CC1201 [TI]

高性能低功耗无线收发器;
CC1201
型号: CC1201
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高性能低功耗无线收发器

无线
文件: 总36页 (文件大小:2155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
CC1201 低功率、高性能射频 (RF) 收发器  
1 器件概述  
1.1 特性  
1
• RF 性能和模拟特性:  
数字特性:  
高性能、单芯片收发器  
波形监视:针对改进的同步检测性能的高级数字  
信号处理  
出色的接收器灵敏度:  
自主图像删除  
安全性:硬件 AES128 加速器  
1.2kbps 时为 -120dBm  
50kbps 时为 -109dBm  
数据先入先出 (FIFO):独立的 128 字节 RX 和  
阻断性能:10MHz 时为 85dB  
邻道选择性:50kHz 偏移时高达 62dB  
极低相位噪声:10kHz 偏移 (169 MHz) 时为  
-114dBc/Hz  
TX  
包括针对天线多样性支持的功能  
支持重传  
支持接收到的数据包自动确认  
步长为 0.4dB,高达 +16dBm 的可编程输出功率  
自动输出功率斜升  
所支持的调制格式:  
针对载波监听 (LBT) 系统的自动空闲信道评估  
(CCA)  
增加范围和提高稳定耐用性的内置编码增益支持  
数字接收信号强度指示 (RSSI) 测量  
用于实现更少占用带宽的经改进 OOK 整形,从  
而在满足规定要求的同时实现更高的输出功率  
2 - 频移键控 (FSK)2 - 高斯频移监控  
(GFSK)4-FSK4-GFSK,最小频移键控  
(MSK),开关键控 (OOK)  
发送和接收时支持高达 1.25Mbps 的数据速率  
低流耗:  
针对 802.15.4g 的专用数据包处理:  
循环冗余校验 (CRC) 16/32  
针对自动低功率接收轮询的增强型无线电唤醒  
(eWOR) 功能  
断电:0.12μAeWOR 定时器激活时为 0.5μA)  
前向纠错 (FEC),双同步检测(FEC 和无 FEC  
数据包)  
数据白化  
总体说明:  
RX:在 RX 嗅探模式中为 0.5mA  
RX:在低功耗模式中,峰值电流为 19mA  
RX:在高性能模式中,峰值电流为 23mA  
TX: +14dBm 时为 46mA  
符合 RoHS 标准的 5mm × 5mm 无脚四方扁平无  
引线 (QFN) 32 引脚封装 (RHB)  
CC1120 器件引脚兼容  
法规 - 适用于符合下列标准的系统:  
欧洲: ETSI EN 300 220  
其他:  
数据先入先出 (FIFO):独立的 128 字节 RX 和  
TX  
美国:FCC CFR47 15 部分  
日本: ARIB STD-T108  
支持与 CC1190 器件无缝集成以实现范围扩展,  
从而使 RX 灵敏度提升 3dB 并且实现高达  
+27dBm TX 输出功率  
1.2 应用  
数据速率高达 1250kbps 的低功耗高性能无线系统  
家庭和楼宇自动化  
ISM/SRD 频带:169433868915 和  
920MHz  
无线警报和安全系统  
工业用监控和控制  
有可能支持额外的频率频带:137 至  
158.3MHz205 237.5MHz,以及 274 至  
316.6MHz  
无线医疗应用  
无线传感器网络和有源射频识别 (RFID)  
IEEE 802.15.4g 应用  
智能仪表计量(自动计量读取 (AMR) / 自动计量基  
础设施 (AMI))  
1.3 说明  
CC1201 是一款全集成单芯片射频收发器,此器件设计用于在成本有效无线系统中实现极低功耗和低压运行  
的高性能。 所有滤波器都已集成,因此无需昂贵的外部 SAW IF 滤波器。 该器件主要用于 ISM(工业、  
科学和医疗)以及处于 164 - 190MHz410 - 475MHz 820 - 950MHz SRD(短程设备)频带。  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SWRS154  
 
 
 
 
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
CC1201 器件提供大量硬件,以支持数据包处理、数据缓冲、突发传输、空闲信道评估、链路质量指示和无  
线唤醒。 CC1201 器件的主要运行参数可由 SPI 接口控制。 在典型系统中,CC1201 器件将与微控制器和  
极少的外部无源组件搭配使用。  
对于 50kHz 或更高的信道滤波带宽,CC1201 提供与 CC1200 同样的性能,因此为无需窄带支持的应用提  
供一个更低成本选择。  
器件信息(1)  
封装  
部件号  
封装尺寸  
CC1201RHB  
超薄四方扁平无引线 (VQFN) (32)  
5.00mm x 5.00mm  
(1) 更多信息请参见 8机械封装和可订购产品信息  
1.4 功能方框图  
1-1 显示 CC120x 系列器件的系统方框图。  
CC120x  
4 kbyte  
ROM  
MARC  
SPI  
Serial configuration  
CSn (chip select)  
SI (serial input)  
Ultra low power 40 kHz  
auto-calibrated RC oscillator  
Main Radio Control unit  
Ultra low power 16 bit  
MCU  
(optional 40 kHz  
clock input)  
Power on reset  
and data interface  
AES-128  
accelerator  
Interrupt and  
IO handler  
System bus  
SO (serial output)  
SCLK (serial clock)  
(optional GPIO3/2/0)  
256 byte  
FIFO RAM  
buffer  
eWOR  
Enhanced ultra low power  
Wake On Radio timer  
Packet handler  
and FIFO control  
Battery sensor /  
temp sensor  
Configuration and  
status registers  
RF and DSP frontend  
Output power ramping and OOK / ASK modulation  
(optional auto detected  
external XOSC / TCXO)  
I
+16 dBm high  
efficiency PA  
XOSC_Q1  
XOSC_Q2  
PA out  
Fully integrated fractional-N  
frequency synthesizer  
Data interface with  
signal chain access  
XOSC  
Q
90 dB dynamic  
range ADC  
IF amp  
IF amp  
LNA_P  
LNA_N  
(optional bit clock)  
Highly flexible FSK / OOK  
demodulator  
High linearity  
LNA  
(optional low jitter serial  
data output for legacy  
protocols)  
90 dB dynamic  
range ADC  
AGC  
Automatic Gain Control, 60dB VGA range  
RSSI measurements and carrier sense detection  
(optional GPIO for  
antenna diversity)  
1-1. 系统方框图  
2
器件概述  
版权 © 2013–2014, Texas Instruments Incorporated  
 
 
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
内容  
1
器件概.................................................... 1  
4.15 40-MHz Clock Input (TCXO) ........................ 16  
4.16 32-kHz Clock Input.................................. 17  
4.17 40-kHz RC Oscillator................................ 17  
4.18 I/O and Reset ....................................... 17  
4.19 Temperature Sensor ................................ 17  
4.20 Typical Characteristics .............................. 18  
Detailed Description ................................... 21  
5.1 Block Diagram....................................... 21  
5.2 Frequency Synthesizer.............................. 21  
5.3 Receiver ............................................. 22  
5.4 Transmitter .......................................... 22  
5.5 Radio Control and User Interface ................... 22  
5.6 Enhanced Wake-On-Radio (eWOR) ................ 22  
5.7 RX Sniff Mode....................................... 23  
5.8 Antenna Diversity ................................... 23  
5.9 WaveMatch.......................................... 24  
Typical Application Circuit ........................... 25  
器件和文档支持 .......................................... 26  
7.1 器件支............................................. 26  
7.2 文档支............................................. 27  
7.3 社区资............................................. 27  
7.4 商标.................................................. 27  
7.5 静电放电警告 ........................................ 27  
7.6 术语表 ............................................... 27  
机械封装和可订购信息 .................................. 28  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 1  
1.3 说明 ................................................... 1  
1.4 功能方框图............................................ 2  
修订历史记录............................................... 4  
Terminal Configuration and Functions.............. 5  
3.1 Pin Diagram .......................................... 5  
3.2 Pin Configuration ..................................... 6  
Specifications ............................................ 7  
4.1 Absolute Maximum Ratings .......................... 7  
4.2 Handling Ratings ..................................... 7  
2
3
5
4
4.3  
Recommended Operating Conditions (General  
Characteristics) ....................................... 7  
Thermal Resistance Characteristics for RHB  
4.4  
Package .............................................. 7  
4.5 RF Characteristics.................................... 8  
4.6 Regulatory Standards ................................ 8  
4.7 Current Consumption, Static Modes ................. 9  
4.8 Current Consumption, Transmit Modes .............. 9  
4.9 Current Consumption, Receive Modes.............. 10  
4.10 Receive Parameters................................. 11  
4.11 Transmit Parameters................................ 14  
4.12 PLL Parameters ..................................... 15  
4.13 Wake-up and Timing ................................ 16  
4.14 40-MHz Crystal Oscillator ........................... 16  
6
7
8
版权 © 2013–2014, Texas Instruments Incorporated  
内容  
3
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
2 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
本数据手册修订历史记录强调了使 SWRS154A 器件专用数据手册变为 SWRS154B 修订版本所做的更改。  
Changes from Revision A (June 2014) to Revision B  
Page  
Added Ambient to the temperature range condition and removed Tj from Temperature range ........................... 7  
Added data to TCXO table......................................................................................................... 16  
4
修订历史记录  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
3 Terminal Configuration and Functions  
3.1 Pin Diagram  
Figure 3-1 shows pin names and locations for the CC1201 device.  
Figure 3-1. Package 5-mm × 5-mm QFN  
Copyright © 2013–2014, Texas Instruments Incorporated  
Terminal Configuration and Functions  
5
Submit Documentation Feedback  
Product Folder Links: CC1201  
 
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
3.2 Pin Configuration  
The following table lists the pin-out configuration for the CC1201 device.  
PIN NO. PIN NAME  
TYPE / DIRECTION DESCRIPTION  
1
VDD_GUARD  
RESET_N  
GPIO3  
GPIO2  
DVDD  
Power  
2.0–3.6 V VDD  
2
Digital input  
Digital I/O  
Digital I/O  
Power  
Asynchronous, active-low digital reset  
General-purpose I/O  
3
4
General-purpose I/O  
5
2.0–3.6 VDD to internal digital regulator  
Digital regulator output to external decoupling capacitor  
Serial data in  
6
DCPL  
Power  
7
SI  
Digital input  
Digital input  
Digital I/O  
Digital I/O  
Digital input  
Power  
8
SCLK  
Serial data clock  
9
SO(GPIO1)  
GPIO0  
CSn  
Serial data out (general-purpose I/O)  
General-purpose I/O  
10  
11  
12  
13  
14  
15  
16  
17  
Active-low chip select  
DVDD  
2.0–3.6 V VDD  
AVDD_IF  
RBIAS  
AVDD_RF  
N.C.  
Power  
2.0–3.6 V VDD  
Analog  
External high-precision resistor  
2.0–3.6 V VDD  
Power  
Not connected  
PA  
Analog  
Analog  
Single-ended TX output (requires DC path to VDD)  
TX and RX switch. Connected internally to GND in TX and floating (high-  
impedance) in RX.  
18  
TRX_SW  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
LNA_P  
Analog  
Analog  
Power  
Power  
Analog  
Analog  
Power  
Power  
Power  
Power  
Power  
Differential RX input (requires DC path to ground)  
Differential RX input (requires DC path to ground)  
Pin for external decoupling of VCO supply regulator  
2.0–3.6 V VDD  
LNA_N  
DCPL_VCO  
AVDD_SYNTH1  
LPF0  
External loopfilter components  
LPF1  
External loopfilter components  
AVDD_PFD_CHP  
DCPL_PFD_CHP  
AVDD_SYNTH2  
AVDD_XOSC  
DCPL_XOSC  
2.0–3.6 V VDD  
Pin for external decoupling of PFD and CHP regulator  
2.0–3.6 V VDD  
2.0–3.6 V VDD  
Pin for external decoupling of XOSC supply regulator  
Crystal oscillator pin 1 (must be grounded if a TCXO or other external clock  
connected to EXT_XOSC is used)  
30  
31  
XOSC_Q1  
XOSC_Q2  
Analog  
Analog  
Crystal oscillator pin 2 (must be left floating if a TCXO or other external clock  
connected to EXT_XOSC is used)  
Pin for external clock input (must be grounded if a regular crystal connected to  
XOSC_Q1 and XOSC_Q2 is used)  
32  
EXT_XOSC  
GND  
Digital input  
Ground pad  
The ground pad must be connected to a solid ground plane.  
6
Terminal Configuration and Functions  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
4 Specifications  
All measurements performed on CC1200EM_868_930 rev.1.0.0, CC1200EM_420_470 rev.1.0.1, or  
CC1200EM_169 rev.1.2.  
4.1 Absolute Maximum Ratings(1)(2)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
3.9  
UNIT  
V
CONDITION  
Supply voltage (VDD, AVDD_x)  
Input RF level  
–0.3  
All supply pins must have the same voltage  
+10  
dBm  
V
Voltage on any digital pin  
–0.3  
–0.3  
VDD+0.3  
max 3.9 V  
Voltage on any analog Pin  
(including DCPL pins)  
2.0  
V
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
4.2 Handling Ratings  
MIN  
–40  
–2  
MAX  
125  
2
UNIT  
°C  
Tstg  
Storage temperature range  
Electrostatic Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
kV  
discharge  
(ESD)  
performance:  
VESD  
Charged device model (CDM), per JESD22-  
All pins  
–500  
500  
V
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V HBM allows safe manufacturing with a standard ESD control process.  
4.3 Recommended Operating Conditions (General Characteristics)  
PARAMETER  
MIN  
2.0  
0
TYP  
MAX  
3.6  
UNIT CONDITION  
Voltage supply range  
Voltage on digital inputs  
Temperature range  
V
V
All supply pins must have the same voltage  
Ambient  
VDD  
85  
–40  
°C  
4.4 Thermal Resistance Characteristics for RHB Package  
°C/W(1)  
21.1  
5.3  
AIR FLOW (m/s)(2)  
RθJC  
RθJB  
RθJA  
PsiJT  
PsiJB  
RθJC  
Junction-to-case (top)  
Junction-to-board  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
Junction-to-free air  
31.3  
0.2  
Junction-to-package top  
Junction-to-board  
5.3  
Junction-to-case (bottom)  
0.8  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Power dissipation of 40 mW and an ambient temperature of 25ºC is assumed.  
(2) m/s = meters per second  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
7
Product Folder Links: CC1201  
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
4.5 RF Characteristics  
PARAMETER  
MIN  
820  
410  
164  
TYP  
MAX  
950  
UNIT CONDITION  
MHz  
MHz  
MHz  
MHz  
475  
190  
Frequency bands  
(274)  
(205)  
(137)  
(316.6)  
(237.5)  
(158.3)  
Contact TI for more information about the use  
of these frequency bands.  
MHz  
MHz  
Hz  
30  
15  
6
In 820–950 MHz band  
In 410–475 MHz band  
In 164–190 MHz band  
Packet mode  
Frequency resolution  
Data rate  
Hz  
Hz  
0
0
1250  
625  
kbps  
kbps  
Transparent mode  
4.6 Regulatory Standards  
FREQUENCY BAND  
SUITABLE FOR COMPLIANCE  
WITH  
COMMENTS  
PERFORMANCE MODE  
Performance also suitable for  
systems targeting maximum  
allowed output power in the  
respective bands, using a  
range extender such as the  
CC1190  
ARIB STD-T108  
ETSI EN 300 220 receiver categories  
2 and 3  
820–950 MHz  
FCC PART 15.247  
FCC PART 15.249  
Performance also suitable for  
systems targeting maximum  
allowed output power in the  
respective bands, using a  
range extender  
High-performance mode  
ETSI EN 300 220 receiver categories  
2 and 3  
410–475 MHz  
Performance also suitable for  
systems targeting maximum  
allowed output power in the  
respective bands, using a  
range extender  
164–190 MHz  
820–950 MHz  
ETSI EN 300 220  
ETSI EN 300 220 receiver categories  
2 and 3  
FCC PART 15.247  
FCC PART 15.249  
Low-power mode  
ETSI EN 300 220 receiver categories  
2 and 3  
410–475 MHz  
164–190 MHz  
ETSI EN 300 220  
8
Specifications  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
4.7 Current Consumption, Static Modes  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
0.12  
0.5  
MAX  
UNIT CONDITION  
1
µA  
µA  
µA  
mA  
Power down with retention  
Low-power RC oscillator running  
XOFF mode  
IDLE mode  
180  
1.5  
Crystal oscillator / TCXO disabled  
Clock running, system waiting with no radio activity  
4.8 Current Consumption, Transmit Modes  
4.8.1 868-, 915-, and 920-MHz Bands (High-Performance Mode)  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
mA  
CONDITION  
TX current consumption +14 dBm  
TX current consumption +10 dBm  
46  
36  
mA  
4.8.2 433-MHz Band (High-Performance Mode)  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
mA  
CONDITION  
TX current consumption +15 dBm  
TX current consumption +14 dBm  
TX current consumption +10 dBm  
49  
46  
mA  
35  
mA  
Copyright © 2013–2014, Texas Instruments Incorporated  
Specifications  
9
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
4.8.3 169-MHz Band (High Performance Mode)  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
mA  
CONDITION  
TX current consumption +15 dBm  
TX current consumption +14 dBm  
TX current consumption +10 dBm  
54  
50  
mA  
39  
mA  
4.8.4 Low-Power Mode  
TA = 25°C, VDD = 3.0 V, fc = 869.5 MHz (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
TX Current Consumption +10 dBm  
33.6  
mA  
4.9 Current Consumption, Receive Modes  
4.9.1 High-Performance Mode  
TA = 25°C, VDD = 3.0 V, fc = 869.5 MHz (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
RX wait for sync  
Using RX Sniff Mode, where the receiver wakes up  
at regular intervals looking for an incoming packet.  
Sniff mode configured to terminate on carrier  
sense, and is measured using RSSI_VALID  
_COUNT = 1 (0 for 1.2 kbps), AGC_WIN_SIZE = 0,  
and SETTLE_WAIT = 1.(1)  
1.2 kbps, 4-byte preamble  
38.4 kbps, 12-byte preamble  
50 kbps, 24-byte preamble  
0.5  
3.5  
2.1  
mA  
mA  
mA  
RX peak current  
1.2 kbps  
Peak current consumption during packet reception  
23.6  
8
mA  
µA  
Average current consumption  
Check for data packet every 1 second using  
eWOR  
50 kbps, 5-byte preamble, 40-kHz RC oscillator  
used as eWOR timer  
(1) See the sniff mode design note for more information (SWRA428)  
4.9.2 Low-Power Mode  
TA = 25°C, VDD = 3.0 V, fc = 869.5 MHz (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
RX Peak current low-power RX mode  
50 kbps  
Peak current consumption during packet reception  
at the sensitivity limit  
19  
mA  
10  
Specifications  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
4.10 Receive Parameters  
All RX measurements made at the antenna connector, to a bit error rate (BER) limit of 1%. Selectivity and  
blocking is measured with the desired signal 3 dB above the sensitivity level.  
4.10.1 General Receive Parameters (High-Performance Mode)  
TA = 25°C, VDD = 3.0 V, fc = 869.5 MHz (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
Saturation  
+10  
dBm  
Digital channel filter programmable  
bandwidth  
50  
1600  
kHz  
IIP3  
–14  
±14  
dBm  
%
At maximum gain  
With carrier sense detection enabled  
With carrier sense detection disabled  
Data rate offset tolerance  
±1600  
ppm  
Spurious emissions  
Radiated emissions measured according to ETSI  
EN 300 220, fc = 869.5 MHz  
1–13 GHz (VCO leakage at 3.5 GHz)  
30 MHz to 1 GHz  
< –56  
< –57  
dBm  
dBm  
Optimum source impedance  
868-, 915-, and 920-MHz bands  
433-MHz band  
60 + j60 / 30 + j30  
(Differential or Single-Ended RX Configurations)  
100 + j60 / 50 + j30  
140 + j40 / 70 + j20  
169-MHz band  
Copyright © 2013–2014, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
4.10.2 RX Performance in 868-, 915-, and 920-MHz Bands (High-Performance Mode)  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
–119  
–113  
MAX  
UNIT  
dBm  
dBm  
CONDITION  
1.2 kbps 2-FSK, DEV=20 kHz CHF=50 kHz(1)  
4.8 kbps OOK CHF=128 kHz(1)  
32.768 kbps 2-GFSK, DEV=50 kHz CHF=208  
kHz(1)  
–108  
dBm  
Sensitivity  
–110  
–109  
–97  
–97  
50  
50  
75  
80  
38  
46  
66  
70  
44  
44  
64  
72  
41  
46  
65  
71  
45  
54  
63  
68  
42  
42  
57  
46  
52  
59  
dBm  
dBm  
dBm  
dBm  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
38.4 kbps 2-GFSK, DEV=20 kHz CHF=104 kHz(1)  
50 kbps 2-GFSK, DEV=25 kHz, CHF=104 kHz(1)  
500 kbps 2-GMSK, CHF=833 kHz(1)  
1 Mbps 4-GFSK, DEV=400 kHz, CHF=1.66 MHz(1)  
± 50 kHz (adjacent channel)  
± 100 kHz (alternate channel)  
± 2 MHz  
Blocking and selectivity  
1.2-kbps 2-FSK, 50-kHz channel  
separation, 20-kHz deviation, 50-kHz  
channel filter  
± 10 MHz  
± 200 kHz  
Blocking and selectivity  
± 400 kHz  
32.768-kbps 2-GFSK, 200-kHz channel  
separation, 50-kHz deviation, 208-kHz  
channel filter  
± 2 MHz  
± 10 MHz  
+ 100 kHz (adjacent channel)  
± 200 kHz (alternate channel)  
± 2 MHz  
Blocking and selectivity  
38.4-kbps 2-GFSK, 100-kHz channel  
separation, 20-kHz deviation, 104-kHz  
channel filter  
± 10 MHz  
± 200 kHz (adjacent channel)  
± 400 kHz (alternate channel)  
± 2 MHz  
Blocking and selectivity  
50-kbps 2-GFSK, 200-kHz channel  
separation, 25-kHz deviation, 104-kHz  
channel filter (Same modulation format as  
802.15.4g Mandatory Mode)  
± 10 MHz  
± 400 kHz (adjacent channel)  
± 800 kHz (alternate channel)  
± 2 MHz  
Blocking and selectivity  
100-kbps 2-GFSK, 50-kHz deviation,  
208-kHz channel filter  
± 10 MHz  
+ 1 MHz (adjacent channel)  
± 2 MHz (alternate channel)  
± 10 MHz  
Blocking and selectivity  
500-kbps GMSK, 833-kHz channel filter  
± 2 MHz (adjacent channel)  
± 4 MHz (alternate channel)  
± 10 MHz  
Blocking and selectivity  
1-Mbps 4-GFSK, 400-kHz deviation,  
1.6-MHz channel filter  
(1) DEV is short for deviation, CHF is short for Channel Filter Bandwidth  
12  
Specifications  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
4.10.3 RX Performance in 433-MHz Band (High-Performance Mode)  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
1.2 kbps 2-FSK, DEV=20 kHz  
CHF=50 kHz(1)  
–120  
dBm  
Sensitivity  
–111  
56  
dBm  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
38.4 kbps 2-GFSK, DEV=20 kHz CHF=104 kHz(1)  
± 50 kHz (adjacent channel)  
± 100 kHz (alternate channel)  
± 2 MHz  
Blocking and selectivity  
56  
1.2-kbps 2-FSK, 50-kHz channel  
separation, 20-kHz deviation, 50-kHz  
channel filter  
79  
84  
± 10 MHz  
49  
+ 100 kHz (adjacent channel)  
± 200 kHz (alternate channel)  
± 2 MHz  
Blocking and selectivity  
48  
38.4-kbps 2-GFSK, 100-kHz channel  
separation, 20-kHz deviation, 104-kHz  
channel filter  
66  
74  
± 10 MHz  
(1) DEV is short for deviation, CHF is short for Channel Filter Bandwidth  
4.10.4 RX Performance in 169-MHz Band (High-Performance Mode)  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
–119  
62  
MAX  
UNIT  
dBm  
dB  
CONDITION  
Sensitivity  
1.2 kbps 2-FSK, DEV=20 kHz CHF=50 kHz(1)  
± 50 kHz (adjacent channel)  
± 100 kHz (alternate channel)  
± 2 MHz  
Blocking and Selectivity  
62  
dB  
1.2 kbps 2-FSK, 50 kHz channel  
separation, 20 kHz deviation, 50 kHz  
channel filter  
81  
dB  
85  
dB  
± 10 MHz  
Image rejection  
(Image compensation enabled)  
1.2 kbps, DEV=20 kHz, CHF=50 kHz, image at  
–417 kHz(1)  
67  
dB  
(1) DEV is short for deviation, CHF is short for Channel Filter Bandwidth  
4.10.5 RX Performance in Low-Power Mode  
TA = 25°C, VDD = 3.0 V, fc = 869.5 MHz (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
–96  
41  
MAX  
UNIT  
dBm  
dB  
CONDITION  
Sensitivity  
50 kbps 2-GFSK, DEV=25 kHz, CHF=119 kHz(1)  
+ 200 kHz (adjacent channel)  
+ 400 kHz (alternate channel)  
± 2 MHz  
Blocking and selectivity  
50 kbps 2-GFSK, 200-kHz channel  
separation, 25-kHz deviation, 104-kHz  
channel filter  
45  
dB  
62  
dB  
(Same modulation format as 802.15.4g  
Mandatory Mode)  
60  
10  
dB  
± 10 MHz  
Saturation  
dBm  
(1) DEV is short for deviation, CHF is short for Channel Filter Bandwidth  
Copyright © 2013–2014, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
4.11 Transmit Parameters  
TA = 25°C, VDD = 3.0 V, fc = 869.5 MHz (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
+14  
+15  
+15  
+16  
+15  
+16  
+15  
+16  
–12  
–38  
0.4  
MAX  
UNIT  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dB  
CONDITION  
At 915/920 MHz  
At 915/920 MHz with VDD = 3.6 V  
At 868 MHz  
At 868 MHz with VDD = 3.6 V  
At 433 MHz  
Max output power  
At 433 MHz with VDD = 3.6 V  
At 169 MHz  
At 169 MHz with VDD = 3.6 V  
Within fine step size range  
Within coarse step size range  
Within fine step size range  
Min output power  
Output power step size  
Adjacent channel power  
4-GFSK 9.6 kbps in 12.5 kHz channel, measured in  
8.75 kHz bandwidth (ETSI 300 220 compliant)  
–60  
dBc  
Spurious emissions  
(Excluding harmonics)  
Transmission at +14 dBm  
Suitable for systems targeting compliance with ETSI  
EN 300-220, FCC part 15, ARIB STD-T108  
Measured in 1 MHz bandwidth  
30 MHz–1 GHz  
< –57  
< –50  
dBm  
dBm  
1–12.75 GHz  
Harmonics  
Second Harm, 169 MHz (ETSI)  
Third Harm, 169 MHz (ETSI)  
Fourth Harm, 169 MHz (ETSI)  
–43  
–57  
–63  
dBm  
dBm  
dBm  
Second Harm, 433 MHz (ETSI)  
Third Harm, 433 MHz (ETSI)  
Fourth Harm, 433 MHz (ETSI)  
–59  
–51  
–63  
dBm  
dBm  
dBm  
Transmission at +14 dBm (or maximum allowed in  
applicable band where this is less than +14 dBm)  
using TI reference design  
Suitable for systems targeting compliance with ETSI  
EN 300-220, FCC part 15, ARIB STD-T108  
Second Harm, 868 MHz (ETSI)  
Third Harm, 868 MHz (ETSI)  
Fourth Harm, 868 MHz (ETSI)  
–50  
–44  
–56  
dBm  
dBm  
dBm  
Second Harm, 915 MHz (FCC)  
Third Harm, 915 MHz (FCC)  
Fourth Harm, 915 MHz (FCC)  
–58  
–46  
–62  
dBm  
dBm  
dBm  
Second Harm, 920 MHz (ARIB)  
Third Harm, 920 MHz (ARIB)  
Optimum load impedance  
868-, 915-, and 920-MHz bands  
433-MHz band  
–65  
–60  
dBm  
dBm  
35 + j35  
55 + j25  
80 + j0  
169-MHz band  
14  
Specifications  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
4.12 PLL Parameters  
4.12.1 High Performance Mode  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
–94  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
± 10 kHz offset  
± 100 kHz offset  
± 1 MHz offset  
± 10 MHz offset  
± 10 kHz offset  
± 100 kHz offset  
± 1 MHz offset  
± 10 MHz offset  
± 10 kHz offset  
± 100 kHz offset  
± 1 MHz offset  
± 10 MHz offset  
± 10 kHz offset  
± 100 kHz offset  
± 1 MHz offset  
± 10 MHz offset  
± 10 kHz offset  
± 100 kHz offset  
± 1 MHz offset  
± 10 MHz offset  
± 10 kHz offset  
± 100 kHz offset  
± 1 MHz offset  
± 10 MHz offset  
Phase noise in 868-, 915-, and 920-MHz  
Bands  
200-kHz loop bandwidth setting  
–96  
–123  
–137  
–100  
–102  
–121  
–136  
–103  
–104  
–119  
–133  
–104  
–106  
–116  
–130  
–106  
–107  
–127  
–141  
–114  
–114  
–132  
–142  
Phase noise in 868-, 915-, and 920-MHz  
Bands  
300-kHz loop bandwidth setting  
Phase noise in 868-, 915-, and 920-MHz  
Bands  
400-kHz loop bandwidth setting  
Phase noise in 868-, 915-, and 920-MHz  
Bands  
500-kHz loop bandwidth setting  
Phase noise in 433-MHz band  
300-kHz loop bandwidth setting  
Phase noise in 169-MHz band  
300-kHz loop bandwidth setting  
4.12.2 Low-Power Mode  
PARAMETER  
MIN  
TYP  
–99  
MAX  
UNIT  
CONDITION  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
± 10 kHz offset  
± 100 kHz offset  
± 1 MHz offset  
± 10 MHz offset  
Phase noise in 868-, 915-, and 920-MHz  
bands  
200-kHz loop bandwidth setting  
–101  
–121  
–135  
Copyright © 2013–2014, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
4.13 Wake-up and Timing  
TA = 25°C, VDD = 3.0 V, fc = 869.5 MHz (unless otherwise noted)  
The turnaround behavior to and from RX and/or TX is highly configurable, and the time it takes will depend on  
how the device is set up. See the CC120X user guide (SWRU346) for more information.  
PARAMETER  
MIN  
TYP  
0.24  
133  
369  
43  
MAX  
UNIT  
ms  
µs  
CONDITION  
Powerdown to IDLE  
Depends on crystal  
Calibration disabled  
Calibration enabled  
IDLE to RX/TX  
µs  
RX/TX turnaround  
RX-to-RX turnaround  
µs  
369  
0
µs  
With PLL calibration  
µs  
Without PLL calibration  
369  
0
µs  
With PLL calibration  
TX-to-TX turnaround  
µs  
Without PLL calibration  
237  
0
µs  
Calibrate when leaving RX/TX enabled  
Calibrate when leaving RX/TX disabled  
When using SCAL strobe  
RX/TX to IDLE time  
µs  
Frequency synthesizer calibration  
314  
µs  
Minimum required number of preamble  
bytes  
Time from start RX until valid RSSI(1)  
Including gain settling (function of channel  
bandwidth. Programmable for trade-off  
between speed and accuracy)  
Required for RF front end gain settling only. Digital  
demodulation does not require preamble for settling  
0.5  
bytes  
ms  
0.25  
120-kHz channels  
(1) See the design note on RSSI and response time. It is written for the CC112X devices, but the same principles apply for the CC1201  
device.  
4.14 40-MHz Crystal Oscillator  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
It is expected that there will be degraded sensitivity  
at multiples of XOSC/2 in RX, and an increase in  
spurious emissions when the RF channel is close to  
multiples of XOSC in TX. We recommend that the  
RF channel is kept RX_BW/2 away from XOSC/2 in  
RX, and that the level of spurious emissions be  
evaluated if the RF channel is closer than 1 MHz to  
multiples of XOSC in TX.  
Crystal frequency  
38.4  
40  
MHz  
Load capacitance (CL)  
ESR  
10  
pF  
60  
Simulated over operating conditions  
Depends on crystal  
Start-up time  
0.24  
ms  
4.15 40-MHz Clock Input (TCXO)  
TA = 25°C, VDD = 3.0 V if nothing else stated  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
Clock frequency  
38.4  
40  
MHz  
TCXO with CMOS output  
High input voltage  
Low input voltage  
Rise / Fall time  
TCXO with CMOS output directly  
coupled to pin EXT_OSC  
1.4  
0
VDD  
0.6  
2
V
V
ns  
Clipped sine output  
TCXO clipped sine output connected  
to pin EXT_OSC through series  
capacitor  
0.8  
1.5  
V
Clock input amplitude (peak-to-peak)  
16  
Specifications  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
4.16 32-kHz Clock Input  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT CONDITION  
Clock frequency  
32  
kHz  
V
32-kHz clock input pin input high voltage  
32-kHz clock input pin input low voltage  
0.8 x VDD  
0.2 x VDD  
V
4.17 40-kHz RC Oscillator  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
After calibration (frequency calibrated against the  
40-MHz crystal or TCXO)  
Frequency  
40  
kHz  
Relative to frequency reference (that is, 40-MHz  
crystal or TCXO)  
Frequency accuracy after calibration  
Initial calibration time  
±0.1  
1.32  
%
ms  
4.18 I/O and Reset  
TA = 25°C, VDD = 3.0 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
0.8 x  
VDD  
Logic input high voltage  
V
0.2 x  
VDD  
Logic input low voltage  
Logic output high voltage  
V
V
0.8 x  
VDD  
At 4-mA output load or less  
Voltage on DVDD pin  
0.2 x  
VDD  
Logic output low voltage  
Power-on reset threshold  
V
V
1.3  
4.19 Temperature Sensor  
TA = 25°C, VDD = 3.0 V (unless otherwise noted).  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
Temperature sensor range  
–40  
85  
°C  
Change in sensor output voltage versus change in  
temperature  
Temperature coefficient  
Typical output voltage  
VDD coefficient  
2.66  
794  
mV / °C  
mV  
Typical sensor output voltage at TA = 25°C, VDD =  
3.0 V  
Change in sensor output voltage versus change in  
VDD  
1.17  
mV / V  
The CC1201 device can be configured to provide a voltage proportional to temperature on GPIO1. The  
temperature can be estimated by measuring this voltage (see Section 4.19, Temperature Sensor). For more  
information, see the temperature sensor design note (SWRA415).  
Copyright © 2013–2014, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: CC1201  
 
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
4.20 Typical Characteristics  
TA = 25°C, VDD = 3.0 V, fc = 869.5 MHz (unless otherwise noted)  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
60  
40  
20  
0
-20  
-40  
-10  
-20  
-110  
-90  
-70  
-50  
-30  
-10  
-2  
-1  
0
1
2
Input Level (dBm)  
Offset Frequency (MHz)  
50-kbps GFSK, 25-kHz Deviation, 104-kHz Channel Filter Bandwidth  
50 kbps, 25-kHz Deviation, 104-kHz Channel Filter Bandwidth Image  
Frequency at –0.28-MHz Offset  
Figure 4-2. Selectivity vs Offset Frequency (100-kHz Channels)  
Figure 4-1. RSSI vs Input Level  
16  
15  
14  
13  
12  
16  
15  
14  
13  
12  
11  
10  
-40  
0
40  
Temperature (ºC)  
80  
2
2.5  
3
3.5  
Supply Voltage (V)  
Maximum Output Power Setting (0x7F)  
Figure 4-4. Output Power vs Temperature  
Maximum Output Power Setting (0x7F)  
Figure 4-3. Output Power vs Supply Voltage  
20  
10  
60  
50  
40  
30  
20  
10  
0
0
-10  
-20  
-30  
-40  
-50  
PA power setting  
PA power setting  
Figure 4-5. Output Power at 868 MHz  
vs PA Power Setting  
Figure 4-6. TX Current at 868 MHz  
vs PA Power Setting  
18  
Specifications  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
Typical Characteristics (continued)  
1 Mbps 4-GFSK, 400-kHz Deviation 500-kHz Loop Bandwidth  
1 Mbps 4-GFSK, 400-kHz Deviation 300-kHz Loop Bandwidth  
Figure 4-7. Eye Diagram  
Figure 4-8. Eye Diagram  
3.1  
1.4  
1.2  
1
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
0.8  
0.6  
0.4  
0.2  
0
Output High Voltage  
Output Low Voltage  
0
5
10  
15  
20  
25  
30  
Current (mA)  
1 kbps GFSK, 25-kHz Deviation 200-kHz Loop Bandwidth  
Figure 4-10. GPIO Output High and Low Voltage  
vs Current Being Sourced and Sinked  
Figure 4-9. Eye Diagram  
200-kHz Loop Bandwidth  
300-kHz Loop Bandwidth  
Figure 4-11. Phase Noise 869.5 MHz (10-kHz to 100-MHz Offset) Figure 4-12. Phase Noise 869.5 MHz (10-kHz to 100-MHz Offset)  
Copyright © 2013–2014, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
500-kHz Loop Bandwidth  
Figure 4-14. Phase Noise 869.5 MHz (10-kHz to 100-MHz Offset)  
400-kHz Loop Bandwidth  
Figure 4-13. Phase Noise 869.5 MHz (10-kHz to 100-MHz Offset)  
20  
Specifications  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
5 Detailed Description  
5.1 Block Diagram  
Figure 5-1 shows the system block diagram of the CC120x family of devices.  
CC120x  
4 kbyte  
ROM  
MARC  
SPI  
Serial configuration  
CSn (chip select)  
SI (serial input)  
Ultra low power 40 kHz  
auto-calibrated RC oscillator  
Main Radio Control unit  
Ultra low power 16 bit  
MCU  
(optional 40 kHz  
clock input)  
Power on reset  
and data interface  
AES-128  
accelerator  
Interrupt and  
IO handler  
System bus  
SO (serial output)  
SCLK (serial clock)  
(optional GPIO3/2/0)  
256 byte  
FIFO RAM  
buffer  
eWOR  
Enhanced ultra low power  
Wake On Radio timer  
Packet handler  
and FIFO control  
Battery sensor /  
temp sensor  
Configuration and  
status registers  
RF and DSP frontend  
Output power ramping and OOK / ASK modulation  
(optional auto detected  
external XOSC / TCXO)  
I
+16 dBm high  
efficiency PA  
XOSC_Q1  
XOSC_Q2  
PA out  
Fully integrated fractional-N  
frequency synthesizer  
Data interface with  
signal chain access  
XOSC  
Q
90 dB dynamic  
range ADC  
IF amp  
IF amp  
LNA_P  
LNA_N  
(optional bit clock)  
Highly flexible FSK / OOK  
demodulator  
High linearity  
LNA  
(optional low jitter serial  
data output for legacy  
protocols)  
90 dB dynamic  
range ADC  
AGC  
Automatic Gain Control, 60dB VGA range  
RSSI measurements and carrier sense detection  
(optional GPIO for  
antenna diversity)  
Figure 5-1. System Block Diagram  
5.2 Frequency Synthesizer  
At the center of the CC1201 device there is a fully integrated, fractional-N, ultra-high-performance  
frequency synthesizer. The frequency synthesizer is designed for excellent phase noise performance,  
providing very high selectivity and blocking performance. The system is designed to comply with the most  
stringent regulatory spectral masks at maximum transmit power.  
Either a crystal can be connected to XOSC_Q1 and XOSC_Q2, or a TCXO can be connected to the  
EXT_XOSC input. The oscillator generates the reference frequency for the synthesizer, as well as clocks  
for the analog-to-digital converter (ADC) and the digital part. To reduce system cost, the CC1201 device  
has high-accuracy frequency estimation and compensation registers to measure and compensate for  
crystal inaccuracies. This compensation enables the use of lower cost crystals. If a TCXO is used, the  
CC1201 device automatically turns on and off the TCXO when needed to support low-power modes and  
Wake-On-Radio operation.  
Copyright © 2013–2014, Texas Instruments Incorporated  
Detailed Description  
21  
Submit Documentation Feedback  
Product Folder Links: CC1201  
 
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
5.3 Receiver  
The CC1201 device features a highly flexible receiver. The received RF signal is amplified by the low-  
noise amplifier (LNA) and is down-converted in quadrature (I/Q) to the intermediate frequency (IF). At IF,  
the I/Q signals are digitized by the high dynamic-range ADCs.  
An advanced automatic gain control (AGC) unit adjusts the front-end gain, and enables the CC1201  
device to receive strong and weak signals, even in the presence of strong interferers. High-attenuation  
channel and data filtering enable reception with strong neighbor channel interferers. The I/Q signal is  
converted to a phase and magnitude signal to support the FSK and OOK modulation schemes.  
NOTE  
A unique I/Q compensation algorithm removes any problem of I/Q mismatch, thus avoiding  
time-consuming and costly I/Q image calibration steps.  
5.4 Transmitter  
The CC1201 transmitter is based on direct synthesis of the RF frequency (in-loop modulation). To use the  
spectrum effectively, the CC1201 device has extensive data filtering and shaping in TX mode to support  
high throughput data communication in narrowband channels. The modulator also controls power ramping  
to remove issues such as spectral splattering when driving external high-power RF amplifiers.  
5.5 Radio Control and User Interface  
The CC1201 digital control system is built around the main radio control (MARC), which is implemented  
using an internal high-performance, 16-bit ultra-low-power processor. MARC handles power modes, radio  
sequencing, and protocol timing.  
A 4-wire SPI serial interface is used for configuration, strobe commands, and FIFO access. The digital  
baseband includes support for channel configuration, packet handling, and data buffering. The host MCU  
can stay in sleep mode until a valid RF packet is received. This greatly reduces power consumption.  
When the host MCU receives a valid RF packet, it burst-reads the data. This reduces the required  
computing power.  
The CC1201 radio control and user interface are based on the widely used CC1101 transceiver. This  
relationship enables an easy transition between the two platforms. The command strobes and the main  
radio states are the same for the two platforms.  
For legacy formats, the CC1201 device also supports two serial modes.  
Synchronous serial mode: The CC1201 device performs bit synchronization and provides the MCU  
with a bit clock with associated data.  
Transparent mode: The CC1201 device outputs the digital baseband signal using a digital interpolation  
filter to eliminate jitter introduced by digital filtering and demodulation.  
5.6 Enhanced Wake-On-Radio (eWOR)  
eWOR, using a flexible integrated sleep timer, enables automatic receiver polling with no intervention from  
the MCU. When the CC1201 device enters RX mode, it listens and then returns to sleep if a valid RF  
packet is not received. The sleep interval and duty cycle can be configured to make a trade-off between  
network latency and power consumption. Incoming messages are time-stamped to simplify timer re-  
synchronization.  
The eWOR timer runs off an ultra-low-power RC oscillator. To improve timing accuracy, the RC oscillator  
can be automatically calibrated to the RF crystal in configurable intervals.  
22  
Detailed Description  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
5.7 RX Sniff Mode  
The CC1201 device supports quick start up times, and requires few preamble bits. RX Sniff Mode uses  
these conditions to dramatically reduce the current consumption while the receiver is waiting for data.  
Because the CC1201 device can wake up and settle much faster than the duration of most preambles, it  
is not required to be in RX mode continuously while waiting for a packet to arrive. Instead, the Enhanced  
Wake On Radio feature can be used to put the device into sleep mode periodically. By setting an  
appropriate sleep time, the CC1201 device can wake up and receive the packet when it arrives with no  
performance loss. This sequence removes the need for accurate timing synchronization between  
transmitter and receiver, and lets the user trade off current consumption between the transmitter and  
receiver.  
For more information, see the sniff mode design note (SWRA428).  
5.8 Antenna Diversity  
Antenna diversity can increase performance in a multipath environment. An external antenna switch is  
required. The CC1201 device uses one of the GPIO pins to automatically control the switch. This device  
also supports differential output control signals typically used in RF switches.  
If antenna diversity is enabled, the GPIO alternates between high and low states until a valid RF input  
signal is detected. An optional acknowledge packet can be transmitted without changing the state of the  
GPIO.  
An incoming RF signal can be validated by received signal strength or by using the automatic preamble  
detector. Using the automatic preamble detector ensures a more robust system and avoids the need to  
set a defined signal strength threshold (such a threshold sets the sensitivity limit of the system).  
Copyright © 2013–2014, Texas Instruments Incorporated  
Detailed Description  
23  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
5.9 WaveMatch  
Advanced capture logic locks onto the synchronization word and does not require preamble settling bytes.  
Therefore, receiver settling time is reduced to the settling time of the AGC, typically 4 bits.  
The WaveMatch feature also greatly reduces false sync triggering on noise, further reducing the power  
consumption and improving sensitivity and reliability. The same logic can also be used as a high-  
performance preamble detector to reliably detect a valid preamble in the channel.  
See swrc046 for more information.  
Figure 5-2. Receiver Configurator in SmartRF™ Studio  
24  
Detailed Description  
Copyright © 2013–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
6 Typical Application Circuit  
NOTE  
This section is intended only as an introduction.  
Very few external components are required for the operation of the CC1201 device. Figure 6-1 shows a  
typical application circuit. The board layout will greatly influence the performance of the CC1201 device.  
Figure 6-1 does not show decoupling capacitors for power pins.  
Optional  
40 MHz  
crystal  
XOSC/  
TCXO  
(optional control pin  
from CC1200)  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
LPF1  
LPF0  
VDD  
VDD_GUARD  
RESET_N  
GPIO3  
GPIO2  
DVDD  
DCPL  
SI  
AVDD_SYNTH1  
DCPL_VCO  
LNA_N  
VDD  
VDD  
CC1201  
LNA_P  
TRX_SW  
PA  
SCLK  
MCU connection  
SPI interface and  
optional gpio pins  
Figure 6-1. Typical Application Circuit  
For more information, see the reference designs available for the CC1201 device in 7.2,  
Documentation Support.  
版权 © 2013–2014, Texas Instruments Incorporated  
Typical Application Circuit  
25  
提交文档反馈意见  
产品主页链接: CC1201  
 
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
7 器件和文档支持  
7.1 器件支持  
7.1.1 开发支持  
7.1.1.1 配置软件  
CC1201 器件可使用 SmartRF Studio 软件 (SWRC046) 进行配置。 强烈建议使用 SmartRF Studio 软件来  
获取最优寄存器设置并评估相关性能和功能。  
7.1.2 器件和支持开发工具命名规则  
为了指出产品开发周期所处的阶段,TI 为所有微处理器 (MPU) 和支持工具的产品型号分配了前缀。 每个器  
件都具有以下三个前缀中的一个:XP 或无(无前缀)(例如,CC1201)。 德州仪器 (TI) 建议为其支持  
的工具使用三个可用前缀指示符中的两个:TMDX TMDS。 这些前缀代表了产品开发的发展阶段,即从  
工程原型 (TMDX) 直到完全合格的生产器件和工具 (TMDS)。  
器件开发进化流程:  
X
试验器件不一定代表最终器件的电气规范标准并且不可使用生产组装流程。  
原型器件不一定是最终芯片模型并且不一定符合最终电气标准规范。  
完全合格的芯片模型的生产版本。  
P
支持工具开发发展流程:  
TMDX  
TMDS  
还未经德州仪器 (TI) 完整内部质量测试的开发支持产品。  
完全合格的开发支持产品.  
X P 器件和 TMDX 开发支持工具在供货时附带如下免责条款:  
开发的产品用于内部评估用途。”  
生产器件和 TMDS 开发支持工具已进行完全特性描述,并且器件的质量和可靠性已经完全论证。 TI 的标准  
保修证书适用。  
预测显示原型器件(X 或者 P)的故障率大于标准生产器件。 由于它们的预计的最终使用故障率仍未定义,  
德州仪器 (TI) 建议不要将这些器件用于任何生产系统。 只有合格的产品器件将被使用。  
TI 器件的命名规则也包括一个带有器件系列名称的后缀。 这个后缀表示封装类型(例如,RHB),温度范  
围(例如,空白是默认的商业级温度范围)以及器件速度范围(以  
CC1201 器件完整器件名称的图例。  
MHz  
为单位),提供了读取任一  
要获得  
QFN  
封装类型的  
CC1201  
器件订购部件号,请参见本文档的封装选项附录TI  
网站  
www.ti.com),或者联系您的 TI 销售代表。  
26  
器件和文档支持  
版权 © 2013–2014, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC1201  
CC1201  
www.ti.com.cn  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
7.2 文档支持  
以下文档介绍了 CC1201 处理器。 www.ti.com 网站上提供了这些文档的副本。 提示:请在 www.ti.com 上  
提供的搜索框中输入文献编号。  
SWRR106 CC112x IPC 868MHz 915MHz 2 层参考设计  
SWRR107 CC112x IPC 868MHz 915MHz 4 层参考设计  
SWRR122 CC1201EM 420MHz 470MHz 参考设计  
SWRR121 CC1201EM 868MHz 930MHz 参考设计  
SWRC046 SmartRF Studio 软件  
SWRA428 CC112x/CC120x 嗅探模式应用手册  
7.3 社区资源  
下列链接提供到 TI 社区资源的连接。 链接的内容由各个分销商按照原样提供。 这些内容并不构成 TI 技术  
规范和标准且不一定反映 TI 的观点;请见 TI 使用条款。  
TI E2E™ 在线社区 TI 工程师对工程师 (E2E) 社区。 此社区的创建目的是为了促进工程师之间协作。 在  
e2e.ti.com 中,您可以咨询问题、共享知识、探索思路,在同领域工程师的帮助下解决问题。  
德州仪器 (TI) 嵌入式处理器维基网站 德州仪器 (TI) 嵌入式处理器维基网站。 此网站的建立是为了帮助开发  
人员从德州仪器 (TI) 的嵌入式处理器入门并且也为了促进与这些器件相关的硬件和软件的总体  
知识的创新和增长。  
7.4 商标  
SmartRF, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
7.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
7.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
版权 © 2013–2014, Texas Instruments Incorporated  
提交文档反馈意见  
器件和文档支持  
27  
产品主页链接: CC1201  
CC1201  
ZHCSBX5B OCTOBER 2013REVISED OCTOBER 2014  
www.ti.com.cn  
8 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知  
且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
28  
机械封装和可订购信息  
版权 © 2013–2014, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC1201  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC1201RHBR  
CC1201RHBT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
CC1201  
CC1201  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

CC1201RHBR

高性能低功耗无线收发器 | RHB | 32 | -40 to 85
TI

CC1201RHBT

高性能低功耗无线收发器 | RHB | 32 | -40 to 85
TI

CC1203A00

For electrovalves, style A, 3p+G, female, with cable
SHIELD

CC1206

MULTILAYER CERAMIC CHIP CAPACITORS
TDK

CC1206

CAPACITOR, CERAMIC, MULTILAYER, 6.3 - 100V, SURFACE MOUNT, 1206, CHIP, HALOGEN FREE AND ROHS COMPLIANT
YAGEO

CC1206BC7BN

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS
YAGEO

CC1206BC8BN

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS
YAGEO

CC1206BC9BN

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS
YAGEO

CC1206BCNPO7BN121

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS
YAGEO

CC1206BCNPO7BN151

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS
YAGEO

CC1206BCNPO7BN272

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS
YAGEO

CC1206BCNPO7BN330

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS
YAGEO