CC1150RGVT [TI]

Highly integrated multichannel wireless transmitter designed for low-power wireless applications 16-VQFN -40 to 85;
CC1150RGVT
型号: CC1150RGVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Highly integrated multichannel wireless transmitter designed for low-power wireless applications 16-VQFN -40 to 85

射频
文件: 总50页 (文件大小:595K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC1150  
CC1150 Single Chip Low Cost Low Power RF-Transmitter  
Applications  
Ultra low power UHF wireless transmitters  
315/433/868 and 915MHz ISM/SRD band  
systems  
AMR ñ Automatic Meter Reading  
Consumer Electronics  
Low power telemetry  
Home and building automation  
Wireless alarm and security systems  
Industrial monitoring and control  
RKE ñ Remote Keyless Entry  
Product Description  
via an SPI interface. In a typical system, the  
will be used together with a micro-  
The  
is a low cost true single chip UHF  
transmitter designed for very low power  
wireless applications. The circuit is mainly  
intended for the ISM (Industrial, Scientific and  
Medical) and SRD (Short Range Device)  
frequency bands at 315, 433, 868 and  
915MHz, but can easily be programmed for  
operation at other frequencies in the 300-  
348MHz, 400-464MHz and 800-928MHz  
bands.  
controller and  
components.  
a
few additional passive  
is based on Chipconís SmartRF 04  
technology in 0.18µm CMOS.  
The RF transmitter is integrated with a highly  
configurable  
baseband modulator.  
The  
modulator supports various modulation  
formats and has a configurable data rate up to  
500kbps. Performance can be increased by  
enabling a Forward Error Correction option,  
which is integrated in the modulator.  
The  
provides extensive hardware  
support for packet handling, data buffering and  
burst transmissions.  
The main operating parameters and the 64-  
byte transmit FIFO of  
can be controlled  
Key Features  
Small size (QLP 4x4mm package, 16 pins)  
Suitable for frequency hopping systems  
due to a fast settling frequency synthesizer  
Optional Forward Error Correction with  
interleaving  
True single chip UHF RF transmitter  
Frequency bands: 300-348MHz, 400-  
464MHz and 800-928MHz  
64-byte TX data FIFO  
Suited for systems compliant with EN 300  
220 and FCC CFR Part 15  
Many powerful digital features allow a  
high-performance RF system to be made  
using an inexpensive microcontroller  
Efficient SPI interface: All registers can be  
programmed with one ìburstî transfer  
Integrated analog temperature sensor  
Lead-free ìgreenî package  
Programmable data rate up to 500kbps  
Low current consumption  
Programmable output power up to  
+10dBm for all supported frequencies  
Very few external components: Totally on-  
chip frequency synthesizer, no external  
filters needed  
Programmable baseband modulator  
Ideal for multi-channel operation  
Configurable packet handling hardware  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 1 of 49  
CC1150  
Features (continued from front page)  
Flexible support for packet oriented  
systems: On chip support for sync word  
insertion, flexible packet length and  
automatic CRC handling.  
Optional automatic whitening of data  
Support for asynchronous transparent  
transmit mode for backwards compatibility  
with  
existing  
radio  
communication  
OOK and flexible ASK shaping supported  
2-FSK, GFSK and MSK supported.  
protocols  
1
Abbreviations  
Abbreviations used in this data sheet are described below.  
2-FSK  
ADC  
AFC  
AGC  
AMR  
ASK  
BER  
CCA  
CRC  
EIRP  
ESR  
FEC  
FIFO  
FSK  
GFSK  
LNA  
LO  
Binary Frequency Shift Keying  
Analog to Digital Converter  
Automatic Frequency Offset Compensation  
Automatic Gain Control  
Automatic Meter Reading  
Amplitude Shift Keying  
OOK  
PA  
On-Off-Keying  
Power Amplifier  
Printed Circuit Board  
Power Down  
PCB  
PD  
PER  
PLL  
Packet Error Rate  
Phase Locked Loop  
Bit Error Rate  
PQI  
Preamble Quality Indicator  
RC Oscillator  
Clear Channel Assessment  
Cyclic Redundancy Check  
Equivalent Isotropic Radiated Power  
Equivalent Series Resistance  
Forward Error Correction  
First-In-First-Out  
RCOSC  
RF  
Radio Frequency  
RSSI  
RX  
Received Signal Strength Indicator  
Receive, Receive Mode  
Surface Aqustic Wave  
Signal to Noise Ratio  
Serial Peripheral Interface  
To Be Defined  
SAW  
SNR  
SPI  
Frequency Shift Keying  
Gaussian shaped Frequency Shift Keying  
Low Noise Amplifier  
TBD  
TX  
Transmit, Transmit Mode  
Voltage Controlled Oscillator  
Crystal Oscillator  
Local Oscillator  
VCO  
XOSC  
XTAL  
LQI  
Link Quality Indicator  
MCU  
MSK  
Microcontroller Unit  
Crystal  
Minimum Shift Keying  
Preliminary Data Sheet (rev.1.0.)  
SWRS037  
Page 2 of 49  
CC1150  
Table Of Contents  
1
2
3
4
5
6
7
8
ABBREVIATIONS ...................................................................................................................................2  
ABSOLUTE MAXIMUM RATINGS ...........................................................................................................4  
OPERATING CONDITIONS ......................................................................................................................4  
ELECTRICAL SPECIFICATIONS...............................................................................................................5  
GENERAL CHARACTERISTICS................................................................................................................5  
RF TRANSMIT SECTION ........................................................................................................................6  
CRYSTAL OSCILLATOR .........................................................................................................................6  
FREQUENCY SYNTHESIZER CHARACTERISTICS.....................................................................................7  
ANALOG TEMPERATURE SENSOR ..........................................................................................................7  
DC CHARACTERISTICS .........................................................................................................................8  
POWER ON RESET.................................................................................................................................8  
PIN CONFIGURATION ............................................................................................................................8  
CIRCUIT DESCRIPTION ..........................................................................................................................9  
APPLICATION CIRCUIT........................................................................................................................10  
CONFIGURATION OVERVIEW ..............................................................................................................11  
CONFIGURATION SOFTWARE ..............................................................................................................13  
4-WIRE SERIAL CONFIGURATION AND DATA INTERFACE....................................................................13  
9
10  
11  
12  
13  
14  
15  
16  
17  
17.1 CHIP STATUS BYTE.............................................................................................................................13  
17.2 REGISTER ACCESS ..............................................................................................................................14  
17.3 COMMAND STROBES...........................................................................................................................14  
17.4 FIFO ACCESS .....................................................................................................................................14  
17.5 PATABLE ACCESS ............................................................................................................................14  
18  
MICROCONTROLLER INTERFACE AND PIN CONFIGURATION ...............................................................16  
18.1 CONFIGURATION INTERFACE ..............................................................................................................16  
18.2 GENERAL CONTROL AND STATUS PINS ..............................................................................................16  
19  
20  
DATA RATE PROGRAMMING...............................................................................................................17  
PACKET HANDLING HARDWARE SUPPORT .........................................................................................17  
20.1 DATA WHITENING...............................................................................................................................17  
20.2 PACKET FORMAT ................................................................................................................................17  
20.3 PACKET HANDLING IN TRANSMIT MODE............................................................................................19  
21  
MODULATION FORMATS.....................................................................................................................19  
21.1 FREQUENCY SHIFT KEYING ................................................................................................................19  
21.2 MINIMUM SHIFT KEYING....................................................................................................................19  
21.3 AMPLITUDE MODULATION .................................................................................................................19  
22  
FORWARD ERROR CORRECTION WITH INTERLEAVING........................................................................20  
22.1 FORWARD ERROR CORRECTION (FEC)...............................................................................................20  
22.2 INTERLEAVING ...................................................................................................................................20  
23  
RADIO CONTROL ................................................................................................................................21  
23.1 POWER ON START-UP SEQUENCE.........................................................................................................22  
23.2 CRYSTAL CONTROL............................................................................................................................22  
23.3 VOLTAGE REGULATOR CONTROL.......................................................................................................22  
23.4 ACTIVE MODE ....................................................................................................................................22  
23.5 TIMING ...............................................................................................................................................23  
24  
25  
26  
DATA FIFO ........................................................................................................................................23  
FREQUENCY PROGRAMMING ..............................................................................................................24  
VCO...................................................................................................................................................25  
26.1 VCO AND PLL SELF-CALIBRATION ...................................................................................................25  
27  
28  
29  
30  
31  
32  
VOLTAGE REGULATORS .....................................................................................................................25  
OUTPUT POWER PROGRAMMING ........................................................................................................25  
CRYSTAL OSCILLATOR .......................................................................................................................27  
ANTENNA INTERFACE.........................................................................................................................27  
GENERAL PURPOSE / TEST OUTPUT CONTROL PINS............................................................................27  
ASYNCHRONOUS AND SYNCHRONOUS SERIAL OPERATION ................................................................30  
32.1 ASYNCHRONOUS OPERATION..............................................................................................................30  
32.2 SYNCHRONOUS SERIAL OPERATION ....................................................................................................30  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 3 of 49  
CC1150  
33  
CONFIGURATION REGISTERS ..............................................................................................................30  
33.1 CONFIGURATION REGISTER DETAILS .................................................................................................34  
33.2 STATUS REGISTER DETAILS.................................................................................................................43  
34  
PACKAGE DESCRIPTION (QLP 16) ......................................................................................................45  
34.1 RECOMMENDED PCB LAYOUT FOR PACKAGE (QLP 16) .....................................................................46  
34.2 PACKAGE THERMAL PROPERTIES ........................................................................................................46  
34.3 SOLDERING INFORMATION..................................................................................................................47  
34.4 TRAY SPECIFICATION..........................................................................................................................47  
34.5 CARRIER TAPE AND REEL SPECIFICATION............................................................................................47  
35  
36  
ORDERING INFORMATION...................................................................................................................47  
GENERAL INFORMATION.....................................................................................................................47  
36.1 DOCUMENT HISTORY..........................................................................................................................47  
36.2 PRODUCT STATUS DEFINITIONS..........................................................................................................48  
36.3 DISCLAIMER .......................................................................................................................................48  
36.4 TRADEMARKS.....................................................................................................................................48  
36.5 LIFE SUPPORT POLICY ........................................................................................................................48  
37  
ADDRESS INFORMATION.....................................................................................................................49  
2
Absolute Maximum Ratings  
Under no circumstances must the absolute maximum ratings given in Table 1 be violated. Stress  
exceeding one or more of the limiting values may cause permanent damage to the device.  
Caution!  
ESD  
sensitive  
device.  
Precaution should be used when handling  
the device in order to prevent permanent  
damage.  
Parameter  
Min  
Max  
Units  
Condition  
Supply voltage  
ñ0.3  
3.6  
V
V
All supply pins must have the same voltage  
Voltage on any digital pin  
ñ0.3  
VDD+0.3,  
max 3.6  
Voltage on the pins RF_P, RF_N  
and DCOUPL  
ñ0.3  
2.0  
V
Input RF level  
10  
dBm  
°C  
Storage temperature range  
Solder reflow temperature  
ñ50  
150  
265  
According to IPC/JEDEC J-STD-020C  
°C  
Table 1: Absolute Maximum Ratings  
3
Operating Conditions  
The operating conditions for  
are listed Table 2 in below.  
Parameter  
Min  
-40  
1.8  
Max  
85  
Unit  
°C  
Condition  
Operating temperature  
Operating supply voltage  
3.6  
V
All supply pins must have the same voltage  
Table 2: Operating Conditions  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 4 of 49  
CC1150  
4
Electrical Specifications  
Tc = 25°C, VDD = 3.0V if nothing else stated. Measured on Chipconís CC1150EM reference design.  
Parameter  
Min Typ Max Unit Condition  
Current consumption  
200  
180  
1.4  
8.0  
nA  
Voltage regulator to digital part off, register values retained  
(SLEEP state)  
Voltage regulator to digital part on, all other modules in power  
down (XOFF state)  
µA  
mA Only voltage regulator to digital part and crystal oscillator running  
(IDLE state)  
mA Only the frequency synthesizer running (after going from IDLE  
until reaching RX or TX states, and frequency calibration states)  
Current consumption,  
315MHz  
26.3  
17.6  
14.5  
11.2  
26.4  
18.0  
14.9  
13.4  
28.7  
18.8  
15.9  
13.7  
mA Transmit mode, +10dBm output power  
Transmit mode, 5dBm output power  
Transmit mode, 0dBm output power  
Transmit mode, ñ10dBm output power  
mA Transmit mode, +10dBm output power  
Transmit mode, 5dBm output power  
Transmit mode, 0dBm output power  
Transmit mode, ñ10dBm output power  
mA Transmit mode, +10dBm output power  
Transmit mode, 5dBm output power  
Transmit mode, 0dBm output power  
Transmit mode, ñ10dBm output power  
Current consumption,  
433MHz  
Current consumption,  
868/915MHz  
Table 3: Electrical Specifications  
5
General Characteristics  
Parameter  
Min  
300  
400  
800  
1.2  
Typ  
Max  
348  
464  
928  
500  
Unit  
MHz  
MHz  
MHz  
kbps  
Condition/Note  
Frequency range  
Data rate  
Modulation formats supported:  
(Shaped) MSK (also known as differential offset  
QPSK) up to 500kbps  
2-FSK up to 500kbps  
GFSK and OOK/ASK (up to 250kbps)  
Optional Manchester encoding (halves the data rate).  
Table 4: General Characteristics  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 5 of 49  
CC1150  
6
RF Transmit Section  
Tc = 25°C, VDD = 3.0V, +10dBm if nothing else stated. Measured on Chipconís CC1150EM reference design.  
Parameter  
Min  
Typ  
Max  
Unit  
Condition/Note  
Differential load  
impedance  
TBD  
Follow CC1150EM reference design  
Output power,  
highest setting  
10  
dBm  
dBm  
Output power is programmable, and full range is available  
across all frequency bands.  
Delivered to a 50single-ended load via Chipcon reference  
RF matching network.  
Output power,  
lowest setting  
ñ30  
Output power is programmable, and full range is available  
across all frequency bands.  
Delivered to a 50single-ended load via Chipcon reference  
RF matching network.  
Spurious emissions  
and harmonics,  
433/868MHz  
ñ36  
ñ54  
ñ47  
dBm  
dBm  
dBm  
25MHz ñ 1GHz  
47-74, 87.5-118, 174-230, 470-862MHz  
1800MHz-1900MHz (restricted band in Europe), when the  
operating frequency is below 900MHz (2nd harmonic can not  
fall within this band when used in Europe)  
ñ30  
dBm  
Otherwise above 1GHz  
Spurious  
emissions,  
315/915MHz  
-49.2  
dBm  
<200µV/m at 3m below 960MHz.  
EIRP  
-41.2  
-20  
dBm  
EIRP  
<500µV/m at 3m above 960MHz.  
Harmonics  
315MHz  
dBc  
2nd, 3rd and 4th harmonic when the output power is maximum  
6mV/m at 3m. (-19.6dBm EIRP)  
-41.2  
-20  
dBm  
dBc  
5
th harmonic  
Harmonics  
915MHz  
2nd harmonic  
3rd, 4th and 5th harmonic  
-41.2  
dBm  
Table 5: RF Transmit Parameters  
7
Crystal Oscillator  
Tc = 25°C @ VDD = 3.0 V if nothing else is stated.  
Parameter  
Min  
Typ  
26  
Max  
Unit  
MHz  
ppm  
Condition/Note  
Crystal frequency  
Tolerance  
26  
27  
±40  
This is the total tolerance including a) initial tolerance, b) aging  
and c) temperature dependence.  
The acceptable crystal tolerance depends on RF frequency and  
channel spacing / bandwidth.  
ESR  
100  
Start-up time  
300  
µs  
Measured on Chipconís CC1150EM reference design. This  
parameter is to a large degree crystal dependent.  
Table 6: Crystal Oscillator Parameters  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 6 of 49  
CC1150  
8
Frequency Synthesizer Characteristics  
Tc = 25°C @ VDD = 3.0 V if nothing else is stated. Measured on Chipconís CC1100EM reference design.  
Parameter  
Min  
Typ  
Max  
Unit  
Condition/Note  
Programmed  
frequency resolution  
397  
FXOSC  
/
412  
Hz  
26MHz-27MHz crystal. The resolution (in Hz) is equal for  
all frequency bands.  
216  
Synthesizer frequency  
tolerance  
±40  
ppm  
Given by crystal used. Required accuracy (including  
temperature and aging) depends on frequency band and  
channel bandwidth / spacing.  
PLL turn-on / hop time  
PLL calibration time  
80  
Time from leaving the IDLE state until arriving in the  
FSTXON or TX state, when not performing calibration.  
Crystal oscillator running.  
µs  
18739  
0.72  
XOSC  
cycles  
Calibration can be initiated manually, or automatically  
before entering or after leaving RX/TX.  
0.69  
0.72  
ms  
Min/typ/max time is for 27/26/26MHz crystal frequency.  
Table 7: Frequency Synthesizer Parameters  
9
Analog temperature sensor  
The characteristics of the analog temperature sensor are listed in Table 8 below. Note that it is  
necessary to write 0xBF to the PTEST register to use the analog temperature sensor in the IDLE  
state.  
The values in the table are simulated results and will be updated in later versions of the data sheet. Minimum / maximum  
values are valid over entire supply voltage range. Typical values are for 3.0V supply voltage.  
Parameter  
Min  
Typ  
Max  
Unit  
Condition/Note  
0.638 0.648 0.706  
0.733 0.743 0.793  
0.828 0.840 0.891  
0.924 0.939 0.992  
V
V
V
V
Output voltage at ñ40°C  
Output voltage at 0°C  
Output voltage at +40°C  
Output voltage at +80°C  
Temperature coefficient  
2.35  
ñ14  
2.45  
ñ8  
2.46  
+14  
mV/°C Fitted from ñ20°C to +80°C  
Absolute error in calculated  
temperature  
°C  
From ñ20°C to +80°C when assuming best fit for  
absolute accuracy: 0.763V at 0°C and 2.44mV / °C  
Error in calculated  
temperature, calibrated  
ñ2  
+2  
°C  
From ñ20°C to +80°C when using 2.44mV / °C,  
after 1-point calibration at room temperature  
Settling time after enabling  
TBD  
0.3  
µs  
Current consumption  
increase when enabled  
mA  
Table 8: Analog Temperature Sensor Parameters  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 7 of 49  
CC1150  
10 DC Characteristics  
The DC Characteristics of  
are listed in Table 9 below.  
Tc = 25°C if nothing else stated.  
Digital Inputs/Outputs  
Logic "0" input voltage  
Logic "1" input voltage  
Logic "0" output voltage  
Logic "1" output voltage  
Logic "0" input current  
Logic "1" input current  
Min  
Max  
0.7  
Unit  
V
Condition  
0
VDD-0.7  
0
VDD  
0.5  
VDD  
ñ1  
V
V
For up to 4mA output current  
For up to 4mA output current  
Input equals 0V  
VDD-0.3  
N/A  
V
µA  
µA  
N/A  
1
Input equals VDD  
Table 9: DC Characteristics  
11 Power On Reset  
When the power supply complies with the requirements in Table 10 below, proper Power-On-  
Reset functionality is guaranteed. Otherwise, the chip should be assumed to have unknown state  
until transmitting an SRES strobe over the SPI interface. It is recommended to transmit an SRES  
strobe after turning power on in any case. See section 23.1 on page 22 for a description of the  
recommended start up sequence after turning power on.  
Parameter  
Min Typ Max Unit Condition/Note  
Power-up ramp-up time.  
Power off time  
5
ms  
ms  
From 0V until reaching 1.8V  
1
Minimum time between power-on and power-off.  
Table 10: Power-on Reset Requirements  
12 Pin Configuration  
16 15 14 13  
SCLK 1  
SO (GDO1) 2  
DVDD 3  
12 AVDD  
11 RF_N  
10 RF_P  
DCOUPL 4  
9
CSn  
GND  
Exposed die  
attach pad  
5
6
7
8
Figure 1: Pinout top view  
Note: The exposed die attach pad must be connected to a solid ground plane as this is the main  
ground connection for the chip.  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 8 of 49  
CC1150  
Pin # Pin name  
Pin type  
Description  
1
2
Digital Input  
Serial configuration interface, clock input  
SCLK  
Digital Output  
Serial configuration interface, data output.  
SO(GDO1)  
Optional general output pin when CSnis high  
3
4
Power (Digital)  
Power (Digital)  
1.8V-3.6V digital power supply for digital I/Oís and for the digital core  
voltage regulator  
DVDD  
1.6V-2.0V digital power supply output for decoupling.  
DCOUPL  
NOTE: This pin is intended for use with the  
used to provide supply voltage to other devices.  
only. It can not be  
5
6
7
8
Analog I/O  
Power (Analog)  
Analog I/O  
Digital I/O  
Crystal oscillator pin 1, or external clock input  
1.8V-3.6V analog power supply connection  
Crystal oscillator pin 2  
XOSC_Q1  
AVDD  
XOSC_Q2  
GDO0  
Digital output pin for general use:  
Test signals  
FIFO status signals  
Clock output, down-divided from XOSC  
Serial input TX data  
(ATEST)  
Also used as analog test I/O for prototype/production testing  
9
Digital Input  
RF I/O  
Serial configuration interface, chip select  
CSn  
10  
11  
12  
13  
14  
15  
16  
Positive RF output signal from PA  
RF_P  
RF_N  
AVDD  
AVDD  
RBIAS  
DGUARD  
SI  
RF I/O  
Negative RF output signal from PA  
Power (Analog)  
Power (Analog)  
Analog I/O  
Power (Digital)  
Digital Input  
1.8V-3.6V analog power supply connection  
1.8V-3.6V analog power supply connection  
External bias resistor for reference current  
Power supply connection for digital noise isolation  
Serial configuration interface, data input  
Table 11: Pinout overview  
13 Circuit Description  
RADIO CONTROL  
SCLK  
RF_P  
FREQ  
SYNTH  
SO (GDO1)  
PA  
RF_N  
SI  
CSn  
GDO0 (ATEST)  
BIAS  
XOSC  
RBIAS XOSC_Q1 XOSC_Q2  
Figure 2:  
Simplified Block Diagram  
synthesizer includes a completely on-chip LC  
VCO.  
A simplified block diagram of  
in Figure 2.  
is shown  
A crystal is to be connected to XOSC_Q1 and  
XOSC_Q2. The crystal oscillator generates the  
The  
transmitter is based on direct  
synthesis of the RF frequency. The frequency  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 9 of 49  
CC1150  
reference frequency for the synthesizer, as  
well as clocks for the digital part.  
The digital baseband includes support for  
channel configuration, packet handling and  
data buffering.  
A 4-wire SPI serial interface is used for  
configuration and data buffer access.  
14 Application Circuit  
Only a few external components are required  
Crystal  
for using the  
. The recommended  
The crystal oscillator uses an external crystal  
with two loading capacitors (C51 and C71).  
See section 29 on page 27 for details.  
application circuit is shown in Figure 3. The  
external components are described in Table  
12, and typical values are given in Table 13.  
Additional filtering  
Bias resistor  
Additional external components (e.g. an RF  
SAW filter) may be used in order to improve  
the performance in specific applications.  
The bias resistor R141 is used to set an  
accurate bias current.  
Balun and RF matching  
Power supply decoupling  
C101, C111, L101 and L111 form a balun that  
The power supply must be properly decoupled  
close to the supply pins. Note that decoupling  
capacitors are not shown in the application  
circuit. The placement and the size of the  
decoupling capacitors are very important to  
achieve the optimum performance. Chipcon  
provides a reference design that should be  
followed closely.  
converts the differential RF port on  
to a  
single-ended RF signal (C104 is also needed  
for DC blocking). Together with an appropriate  
LC network, the balun components also  
transform the impedance to match a 50Ω  
antenna (or cable). Component values for the  
RF balun and LC network are easily found  
using the SmartRF  
Studio software.  
Suggested values for 315MHz, 433MHz and  
868/915MHz are listed in Table 13.  
Component  
C41  
Description  
100nF decoupling capacitor for on-chip voltage regulator to digital part  
Crystal loading capacitors, see section 29 on page 27 for details  
RF balun/matching capacitors  
C51/C71  
C101/C111  
C102/C103  
C104  
RF LC filter/matching capacitors  
RF balun DC blocking capacitor  
C105  
RF LC filter DC blocking capacitor (only needed if there is a DC path in the antenna)  
RF balun/matching inductors (inexpensive multi-layer type)  
RF LC filter/matching inductor (inexpensive multi-layer type)  
56k resistor for internal bias current reference  
L101/L111  
L102/L103  
R141  
XTAL  
26MHz-27MHz crystal, see section 29 on page 27 for details  
Table 12: Overview of external components (excluding supply decoupling capacitors)  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 10 of 49  
CC1150  
1.8V-3.6V power supply  
R141  
SI  
Antenna  
(50 Ohm)  
C111  
L111  
SCLK  
1 SCLK  
AVDD 12  
SO  
(GDO1)  
2 SO  
(GDO1)  
C105  
RF_N 11  
RF_P 10  
CSn 9  
DIE ATTACH PAD:  
3 DVDD  
L102  
L103  
C102  
C101  
C103  
4 DCOUPL  
L101  
C104  
C41  
GDO0  
(optional)  
CSn  
DCOUPL  
XTAL  
C71  
C51  
Figure 3: Typical application and evaluation circuit (power supply decoupling not shown)  
Component  
C41  
Value at 315MHz  
Value at 433MHz  
100nF±10%, 0402 X5R  
27pF±5%, 0402 NP0  
Value at 868/915MHz  
C51  
C71  
27pF±5%, 0402 NP0  
C101  
C102  
C103  
C104  
C105  
C111  
L101  
6.8pF±0.5pF, 0402 NP0  
12pF±5%, 0402 NP0  
3.9pF±0.25pF, 0402 NP0  
8.2pF±0.5pF, 0402 NP0  
5.6pF±0.5pF, 0402 NP0  
220pF±5%, 0402 NP0  
220pF±5%, 0402 NP0  
3.9pF±0.25pF, 0402 NP0  
27nH±5%, 0402 monolithic  
22nH±5%, 0402 monolithic  
27nH±5%, 0402 monolithic  
27nH±5%, 0402 monolithic  
56k ±1%, 0402  
2.2pF±0.25pF, 0402 NP0  
3.9pF±0.25pF, 0402 NP0  
3.3pF±0.25pF, 0402 NP0  
100pF±5%, 0402 NP0  
6.8pF±0.5pF, 0402 NP0  
220pF±5%, 0402 NP0  
220pF±5%, 0402 NP0  
100pF±5%, 0402 NP0  
6.8pF±0.5pF, 0402 NP0  
33nH±5%, 0402 monolithic  
18nH±5%, 0402 monolithic  
33nH±5%, 0402 monolithic  
33nH±5%, 0402 monolithic  
2.2pF±0.25pF, 0402 NP0  
12nH±5%, 0402 monolithic  
5.6nH±0.3nH, 0402 monolithic  
12nH±5%, 0402 monolithic  
12nH±5%, 0402 monolithic  
L102  
L103  
L111  
R141  
XTAL  
26.0MHz surface mount crystal  
Table 13: Bill Of Materials for the application circuit (subject to changes)  
15 Configuration Overview  
The following key parameters can be  
programmed:  
can be configured to achieve optimum  
performance for many different applications.  
Configuration is done using the SPI interface.  
Power-down / power-up mode  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 11 of 49  
CC1150  
Crystal oscillator power-up / power ñ down  
Transmit mode  
RF channel selection  
Data rate  
Modulation format  
Details of each configuration register can be  
found in section 33, starting on page 30.  
Figure 4 shows a simplified state diagram that  
explains the main  
states, together with  
RF output power  
typical usage and current consumption. For  
detailed information on controlling the  
state machine, and a complete state diagram,  
see section 23, starting on page 21.  
Data buffering with 64-byte transmit FIFO  
Packet radio hardware support  
Forward Error Correction with interleaving  
Data Whitening  
Lowest power mode.  
Register values are lost.  
Current consumption typ  
Sleep  
SPWD or wake-on-radio (WOR)  
SIDLE  
200nA.  
Default state when the radio is not  
receiving or transmitting. Typ.  
current consumption: 1.4mA.  
CSn=0  
SXOFF  
IDLE  
SCAL  
Used for calibrating frequency  
synthesizer upfront (entering  
transmit mode can then be  
done quicker). Transitional  
state. Typ. current  
CSn=0  
All register values are  
retained. Typ. current  
consumption; 0.18mA.  
Manual freq.  
synth. calibration  
Crystal  
oscillator off  
SRX or STX or SFSTXON or wake-on-radio (WOR)  
consumption: 8.0mA.  
Frequency  
Frequency synthesizer is turned on, can optionally be  
calibrated, and then settles to the correct frequency.  
Transitional state. Typ. current consumption: 8.0mA.  
synthesizer startup,  
optional calibration,  
settling  
SFSTXON  
Frequency synthesizer is on,  
ready to start transmitting.  
Transmission starts very  
quickly after receiving the  
STX command strobe.Typ.  
current consumption: 8.0mA.  
Frequency  
synthesizer on  
STX  
STX  
TXOFF_MODE=01  
Typ. current consumption:  
13mA at -10dBm output,  
15mA at 0dBm output,  
18mA at +5dBm output,  
27mA at +10dBm output.  
Transmit mode  
TXOFF_MODE=00  
In FIFO-based modes,  
transmission is turned off and  
this state entered if the TX  
FIFO becomes empty in the  
middle of a packet. Typ.  
Optional transitional state. Typ.  
current consumption: 8.0mA.  
TX FIFO  
underflow  
Optional freq.  
synth. calibration  
current consumption: 1.4mA.  
SFTX  
IDLE  
Figure 4: Simplified state diagram, with typical usage and current consumption  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 12 of 49  
CC1150  
16 Configuration Software  
optimum register settings, and for evaluating  
performance and functionality. A screenshot of  
the SmartRF Studio user interface for  
can be configured using the SmartRF  
Studio software, available for download from  
http://www.chipcon.com. The SmartRF Studio  
software is highly recommended for obtaining  
is  
shown  
in  
Figure  
5.  
Figure 5: SmartRF Studio user interface  
17 4-wire Serial Configuration and Data Interface  
is configured via a simple 4-wire SPI-  
compatible interface (SI, SO, SCLK and CSn)  
When CSn goes low, the MCU must wait until  
the SO pin goes low before starting to  
transfer the header byte. This indicates that  
the voltage regulator has stabilized and the  
crystal is running. Unless the chip was in the  
SLEEP or XOFF states, the SOpin will always  
go low immediately after taking CSnlow.  
where  
is the slave. This interface is  
also used to read and write buffered data. All  
address and data transfer on the SPI interface  
is done most significant bit first.  
All transactions on the SPI interface start with  
a header byte containing a read/write bit, a  
burst access bit and a 6-bit address.  
17.1 Chip Status Byte  
During address and data transfer, the CSn pin  
(Chip Select, active low) must be kept low. If  
CSn goes high during the access, the transfer  
will be cancelled.  
When the header byte is sent on the SPI  
interface, the chip status byte is sent by the  
on the SOpin. The status byte contains  
key status signals, useful for the MCU. The  
first bit, s7, is the CHIP_RDYn signal; this  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 13 of 49  
CC1150  
signal must go low before the first positive  
edge of SCLK. The CHIP_RDYn signal  
indicates that the crystal is running and the  
regulated digital supply voltage is stable.  
mode, flush the TX FIFO etc. The nine  
command strobes are listed in Table 23 on  
page 31.  
The command strobe registers are accessed  
in the same way as for a register write  
operation, but no data is transferred. That is,  
only the R/W bit (set to 0), burst access (set to  
0) and the six address bits (in the range 0x30  
through 0x3D) are written. A command strobe  
may be followed by any other SPI access  
without pulling CSn high. The command  
strobes are executed immediately, with the  
exception of the SPWD and the SXOFF strobes  
that are executed when CSngoes high.  
Bit 6, 5 and 4 comprises the STATEvalue. This  
value reflects the state of the chip. When idle  
the XOSC and power to the digital core is on,  
but all other modules are in power down. The  
frequency and channel configuration should  
only be updated when the chip is in this state.  
The TX state will be active when the chip is in  
transmit mode.  
The last four bits (3:0) in the status byte con-  
tains FIFO_BYTES_AVAILABLE. This field  
contains the number of bytes free for writing  
into  
the  
TX  
FIFO.  
When  
17.4 FIFO Access  
FIFO_BYTES_AVAILABLE=15, 15 or more  
bytes are free.  
The 64-byte TX FIFO is accessed through the  
0x3F addresses. When the read/write bit is  
zero, the TX FIFO is accessed. The TX FIFO  
is write-only.  
17.2 Register Access  
The burst bit is used to determine if FIFO  
access is single byte or a burst access. The  
single byte access method expects address  
with burst bit set to zero and one data byte.  
After the data byte a new address is expected;  
hence, CSn can remain low. The burst access  
method expects one address byte and then  
consecutive data bytes until terminating the  
access by setting CSnhigh.  
The configuration registers on the  
are  
located on SPI addresses from 0x00to 0x2F.  
Table 24 on page 32 lists all configuration  
registers. The detailed description of each  
register is found in Section 33.1, starting on  
page 34. All configuration registers can be  
both written and read. The read/write bit  
controls if the register should be written or  
read. When writing to registers, the status byte  
is sent on the SO pin each time a data byte to  
be written is transmitted on the SIpin.  
The following header bytes access the FIFO:  
0x3F: Single byte access to TX FIFO  
0x7F: Burst access to TX FIFO  
Registers with consecutive addresses can be  
accessed in an efficient way by setting the  
burst bit in the address header. The address  
sets the start address in an internal address  
counter. This counter is incremented by one  
each new byte (every 8 clock pulses). The  
burst access is either a read or a write access  
and must be terminated by setting CSnhigh.  
When writing to the TX FIFO, the status byte  
(see Section 17.1) is output for each new data  
byte on SO, as shown in Figure 6. This status  
byte can be used to detect TX FIFO underflow  
while writing data to the TX FIFO. Note that  
the status byte contains the number of bytes  
free before writing the byte in progress to the  
TX FIFO. When the last byte that fits in the TX  
FIFO is transmitted to the SI pin, the status  
byte received concurrently on the SO pin will  
indicate that one byte is free in the TX FIFO.  
For register addresses in the range 0x30-  
0x3D, the ìburstî bit is used to select between  
status registers and command strobes (see  
below). The status registers can only be read.  
Burst read is not available for status registers,  
so they must be read one at a time.  
The transmit FIFO may be flushed by issuing a  
SFTX command strobe. The FIFO is cleared  
when going to the SLEEP state.  
17.3 Command Strobes  
Command Strobes may be viewed as single  
17.5 PATABLE Access  
byte instructions to  
. By addressing a  
Command Strobe register, internal sequences  
will be started. These commands are used to  
disable the crystal oscillator, enable transmit  
The 0x3E address is used to access the  
PATABLE, which is used for selecting PA  
power control settings. The SPI expects up to  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 14 of 49  
CC1150  
eight data bytes after receiving the address.  
By programming the PATABLE, controlled PA  
power ramp-up and ramp-down can be  
achieved, as well as ASK modulation shaping  
for reduced bandwidth. See section 28 on  
page 25 for output power programming details.  
highest value is reached the counter restarts at  
zero.  
The access to the PATABLE is either single  
byte or burst access depending on the burst  
bit. When using burst access the index counter  
will count up; when reaching 7 the counter will  
restart at 0. The read/write bit controls whether  
the access is a write access (R/W=0) or a read  
access (R/W=1).  
The PATABLE is an 8-byte table that defines  
the PA control settings to use for each of the  
eight PA power values (selected by the 3-bit  
value FREND0.PA_POWER). The table is  
written to and read from the lowest setting (0)  
to the highest (7), one byte at a time. An index  
counter is used to control the access to the  
table. This counter is incremented each time a  
byte is read or written to the table, and set to  
the lowest index when CSn is high. When the  
If one byte is written to the PATABLE and this  
value is to be read out then CSn must be set  
high before the read access in order to set the  
index counter back to zero.  
Note that the content of the PATABLE is lost  
when entering the SLEEP state.  
tsp  
tch  
tcl  
tsd  
thd  
tns  
SCLK:  
CSn:  
Write to register:  
X
A6  
S6  
A5  
S5  
A4  
S4  
A3  
S3  
A2  
A1  
S1  
A0  
S0  
X
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D 0  
W
X
W
W
W
W
W
W
W
SI  
Hi-Z  
S7  
S2  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
S7  
Hi-Z  
Hi-Z  
SO  
Read from register:  
X
A6  
S6  
A5  
S5  
A4  
S4  
A3  
S3  
A2  
S2  
A1  
S1  
A0  
S0  
X
SI  
Hi-Z  
S7  
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D 0  
R
SO  
R
R
R
R
R
R
R
Figure 6: Configuration registers write and read operations  
Parameter  
FSCLK  
Description  
Min  
0
Max  
10MHz  
-
SCLK frequency  
tsp,pd  
TBDµs  
CSnlow to positive edge on SCLK, in power-down mode  
tsp  
TBDns  
-
CSnlow to positive edge on SCLK, in active mode  
Clock high  
tch  
tcl  
50ns  
50ns  
-
-
Clock low  
-
trise  
tfall  
tsd  
thd  
tns  
Clock rise time  
TBDns  
Clock rise time  
-
TBDns  
Setup data to positive edge on SCLK  
Hold data after positive edge on SCLK  
TBDns  
TBDns  
TBDns  
-
-
-
Negative edge on SCLK to CSnhigh.  
Table 14: SPI interface timing requirements  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 15 of 49  
CC1150  
Bits Name  
Description  
7
CHIP_RDYn  
Stays high until power and crystal have stabilized. Should always be low when using  
the SPI interface.  
6:4  
STATE[2:0]  
Indicates the current main state machine mode  
Value State  
Description  
000  
001  
Idle  
IDLE state  
(Also reported for some transitional states instead  
of SETTLING or CALIBRATE, due to a small error)  
Not used  
(RX)  
Not used, included for software compatibility  
with  
transceiver  
010  
011  
100  
101  
110  
TX  
Transmit mode  
FSTXON  
CALIBRATE  
SETTLING  
Fast TX ready  
Frequency synthesizer calibration is running  
PLL is settling  
Not used  
(RXFIFO_OVERFLOW)  
Not used, included for software compatibility  
with  
transceiver  
111  
TXFIFO_UNDERFLOW TX FIFO has underflowed. Acknowledge with  
SFTX  
3:0  
FIFO_BYTES_AVAILABLE[3:0] The number of free bytes in the TX FIFO. If FIFO_BYTES_AVAILABLE=15, it  
indicates that 15 or more bytes are available/free.  
Table 15: Status byte summary  
CSn:  
Command strobe(s):  
ADDR  
ADDR  
ADDR  
...  
DATA  
DATA  
strobe  
strobe strobe  
ADDR  
DATA  
ADDR  
ADDR  
reg  
DATA  
...  
Read or write register(s):  
reg  
reg  
Read or write consecutive registers (burst):  
Read or write n+1 bytes from/to RF FIFO:  
Combinations:  
ADDR  
DATA  
DATA  
...  
...  
reg n  
n
n+1  
n+2  
ADDR  
DATA  
DATA  
DATA  
DATA  
DATA  
byte n  
FIFO  
byte 0  
byte 1  
byte 2  
byte n-1  
ADDR  
DATA ADDR  
ADDR  
DATA ADDR  
ADDR  
DATA  
DATA  
byte 1  
...  
reg  
strobe  
reg  
strobe  
FIFO  
byte 0  
Figure 7: Register access types  
18 Microcontroller Interface and Pin Configuration  
In a typical system,  
microcontroller. This microcontroller must be  
able to:  
will interface to a  
CSn). The SPI is described in Section 0 on  
page 12.  
Program  
into different modes,  
18.2 General Control and Status Pins  
Write buffered data  
The  
has one dedicated configurable  
pin and one shared pin that can output internal  
status information useful for control software.  
These pins can be used to generate interrupts  
on the MCU. See Section 31 page 27 for more  
details of the signals that can be programmed.  
The dedicated pin is called GDO0. The shared  
pin is the SO pin in the SPI interface. The  
default setting for GDO1/SO is 3-state output.  
By selecting any other of the programming  
Read back status information via the 4-wire  
SPI-bus configuration interface (SI, SO,  
SCLKand CSn).  
18.1 Configuration Interface  
The microcontroller uses four I/O pins for the  
SPI configuration interface (SI, SO, SCLK and  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 16 of 49  
CC1150  
Specifications for the temperature sensor are  
found in section 9 on page 7.  
options the GDO1/SO pin will become a  
generic pin. When CSn is low, the pin will  
always function as a normal SOpin.  
The temperature sensor output is usually only  
available when the frequency synthesizer is  
enabled (e.g. the MANCAL, FSTXON and TX  
states). It is necessary to write 0xBF to the  
PTEST register to use the analog temperature  
sensor in the IDLE state. Before leaving the  
IDLE state, the PTEST register should be  
restored to its default value (0x7F).  
In the synchronous and asynchronous serial  
modes, the GDO0 pin is used as a serial TX  
data input pin while in transmit mode.  
The GDO0pin can also be used for an on-chip  
analog temperature sensor. By measuring the  
voltage on the GDO0pin with an external ADC,  
the  
temperature  
can  
be  
calculated.  
19 Data Rate Programming  
The data rate used when transmitting is  
programmed by the MDMCFG3.DRATE_M and  
RDATA 220  
DRATE _ E = log2  
fXOSC  
the  
MDMCFG4.DRATE_E  
configuration  
registers. The data rate is given by the formula  
below. As the formula shows, the programmed  
data rate depends on the crystal frequency.  
RDATA 228  
DRATE _ M =  
256  
fXOSC 2DRATE _ E  
(
256 + DRATE _ M  
)
2DRATE _ E  
If DRATE_M is rounded to the nearest integer  
and becomes 256, increment DRATE_E and  
use DRATE_M=0.  
RDATA  
=
fXOSC  
228  
The following approach can be used to find  
suitable values for a given data rate:  
20 Packet Handling Hardware Support  
Real world data often contain long sequences  
of zeros and ones. Performance can then be  
improved by whitening the data before  
transmitting, and de-whitening in the receiver.  
The  
has built-in hardware support for  
packet oriented radio protocols.  
In transmit mode, the packet handler will add  
the following elements to the packet stored in  
the TX FIFO:  
With  
, in combination with a  
at  
the receiver end, this can be done  
automatically by setting WHITE_DATA=1in the  
PKTCTRL0 register. All data, except the  
preamble and the sync word, are then XOR-ed  
with a 9-bit pseudo-random (PN9) sequence  
before being transmitted. At the receiver end,  
the data are XOR-ed with the same pseudo-  
random sequence. This way, the whitening is  
reversed, and the original data appear in the  
receiver.  
A programmable number of preamble  
bytes.  
A two byte Synchronization Word. Can be  
duplicated to give a 4-byte sync word.  
Optionally whiten the data with a PN9  
sequence.  
Optionally Interleave and Forward Error  
Code the data.  
Optionally compute and add  
checksum over the data field.  
a CRC  
Setting PKTCTRL0.WHITE_DATA=1 is recom-  
mended for all uses, except when over-the-air  
compatibility with other systems is needed.  
The recommended setting is 4-byte preamble  
and 2-byte sync word.  
20.2 Packet format  
20.1 Data whitening  
The format of the data packet can be  
configured and consists of the following items:  
From a radio perspective, the ideal over the air  
data are random and DC free. This results in  
the smoothest power distribution over the  
occupied bandwidth. This also gives the  
regulation loops in the receiver uniform  
operation conditions (no data dependencies).  
Preamble  
Synchronization word  
Length byte or constant programmable  
packet length  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 17 of 49  
CC1150  
packet length is configured by the first byte  
after the sync word.  
Optional Address byte  
Payload  
Optional 2 byte CRC  
With PKTCTRL0.LENGTH_CONFIG=2, the  
packet length is set to infinite and transmission  
and reception will continue until turned off  
manually. The infinite mode can be turned off  
while a packet is being transmitted or received.  
As described in the next section, this can be  
used to support packet formats with different  
length configuration than natively supported by  
.
The preamble pattern is an alternating  
sequence of ones and zeros (01010101Ö ).  
The minimum length of the preamble is  
programmable. When enabling TX, the  
modulator will start transmitting the preamble.  
When the programmed number of preamble  
bytes has been transmitted, the modulator will  
send the sync word and then data from the TX  
FIFO if data is available. If the TX FIFO is  
empty, the modulator will continue to send  
preamble bytes until the first byte is written to  
the TX FIFO. The modulator will then send the  
sync word and then the data bytes.  
Note that the minimum packet length  
supported (excluding the optional length byte  
and CRC) is one byte of payload data.  
20.2.1 Arbitrary length field configuration  
By utilizing the infinite packet length option,  
arbitrary packet length is available. At the start  
of the packet, the infinite mode must be active.  
When less than 256 bytes remains of the  
packet, the MCU sets the PKTLEN register to  
mod(length, 256), disables infinite packet  
length and activates fixed length packets.  
When the internal byte counter reaches the  
PKTLEN value, the packet transmission ends.  
Automatic CRC appending can be used (by  
setting PKTCTRL0.CRC_ENto 1).  
The number of preamble bytes is programmed  
with the MDMCFG1.NUM_PREAMBLEvalue.  
The synchronization word is a two-byte value  
set in the SYNC1 and SYNC0 registers. The  
sync word provides byte synchronization of the  
incoming packet. A one-byte synch word can  
be emulated by setting the SYNC1value to the  
preamble pattern. It is also possible to emulate  
a
32  
bit  
sync  
word  
by  
using  
MDMCFG2.SYNC_MODE=3 or 7. The sync word  
will then be repeated twice.  
When for example a 454-byte packet is to be  
transmitted, the MCU does the following:  
supports both constant packet length  
protocols and variable length protocols.  
Variable or fixed packet length mode can be  
used for packet up to 255 bytes. For longer  
packets, infinite packet length mode must be  
used.  
Set PKTCTRL0.LENGTH_CONFIG=2 (10).  
Pre-program the PKTLEN register to  
mod(454,256)=198.  
Transmit at least 198 bytes, for example  
by filling the 64-byte TX FIFO four times  
(256 bytes transmitted).  
Fixed packet length mode is selected by  
setting PKTCTRL0.LENGTH_CONFIG=0. The  
desired packet length is set by the PKTLEN  
register. The packet length is defined as the  
payload data, excluding the length byte and  
the optional automatic CRC. In variable length  
mode, PKTCTRL0.LENGTH_CONFIG=1, the  
Set PKTCTRL0.LENGTH_CONFIG=0 (00).  
The transmission ends when the packet  
counter reaches 198.  
A
total of  
256+198=454 bytes are transmitted.  
Optional data whitening  
Optionally FEC encoded/decoded  
Optional CRC-16 calculation  
Legend:  
Inserted automatically in TX,  
processed and removed in RX.  
Optional user-provided fields processed in TX,  
processed but not removed in RX.  
Preamble bits  
(1010...1010)  
Data field  
Unprocessed user data (apart from FEC  
and/or whitening)  
8
8
8 x n bits  
16/32 bits  
8 x n bits  
16 bits  
bits bits  
Figure 8: Packet Format  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 18 of 49  
CC1150  
two-byte (optionally 4-byte) sync word and  
then the payload in the TX FIFO. If CRC is  
enabled, the checksum is calculated over all  
the data pulled from the TX FIFO and the  
result is sent as two extra bytes at the end of  
the payload data.  
20.3 Packet Handling in Transmit Mode  
The payload that is to be transmitted must be  
written into the TX FIFO. The first byte written  
must be the length byte when variable packet  
length is enabled. The length byte has a value  
equal to the payload of the packet (including  
the optional address byte). If fixed packet  
length is enabled, then the first byte written to  
the TX FIFO is interpreted as the destination  
address, if this feature is enabled in the device  
that receives the packet.  
If whitening is enabled, the length byte,  
payload data and the two CRC bytes will be  
whitened. This is done before the optional  
FEC/Interleaver stage. Whitening is enabled  
by setting PKTCTRL0.WHITE_DATA=1.  
If FEC/Interleaving is enabled, the length byte,  
payload data and the two CRC bytes will be  
scrambled by the interleaver, and FEC  
encoded before being modulated.  
The modulator will first send the programmed  
number of preamble bytes. If data is available  
in the TX FIFO, the modulator will send the  
21 Modulation Formats  
supports amplitude, frequency and  
phase shift modulation formats. The desired  
21.2 Minimum Shift Keying  
modulation  
MDMCFG2.MOD_FORMAT register.  
format  
is  
set  
in  
the  
When using MSK1, the complete transmission  
(preamble, sync word and payload) will be  
MSK modulated.  
Optionally, the data stream can be Manchester  
coded by the modulator. This option is enabled  
by setting MDMCFG2.MANCHESTER_EN=1.  
Manchester encoding is not supported at the  
same time as using the FEC/Interleaver  
option. Manchester coding can be used with  
the 2-ary modulation formats (2-FSK, GFSK,  
ASK/OOK and MSK).  
Phase shifts are performed with a constant  
transition time. This means that the rate of  
change for the 180-degree transition is twice  
that of the 90-degree transition.  
The fraction of a symbol period used to  
change the phase can be modified with the  
DEVIATN.DEVIATION_M setting. This is  
equivalent to changing the shaping of the  
symbol. Setting DEVIATN.DEVIATION_M=7  
will generate a standard shaped MSK signal.  
21.1 Frequency Shift Keying  
2-FSK can optionally be shaped by  
a
Gaussian filter with BT=1, producing a GFSK  
modulated signal.  
The frequency deviation is programmed with  
the DEVIATION_M and DEVIATION_E values  
in the DEVIATN register. The value has an  
exponent/mantissa form, and the resultant  
deviation is given by:  
21.3 Amplitude Modulation  
supports two different forms of  
amplitude modulation: On-Off Keying (OOK)  
and Amplitude Shift Keying (ASK). OOK  
modulation simply turns on or off the PA to  
modulate 1 and 0 respectively. When using  
ASK the modulation depth (the difference  
between 1 and 0) can be programmed, and  
the power ramping will be shaped. This will  
produce a more bandwidth constrained output  
spectrum.  
fxosc  
fdev  
=
(8 + DEVIATION _ M )2DEVIATION _ E  
217  
The symbol encoding is shown in Table 16.  
Format  
Symbol  
ë0í  
Coding  
2-FSK/GFSK  
ñ Deviation  
+ Deviation  
ë1í  
1
Identical to offset QPSK with half-sine  
Table 16: Symbol encoding for 2-FSK/GFSK  
modulation  
shaping (data coding may differ)  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 19 of 49  
CC1150  
22 Forward Error Correction with Interleaving  
22.1 Forward Error Correction (FEC)  
22.2 Interleaving  
Data received through real radio channels will  
often experience burst errors due to  
interference and time-varying signal strengths.  
In order to increase the robustness to errors  
spanning multiple bits, interleaving is used  
when FEC is enabled. After de-interleaving, a  
continuous span of errors in the received  
stream will become single errors spread apart.  
has built in support for Forward Error  
Correction (FEC) that can be used with  
at the receiver end. To enable this option, set  
MDMCFG1.FEC_EN to 1. FEC is employed on  
the data field and CRC word in order to reduce  
the gross bit error rate when operating near  
the sensitivity limit. Redundancy is added to  
the transmitted data in such a way that the  
receiver can restore the original data in the  
presence of some bit errors.  
employs matrix interleaving, which is  
illustrated in Figure 9. The on-chip interleaving  
and de-interleaving buffers are 4 x 4 matrices.  
In the transmitter, the data bits are written into  
the rows of the matrix, whereas the bit  
sequence to be transmitted is read from the  
columns of the matrix and fed to the rate  
convolutional coder. Conversely, in a  
receiver, the received symbols are written into  
the columns of the matrix, whereas the data  
passed onto the convolutional decoder is read  
from the rows of the matrix.  
The use of FEC allows correct reception at a  
lower SNR, thus extending communication  
range. Alternatively, for a given SNR, using  
FEC decreases the bit error rate (BER). As the  
packet error rate (PER) is related to BER by:  
PER = 1(1BER)packet _length  
,
a lower BER can be used to allow significantly  
longer packets, or a higher percentage of  
packets of a given length, to be transmitted  
successfully. Finally, in realistic ISM radio  
environments, transient and time-varying  
phenomena will produce occasional errors  
even in otherwise good reception conditions.  
FEC will mask such errors and, combined with  
interleaving of the coded data, even correct  
relatively long periods of faulty reception (burst  
errors).  
When FEC and interleaving is used, the  
amount of data transmitted over the air must  
be a multiple of the size of the interleaver  
buffer (two bytes). In addition, at least one  
extra byte is required for trellis termination.  
The packet control hardware therefore  
automatically inserts one or two extra bytes at  
the end of the packet, so that the total length  
of the data to be interleaved is an even  
number. Note that these extra bytes are  
invisible to the user, as they are removed  
before the received packet enters the RX FIFO  
The FEC scheme adopted for  
is  
convolutional coding, in which n bits are  
generated based on k input bits and the m  
most recent input bits, forming a code stream  
able to withstand a certain number of bit errors  
between each coding state (the m-bit window).  
in a  
.
Due to the implementation of the FEC and  
interleaver, the data to be interleaved must be  
at least two bytes. One byte long fixed length  
packets without CRC is therefore not  
supported when FEC/interleaving is enabled.  
The convolutional coder is a rate 1/2 code with  
a constraint length of m=4. The coder codes  
one input bit and produces two output bits;  
hence, the effective data rate is halved.  
1) Storing coded  
data  
2) Transmitting  
interleaved data  
3) Receiving  
interleaved data  
4) Passing on data  
to decoder  
TX  
Data  
RX  
Data  
Transmitter  
Receiver  
Figure 9: General principle of matrix interleaving  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 20 of 49  
CC1150  
23 Radio Control  
SIDLE  
SLEEP  
0
SPWD  
CSn = 0  
SXOFF  
CSn = 0  
CAL_COMPLETE  
SCAL  
MANCAL  
3,4,5  
IDLE  
1
XOFF  
2
STX  
| SFSTXON  
FS_WAKEUP  
6,7  
FS_AUTOCAL = 01  
&
STX  
| SFSTXON  
FS_AUTOCAL = 00 | 10 | 11  
&
CALIBRATE  
STX  
| SFSTXON  
8
CAL_COMPLETE  
SETTLING  
9,10  
SFSTXON  
FSTXON  
18  
STX  
STX  
TXOFF_MODE = 01  
TX  
19,20  
TXOFF_MODE = 10  
TXFIFO_UNDERFLOW  
TXOFF_MODE = 00  
&
FS_AUTOCAL = 10 | 11  
CALIBRATE  
12  
TXOFF_MODE = 00  
&
FS_AUTOCAL = 00 | 01  
TX_UNDERFLOW  
22  
SFTX  
IDLE  
1
Figure 10: Complete Radio Control State Diagram  
radio control state diagram is shown in Figure  
10. The numbers refer to the state number  
readable in the MARCSTATE status register.  
This functionality is primarily for test purposes.  
has a built-in state machine that is  
used to switch between different operation  
states (modes). The change of state is done  
either by using command strobes or by  
internal events such as TX FIFO underflow.  
A simplified state diagram, together with  
typical usage and current consumption, is  
shown in Figure 4 on page 12. The complete  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 21 of 49  
CC1150  
23.1 Power on start-up sequence  
must be zero before the SPI interface is ready  
to be used; as described in Section 0 on page  
13.  
When the power supply is turned on, the  
system must be reset. One of the following two  
sequences must be followed: Automatic  
power-on reset or manual reset.  
Crystal oscillator start-up time depends on  
crystal ESR and load capacitances. The  
electrical specification for the crystal oscillator  
can be found in section 7 on page 6.  
A power-on reset circuit is included in the  
. The minimum requirements stated in  
Section 11 must be followed for the power-on  
reset to function properly. The internal power-  
up sequence is completed when CHIP_RDYn  
goes low. CHIP_RDYn is observed on the SO  
pin after CSn is pulled low. See Section 17.1  
for more details on CHIP_RDYn.  
23.3 Voltage Regulator Control  
The voltage regulator to the digital core is  
controlled by the radio controller. When the  
chip enters the SLEEP state, which is the state  
with the lowest current consumption, this  
regulator is disabled. This occurs after CSn is  
released when a SPWD command strobe has  
been sent on the SPI interface. The chip is  
now in the SLEEP state. Setting CSnlow again  
will turn on the regulator and crystal oscillator  
and make the chip enter the IDLE state.  
The other global reset possibility on  
is  
the SRES command strobe. By issuing this  
strobe, all internal registers and states are set  
to the default, idle state. The power-up  
sequence is as follows (see Figure 11):  
Set SCLK=1 and SI=0.  
Strobe CSnlow / high.  
On the  
, all register values (with the  
exception of the MCSM0.PO_TIMEOUT field)  
are lost in the SLEEP state. After the chip gets  
back to the IDLE state, the registers will have  
default (reset) contents and must be  
reprogrammed over the SPI interface.  
Hold CSnhigh for at least 40µs.  
Pull CSn low and wait for SO to go low  
(CHIP_RDYn).  
Issue the SRESstrobe.  
23.4 Active Mode  
When SO goes low again, reset is  
complete and the chip is in the IDLE state.  
The active transmit mode is activated by the  
MCU by using the STXcommand strobe.  
40µs  
The frequency synthesizer must be calibrated  
regularly.  
has one manual calibration  
CSn  
SO  
option (using the SCAL strobe), and three  
automatic calibration options, controlled by the  
MCSM0.FS_AUTOCALsetting:  
Unknown/ don't care  
SRES done  
Calibrate when going from IDLE to TX  
(or FSTXON)  
Figure 11: Power-up with SRES  
It is recommended to always send a SRES  
command strobe on the SPI interface after  
power-on even though power-on reset is used.  
Calibrate when going from TX to IDLE  
Calibrate every fourth time when going  
from TX to IDLE  
The calibration takes a constant number of  
XOSC cycles (see Table 17 for timing details).  
23.2 Crystal Control  
The crystal oscillator is automatically turned on  
when CSn goes low. It will be turned off if the  
SXOFF or SPWD command strobes are issued;  
the state machine then goes to XOFF or  
SLEEP respectively. This can be done from  
any state. The XOSC will be turned off when  
CSnis released (goes high). The XOSC will be  
automatically turned on again when CSn goes  
low. The state machine will then go to the  
IDLE state. The SO pin on the SPI interface  
When TX is active, the chip will remain in the  
TX state until the current packet has been  
successfully transmitted. Then the state will  
change  
as  
indicated  
by  
the  
MCSM1.TXOFF_MODE setting. The possible  
destinations are:  
IDLE  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 22 of 49  
CC1150  
periods. Table 17 shows timing in crystal clock  
cycles for key state transitions.  
FSTXON: Frequency synthesizer on  
and ready at the TX frequency.  
Activate TX with STX.  
Power on time and XOSC start-up times are  
variable, but within the limits stated in Table 6.  
TX: Start sending preambles  
Description  
XOSC  
periods  
26MHz  
crystal  
The SIDLE command strobe can always be  
used to force the radio controller to go to the  
IDLE state.  
Idle to TX/FSTXON, no calibration  
Idle to TX/FSTXON, with calibration  
TX to IDLE, no calibration  
2298  
88.4 s  
809 s  
0.1 s  
~21037  
2
23.5 Timing  
The radio controller controls most timing in  
, such as synthesizer calibration and  
PLL lock. Timing from IDLE to TX is constant,  
dependent on the auto calibration setting. The  
calibration time is constant 18739 clock  
TX to IDLE, including calibration  
Manual calibration  
~18739  
~18739  
721 s  
721 s  
Table 17: State transition timing  
24 Data FIFO  
The  
contains a 64 byte FIFO for data to  
NUM_TXBYTES  
6
7
8
9
10  
9
8
7
6
be transmitted. The SPI interface is used for  
writing to the TX FIFO. Section 17.4 contains  
details on the SPI FIFO access. The FIFO  
controller will detect underflow in the TX FIFO.  
GDO  
Figure 12: FIFO_THR=13 vs. number of bytes  
in FIFO  
When writing to the TX FIFO it is the  
responsibility of the MCU to avoid TX FIFO  
overflow. This will not be detected by the  
.
The chip status byte that is available on the SO  
pin while transferring the SPI address contains  
the fill grade of the TX FIFO. Section 17.1 on  
page 13 contains more details on this.  
The number of bytes in the TX FIFO can also  
be read from the TXBYTES.NUM_TXBYTES  
status register.  
The 4-bit FIFOTHR.FIFO_THRsetting is used  
to program the FIFO threshold point. Table 18  
lists the 16 FIFO_THR settings and the  
corresponding thresholds for the TX FIFO.  
A flag will assert when the number of bytes in  
the FIFO is equal to or higher than the  
programmed threshold. The flag is used to  
generate the FIFO status signals that can be  
viewed on the GDO pins (see Section 31 on  
page 27).  
Figure 13 shows the number of bytes in the TX  
FIFO when the threshold flag toggles, in the  
case of FIFO_THR=13. Figure 12 shows the  
flag as the FIFO is filled above the threshold,  
and then drained below.  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 23 of 49  
CC1150  
FIFO_THR  
0 (0000)  
1 (0001)  
2 (0010)  
3 (0011)  
4 (0100)  
5 (0101)  
6 (0110)  
7 (0111)  
8 (1000)  
9 (1001)  
10 (1010)  
11 (1011)  
12 (1100)  
13 (1101)  
14 (1110)  
15 (1111)  
Bytes in TX FIFO  
61  
57  
53  
49  
45  
41  
37  
33  
29  
25  
21  
17  
13  
9
5
FIFO_THR=13  
1
Underflow  
margin  
Table 18: FIFO_THR settings and the  
8 bytes  
TXFIFO  
corresponding FIFO thresholds  
Figure 13: Example of FIFO at threshold  
25 Frequency Programming  
The base or start frequency is set by the 24 bit  
frequency word located in the FREQ2, FREQ1  
and FREQ0 registers. This word will typically  
be set to the centre of the lowest channel  
frequency that is to be used.  
The frequency programming in  
designed to minimize the programming  
needed in a channel-oriented system.  
is  
To set up a system with channel numbers, the  
desired channel spacing is programmed with  
the  
MDMCFG0.CHANSPC_M  
and  
The desired channel number is programmed  
with the 8-bit channel number register,  
CHANNR.CHAN, which is multiplied by the  
channel offset. The resultant carrier frequency  
is given by:  
MDMCFG1.CHANSPC_E registers. The channel  
spacing registers are mantissa and exponent  
respectively.  
fXOSC  
216  
fcarrier  
=
(FREQ + CHAN ⋅  
(
256 + CHANSPC _ M 2CHANSPC _ E2 ))  
If any frequency programming register is  
altered when the frequency synthesizer is  
running, the synthesizer may give an  
undesired response. Hence, the frequency  
programming should only be updated when  
the radio is in the IDLE state.  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 24 of 49  
CC1150  
26 VCO  
The VCO is completely integrated on-chip.  
with the MCSM0.FS_AUTOCAL register setting.  
In manual mode, the calibration is initiated  
when the SCAL command strobe is activated  
in the IDLE mode. The default setting is to  
calibrate each time the frequency synthesizer  
is turned on.  
26.1 VCO and PLL Self-Calibration  
The VCO characteristics will vary with  
temperature and supply voltage changes, as  
well as the desired operating frequency. In  
order to ensure reliable operation,  
includes frequency synthesizer self-calibration  
circuitry. This calibration should be done  
regularly, and must be performed after turning  
on power and before using a new frequency  
(or channel). The number of XOSC cycles for  
completing the PLL calibration is given in  
Table 17 on page 27.  
The calibration values are not maintained in  
sleep mode. Therefore, the  
must be  
recalibrated after reprogramming  
the  
configuration registers when the chip has been  
in the SLEEP state.  
The calibration can be initiated automatically  
or manually. The synthesizer can be  
automatically calibrated each time the  
synthesizer is turned on, or each time the  
synthesizer is turned off. This is configured  
27 Voltage Regulators  
contains several on-chip linear voltage  
regulators, which generate the supply voltage  
needed by low-voltage modules. These  
voltage regulators are invisible to the user, and  
can be viewed as integral parts of the various  
modules. The user must however make sure  
that the absolute maximum ratings and  
required pin voltages in Table 1 and Table 11  
are not exceeded. The voltage regulator for  
the digital core requires one external  
decoupling capacitor.  
crystal oscillator. The SO pin on the SPI  
interface must go low before using the serial  
interface (setup time is TBD).  
On initial power up, the MCU must set CSnlow  
and issue the reset command strobe SRES.  
If the chip is programmed to enter power-down  
mode, (SPWDstrobe issued), the power will be  
turned off after CSngoes high. The power and  
crystal oscillator will be turned on again when  
CSngoes low.  
Setting the CSn pin low turns on the voltage  
regulator to the digital core and starts the  
The voltage regulator output should only be  
used for driving the  
.
28 Output Power Programming  
The RF output power level from the device has  
two levels of programmability, as illustrated in  
Figure 14. Firstly, the special PATABLE  
register can hold up to eight user selected  
output power settings. Secondly, the 3-bit  
FREND0.PA_POWER  
value  
selects  
the  
PATABLE entry to use. This two-level  
functionality provides flexible PA power ramp  
up and ramp down at the start and end of  
transmission, as well as ASK modulation  
shaping. In each case, all the PA power  
settings in the PATABLEfrom index 0 up to the  
FREND0.PA_POWERvalue are used.  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 25 of 49  
CC1150  
programming the desired output power to  
index zero in the PATABLE.  
PATABLE(7)[7:0]  
PATABLE(6)[7:0]  
PATABLE(5)[7:0]  
PATABLE(4)[7:0]  
PATABLE(3)[7:0]  
PATABLE(2)[7:0]  
PATABLE(1)[7:0]  
PATABLE(0)[7:0]  
The PA uses  
this setting.  
Table 19 contains recommended PATABLE  
settings for various output levels and  
frequency bands. See section 17.5 on page 14  
for PATABLEprogramming details.  
Settings 0 to  
PA_POWER are  
used during ramp-  
up at start of  
transmission and  
ramp-down at end  
of transmission,  
and for ASK/OOK  
modulation.  
Table 20 contains output power and current  
consumption for default PATABLE setting  
(0xC6).  
The SmartRFÆ  
Studio software  
should be used to  
get optimum  
PATABLE settings  
for various output  
powers.  
Index into PATABLE(7:0)  
With ASK modulation, the eight power settings  
are used for shaping. The modulator contains  
a counter that counts up when transmitting a  
one and down when transmitting a zero. The  
counter counts at a rate equal to 8 times the  
symbol rate. The counter saturates at  
FREND0.PA_POWER and 0 respectively. This  
counter value is used as an index for a lookup  
in the power table. Thus, in order to utilize the  
whole table, FREND0.PA_POWER should be 7  
when ASK is active. The shaping of the ASK  
signal is dependent on the configuration of the  
PATABLE.  
e.g 6  
PA_POWER[2:0]  
in FREND0 register  
Figure 14: PA_POWER and PATABLE  
The power ramping at the start and at the end  
of a packet can be turned off by setting  
FREND0.PA_POWER  
to zero and then  
315MHz  
Current  
433MHz  
Current  
868MHz  
Current  
915MHz  
Current  
Output  
power  
[dBm]  
Setting consumption, Setting consumption, Setting consumption, Setting consumption,  
typ. [mA]  
typ. [mA]  
typ. [mA]  
typ. [mA]  
-30  
-20  
-10  
-5  
0x12  
0x0E  
0x6E  
0x68  
0x60  
0x85  
0xCC  
0xC3  
10.3  
0x03  
0x0D  
0x34  
0x68  
0x60  
0x85  
0xCA  
0xC2  
10.9  
0x01  
0x0B  
0x25  
0x68  
0x60  
0x86  
0xCC  
0xC3  
11.5  
0x10  
0x09  
0x33  
0x68  
0x50  
0x85  
0xC8  
0xC0  
11.4  
10.7  
11.4  
12.1  
11.8  
11.2  
13.4  
13.8  
13.6  
12.3  
12.9  
13.7  
13.4  
0
14.5  
14.9  
16.2  
15.7  
5
17.6  
18.0  
19.1  
18.5  
7
21.4  
22.4  
24.4  
24.5  
10  
26.3  
26.4  
28.6  
28.9  
Table 19: Optimum PATABLE settings for various output power levels and frequency bands  
315MHz  
433MHz  
868MHz  
915MHz  
Default Output Current  
Output Current  
Output Current  
Output Current  
power  
power  
[dBm]  
consumption, power  
consumption, power  
typ. [mA] [dBm]  
consumption, power  
typ. [mA] [dBm]  
consumption,  
typ. [mA]  
setting  
typ. [mA]  
[dBm]  
0xC6  
9.2  
24.3  
8.4  
24.2 8.9  
26.9 7.7  
25.3  
Table 20: Output power and current consumption for default PATABLE setting  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 26 of 49  
CC1150  
29 Crystal Oscillator  
A crystal in the frequency range 26MHz-  
27MHz must be connected between the  
XOSC_Q1 and XOSC_Q2 pins. The oscillator  
is designed for parallel mode operation of the  
crystal. In addition, loading capacitors (C51  
and C71) for the crystal are required. The  
loading capacitor values depend on the total  
load capacitance, CL, specified for the crystal.  
The total load capacitance seen between the  
crystal terminals should equal CL for the  
crystal to oscillate at the specified frequency.  
The crystal oscillator is amplitude regulated.  
This means that a high current is used to start  
up the oscillations. When the amplitude builds  
up, the current is reduced to what is necessary  
to maintain approximately 0.4Vpp signal  
swing. This ensures a fast start-up, and keeps  
the drive level to a minimum. The ESR of the  
crystal should be within the specification in  
order to ensure a reliable start-up (see section  
7 on page 6).  
The initial tolerance, temperature drift, aging  
and load pulling should be carefully specified  
in order to meet the required frequency  
accuracy in a certain application. By specifying  
the total expected frequency accuracy in  
SmartRF Studio together with data rate and  
frequency deviation, the software calculates  
the total bandwidth and compares this to the  
chosen receiver channel filter bandwidth. The  
software reports any contradictions, and a  
more accurate crystal is recommended if  
required.  
1
CL =  
+ Cparasitic  
1
1
+
C51 C71  
The parasitic capacitance is constituted by pin  
input capacitance and PCB stray capacitance.  
Total parasitic capacitance is typically 2.5pF.  
The crystal oscillator circuit is shown in Figure  
15. Typical component values for different  
values of CL are given in Table 21.  
XOSC_Q1  
XOSC_Q2  
XTAL  
C51  
C71  
Figure 15: Crystal oscillator circuit  
Component  
C51  
CL= 10pF  
CL=13pF  
22pF  
CL=16pF  
27pF  
15pF  
15pF  
C71  
22pF  
27pF  
Table 21: Crystal oscillator component values  
30 Antenna Interface  
The balanced RF output of  
is designed  
Although  
has a balanced RF output,  
for a simple, low-cost matching and balun  
network on the printed circuit board. A few  
passive external components ensure proper  
matching.  
the chip can be connected to a single-ended  
antenna with few external low cost capacitors  
and inductors.  
31 General Purpose / Test Output Control Pins  
monitored on the GDO pins. These signals can  
The two digital output pins GDO0and GDO1are  
general control pins. Their functions are  
programmed by IOCFG0.GDO0_CFG and  
IOCFG1.GDO1_CFG respectively. Table 22  
shows the different signals that can be  
be used as an interrupt to the MCU. GDO1 is  
the same pin as the SO pin on the SPI  
interface, thus the output programmed on this  
pin will only be valid when CSn is high. The  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 27 of 49  
CC1150  
clock  
frequency  
by  
writing  
to  
default value for GDO1 is 3-stated, which is  
useful when the SPI interface is shared with  
other devices.  
IOCFG0.GDO0_CFG. This will not produce  
any clock glitches.  
An on-chip analog temperature sensor is  
enabled by writing the value 128 (0x80h) to the  
IOCFG0.GDO0_CFG register. The voltage on  
the GDO0 pin is then proportional to  
temperature. See section 9 on page 7 for  
temperature sensor specifications.  
The default value for GDO0 is a 125kHz-  
146kHz clock output (XOSC frequency divided  
by 192). Since the XOSC is turned on at  
power-on-reset, this can be used to clock the  
MCU in systems with only one crystal. When  
the MCU is up and running, it can change the  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 28 of 49  
CC1150  
GDO0_CFG[5:0]  
GDO1_CFG[5:0]  
Description  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
Reserved ñ defined on the transceiver version.  
Reserved ñ defined on the transceiver version.  
Asserts when the TX FIFO is filled above TXFIFO_THR. De-asserts when the TX FIFO is below TXFIFO_THR.  
Asserts when TX FIFO is full. De-asserts when the TX FIFO is drained below TXFIFO_THR.  
Reserved ñ defined on the transceiver version.  
Asserts when the TX FIFO has underflowed. De-asserts when the FIFO is flushed.  
Asserts when sync word has been sent, and de-asserts at the end of the packet. The pin will also de-assert if the TX  
6 (0x06)  
FIFO underflows.  
7 (0x07)  
8 (0x08)  
9 (0x09)  
Reserved ñ defined on the transceiver version.  
Reserved ñ defined on the transceiver version.  
Reserved ñ defined on the transceiver version.  
10 (0x0A) Lock detector output  
Serial Clock. Synchronous to the data in synchronous serial mode.  
Data is set up on the falling edge and is read on the rising edge of SERIAL_CLK.  
11 (0x0B)  
12 (0x0C) Reserved ñ defined on the transceiver version.  
13 (0x0D) Reserved ñ defined on the transceiver version.  
14 (0x0E) Reserved ñ defined on the transceiver version.  
15 (0x0F) Reserved ñ defined on the transceiver version.  
16 (0x10) Reserved ñ used for test.  
17 (0x11) Reserved ñ used for test.  
18 (0x12) Reserved ñ used for test.  
19 (0x13) Reserved ñ used for test.  
20 (0x14) Reserved ñ used for test.  
21 (0x15) Reserved ñ used for test.  
22 (0x16) Reserved ñ defined on the transceiver version.  
23 (0x17) Reserved ñ defined on the transceiver version.  
24 (0x18) Reserved ñ used for test.  
25 (0x19) Reserved ñ used for test.  
26 (0x1A) Reserved ñ used for test.  
27 (0x1B) PA_PD. PA is enabled when 1, in power-down when 0. Can be used to control external PA or RX/TX switch.  
28 (0x1C) Reserved ñ defined on the transceiver version.  
29 (0x1D) Reserved ñ defined on the transceiver version.  
30 (0x1E) Reserved ñ used for test.  
31 (0x1F) Reserved ñ used for test.  
32 (0x20) Reserved ñ used for test.  
33 (0x21) Reserved ñ used for test.  
34 (0x22) Reserved ñ used for test.  
35 (0x23) Reserved ñ used for test.  
36 (0x24) Reserved ñ used for test.  
37 (0x25) Reserved ñ used for test.  
38 (0x26) Reserved ñ used for test.  
39 (0x27) Reserved ñ used for test.  
40 (0x28) Reserved ñ used for test.  
41 (0x29) CHIP_RDY  
42 (0x2A) Reserved ñ used for test.  
43 (0x2B) XOSC_STABLE  
44 (0x2C) Reserved ñ used for test.  
45 (0x2D) GDO0_Z_EN_N. When this output is 0, GDO0 is configured as input (for serial TX data).  
46 (0x2E) High impedance (3-state)  
47 (0x2F) HW to 0 (HW1 achieved with _INV signal)  
48 (0x30) CLK_XOSC/1  
49 (0x31) CLK_XOSC/1.5  
50 (0x32) CLK_XOSC/2  
51 (0x33) CLK_XOSC/3  
52 (0x34) CLK_XOSC/4  
53 (0x35) CLK_XOSC/6  
54 (0x36) CLK_XOSC/8  
55 (0x37) CLK_XOSC/12  
56 (0x38) CLK_XOSC/16  
57 (0x39) CLK_XOSC/24  
58 (0x3A) CLK_XOSC/32  
59 (0x3B) CLK_XOSC/48  
60 (0x3C) CLK_XOSC/64  
61 (0x3D) CLK_XOSC/96  
62 (0x3E) CLK_XOSC/128  
63 (0x3F) CLK_XOSC/192  
Table 22: GDO signal selection  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 29 of 49  
CC1150  
32 Asynchronous and Synchronous Serial Operation  
Several features and modes of operation have  
been included in the to provide  
The MCU must control start and stop of  
transmit with the STXand SIDLEstrobes.  
backward compatibility with previous Chipcon  
products and other existing RF communication  
systems. For new systems, it is recommended  
to use the built-in packet handling features, as  
they can give more robust communication,  
significantly offload the microcontroller and  
simplify software development.  
The  
modulator samples the level of the  
asynchronous input 8 times faster than the  
programmed data rate. The timing requirement  
for the asynchronous stream is that the error in  
the bit period must be less than one eighth of  
the programmed data rate.  
32.2 Synchronous serial operation  
32.1 Asynchronous operation  
In the Synchronous serial operation mode,  
data is transferred on a two wire serial  
For backward compatibility with systems  
already using the asynchronous data transfer  
from other Chipcon products, asynchronous  
interface. The  
provides a clock that is  
used to set up new data on the data input line.  
Data input (TX data) is the GDO0 pin. This pin  
will automatically be configured as an input  
when TX is active.  
transfer is also included in  
. When  
asynchronous transfer is enabled, several of  
the support mechanisms for the MCU that are  
included in  
will be disabled, such as  
packet handling hardware, buffering in the  
FIFO and so on. The asynchronous transfer  
mode does not allow the use of the data  
whitener, interleaver and FEC.  
Preamble and sync word insertion may or may  
not be active, dependent on the sync mode set  
by the MDMCFG3.SYNC_MODE. If preamble and  
sync word is disabled, all other packet handler  
features and FEC should also be disabled.  
The MCU must then handle preamble and  
sync word insertion in software. If preamble  
and sync word insertion is left on, all packet  
handling features and FEC can be used. The  
will insert the preamble and sync word  
Only 2-FSK, GFSK and ASK/OOK are  
supported for asynchronous transfer.  
Setting  
PKTCTRL0.PKT_FORMAT  
to  
3
enables asynchronous transparent (serial)  
mode.  
and the MCU will only provide the data  
In TX, the GDO0 pin is used for data input (TX  
data).  
payload.  
This  
is  
equivalent  
to  
the  
recommended FIFO operation mode.  
33 Configuration Registers  
read-only, contain information about the status  
of  
The configuration of  
is done by  
programming 8-bit registers. The configuration  
data based on selected system parameters  
are most easily found by using the SmartRF  
Studio software. Complete descriptions of the  
registers are given in the following tables. After  
chip reset, all the registers have default values  
as shown in the tables.  
.
The TX FIFO is accessed through one 8-bit  
register. Only write operations are allowed to  
the TX FIFO.  
During the address transfer and while writing  
to a register or the TX FIFO, a status byte is  
returned. This status byte is described in Table  
15 on page 16.  
There are nine Command Strobe Registers,  
listed in Table 23. Accessing these registers  
will initiate the change of an internal state or  
mode. There are 30 normal 8-bit Configuration  
Registers, listed in Table 24. Many of these  
registers are for test purposes only, and need  
Table 26 summarizes the SPI address space.  
Registers that are only defined on the  
transceiver are also listed.  
and  
are register compatible, but registers and fields  
only implemented in the transceiver always  
not be written for normal operation of  
.
contain zero on  
.
There are also six Status registers, which are  
listed in Table 25. These registers, which are  
The address to use is given by adding the  
base address to the left and the burst and  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 30 of 49  
CC1150  
read/write bits on the top. Note that the burst  
bit has different meaning for base addresses  
above and below 0x2F.  
Address Strobe Name Description  
0x30  
0x31  
SRES  
Reset chip.  
SFSTXON  
Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).  
0x32  
0x33  
SXOFF  
SCAL  
Turn off crystal oscillator.  
Calibrate frequency synthesizer and turn it off (enables quick start). SCAL can be strobed  
from IDLE mode without setting manual calibration mode (MCSM0.FS_AUTOCAL=0)  
0x35  
STX  
Enable TX. Perform calibration first if MCSM0.FS_AUTOCAL=1.  
Exit TX and turn off frequency synthesizer.  
0x36  
0x39  
SIDLE  
SPWD  
Enter power down mode when CSngoes high.  
0x3B  
0x3D  
SFTX  
Flush the TX FIFO buffer.  
SNOP  
No operation. May be used to pad strobe commands to two bytes for simpler software.  
Table 23: Command Strobes  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 31 of 49  
CC1150  
Address  
Register  
Description  
Details on page number  
34  
GDO1output pin configuration  
0x01  
IOCFG1  
34  
GDO0output pin configuration  
FIFO threshold  
0x02  
0x03  
0x04  
0x05  
0x06  
0x08  
0x09  
0x0A  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x17  
0x18  
0x22  
0x23  
0x24  
0x25  
0x26  
0x29  
0x2A  
0x2C  
0x2D  
0x2E  
IOCFG0  
FIFOTHR  
SYNC1  
34  
35  
35  
35  
35  
36  
36  
36  
36  
37  
37  
37  
38  
39  
39  
39  
40  
40  
41  
41  
41  
42  
42  
42  
42  
42  
42  
43  
Sync word, high byte  
SYNC0  
Sync word, low byte  
PKTLEN  
PKTCTRL0  
ADDR  
Packet length  
Packet automation control  
Device address  
CHANNR  
FREQ2  
Channel number  
Frequency control word, high byte  
Frequency control word, middle byte  
Frequency control word, low byte  
Modulator configuration  
FREQ1  
FREQ0  
MDMCFG4  
MDMCFG3  
MDMCFG2  
MDMCFG1  
MDMCFG0  
DEVIATN  
MCSM1  
MCSM0  
FREND0  
FSCAL3  
FSCAL2  
FSCAL1  
FSCAL0  
FSTEST  
PTEST  
Modulator configuration  
Modulator configuration  
Modulator configuration  
Modulator configuration  
Modulator deviation setting  
Main Radio Control State Machine configuration  
Main Radio Control State Machine configuration  
Front end TX configuration  
Frequency synthesizer calibration  
Frequency synthesizer calibration  
Frequency synthesizer calibration  
Frequency synthesizer calibration  
Frequency synthesizer calibration control  
Production test  
TEST2  
Various test settings  
TEST1  
Various test settings  
TEST0  
Various test settings  
Table 24: Configuration Registers Overview  
Address  
Register  
Description  
Details on page number  
43  
43  
44  
44  
44  
45  
0x30 (0xF0)  
0x31 (0xF1)  
0x35 (0xF5)  
0x38 (0xF8)  
0x39 (0xF9)  
0x3A (0xFA)  
PARTNUM  
VERSION  
Part number for  
Current version number  
MARCSTATE  
PKTSTATUS  
VCO_VC_DAC  
TXBYTES  
Control state machine state  
Current GDOx status and packet status  
Current setting from PLL calibration module  
Underflow and number of bytes in the TX FIFO  
Table 25: Status Registers Overview  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 32 of 49  
CC1150  
Write  
Read  
Single byte  
+0x80  
Single byte  
+0x00  
Burst  
+0x40  
Burst  
+0xC0  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
IOCFG2  
IOCFG1  
IOCFG0  
FIFOTHR  
SYNC1  
SYNC0  
PKTLEN  
PKTCTRL1  
PKTCTRL0  
ADDR  
CHANNR  
FSCTRL1  
FSCTRL0  
FREQ2  
FREQ1  
FREQ0  
MDMCFG4  
MDMCFG3  
MDMCFG2  
MDMCFG1  
MDMCFG0  
DEVIATN  
MCSM2  
MCSM1  
MCSM0  
FOCCFG  
BSCFG  
AGCCTRL2  
AGCCTRL1  
AGCCTRL0  
WOREVT1  
WOREVT0  
WORCTRL  
FREND1  
FREND0  
FSCAL3  
FSCAL2  
FSCAL1  
FSCAL0  
RCCTRL1  
RCCTRL0  
FSTEST  
PTEST  
AGCTEST  
TEST2  
TEST1  
TEST0  
SRES  
SFSTXON  
SXOFF  
SCAL  
SRES  
PARTNUM  
VERSION  
FREQEST  
LQI  
SFSTXON  
SXOFF  
SCAL  
SRX  
SRX  
STX  
RSSI  
STX  
SIDLE  
SAFC  
SWOR  
SPWD  
SFRX  
SFTX  
SWORRST  
SNOP  
PATABLE  
TX FIFO  
MARCSTATE  
WORTIME1  
WORTIME0  
PKTSTATUS  
VCO_VC_DAC  
TXBYTES  
RXBYTES  
SIDLE  
SAFC  
SWOR  
SPWD  
SFRX  
SFTX  
SWORRST  
SNOP  
PATABLE  
RX FIFO  
PATABLE  
TX FIFO  
PATABLE  
RX FIFO  
Table 26: SPI Address Space (greyed text: for reference only; not implemented on  
)
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 33 of 49  
CC1150  
33.1 Configuration Register Details  
0x01: IOCFG1 ñ GDO1 output pin configuration  
Bit  
Field Name  
Reset  
R/W Description  
7
GDO_DS  
0
R/W Set high (1) or low (0) output drive strength on the  
GDO pins.  
6
0
R/W Invert output, i.e. select active low / high  
GDO1_INV  
5:0  
46 (0x2E) R/W Default is tri-state (See Table 22 on page 29)  
GDO1_CFG[5:0]  
0x02: IOCFG0 ñ GDO0 output pin configuration (for customer data sheet)  
Bit  
Field Name  
Reset  
R/W Description  
7
TEMP_SENSOR_ENABLE  
0
R/W Enable analog temperature sensor. Write 0 in all  
other register bits when using temperature sensor.  
6
0
R/W Invert output, i.e. select active low / high  
GDO0_INV  
5:0  
63 (0x3F)  
R/W Default is CLK_XOSC/192 (See Table 22 on page  
29). Should be set to 3-state for lowest power down  
current.  
GDO0_CFG[5:0]  
0x03: FIFOTHR ñ FIFO threshold  
Bit Field Name  
Reset  
R/W Description  
7:4 Reserved  
0 (0000) R/W Write 0 (0000) for compatibility with possible future  
extensions.  
3:0 FIFO_THR[3:0]  
7 (0111) R/W Set the threshold for the TX FIFO. The threshold is  
exceeded when the number of bytes in the FIFO is equal to  
or higher than the threshold value.  
Setting  
0 (0000)  
1 (0001)  
2 (0010)  
3 (0011)  
4 (0100)  
5 (0101)  
6 (0110)  
7 (0111)  
8 (1000)  
9 (1001)  
10 (1010)  
11 (1011)  
12 (1100)  
13 (1101)  
14 (1110)  
15 (1111)  
Bytes in TX FIFO  
61  
57  
53  
49  
45  
41  
37  
33  
29  
25  
21  
17  
13  
9
5
1
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 34 of 49  
CC1150  
0x04: SYNC1 ñ Sync word, high byte  
Bit  
Field Name  
Reset  
R/W Description  
7:0  
SYNC[15:8]  
211 (0xD3)  
R/W 8 MSB of 16-bit sync word  
0x05: SYNC0 ñ Sync word, low byte  
Bit  
Field Name  
Reset  
R/W Description  
7:0  
SYNC[7:0]  
145 (0x91)  
R/W 8 LSB of 16-bit sync word  
0x06: PKTLEN ñ Packet length  
Bit Field Name  
Reset  
R/W Description  
7:0 PACKET_LENGTH  
255 (0xFF)  
R/W Indicates the packet length when fixed length  
packets are enabled.  
0x08: PKTCTRL0 ñ Packet automation control  
Bit Field Name  
Reset R/W Description  
7
6
Reserved  
R0  
WHITE_DATA  
1
R/W Turn data whitening on / off  
0: Whitening off  
1: Whitening on  
5:4 PKT_FORMAT[1:0]  
0 (00) R/W Format of RX and TX data  
Setting Packet format  
0 (00)  
1 (01)  
Normal mode, use TX FIFO  
Serial Synchronous mode, used for backwards  
compatibility  
Random TX mode; sends random data using PN9  
generator. Used for test/debug.  
2 (10)  
3 (11)  
Asynchronous transparent mode. Data in on GDO0  
and Data out on either of the GDO pins  
3
2
CC2400_EN  
CRC_EN  
0
1
R/W Enable CC2400 support. Use same CRC implementation as  
CC2400.  
R/W 1: CRC calculation enabled  
0: CRC disabled  
1:0 LENGTH_CONFIG[1:0]  
1 (01) R/W Configure the packet length  
Setting Packet length configuration  
0 (00)  
Fixed length packets, length configured in  
PKTLEN register  
1 (01)  
Variable length packets, packet length configured  
by the first byte after sync word  
2 (10)  
3 (11)  
Enable infinite length packets  
Reserved  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 35 of 49  
CC1150  
0x09: ADDR ñ Device address  
Bit  
Field Name  
Reset  
R/W Description  
7:0  
DEVICE_ADDR[7:0]  
0 (0x00) R/W Address used for packet filtration. Optional broadcast  
addresses are 0 (0x00) and 255 (0xFF).  
0x0A: CHANNR ñ Channel number  
Bit  
Field Name  
Reset  
0 (0x00)  
R/W Description  
7:0  
CHAN[7:0]  
R/W The 8-bit unsigned channel number, which is multiplied by  
the channel spacing setting and added to the base  
frequency.  
0x0D: FREQ2 ñ Frequency control word, high byte  
Bit Field Name  
Reset  
R/W Description  
7:6 FREQ[23:22]  
0 (00)  
R
FREQ[23:22] is always 0 (the FREQ2 register is less than 36 with  
26MHz or higher crystal)  
5:0 FREQ[21:16]  
30  
(0x1E)  
R/W FREQ[23:0] is the base frequency for the frequency synthesiser in  
increments of FXOSC/216.  
fXOSC  
216  
fcarrier  
=
FREQ  
[23 : 0  
]
The default frequency word gives a base frequency of 800MHz,  
assuming a 26.0MHz crystal. With the default channel spacing settings,  
the following FREQ2 values and channel numbers can be used:  
FREQ2  
Base frequency  
280MHz  
306MHz  
384MHz  
410MHz  
436MHz  
462MHz  
800MHz  
826MHz  
852MHz  
878MHz  
904MHz  
Frequency range (CHAN numbers)  
300.2MHz-331MHz (101-255)  
306MHz-347.8MHz (0-209)  
400.2MHz-435MHz (81-255)  
410MHz-461MHz (0-255)  
436MHz-463.8MHz (0-139)  
462MHz-463.8MHz (0-9)  
10 (0x0A)  
11 (0x0B)  
14 (0x0E)  
15 (0x0F)  
16 (0x10)  
17 (0x11)  
30 (0x1E)  
31 (0x1F)  
32 (0x20)  
33 (0x21)  
34 (0x22)  
800.2MHz-851MHz (1-255)  
826MHz-877MHz (0-255)  
852MHz-903MHz (0-255)  
878MHz-927.8MHz (0-249)  
904MHz-927.8MHz (0-119)  
0x0E: FREQ1 ñ Frequency control word, middle byte  
Bit Field Name  
Reset  
R/W Description  
7:0 FREQ[15:8]  
196 (0xC4)  
R/W Ref. FREQ2 register  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 36 of 49  
CC1150  
0x0F: FREQ0 ñ Frequency control word, low byte  
Bit Field Name  
Reset  
R/W Description  
7:0 FREQ[7:0]  
236 (0xEC) R/W Ref. FREQ2 register  
0x10: MDMCFG4 ñ Modulator configuration  
Bit  
Field Name  
Reset  
R/W Description  
7:4  
3:0  
Reserved  
R0  
Defined on the transceiver version  
DRATE_E[3:0]  
12 (1100)  
R/W The exponent of the user specified symbol rate  
0x11: MDMCFG3 ñ Modulator configuration  
Bit  
Field Name  
Reset  
R/W Description  
7:0  
DRATE_M[7:0]  
34 (0x22)  
R/W The mantissa of the user specified symbol rate. The symbol  
rate is configured using an unsigned, floating-point number  
with 9-bit mantissa and 4-bit exponent. The 9th bit is a  
hidden ë1í. The resulting data rate is:  
(
256 + DRATE _ M  
)
2DRATE _ E  
RDATA  
=
fXOSC  
228  
The default values give a data rate of 115.051kbps (closest  
setting to 115.2kbps), assuming a 26.0MHz crystal.  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 37 of 49  
CC1150  
0x12: MDMCFG2 ñ Modulator configuration  
Bit  
Field Name  
Reset  
R/W  
Description  
7
Reserved  
R0  
Defined on the transceiver version.  
6:4  
MOD_FORMAT[2:0]  
0 (000)  
R/W  
The modulation format of the radio signal  
Setting  
0 (000)  
1 (001)  
2 (010)  
3 (011)  
4 (100)  
5 (101)  
6 (110)  
7 (111)  
Modulation format  
2-FSK  
GFSK  
-
ASK/OOK  
-
-
-
MSK  
3
MANCHESTER_EN  
SYNC_MODE[2:0]  
0
R/W  
R/W  
Enables Manchester encoding/decoding.  
Combined sync-word qualifier mode.  
2:0  
2 (010)  
The values 0 (000) and 4 (100) disables sync word  
transmission. The values 1 (001), 2 (001), 5 (101)  
and 6 (110) enables 16-bit sync word transmission.  
The values 3 (011) and 7 (111) enables repeated  
sync word transmission. The table below lists the  
meaning of each mode (for compatibility with the  
transceiver):  
Setting  
0 (000)  
1 (001)  
2 (010)  
3 (011)  
4 (100)  
Sync-word qualifier mode  
No preamble/sync word  
15/16 sync word bits detected  
16/16 sync word bits detected  
30/32 sync word bits detected  
No preamble/sync, carrier-sense  
above threshold  
5 (101)  
6 (110)  
7 (111)  
15/16 + carrier-sense above threshold  
16/16 + carrier-sense above threshold  
30/32 + carrier-sense above threshold  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 38 of 49  
CC1150  
0x13: MDMCFG1 ñ Modulator configuration  
Bit  
Field Name  
Reset  
R/W Description  
7
FEC_EN  
0
R/W Enable Forward Error Correction (FEC) with interleaving for  
packet payload  
6:4  
NUM_PREAMBLE[2:0] 2 (010)  
R/W Sets the minimum number of preamble bytes to be  
transmitted  
Setting  
0 (000)  
1 (001)  
2 (010)  
3 (011)  
4 (100)  
5 (101)  
6 (110)  
7 (111)  
Number of preamble bytes  
2
3
4
6
8
12  
16  
24  
3:2  
1:0  
Reserved  
CHANSPC_E[1:0]  
R0  
R/W 2 bit exponent of channel spacing  
2 (10)  
0x14: MDMCFG0 ñ Modulator configuration  
Bit Field Name  
Reset  
R/W Description  
7:0 CHANSPC_M[7:0]  
248 (0xF8) R/W 8-bit mantissa of channel spacing (initial 1 assumed). The  
channel spacing is multiplied by the channel number CHAN and  
added to the base frequency. It is unsigned and has the format:  
fXOSC  
218  
fCHANNEL  
=
(
256 + CHANSPC _ M  
2CHANSPC _ E CHAN  
)
The default values give 199.951kHz channel spacing (the  
closest setting to 200kHz), assuming 26.0MHz crystal  
frequency.  
0x15: DEVIATN ñ Modulator deviation setting  
Bit Field Name  
Reset  
R/W Description  
7
Reserved  
6:4 DEVIATION_E[2:0]  
Reserved  
2:0 DEVIATION_M[2:0]  
R0  
4 (100)  
7 (111)  
R/W Deviation exponent  
3
R0  
R/W When MSK modulation is enabled:  
Sets fraction of symbol period used for phase change.  
When 2-FSK/GFSK modulation is enabled:  
Deviation mantissa, interpreted as a 4-bit value with MSB  
implicit 1. The resulting frequency deviation is given by:  
fxosc  
217  
fdev  
=
(8 + DEVIATION _ M )2DEVIATION _ E  
The default values give ±47.607kHz deviation, assuming  
26.0MHz crystal frequency.  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 39 of 49  
CC1150  
0x17: MCSM1 ñ Main Radio Control State Machine configuration  
Bit  
Field Name  
Reset  
R/W Description  
7:6  
5:2  
1:0  
Reserved  
R0  
Reserved  
R0  
Defined on the transceiver version  
TXOFF_MODE[1:0]  
0 (00)  
R/W Select what should happen when a packet has been sent  
(TX)  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Next state after finishing packet transmission  
IDLE  
FSTXON  
Stay in TX (start sending preamble)  
Do not use, not implemented on  
(Go to RX)  
0x18: MCSM0 ñ Main Radio Control State Machine configuration  
Bit Field Name  
Reset  
R/W  
Description  
7:6 Reserved  
R0  
5:4 FS_AUTOCAL[1:0]  
0 (00)  
R/W  
Automatically calibrate when going to RX or TX, or back to IDLE  
Setting When to perform automatic calibration  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Never (manually calibrate using SCALstrobe)  
When going from IDLE to RX or TX (or FSTXON)  
When going from RX or TX back to IDLE  
Every 4th time when going from RX or TX to IDLE  
In some automatic wake-on-radio (WOR) applications, using setting  
3 (11) can significantly reduce current consumption.  
3:2 PO_TIMEOUT  
1 (01)  
R/W  
Programs the number of times the six-bit ripple counter must expire  
before CHP_RDY_N goes low. Values other than 0 (00) are most  
useful when the XOSC is left on during power-down.  
Setting Expire count  
Timeout after XOSC start  
Approx. 2.3 s ñ 2.7 s  
Approx. 37 s ñ 43 s  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
1
16  
64  
256  
Approx. 146 s ñ 171 s  
Approx. 585 s ñ 683 s  
Exact timeout depends on crystal frequency.  
In order to reduce start up time from the SLEEP state, this field is  
preserved in powerdown (SLEEP state). Setting 0 (00) can be used  
for quicker start up, unless a crystal with very low ESR is used in  
combination with C41 decoupling capacitor >100nF.  
1:0 Reserved  
R0  
Defined on the transceiver version  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 40 of 49  
CC1150  
0x22: FREND0 ñ Front end TX configuration  
Bit Field Name  
Reset  
R/W  
Description  
7:6 Reserved  
R0  
5:4 LODIV_BUF_CURRENT_TX[1:0]  
1 (01)  
R/W  
Adjusts current TX LO buffer (input to PA). The value to  
use in register field is given by the SmartRF Studio  
software.  
3
Reserved  
R0  
2:0 PA_POWER[2:0]  
0
R/W  
Selects PA power setting. This value is an index to the  
PATABLE, which can be programmed with up to 8  
different PA settings. In ASK mode, this selects the  
PATABLE index to use when transmitting a ë1í.  
PATABLE index zero is used in ASK when transmitting  
a ë0í. The PATABLE settings from index ë0í to the  
PA_POWER value are used for ASK TX shaping, and  
for power ramp-up/ramp-down at the start/end of  
transmission in all TX modulation formats.  
(000)  
0x23: FSCAL3 ñ Frequency synthesizer calibration  
Bit Field Name  
Reset  
R/W Description  
7:0 FSCAL3[7:0]  
169  
(0xA9)  
R/W Frequency synthesizer calibration configuration and result  
register. The value to write in this register before calibration  
is given by the SmartRF Studio software.  
Fast frequency hopping without calibration for each hop can  
be done by calibrating upfront for each frequency and  
saving the resulting FSCAL3, FSCAL2 and FSCAL1  
register values. Between each frequency hop, calibration  
can be replaced by writing the FSCAL3, FSCAL2 and  
FSCAL1 register values corresponding to the next RF  
frequency.  
0x24: FSCAL2 ñ Frequency synthesizer calibration  
Bit Field Name  
Reset  
R/W Description  
7:6 Reserved  
R0  
5:0 FSCAL2[5:0]  
10  
(0x0A)  
R/W Frequency synthesizer calibration result register.  
Fast frequency hopping without calibration for each hop  
can be done by calibrating upfront for each frequency and  
saving the resulting FSCAL3, FSCAL2 and FSCAL1  
register values. Between each frequency hop, calibration  
can be replaced by writing the FSCAL3, FSCAL2 and  
FSCAL1 register values corresponding to the next RF  
frequency.  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 41 of 49  
CC1150  
0x25: FSCAL1 ñ Frequency synthesizer calibration  
Bit Field Name  
Reset  
R/W Description  
7:6 Reserved  
R0  
5:0 FSCAL1[5:0]  
32 (0x20) R/W Frequency synthesizer calibration result register.  
Fast frequency hopping without calibration for each hop  
can be done by calibrating upfront for each frequency and  
saving the resulting FSCAL3, FSCAL2 and FSCAL1  
register values. Between each frequency hop, calibration  
can be replaced by writing the FSCAL3, FSCAL2 and  
FSCAL1 register values corresponding to the next RF  
frequency.  
0x26: FSCAL0 ñ Frequency synthesizer calibration  
Bit Field Name  
Reset  
R/W Description  
7
Reserved  
R0  
6:5 Reserved  
R0  
Defined on the transceiver version  
4:0 FSCAL0[4:0]  
13  
(0x0D)  
R/W Frequency synthesizer calibration control. The value to  
use in register field is given by the SmartRF Studio  
software.  
0x29: FSTEST ñ Frequency synthesizer calibration control  
Bit Field Name  
Reset  
R/W Description  
7:0 FSTEST[7:0]  
87  
(0x57)  
R/W For test only. Do not write to this register.  
0x2A: PTEST ñ Production test  
Bit Field Name  
Reset  
R/W Description  
7:0 PTEST[7:0]  
127  
(0x7F)  
R/W Writing 0xBF to this register makes the on-chip temperature sensor  
available in the IDLE state. The default 0x7F value should then be  
written back before leaving the IDLE state.  
Other use of this register is for test only.  
0x2C: TEST2 ñ Various test settings  
Bit Field Name  
Reset  
R/W Description  
7:0 TEST2[7:0]  
136  
(0x88)  
R/W For test only. Do not write to this register.  
0x2D: TEST1 ñ Various test settings  
Bit Field Name  
Reset  
R/W Description  
7:0 TEST1[7:0]  
49  
(0x21)  
R/W For test only. Do not write to this register.  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 42 of 49  
CC1150  
0x2E: TEST0 ñ Various test settings  
Bit Field Name  
Reset  
R/W Description  
7:0 TEST0[7:0]  
11  
(0x0B)  
R/W For test only. Do not write to this register.  
33.2 Status register details  
0x30 (0xF0): PARTNUM ñ Chip ID  
Bit Field Name  
Reset  
0 (0x02)  
R/W Description  
R Chip part number  
7:0 PARTNUM[7:0]  
0x31 (0xF1): VERSION ñ Chip ID  
Bit Field Name  
Reset  
2 (0x10)  
R/W Description  
R Chip version number.  
7:0 VERSION[7:0]  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 43 of 49  
CC1150  
0x35 (0xF5): MARCSTATE ñ Main Radio Control State Machine state  
Bit Field Name  
Reset  
R/W Description  
7:5 Reserved  
R0  
4:0 MARC_STATE[4:0]  
R
Main Radio Control FSM State  
Value  
State name  
SLEEP  
State (Figure 10, page 21)  
SLEEP  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
IDLE  
IDLE  
XOFF  
XOFF  
VCOON_MC  
REGON_MC  
MANCAL  
VCOON  
MANCAL  
MANCAL  
MANCAL  
FS_WAKEUP  
FS_WAKEUP  
CALIBRATE  
SETTLING  
SETTLING  
SETTLING  
CALIBRATE  
RX  
REGON  
STARTCAL  
BWBOOST  
FS_LOCK  
IFADCON  
12 (0x0C) ENDCAL  
13 (0x0D) RX  
14 (0x0E)  
15 (0x0F)  
16 (0x10)  
17 (0x11)  
18 (0x12)  
19 (0x13)  
20 (0x14)  
21 (0x15)  
22 (0x16)  
RX_END  
RX  
RX_RST  
RX  
TXRX_SWITCH  
RX_OVERFLOW  
FSTXON  
TXRX_SETTLING  
RX_OVERFLOW  
FSTXON  
TX  
TX  
TX_END  
TX  
RXTX_SWITCH  
RXTX_SETTLING  
TX_UNDERFLOW TX_UNDERFLOW  
0x38 (0xF8): PKTSTATUS ñ Current GDOx status  
Bit Field Name  
Reset  
R/W Description  
7:2 Reserved  
R0  
R
Defined on the transceiver version  
1
0
GDO1  
GDO0  
Current value on GDO1pin  
Current value on GDO0pin  
R
0x39 (0xF9): VCO_VC_DAC ñ Current setting from PLL calibration module  
Bit Field Name  
Reset  
R/W Description  
R Status register for test only.  
7:0 VCO_VC_DAC[7:0]  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 44 of 49  
CC1150  
0x3A (0xFA): TXBYTES ñ Underflow and number of bytes  
Bit Field Name  
Reset  
R/W Description  
7
TXFIFO_UNDERFLOW  
R
6:0 NUM_TXBYTES  
R
Number of bytes in TX FIFO  
34 Package Description (QLP 16)  
All dimensions are in millimetres, angles in degrees. NOTE: The  
lead-free package only.  
is available in RoHS  
Figure 16: Package dimensions drawing (the actual package has 16 pins)  
Package  
type  
A
A1  
A2  
D
D1  
D2  
E
E1  
E2  
L
T
b
e
0.75  
0.85  
0.95  
0.005  
0.025  
0.045  
0.55  
0.65  
0.75  
3.90  
4.00  
4.10  
3.65  
3.75  
3.85  
3.90  
4.00  
4.10  
3.65  
3.75  
3.85  
0.45  
0.55  
0.65  
0.190  
0.23  
0.28  
0.35  
Min  
2.30  
2.30  
0.65  
QLP 16 (4x4) Typ.  
Max  
0.245  
Table 27: Package dimensions  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 45 of 49  
CC1150  
34.1 Recommended PCB layout for package (QLP 16)  
Figure 17: Recommended PCB layout for QLP 16 package  
Note: The figure is an illustration only and not to scale. There are 14 mil diameter via holes  
distributed symmetrically in the ground pad under the package. See also the CC1150EM  
reference design.  
34.2 Package thermal properties  
Thermal resistance  
Air velocity [m/s]  
Rth,j-a [K/W]  
0
TBD  
Table 28: Thermal properties of QLP 16 package  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 46 of 49  
CC1150  
34.3 Soldering information  
The recommendations for lead-free reflow in IPC/JEDEC J-STD-020C should be followed.  
34.4 Tray specification  
can be delivered in standard QLP 4x4mm shipping trays.  
Tray Specification  
Package  
QLP 16  
Tray Width  
125.9mm  
Tray Height  
7.62mm  
Tray Length  
322.6mm  
Units per Tray  
490  
Table 29: Tray specification  
34.5 Carrier tape and reel specification  
Carrier tape and reel is in accordance with EIA Specification 481.  
Tape and Reel Specification  
Package  
Tape Width  
Component  
Pitch  
Hole  
Pitch  
Reel  
Diameter  
Units per Reel  
TBD  
QLP 16  
TBD  
TBD  
TBD  
TBD  
Table 30: Carrier tape and reel specification  
35 Ordering Information  
Ordering part number  
Description  
Minimum Order Quantity (MOQ)  
1168  
1185  
1198  
1172  
1173  
490 (tray)  
- RTY1 QLP16 RoHS Pb-free 490/tray  
- RTR1 QLP16 RoHS Pb-free 2500/T&R  
SK Sample kit 5pcs.  
2500 (tape and reel)  
1
1
1
DK-433MHz Development Kit  
DK-868MHz Development Kit  
Table 31: Ordering Information  
36 General Information  
36.1 Document History  
Revision Date  
Description/Changes  
1.0 2005-04-20 First preliminary data sheet release  
Table 32: Document history  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 47 of 49  
CC1150  
36.2 Product Status Definitions  
Data Sheet Identification  
Product Status  
Definition  
Advance Information  
Planned or Under  
Development  
This data sheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
Engineering Samples This data sheet contains preliminary data, and  
and First Production  
supplementary data will be published at a later date.  
Chipcon reserves the right to make changes at any  
time without notice in order to improve design and  
supply the best possible product.  
No Identification Noted  
Obsolete  
Full Production  
This data sheet contains the final specifications.  
Chipcon reserves the right to make changes at any  
time without notice in order to improve design and  
supply the best possible product.  
Not In Production  
This data sheet contains specifications on a product  
that has been discontinued by Chipcon. The data  
sheet is printed for reference information only.  
Table 33: Product Status Definitions  
36.3 Disclaimer  
Chipcon AS believes the information contained herein is correct and accurate at the time of this printing. However,  
Chipcon AS reserves the right to make changes to this product without notice. Chipcon AS does not assume any  
responsibility for the use of the described product; neither does it convey any license under its patent rights, or the rights  
of others. The latest updates are available at the Chipcon website or by contacting Chipcon directly.  
As far as possible, major changes of product specifications and functionality, will be stated in product specific Errata Notes  
published at the Chipcon website. Customers are encouraged to sign up to the Developers Newsletter for the most recent  
updates on products and support tools.  
When a product is discontinued this will be done according to Chipconís procedure for obsolete products as described in  
Chipconís Quality Manual. This includes informing about last-time-buy options. The Quality Manual can be downloaded  
from Chipconís website.  
Compliance with regulations is dependent on complete system performance. It is the customerís responsibility to ensure  
that the system complies with regulations.  
36.4 Trademarks  
SmartRF is a registered trademark of Chipcon AS. SmartRF is Chipcon's RF technology platform with RF library cells,  
modules and design expertise. Based on SmartRF technology Chipcon develops standard component RF circuits as well  
as full custom ASICs based on customer requirements and this technology.  
All other trademarks, registered trademarks and product names are the sole property of their respective owners.  
36.5 Life Support Policy  
This Chipcon product is not designed for use in life support appliances, devices, or other systems where malfunction can  
reasonably be expected to result in significant personal injury to the user, or as a critical component in any life support  
device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness. Chipcon AS customers using or selling these products for use in such  
applications do so at their own risk and agree to fully indemnify Chipcon AS for any damages resulting from any improper  
use or sale.  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 48 of 49  
CC1150  
37 Address Information  
Web site:  
E-mail:  
Technical Support Email:  
Technical Support Hotline:  
http://www.chipcon.com  
wireless@chipcon.com  
support@chipcon.com  
+47 22 95 85 45  
Headquarters:  
Chipcon AS  
GaustadallÈen 21  
NO-0349 Oslo  
NORWAY  
Tel: +47 22 95 85 44  
Fax: +47 22 95 85 46  
E-mail: wireless@chipcon.com  
US Offices:  
Chipcon Inc., Western US Sales Office  
19925 Stevens Creek Blvd.  
Cupertino, CA 95014-2358  
USA  
Chipcon Inc., Eastern US Sales Office  
35 Pinehurst Avenue  
Nashua, New Hampshire, 03062  
USA  
Tel: +1 603 888 1326  
Fax: +1 603 888 4239  
Email: eastUSsales@chipcon.com  
Tel: +1 408 973 7845  
Fax: +1 408 973 7257  
Email: USsales@chipcon.com  
Sales Office Germany:  
Chipcon AS  
Riedberghof 3  
D-74379 Ingersheim  
GERMANY  
Tel: +49 7142 9156815  
Fax: +49 7142 9156818  
Email: Germanysales@chipcon.com  
Sales Office Asia:  
Chipcon AS  
Unit 503, 5/F  
Silvercord Tower 2, 30 Canton Road  
Tsimshatsui, Hong Kong  
Tel: +852 3519 6226  
Fax: +852 3519 6520  
Email: Asiasales@chipcon.com  
Sales Office Japan:  
Sales Office Korea & South-East Asia:  
Chipcon AS  
Chipcon AS  
#403, Bureau Shinagawa  
4-1-6, Konan, Minato-Ku  
Tokyo, Zip 108-0075  
Japan  
37F, Asem Tower  
159-1 Samsung-dong, Kangnam-ku  
Seoul 135-798 Korea  
Tel: +82 2 6001 3888  
Fax: +82 2 6001 3711  
Tel: +81 3 5783 1082  
Fax: +81 3 5783 1083  
Email: Japansales@chipcon.com  
Email: Korea_SEAsiasales@chipcon.com  
Preliminary Data Sheet (rev. 1.0.)  
SWRS037  
Page 49 of 49  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

CC1150RST

Low Power Sub-1 GHz RF Transmitter
TI

CC1150RSTG3

Low Power Sub-1 GHz RF Transmitter
TI

CC1150RSTR

Low Power Sub-1 GHz RF Transmitter
TI

CC1150RSTRG3

Low Power Sub-1 GHz RF Transmitter
TI

CC1150_10

Low Power Sub-1 GHz RF Transmitter
TI

CC1150_13

Low Power Sub-1 GHz RF Transmitter
TI

CC1151-Q1

Low-Power Sub-1-GHz Fractional-N UHF Device Family for Automotive
TI

CC1151IRHBRG4Q1

Low-Power Sub-1-GHz Fractional-N UHF Device Family for Automotive
TI

CC1151QRHBRG4Q1

Low-Power Sub-1-GHz Fractional-N UHF Device Family for Automotive
TI

CC1151TRHBRG4Q1

Low-Power Sub-1-GHz Fractional-N UHF Device Family for Automotive
TI

CC115L

CC115L 是一款成本优化的sub-1 GHz RF 发送器。该电路基于受欢迎的CC1101 RF 收发器,而且RF 性能特征相同。
TI

CC115LRGPR

Value Line Transmitter
TI