value  
MAIN[7]  
MAIN[6]  
-
-
-
-
-
Not used  
F_REG  
Selection of Frequency Register, 0 : Register A, 1 :  
Register B  
MAIN[5]  
MAIN[4]  
MAIN[3]  
MAIN[2]  
MAIN[1]  
-
-
-
-
-
-
-
Not used  
TX_PD  
FS_PD  
CORE_PD  
BIAS_PD  
H
H
H
H
Power Down of Signal Interface and PA  
Power Down of Frequency Synthesiser  
Power Down of Crystal Oscillator Core  
Power Down of BIAS (Global_Current_Generator)  
and Crystal Oscillator Buffer  
MAIN[0]  
RESET_N  
-
L
Reset, active low. Writing RESET_N low will write default  
values to all other registers than MAIN. Bits in MAIN do  
not have a default value, and will be written directly  
through the configurations interface. Must be set high to  
complete reset.  
FREQ_2A Register (01h)  
REGISTER  
NAME  
Default  
Active Description  
value  
FREQ_2A[7:0]  
FREQ_A[23:16]  
01110101  
-
8 MSB of frequency control word A  
FREQ_1A Register (02h)  
REGISTER  
NAME  
Default  
value  
Active Description  
FREQ_1A[7:0]  
FREQ_A[15:8]  
10100000  
-
Bit 15 to 8 of frequency control word A  
FREQ_0A Register (03h)  
REGISTER  
NAME  
Default  
value  
Active Description  
FREQ_0A[7:0]  
FREQ_A[7:0]  
11001011  
-
8 LSB of frequency control word A  
FREQ_2B Register (04h)  
REGISTER  
NAME  
Default  
value  
Active Description  
FREQ_2B[7:0]  
FREQ_B[23:16]  
01110101  
-
8 MSB of frequency control word B  
FREQ_1B Register (05h)  
REGISTER  
NAME  
Default  
value  
Active Description  
FREQ_1B[7:0]  
FREQ_B[15:8]  
10100101  
-
Bit 15 to 8 of frequency control word B  
FREQ_0B Register (06h)  
REGISTER  
NAME  
Default  
value  
Active Description  
FREQ_0B[7:0]  
FREQ_B[7:0]  
01001110  
-
8 LSB of frequency control word B  
FSEP1 Register (07h)  
REGISTER  
NAME  
-
Default  
value  
-
Active Description  
FSEP1[7:3]  
-
-
Not used  
FSEP1[2:0]  
FSEP_MSB[2:0]  
000  
3 MSB of frequency separation control  
FSEP0 Register (08h)  
REGISTER  
NAME  
FSEP_LSB[7:0]  
Default  
value  
01011001  
Active Description  
8 LSB of frequency separation control  
FSEP0[7:0]  
-
SWRS044  
Page 31 of 40  
CC1050  
CURRENT Register (09h)  
REGISTER  
NAME  
Default Active Description  
value  
CURRENT[7:4]  
VCO_CURRENT[3:0]  
1100  
-
Control of current in VCO core  
0000 : 160µA  
0001 : 320µA  
0010 : 480µA  
0011 : 630µA  
0100 : 790µA  
0101 : 950µA  
0110 : 1100µA  
0111 : 1250µA  
1000 : 1560µA, use for f< 500 MHz  
1001 : 1720µA  
1010 : 1870µA  
1011 : 2030µA  
1100 : 2180µA  
1101 : 2340µA  
1110 : 2490µA  
1111 : 2640µA, use for f>500 MHz  
CURRENT[3:2]  
CURRENT[1:0]  
-
-
10  
Not used  
PA_DRIVE[1:0]  
Control of current in VCO buffer for PA  
00 : 1mA  
01 : 2mA, use for TX, f<500 MHz  
10 : 3mA  
11 : 4mA, use for TX, f>500 MHz  
XOSC Register (0Ah)  
REGISTER  
NAME  
Default Active Description  
value  
XOSC[7:1]  
XOSC[0]  
-
-
0
-
-
Not used  
XOSC_BYPASS  
0 : Internal XOSC enabled  
1 : Power-Down of XOSC, external CLK used  
SWRS044  
Page 32 of 40  
CC1050  
PA_POW Register (0Bh)  
REGISTER  
NAME  
Default  
value  
0000  
Active Description  
PA_POW[7:4]  
PA_HIGHPOWER[3:0]  
-
Control of output power in high power array.  
Should be 0000 in PD mode . See  
Table 3 page 25 for details.  
PA_POW[3:0]  
PA_LOWPOWER[3:0]  
1111  
-
Control of output power in low power array  
Should be 0000 in PD mode. See  
Table 3 page 25 for details.  
PLL Register (0Ch)  
REGISTER  
NAME  
Default  
value  
Active Description  
PLL[7]  
EXT_FILTER  
0
-
1 : External loop filter  
0 : Internal loop filter  
1-to-0 transition samples F_COMP  
comparator when BREAK_LOOP=1  
(TEST3)  
PLL[6:3]  
REFDIV[3:0]  
0010  
-
Reference divider  
0000 : Not allowed  
0001 : Not allowed  
0010 : Divide by 2  
0011 : Divide by 3  
...........  
1111 : Divide by 15  
PLL[2]  
PLL[1]  
PLL[0]  
ALARM_DISABLE  
ALARM_H  
0
-
h
-
0 : Alarm function enabled  
1 : Alarm function disabled  
Status bit for tuning voltage out of range  
(too close to VDD)  
Status bit for tuning voltage out of range  
(too close to GND)  
ALARM_L  
-
-
SWRS044  
Page 33 of 40  
CC1050  
LOCK Register (0Dh)  
REGISTER  
NAME  
Default  
value  
0000  
Active  
-
Description  
LOCK[7:4]  
LOCK_SELECT[3:0]  
Selection of signals to CHP_OUT (LOCK) pin  
0000 : Normal, pin can be used as CHP_OUT  
0001 : LOCK_CONTINUOUS (active high)  
0010 : LOCK_INSTANT (active high)  
0011 : ALARM_H (active high)  
0100 : ALARM_L (active high)  
0101 : CAL_COMPLETE (active high)  
0110 : Not used  
0111 : REFERENCE_DIVIDER Output  
1000 : TX_PDB (active high, activates external  
PA when TX_PD=0)  
1001 : Not used  
1010 : Not used  
1011 : Not used  
1100 : Not used  
1101 : Not used  
1110 : N_DIVIDER Output  
1111 : F_COMP  
LOCK[3]  
LOCK[2]  
PLL_LOCK_  
ACCURACY  
0
0
-
-
0 : Sets Lock Threshold = 127, Reset Lock  
Threshold = 111. Corresponds to a worst case  
accuracy of 0.7%  
1 : Sets Lock Threshold = 31, Reset Lock  
Threshold =15. Corresponds to a worst case  
accuracy of 2.8%  
0 : Normal PLL lock window  
1 : Not used  
PLL_LOCK_  
LENGTH  
LOCK[1]  
LOCK[0]  
LOCK_INSTANT  
LOCK_CONTINUOUS  
-
-
-
-
Status bit from Lock Detector  
Status bit from Lock Detector  
CAL Register (0Eh)  
REGISTER  
NAME  
Default  
Active Description  
value  
CAL[7]  
CAL_START  
0
1 : Calibration started  
0 : Calibration inactive  
CAL_START must be set to 0 after  
calibration is done  
CAL[6]  
CAL[5]  
CAL_DUAL  
CAL_WAIT  
0
0
H
H
1 : Store calibration in both A and B  
0 : Store calibration in A or B defined by  
MAIN[6]  
1 : Normal Calibration Wait Time  
0 : Half Calibration Wait Time  
The calibration time is proportional to the  
internal reference frequency. 2 MHz  
reference frequency gives 14 ms wait time.  
1 : Calibration Current Doubled  
0 : Normal Calibration Current  
Status bit defining that calibration is  
complete  
CAL[4]  
CAL[3]  
CAL_CURRENT  
CAL_COMPLETE  
CAL_ITERATE  
0
0
H
H
H
CAL[2:0]  
101  
Iteration start value for calibration DAC  
000 - 101: Not used  
110 : Normal start value  
111 : Not used  
SWRS044  
Page 34 of 40  
CC1050  
MODEM0 Register (11h)  
REGISTER  
NAME  
-
Default Active Description  
value  
MODEM0[7]  
-
-
-
Not used  
MODEM0[6:4]  
BAUDRATE[2:0]  
010  
000 : 0.6 kBaud  
001 : 1.2 kBaud  
010 : 2.4 kBaud  
011 : 4.8 kBaud  
100 : 9.6 kBaud  
101 : 19.2 kBaud  
110 : 38.4 kBaud  
111 : 76.8 kBaud  
00 : NRZ operation.  
01 : Manchester operation  
10 : Transparent Asyncronous UART operation  
11 : Not used  
Selection of XTAL frequency range  
00 : 3MHz - 4MHz crystal, 3.6864MHz  
recommended  
MODEM0[3:2] DATA_FORMAT[1:0]  
01  
00  
-
-
MODEM0[1:0]  
XOSC_FREQ[1:0]  
01 : 6MHz - 8MHz crystal, 7.3728MHz  
recommended  
10 : 9MHz - 12MHz crystal, 11.0592 MHz  
recommended  
11 : 12MHz - 16MHz crystal, 14.7456MHz  
recommended  
FSCTRL Register (13h)  
REGISTER  
NAME  
-
Default Active Description  
value  
FSCTRL[7:4]  
FSCTRL[3:1]  
-
-
Not used  
Reserved  
FSCTRL[0]  
FS_RESET_N  
1
L
Separate reset of frequency synthesizer  
PRESCALER Register (1Ch)  
REGISTER  
NAME  
Default Active Description  
value  
PRESCALER[7:6]  
PRE_SWING[1:0]  
00  
-
Prescaler swing. Fractions for  
PRE_CURRENT[1:0] = 00  
00 : 1 * Nominal Swing  
01 : 2/3 * Nominal Swing  
10 : 7/3 * Nominal Swing  
11 : 5/3 * Nominal Swing  
Prescaler current scaling  
PRESCALER[5:4]  
PRE_CURRENT  
[1:0]  
00  
-
00 : 1 * Nominal Current  
01 : 2/3 * Nominal Current  
10 : 1/2 * Nominal Current  
11 : 2/5 * Nominal Current  
Bypass the resistor in the PLL loop filter  
0 : Not bypassed  
1 : Bypassed  
Disconnect the capacitor in the PLL loop filter  
0 : Capacitor connected  
PRESCALER[3]  
PRESCALER[2]  
BYPASS_R  
0
0
H
-
DISCONNECT_C  
1 : Capacitor disconnected. Use for data rate  
38.4 and 76.8 kBaud only.  
Not used  
PRESCALER[1:0]  
-
-
-
SWRS044  
Page 35 of 40  
CC1050  
TEST6 Register (for test only, 40h)  
REGISTER  
NAME  
Default  
value  
0
Active Description  
TEST6[7]  
LOOPFILTER_TP1  
LOOPFILTER_TP2  
CHP_OVERRIDE  
CHP_CO[4:0]  
-
-
-
-
1 : Select testpoint 1 to CHP_OUT  
0 : CHP_OUT tied to GND  
1 : Select testpoint 2 to CHP_OUT  
0 : CHP_OUT tied to GND  
1 : use CHP_CO[4:0] value  
0 : use calibrated value  
TEST6 [6]  
TEST6 [5]  
TEST6[4:0]  
0
0
10000  
Charge_Pump Current DAC override value  
TEST5 Register (for test only, 41h)  
REGISTER  
NAME  
Default  
Active Description  
value  
TEST5[7:6]  
TEST5[5]  
-
-
0
-
-
Not used  
CHP_DISABLE  
1 : CHP up and down pulses disabled  
0 : normal operation  
TEST5[4]  
VCO_OVERRIDE  
VCO_AO[3:0]  
0
-
-
1 : use VCO_AO[3:0] value  
0 : use calibrated value  
VCO_ARRAY override value  
TEST5[3:0]  
1000  
TEST4 Register (for test only, 42h)  
REGISTER  
NAME  
Default  
value  
-
Active Description  
TEST4[7:6]  
TEST4[5:0]  
-
-
Not used  
L2KIO[5:0]  
100101  
h
Constant setting charge pump current  
scaling/rounding factor. Sets Bandwidth of  
PLL. Use 3Fh for 38.4 and 76.8 kBaud  
TEST3 Register (for test only, 43h)  
REGISTER  
NAME  
Default  
Active Description  
value  
TEST3[7:5]  
TEST3[4]  
-
-
0
-
-
Not used  
1 : PLL loop open  
BREAK_LOOP  
0 : PLL loop closed  
TEST3[3:0]  
CAL_DAC_OPEN  
0100  
-
Calibration DAC override value, active when  
BREAK_LOOP =1  
TEST2 Register (for test only, 44h)  
REGISTER  
NAME  
Default  
Active Description  
value  
TEST2[7:5]  
TEST2[4:0]  
-
-
-
-
-
Not used  
Status vector defining applied  
CHP_CURRENT value  
CHP_CURRENT  
[4:0]  
TEST1 Register (for test only, 45h)  
REGISTER  
NAME  
Default  
Active Description  
value  
TEST1[7:4]  
TEST1[3:0]  
-
-
-
-
-
Not used  
CAL_DAC[3:0]  
Status vector defining applied Calibration  
DAC value  
TEST0 Register (for test only, 46h)  
REGISTER  
NAME  
Default  
Active Description  
value  
TEST0[7:4]  
TEST0[3:0]  
-
-
-
-
-
Not used  
VCO_ARRAY[3:0]  
Status vector defining applied VCO_ARRAY  
value  
SWRS044  
Page 36 of 40  
CC1050  
SWRS044  
Page 37 of 40  
CC1050  
Package Description (TSSOP-24)  
Note: The figure is an illustration only.  
Thin Shrink Small Outline Package (TSSOP)  
D
7.7  
E1  
4.30  
E
A
A1  
0.05  
E
B
0.19  
L
0.45  
Copl.  
0.10  
α
0°  
TSSOP 24  
Min  
6.40  
0.65  
Max  
7.9  
4.50  
1.20  
0.15  
0.30  
0.75  
8°  
All dimensions in mm  
Soldering Information  
Recommended soldering profile is according to IPC/JEDEC J-STD-020B, July 2002.  
Plastic Tube Specification  
TSSOP 4.4mm (.173”) antistatic tube.  
Tube Specification  
Package  
Tube Width  
268 mil  
Tube Height  
Tube  
Length  
20”  
Units per Tube  
62  
TSSOP 24  
80 mil  
Carrier Tape and Reel Specification  
Carrier tape and reel is in accordance with EIA Specification 481.  
Tape and Reel Specification  
Package  
Tape Width  
16 mm  
Component  
Pitch  
8 mm  
Hole  
Pitch  
4 mm  
Reel  
Diameter  
13”  
Units per Reel  
2500  
TSSOP 24  
SWRS044  
Page 38 of 40  
CC1050  
Ordering Information  
Ordering part number Description  
MOQ  
CC1050  
Single Chip RF Transceiver  
62 (tube)  
CC1050/T&R  
CC1050DK-433  
CC1050DK-868  
CC1050SK  
Single Chip RF Transceiver  
2500 (tape and reel)  
1
1
CC1050 Development Kit, 433 MHz  
CC1050 Development Kit, 868/915 MHz  
CC1050 Sample Kit (5 pcs)  
1
MOQ = Minimum Order Quantity  
General Information  
Document Revision History  
Revision  
Date  
April 2004  
Description/Changes  
Shaping feature removed  
L1 changed to 0603 size  
1.1  
Crystal oscillator information added  
Preliminary version removed  
Minor corrections and editorial changes  
Application circuit and BOM simplified  
Description in the FSCTRL register changed  
KOA inductor removed in BOM  
1.2  
August 2004  
Additional information on LC-filter  
Disclaimer  
Chipcon AS believes the information contained herein is correct and accurate at the time of this printing. However,  
Chipcon AS reserves the right to make changes to this product without notice. Chipcon AS does not assume any  
responsibility for the use of the described product; neither does it convey any license under its patent rights, or the  
rights of others. The latest updates are available at the Chipcon website or by contacting Chipcon directly.  
To the extent possible, major changes of product specifications and functionality will be stated in product specific  
Errata Notes published at the Chipcon website. Customers are encouraged to sign up for the Developer’s Newsletter  
for the most recent updates on products and support tools.  
When a product is discontinued this will be done according to Chipcon’s procedure for obsolete products as  
described in Chipcon’s Quality Manual. This includes informing about last-time-buy options. The Quality Manual can  
be downloaded from Chipcon’s website.  
Trademarks  
SmartRF® is a registered trademark of Chipcon AS. SmartRF® is Chipcon's RF technology platform with RF library  
cells, modules and design expertise. Based on SmartRF® technology Chipcon develops standard component RF  
circuits as well as full custom ASICs based on customer requirements and this technology.  
All other trademarks, registered trademarks and product names are the sole property of their respective owners.  
Life Support Policy  
This Chipcon product is not designed for use in life support appliances, devices, or other systems where malfunction  
can reasonably be expected to result in significant personal injury to the user, or as a critical component in any life  
support device or system whose failure to perform can be reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness. Chipcon AS customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Chipcon AS for any damages resulting  
from any improper use or sale.  
© 2004, Chipcon AS. All rights reserved.  
SWRS044  
Page 39 of 40  

相关型号:

CC1050_07

Single Chip Very Low Power RF Transmitter
TI

CC1050_08

Single Chip Very Low Power RF Transmitter
TI

CC105C025KXG

CAPACITOR, TANTALUM, SOLID, POLARIZED, 25V, 1uF, SURFACE MOUNT, 2005, CHIP, ROHS COMPLIANT
VISHAY

CC105E050MTS

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50V, 1uF, SURFACE MOUNT, 2010, CHIP
VISHAY

CC106D004JAS

CAPACITOR, TANTALUM, SOLID, POLARIZED, 4V, 10uF, SURFACE MOUNT, 1510, CHIP
VISHAY

CC106G025KXG

CAPACITOR, TANTALUM, SOLID, POLARIZED, 25V, 10uF, SURFACE MOUNT, 2611, CHIP, ROHS COMPLIANT
VISHAY

CC1070

Single Chip Low Power RF Transmitter for Narrowband Systems
TI

CC1070-RTR1

Single Chip Low Power RF Transmitter for Narrowband Systems
TI

CC1070-RTY1

Single Chip Low Power RF Transmitter for Narrowband Systems
TI

CC1070-STR1

IC,RF MODULATOR,CMOS,LLCC,20PIN,PLASTIC
TI

CC1070-STY1

IC,RF MODULATOR,CMOS,LLCC,20PIN,PLASTIC
TI

CC1070DK-433

Single Chip Low Power RF Transceiver for Narrowband Systems
TI