CC1311R31T0RKPR [TI]

具有 352kB 闪存的 SimpleLink™ Arm® Cortex®-M4 Sub-1GHz 无线 MCU | RKP | 40 | -40 to 105;
CC1311R31T0RKPR
型号: CC1311R31T0RKPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 352kB 闪存的 SimpleLink™ Arm® Cortex®-M4 Sub-1GHz 无线 MCU | RKP | 40 | -40 to 105

无线 闪存
文件: 总67页 (文件大小:4015K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC1311R3  
ZHCSQ48 MARCH 2022  
CC1311R3 SimpleLink™ 高性Sub-1GHz 线MCU  
MCU 外设  
1 特性  
• 数字外设可连接至任GPIO  
无线微控制器  
• 四32 位或八16 位通用计时器  
12 ADC200ksps8 通道  
8 DAC  
• 功能强大48MHz Arm® Cortex®-M4 处理器  
352KB 闪存程序存储器  
32KB 超低泄SRAM  
• 模拟比较器  
UARTSSII2CI2S  
• 实时时(RTC)  
• 集成温度和电池监控器  
8KB SRAM也可作为通RAM 提供)  
• 可编程无线电包括2-(G)FSK4-(G)FSK、  
MSKOOKIEEE 802.15.4 PHY MAC 的支持  
• 支持无线升(OTA)  
安全驱动工具  
低功耗  
AES 128 位加密加速计  
• 真随机数发生(TRNG)  
MCU 功耗:  
2.63mA 有源模式CoreMark®  
55μA/MHzCoreMark )  
0.7μA 待机模式RTC32KB RAM  
0.1μA 关断模式引脚唤醒  
• 无线电功耗:  
• 软件开发套(SDK) 中提供了其他加密驱动器  
开发工具和软件  
LP-CC1311P3 开发套件  
SimpleLink™ CC13xx CC26xx 软件开发套件  
(SDK)  
• 用于简单无线电配置SmartRF™ Studio  
SysConfig 系统配置工具  
RX5.4mA868MHz 条件下)  
TX24.9mA+14dBm 868MHz 条件  
)  
工作温度范围  
无线协议支持  
• 片上降压直流/直流转换器  
1.8V 3.8V 单电源电压  
-40°C +105°C  
mioty  
线M-Bus  
SimpleLink™ TI 15.4-stack  
6LoWPAN  
封装  
专有系统  
7mm × 7mm RGZ VQFN4830 GPIO)  
5mm × 5mm RKP VQFN4022 GPIO)  
• 符RoHS 标准的封装  
高性能无线电  
-121dBm2.5kbps 远距离模式下)  
-120dBm4.8kbps 窄带模式、433MHz )  
-118dBm9.6kbps 窄带模式、868MHz )  
-110dBm50kbps802.15.4868MHz )  
• 高+14dBm 的输出功率具有温度补偿  
• 低4kHz 的接收器滤波器带宽  
法规遵从性  
• 适用于符合以下标准的系统:  
ETSI EN 300 220 接收器类1.5 2EN 303  
131EN 303 204  
FCC CFR47 15 部分  
ARIB STD-T108  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWRS256  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
– 防火安烟雾和热量探测器气体检测仪以  
火警控制面板  
零售自动化  
2 应用  
电网基础设施  
– 零售自动化和支付应电子货架标签便携  
POS 终端  
个人电子产品  
– 智能仪电表水表燃气表热量分配表  
– 电网通无线通信  
– 电动汽车充电基础设交流充电站  
– 其他替代能能量收集  
楼宇自动化  
射频远程控制  
智能扬声器智能显示器  
游戏电子玩具和机器人玩具  
可穿戴设备非医用智能追踪器  
• 无线模块  
– 楼宇安全系运动检测器门窗传感器玻  
璃破裂探测器紧急按钮电子智能锁IP 网  
络摄像头  
无线第三方模块  
无线通信模块  
HVAC 恒温器环境传感器HVAC 控  
制器  
3 说明  
SimpleLinkCC1311R3 器件是一款多协议 Sub-1GHz 无线微控制器 (MCU)支持以下协议IEEE 802.15.4g、  
支持 IPv6 的智能对象 (6LoWPAN)mioty、专有系统包括 TI 15.4-Stack (Sub-1GHz)CC1311R3 基于  
Arm® Cortex® M4 主处理器针对电网基础设施楼宇自动化零售自动化个人电子产品医疗应用中的低功  
耗无线通信和高级传感功能进行了优化。  
CC1311R3 具有由 Arm® Cortex® M0 驱动的软件定义无线电支持多个物理层和射频标准。该器件支持在  
143MHz 176MHz287MHz 351MHz359MHz 527MHz861MHz 1054MHz1076MHz 至  
1315MHz 频带内运行。CC1311R3 具有高效的内置 PA在电流消耗为 24.9mA TX 支持 +14dBm 的输出功  
率。在 RX 中且在数据速率为 2.5kbps SimpleLink™ 远距离模式下该器件具有 -121dBm 的灵敏度和 88dB  
的屏蔽性(±10MHz)。  
在保32KB RAM CC1311R3 0.7μA 的低待机电流。  
许多客户对产品生命周期的要求10 15 年或者更久为了达到这一目标TI 制定了产品生命周期政策对产  
品的寿命和供货连续性作出承诺。  
CC1311R3 器件是 SimpleLink™ MCU 平台的一部分包括 Wi-Fi®、低功耗 Bluetooth®ThreadZigbeeWi-  
SUN®Amazon SidewalkmiotySub-1GHz MCU 和主机 MCUCC1311R3 是可扩展产品系列闪存为  
32KB 704KB的一部分具有引脚对引脚兼容的封装选项。通用 SimpleLink™ CC13xx CC26xx 软件开发  
(SDK) SysConfig 系统配置工具支持产品系列中各器件之间的迁移。SDK 随附了丰富的软件栈、应用示例  
SimpleLinkAcademy 培训课程。如需了解更多相关信息请查看无线连接。  
器件信息  
器件型号(1)  
CC1311R31T0RGZR  
CC1311R31T0RKPR  
封装尺寸标称值)  
7.00mm × 7.00mm  
5.00mm × 5.00mm  
封装  
VQFN (48)  
VQFN (40)  
(1) 如需所有可用器件的最新器件、封装和订购信息请参阅12 中的“封装选项附录”或访TI 网站。  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
4 功能方框图  
RF Core  
cJTAG  
Main CPU  
40KB  
ROM  
ADC  
ADC  
Arm® Cortex®-M4  
Processor  
352KB  
Flash  
Digital PLL  
with 8KB  
Cache  
DSP Modem  
48 MHz  
SRAM  
ROM  
Arm® Cortex®-M0  
Processor  
32KB  
SRAM  
General Hardware Peripherals and Modules  
I2C  
4× 32-bit Timers  
8-bit DAC  
UART  
SSI (SPI)  
Watchdog Timer  
32 ch. µDMA  
RTC  
12-bit ADC, 200 ks/s  
Low-Power Comparator  
Time-to-Digital Converter  
I2S  
Up to 30 GPIOs  
AES & TRNG  
Temperature and  
Battery Monitor  
LDO, Clocks, and References  
Optional DC/DC Converter  
4-1. CC1311R3 功能方框图  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CC1311R3  
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
Table of Contents  
8.17 Timing and Switching Characteristics..................... 23  
8.18 Peripheral Characteristics.......................................27  
8.19 Typical Characteristics............................................33  
9 Detailed Description......................................................40  
9.1 Overview...................................................................40  
9.2 System CPU............................................................. 40  
9.3 Radio (RF Core)........................................................41  
9.4 Memory.....................................................................43  
9.5 Cryptography............................................................ 44  
9.6 Timers....................................................................... 45  
9.7 Serial Peripherals and I/O.........................................46  
9.8 Battery and Temperature Monitor............................. 46  
9.9 µDMA........................................................................46  
9.10 Debug..................................................................... 46  
9.11 Power Management................................................47  
9.12 Clock Systems........................................................ 48  
9.13 Network Processor..................................................48  
10 Application, Implementation, and Layout................. 49  
10.1 Reference Designs................................................. 49  
10.2 Junction Temperature Calculation...........................50  
11 Device and Documentation Support..........................51  
11.1 Device Nomenclature..............................................51  
11.2 Tools and Software..................................................52  
11.3 Documentation Support.......................................... 54  
11.4 支持资源..................................................................54  
11.5 Trademarks............................................................. 54  
11.6 Electrostatic Discharge Caution..............................55  
11.7 术语表..................................................................... 55  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
4 功能方框图.........................................................................3  
5 Revision History.............................................................. 4  
6 Device Comparison.........................................................5  
7 Pin Configuration and Functions...................................6  
7.1 Pin Diagram RGZ Package (Top View)..................6  
7.2 Signal Descriptions RGZ Package.........................7  
7.3 Pin Diagram RKP Package (Top View).................. 9  
7.4 Signal Descriptions RKP Package......................... 9  
7.5 Connections for Unused Pins and Modules..............11  
8 Specifications................................................................ 12  
8.1 Absolute Maximum Ratings...................................... 12  
8.2 ESD Ratings............................................................. 12  
8.3 Recommended Operating Conditions.......................12  
8.4 Power Supply and Modules...................................... 12  
8.5 Power Consumption - Power Modes........................ 13  
8.6 Power Consumption - Radio Modes......................... 14  
8.7 Nonvolatile (Flash) Memory Characteristics............. 14  
8.8 Thermal Resistance Characteristics......................... 14  
8.9 RF Frequency Bands................................................15  
8.10 861 MHz to 1054 MHz - Receive (RX)....................16  
8.11 861 MHz to 1054 MHz - Transmit (TX) .................. 19  
8.12 861 MHz to 1054 MHz - PLL Phase Noise  
Wideband Mode.......................................................... 20  
8.13 861 MHz to 1054 MHz - PLL Phase Noise  
Narrowband Mode.......................................................20  
8.14 359 MHz to 527 MHz - Receive (RX)......................21  
8.15 359 MHz to 527 MHz - Transmit (TX) .................... 23  
8.16 359 MHz to 527 MHz - PLL Phase Noise............... 23  
Information.................................................................... 56  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
March 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
6 Device Comparison  
RADIO SUPPORT  
PACKAGE SIZE  
FLASH  
(KB)  
RAM +  
Cache (KB)  
Device  
GPIO  
CC1310  
CC1311R3  
CC1311P3  
CC1312R  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
32-128  
352  
352  
352  
704  
352  
352  
704  
128  
352  
352  
352  
352  
352  
352  
704  
352  
704  
16-20 + 8 10-30  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
32 + 8  
32 + 8  
80 + 8  
144 + 8  
80 + 8  
80 + 8  
144 + 8  
20 + 8  
80 + 8  
80 + 8  
32 + 8  
32 + 8  
80 + 8  
80 + 8  
144 + 8  
80 + 8  
144 + 8  
22-30  
26  
X
X
X
30  
CC1312R7  
CC1352R  
X
X
X
X
X
X
X
X
X
X
30  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
28  
CC1352P  
X
X
26  
CC1352P7  
CC2640R2F  
CC2642R  
26  
10-31  
31  
X
X
CC2642R-Q1  
CC2651R3  
CC2651P3  
CC2652R  
31  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
23-31  
22-26  
31  
X
X
X
X
X
X
X
X
X
X
X
X
X
CC2652RB  
CC2652R7  
CC2652P  
31  
31  
X
X
26  
CC2652P7  
26  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
7 Pin Configuration and Functions  
7.1 Pin Diagram RGZ Package (Top View)  
RF_P  
RF_N  
1
2
3
4
5
6
7
8
9
36 DIO_23  
35 RESET_N  
34 VDDS_DCDC  
33 DCDC_SW  
32 DIO_22  
RX_TX  
X32K_Q1  
X32K_Q2  
DIO_1  
31 DIO_21  
DIO_2  
30 DIO_20  
DIO_3  
29 DIO_19  
DIO_4  
28 DIO_18  
DIO_5 10  
DIO_6 11  
DIO_7 12  
27 DIO_17  
26 DIO_16  
25 JTAG_TCKC  
7-1. RGZ (7-mm × 7-mm) Pinout, 0.5-mm Pitch (Top View)  
The following I/O pins marked in 7-1 in bold have high-drive capabilities:  
Pin 10, DIO_5  
Pin 11, DIO_6  
Pin 12, DIO_7  
Pin 24, JTAG_TMSC  
Pin 26, DIO_16  
Pin 27, DIO_17  
The following I/O pins marked in 7-1 in italics have analog capabilities:  
Pin 36, DIO_23  
Pin 37, DIO_24  
Pin 38, DIO_25  
Pin 39, DIO_26  
Pin 40, DIO_27  
Pin 41, DIO_28  
Pin 42, DIO_29  
Pin 43, DIO_30  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
7.2 Signal Descriptions RGZ Package  
7-1. Signal Descriptions RGZ Package  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
33  
23  
6
DCDC_SW  
DCOUPL  
DIO_1  
Power  
Power  
Output from internal DC/DC converter(1)  
For decoupling of internal 1.27 V regulated digital-supply (2)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Digital  
GPIO  
DIO_2  
7
Digital  
GPIO  
DIO_3  
8
Digital  
GPIO  
DIO_4  
9
Digital  
GPIO  
DIO_5  
10  
11  
12  
14  
15  
16  
17  
18  
19  
20  
21  
26  
27  
28  
29  
30  
31  
32  
36  
37  
38  
39  
40  
41  
42  
43  
Digital  
GPIO, high-drive capability  
DIO_6  
Digital  
GPIO, high-drive capability  
DIO_7  
Digital  
GPIO, high-drive capability  
DIO_8  
Digital  
GPIO  
DIO_9  
Digital  
GPIO  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
DIO_15  
DIO_16  
DIO_17  
DIO_18  
DIO_19  
DIO_20  
DIO_21  
DIO_22  
DIO_23  
DIO_24  
DIO_25  
DIO_26  
DIO_27  
DIO_28  
DIO_29  
DIO_30  
EGP  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO, JTAG_TDO, high-drive capability  
GPIO, JTAG_TDI, high-drive capability  
GPIO  
Digital  
Digital  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
GND  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
Ground exposed ground pad(3)  
JTAG TMSC, high-drive capability  
JTAG TCKC  
24  
25  
35  
I/O  
I
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
Digital  
Digital  
I
Digital  
Reset, active low. No internal pullup resistor  
Positive RF input signal to LNA during RX  
Positive RF output signal from PA during TX  
RF_P  
1
RF  
Negative RF input signal to LNA during RX  
Negative RF output signal from PA during TX  
RF_N  
2
3
RF  
RF  
RX_TX  
VDDR  
Optional bias pin for the RF LNA  
Internal supply, must be powered from the internal DC/DC  
converter or the internal LDO(2) (4) (6)  
45  
Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
7-1. Signal Descriptions RGZ Package (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
Internal supply, must be powered from the internal DC/DC  
converter or the internal LDO(2) (5) (6)  
VDDR_RF  
48  
Power  
VDDS  
44  
13  
22  
34  
46  
47  
4
Power  
Power  
Power  
Power  
Analog  
Analog  
Analog  
Analog  
1.8-V to 3.8-V main chip supply(1)  
1.8-V to 3.8-V DIO supply(1)  
VDDS2  
VDDS3  
1.8-V to 3.8-V DIO supply(1)  
VDDS_DCDC  
X48M_N  
X48M_P  
X32K_Q1  
X32K_Q2  
1.8-V to 3.8-V DC/DC converter supply  
48-MHz crystal oscillator pin 1  
48-MHz crystal oscillator pin 2  
32-kHz crystal oscillator pin 1  
32-kHz crystal oscillator pin 2  
5
(1) For more details, see the device technical reference manual listed in 11.3.  
(2) Do not supply external circuitry from this pin.  
(3) EGP is the only ground connection for the device. Good electrical connection to device ground on printed circuit board (PCB) is  
imperative for proper device operation.  
(4) If internal DC/DC converter is not used, this pin is supplied internally from the main LDO.  
(5) If internal DC/DC converter is not used, this pin must be connected to VDDR for supply from the main LDO.  
(6) Output from internal DC/DC and LDO is trimmed to 1.68 V.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
7.3 Pin Diagram RKP Package (Top View)  
RF_P  
RF_N  
1
2
3
4
5
6
7
8
9
30 DIO_17  
29 DIO_16  
28 DIO_15  
27 RESET_N  
26 VDDS_DCDC  
25 DCDC_SW  
24 DIO_14  
23 DIO_13  
22 DIO_12  
21 DIO_11  
RX_TX  
X32K_Q1  
X32K_Q2  
DIO_1  
DIO_2  
DIO_3  
DIO_4  
DIO_5 10  
7-2. RKP (5-mm × 5-mm) Pinout, 0.4-mm Pitch (Top View)  
The following I/O pins marked in 7-2 in bold have high-drive capabilities:  
Pin 10, DIO_5  
Pin 11, DIO_6  
Pin 12, DIO_7  
Pin 18, JTAG_TMSC  
Pin 20, DIO_10  
Pin 21, DIO_11  
The following I/O pins marked in 7-2 in italics have analog capabilities:  
Pin 28, DIO_15  
Pin 29, DIO_16  
Pin 30, DIO_17  
Pin 31, DIO_18  
Pin 32, DIO_19  
Pin 33, DIO_20  
Pin 34, DIO_21  
Pin 35, DIO_22  
7.4 Signal Descriptions RKP Package  
7-2. Signal Descriptions RKP Package  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
25  
17  
6
DCDC_SW  
DCOUPL  
DIO_1  
Power  
Power  
Digital  
Digital  
Output from internal DC/DC converter(1)  
For decoupling of internal 1.27 V regulated digital-supply (2)  
I/O  
I/O  
GPIO  
GPIO  
DIO_2  
7
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CC1311R3  
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
7-2. Signal Descriptions RKP Package (continued)  
PIN  
NAME  
I/O  
TYPE  
DESCRIPTION  
NO.  
8
DIO_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
GND  
GPIO  
GPIO  
DIO_4  
9
DIO_5  
10  
11  
12  
14  
15  
20  
21  
22  
23  
24  
28  
29  
30  
31  
32  
33  
34  
35  
GPIO, high-drive capability  
GPIO, high-drive capability  
GPIO, high-drive capability  
GPIO  
DIO_6  
DIO_7  
DIO_8  
DIO_9  
GPIO  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
DIO_15  
DIO_16  
DIO_17  
DIO_18  
DIO_19  
DIO_20  
DIO_21  
DIO_22  
EGP  
GPIO, JTAG_TDO, high-drive capability  
GPIO, JTAG_TDI, high-drive capability  
GPIO  
GPIO  
GPIO  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
Ground exposed ground pad(3)  
JTAG TMSC, high-drive capability  
JTAG TCKC  
18  
19  
27  
I/O  
I
JTAG_TSMC  
JTAG_TCKC  
RESET_N  
Digital  
Digital  
Digital  
I
Reset, active low. No internal pullup resistor  
Positive RF input signal to LNA during RX  
Positive RF output signal from PA during TX  
RF_P  
1
RF  
Negative RF input signal to LNA during RX  
Negative RF output signal from PA during TX  
RF_N  
2
3
RF  
RF  
RX_TX  
VDDR  
Optional bias pin for the RF LNA  
Internal supply, must be powered from the internal DC/DC  
converter or the internal LDO(2) (4) (6)  
37  
Power  
Internal supply, must be powered from the internal DC/DC  
converter or the internal LDO(2) (5) (6)  
VDDR_RF  
40  
Power  
VDDS  
36  
13  
16  
26  
38  
39  
4
Power  
Power  
Power  
Power  
Analog  
Analog  
Analog  
Analog  
1.8-V to 3.8-V main chip supply(1)  
1.8-V to 3.8-V DIO supply(1)  
VDDS2  
VDDS3  
1.8-V to 3.8-V DIO supply(1)  
VDDS_DCDC  
X48M_N  
X48M_P  
X32K_Q1  
X32K_Q2  
1.8-V to 3.8-V DC/DC converter supply  
48-MHz crystal oscillator pin 1  
48-MHz crystal oscillator pin 2  
32-kHz crystal oscillator pin 1  
32-kHz crystal oscillator pin 2  
5
(1) For more details, see the device technical reference manual listed in 11.3.  
(2) Do not supply external circuitry from this pin.  
(3) EGP is the only ground connection for the device. Good electrical connection to device ground on printed circuit board (PCB) is  
imperative for proper device operation.  
(4) If internal DC/DC converter is not used, this pin is supplied internally from the main LDO.  
(5) If internal DC/DC converter is not used, this pin must be connected to VDDR for supply from the main LDO.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
(6) Output from internal DC/DC and LDO is trimmed to 1.68 V.  
7.5 Connections for Unused Pins and Modules  
7-3. Connections for Unused Pins RGZ Package  
PREFERRED  
PRACTICE(1)  
FUNCTION  
SIGNAL NAME  
PIN NUMBER  
ACCEPTABLE PRACTICE(1)  
612  
1421  
2632  
3643  
GPIO  
DIO_n  
NC or GND  
NC  
NC  
X32K_Q1  
4
5
32.768-kHz crystal  
NC or GND  
X32K_Q2  
DCDC_SW  
VDDS_DCDC  
33  
34  
NC  
NC  
DC/DC converter(2)  
VDDS  
VDDS  
(1) NC = No connect  
(2) When the DC/DC converter is not used, the inductor between DCDC_SW and VDDR can be removed. VDDR and VDDR_RF must still  
be connected and the 22 uF DCDC capacitor must be kept on the VDDR net.  
7-4. Connection for Unused Pins and Modules RKP Package  
ACCEPTABLE  
PRACTICE  
FUNCTION  
SIGNAL NAME  
PIN NUMBER  
PREFERRED PRACTICE  
6-12  
14-15  
20-24  
28-35  
GPIO  
DIO_n  
NC or GND  
NC  
X32K_Q1  
X32K_Q2  
NC  
3
4
32.768-kHz crystal  
No Connects  
NC or GND  
NC  
NC  
NC  
NC  
NC  
DCDC_SW  
VDDS_DCDC  
25  
26  
DC/DC converter  
VDDS  
VDDS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CC1311R3  
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX UNIT  
VDDS(3)  
Supply voltage  
4.1  
V
V
V
Voltage on any digital pin(4) (5)  
VDDS + 0.3, max 4.1  
Voltage on crystal oscillator pins, X32K_Q1, X32K_Q2, X48M_N and X48M_P  
Voltage scaling enabled  
VDDR + 0.3, max 2.25  
VDDS  
1.49  
Vin  
Voltage on ADC input  
Voltage scaling disabled, internal reference  
Voltage scaling disabled, VDDS as reference  
V
VDDS / 2.9  
10  
Input level, RF pins (RF_P and RF_N)  
Storage temperature  
dBm  
°C  
Tstg  
150  
40  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime  
(2) All voltage values are with respect to ground, unless otherwise noted.  
(3) VDDS_DCDC, VDDS2 and VDDS3 must be at the same potential as VDDS.  
(4) Including analog capable DIOs.  
(5) Injection current is not supported on any GPIO pin  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
All pins  
All pins  
VESD  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
105  
115  
3.8  
UNIT  
°C  
Operating ambient temperature(1) (2)  
40  
Operating junction temperature(1) (2)  
°C  
40  
Operating supply voltage (VDDS)  
1.8  
2.1  
V
Operating supply voltage (VDDS), boost mode  
VDDR = 1.95 V  
3.8  
V
+14 dBm RF output power  
Rising supply voltage slew rate  
Falling supply voltage slew rate(3)  
0
0
100  
20  
mV/µs  
mV/µs  
(1) Operation at or near maximum operating temperature for extended durations will result in lifetime reduction.  
(2) For thermal resistance characteristics refer to 8.8.  
(3) For small coin-cell batteries, with high worst-case end-of-life equivalent source resistance, a 22-µF VDDS input capacitor must be used  
to ensure compliance with this slew rate.  
8.4 Power Supply and Modules  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
VDDS Power-on-Reset (POR) threshold  
VDDS Brown-out Detector (BOD) (1)  
MIN  
TYP  
1.1 - 1.55  
1.77  
MAX  
UNIT  
V
V
V
V
Rising threshold  
Rising threshold  
Falling threshold  
VDDS Brown-out Detector (BOD), before initial boot (2)  
VDDS Brown-out Detector (BOD) (1)  
1.70  
1.75  
(1) For boost mode (VDDR =1.95 V), TI drivers software initialization will trim VDDS BOD limits to maximum (approximately 2.0 V)  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
(2) Brown-out Detector is trimmed at initial boot, value is kept until device is reset by a POR reset or the RESET_N pin  
8.5 Power Consumption - Power Modes  
When measured on the CC1311-R3EM-5XD7793 reference design with Tc = 25 °C, VDDS = 3.6 V with DC/DC enabled unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
TYP  
UNIT  
Core Current Consumption  
Reset. RESET_N pin asserted or VDDS below power-on-reset threshold  
Shutdown. No clocks running, no retention  
115  
115  
Reset and Shutdown  
nA  
RTC running, CPU, 32KB RAM and (partial) register retention.  
RCOSC_LF  
0.7  
0.8  
µA  
µA  
µA  
µA  
µA  
mA  
Standby  
without cache retention  
RTC running, CPU, 32KB RAM and (partial) register retention  
XOSC_LF  
RTC running, CPU, 32KB RAM and (partial) register retention.  
RCOSC_LF  
Icore  
2.1  
Standby  
with cache retention  
RTC running, CPU, 32KB RAM and (partial) register retention.  
XOSC_LF  
2.2  
Supply Systems and RAM powered  
RCOSC_HF  
Idle  
570  
2.50  
MCU running CoreMark at 48 MHz  
RCOSC_HF  
Active  
Peripheral Current Consumption  
Peripheral power  
domain  
Delta current with domain enabled  
Delta current with domain enabled  
47.0  
3.3  
Serial power domain  
RF Core  
Delta current with power domain enabled,  
clock enabled, RF core idle  
122  
µDMA  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle(1)  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
58.1  
87.0  
11.6  
25.8  
61.3  
125  
Timers  
Iperi  
µA  
I2C  
I2S  
SSI  
UART  
CRYPTO (AES)  
TRNG  
25.2  
23.3  
(1) Only one GPTimer running  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CC1311R3  
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.6 Power Consumption - Radio Modes  
When measured on the CC1311-R3EM-5XD7793 reference design with Tc = 25 °C, VDDS = 3.6 V with DC/DC enabled unless  
otherwise noted.  
Using boost mode (increasing VDDR up to 1.95 V), will increase system current by 15% (does not apply to TX +14 dBm  
setting where this current is already included).  
Relevant Icore and Iperi currents are included in below numbers.  
PARAMETER  
TEST CONDITIONS  
TYP UNIT  
Radio receive current, 868 MHz  
5.4  
7.4  
mA  
mA  
0 dBm output power setting  
868 MHz  
Radio transmit current  
+10 dBm output power setting  
868 MHz  
13.9  
24.9  
mA  
mA  
Radio transmit current  
Boost mode  
+14 dBm output power setting  
868 MHz  
8.7 Nonvolatile (Flash) Memory Characteristics  
Over operating free-air temperature range and VDDS = 3.0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Flash sector size  
8
KB  
Supported flash erase cycles before failure, full bank(1) (5)  
Supported flash erase cycles before failure, single sector(2)  
30  
60  
k Cycles  
k Cycles  
Maximum number of write operations per row before sector  
erase(3)  
Write  
Operations  
83  
Flash retention  
105 °C  
11.4  
Years  
mA  
ms  
Flash sector erase current  
Average delta current  
Zero cycles  
9.7  
10  
Flash sector erase time(4)  
30k cycles  
4000  
ms  
Flash write current  
Flash write time(4)  
Average delta current, 4 bytes at a time  
4 bytes at a time  
5.3  
mA  
µs  
21.6  
(1) A full bank erase is counted as a single erase cycle on each sector.  
(2) Up to 4 customer-designated sectors can be individually erased an additional 30k times beyond the baseline bank limitation of 30k  
cycles  
(3) Each wordline is 2048 bits (or 256 bytes) wide. This limitation corresponds to sequential memory writes of 4 (3.1) bytes minimum per  
write over a whole wordline. If additional writes to the same wordline are required, a sector erase is required once the maximum  
number of write operations per row is reached.  
(4) This number is dependent on Flash aging and increases over time and erase cycles  
(5) Aborting flash during erase or program modes is not a safe operation.  
8.8 Thermal Resistance Characteristics  
PACKAGE  
RGZ  
(VQFN)  
RKP  
(VQFN)  
THERMAL METRIC(1)  
UNIT  
48 PINS  
25.0  
14.5  
8.7  
40 PINS  
30.9  
20.2  
10.3  
0.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W(2)  
°C/W(2)  
°C/W(2)  
°C/W(2)  
°C/W(2)  
°C/W(2)  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
8.6  
10.3  
2.1  
ψJB  
RθJC(bot)  
2.1  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
 
 
 
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.9 RF Frequency Bands  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
MIN  
1076  
861  
431  
359  
287  
143  
TYP  
MAX  
1315  
1054  
527  
UNIT  
Frequency bands  
MHz  
439  
351  
176  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.10 861 MHz to 1054 MHz - Receive (RX)  
When measured on the CC1311-R3EM-5XD7793 reference design with Tc = 25 °C, VDDS = 3.0 V with  
DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path. All measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
General Parameters  
Digital channel filter programmable receive  
bandwidth  
4
4000  
kHz  
Data rate step size  
1.5  
< -57  
< -47  
bps  
dBm  
dBm  
Spurious emissions 25 MHz to 1 GHz  
Spurious emissions 1 GHz to 13 GHz  
868 MHz  
Conducted emissions measured according to ETSI EN 300 220  
IEEE 802.15.4, 50 kbps, ±25 kHz Deviation, 2-GFSK, 100 kHz RX Bandwidth  
Sensitivity  
BER = 102, 868 MHz  
BER = 102, 868 MHz  
BER = 102, 868 MHz(1)  
BER = 102, 868 MHz(1)  
BER = 102, 868 MHz(1)  
BER = 102, 868 MHz(1)  
BER = 102, 868 MHz(1)  
BER = 102, 868 MHz(1)  
dBm  
dBm  
dB  
110  
10  
Saturation limit  
Selectivity, ±200 kHz  
Selectivity, ±400 kHz  
Blocking, ±1 MHz  
Blocking, ±2 MHz  
Blocking, ±5 MHz  
Blocking, ±10 MHz  
44  
48  
dB  
58  
dB  
62  
dB  
70  
dB  
77  
dB  
Image rejection (image compensation  
enabled)  
BER = 102, 868 MHz(1)  
41  
dB  
RSSI dynamic range  
RSSI accuracy  
Starting from the sensitivity limit  
95  
±3  
dB  
dB  
Starting from the sensitivity limit across the given dynamic range  
100 kbps, ±25 kHz Deviation, 2-GFSK, 137 kHz RX Bandwidth  
Sensitivity 100 kbps  
Selectivity, ±200 kHz  
Selectivity, ±400 kHz  
Co-channel rejection  
1% PER, 127 byte payload, 868 MHz  
-104  
31  
dBm  
dB  
1% PER, 127 byte payload, 868 MHz. Wanted signal at -96 dBm  
1% PER, 127 byte payload, 868 MHz. Wanted signal at -96 dBm  
1% PER, 127 byte payload, 868 MHz. Wanted signal at -79 dBm  
37  
dB  
-9  
dB  
200 kbps, ±50 kHz Deviation, 2-GFSK, 311 kHz RX Bandwidth  
Sensitivity  
Sensitivity  
BER = 102, 868 MHz  
BER = 102, 915 MHz  
dBm  
dBm  
103  
102  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
Selectivity, ±400 kHz  
Selectivity, ±800 kHz  
Blocking, ±2 MHz  
45  
49  
57  
69  
dB  
dB  
dB  
dB  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
Blocking, ±10 MHz  
500 kbps, ±190 kHz Deviation, 2-GFSK, 1150 kHz RX Bandwidth  
Sensitivity 500 kbps  
Selectivity, ±1 MHz  
Selectivity, ±2 MHz  
Co-channel rejection  
1% PER, 127 byte payload, 915 MHz  
-94  
14  
42  
-9  
dBm  
dB  
1% PER, 127 byte payload, 915 MHz. Wanted signal at -88 dBm  
1% PER, 127 byte payload, 915 MHz. Wanted signal at -88 dBm  
1% PER, 127 byte payload, 915 MHz. Wanted signal at -71 dBm  
dB  
dB  
1 Mbps, ±350 kHz Deviation, 2-GFSK, 1.3 MHz RX Bandwidth  
Sensitivity  
Sensitivity  
BER = 102, 868 MHz  
BER = 102, 915 MHz  
-97  
-96  
dBm  
dBm  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
Blocking, +2 MHz  
Blocking, -2 MHz  
Blocking, +10 MHz  
43  
26  
54  
dB  
dB  
dB  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
When measured on the CC1311-R3EM-5XD7793 reference design with Tc = 25 °C, VDDS = 3.0 V with  
DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path. All measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
Blocking, -10 MHz  
48  
dB  
SimpleLink™ Long Range, 2.5/5 kbps (20 ksps), ±5 kHz Deviation, 2-GFSK, 34 kHz RX Bandwidth, FEC = 1:2, DSSS = 1:4/1:2  
Sensitivity  
2.5 kbps, BER = 102, 868 MHz  
5 kbps, BER = 102, 868 MHz  
-121  
-119  
10  
dBm  
dBm  
dBm  
dB  
Sensitivity  
Saturation limit  
2.5 kbps, BER = 102, 868 MHz  
2.5 kbps, BER = 102, 868 MHz(1)  
2.5 kbps, BER = 102, 868 MHz(1)  
2.5 kbps, BER = 102, 868 MHz(1)  
2.5 kbps, BER = 102, 868 MHz(1)  
2.5 kbps, BER = 102, 868 MHz(1)  
2.5 kbps, BER = 102, 868 MHz(1)  
2.5 kbps, BER = 102, 868 MHz(1)  
Selectivity, ±100 kHz  
Selectivity, ±200 kHz  
Selectivity, ±300 kHz  
Blocking, ±1 MHz  
Blocking, ±2 MHz  
Blocking, ±5 MHz  
Blocking, ±10 MHz  
49  
50  
dB  
51  
dB  
63  
dB  
69  
dB  
79  
dB  
88  
dB  
Image rejection (image compensation  
enabled)  
2.5 kbps, BER = 102, 868 MHz(1)  
47  
dB  
RSSI dynamic range  
RSSI accuracy  
Starting from the sensitivity limit  
97  
±3  
dB  
dB  
Starting from the sensitivity limit across the given dynamic range  
Narrowband, 9.6 kbps, ±2.4 kHz Deviation, 2-GFSK, 17.1 kHz RX Bandwidth  
Sensitivity  
BER = 102, 868 MHz  
-117  
41  
dBm  
dB  
BER = 102, 868 MHz. Wanted signal 3 dB above the ETSI  
reference sensitivity limit (-104.6 dBm). Interferer ±20 kHz  
Adjacent Channel Rejection  
BER = 102, 868 MHz. Wanted signal 3 dB above the ETSI  
reference sensitivity limit (-104.6 dBm). Interferer ±40 kHz  
Alternate Channel Rejection  
Blocking, ±1 MHz  
42  
65  
70  
85  
dB  
dB  
dB  
dB  
BER = 102, 868 MHz. Wanted signal 3 dB above the ETSI  
reference sensitivity limit (-104.6 dBm).  
BER = 102, 868 MHz. Wanted signal 3 dB above the ETSI  
reference sensitivity limit (-104.6 dBm).  
Blocking, ±2 MHz  
BER = 102, 868 MHz. Wanted signal 3 dB above the ETSI  
reference sensitivity limit (-104.6 dBm).  
Blocking, ±10 MHz  
Wi-SUN, 2-GFSK  
Sensitivity  
50 kbps, ±12.5 kHz deviation, 2-GFSK, 68 kHz RX Bandwidth,  
868 MHz, 10% PER, 250 byte payload  
-107  
30  
dBm  
dB  
50 kbps, ±12.5 kHz deviation, 2-GFSK, 68 kHz RX Bandwidth,  
868.3 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±100 kHz, 50 kbps, ±12.5 kHz  
deviation, 2-GFSK, 868.3 MHz  
50 kbps, ±12.5 kHz deviation, 2-GFSK, 68 kHz RX Bandwidth,  
868.3 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±200 kHz, 50 kbps, ±12.5 kHz  
deviation, 2-GFSK, 868.3 MHz  
36  
-106  
34  
dB  
dBm  
dB  
50 kbps, ±25 kHz deviation, 2-GFSK, 98 kHz RX Bandwidth,  
918.2 MHz, 10% PER, 250 byte payload  
Sensitivity  
50 kbps, ±25 kHz deviation, 2-GFSK, 98 kHz RX Bandwidth,  
918.2 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±200 kHz, 50 kbps, ±25 kHz  
deviation, 2-GFSK, 918.2 MHz  
50 kbps, ±25 kHz deviation, 2-GFSK, 98 kHz RX Bandwidth,  
918.2 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±400 kHz, 50 kbps, ±25 kHz  
deviation, 2-GFSK, 918.2 MHz  
41  
-104  
37  
dB  
dBm  
dB  
100 kbps, ±25 kHz deviation, 2-GFSK, 135 kHz RX Bandwidth,  
868 MHz, 10% PER, 250 byte payload  
Sensitivity  
100 kbps, ±25 kHz deviation, 2-GFSK, 135 kHz RX Bandwidth,  
868.3 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±200 kHz, 100 kbps, ±25 kHz  
deviation, 2-GFSK, 868.3 MHz  
100 kbps, ±25 kHz deviation, 2-GFSK, 135 kHz RX Bandwidth,  
868.3 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±400 kHz, 100 kbps, ±25 kHz  
deviation, 2-GFSK, 868.3 MHz  
45  
dB  
100 kbps, ±50 kHz deviation, 2-GFSK, 196 kHz RX Bandwidth,  
920.9 MHz, 10% PER, 250 byte payload  
Sensitivity  
-102  
dBm  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CC1311R3  
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
When measured on the CC1311-R3EM-5XD7793 reference design with Tc = 25 °C, VDDS = 3.0 V with  
DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path. All measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
100 kbps, ±50 kHz deviation, 2-GFSK, 196 kHz RX Bandwidth,  
920.9 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±400 kHz, 100 kbps, ±50 kHz  
deviation, 2-GFSK, 920.9 MHz  
40  
dB  
100 kbps, ±50 kHz deviation, 2-GFSK, 196 kHz RX Bandwidth,  
920.9 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±800 kHz, 100 kbps, ±50 kHz  
deviation, 2-GFSK, 920.9 MHz  
49  
-99  
41  
dB  
dBm  
dB  
150 kbps, ±37.5 kHz deviation, 2-GFSK, 273 kHz RX Bandwidth,  
920.9 MHz, 10% PER, 250 byte payload  
Sensitivity  
150 kbps, ±37.5 kHz deviation, 2-GFSK, 273 kHz RX Bandwidth,  
920.9 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±400 kHz, 150 kbps, ±37.5 kHz  
deviation, 2-GFSK, 920.9 MHz  
150 kbps, ±37.5 kHz deviation, 2-GFSK, 273 kHz RX Bandwidth,  
920.9 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±800 kHz, 150 kbps, ±37.5 kHz  
deviation, 2-GFSK, 920.9 MHz  
47  
-99  
42  
dB  
dBm  
dB  
200 kbps, ±50 kHz deviation, 2-GFSK, 918.4 MHz, 273 kHz RX  
BW, 10% PER, 250 byte payload  
Sensitivity  
200 kbps, ±50 kHz deviation, 2-GFSK, 273 kHz RX  
Bandwidth, 918.4 MHz, 10% PER, 250 byte payload. Wanted  
signal 3 dB above sensitivity level  
Selectivity, ±400 kHz, 200 kbps, ±50 kHz  
deviation, 2-GFSK, 918.4 MHz  
200 kbps, ±50 kHz deviation, 2-GFSK, 273 kHz RX  
Bandwidth, 918.4 MHz, 10% PER, 250 byte payload. Wanted  
signal 3 dB above sensitivity level  
Selectivity, ±800 kHz, 200 kbps, ±50 kHz  
deviation, 2-GFSK, 918.4 MHz  
49  
-99  
45  
dB  
dBm  
dB  
200 kbps, ±100 kHz deviation, 2-GFSK, 273 kHz RX  
Bandwidth, 920.8 MHz, 10% PER, 250 byte payload  
Sensitivity  
200 kbps, ±100 kHz deviation, 2-GFSK, 273 kHz RX  
Bandwidth, 920.8 MHz, 10% PER, 250 byte payload. Wanted  
signal 3 dB above sensitivity level  
Selectivity, ±600 kHz, 200 kbps, ±100 kHz  
deviation, 2-GFSK, 920.8 MHz  
200 kbps, ±100 kHz deviation, 2-GFSK, 273 kHz RX  
Bandwidth, 920.8 MHz, 10% PER, 250 byte payload. Wanted  
signal 3 dB above sensitivity level  
Selectivity, ±1200 kHz, 200 kbps, ±100 kHz  
deviation, 2-GFSK, 920.8 MHz  
52  
-97  
42  
dB  
dBm  
dB  
300 kbps, ±75 kHz deviation, 2-GFSK, 917.6 MHz, 498 kHz RX  
BW, 10% PER, 250 byte payload  
Sensitivity  
300 kbps, ±75 kHz deviation, 2-GFSK, 498 kHz RX Bandwidth,  
917.6 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±600 kHz, 300 kbps, ±75 kHz  
deviation, 2-GFSK, 917.6 MHz  
300 kbps, ±75 kHz deviation, 2-GFSK, 498 kHz RX Bandwidth,  
917.6 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±1200 kHz, 300 kbps, ±75 kHz  
deviation, 2-GFSK, 917.6 MHz  
47  
dB  
(1) Wanted signal 3 dB above the reference sensitivity limit according to ETSI EN 300 220 v. 3.1.1  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.11 861 MHz to 1054 MHz - Transmit (TX)  
When measured on the CC1311-R3EM-5XD7793 reference design with Tc = 25 °C, VDDS = 3.0 V with  
DC/DC enabled using 2-GFSK, 50 kbps, ±25 kHz deviation unless otherwise noted. All measurements are performed at the  
antenna input with a combined RX and TX path. All measurements are performed conducted. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
General parameters  
VDDR = 1.95 V  
Minimum supply voltage (VDDS ) for boost  
mode is 2.1 V  
Max output power, boost mode  
14  
dBm  
868 MHz and 915 MHz  
Max output power  
868 MHz and 915 MHz  
868 MHz and 915 MHz  
13  
24  
dBm  
dB  
Output power programmable range  
+10 dBm setting  
Output power variation over temperature  
Over recommended temperature operating  
range  
±2  
dB  
dB  
+14 dBm setting  
Over recommended temperature operating  
range  
Output power variation over temperature  
Boost mode  
±1.5  
Spurious emissions and harmonics  
+14 dBm setting  
ETSI restricted bands  
< -54  
< -36  
< -30  
< -56  
< -52  
< -50  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
30 MHz to 1 GHz  
Spurious emissions  
+14 dBm setting  
ETSI outside restricted bands  
(excluding harmonics) (2)  
1 GHz to 12.75 GHz  
(outside ETSI restricted bands)  
+14 dBm setting  
measured in 1 MHz bandwidth (ETSI)  
30 MHz to 88 MHz  
(within FCC restricted bands)  
+14 dBm setting  
+14 dBm setting  
+14 dBm setting  
88 MHz to 216 MHz  
(within FCC restricted bands)  
216 MHz to 960 MHz  
(within FCC restricted bands)  
Spurious emissions out-  
of-band, 915 MHz (2)  
960 MHz to 2390 MHz and above  
2483.5 MHz (within FCC restricted  
band)  
+14 dBm setting  
<-42  
dBm  
1 GHz to 12.75 GHz  
(outside FCC restricted bands)  
+14 dBm setting  
+14 dBm setting  
+14 dBm setting  
+14 dBm setting  
+14 dBm setting  
+14 dBm setting  
+14 dBm setting  
< -40  
< -36  
< -55  
< -55  
< -55  
< -45  
< -30  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Below 710 MHz  
(ARIB T-108)  
710 MHz to 900 MHz  
(ARIB T-108)  
900 MHz to 915 MHz  
(ARIB T-108)  
Spurious emissions out-  
of-band, 920.6/928 MHz  
(2)  
930 MHz to 1000 MHz  
(ARIB T-108)  
1000 MHz to 1215 MHz  
(ARIB T-108)  
Above 1215 MHz  
(ARIB T-108)  
+14 dBm setting, 868 MHz  
+14 dBm setting, 915 MHz  
+14 dBm setting, 868 MHz  
+14 dBm setting, 915 MHz  
+14 dBm setting, 868 MHz  
+14 dBm setting, 915 MHz  
+14 dBm setting, 868 MHz  
+14 dBm setting, 915 MHz  
< -30  
< -30  
< -30  
< -42  
< -30  
< -30  
< -30  
< -42  
Second harmonic  
Third harmonic  
Fourth harmonic  
Fifth harmonic  
dBm  
dBm  
dBm  
dBm  
Harmonics  
Adjacent Channel Power  
Adjacent channel power, Adjacent channel, 20 kHz offset. 9.6  
regular 14 dBm PA kbps, h=0.5  
12.5 dBm setting. 868.3 MHz. 14 kHz channel  
BW  
-23  
dBm  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
When measured on the CC1311-R3EM-5XD7793 reference design with Tc = 25 °C, VDDS = 3.0 V with  
DC/DC enabled using 2-GFSK, 50 kbps, ±25 kHz deviation unless otherwise noted. All measurements are performed at the  
antenna input with a combined RX and TX path. All measurements are performed conducted. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Alternate channel power, Alternate channel, 40 kHz offset. 9.6  
12.5 dBm setting. 868.3 MHz. 14 kHz channel  
BW  
-30  
dBm  
regular 14 dBm PA  
kbps, h=0.5  
(1) Some combinations of frequency, data rate and modulation format requires use of external crystal load capacitors for regulatory  
compliance. More details can be found in the device errata.  
(2) Suitable for systems targeting compliance with EN 300 220, EN 303 131, EN 303 204, FCC CFR47 Part 15, ARIB STD-T108.  
8.12 861 MHz to 1054 MHz - PLL Phase Noise Wideband Mode  
When measured on the CC1311-R3EM-5XD7793 reference design with Tc = 25 °C, VDDS = 3.0 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
76  
MAX  
UNIT  
±10 kHz offset  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
±100 kHz offset  
±200 kHz offset  
±400 kHz offset  
±1000 kHz offset  
±2000 kHz offset  
±10000 kHz offset  
98  
106  
113  
122  
130  
140  
Phase noise in the 868- and 915-MHz bands  
20 kHz PLL loop bandwidth  
8.13 861 MHz to 1054 MHz - PLL Phase Noise Narrowband Mode  
When measured on the CC1311-R3EM-5XD7793 reference design with Tc = 25 °C, VDDS = 3.0 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
95  
MAX  
UNIT  
±10 kHz offset  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
±100 kHz offset  
±200 kHz offset  
±400 kHz offset  
±1000 kHz offset  
±2000 kHz offset  
±10000 kHz offset  
94  
94  
Phase noise in the 868- and 915-MHz bands  
150 kHz PLL loop bandwith  
103  
119  
129  
138  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.14 359 MHz to 527 MHz - Receive (RX)  
When measured on the CC1311-R3EM-5XD7793 reference design with Tc = 25 °C, VDDS = 3.0 V with  
DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path. All measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
General Parameters  
Spurious emissions 25 MHz to 1 GHz  
Spurious emissions 1 GHz to 13 GHz  
< -57  
< -47  
dBm  
dBm  
433.92 MHz  
Conducted emissions measured according to ETSI EN 300 220  
IEEE 802.15.4, 50 kbps, ±25 kHz Deviation, 2-GFSK, 78 kHz RX Bandwidth  
Sensitivity  
BER = 102, 433.92 MHz  
BER = 102, 433.92 MHz  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
dBm  
dBm  
dB  
110  
10  
Saturation limit  
Selectivity, +200 kHz  
Selectivity, -200 kHz  
Selectivity, +400 kHz  
Selectivity, -400 kHz  
Blocking, +1 MHz  
Blocking, -1 MHz  
Blocking, +2 MHz  
Blocking, -2 MHz  
Blocking, +10 MHz  
Blocking, -10 MHz  
48  
43  
dB  
53  
dB  
44  
dB  
60  
dB  
54  
dB  
62  
dB  
61  
dB  
75  
dB  
75  
dB  
Image rejection (image compensation  
enabled)  
BER = 102, 433.92 MHz(1)  
44  
dB  
RSSI dynamic range  
RSSI accuracy  
Starting from the sensitivity limit  
95  
±3  
dB  
dB  
Starting from the sensitivity limit across the given dynamic range  
200 kbps, ±50 kHz Deviation, 2-GFSK, 273 kHz RX Bandwidth  
Sensitivity  
BER = 102, 433.92 MHz  
dBm  
dBm  
dB  
104  
10  
Saturation limit  
BER = 102, 433.92 MHz  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
BER = 102, 433.92 MHz(1)  
Selectivity, ±400 kHz  
Blocking, ±1 MHz  
Blocking, ±2 MHz  
Blocking, ±10 MHz  
48  
52  
dB  
55  
dB  
68  
dB  
Image rejection (image compensation  
enabled)  
BER = 102, 433.92 MHz(1)  
45  
dB  
RSSI dynamic range  
RSSI accuracy  
Starting from the sensitivity limit  
89  
±3  
dB  
dB  
Starting from the sensitivity limit across the given dynamic range  
SimpleLink™ Long Range, 2.5/5 kbps (20 ksps), ±5 kHz Deviation, 2-GFSK, 34 kHz RX Bandwidth, FEC = 1:2, DSSS = 1:4/1:2  
Sensitivity  
2.5 kbps, BER = 102, 433.92 MHz  
5 kbps, BER = 102, 433.92 MHz  
5 kbps, BER = 102, 433.92 MHz  
5 kbps, BER = 102, 433.92 MHz(1)  
5 kbps, BER = 102, 433.92 MHz(1)  
5 kbps, BER = 102, 433.92 MHz(1)  
5 kbps, BER = 102, 433.92 MHz(1)  
5 kbps, BER = 102, 433.92 MHz(1)  
5 kbps, BER = 102, 433.92 MHz(1)  
5 kbps, BER = 102, 433.92 MHz(1)  
5 kbps, BER = 102, 433.92 MHz(1)  
-121  
-119  
10  
dBm  
dBm  
dBm  
dB  
Sensitivity  
Saturation limit  
Selectivity, +100 kHz  
Selectivity, -100 kHz  
Blocking, +1 MHz  
Blocking, -1 MHz  
Blocking, +2 MHz  
Blocking, -2 MHz  
Blocking, +10 MHz  
Blocking, -10 MHz  
55  
53  
dB  
69  
dB  
65  
dB  
71  
dB  
70  
dB  
84  
dB  
84  
dB  
Image rejection (image compensation  
enabled)  
5 kbps, BER = 102, 433.92 MHz  
Starting from the sensitivity limit  
49  
dB  
dB  
RSSI dynamic range  
101  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
When measured on the CC1311-R3EM-5XD7793 reference design with Tc = 25 °C, VDDS = 3.0 V with  
DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path. All measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RSSI accuracy  
Starting from the sensitivity limit across the given dynamic range  
±3  
dB  
(1) Wanted signal 3 dB above sensitivity limit  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.15 359 MHz to 527 MHz - Transmit (TX)  
When measured on the LAUNCHXL-CC1352P-4 reference design with Tc = 25 °C, VDDS = 3.0 V with  
DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path. All measurements are performed conducted. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
General parameters  
Max output power  
433.92 MHz, without BOOST (VDDR = 1.7 V)  
433.92 MHz, without BOOST (VDDR = 1.7 V)  
13  
24  
dBm  
dB  
Output power programmable range  
Output power variation over temperature  
Spurious emissions and harmonics  
+13 dBm setting. 433.92 MHz  
Over recommended temperature operating  
range  
±1.5  
dB  
+10 dBm setting  
ETSI restricted bands  
< -54  
< -36  
< -30  
< -26  
< -55  
< -55  
< -55  
< -45  
< -30  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
30 MHz to 1 GHz  
Spurious emissions  
+10 dBm setting  
ETSI outside restricted bands  
(excluding harmonics) (2)  
1 GHz to 12.75 GHz  
(outside ETSI restricted bands)  
+10 dBm setting  
measured in 1 MHz bandwidth (ETSI)  
Outside the necessary requency band  
(ARIB T-67)  
+10 dBm setting  
+10 dBm setting  
+10 dBm setting  
+10 dBm setting  
+10 dBm setting  
+10 dBm setting  
710 MHz to 900 MHz  
(ARIB T-67)  
900 MHz to 915 MHz  
(ARIB T-67)  
Spurious emissions out-  
of-band, 429 MHz (2)  
930 MHz to 1000 MHz  
(ARIB T-67)  
1000 MHz to 1215 MHz  
(ARIB T-67)  
Above 1215 MHz  
(ARIB T-67)  
Harmonics  
Harmonics  
Harmonics  
Harmonics  
Second harmonic  
Third harmonic  
Fourth harmonic  
Fifth harmonic  
+13 dBm setting, 433 MHz  
+13 dBm setting, 433 MHz  
+13 dBm setting, 433 MHz  
+13 dBm setting, 433 MHz  
< -36  
< -30  
< -30  
< -30  
dBm  
dBm  
dBm  
dBm  
(1) Some combinations of frequency, data rate and modulation format requires use of external crystal load capacitors for regulatory  
compliance. More details can be found in the device errata.  
(2) Suitable for systems targeting compliance with EN 300 220, EN 303 131, EN 303 204, FCC CFR47 Part 15, ARIB STD-T108.  
8.16 359 MHz to 527 MHz - PLL Phase Noise  
When measured on the LAUNCHXL-CC1352P-4 reference design with Tc = 25 °C, VDDS = 3.0 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
-82  
MAX  
UNIT  
±10 kHz offset  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
±100 kHz offset  
±200 kHz offset  
±400 kHz offset  
±1000 kHz offset  
±2000 kHz offset  
±10000 kHz offset  
-105  
-112  
-119  
-127  
-133  
-141  
Phase noise in the 433 MHz band  
20 kHz PLL loop bandwidth  
8.17 Timing and Switching Characteristics  
8.17.1 Reset Timing  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
RESET_N low duration  
1
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: CC1311R3  
 
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.17.2 Wakeup Timing  
Measured over operating free-air temperature with VDDS = 3.0 V (unless otherwise noted). The times listed here do not  
include software overhead.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
850 - 4000  
850 - 4000  
160  
MAX  
UNIT  
MCU, Reset to Active(1)  
µs  
MCU, Shutdown to Active(1)  
MCU, Standby to Active  
MCU, Active to Standby  
MCU, Idle to Active  
µs  
µs  
36  
µs  
14  
µs  
(1) The wakeup time is dependent on remaining charge on VDDR capacitor when starting the device, and thus how long the device has  
been in Reset or Shutdown before starting up again. The wake up time increases with a higher capacitor value.  
8.17.3 Clock Specifications  
8.17.3.1 48 MHz Crystal Oscillator (XOSC_HF)  
Measured on a Texas Instruments reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.(1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Crystal frequency  
48  
MHz  
Equivalent series resistance  
6 pF < CL 9 pF  
ESR  
ESR  
20  
60  
80  
Ω
Equivalent series resistance  
5 pF < CL 6 pF  
Ω
Motional inductance, relates to the load capacitance that is used for the crystal (CL  
in Farads)(5)  
2
LM  
CL  
< 3 × 1025 / CL  
H
Crystal load capacitance(4)  
Start-up time(2)  
5
7(3)  
9
pF  
µs  
200  
(1) Probing or otherwise stopping the crystal while the DC/DC converter is enabled may cause permanent damage to the device.  
(2) Start-up time using the TI-provided power driver. Start-up time may increase if driver is not used.  
(3) On-chip default connected capacitance including reference design parasitic capacitance. Connected internal capacitance is changed  
through software in the Customer Configuration section (CCFG).  
(4) Adjustable load capacitance is integrated into the device. External load capacitors are required for systems targeting compliance with  
certain regulations. See the device errata for further details.  
(5) The crystal manufacturer's specification must satisfy this requirement for proper operation.  
8.17.3.2 48 MHz RC Oscillator (RCOSC_HF)  
Measured on a Texas Instruments reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
MAX  
UNIT  
MHz  
%
Frequency  
48  
Uncalibrated frequency accuracy  
Calibrated frequency accuracy(1)  
Start-up time  
±1  
±0.25  
5
%
µs  
(1) Accuracy relative to the calibration source (XOSC_HF)  
8.17.3.3 32.768 kHz Crystal Oscillator (XOSC_LF)  
Measured on a Texas Instruments reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
32.768  
30  
MAX  
UNIT  
kHz  
k  
Crystal frequency  
ESR  
CL  
Equivalent series resistance  
Crystal load capacitance  
100  
12  
6
7(1)  
pF  
(1) Default load capacitance using TI reference designs including parasitic capacitance. Crystals with different load capacitance may be  
used.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.17.3.4 32 kHz RC Oscillator (RCOSC_LF)  
Measured on a Texas Instruments reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
MAX  
UNIT  
Calibrated frequency  
Calibrated  
32.8  
kHz  
RTC  
Calibrated periodically against XOSC_HF(2)  
±600(3)  
50  
ppm  
variation(1)  
Temperature coefficient.  
ppm/°C  
(1) When using RCOSC_LF as source for the low frequency system clock (SCLK_LF), the accuracy of the SCLK_LF-derived Real Time  
Clock (RTC) can be improved by measuring RCOSC_LF relative to XOSC_HF and compensating for the RTC tick speed. This  
functionality is available through the TI-provided Power driver.  
(2) TI driver software calibrates the RTC every time XOSC_HF is enabled.  
(3) Some device's variation can exceed 1000 ppm. Further calibration will not improve variation.  
8.17.4 Synchronous Serial Interface (SSI) Characteristics  
8.17.4.1 Synchronous Serial Interface (SSI) Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
NO.  
S1  
tclk_per  
tclk_high  
tclk_low  
SSIClk cycle time  
12  
65024  
System Clocks (2)  
tclk_per  
S2(1)  
S3(1)  
SSIClk high time  
SSIClk low time  
0.5  
0.5  
tclk_per  
(1) Refer to SSI timing diagrams 8-1, 8-2, and 8-3.  
(2) When using the TI-provided Power driver, the SSI system clock is always 48 MHz.  
S1  
S2  
SSIClk  
S3  
SSIFss  
SSITx  
MSB  
LSB  
SSIRx  
4 to 16 bits  
8-1. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: CC1311R3  
 
 
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
S2  
S1  
SSIClk  
S3  
SSIFss  
SSITx  
SSIRx  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits output data  
8-2. SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer  
S1  
S2  
SSIClk  
(SPO = 0)  
S3  
SSIClk  
(SPO = 1)  
SSITx  
(Master)  
MSB  
LSB  
SSIRx  
(Slave)  
MSB  
LSB  
SSIFss  
8-3. SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1  
8.17.5 UART  
8.17.5.1 UART Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
UART rate  
3
MBaud  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.18 Peripheral Characteristics  
8.18.1 ADC  
8.18.1.1 Analog-to-Digital Converter (ADC) Characteristics  
Tc = 25 °C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.(1)  
Performance numbers require use of offset and gain adjustements in software by TI-provided ADC drivers.  
PARAMETER  
Input voltage range  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
0
VDDS  
12  
Bits  
ksps  
LSB  
LSB  
LSB  
LSB  
Sample Rate  
200  
Offset  
Internal 4.3 V equivalent reference(2)  
0.24  
7.14  
>1  
±4  
Gain error  
Internal 4.3 V equivalent reference(2)  
DNL(4)  
INL  
Differential nonlinearity  
Integral nonlinearity  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
9.8  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone, DC/DC enabled  
9.8  
VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
10.1  
Internal reference, voltage scaling disabled,  
32 samples average (software), 200 kSamples/s, 300 Hz input  
tone  
ENOB  
Effective number of bits  
Bits  
11.1  
Internal reference, voltage scaling disabled,  
11.3  
11.6  
14-bit mode, 200 kSamples/s, 300 Hz input tone (5)  
Internal reference, voltage scaling disabled,  
15-bit mode, 200 kSamples/s, 300 Hz input tone (5)  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
65  
70  
72  
THD  
Total harmonic distortion  
VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
dB  
dB  
Internal reference, voltage scaling disabled,  
32 samples average, 200 kSamples/s, 300 Hz input tone  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
60  
63  
Signal-to-noise  
and  
distortion ratio  
SINAD,  
SNDR  
VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
Internal reference, voltage scaling disabled,  
32 samples average (software), 200 kSamples/s, 300 Hz input  
tone  
68  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
70  
73  
VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
SFDR  
Spurious-free dynamic range  
dB  
Internal reference, voltage scaling disabled,  
32 samples average (software), 200 kSamples/s, 300 Hz input  
tone  
75  
Conversion time  
Serial conversion, time-to-output, 24 MHz clock  
Internal 4.3 V equivalent reference(2)  
VDDS as reference  
50  
0.39  
0.56  
Clock Cycles  
Current consumption  
Current consumption  
mA  
mA  
Equivalent fixed internal reference (input voltage scaling  
enabled). For best accuracy, the ADC conversion should be  
initiated through the TI-RTOS API in order to include the gain/  
offset compensation factors stored in FCFG1  
Reference voltage  
4.3(2) (3)  
V
Fixed internal reference (input voltage scaling disabled). For  
best accuracy, the ADC conversion should be initiated through  
the TI-RTOS API in order to include the gain/offset  
compensation factors stored in FCFG1. This value is derived  
from the scaled value (4.3 V) as follows:  
Reference voltage  
1.48  
V
Vref = 4.3 V × 1408 / 4095  
Reference voltage  
Reference voltage  
VDDS as reference, input voltage scaling enabled  
VDDS as reference, input voltage scaling disabled  
VDDS  
V
V
VDDS /  
2.82(3)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.18.1.1 Analog-to-Digital Converter (ADC) Characteristics (continued)  
Tc = 25 °C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.(1)  
Performance numbers require use of offset and gain adjustements in software by TI-provided ADC drivers.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
200 kSamples/s, voltage scaling enabled. Capacitive input,  
Input impedance depends on sampling frequency and sampling  
time  
Input impedance  
>1  
MΩ  
(1) Using IEEE Std 1241-2010 for terminology and test methods  
(2) Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V  
(3) Applied voltage must be within Absolute Maximum Ratings at all times  
(4) No missing codes  
(5) ADC_output = Σ(4n samples ) >> n, n = desired extra bits  
8.18.2 DAC  
8.18.2.1 Digital-to-Analog Converter (DAC) Characteristics  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
General Parameters  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
8
Bits  
Any load, any VREF, pre-charge OFF, DAC charge-pump ON  
1.8  
2.0  
3.8  
3.8  
External Load(4), any VREF, pre-charge OFF, DAC charge-pump  
OFF  
VDDS  
Supply voltage  
V
Any load, VREF = DCOUPL, pre-charge ON  
Buffer ON (recommended for external load)  
Buffer OFF (internal load)  
2.6  
16  
16  
3.8  
250  
FDAC  
Clock frequency  
kHz  
1000  
VREF = VDDS, buffer OFF, internal load  
VREF = VDDS, buffer ON, external capacitive load = 20 pF(3)  
13  
13.8  
20  
Voltage output settling time  
1 / FDAC  
External capacitive load  
External resistive load  
Short circuit current  
200  
400  
pF  
MΩ  
µA  
10  
VDDS = 3.8 V, DAC charge-pump OFF  
VDDS = 3.0 V, DAC charge-pump ON  
VDDS = 3.0 V, DAC charge-pump OFF  
VDDS = 2.0 V, DAC charge-pump ON  
VDDS = 2.0 V, DAC charge-pump OFF  
VDDS = 1.8 V, DAC charge-pump ON  
VDDS = 1.8 V, DAC charge-pump OFF  
50.8  
51.7  
53.2  
48.7  
70.2  
46.3  
88.9  
Max output impedance Vref =  
VDDS, buffer ON, CLK 250  
kHz  
ZMAX  
kΩ  
Internal Load - Continuous Time Comparator / Low Power Clocked Comparator  
VREF = VDDS,  
load = Continuous Time Comparator or Low Power Clocked  
Comparator  
FDAC = 250 kHz  
Differential nonlinearity  
Differential nonlinearity  
±1  
DNL  
LSB(1)  
VREF = VDDS,  
load = Continuous Time Comparator or Low Power Clocked  
Comparator  
±1.2  
FDAC = 16 kHz  
VREF = VDDS = 3.8 V  
±0.64  
±0.81  
±1.27  
±3.43  
±2.88  
±2.37  
VREF = VDDS= 3.0 V  
Offset error(2)  
Load = Continuous Time  
Comparator  
VREF = VDDS = 1.8 V  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.18.2.1 Digital-to-Analog Converter (DAC) Characteristics (continued)  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±0.78  
±0.77  
±3.46  
±3.44  
±4.70  
±4.11  
±1.53  
±1.71  
±2.10  
±6.00  
±3.85  
±5.84  
±2.92  
±3.06  
±3.91  
±7.84  
±4.06  
±6.94  
0.03  
MAX  
UNIT  
VREF = VDDS= 3.8 V  
VREF = VDDS = 3.0 V  
VREF = VDDS= 1.8 V  
Offset error(2)  
Load = Low Power Clocked  
Comparator  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
VREF = VDDS = 3.8 V  
VREF = VDDS = 3.0 V  
Max code output voltage  
variation(2)  
Load = Continuous Time  
Comparator  
VREF = VDDS= 1.8 V  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
VREF = VDDS= 3.8 V  
VREF =VDDS= 3.0 V  
Max code output voltage  
variation(2)  
Load = Low Power Clocked  
Comparator  
VREF = VDDS= 1.8 V  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
VREF = VDDS = 3.8 V, code 1  
VREF = VDDS = 3.8 V, code 255  
VREF = VDDS= 3.0 V, code 1  
VREF = VDDS= 3.0 V, code 255  
VREF = VDDS= 1.8 V, code 1  
VREF = VDDS = 1.8 V, code 255  
VREF = DCOUPL, pre-charge OFF, code 1  
VREF = DCOUPL, pre-charge OFF, code 255  
VREF = DCOUPL, pre-charge ON, code 1  
VREF = DCOUPL, pre-charge ON, code 255  
VREF = ADCREF, code 1  
3.62  
0.02  
2.86  
0.01  
Output voltage range(2)  
Load = Continuous Time  
Comparator  
1.71  
V
0.01  
1.21  
1.27  
2.46  
0.01  
VREF = ADCREF, code 255  
1.41  
VREF = VDDS = 3.8 V, code 1  
VREF = VDDS= 3.8 V, code 255  
VREF = VDDS= 3.0 V, code 1  
VREF = VDDS= 3.0 V, code 255  
VREF = VDDS = 1.8 V, code 1  
VREF = VDDS = 1.8 V, code 255  
VREF = DCOUPL, pre-charge OFF, code 1  
VREF = DCOUPL, pre-charge OFF, code 255  
VREF = DCOUPL, pre-charge ON, code 1  
VREF = DCOUPL, pre-charge ON, code 255  
VREF = ADCREF, code 1  
0.03  
3.61  
0.02  
2.85  
0.01  
Output voltage range(2)  
Load = Low Power Clocked  
Comparator  
1.71  
V
0.01  
1.21  
1.27  
2.46  
0.01  
VREF = ADCREF, code 255  
1.41  
External Load (Keysight 34401A Multimeter)  
VREF = VDDS, FDAC = 250 kHz  
±1  
±1  
±1  
±1  
INL  
Integral nonlinearity  
VREF = DCOUPL, FDAC = 250 kHz  
VREF = ADCREF, FDAC = 250 kHz  
VREF = VDDS, FDAC = 250 kHz  
LSB(1)  
LSB(1)  
DNL  
Differential nonlinearity  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: CC1311R3  
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.18.2.1 Digital-to-Analog Converter (DAC) Characteristics (continued)  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±0.20  
±0.25  
±0.45  
±1.55  
±1.30  
±1.10  
±0.60  
±0.55  
±0.60  
±3.45  
±2.10  
±1.90  
0.03  
MAX  
UNIT  
VREF = VDDS= 3.8 V  
VREF = VDDS= 3.0 V  
VREF = VDDS = 1.8 V  
Offset error  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
VREF = VDDS= 3.8 V  
VREF = VDDS= 3.0 V  
VREF = VDDS= 1.8 V  
Max code output voltage  
variation  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
VREF = VDDS = 3.8 V, code 1  
VREF = VDDS = 3.8 V, code 255  
VREF = VDDS = 3.0 V, code 1  
VREF = VDDS= 3.0 V, code 255  
VREF = VDDS= 1.8 V, code 1  
VREF = VDDS = 1.8 V, code 255  
VREF = DCOUPL, pre-charge OFF, code 1  
VREF = DCOUPL, pre-charge OFF, code 255  
VREF = DCOUPL, pre-charge ON, code 1  
VREF = DCOUPL, pre-charge ON, code 255  
VREF = ADCREF, code 1  
3.61  
0.02  
2.85  
0.02  
Output voltage range  
Load = Low Power Clocked  
Comparator  
1.71  
V
0.02  
1.20  
1.27  
2.46  
0.02  
VREF = ADCREF, code 255  
1.42  
(1) 1 LSB (VREF 3.8 V/3.0 V/1.8 V/DCOUPL/ADCREF) = 14.10 mV/11.13 mV/6.68 mV/4.67 mV/5.48 mV  
(2) Includes comparator offset  
(3) A load > 20 pF will increases the settling time  
(4) Keysight 34401A Multimeter  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.18.3 Temperature and Battery Monitor  
8.18.3.1 Temperature Sensor  
Measured on a Texas Instruments reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
°C  
Resolution  
Accuracy  
Accuracy  
2
-40 °C to 0 °C  
0 °C to 105 °C  
±4.0  
±2.5  
3.9  
°C  
°C  
Supply voltage coefficient(1)  
°C/V  
(1) The temperature sensor is automatically compensated for VDDS variation when using the TI-provided driver.  
8.18.3.2 Battery Monitor  
Measured on a Texas Instruments reference design with Tc = 25 °C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
V
Resolution  
Range  
25  
1.8  
3.8  
Integral nonlinearity (max)  
Accuracy  
23  
22.5  
-32  
-1  
mV  
mV  
mV  
%
VDDS = 3.0 V  
Offset error  
Gain error  
8.18.4 Comparator  
8.18.4.1 Continuous Time Comparator  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Input voltage range(1)  
0
VDDS  
Offset  
Measured at VDDS / 2  
Step from 10 mV to 10 mV  
Internal reference  
±5  
0.78  
9.2  
mV  
µs  
Decision time  
Current consumption  
µA  
(1) The input voltages can be generated externally and connected throughout I/Os or an internal reference voltage can be generated using  
the DAC  
8.18.5 GPIO  
8.18.5.1 GPIO DC Characteristics  
PARAMETER  
TA = 25 °C, VDDS = 1.8 V  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
GPIO VOH at 8 mA load  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
1.56  
0.24  
1.59  
0.21  
73  
V
V
GPIO VOL at 8 mA load  
GPIO VOH at 4 mA load  
V
GPIO VOL at 4 mA load  
IOCURR = 1  
V
GPIO pullup current  
Input mode, pullup enabled, Vpad = 0 V  
Input mode, pulldown enabled, Vpad = VDDS  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
µA  
µA  
V
GPIO pulldown current  
19  
GPIO low-to-high input transition, with hysteresis  
GPIO high-to-low input transition, with hysteresis  
1.08  
0.73  
V
IH = 1, difference between 0 1  
and 1 0 points  
GPIO input hysteresis  
0.35  
V
TA = 25 °C, VDDS = 3.0 V  
GPIO VOH at 8 mA load  
GPIO VOL at 8 mA load  
GPIO VOH at 4 mA load  
GPIO VOL at 4 mA load  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
2.59  
0.42  
2.63  
0.40  
V
V
V
V
IOCURR = 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: CC1311R3  
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
MAX UNIT  
8.18.5.1 GPIO DC Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
TA = 25 °C, VDDS = 3.8 V  
GPIO pullup current  
Input mode, pullup enabled, Vpad = 0 V  
282  
110  
µA  
µA  
V
GPIO pulldown current  
Input mode, pulldown enabled, Vpad = VDDS  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
GPIO low-to-high input transition, with hysteresis  
GPIO high-to-low input transition, with hysteresis  
1.97  
1.55  
V
IH = 1, difference between 0 1  
and 1 0 points  
GPIO input hysteresis  
TA = 25 °C  
0.42  
V
Lowest GPIO input voltage reliably interpreted as a  
High  
VIH  
0.8*VDDS  
V
Highest GPIO input voltage reliably interpreted as a  
Low  
VIL  
0.2*VDDS  
V
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: CC1311R3  
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.19 Typical Characteristics  
All measurements in this section are done with Tc = 25 °C and VDDS = 3.0 V, unless otherwise noted. See  
Recommended Operating Conditions, 8.3, for device limits. Values exceeding these limits are for reference  
only.  
8.19.1 MCU Current  
8-4. Active Mode (MCU) Current vs. Supply  
8-5. Standby Mode (MCU) Current vs.  
Voltage (VDDS)  
Temperature  
8.19.2 RX Current  
RX Current vs. Temperature  
RX Current vs. Temperature  
50 kbps, 868.3 MHz  
50 kbps, 868.3 MHz, VDSS = 3.6 V  
7
6.8  
6.6  
6.4  
6.2  
6
8
7.8  
7.6  
7.4  
7.2  
7
6.8  
6.6  
6.4  
6.2  
6
5.8  
5.6  
5.4  
5.2  
5
5.8  
5.6  
5.4  
5.2  
5
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [C]  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [°C]  
D008  
8-7. RX Current vs. Temperature (50 kbps, 868.3  
8-6. RX Current vs. Temperature (50 kbps, 868.3  
MHz, VDDS = 3.6 V)  
MHz)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
RX Current vs. VDDS  
50 kbps, 868.3 MHz  
11.5  
11  
10.5  
10  
9.5  
9
8.5  
8
7.5  
7
6.5  
6
5.5  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Voltage [V]  
D012  
8-8. RX Current vs. Supply Voltage (VDDS) (50 kbps, 868.3 MHz)  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: CC1311R3  
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.19.3 TX Current  
TX Current vs. VDDS  
50 kbps, 868.3 MHz, +10 dBm  
TX Current vs. Temperature  
50 kbps, 868.3 MHz, +10 dBm, VDDS = 3.6 V  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
18  
17.7  
17.4  
17.1  
16.8  
16.5  
16.2  
15.9  
15.6  
15.3  
15  
14.7  
14.4  
14.1  
13.8  
13.5  
13.2  
12.9  
12.6  
12.3  
12  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
1.8 1.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
Voltage [V]  
3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8  
Temperature [°C]  
D015  
D022  
8-9. TX Current vs. Temperature (50 kbps, 868.3  
8-10. TX Current vs. Supply Voltage (VDDS) (50  
MHz, VDDS = 3.6 V)  
kbps, 868.3 MHz)  
8-1 shows typical TX current and output power for different output power settings.  
8-1. Typical TX Current and Output Power, regular PA (915 MHz, VDDS = 3.0 V)  
CC1311R3 at 915 MHz, VDDS = 3.0 V (Measured on CC1311-R3EM-5XD7793 )  
txPower  
0x013F1  
0xB224  
0x895E  
0x669A  
0x3E92  
0x3EDC  
0x2CD8  
0x26D4  
0x20D1  
0x1CCE  
0x16CD  
0x14CB  
0x12CA  
0x12C9  
0x10C8  
0xAC4  
TX Power Setting (SmartRF Studio)  
Typical Output Power [dBm]  
Typical Current Consumption [mA]  
14  
12.5  
12  
11  
10  
9
14.3  
12.6  
12.1  
11.0  
10.0  
9.0  
30.5  
22.3  
20.8  
18.7  
16.9  
15.9  
15.1  
14.0  
13.0  
11.9  
11.5  
10.6  
10.2  
9.7  
8
8.4  
7
7.5  
6
6.5  
5
5.2  
4
4.6  
3
3.4  
2
2.6  
1
1.8  
0
0.8  
9.3  
-5  
-10  
-15  
-20  
-5.1  
-10.6  
-14.9  
-21.0  
7.2  
0xAC2  
6.2  
0x6C1  
5.7  
0x4C0  
5.2  
1
Boost mode enabled. VDDR regulated to 1.95 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: CC1311R3  
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.19.4 RX Performance  
Sensitivity vs. Frequency  
50 kbps  
Sensitivity vs. Frequency  
50 kbps  
-105  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-113  
-114  
-115  
-105  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-113  
-114  
-115  
863  
864  
865  
866  
867  
868  
869  
870  
900  
903  
906  
909  
912  
915  
918  
921  
924  
927  
930  
Frequency [MHz]  
Frequency [MHz]  
D026  
D027  
8-11. Sensitivity vs. Frequency (50 kbps, 868  
8-12. Sensitivity vs. Frequency (50 kbps, 915  
MHz)  
MHz)  
Sensitivity vs. VDDS  
50 kbps, 868.3 MHz  
Sensitivity vs. Temperature  
50 kbps, 868.3 MHz  
-105  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-113  
-114  
-115  
-105  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-113  
-114  
-115  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Temperature [°C]  
Voltage [V]  
D030  
D033  
8-13. Sensitivity vs. Temperature (50 kbps, 868.3  
8-14. Sensitivity vs. Supply Voltage (VDDS) (50  
MHz)  
kbps, 868.3 MHz)  
Selectivity vs. Frequency Offset  
50 kbps, 868.3 MHz  
Packet error rate vs level and frequency offset for SLR 5 kbps.  
100  
0
80  
60  
40  
20  
0
90  
-20  
80  
70  
-40  
60  
-60  
50  
40  
-80  
30  
-100  
20  
10  
-120  
-20  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
0
-30  
-20  
-10  
0
10  
20  
30  
Frequency [MHz]  
D038  
Offset frequency [ppm]  
8-15. Selectivity vs. Frequency Offset (50 kbps,  
8-16. PER vs. Level vs. Frequency (SimpleLink  
868.3 MHz)  
™ Long Range 5 kbps, 868 MHz)  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: CC1311R3  
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8-18. Narrowband, 9.6 kbps ±2.4 kHz deviation,  
8-17. 802.15.4, 50 kbps, ±25 kHz deviation, 2-  
GFSK, 100 kHz RX Bandwidth  
2-GFSK, 868 MHz, 17.1 kHz RX Bandwidth  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: CC1311R3  
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.19.5 TX Performance  
Output Power vs. VDDS  
50 kbps, 868.3 MHz, +14 dBm  
Output Power vs. Temperature  
50 kbps, 868.3 MHz, +14 dBm  
14  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
13  
14  
13.8  
13.6  
13.4  
13.2  
13  
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
12.8  
12.6  
12.4  
12.2  
12  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8  
Temperature [°C]  
Voltage [V]  
D039  
D044  
8-19. Output Power vs. Temperature (50 kbps,  
8-20. Output Power vs. Supply Voltage (VDDS)  
868.3 MHz)  
(50 kbps, 868.3 MHz)  
Output Power vs. Frequency  
50 kbps, +14 dBm  
Output Power vs. Frequency  
50 kbps, +14 dBm  
14  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
13  
14  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
13  
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
863  
864  
865  
866  
867  
868  
869  
870  
902 904 906 908 910 912 914 916 918 920 922 924 926 928  
Frequency [MHz]  
Frequency [MHz]  
D052  
D053  
8-21. Output Power vs. Frequency (50 kbps, 868 8-22. Output Power vs. Frequency (50 kbps, 915  
MHz)  
MHz)  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: CC1311R3  
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
8.19.6 ADC Performance  
ENOB vs. Input Frequency  
ENOB vs. Sampling Frequency  
Vin = 3.0 V Sine wave, Internal reference,  
Fin = Fs / 10  
11.4  
11.1  
10.8  
10.5  
10.2  
9.9  
Internal Reference, No Averaging  
Internal Unscaled Reference, 14-bit Mode  
10.2  
10.15  
10.1  
10.05  
10  
9.95  
9.9  
9.85  
9.8  
9.6  
1
2
3
4
5
6
7 8 10  
20  
30 40 50 70 100  
200  
0.2 0.3  
0.5 0.7  
1
2
3
4
5
6 7 8 10  
20  
30 40 50 70 100  
Frequency [kHz]  
Frequency [kHz]  
D062  
D061  
8-24. ENOB vs. Sampling Frequency  
8-23. ENOB vs. Input Frequency  
INL vs. ADC Code  
Vin = 3.0 V Sine wave, Internal reference,  
200 kSamples/s  
DNL vs. ADC Code  
Vin = 3.0 V Sine wave, Internal reference,  
200 kSamples/s  
1.5  
1
2.5  
2
0.5  
0
1.5  
1
-0.5  
-1  
0.5  
0
-1.5  
-0.5  
0
400  
800  
1200 1600 2000 2400 2800 3200 3600 4000  
0
400  
800  
1200 1600 2000 2400 2800 3200 3600 4000  
ADC Code  
ADC Code  
D064  
D065  
8-25. INL vs. ADC Code  
8-26. DNL vs. ADC Code  
ADC Accuracy vs. VDDS  
Vin = 1 V, Internal reference,  
200 kSamples/s  
ADC Accuracy vs. Temperature  
Vin = 1 V, Internal reference,  
200 kSamples/s  
1.01  
1.009  
1.008  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1
1.01  
1.009  
1.008  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Temperature [°C]  
Voltage [V]  
D066  
D067  
8-27. ADC Accuracy vs. Temperature  
8-28. ADC Accuracy vs. Supply Voltage (VDDS)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: CC1311R3  
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
4 shows the core modules of the CC1311R3 device.  
9.2 System CPU  
The CC1311R3 SimpleLinkWireless MCU contains an Arm® Cortex®-M4 system CPU, which runs the  
application and the higher layers of radio protocol stacks.  
The system CPU is the foundation of a high-performance, low-cost platform that meets the system requirements  
of minimal memory implementation, and low-power consumption, while delivering outstanding computational  
performance and exceptional system response to interrupts.  
Its features include the following:  
ARMv7-M architecture optimized for small-footprint embedded applications  
Arm Thumb®-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit Arm  
core in a compact memory size  
Fast code execution permits increased sleep mode time  
Deterministic, high-performance interrupt handling for time-critical applications  
Single-cycle multiply instruction and hardware divide  
Hardware division and fast digital-signal-processing oriented multiply accumulate  
Saturating arithmetic for signal processing  
Full debug with data matching for watchpoint generation  
Data Watchpoint and Trace Unit (DWT)  
JTAG Debug Access Port (DAP)  
Flash Patch and Breakpoint Unit (FPB)  
Trace support reduces the number of pins required for debugging and tracing  
Instrumentation Trace Macrocell Unit (ITM)  
Trace Port Interface Unit (TPIU) with asynchronous serial wire output (SWO)  
Optimized for single-cycle flash memory access  
Tightly connected to 8-KB 4-way random replacement cache for minimal active power consumption and wait  
states  
Ultra-low-power consumption with integrated sleep modes  
48 MHz operation  
1.25 DMIPS per MHz  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
9.3 Radio (RF Core)  
The RF Core is a highly flexible and future proof radio module which contains an Arm Cortex-M0 processor that  
interfaces the analog RF and base-band circuitry, handles data to and from the system CPU side, and  
assembles the information bits in a given packet structure. The RF core offers a high level, command-based API  
to the main CPU that configurations and data are passed through. The Arm Cortex-M0 processor is not  
programmable by customers and is interfaced through the TI-provided RF driver that is included with the  
SimpleLink Software Development Kit (SDK).  
The RF core can autonomously handle the time-critical aspects of the radio protocols, thus offloading the main  
CPU, which reduces power and leaves more resources for the user application. Several signals are also  
available to control external circuitry such as RF switches or range extenders autonomously.  
The various physical layer radio formats are partly built as a software defined radio where the radio behavior is  
either defined by radio ROM contents or by non-ROM radio formats delivered in form of firmware patches with  
the SimpleLink SDKs. This allows the radio platform to be updated for support of future versions of standards  
even with over-the-air (OTA) updates while still using the same silicon.  
备注  
Not all combinations of features, frequencies, data rates, and modulation formats described in this  
chapter are supported. Over time, TI can enable new physical radio formats (PHYs) for the device and  
provides performance numbers for selected PHYs in the data sheet. Supported radio formats for a  
specific device, including optimized settings to use with the TI RF driver, are included in the SmartRF  
Studio tool with performance numbers of selected formats found in 8.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
9.3.1 Proprietary Radio Formats  
The CC1311R3 radio can support a wide range of physical radio formats through a set of hardware peripherals  
combined with firmware available in the device ROM, covering various customer needs for optimizing towards  
parameters such as speed or sensitivity. This allows great flexibility in tuning the radio both to work with legacy  
protocols as well as customizing the behavior for specific application needs.  
9-1 gives a simplified overview of features of the various radio formats available in ROM. Other radio formats  
may be available in the form of radio firmware patches or programs through the Software Development Kit (SDK)  
and may combine features in a different manner, as well as add other features.  
9-1. Feature Support  
Feature  
Main 2-(G)FSK Mode  
High Data Rates  
Low Data Rates  
SimpleLink™ Long Range  
Programmable preamble,  
sync word and CRC  
Yes  
Yes  
Yes  
No  
Programmable receive  
bandwidth  
Yes  
Yes  
Yes (down to 4 kHz)  
Yes  
Data / Symbol rate(3)  
20 to 1000 kbps  
2-(G)FSK  
2 Msps  
100 ksps  
20 ksps  
2-(G)FSK  
2-(G)FSK  
4-(G)FSK  
2-(G)FSK  
4-(G)FSK  
Modulation format  
Dual Sync Word  
Carrier Sense (1) (2)  
Preamble Detection(2)  
Data Whitening  
Digital RSSI  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
CRC filtering  
1:2  
1:4  
1:8  
Direct-sequence spread  
spectrum (DSSS)  
No  
No  
No  
Forward error correction  
(FEC)  
No  
No  
No  
Yes  
Yes  
Link Quality Indicator (LQI)  
Yes  
Yes  
Yes  
(1) Carrier Sense can be used to implement HW-controlled listen-before-talk (LBT) and Clear Channel Assessment (CCA) for compliance  
with such requirements in regulatory standards. This is available through the CMD_PROP_CS radio API.  
(2) Carrier Sense and Preamble Detection can be used to implement sniff modes where the radio is duty cycled to save power.  
(3) Data rates are only indicative. Data rates outside this range may also be supported. For some specific combinations of settings, a  
smaller range might be supported.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
9.4 Memory  
The up to 352-KB nonvolatile (Flash) memory provides storage for code and data. The flash memory is in-  
system programmable and erasable. The last flash memory sector must contain a Customer Configuration  
section (CCFG) that is used by boot ROM and TI provided drivers to configure the device. This configuration is  
done through the ccfg.c source file that is included in all TI provided examples.  
The ultra-low leakage system static RAM (SRAM) is a single 32-KB block and can be used for both storage of  
data and execution of code. Retention of SRAM contents in Standby power mode is enabled by default and  
included in Standby mode power consumption numbers.  
To improve code execution speed and lower power when executing code from nonvolatile memory, a 4-way  
nonassociative 8-KB cache is enabled by default to cache and prefetch instructions read by the system CPU.  
The cache can be used as a general-purpose RAM by enabling this feature in the Customer Configuration Area  
(CCFG).  
The ROM contains a serial (SPI and UART) bootloader that can be used for initial programming of the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
9.5 Cryptography  
The CC1311R3 device comes with a wide set of cryptography-related hardware accelerators, reducing code  
footprint and execution time for cryptographic operations. It also has the benefit of being lower power and  
improves availability and responsiveness of the system because the cryptography operations run in a  
background hardware thread.  
The hardware accelerator modules are:  
True Random Number Generator (TRNG) module provides a true, nondeterministic noise source for the  
purpose of generating keys, initialization vectors (IVs), and other random number requirements. The TRNG is  
built on 24 ring oscillators that create unpredictable output to feed a complex nonlinear-combinatorial circuit.  
Advanced Encryption Standard (AES) with 128 bit key lengths  
Together with the hardware accelerator module, a large selection of open-source cryptography libraries provided  
with the Software Development Kit (SDK), this allows for secure and future proof IoT applications to be easily  
built on top of the platform. The TI provided cryptography drivers are:  
Key Agreement Schemes  
Elliptic curve DiffieHellman with static or ephemeral keys (ECDH and ECDHE)  
Signature Generation  
Elliptic curve Diffie-Hellman Digital Signature Algorithm (ECDSA)  
Curve Support  
Short Weierstrass form (full hardware support), such as:  
NIST-P256  
Montgomery form (hardware support for multiplication), such as:  
Curve25519  
Hash  
SHA256  
MACs  
HMAC with SHA256  
AES CBC-MAC  
Block ciphers  
AESECB  
AESCBC  
AESCTR  
Authenticated Encryption  
AESCCM  
Random number generation  
True Random Number Generator  
AES CTR DRBG  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
9.6 Timers  
A large selection of timers are available as part of the CC1311R3 device. These timers are:  
Real-Time Clock (RTC)  
A 70-bit 3-channel timer running on the 32 kHz low frequency system clock (SCLK_LF)  
This timer is available in all power modes except Shutdown. The timer can be calibrated to compensate for  
frequency drift when using the LF RCOSC as the low frequency system clock. If an external LF clock with  
frequency different from 32.768 kHz is used, the RTC tick speed can be adjusted to compensate for this.  
When using TI-RTOS, the RTC is used as the base timer in the operating system and should thus only be  
accessed through the kernel APIs such as the Clock module. By default, the RTC halts when a debugger  
halts the device.  
General Purpose Timers (GPTIMER)  
The four flexible GPTIMERs can be used as either 4× 32 bit timers or 8× 16 bit timers, all running on up to 48  
MHz. Each of the 16- or 32-bit timers support a wide range of features such as one-shot or periodic counting,  
pulse width modulation (PWM), time counting between edges and edge counting. The inputs and outputs of  
the timer are connected to the device event fabric, which allows the timers to interact with signals such as  
GPIO inputs, other timers, DMA and ADC. The GPTIMERs are available in Active and Idle power modes.  
Radio Timer  
A multichannel 32-bit timer running at 4 MHz is available as part of the device radio. The radio timer is  
typically used as the timing base in wireless network communication using the 32-bit timing word as the  
network time. The radio timer is synchronized with the RTC by using a dedicated radio API when the device  
radio is turned on or off. This ensures that for a network stack, the radio timer seems to always be running  
when the radio is enabled. The radio timer is in most cases used indirectly through the trigger time fields in  
the radio APIs and should only be used when running the accurate 48 MHz high frequency crystal is the  
source of SCLK_HF.  
Watchdog timer  
The watchdog timer is used to regain control if the system operates incorrectly due to software errors. It is  
typically used to generate an interrupt to and reset of the device for the case where periodic monitoring of the  
system components and tasks fails to verify proper functionality. The watchdog timer runs on a 1.5 MHz clock  
rate and cannot be stopped once enabled. The watchdog timer pauses to run in Standby power mode and  
when a debugger halts the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: CC1311R3  
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
9.7 Serial Peripherals and I/O  
The SSI is a synchronous serial interface that is compatible with SPI, MICROWIRE, and TI's synchronous serial  
interfaces. The SSI support both SPI master and slave up to 4 MHz. The SSI module support configurable phase  
and polarity.  
The UART implement universal asynchronous receiver and transmitter functions. It support flexible baud-rate  
generation up to a maximum of 3 Mbps.  
The I2S interface is used to handle digital audio and can also be used to interface pulse-density modulation  
microphones (PDM).  
The I2C interface is also used to communicate with devices compatible with the I2C standard. The I2C interface  
can handle 100 kHz and 400 kHz operation, and can serve as both master and slave.  
The I/O controller (IOC) controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals  
to be assigned to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a  
programmable pullup and pulldown function, and can generate an interrupt on a negative or positive edge  
(configurable). When configured as an output, pins can function as either push-pull or open-drain. Five GPIOs  
have high-drive capabilities, which are marked in bold in 7. All digital peripherals can be connected to any  
digital pin on the device.  
For more information, see the CC13x1x3, CC26x1x3 SimpleLink™ Wireless MCU Technical Reference Manual.  
9.8 Battery and Temperature Monitor  
A combined temperature and battery voltage monitor is available in the CC1311R3 device. The battery and  
temperature monitor allows an application to continuously monitor on-chip temperature and supply voltage and  
respond to changes in environmental conditions as needed. The module contains window comparators to  
interrupt the system CPU when temperature or supply voltage go outside defined windows. These events can  
also be used to wake up the device from Standby mode through the Always-On (AON) event fabric.  
9.9 µDMA  
The device includes a direct memory access (µDMA) controller. The µDMA controller provides a way to offload  
data-transfer tasks from the system CPU, thus allowing for more efficient use of the processor and the available  
bus bandwidth. The µDMA controller can perform a transfer between memory and peripherals. The µDMA  
controller has dedicated channels for each supported on-chip module and can be programmed to automatically  
perform transfers between peripherals and memory when the peripheral is ready to transfer more data.  
Some features of the µDMA controller include the following (this is not an exhaustive list):  
Highly flexible and configurable channel operation of up to 32 channels  
Transfer modes: memory-to-memory, memory-to-peripheral, peripheral-to-memory, and  
peripheral-to-peripheral  
Data sizes of 8, 16, and 32 bits  
Ping-pong mode for continuous streaming of data  
9.10 Debug  
The on-chip debug support is done through a dedicated cJTAG (IEEE 1149.7) or JTAG (IEEE 1149.1) interface.  
The device boots by default into cJTAG mode and must be reconfigured to use 4-pin JTAG.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
9.11 Power Management  
To minimize power consumption, the CC1311R3 supports a number of power modes and power management  
features (see 9-2).  
9-2. Power Modes  
SOFTWARE CONFIGURABLE POWER MODES  
RESET PIN  
HELD  
MODE  
ACTIVE  
Active  
On  
IDLE  
Off  
STANDBY  
Off  
SHUTDOWN  
CPU  
Off  
Off  
Off  
Off  
No  
No  
Off  
Off  
Off  
Off  
No  
No  
Flash  
Available  
On  
Off  
SRAM  
On  
Retention  
Duty Cycled  
Partial  
Full  
Supply System  
Register and CPU retention  
SRAM retention  
On  
On  
Full  
Full  
Full  
Full  
48 MHz high-speed clock  
(SCLK_HF)  
XOSC_HF or  
RCOSC_HF  
XOSC_HF or  
RCOSC_HF  
Off  
Off  
Off  
Off  
Off  
32 kHz low-speed clock  
(SCLK_LF)  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
Peripherals  
Available  
Available  
Available  
On  
Available  
Available  
Available  
On  
Off  
Available  
Available  
On  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Wake-up on RTC  
Wake-up on pin edge  
Wake-up on reset pin  
Brownout detector (BOD)  
Power-on reset (POR)  
Watchdog timer (WDT)  
Available  
On  
On  
On  
Duty Cycled  
On  
Off  
On  
On  
Off  
Available  
Available  
Paused  
Off  
In Active mode, the application system CPU is actively executing code. Active mode provides normal operation  
of the processor and all of the peripherals that are currently enabled. The system clock can be any available  
clock source (see 9-2).  
In Idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not clocked  
and no code is executed. Any interrupt event brings the processor back into active mode.  
In Standby mode, only the always-on (AON) domain is active. An external wake-up event or RTC event is  
required to bring the device back to active mode. MCU peripherals with retention do not need to be reconfigured  
when waking up again, and the CPU continues execution from where it went into standby mode. All GPIOs are  
latched in standby mode.  
In Shutdown mode, the device is entirely turned off (including the AON domain), and the I/Os are latched with  
the value they had before entering shutdown mode. A change of state on any I/O pin defined as a wake from  
shutdown pin wakes up the device and functions as a reset trigger. The CPU can differentiate between reset in  
this way and reset-by-reset pin or power-on reset by reading the reset status register. The only state retained in  
this mode is the latched I/O state and the flash memory contents.  
备注  
The power, RF and clock management for the CC1311R3 device require specific configuration and  
handling by software for optimized performance. This configuration and handling is implemented in the  
TI-provided drivers that are part of the CC1311R3 software development kit (SDK). Therefore, TI  
highly recommends using this software framework for all application development on the device. The  
complete SDK with TI-RTOS (optional), device drivers, and examples are offered free of charge in  
source code.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: CC1311R3  
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
9.12 Clock Systems  
The CC1311R3 device has several internal system clocks.  
The 48 MHz SCLK_HF is used as the main system (MCU and peripherals) clock. This can be driven by the  
internal 48 MHz RC Oscillator (RCOSC_HF) or an external 48 MHz crystal (XOSC_HF). Radio operation  
requires an external 48 MHz crystal.  
SCLK_LF is the 32.768 kHz internal low-frequency system clock. It can be used for the RTC and to synchronize  
the radio timer before or after Standby power mode. SCLK_LF can be driven by the internal 32.8 kHz RC  
Oscillator (RCOSC_LF), a 32.768 kHz watch-type crystal, or a clock input on any digital IO.  
When using a crystal or the internal RC oscillator, the device can output the 32 kHz SCLK_LF signal to other  
devices, thereby reducing the overall system cost.  
9.13 Network Processor  
Depending on the product configuration, the CC1311R3 device can function as a wireless network processor  
(WNP - a device running the wireless protocol stack with the application running on a separate host MCU), or as  
a system-on-chip (SoC) with the application and protocol stack running on the system CPU inside the device.  
In the first case, the external host MCU communicates with the device using SPI or UART. In the second case,  
the application must be written according to the application framework supplied with the wireless protocol stack.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
10 Application, Implementation, and Layout  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
For general design guidelines and hardware configuration guidelines, refer to CC13xx/CC26xx Hardware  
Configuration and PCB Design Considerations Application Report.  
10.1 Reference Designs  
The following reference designs should be followed closely when implementing designs using the CC1311R3  
device.  
Special attention must be paid to RF component placement, decoupling capacitors and DCDC regulator  
components, as well as ground connections for all of these.  
CC1311-R3EM-5XD7793  
Design Files  
The CC1311-R3EM-5XD7793 reference design provides schematic, layout and  
production files for the characterization board used for deriving the performance  
number found in this document. This reference design is intended for operation in the  
868 MHz and 915 MHz bands.  
LP-CC1311P3 Design  
Files  
The CC1311P3 LaunchPad Design Files contain detailed schematics and layouts to  
build application specific boards using the CC1311P3 device. This LaunchPad is  
intended for operation in the 868 MHz and 915 MHz bands.  
Sub-1 GHz and 2.4 GHz  
Antenna Kit for LaunchPad™  
Development Kit and  
SensorTag  
The antenna kit allows real-life testing to identify the optimal antenna for your  
application. The antenna kit includes 16 antennas for frequencies from 169 MHz  
to 2.4 GHz, including:  
PCB antennas  
Helical antennas  
Chip antennas  
Dual-band antennas for 868 MHz and 915 MHz combined with 2.4 GHz  
The antenna kit includes a JSC cable to connect to the Wireless MCU  
LaunchPad Development Kits and SensorTags.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: CC1311R3  
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
10.2 Junction Temperature Calculation  
This section shows the different techniques for calculating the junction temperature under various operating  
conditions. For more details, see Semiconductor and IC Package Thermal Metrics.  
There are three recommended ways to derive the junction temperature from other measured temperatures:  
1. From package temperature:  
T = ψ × P + T  
case  
(1)  
(2)  
(3)  
J
JT  
2. From board temperature:  
T = ψ × P + T  
board  
J
JB  
3. From ambient temperature:  
T = R  
× P + T  
A
J
θJA  
P is the power dissipated from the device and can be calculated by multiplying current consumption with supply  
voltage. Thermal resistance coefficients are found in Thermal Resistance Characteristics.  
Example:  
Using 程式 3, the temperature difference between ambient temperature and junction temperature is  
calculated. In this example, we assume a simple use case where the radio is transmitting continuously at  
10 dBm output power. Let us assume the ambient temperature is 85°C and the supply voltage is 3.6 V. To  
calculate P, we need to look up the current consumption for Tx at 85°C in 8-9. From the plot, we see that the  
current consumption is 14.4 mA. This means that P is 14.4 mA × 3.6 V = 51.8 mW.  
The junction temperature is then calculated as:  
°C  
T = 23.4  
× 51.8mW + T = 1.2°C + T  
A
(4)  
W
J
A
As can be seen from the example, the junction temperature is 1.2 °C higher than the ambient temperature when  
running continuous Tx at 85°C and, thus, well within the recommended operating conditions.  
For various application use cases current consumption for other modules may have to be added to calculate the  
appropriate power dissipation. For example, the MCU may be running simultaneously as the radio, peripheral  
modules may be enabled, etc. Typically, the easiest way to find the peak current consumption, and thus the peak  
power dissipation in the device, is to measure as described in Measuring CC13xx and CC26xx current  
consumption.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
11 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed as follows.  
11.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to all part numbers and/or date-  
code. Each device has one of three prefixes/identifications: X, P, or null (no prefix) (for example, XCC1311R3 is  
in preview; therefore, an X prefix/identification is assigned).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, RGZ).  
For orderable part numbers of CC1311R3 devices in the RGZ (7-mm x 7-mm) package type, see the Package  
Option Addendum of this document, the Device Information in 3, the TI website (www.ti.com), or contact your  
TI sales representative.  
CC1311  
R
3
1
T
0
RGZ R  
PREFIX  
X = Experimental device  
Blank = Qualified devie  
R = Large Reel  
PACKAGE  
RGZ = 48-pin VQFN (Very Thin Quad Flatpack No-Lead)  
RKP = 40-pin VQFN (Very Thin Quad Flatpack No-Lead)  
DEVICE  
SimpleLink™ Ultra-Low-Power  
Wireless MCU  
PRODUCT REVISION  
CONFIGURATION  
R = Regular  
P = +20 dBm PA included  
TEMPERATURE  
T = 105 C Ambient  
FLASH SIZE  
SRAM SIZE  
3 = 352 kB  
1 = 32kB  
11-1. Device Nomenclature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: CC1311R3  
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
11.2 Tools and Software  
The CC1311R3 device is supported by a variety of software and hardware development tools.  
Development Kit  
CC1311P3 LaunchPad  
™ Development Kit  
The CC1311P3 LaunchPadDevelopment Kit enables development of high-  
performance Sub-1 GHz wireless applications that benefit from low-power operation.  
The kit features the CC1311P3 Sub-1 GHz SimpleLink Wireless MCU. The kit works  
with the LaunchPad ecosystem, easily enabling additional functionality like sensors,  
display, and more.  
Software  
SimpleLink™  
CC13XX-  
CC26XX SDK  
The SimpleLink CC13xx and CC26xx Software Development Kit (SDK) provides a complete  
package for the development of wireless applications on the CC13XX / CC26XX family of  
devices. The SDK includes a comprehensive software package for the CC1311R3 device,  
including the following protocol stacks:  
Bluetooth Low Energy 4 and 5.2  
Thread (based on OpenThread)  
Zigbee 3.0  
Wi-SUN®  
TI 15.4-Stack - an IEEE 802.15.4-based star networking solution for Sub-1 GHz and  
2.4 GHz  
Proprietary RF - a large set of building blocks for building proprietary RF software  
Multiprotocol support - concurrent operation between stacks using the Dynamic  
Multiprotocol Manager (DMM)  
The SimpleLink CC13XX-CC26XX SDK is part of TIs SimpleLink MCU platform, offering a  
single development environment that delivers flexible hardware, software and tool options for  
customers developing wired and wireless applications. For more information about the  
SimpleLink MCU Platform, visit http://www.ti.com/simplelink.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
Development Tools  
Code Composer  
StudioIntegrated  
Development  
Code Composer Studio is an integrated development environment (IDE) that supports TI's  
Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a  
suite of tools used to develop and debug embedded applications. It includes an optimizing  
C/C++ compiler, source code editor, project build environment, debugger, profiler, and  
many other features. The intuitive IDE provides a single user interface taking you through  
each step of the application development flow. Familiar tools and interfaces allow users to  
get started faster than ever before. Code Composer Studio combines the advantages of the  
Eclipse® software framework with advanced embedded debug capabilities from TI resulting  
in a compelling feature-rich development environment for embedded developers.  
Environment (IDE)  
CCS has support for all SimpleLink Wireless MCUs and includes support for EnergyTrace™  
software (application energy usage profiling). A real-time object viewer plugin is available  
for TI-RTOS, part of the SimpleLink SDK.  
Code Composer Studio is provided free of charge when used in conjunction with the XDS  
debuggers included on a LaunchPad Development Kit.  
Code Composer  
Studio™ Cloud  
IDE  
Code Composer Studio (CCS) Cloud is a web-based IDE that allows you to create, edit and  
build CCS and Energia™ projects. After you have successfully built your project, you can  
download and run on your connected LaunchPad. Basic debugging, including features like  
setting breakpoints and viewing variable values is now supported with CCS Cloud.  
IAR Embedded  
Workbench® for  
Arm®  
IAR Embedded Workbench® is a set of development tools for building and debugging  
embedded system applications using assembler, C and C++. It provides a completely  
integrated development environment that includes a project manager, editor, and build  
tools. IAR has support for all SimpleLink Wireless MCUs. It offers broad debugger support,  
including XDS110, IAR I-jetand Segger J-Link. A real-time object viewer plugin is  
available for TI-RTOS, part of the SimpleLink SDK. IAR is also supported out-of-the-box on  
most software examples provided as part of the SimpleLink SDK.  
A 30-day evaluation or a 32 KB size-limited version is available through iar.com.  
SmartRF™ Studio  
SmartRF™ Studio is a Windows® application that can be used to evaluate and configure  
SimpleLink Wireless MCUs from Texas Instruments. The application will help designers of  
RF systems to easily evaluate the radio at an early stage in the design process. It is  
especially useful for generation of configuration register values and for practical testing and  
debugging of the RF system. SmartRF Studio can be used either as a standalone  
application or together with applicable evaluation boards or debug probes for the RF  
device. Features of the SmartRF Studio include:  
Link tests - send and receive packets between nodes  
Antenna and radiation tests - set the radio in continuous wave TX and RX states  
Export radio configuration code for use with the TI SimpleLink SDK RF driver  
Custom GPIO configuration for signaling and control of external switches  
CCS UniFlash  
CCS UniFlash is a standalone tool used to program on-chip flash memory on TI MCUs.  
UniFlash has a GUI, command line, and scripting interface. CCS UniFlash is available free  
of charge.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: CC1311R3  
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
11.2.1 SimpleLink™ Microcontroller Platform  
The SimpleLink microcontroller platform sets a new standard for developers with the broadest portfolio of wired  
and wireless Arm® MCUs (System-on-Chip) in a single software development environment. Delivering flexible  
hardware, software and tool options for your IoT applications. Invest once in the SimpleLink software  
development kit and use throughout your entire portfolio. Learn more on ti.com/simplelink.  
11.3 Documentation Support  
To receive notification of documentation updates on data sheets, errata, application notes and similar, navigate  
to the device product folder on ti.com/product/CC1311R3. In the upper right corner, click on Alert me to register  
and receive a weekly digest of any product information that has changed. For change details, review the revision  
history included in any revised document.  
The current documentation that describes the MCU, related peripherals, and other technical collateral is listed as  
follows.  
TI Resource Explorer  
TI Resource Explorer  
Software examples, libraries, executables, and documentation are available for your  
device and development board.  
Errata  
CC1311R3 Silicon  
Errata  
The silicon errata describes the known exceptions to the functional specifications for  
each silicon revision of the device and description on how to recognize a device  
revision.  
Application Reports  
All application reports for the CC1311R3 device are found on the device product folder at: ti.com/product/  
CC1311R3/#tech-docs.  
Technical Reference Manual (TRM)  
CC13x1x, CC26x1x SimpleLink™  
Wireless MCU TRM  
The TRM provides a detailed description of all modules and  
peripherals available in the device family.  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
SimpleLink, LaunchPad, Code Composer Studio, EnergyTrace, and TI E2Eare trademarks of Texas  
Instruments.  
I-jetis a trademark of IAR Systems AB.  
J-Linkis a trademark of SEGGER Microcontroller Systeme GmbH.  
Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
CoreMark® is a registered trademark of Embedded Microprocessor Benchmark Consortium Corporation.  
Arm Thumb® is a registered trademark of Arm Limited (or its subsidiaries).  
Wi-SUN® is a registered trademark of Wi-SUN Alliance Inc.  
Eclipse® is a registered trademark of Eclipse Foundation.  
IAR Embedded Workbench® is a registered trademark of IAR Systems AB.  
Windows® is a registered trademark of Microsoft Corporation.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: CC1311R3  
 
 
CC1311R3  
ZHCSQ48 MARCH 2022  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: CC1311R3  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC1311R31T0RGZR  
CC1311R31T0RKPR  
ACTIVE  
VQFN  
VQFN  
RGZ  
48  
40  
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
CC1311  
R31  
Samples  
Samples  
ACTIVE  
RKP  
NIPDAU  
CC1311  
R31  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-May-2022  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RKP 40  
5 x 5, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229305/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RKP0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
5.1  
4.9  
A
B
PIN 1 INDEX AREA  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.6  
3.4  
(0.1) TYP  
11  
20  
36X 0.4  
10  
21  
41  
SYMM  
4X  
3.6  
0.25  
0.15  
30  
40X  
1
0.1  
C A B  
C
PIN1 ID  
(OPTIONAL)  
40  
31  
0.05  
SYMM  
0.5  
0.3  
40X  
4219083/A 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RKP0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (4.8)  
3.5)  
SYMM  
(
40X (0.6)  
40X (0.2)  
40  
31  
1
30  
36X (0.4)  
SYMM  
2X  
(4.8)  
2X (0.6)  
2X (0.9)  
21  
10  
(R 0.05) TYP  
(Ø 0.2) VIA  
11  
20  
TYP  
2X (0.9283)  
2X (0.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDERMASK  
EXPOSED  
OPENING  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219083/A 03/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RKP0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (4.8)  
SYMM  
9X  
1)  
(
40X (0.6)  
40X (0.2)  
40  
31  
1
30  
36X (0.4)  
SYMM  
2X  
(4.8)  
2X  
(1.2)  
21  
10  
(R 0.05) TYP  
11  
20  
2X (1.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
74% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219083/A 03/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

CC1312R

具有 352kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4F 低于 1GHz 无线 MCU
TI

CC1312R1F3RGZR

具有 352kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4F 低于 1GHz 无线 MCU | RGZ | 48 | -40 to 105
TI

CC1312R1F3RGZT

具有 352kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4F 低于 1GHz 无线 MCU | RGZ | 48 | -40 to 105
TI

CC1312R7

具有 704kB 闪存的 SimpleLink™ Arm® Cortex®-M4F 多协议 Sub-1GHz 无线 MCU
TI

CC1312R74T0RGZR

具有 704kB 闪存的 SimpleLink™ Arm® Cortex®-M4F 多协议 Sub-1GHz 无线 MCU | RGZ | 48 | -40 to 105
TI

CC1320R3M

For electrovalves, style A, 3p+G, female, with cable
SHIELD

CC1320R8M

For electrovalves, style A, 3p+G, female, with cable
SHIELD

CC1340M3M

For electrovalves, style A, 3p+G, female, with cable
SHIELD

CC1340M8M

For electrovalves, style A, 3p+G, female, with cable
SHIELD

CC1350

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议低于 1GHz 和 2.4GHz 无线 MCU
TI

CC1350F128RGZR

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议低于 1GHz 和 2.4GHz 无线 MCU | RGZ | 48 | -40 to 85
TI

CC1350F128RGZT

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议低于 1GHz 和 2.4GHz 无线 MCU | RGZ | 48 | -40 to 85
TI