CC2340R52E0RKPR [TI]

具有 512kB 闪存的 SimpleLink™ 32 位 Arm® Cortex®-M0+ 低功耗 Bluetooth® 无线 MCU | RKP | 40 | -40 to 125;
CC2340R52E0RKPR
型号: CC2340R52E0RKPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 512kB 闪存的 SimpleLink™ 32 位 Arm® Cortex®-M0+ 低功耗 Bluetooth® 无线 MCU | RKP | 40 | -40 to 125

无线 闪存
文件: 总64页 (文件大小:2504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
CC2340R5 SimpleLink™ 低功Bluetooth ® 5.3 线MCU  
3×16 1×24 位通用计时器支持正交解码模式  
12 ADC使用外部基准1.2MSPS使用内部  
基准267ksps、高12 个外ADC 输入  
低功耗比较器  
1 个异步收发(UART)  
1× SPI  
1× I2C  
1 特性  
无线微控制器  
• 经过优化48MHz Arm® Cortex®-M0+ 处理器  
512 KB 系统内可编程闪存  
12KB ROM 用于引导加载程序和驱动程序  
36 KB 超低泄SRAM。待机模式下完RAM 保  
• 与低功Bluetooth® 5.3 兼容2.4GHz 射频收发  
• 集成平衡-非平衡变压器  
• 实时时(RTC)  
• 集成温度和电池监控器  
• 看门狗计时器  
安全驱动工具  
• 支持无线升(OTA)  
• 串行线调(SWD)  
AES 128 位加密加速计  
• 来自片上模拟噪声的随机数生成器  
低功耗  
开发工具和软件  
MCU 功耗:  
LP-EM-CC2340R5 LaunchPad 开发套件  
SimpleLink™ CC23xx 软件开发套(SDK)  
• 用于简单无线电配置SmartRF™ Studio  
SysConfig 系统配置工具  
2.6 mA 有源模式CoreMark®  
53μA/MHzCoreMark® )  
< 710nA 待机模式RTC36KB RAM  
150nA 关断模式引脚唤醒  
• 无线电功耗:  
工作温度范围  
RX5.3 mA  
TX5.1 mA0dBm 条件下)  
TX< 11.0mA+8dBm 条件下)  
• 片上降压直流/直流转换器  
1.71V 3.8V 单电源电压  
Tj-40 +125°C  
无线协议支持  
RoHS 标准的封装  
• 低功Bluetooth® 5.3  
ZigBee® 1  
SimpleLink™ TI 15.4-stack 1  
• 专有系统  
5mm × 5mm RKP QFN40 (26 GPIO)  
4mm × 4mm RGE QFN2412 GPIO2  
高性能无线电  
-102dBm125kbps 低功Bluetooth® )  
-96.5dBm1Mbps 低功Bluetooth® )  
• 高+8dBm 的输出功率具有温度补偿  
法规遵从性  
• 适用于符合以下标准的系统:  
EN 300 328欧洲)  
FCC CFR47 15 部分  
ARIB STD-T66日本)  
MCU 外设  
• 多26 I/O 板  
2 IO SWDGPIO 进行多路复用  
2 IO LFXTGPIO 进行多路复用  
– 多22 DIO模拟或数IO)  
1
在未来SDK 中提供  
RGE (4.00mm x 4.00mm) 封装信息只是预发布版可能会更改。  
2
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWRS272  
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
照明  
LED 灯具  
– 照明控日光传感器照明传感器无线控  
2 应用  
医疗  
– 居家医疗保血糖监测仪血压监测仪、  
CPAP 呼吸机电子温度计  
– 患者监护和诊医疗传感器贴片  
– 个人护理和健电动牙刷可穿戴健身和活  
动监测仪  
工厂自动化和控制  
零售自动化和支子销售终端  
电子货架标签  
通信设备  
楼宇自动化  
有线网线LAN Wi-Fi 接入点边缘路  
由器  
个人电子产品  
– 楼宇安防系运动检测器电子智能锁门  
窗传感器车库门系统网关  
HVAC 恒温器无线环境传感器  
– 防火安全系烟雾和热量探测器  
– 视频监IP 网络摄像头  
联网外消费类无线模块指点设备键盘  
电子玩具和机器人玩具  
可穿戴设备非医用智能追踪器智能服  
3 说明  
SimpleLinkCC2340R5 器件是面向低功耗 Bluetooth® 5.3 和专有 2.4GHz 应用的 2.4GHz 无线微控制器  
(MCU)。该器件针对低功耗无线通信进行了优化并支持片上双映像无线下载 (OAD) 功能1 适用于楼宇自动化  
无线传感器、照明控制、信标资产跟踪医疗、零售 EPOS电子销售终端ESL电子货架标签和  
个人电子产品玩具、HID、触控笔市场突出特性包括:  
• 支Bluetooth ® 5 特性高速模(2Mbps PHY)、远距离LE 125kbps 500kbps PHYPrivacy  
1.2.1 和通道选择算2以及Bluetooth ® 4.2 和早期低功耗规范的向后兼容性和支持。  
• 完全合格Bluetooth ® 5.3 软件协议栈SimpleLink™ CC23xx 软件开发套(SDK) 随附。  
SimpleLink™ CC23xx 软件开发套(SDK) 3  
• 超低待机电流不0.71μA 并具RTC 操作和完RAM 保持可显著延长电池寿命尤其是对于睡眠间隔  
较长的应用。  
• 集成平衡-非平衡变压器可减少物料清(BOM) 电路板布局布线  
• 出色的无线电敏感度和稳健性选择性与阻断性能适用于低功Bluetooth ®125kbps LE PHY 且  
集成平衡-非平衡变压器时-102dBm。  
CC2340R5 器件是 SimpleLink™ MCU 平台的一部分该平台包括 Wi-Fi®、低功耗蓝牙ThreadZigbee、  
Sub-1GHz MCU 和主机 MCU它们共用一个通用、易于使用的开发环境其中包含单核软件开发套件 (SDK) 和  
丰富的工具集。借助一次性集成的 SimpleLink™ 平台可以将产品组合中的任何器件组合添加至您的设计中从  
而在设计要求变更时实100% 的代码重用。如需更多信息请访SimpleLink™ MCU 平台。  
3
ZigBee® 协议栈支持将在未来SDK 中提供  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
2
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
器件信息  
封装  
QFN24(2)  
器件型号(1)  
封装尺寸标称值)  
4.00mm × 4.00mm  
5.00mm × 5.00mm  
CC2340R52E0RGER  
CC2340R52E0RKPR  
QFN40  
(1) 如需所有可用器件的最新器件、封装和订购信息请参阅12 中的“封装选项附录”或访TI 网站。  
(2) RGE (4.00mm x 4.00mm) 封装信息只是预发布版可能会发生变化。  
4 功能方框图  
48 MHz  
HFXT  
48 MHz  
HFOSC  
DC/DC  
POR  
BOD  
Arm Cortex M0+ Processor  
48 MHz  
32.768 kHz  
LFXT  
32.768 kHz  
LFOSC  
Global LDO  
2.4GHz Radio Transceiver  
Radio Digital  
B
A
L
2.4 GHz  
50 Ω  
RF RAM  
U
N
ADC  
ADC  
Modem Accelerators  
SWD  
µDMA (8 channel)  
System Buses  
Timers  
LGPT0-LGPT3  
12-bit ADC  
1.2 Msps  
RTC  
1x UART  
1x SPI  
512kB Flash  
36kB SRAM  
SYSTIM  
System Timer  
Low Power  
Comparator  
WDT  
Temperature  
Sensor  
12kB System ROM  
1x I2C  
Battery  
Monitor  
AES-128  
IOMUX | up to 26 GPIOs  
4-1. CC2340R5 方框图  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
8.15 Bluetooth Low Energy - Transmit (TX)....................29  
8.16 Proprietary Radio Modes........................................ 30  
8.17 2.4 GHz RX/TX CW................................................ 31  
8.18 Timing and Switching Characteristics..................... 31  
8.19 Peripheral Characteristics.......................................33  
9 Detailed Description......................................................42  
9.1 Overview...................................................................42  
9.2 System CPU............................................................. 42  
9.3 Radio (RF Core)........................................................43  
9.4 Memory.....................................................................43  
9.5 Cryptography............................................................ 44  
9.6 Timers....................................................................... 44  
9.7 Serial Peripherals and I/O.........................................45  
9.8 Battery and Temperature Monitor............................. 46  
9.9 µDMA........................................................................46  
9.10 Debug..................................................................... 46  
9.11 Power Management................................................47  
9.12 Clock Systems........................................................ 48  
9.13 Network Processor..................................................48  
10 Application, Implementation, and Layout................. 49  
10.1 Reference Designs................................................. 49  
10.2 Junction Temperature Calculation...........................50  
11 Device and Documentation Support..........................51  
11.1 Device Nomenclature..............................................51  
11.2 Tools and Software..................................................51  
11.3 Documentation Support.......................................... 54  
11.4 支持资源..................................................................54  
11.5 Trademarks............................................................. 54  
11.6 静电放电警告...........................................................55  
11.7 术语表..................................................................... 55  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
4 功能方框图.........................................................................3  
5 Revision History.............................................................. 4  
6 Device Comparison.........................................................5  
7 Pin Configuration and Functions...................................6  
7.1 Pin Diagram RKP Package (Top View).................. 6  
7.2 Signal Descriptions RKP Package......................... 7  
7.3 Connections for Unused Pins and Modules –  
RKP Package................................................................8  
7.4 Pin Diagram RGE Package (Preview)(Top  
View)............................................................................. 9  
7.5 Signal Descriptions RGE Package (Preview).........9  
7.6 Connections for Unused Pins and Modules –  
RGE Package (Preview)............................................. 10  
7.7 RKP and RGE Peripheral Pin Mapping.....................11  
7.8 RKP and RGE Peripheral Signal Descriptions..........16  
8 Specifications................................................................ 21  
8.1 Absolute Maximum Ratings...................................... 21  
8.2 ESD Ratings............................................................. 21  
8.3 Recommended Operating Conditions.......................21  
8.4 DCDC........................................................................21  
8.5 Global LDO (GLDO)..................................................22  
8.6 Power Supply and Modules...................................... 22  
8.7 Battery Monitor..........................................................22  
8.8 Temperature Sensor................................................. 22  
8.9 Power Consumption - Power Modes........................ 23  
8.10 Power Consumption - Radio Modes....................... 24  
8.11 Nonvolatile (Flash) Memory Characteristics........... 24  
8.12 Thermal Resistance Characteristics....................... 24  
8.13 RF Frequency Bands..............................................25  
8.14 Bluetooth Low Energy - Receive (RX).................... 26  
Information.................................................................... 56  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
April 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6 Device Comparison  
RADIO SUPPORT  
PACKAGE SIZE  
FLASH  
(KB)  
RAM +  
GPIO  
Device  
Cache (KB)  
CC1310  
CC1311R3  
CC1311P3  
CC1312R  
CC1312R7  
CC1352R  
CC1352P  
CC1352P7  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
32-128  
352  
352  
352  
704  
352  
352  
704  
512  
16-20 + 8 10-30  
X
X
X
X
X
X
X
X
X
X
32 + 8  
32 + 8  
80 + 8  
144 + 8  
80 + 8  
80 + 8  
144 + 8  
36  
22-30  
26  
X
X
X
30  
X
X
X
X
X
X
X
X
X
X
30  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
28  
X
X
26  
26  
X
X
CC2340R5(1) (2)  
12-26  
,
X
CC2640R2F  
CC2642R  
X
X
X
X
X
X
X
X
X
X
128  
352  
352  
352  
352  
352  
352  
704  
352  
704  
352  
20 + 8  
80 + 8  
80 + 8  
32 + 8  
32 + 8  
80 + 8  
80 + 8  
144 + 8  
80 + 8  
144 + 8  
80 + 8  
10-31  
31  
X
X
X
X
X
X
X
X
X
X
X
X
X
CC2642R-Q1  
CC2651R3  
CC2651P3  
CC2652R  
31  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
23-31  
22-26  
31  
X
X
X
X
X
X
X
X
X
X
X
X
X
CC2652RB  
CC2652R7  
CC2652P  
31  
31  
X
X
26  
CC2652P7  
CC2662R-Q1  
26  
31  
(1) ZigBee and Thread support enabled by future software update  
(2) Information for the RGE (4.00 mm x 4.00 mm) package is preview only and subject to change.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7 Pin Configuration and Functions  
7.1 Pin Diagram RKP Package (Top View)  
VDDR  
DIO8  
1
2
3
4
5
6
7
8
9
30 DCDC  
29 DIO5_A2  
28 VDDD  
DIO9  
DIO10  
DIO11  
DIO12  
DIO13  
VDDS  
DIO14  
27 DIO4_X32N  
26 DIO3_X32P  
25 RSTN  
24 DIO2_A3  
23 DIO1_A4  
22 DIO0_A5  
21 DIO25_A6  
DIO15 10  
7-1. RKP (5-mm × 5-mm) Pinout, 0.4-mm Pitch (Top View)  
The following I/O pins marked in 7-1 in bold have high-drive capabilities:  
Pin 6, DIO12  
Pin 11, DIO16_SWDIO  
Pin 12, DIO17_SWDCK  
Pin 13, DIO18  
Pin 14, DIO19  
Pin 20, DIO24_A7  
The following I/O pins marked in 7-1 in italics have analog capabilities:  
Pin 15, DIO20_A11  
Pin 16, DIO21_A10  
Pin 18, DIO22_A9  
Pin 19, DIO23_A8  
Pin 20, DIO24_A7  
Pin 21, DIO25_A6  
Pin 22, DIO0_A5  
Pin 23, DIO1_A4  
Pin 24, DIO2_A3  
Pin 29, DIO5_A2  
Pin 32, DIO6, A1  
Pin 33, DIO7_A0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
6
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7.2 Signal Descriptions RKP Package  
7-1. Signal Descriptions RKP Package  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
Ground exposed ground pad(1)  
EGP  
GND  
Internal supply, must be powered from the internal DC/DC  
converter or the internal LDO(2) (3) (4)  
VDDR  
1
Power  
DIO8  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Digital  
Digital  
GPIO  
DIO9  
3
GPIO  
DIO10  
DIO11  
DIO12  
DIO13  
VDDS  
DIO14  
DIO15  
4
Digital  
GPIO  
5
Digital  
GPIO  
6
Digital  
GPIO, high-drive capability  
GPIO  
7
Digital  
8
Power  
1.71-V to 3.8-V DIO supply(5)  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Digital  
GPIO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Digital  
GPIO  
DIO16_SWDIO  
DIO17_SWDCK  
DIO18  
Digital  
GPIO, SWD interface: mode select or SWDIO, high-drive capability  
GPIO, SWD interface: clock, high-drive capability  
GPIO, high-drive capability  
GPIO, high-drive capability  
GPIO, analog capability  
GPIO, analog capability  
1.71-V to 3.8-V DIO supply(5)  
GPIO, analog capability  
GPIO, analog capability  
GPIO, Analog capability, high-drive capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
Reset, active low. No internal pullup resistor  
GPIO, 32-kHz crystal oscillator pin 1, Optional TCXO input  
GPIO, 32-kHz crystal oscillator pin 2  
Digital  
Digital  
DIO19  
Digital  
DIO20_A11  
DIO21_A10  
VDDS  
Digital or Analog  
Digital or Analog  
Power  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
DIO22_A9  
DIO23_A8  
DIO24_A7  
DIO25_A6  
DIO0_A5  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital  
DIO1_A4  
DIO2_A3  
RSTN  
DIO3_X32P  
DIO4_X32N  
I/O  
I/O  
Digital or Analog  
Digital or Analog  
For decoupling of internal 1.28-V regulated core-supply. Connect  
an external 1 μF decoupling capacitor.(2)  
VDDD  
28  
Power  
DIO5_A2  
DCDC  
29  
30  
31  
32  
33  
I/O  
Digital or Analog  
Power  
GPIO, analog capability  
Switching node of internal DC/DC converter(5)  
1.71-V to 3.8-V analog supply(5)  
GPIO, analog capability  
VDDS  
Power  
DIO6_A1  
DIO7_A0  
I/O  
I/O  
Digital or Analog  
Digital or Analog  
GPIO, analog capability  
Internal supply, must be powered from the internal DC/DC  
converter or the internal LDO. Connect an external 10 μF  
decoupling capacitor.(2) (3) (4)  
VDDR  
34  
Power  
X48P  
X48N  
NC  
35  
36  
37  
38  
Analog  
Analog  
48-MHz crystal oscillator pin 1  
48-MHz crystal oscillator pin 2  
No Connect  
VDDS  
Power  
1.71-V to 3.8-V analog supply(5)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7-1. Signal Descriptions RKP Package (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
ANT  
NO.  
39  
I/O  
RF  
2.4 GHz TX, RX  
RF Ground  
RFGND  
40  
RFGND  
(1) EPG is the only non-RF ground connection for the device. Good electrical connection to device ground on printed circuit board (PCB)  
is imperative for proper device operation.  
(2) Do not supply external circuitry from this pin.  
(3) VDDR pins 1 and 34 must be tied together on the PCB.  
(4) Output from internal DC/DC and LDO is trimmed to 1.5 V.  
(5) For more details, see the technical reference manual listed in 11.3.  
7.3 Connections for Unused Pins and Modules RKP Package  
7-2. Connections for Unused Pins RKP Package  
PREFERRED  
FUNCTION  
SIGNAL NAME  
PIN NUMBER  
ACCEPTABLE PRACTICE(1)  
PRACTICE(1)  
27  
910  
1314  
GPIO (digital)  
DIOn  
NC, GND, or VDDS  
NC  
DIO16_SWDIO  
DIO17_SWDCK  
11  
12  
NC, GND, or VDDS  
NC, GND, or VDDS  
GND or VDDS  
GND or VDDS  
SWD  
1516  
1824  
29  
GPIO (digital or analog)  
32.768-kHz crystal  
DIOn_Am  
NC, GND, or VDDS  
NC or GND  
NC  
NC  
3233  
DIO3_X32P  
DIO4_X32N  
DCDC  
26  
27  
30  
NC  
NC  
DC/DC converter(2)  
VDDS  
8, 17, 31, 38  
VDDS  
VDDS  
(1) NC = No connect  
(2) When the DC/DC converter is not used, the inductor between DCDC and VDDR can be removed. VDDR must still be connected and  
the 10 μF DCDC capacitor must be kept on the VDDR net.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
8
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
 
 
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7.4 Pin Diagram RGE Package (Preview)(Top View)  
ANT  
VDDR  
DIO8  
1
2
3
4
5
6
18 VDDS  
17 DCDC  
16 VDDD  
DIO11  
DIO12  
DIO13  
15 DIO4_X32N  
14 DIO3_X32P  
13 RSTN  
7-2. RGE (4-mm × 4-mm) Pinout, 0.4-mm Pitch (Preview)(Top View)  
The following I/O pins marked in 7-2 in bold have high-drive capabilities:  
Pin 5, DIO12  
Pin 7, DIO16_SWDIO  
Pin 8, DIO17_SWDCK  
Pin 12, DIO24_A7  
The following I/O pins marked in 7-2 in italics have analog capabilities:  
Pin 9, DIO20_A11  
Pin 10, DIO21_A10  
Pin 12, DIO24_A7  
Pin 19, DIO6_A1  
7.5 Signal Descriptions RGE Package (Preview)  
7-3. Signal Descriptions RGE Package  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
EGP  
NO.  
Ground exposed ground pad(1)  
GND  
RF  
ANT  
1
I/O  
2.4 GHz TX, RX  
Internal supply, must be powered from the internal DC/DC  
converter or the internal LDO(2) (3) (4)  
VDDR  
2
Power  
DIO8  
3
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Digital  
Digital  
GPIO  
DIO11  
GPIO  
DIO12  
5
Digital  
GPIO, high-drive capability  
DIO13  
6
Digital  
GPIO  
DIO16_SWDIO  
DIO17_SWDCK  
DIO20_A11  
DIO21_A10  
7
Digital  
GPIO, SWD interface: mode select or SWDIO, high-drive capability  
GPIO, SWD interface: clock, high-drive capability  
GPIO, analog capability  
8
Digital  
9
Digital or Analog  
Digital or Analog  
10  
GPIO, analog capability  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7-3. Signal Descriptions RGE Package (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
1.71-V to 3.8-V DIO supply(5)  
NAME  
NO.  
11  
VDDS  
Power  
I/O  
I
DIO24_A7  
RSTN  
12  
13  
14  
15  
Digital or Analog  
Digital  
GPIO, Analog capability, high-drive capability  
Reset, active low. No internal pullup resistor  
DIO3_X32P  
DIO4_X32N  
I/O  
I/O  
Digital or Analog  
Digital or Analog  
GPIO, 32-kHz crystal oscillator pin 1, Optional TCXO input  
GPIO, 32-kHz crystal oscillator pin 2  
For decoupling of internal 1.28-V regulated core-supply. Connect  
an external 1 μF decoupling capacitor.(2)  
VDDD  
16  
Power  
DCDC  
17  
18  
19  
Power  
Power  
Switching node of internal DC/DC converter(5)  
1.71-V to 3.8-V analog supply(5)  
GPIO, analog capability  
VDDS  
DIO6_A1  
I/O  
Digital or Analog  
Internal supply, must be powered from the internal DC/DC  
converter or the internal LDO. Connect an external 10 μF  
decoupling capacitor.(2) (3) (4)  
VDDR  
20  
Power  
X48P  
X48N  
GND  
21  
22  
23  
24  
Analog  
Analog  
GND  
48-MHz crystal oscillator pin 1  
48-MHz crystal oscillator pin 2  
Ground  
VDDS  
Power  
1.71-V to 3.8-V analog supply(5)  
(1) EPG is the main ground connection for the device. Good electrical connection to device ground on printed circuit board (PCB) is  
imperative for proper device operation.  
(2) Do not supply external circuitry from this pin.  
(3) VDDR pins 2 and 20 must be tied together on the PCB.  
(4) Output from internal DC/DC and LDO is trimmed to 1.5 V.  
(5) For more details, see technical reference manual listed in 11.3.  
7.6 Connections for Unused Pins and Modules RGE Package (Preview)  
7-4. Connections for Unused Pins RGE Package  
PREFERRED  
FUNCTION  
SIGNAL NAME  
PIN NUMBER  
ACCEPTABLE PRACTICE(1)  
PRACTICE(1)  
GPIO (digital)  
DIOn  
NC, GND, or VDDS  
NC, GND, or VDDS  
NC, GND, or VDDS  
NC  
36  
DIO16_SWDIO  
DIO17_SWDCK  
7
8
GND or VDDS  
GND or VDDS  
SWD  
910  
12  
19  
GPIO (digital or analog)  
32.768-kHz crystal  
DIOn_Am  
NC, GND, or VDDS  
NC or GND  
NC  
NC  
DIO3_X32P  
DIO4_X32N  
DCDC  
14  
15  
17  
NC  
NC  
DC/DC converter(2)  
VDDS  
11, 18, 24  
VDDS  
VDDS  
(1) NC = No connect  
(2) Whenthe DC/DC converter is not used, the inductor between DCDC and VDDR can be removed. VDDR must still be connected and  
the 10 μF DCDC capacitor must be kept on the VDDR net.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
10  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
 
 
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7.7 RKP and RGE Peripheral Pin Mapping  
7-5. RKP (QFN40) and RGE (QFN24) Peripheral Pin Mapping  
PIN NO.  
PIN NAME  
SIGNAL NAME  
SIGNAL TYPE(1) PIN MUX ENCODING  
SIGNAL DIRECTION  
QFN24  
QFN40  
2
1
VDDR  
VDDR  
GPIO8  
N/A  
0
1
2
3
4
5
7
0
1
3
0
1
2
3
0
1
2
3
4
5
7
0
1
2
3
4
5
7
0
1
2
3
4
5
7
N/A  
0
1
2
3
4
N/A  
I/O  
I/O  
O
SPI0SCLK  
UART0RTS  
T1C0N  
I2C0SDA  
T0C0N  
DTB3  
3
2
DIO8  
I/O  
O
I/O  
O
O
GPIO9  
I/O  
O
3
4
DIO9  
T3C0  
I/O  
I/O  
LRFD3  
GPIO10  
LPCO  
O
I/O  
O
DIO10  
T2PE  
O
T3C0N  
GPIO11  
SPI0CSN  
T1C2N  
T0C0  
O
I/O  
I/O  
O
4
5
6
5
6
7
DIO11  
DIO12  
DIO13  
I/O  
I/O  
I/O  
O
LRFD0  
SPI0POCI  
DTB9  
O
I/O  
O
GPIO12  
SPI0POCI  
SPI0PICO  
UART0RXD  
T1C1  
I/O  
I/O  
I/O  
I
O
I2C0SDA  
DTB13  
I/O  
O
GPIO13  
SPI0POCI  
SPI0PICO  
UART0TXD  
T0C0N  
T1F  
I/O  
I/O  
I/O  
O
O
O
DTB4  
O
8
9
VDDS  
DIO14  
VDDS  
N/A  
I/O  
O
GPIO14  
T3C2  
T1C2N  
LRFD5  
T1F  
I/O  
O
O
O
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7-5. RKP (QFN40) and RGE (QFN24) Peripheral Pin Mapping (continued)  
PIN NO.  
PIN NAME  
SIGNAL NAME  
SIGNAL TYPE(1) PIN MUX ENCODING  
SIGNAL DIRECTION  
QFN24  
QFN40  
GPIO15  
UART0RXD  
T2C0N  
0
I/O  
I
1
10  
11  
DIO15  
I/O  
2
O
CKMIN  
3
0
1
2
I
GPIO16  
SPI0PICO  
UART0RXD  
I2C0SDA  
T1C2  
I/O  
I/O  
I
DIO16_SWD  
IO  
7
I/O  
3
4
5
7
0
1
2
3
4
5
7
0
1
2
3
4
7
0
1
2
4
7
0
1
2
3
4
5
6
7
I/O  
O
T1C0N  
O
DTB10  
O
GPIO17  
SPI0SCLK  
UART0TXD  
I2C0SCL  
T1C1N  
I/O  
I/O  
O
DIO17_SWD  
CK  
8
12  
I/O  
I/O  
O
T0C2  
O
DTB11  
O
GPIO18  
T3C0  
I/O  
O
LPCO  
O
13  
14  
DIO18  
DIO19  
I/O  
I/O  
UART0TXD  
SPI0SCLK  
DTB12  
O
I/O  
O
GPIO19  
T3C1  
I/O  
O
T2PE  
O
SPI0PICO  
DTB8  
I/O  
O
GPIO20  
LPCO  
I/O  
O
UART0TXD  
UART0RXD  
T1C0  
O
I
9
15  
DIO20_A11  
I/O  
O
SPI0POCI  
ADC11  
I/O  
I
DTB14  
O
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
12  
Submit Document Feedback  
Product Folder Links: CC2340R5  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7-5. RKP (QFN40) and RGE (QFN24) Peripheral Pin Mapping (continued)  
PIN NO.  
PIN NAME  
SIGNAL NAME  
SIGNAL TYPE(1) PIN MUX ENCODING  
SIGNAL DIRECTION  
QFN24  
QFN40  
GPIO21  
UART0CTS  
T1C1N  
0
1
2
I/O  
I
O
T0C1  
3
O
10  
16  
DIO21_A10  
I/O  
SPI0POCI  
LRFD1  
4
I/O  
O
5
6
7
ADC10/LPC+  
DTB15  
I
O
11  
17  
18  
VDDS  
VDDS  
N/A  
0
1
2
3
6
7
0
1
3
6
0
1
2
3
4
5
6
7
0
1
2
3
6
0
1
2
3
6
0
1
2
3
4
5
6
N/A  
I/O  
O
GPIO22  
T2C0  
UART0RXD  
T3C1N  
I
DIO22_A9  
I/O  
O
ADC9  
I
DTB1  
O
GPIO23  
T2C1  
I/O  
O
19  
DIO23_A8  
I/O  
T3C2N  
O
ADC8/LPC+/LPC-  
GPIO24  
SPI0SCLK  
T1C0  
I
I/O  
I/O  
O
T3C0  
O
12  
20  
DIO24_A7  
I/O  
T0PE  
O
I2C0SCL  
ADC7/LPC+/LPC-  
DTB5  
I/O  
I
O
GPIO25  
SPI0POCI  
I2C0SCL  
T2C2N  
I/O  
I/O  
I/O  
O
21  
22  
DIO25_A6  
DIO0_A5  
I/O  
I/O  
ADC6  
I
GPIO0  
I/O  
I/O  
I/O  
O
SPI0CSN  
I2C0SDA  
T3C2  
ADC5  
I
GPIO1  
I/O  
O
T3C1  
LRFD7  
O
23  
DIO1_A4  
T1F  
I/O  
O
UART0RTS  
ADC4  
O
I
DTB2  
O
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7-5. RKP (QFN40) and RGE (QFN24) Peripheral Pin Mapping (continued)  
PIN NO.  
PIN NAME  
SIGNAL NAME  
SIGNAL TYPE(1) PIN MUX ENCODING  
SIGNAL DIRECTION  
QFN24  
QFN40  
GPIO2  
T0PE  
0
1
I/O  
O
24  
25  
DIO2_A3  
RTSN  
T2C1N  
UART0CTS  
ADC3  
I/O  
2
3
O
I
6
I
13  
RSTN  
N/A  
0
N/A  
I/O  
I
GPIO3  
LFCI  
1
T0C1N  
LRFD0  
T3C1  
2
O
3
O
14  
26  
DIO3_X32P  
I/O  
4
O
T1C2  
5
O
LFXT_P  
DTB7  
6
I
7
O
GPIO4  
T0C2N  
UART0TXD  
LRFD1  
SPI0PICO  
T0C2  
0
I/O  
O
1
2
O
3
O
15  
27  
DIO4_X32N  
4
I/O  
O
5
LFXT_N  
DTB8  
6
I
7
O
16  
28  
29  
VDDD  
VDDD  
N/A  
0
N/A  
I/O  
O
GPIO5  
T2C2  
1
DIO5_A2  
I/O  
LRFD6  
ADC2  
3
O
6
I
17  
18  
30  
31  
DCDC  
VDDS  
DCDC  
N/A  
N/A  
0
N/A  
N/A  
I/O  
I/O  
I/O  
O
VDDS  
GPIO6  
SPI0CSN  
I2C0SCL  
T1C2  
1
2
3
19  
32  
DIO6_A1  
I/O  
LRFD2  
UART0TXD  
ADC1/AREF+  
DTB6  
4
O
5
O
6
I
7
O
GPIO7  
T3C1  
0
I/O  
O
1
33  
DIO7_A0  
I/O  
LRFD4  
ADC0/AREF-  
VDDR  
3
O
6
I
20  
21  
22  
34  
35  
36  
VDDR  
X48P  
X48N  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
X48P  
X48N  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
14  
Submit Document Feedback  
Product Folder Links: CC2340R5  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7-5. RKP (QFN40) and RGE (QFN24) Peripheral Pin Mapping (continued)  
PIN NO.  
PIN NAME  
SIGNAL NAME  
SIGNAL TYPE(1) PIN MUX ENCODING  
SIGNAL DIRECTION  
QFN24  
QFN40  
37  
NC  
VDDS  
ANT  
NC  
VDDS  
ANT  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
24  
1
38  
39  
40  
RFGND  
RFGND  
GND_TAB  
(1) Signal Types: I = Input, O = Output, I/O = Input or Output.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7.8 RKP and RGE Peripheral Signal Descriptions  
7-6. RKP (QFN40) and RGE (QFN24) Peripheral Signal Descriptions  
Pin No.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
QFN24 QFN40  
ADC11  
9
15  
16  
18  
19  
20  
21  
22  
23  
24  
29  
32  
33  
32  
33  
26  
27  
35  
36  
10  
HP ADC channel 11 input  
ADC10  
ADC9  
ADC8  
ADC7  
ADC6  
ADC5  
ADC4  
ADC3  
ADC2  
ADC1  
ADC0  
AREF+  
AREF-  
X32P  
10  
HP ADC channel 10 input  
HP ADC channel 9 input  
HP ADC channel 8 input  
HP ADC channel 7 input  
ADC channel 6 input  
12  
19  
ADC  
I/O  
I
ADC channel 5 input  
ADC channel 4 input  
ADC channel 3 input  
ADC channel 2 input  
HP ADC channel 1 input  
HP ADC channel 0 input  
19  
ADC external voltage reference, positive terminal  
ADC external voltage reference, negative terminal  
32-kHz crystal oscillator pin 1, Optional TCXO input  
32-kHz crystal oscillator pin 2  
ADC Reference  
I/O  
I
14  
15  
21  
22  
I/O  
I/O  
I
I
I
I
I
X32N  
X48P  
48-MHz crystal oscillator pin 1  
Clock  
X48N  
CKMIN  
48-MHz crystal oscillator pin 2  
I/O  
TDC or HFOSC tracking loop reference clock input  
Low frequency clock input (LFXT bypass clock from  
pin)  
LFCI  
14  
26  
I/O  
I
4
9
Comparator  
LPCO  
13  
15  
16  
19  
20  
19  
20  
I/O  
O
Low power comparator output  
10  
LPC+  
LPC-  
Low power comparator positive input terminal  
Lower power comparator negative input terminal  
Comparator  
Input  
12  
I/O  
I
12  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
16  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
FUNCTION  
7-6. RKP (QFN40) and RGE (QFN24) Peripheral Signal Descriptions (continued)  
Pin No.  
PIN  
SIGNAL  
SIGNAL NAME  
DESCRIPTION  
TYPE  
DIRECTION  
QFN24 QFN40  
DTB3  
3
4
2
Digital test bus output 3  
DTB9  
5
Digital test bus output 9  
Digital test bus output 0  
Digital test bus output 4  
Digital test bus output 10  
Digital test bus output 11  
Digital test bus output 12  
Digital test bus output 13  
Digital test bus output 1  
Digital test bus output 2  
Digital test bus output 14  
Digital test bus output 5  
Digitial test bus output 15  
Digital test bus output 7  
Digital test bus output 8  
Digital test bus output 6  
DTB0  
14  
7
6
DTB4  
DTB10  
DTB11  
DTB12  
DTB13  
DTB1  
7
11  
12  
13  
6
8
5
Digital Test Bus  
I/O  
O
18  
23  
15  
20  
16  
26  
27  
32  
2
9
DTB2  
DTB14  
DTB5  
12  
10  
14  
15  
19  
3
DTB15  
DTB7  
DTB8  
DTB6  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO18  
GPIO19  
GPIO20  
GPIO21  
GPIO22  
GPIO23  
GPIO24  
GPIO25  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
3
4
4
5
5
6
6
7
9
7
10  
11  
12  
13  
14  
15  
16  
18  
19  
20  
21  
22  
23  
24  
26  
27  
29  
32  
33  
8
9
GPIO  
I/O  
I/O  
General-purpose input or output  
10  
12  
14  
15  
19  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7-6. RKP (QFN40) and RGE (QFN24) Peripheral Signal Descriptions (continued)  
Pin No.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
QFN24 QFN40  
8
12  
20  
21  
32  
2
12  
I2C0SCL  
I/O  
I/O  
I/O  
I/O  
I2C clock data  
19  
3
I2C  
5
6
I2C0SDA  
I2C data  
7
11  
22  
3
4
LRFD3  
LRFD0  
LRFD5  
LRFD1  
LRF digital ouptut 3  
LRF digital output 0  
LRF digital output 5  
LRF digital output 1  
5
14  
26  
9
10  
15  
16  
27  
23  
29  
32  
33  
1
LRF Digital  
Output  
I/O  
O
LRFD7  
LRFD6  
LRFD2  
LRFD4  
LRF digital output 7  
LRF digital output 6  
LRF digital output 2  
LRF digital output 4  
19  
2
VDDR  
Internal supply  
20  
34  
8
11  
18  
24  
17  
31  
38  
VDDS  
VDDD  
1.71-V to 3.8V DIO supply  
Power  
For decoupling of internal 1.28-V regulated core-  
supply.  
16  
28  
DCDC  
RSTN  
ANT  
17  
13  
1
30  
25  
39  
40  
Switching node of internal DC/DC converter  
Global main device reset (active low)  
50 ohm RF port  
Reset  
RF  
RF Ground  
RFGND  
RF Ground reference  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
18  
Submit Document Feedback  
Product Folder Links: CC2340R5  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
FUNCTION  
7-6. RKP (QFN40) and RGE (QFN24) Peripheral Signal Descriptions (continued)  
Pin No.  
PIN  
SIGNAL  
SIGNAL NAME  
DESCRIPTION  
TYPE  
DIRECTION  
QFN24 QFN40  
3
8
2
12  
13  
20  
5
SPI0SCLK  
I/O  
I/O  
I/O  
I/O  
SPI clock  
SPI POCI  
12  
4
5
6
6
7
SPI0POCI  
9
15  
16  
21  
5
10  
SPI  
4
SPI0CSN  
SPI0PICO  
22  
32  
6
I/O  
I/O  
I/O  
I/O  
SPI chip select  
SPI PICO  
19  
5
6
7
7
11  
14  
27  
11  
12  
5
15  
7
SWDIO  
SWDCK  
T0C0  
I/O  
I/O  
I/O  
I
JTAG/SWD TCK. Reset default pinout.  
JTAG/SWD TMS. Reset default pinout.  
Capture/compare Output-0 from Timer-0  
Capture/compare Output-1 from Timer-0  
SWD  
8
4
T0C1  
10  
8
16  
12  
27  
15  
20  
6
I/O  
I/O  
T0C2  
Capture/compare Output-2 from Timer-0  
15  
9
T1C0  
T1C1  
Capture/compare Output-0 from Timer-1  
Capture/compare Output-1 from Timer-1  
12  
5
I/O  
I/O  
I/O  
I/O  
7
11  
26  
32  
18  
19  
29  
3
T1C2  
14  
19  
Capture/compare Output-2 from Timer-1  
Timers -  
Capture/  
Compare  
T2C0  
T2C1  
T2C2  
Capture/compare Output-0 from Timer-2  
Capture/compare Output-1 from Timer-2  
Capture/compare Output-2 from Timer-2  
12  
T3C0  
13  
20  
14  
23  
26  
33  
9
Capture/compare Output-0 from Timer-3  
14  
I/O  
I/O  
T3C1  
T3C2  
Capture/compare Output-1 from Timer-3  
Capture/compare Output-2 from Timer-3  
22  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7-6. RKP (QFN40) and RGE (QFN24) Peripheral Signal Descriptions (continued)  
Pin No.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
QFN24 QFN40  
3
6
2
7
Complementary compare/PWM Output-0 from  
Timer-0  
T0C0N  
Complementary compare/PWM Output-1 from  
Timer-0  
I/O  
O
T0C1N  
T0C2N  
14  
15  
26  
27  
Complementary compare/PWM Output-2 from  
Timer-0  
3
7
2
11  
12  
16  
5
Complementary compare/PWM Output-0 from  
Timer-1  
T1C0N  
T1C1N  
T1C2N  
8
Complementary compare/PWM Output-1 from  
Timer-1  
I/O  
I/O  
O
O
10  
4
Timers -  
Complementary  
Capture/  
Complementary compare/PWM Output-2 from  
Timer-1  
9
Compare  
Complementary compare/PWM Output-0 from  
Timer-2  
T2C0N  
T2C1N  
T2C2N  
T3C0N  
T3C1N  
T3C2N  
10  
24  
21  
4
Complementary compare/PWM Output-1 from  
Timer-2  
Complementary compare/PWM Output-2 from  
Timer-2  
Complementary compare/PWM Output-0 from  
Timer-3  
Complementary compare/PWM Output-1 from  
Timer-3  
18  
19  
I/O  
I/O  
O
Complementary compare/PWM Output-2 from  
Timer-3  
6
7
Timers - Fault  
input  
T1F  
9
I
Fault input for Timer-1  
12  
23  
4
T2PE  
T0PE  
I/O  
I/O  
O
O
Prescaler event ouput from Timer-2  
Prescaler eveny ouput from Timer-0  
14  
20  
24  
7
Timers -  
Prescaler Event  
6
8
12  
13  
15  
27  
32  
6
9
UART0TXD  
UART0RXD  
I/O  
I/O  
O
UART0 TX data  
15  
19  
5
UART  
10  
11  
15  
18  
16  
24  
2
7
I
UART0 RX data  
9
10  
UART0CTS  
UART0RTS  
I/O  
I/O  
I
UART0 clear-to-send input (active low)  
UART0 request-to-send (active low)  
3
O
23  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
20  
Submit Document Feedback  
Product Folder Links: CC2340R5  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.3  
0.3  
0.3  
0
MAX UNIT  
VDDS  
Supply voltage  
4.1  
V
V
Voltage on any digital pin(3)  
Voltage on crystal oscillator pins X48P and X48N  
Voltage on ADC input  
VDDS + 0.3, max 4.1  
1.24  
VDDS  
5
V
Vin_adc  
V
Input level, RF pins  
dBm  
°C  
Tstg  
Storage temperature  
150  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ground, unless otherwise noted.  
(3) Including analog capable DIOs.  
8.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
V
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
All pins  
All pins  
VESD  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
125  
125  
3.8  
100  
1
UNIT  
°C  
Operating ambient temperature(1) (2)  
40  
Operating junction temperature(1) (2)  
°C  
40  
Operating supply voltage (VDDS)  
Rising supply voltage slew rate  
Falling supply voltage slew rate(3)  
1.71  
0
V
mV/µs  
mV/µs  
0
(1) Operation at or near maximum operating temperature for extended durations will result in a reduction in lifetime.  
(2) For thermal resistance details, refer to Thermal Resistance Characteristics table in this document.  
(3) For small coin-cell batteries, with high worst-case end-of-life equivalent source resistance, a 10-µF VDDS input capacitor must be used  
to ensure compliance with this slew rate.  
8.4 DCDC  
When measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V with DCDC enabled unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDDS supply voltage for DCDC operation (1) (2)  
2.2  
3.0  
3.8  
V
(1) When the supply voltage drops below the DCDC operation min voltage, the device smoothly transitions to use GLDO regulator on-  
chip.  
(2) A 10µH inductor and a 10µF load capacitor is recommended at VDDR pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.5 Global LDO (GLDO)  
When measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDDS supply voltage for GLDO operation (1)  
1.71  
3.0  
3.8  
V
(1) A 10 µF capacitor is recommended at VDDR pin.  
8.6 Power Supply and Modules  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDDS_BOD  
Untrimmed brownout rising threshold  
Trimmed brownout rising threshold (1)  
Trimmed brownout falling threshold (1)  
POR  
Before initial boot (1)  
1.67  
1.68  
1.67  
V
V
V
power-on reset power-up level  
power-on reset power-down level  
1.5  
V
V
1.45  
(1) Brown-out Detector is trimmed at initial boot, value is kept until device is reset by a POR reset or the RSTN pin.  
8.7 Battery Monitor  
Measured on the CC2340R5 reference design with Tc = 25 °C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
V
Resolution  
Range  
22  
1.7  
3.8  
Accuracy  
VDDS = 3.0 V  
30  
mV  
8.8 Temperature Sensor  
Measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Accuracy  
-40 °C to 85 °C  
±10 (1)  
°C  
(1) Raw output from register.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
22  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
 
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.9 Power Consumption - Power Modes  
When measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, DCDC enabled, GLDO disabled, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
TYP  
UNIT  
Core Current Consumption with DCDC  
Icore  
Icore  
Icore  
Icore  
Icore  
Icore  
Active  
Active  
Idle  
MCU running CoreMark from Flash at 48 MHz  
2.6  
mA  
MCU running CoreMark from Flash at 48MHz  
53 µA / MHz  
Supply Systems and RAM powered, flash disabled, DMA disabled  
Supply Systems and RAM powered, flash disabled, DMA enabled  
Supply Systems and RAM powered, flash enabled, DMA disabled  
Supply Systems and RAM powered, flash enabled, DMA enabled  
780  
µA  
µA  
µA  
µA  
Idle  
810  
1100  
1200  
Idle  
Idle  
RTC running, 36kB RAM retention  
LFOSC, DCDC recharge current setting (ipeak = 1)  
Icore  
Standby  
Standby  
0.71  
0.74  
µA  
µA  
RTC running, 36kB RAM retention  
LFXT, DCDC recharge current setting (ipeak = 1)  
Icore  
Core Current consumption with GLDO  
Icore  
Icore  
Icore  
Icore  
Icore  
Active  
Idle  
MCU running CoreMark from Flash at 48 MHz  
4.1  
1170  
1230  
1490  
1665  
mA  
µA  
µA  
µA  
µA  
Supply Systems and RAM powered, flash disabled, DMA disabled  
Supply Systems and RAM powered, flash disabled, DMA enabled  
Supply Systems and RAM powered, flash enabled, DMA disabled  
Supply Systems and RAM powered, flash enabled, DMA enabled  
Idle  
Idle  
Idle  
RTC running, 36kB RAM retention  
LFOSC, default GLDO recharge current setting  
Icore  
Icore  
Standby  
Standby  
1.1  
µA  
µA  
RTC running, 36kB RAM retention  
LFXT default GLDO recharge current setting  
1.15  
Reset, Shutdown Current Consumption  
Icore  
Icore  
Reset  
Reset. RSTN pin asserted or VDDS below power-on-reset threshold  
150  
150  
nA  
nA  
Shutdown measured in steady state. No clocks running, no retention, IO  
wakeup enabled  
Shutdown  
Peripheral Current Consumption  
Iperi  
Iperi  
Iperi  
Iperi  
Iperi  
Iperi  
RF  
Delta current, clock enabled, RF subsystem idle  
Delta current with clock enabled, module is idle, one LGPT timer  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
40  
2.4  
µA  
µA  
µA  
µA  
µA  
µA  
Timers  
I2C  
10.6  
3.4  
SPI  
UART  
24.5  
3.8  
CRYPTO (AES)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.10 Power Consumption - Radio Modes  
When measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V with DCDC enabled unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
TYP UNIT  
IRX  
IRX  
Radio receive current  
Radio receive current  
Radio transmit current  
2440 MHz, 1 Mbps, GFSK, system bus off (1)  
2440 MHz, 1 Mbps, GFSK, DCDC OFF, system bus off (1)  
5.3  
9
mA  
mA  
-8 dBm output power setting  
2440 MHz system bus off (1)  
ITX  
ITX  
ITX  
ITX  
ITX  
ITX  
ITX  
4.0  
5.1  
8.8  
7.7  
8.9  
10.7  
19  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Radio transmit current  
Radio transmit current  
Radio transmit current  
Radio transmit current  
Radio transmit current  
Radio transmit current  
0 dBm output power setting  
2440 MHz system bus off (1)  
0 dBm output power setting  
2440 MHz DCDC OFF, system bus off (1)  
+4 dBm output power setting  
2440 MHz system bus off (1)  
+6 dBm output power setting  
2440 MHz system bus off (1)  
+8 dBm output power setting  
2440 MHz system bus off (1)  
+8 dBm output power setting  
2440 MHz DCDC OFF, system bus off (1)  
(1) System bus off refers to device idle mode, DMA disabled, flash disabled  
8.11 Nonvolatile (Flash) Memory Characteristics  
Over operating free-air temperature range and VDDS = 3.0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Flash sector size  
2
KB  
Supported flash erase cycles before failure, full bank(1) (2)  
Supported flash erase cycles before failure, single sector(3)  
30  
60  
k Cycles  
k Cycles  
Maximum number of write operations per row before sector  
erase(4)  
Write  
Operations  
83  
Flash retention  
105 °C  
125 °C  
11.4  
10  
Years  
Years  
mA  
Flash retention  
Flash sector erase current  
Flash sector erase time(5)  
Flash write current  
Flash write time(5)  
Average delta current  
1.2  
2.2  
1.7  
7.7  
0 erase cycles  
ms  
Average delta current, full sector at a time  
full sector at a time, 0 erase cycles  
mA  
µs  
(1) A full bank erase is counted as a single erase cycle on each sector  
(2) Aborting flash during erase or program modes is not a safe operation.  
(3) Up to 16 customer-designated sectors can be individually erased an additional 30k times beyond the baseline bank limitation of 30k  
cycles  
(4) Each wordline is 2048 bits (or 256 bytes) wide. This limitation corresponds to sequential memory writes of 4 (3.1) bytes minimum per  
write over a whole wordline. If additional writes to the same wordline are required, a sector erase is required once the maximum  
number of write operations per row is reached.  
(5) This number is dependent on Flash aging and increases over time and erase cycles  
8.12 Thermal Resistance Characteristics  
PACKAGE  
THERMAL  
METRIC  
RKP  
(VQFN)  
RGE  
(VQFN)  
THERMAL METRIC  
UNIT (1)  
40 PINS  
31.8  
24 PINS  
40.1  
RθJA  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
/W  
/W  
/W  
/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
23.1  
30.5  
12.7  
17.2  
0.3  
0.4  
ψJT  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
24  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
 
 
 
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
PACKAGE  
THERMAL  
METRIC  
RKP  
(VQFN)  
RGE  
THERMAL METRIC  
UNIT (1)  
(VQFN)  
40 PINS  
12.7  
24 PINS  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
17.1  
3.4  
ψJB  
/W  
/W  
RθJC(bot)  
3.3  
(1) °C/W = degrees Celsius per watt.  
8.13 RF Frequency Bands  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
MHz  
Frequency bands  
2360  
2510  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.14 Bluetooth Low Energy - Receive (RX)  
When measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF = 2440 MHz with DCDC enabled  
unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All  
measurements are performed conducted.  
PARAMETER  
125 kbps (LE Coded)  
Receiver sensitivity  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BER = 103  
BER = 103  
dBm  
dBm  
102  
Receiver saturation  
5
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
> (122/ 122) (1)  
> (90 / 90) (1)  
> (90 / 90) (1)  
6  
Frequency error tolerance  
Data rate error tolerance  
Data rate error tolerance  
Co-channel rejection(2)  
Selectivity, ±1 MHz(2)  
Selectivity, ±2 MHz(2)  
Selectivity, ±3 MHz(2)  
Selectivity, ±4 MHz(2)  
Selectivity, ±6 MHz(2)  
Selectivity, ±7 MHz  
kHz  
ppm  
ppm  
dB  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
Difference between incoming data rate and the internally  
generated data rate (255-byte packets)  
Wanted signal at 79 dBm, modulated interferer in  
channel, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±1  
9 / 5 (3)  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±2  
44 / 31 (3)  
47 / 42 (3)  
49 / 45 (3)  
52 / 48 (3)  
54 / 49 (3)  
31  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±3  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±4  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±6  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±7  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at  
Selectivity, Image frequency(2)  
dB  
image frequency, BER = 103  
Note that Image frequency + 1 MHz is the Co- channel –  
1 MHz. Wanted signal at 79 dBm, modulated interferer  
at ±1 MHz from image frequency, BER = 103  
Selectivity, Image frequency ±1  
MHz(2)  
5 / 42 (3)  
dB  
500 kbps (LE Coded)  
Receiver sensitivity  
Receiver saturation  
BER = 103  
BER = 103  
dBm  
dBm  
99  
5
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
> (122 / 122) (1)  
> (90/ 90) (1)  
> (90 / 90) (1)  
4.5  
Frequency error tolerance  
Data rate error tolerance  
Data rate error tolerance  
Co-channel rejection(2)  
Selectivity, ±1 MHz(2)  
Selectivity, ±2 MHz(2)  
Selectivity, ±3 MHz(2)  
Selectivity, ±4 MHz(2)  
Selectivity, ±6 MHz(2)  
Selectivity, ±7 MHz  
kHz  
ppm  
ppm  
dB  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
Difference between incoming data rate and the internally  
generated data rate (255-byte packets)  
Wanted signal at 72 dBm, modulated interferer in  
channel, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±1  
9 / 5 (3)  
dB  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±2  
42 / 31 (3)  
45 / 41 (3)  
46 / 42 (3)  
50 / 45 (3)  
51 / 46 (3)  
31  
dB  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±3  
dB  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±4  
dB  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±6  
dB  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±7  
dB  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at  
Selectivity, Image frequency(2)  
dB  
image frequency, BER = 103  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
26  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
When measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF = 2440 MHz with DCDC enabled  
unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All  
measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Note that Image frequency + 1 MHz is the Co- channel –  
1 MHz. Wanted signal at 72 dBm, modulated interferer  
at ±1 MHz from image frequency, BER = 103  
Selectivity, Image frequency ±1  
MHz(2)  
5 / 41 (3)  
dB  
1 Mbps (LE 1M)  
Receiver sensitivity  
Receiver saturation  
BER = 103  
BER = 103  
dBm  
dBm  
96.5  
5
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
> (225 /225) (1)  
> (750 / 750) (1)  
6  
Frequency error tolerance  
Data rate error tolerance  
Co-channel rejection(2)  
Selectivity, ±1 MHz(2)  
kHz  
ppm  
dB  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
Wanted signal at 67 dBm, modulated interferer in  
channel, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±1  
7 / 5 (3)  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±2  
Selectivity, ±2 MHz(2)  
39 / 28 (3)  
44 / 38 (3)  
47 / 35 (3)  
40  
dB  
MHz,BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±3  
Selectivity, ±3 MHz(2)  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±4  
Selectivity, ±4 MHz(2)  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±5  
Selectivity, ±5 MHz or more(2)  
Selectivity, image frequency(2)  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
28  
dB  
image frequency, BER = 103  
Note that Image frequency + 1 MHz is the Co- channel –  
1 MHz. Wanted signal at 67 dBm, modulated interferer  
at ±1 MHz from image frequency, BER = 103  
Selectivity, image frequency  
±1 MHz(2)  
5 / 38 (3)  
dB  
Out-of-band blocking(4)  
Out-of-band blocking  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
dBm  
dBm  
dBm  
dBm  
10  
10  
10  
2  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz (excluding VCO frequency)  
Wanted signal at 2402 MHz, 64 dBm. Two interferers  
at 2405 and 2408 MHz respectively, at the given power  
level  
Intermodulation  
dBm  
37  
Spurious emissions,  
30 to 1000 MHz(5)  
dBm  
dBm  
Measurement in a 50-Ωsingle-ended load.  
Measurement in a 50-Ωsingle-ended load.  
< 59  
< 47  
Spurious emissions,  
1 to 12.75 GHz(5)  
RSSI dynamic range (6)  
RSSI accuracy  
70  
±4  
1
dB  
dB  
dB  
RSSI resolution  
2 Mbps (LE 2M)  
Receiver sensitivity  
Receiver saturation  
Measured at SMA connector, BER = 103  
Measured at SMA connector, BER = 103  
dBm  
dBm  
92  
2
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
> (225 / 225) (1)  
> (1050 / 1050) (1)  
8  
Frequency error tolerance  
Data rate error tolerance  
Co-channel rejection(2)  
kHz  
ppm  
dB  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
Wanted signal at 67 dBm, modulated interferer in  
channel,BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±2  
MHz, Image frequency is at 2 MHz, BER = 103  
Selectivity, ±2 MHz(2)  
Selectivity, ±4 MHz(2)  
9 / 5 (3)  
dB  
dB  
Wanted signal at 67 dBm, modulated interferer at ±4  
40 / 32 (3)  
MHz, BER = 103  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
When measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF = 2440 MHz with DCDC enabled  
unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All  
measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Wanted signal at 67 dBm, modulated interferer at ±6  
Selectivity, ±6 MHz(2)  
46 / 40 (3)  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
Selectivity, image frequency(2)  
5
dB  
dB  
image frequency, BER = 103  
Note that Image frequency + 2 MHz is the Co-channel.  
Wanted signal at 67 dBm, modulated interferer at ±2  
MHz from image frequency, BER = 103  
Selectivity, image frequency  
±2 MHz(2)  
8 / 32 (3)  
Out-of-band blocking(4)  
Out-of-band blocking  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
dBm  
dBm  
dBm  
dBm  
10  
10  
12  
10  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz (excluding VCO frequency)  
Wanted signal at 2402 MHz, 64 dBm. Two interferers  
at 2408 and 2414 MHz respectively, at the given power  
level  
Intermodulation  
dBm  
38  
(1) Exceeding Bluetooth specification  
(2) Numbers given as I/C dB  
(3) X / Y, where X is +N MHz and Y is N MHz  
(4) Excluding one exception at Fwanted / 2, per Bluetooth Specification  
(5) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2  
(Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan)  
(6) The device will saturate at -30dB.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
28  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.15 Bluetooth Low Energy - Transmit (TX)  
When measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF = 2440 MHz with DCDC enabled  
unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All  
measurements are performed conducted.  
PARAMETER  
General Parameters  
Max output power  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
8
dBm  
dB  
Delivered to a single-ended 50-Ωload through integrated balun  
Delivered to a single-ended 50-Ωload through integrated balun  
Output power  
programmable range  
28  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.16 Proprietary Radio Modes  
Measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF= 2440 MHz with DCDC enabled unless  
otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All measurements  
are performed conducted.  
PARAMETER  
2 Mbps GFSK (HID), 320 kHz deviation  
Receiver sensitivity  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PER = 30.8%, Payload 37 bytes  
-89  
dBm  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
30  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.17 2.4 GHz RX/TX CW  
When measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF = 2440 MHz with DCDC enabled  
unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All  
measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Spurious emissions and harmonics  
f < 1 GHz, outside restricted bands  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
< 36  
< 54  
< 55  
< 42  
< 42  
< 42  
f < 1 GHz, restricted bands ETSI  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
Second harmonic  
Spurious emissions(1)  
Harmonics (1)  
+8 dBm setting  
Third harmonic  
(1) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2  
(Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
8.18 Timing and Switching Characteristics  
8.18.1 Reset Timing  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
RSTN low duration  
1
µs  
8.18.2 Wakeup Timing  
Measured over operating free-air temperature with VDDS = 3.0 V (unless otherwise noted). The times listed here do not  
include any software overhead (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GLDO default charge current setting,  
VDDR capacitor fully charged (2)  
MCU, Reset/Shutdown to Active(1)  
350-450  
µs  
µs  
MCU, Standby to Active (ready to execute  
code from flash). DCDC ON, default  
recharge current configuration  
MCU, Standby to Active  
MCU, Standby to Active  
33-43 (3)  
33-50 (3)  
MCU, Standby to Active (ready to execute  
code from flash). GLDO ON, default  
recharge current configuration  
µs  
MCU, Idle to Active  
MCU, Idle to Active  
Flash enabled in idle mode  
Flash disabled in idle mode  
3
µs  
µs  
14  
(1) Wakeup time includes device ROM bootcode execution time. The wakeup time is dependent on remaining charge on VDDR capacitor  
when starting the device, and thus how long the device has been in Reset or Shutdown before starting up again.  
(2) This is the best case reset/shutdown to active time (including ROM bootcode operation), for the specified GLDO charge current setting  
considering the VDDR capacitor is fully charged and is not discharged during the reset and shutdown events; that is, when the device  
is in reset / shutdown modes for only a very short period of time  
(3) Depending on VDDR capacitor voltage level.  
8.18.3 Clock Specifications  
8.18.3.1 48 MHz Crystal Oscillator (HFXT)  
Measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.(4)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Crystal frequency  
48  
MHz  
Equivalent series resistance  
6 pF < CL 9 pF  
ESR  
20  
60  
Ω
Equivalent series resistance  
5 pF < CL 6 pF  
ESR  
CL  
80  
9
Ω
Crystal load capacitance(1)  
3
7(2)  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
Measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.(4)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Start-up  
time (3)  
Until clock is qualified  
200  
µs  
(1) Adjustable load capacitance is integrated into the device. External load capacitors are required for systems targeting compliance with  
certain regulations.  
(2) On-chip default connected capacitance including reference design parasitic capacitance. Connected internal capacitance is changed  
through software in the Customer Configuration section (CCFG).  
(3) Start-up time using the TI-provided power driver. Start-up time may increase if driver is not used.  
(4) Tai-Saw TZ3908AAAO43 has been validated for CC2340R5 design.  
8.18.3.2 48 MHz RC Oscillator (HFOSC)  
Measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
MAX  
UNIT  
MHz  
%
Frequency  
48  
Uncalibrated frequency accuracy  
Calibrated frequency accuracy (1)  
±3  
±0.25  
%
(1) Accuracy relative to the calibration source (HFXT)  
8.18.3.3 32 kHz Crystal Oscillator (LFXT)  
Measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
MAX  
UNIT  
kHz  
pF  
Crystal frequency  
32.768  
Supported crystal load capacitance  
ESR  
6
12  
30  
100  
kΩ  
8.18.3.4 32 kHz RC Oscillator (LFOSC)  
Measured on the CC2340R5 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
32.768 (1)  
±600  
MAX  
UNIT  
kHz  
Calibrated frequency  
Temperature coefficient.  
ppm/°C  
(1) When using LFOSC as source for the low frequency system clock (LFCLK), the accuracy of the LFCLK-derived Real Time Clock  
(RTC) can be improved by measuring LFOSC relative to HFXT and compensating for the RTC tick speed. This functionality is available  
through the TI-provided Power driver.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
32  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.19 Peripheral Characteristics  
8.19.1 UART  
8.19.1.1 UART Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
UART rate  
3
MBaud  
8.19.2 SPI  
8.19.2.1 SPI Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Primary Mode  
1.71 < VDDS < 3.8  
12  
fSCLK  
1/tsclk  
Secondary Mode  
2.7 < VDDS < 3.8  
SPI clock frequency  
8
MHz  
%
Secondary Mode  
VDDS < 2.7  
7
DCSCK SCK Duty Cycle  
45  
50  
55  
8.19.2.2 SPI Controller Mode  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
tSCLK_H/  
(tSPI/2) -  
1
(tSPI/2) +  
1
SCLK High or Low time  
tSPI/2  
L
tCS.LEAD CS lead-time, CS active to clock  
1
1
SCLK  
SCLK  
CS lag time, Last clock to CS  
tCS.LAG  
inactive  
CS access time, CS active to  
PICO data out  
tCS.ACC  
1
1
SCLK  
SCLK  
CS disable time, CS inactive to  
tCS.DIS  
PICO high inpedance  
tVALID.C  
PICO output data valid time(1)  
SCLK edge to PICO valid,CL = 20 pF  
CL = 20 pF  
13  
ns  
ns  
O
tHD.CO PICO output data hold time(2)  
0
(1) Specifies the time to drive the next valid data to the output after the output changing SCLK clock edge  
(2) Specifies how long data on the output is valid after the output changing SCLK clock edge  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.19.2.3 SPI Timing Diagrams - Controller Mode  
CS  
(inverted)  
tCS, LEAD  
CS  
1 / fSPI  
tCS, LAG  
SCLK  
(SPO = 0)  
tSCLK_H/L  
tSCLK_H/L  
SCLK  
(SPO = 1)  
tSU,CI  
tHD,CI  
POCI  
PICO  
tHD,CO  
tVALID,CO  
tCS, DIS  
tCS, ACC  
Controller Mode, SPH = 0  
8-1. SPI Timing Diagram - Controller Mode, SPH = 0  
CS  
(inverted)  
tCS, LEAD  
CS  
1 / fSPI  
tCS, LAG  
SCLK  
(SPO = 0)  
tSCLK_H/L  
tSCLK_H/L  
SCLK  
(SPO = 1)  
tSU,CI  
tHD,CI  
tCS, ACC  
POCI  
PICO  
tHD,CO  
tVALID,CO  
tCS, DIS  
Controller Mode, SPH = 1  
8-2. SPI Timing Diagram - Controller Mode, SPH = 1  
8.19.2.4 SPI Peripheral Mode  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tCS.LEAD CS lead-time, CS active to clock  
1
SCLK  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
34  
Submit Document Feedback  
Product Folder Links: CC2340R5  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CS lag time, Last clock to CS  
inactive  
tCS.LAG  
tCS.ACC  
tCS.ACC  
tCS.DIS  
tCS.DIS  
1
SCLK  
CS access time, CS active to  
POCI data out  
VDDS = 3.3V  
VDDS = 1.8V  
VDDS = 3.3V  
VDDS = 1.8V  
56  
70  
56  
70  
ns  
ns  
ns  
ns  
CS access time, CS active to  
POCI data out  
CS disable time, CS inactive to  
POCI high inpedance  
CS disable time, CS inactive to  
POCI high inpedance  
tSU.PI  
tHD.PI  
PICO input data setup time  
PICO input data hold time  
30  
0
ns  
ns  
tVALID.P  
POCI output data valid time(1)  
SCLK edge to POCI valid,CL = 20 pF, 3.3V (4)  
50  
65  
ns  
O
tVALID.P  
POCI output data valid time(1)  
POCI output data hold time(2)  
SCLK edge to POCI valid,CL = 20 pF, 1.8V (4)  
CL = 20 pF  
ns  
ns  
O
tHD.PO  
0
(1) Specifies the time to drive the next valid data to the output after the output changing SCLK clock edge  
(2) Specifies how long data on the output is valid after the output changing SCLK clock edge  
8.19.2.5 SPI Timing Diagrams - Peripheral Mode  
CS  
(inverted)  
tCS, LEAD  
CS  
1 / fSPI  
tCS, LAG  
SCLK  
(SPO = 0)  
tSCLK_H/L  
tSCLK_H/L  
SCLK  
(SPO = 1)  
tSU,PI  
tHD,PI  
PICO  
POCI  
tHD,PO  
tVALID,PO  
tCS, DIS  
tCS, ACC  
Peripheral Mode, SPH = 0  
8-3. SPI Timing Diagram - Peripheral Mode, SPH = 0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
CS  
(inverted)  
tCS, LEAD  
CS  
1 / fSPI  
tCS, LAG  
SCLK  
(SPO = 0)  
tSCLK_H/L  
tSCLK_H/L  
SCLK  
(SPO = 1)  
tSU,PI  
tHD,PI  
PICO  
tHD,PO  
tVALID,PO  
tCS, DIS  
tCS, ACC  
POCI  
Peripheral Mode, SPH = 1  
8-4. SPI Timing Diagram - Peripheral Mode, SPH = 1  
8.19.3 I2C  
8.19.3.1 I2C  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETERS  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
UNIT  
kHz  
µs  
fSCL  
SCL clock frequency  
400  
tHD,STA Hold time (repeated) START  
tHD,STA Hold time (repeated) START  
fSCL = 100kHz  
fSCL > 100kHz  
4.0  
0.6  
µs  
Setup time for a repeated  
tSU,STA  
START  
fSCL = 100kHz  
fSCL > 100kHz  
4.7  
0.6  
µs  
µs  
Setup time for a repeated  
tSU,STA  
START  
tHD,DAT Data hold time  
0
100  
4.0  
0.6  
µs  
µs  
µs  
µs  
tSU,DAT Data setup time  
tSU,STO Setup time for STOP  
tSU,STO Setup time for STOP  
fSCL = 100kHz  
fSCL > 100kHz  
Bus free time between STOP  
and START conditions  
tBUF  
fSCL = 100kHz  
fSCL > 100kHz  
4.7  
1.3  
50  
µs  
µs  
ns  
Bus free time between STOP  
and START conditions  
tBUF  
Pulse duration of spikes  
tSP  
supressed by input deglitch filter  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
36  
Submit Document Feedback  
Product Folder Links: CC2340R5  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.19.3.2 I2C Timing Diagram  
tSU,STA  
tBUF  
tHD,STA  
tHD,STA  
SDA  
ttLOW  
t
ttHIGHt  
tSP  
SCL  
tHD,DAT  
tSU,STO  
tSU,DAT  
8-5. I2C Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
MAX UNIT  
8.19.4 GPIO  
8.19.4.1 GPIO DC Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
TA = 25 °C, VDDS = 1.8 V  
GPIO pullup current  
Input mode, pullup enabled, Vpad = 0 V  
39.08  
9.815  
65.84  
20.71  
1.105  
0.752  
108.9  
39.96  
µA  
µA  
V
GPIO pulldown current  
Input mode, pulldown enabled, Vpad = VDDS  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
GPIO low-to-high input transition, with hysteresis  
GPIO high-to-low input transition, with hysteresis  
0.9145  
0.5891  
1.277  
0.9146  
V
IH = 1, difference between 0 1  
and 1 0 points  
GPIO input hysteresis  
0.2559  
0.3534  
0.4401  
V
TA = 25 °C, VDDS = 3.0 V  
GPIO VOH at 10 mA load  
high-drive GPIOs only, max drive setting  
high-drive GPIOs only, max drive setting  
standard drive GPIOs  
2.466  
2.516  
V
V
V
V
GPIO VOL at 10 mA load  
0.2527  
0.1985  
GPIO VOH at 2 mA load  
GPIO VOL at 2 mA load  
standard drive GPIOs  
TA = 25 °C, VDDS = 3.8 V  
GPIO pullup current  
Input mode, pullup enabled, Vpad = 0 V  
169.5  
60.08  
1.757  
1.262  
261.5  
109.7  
1.983  
1.515  
392.7  
171.6  
2.27  
µA  
µA  
V
GPIO pulldown current  
Input mode, pulldown enabled, Vpad = VDDS  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
GPIO low-to-high input transition, with hysteresis  
GPIO high-to-low input transition, with hysteresis  
1.791  
V
IH = 1, difference between 0 1  
and 1 0 points  
GPIO input hysteresis  
TA = 25 °C  
0.3961  
0.4689  
0.5405  
V
Lowest GPIO input voltage reliably interpreted as a  
High  
VIH  
0.8*VDDS  
V
V
Highest GPIO input voltage reliably interpreted as a  
Low  
VIL  
0.2*VDDS  
8.19.5 ADC  
8.19.5.1 Analog-to-Digital Converter (ADC) Characteristics  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.(2) Performance numbers require use of offset and gain adjustements in  
software by TI-provided ADC drivers.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC Power Supply and Input Range Conditions  
V(Ax)  
Analog input voltage range  
All ADC analog input pins Ax  
0
VDDS  
V
RES = 0x0 (12Bit mode), Fs = 1.2MSPS, Internal reference  
OFF (ADCREF_EN = 0), VeREF+ = VDDS  
I(ADC)  
480  
365  
single-  
ended  
mode  
Operating supply current  
into VDDS terminal  
μA  
RES = 0x0 (12Bit mode), Fs = 266ksps, Internal reference ON  
(ADCREF_EN = 0), ADCREF = 2.5V  
Input capacitance into a  
single terminal  
CI GPIO  
RI GPIO  
5
7
1
pF  
Input MUX ON-resistance  
0.5  
kΩ  
ADC Switching Characteristics  
ADC sampling frequency  
FS ADC  
ADCREF_EN = 1, RES = 0x0 (12-bit), VDDS = 1.71V to  
VDDSmax  
when using the internal ADC  
REF  
2671  
3081  
4001  
1.21  
ksps  
ksps  
ksps  
Msps  
reference voltage  
ADC sampling frequency  
FS ADC  
ADCREF_EN = 1, RES = 0x1 (10-bit), VDDS = 1.71V to  
VDDSmax  
when using the internal ADC  
REF  
reference voltage  
ADC sampling frequency  
FS ADC  
ADCREF_EN = 1, RES = 0x2 (8-bit), VDDS = 1.71V to  
VDDSmax  
when using the internal ADC  
REF  
reference voltage  
ADC sampling frequency  
FS EXTR  
ADCREF_EN = 0, VeREF+ = VDDS, RES = 0x0 (12-bit), VDDS  
= 1.71V to VDDSmax  
when using the external ADC  
EF  
reference voltage  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
38  
Submit Document Feedback  
Product Folder Links: CC2340R5  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.(2) Performance numbers require use of offset and gain adjustements in  
software by TI-provided ADC drivers.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC sampling frequency  
when using the external ADC  
reference voltage  
FS EXTR  
EF  
ADCREF_EN = 0, VeREF+ = VDDS, RES = 0x1 (10-bit), VDDS  
= 1.71V to VDDSmax  
1.331  
Msps  
ADC sampling frequency  
when using the external ADC  
reference voltage  
FS EXTR  
EF  
ADCREF_EN = 0, VeREF+ = VDDS, RES = 0x2 (8-bit), VDDS  
= 1.71V to VDDSmax  
1.6 1  
Msps  
NCONVER  
Clock cycles for conversion  
Clock cycles for conversion  
Clock cycles for conversion  
Sampling time  
RES = 0x0 (12-bit)  
RES = 0x1 (10-bit)  
RES = 0x2 (8-bit)  
14  
12  
9
cycles  
cycles  
cycles  
ns  
T
NCONVER  
T
NCONVER  
T
RES = 0x0 (12-bit), RS = 25 Ω, Cpext = 10 pF. +/- 0.5 LSB  
settling  
tSample  
250  
20  
Sample time required when  
Vsupply/3 channel is  
selected  
tVSUPPLY/  
µs  
3(sample)  
ADC Linearity Parameters  
Integral linearity error (INL)  
for single-ended inputs  
EI  
12-bit Mode, VR+ = VeREF+ = VDDS, VDDS=1.71-->3.8  
12-bit Mode, VR+ = VeREF+ = VDDS, VDDS=1.71-->3.8  
+/- 2  
+/- 1  
1.98  
LSB  
LSB  
LSB  
Differential linearity error  
(DNL)  
ED  
EO  
12-bit Mode, External reference, VR+ = VeREF+ =  
VDDS, VDDS=1.71-->3.8  
Offset error  
EO  
EG  
EG  
Offset error  
Gain error  
Gain error  
12-bit Mode, Internal reference, VR+ = ADCREF = 2.5V  
External Reference, VR+ = VeREF+ = VDDS , VDD= 1.71-->3.8  
Internal reference, VR+ = ADCREF = 2.5V  
1.02  
+/- 2  
LSB  
LSB  
LSB  
+/- 40  
ADC Dynamic Parameters  
ADCREF_EN = 0, VeREF+ = VDDS =3.3V, VeREF-=0V, RES =  
0x2 (8-bit)  
ENOB  
ENOB  
ENOB  
ENOB  
ENOB  
Effective number of bits  
8
9.9  
bit  
bit  
bit  
bit  
bit  
ADCREF_EN = 0, VeREF+ = VDDS =3.3V, VeREF-=0V, RES =  
0x1 (10-bit)  
Effective number of bits  
Effective number of bits  
Effective number of bits  
Effective number of bits  
ADCREF_EN = 0, VeREF+ = VDDS =3.3V, VeREF-=0V, RES =  
0x0 (12-bit)  
11.2  
ADCREF_EN = 1, ADCREF_VSEL = {2.5V, 1.4V}, RES = 0x2  
(8-bit)  
8
ADCREF_EN = 1, ADCREF_VSEL = {2.5V, 1.4V} , RES = 0x1  
(10-bit)  
9.6  
ADCREF_EN = 1, ADCREF_VSEL = {2.5V, 1.4V}, RES = 0x0  
(12-bit)  
ENOB  
ENOB  
SINAD  
Effective number of bits  
Effective number of bits  
10.4  
bit  
bit  
dB  
VDDS reference, RES = 0x0 (12-bit)  
11.2  
Signal-to-noise and distortion ADCREF_EN = 0, VeREF+ = VDDS =3.3V, VeREF-=0V, RES =  
ratio 0x0 (12-bit)  
69.18  
Signal-to-noise and distortion ADCREF_EN = 1, ADCREF_VSEL = {2.5V, 1.4V}, RES = 0x0  
64.37  
69.18  
SINAD  
SINAD  
dB  
dB  
ratio  
(12-bit)  
Signal-to-noise and distortion  
ratio  
VDDS reference, RES = 0x0 (12-bit)  
ADC External Reference  
Positive external reference  
voltage input  
ADCREF_EN=0, ADC reference sourced from external  
reference pin (VeREF+)  
EXTREF  
EXTREF  
1.4  
VDDS  
0
V
V
Negative external reference ADCREF_EN=0, ADC reference sourced from external  
voltage input reference pin (VeREF-)  
ADC Temperature Diode, Supply Monitor  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.(2) Performance numbers require use of offset and gain adjustements in  
software by TI-provided ADC drivers.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC  
Internal  
Input:  
Vsupply voltage divider  
VSUPPLY / accuracy for supply  
ADC input channel: Vsupply monitor  
+/- 1  
%
3
monitoring  
Accurac  
y
ADC  
Internal Vsupply voltage divider current  
ADC input channel Vsupply monitor. Vsupply=VDDS=3.3V  
ADC reference sourced from VDDS  
10  
µA  
Input:  
consumption  
IVsupply / 3  
ADC Internal and VDDS Reference  
VDDSR Positive ADC reference  
VDDS  
1.4  
V
V
V
EF  
voltage  
ADCREF_EN = 1, ADCREF_VSEL = 0, VDDS = 1.71V -  
VDDSmax  
ADCRE Internal ADC Reference  
F
Voltage  
ADCREF_EN = 1, ADCREF_VSEL = 1, VDDS = 2.7V -  
VDDSmax  
2.5  
Operating supply current into  
IADCREF VDDA terminal with internal  
reference ON  
ADCREF_EN = 1, VDDA = 1.7V to VDDAmax, ADCREF_VSEL  
= {0,1}  
80  
2
µA  
µs  
Internal ADC Reference  
tON  
ADCREF_EN = 1  
Voltage power on-time  
(1) Measured with 48MHz HFOSC  
(2) Using IEEE Std 1241-2010 for terminology and test methods  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
40  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.19.6 Comparators  
8.19.6.1 Ultra-low power comparator  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input voltage range  
0
VDDS  
V
KHz  
Clock frequency  
Voltage Divider Accuracy  
Offset  
32  
98  
Input voltage range is between VDDS/4 and VDDS  
Measured at VDDS / 2 (Errors seen when using two external inputs )  
Step from 50 mV to 50 mV  
%
+/- 27.3  
1
mV  
Decision time  
3
Clock Cycle  
COMP_LP disable enable, VIN+, VIN- from pins,  
Overdrive 20 mV  
Comparator enable time  
Current consumption  
70  
µs  
Including using VDDS/2 as internal reference at VIN- comparator  
terminal  
270  
nA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
4 shows the core modules of the CC2340R5 device.  
9.2 System CPU  
The CC2340R5 SimpleLinkWireless MCU contains an Arm® Cortex®-M0+ system CPU, which runs the  
application, the protocol stacks, and the radio. The Cortex-M0+ processor is built on a highly area and power  
optimized 32-bit processor core, with a 2-stage pipeline Von Neumann architecture. The processor delivers  
exceptional energy efficiency through a small but powerful instruction set and extensively optimized design,  
providing high-end processing hardware including a single-cycle multiplier. The Cortex-M0+ processor offers  
multiple benefits to developers including:  
Ultra-low power, energy efficient operation  
Deterministic, high-performance interrupt handling for time-critical applications  
Upward compatibility with the Cortex-M processors family  
The Cortex-M0+ processor provides the excellent performance expected of a modern 32- bit architecture core,  
with higher code density than other 8-bit and 16-bit microcontrollers. Its features include the following:  
ARMv6-M architecture optimized for small-footprint embedded applications  
Subset of Arm Thumb/Thumb-2 mixed 16- and 32-bit instructions delivers the high performance expected of  
a 32-bit Arm  
Single-cycle multiply instruction  
VTOR supporting offset of the vector table base address  
Serial Wire debug with HW break-point comparators  
Ultra-low-power consumption with integrated sleep modes  
SysTick timer  
48 MHz operation  
0.99 DMIPS/MHz  
Additionally, the CC2340Rx devices are compatible with all ARM tools and software.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
42  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
9.3 Radio (RF Core)  
The low-power RF Core (LRF) implements a high performance and highly flexible RF sub system containing RF  
and baseband circuitry in addition to a software defined digital radio (LRFD). LRFD provides a high-level,  
command-based API to the main CPU and handles all of the timing critical and low-level details of many different  
radio PHYs. Several signals are also available to control external circuitry such as RF switches or range  
extenders autonomously.  
The software-defined modem is not programmable by customers but is instead loaded with pre-compiled images  
provided in the radio driver in the SimpleLinkCC23xx software development kit (SDK). This mechanism allows  
the radio platform to be updated for support of future versions of standards with over-the-air (OTA) updates while  
still using the same silicon. LRFD stores the code images in the RF SRAM and does not make use of any ROM  
memory, thus image loading from NV memory only occurs once after boot and also, no patching is required  
when exiting power modes.  
9.3.1 Bluetooth 5.3 Low Energy  
The RF Core offers full support for Bluetooth 5.3 Low Energy, including the high-speed 2 Mbps physical layer  
and the 500 kbps and 125 kbps long range PHYs (Coded PHY) through the TI provided Bluetooth 5.3 stack or  
through a high-level Bluetooth API.  
The new high-speed mode allows data transfers up to 2 Mbps, twice the speed of Bluetooth 4.2 and five times  
the speed of Bluetooth 4.0, without increasing power consumption. In addition to faster speeds, this mode offers  
significant improvements for energy efficiency and wireless coexistence with reduced radio communication time.  
Bluetooth 5.3 also enables unparalleled flexibility for adjustment of speed and range based on application needs,  
which capitalizes on the high-speed or long-range modes respectively. Data transfers are now possible at 2  
Mbps, enabling development of applications using voice, audio, imaging, and data logging that were not  
previously an option using Bluetooth low energy. With high-speed mode, existing applications deliver faster  
responses, richer engagement, and longer battery life. Bluetooth 5.3 enables fast, reliable firmware updates.  
9.3.2 802.15.4 (Thread and Zigbee)  
Through a dedicated IEEE radio API, the RF sub-system supports the 2.4-GHz IEEE 802.15.4-2011 physical  
layer (2 Mchips per second Offset-QPSK with DSSS 1:8), used in Thread and Zigbee protocols. TI also provides  
royalty-free protocol stacks for Thread and Zigbee as part of the SimpleLink SDK, enabling a robust end-to-end  
solution.  
9.4 Memory  
The 512 KB nonvolatile (Flash) memory provides storage for code and data. The flash memory is in-system  
programmable and erasable. A special flash memory sector must contain a Customer Configuration section  
(CCFG) that is used by boot ROM and TI provided drivers to configure the device. This configuration is done  
through the ccfg.c source file that is included in all TI provided examples.  
The ultra-low leakage system static 36 KB RAM (SRAM) can be used for both storage of data and execution of  
code. Retention of SRAM contents in Standby power mode is enabled by default and included in Standby mode  
power consumption numbers. System SRAM is always initialized to zeroes upon code execution during boot.  
The ROM includes device bootcode firmware handling initial device trimming operations, security configurations  
and device lifecycle management. The ROM also contains a serial (SPI and UART) bootloader that can be used  
for initial programming of the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
9.5 Cryptography  
The CC2340R5 device comes with AES-128 cryptography hardware accelerator, reducing code footprint and  
execution time for cryptographic operations. It also has the benefit of being lower power and improves availability  
and responsiveness of the system because the cryptography operations run in a background hardware thread.  
The AES hardware accelerators supports the following block cipher modes and message authentication codes:  
AES ECB encrypt  
AES CBC encrypt  
AES CTR encrypt/decrypt  
AES CBC-MAC  
AES GCM  
AEC CCM (uses a combination of CTR + CBC-MAC hardware via software drivers)  
The AES hardware accelerator can be fed with plaintext/ciphertext from either CPU or using DMA. Sustained  
throughput of one 16 byte ECB block per 23 cycles is possible corresponding to > 30 Mbps.  
The CC2340R5 device supports Random Number Generation (RNG) using on-chip analog noise as the non-  
deterministic noise source for the purpose of generating a seed for a cryptographically secure counter  
deterministic random bit generator (CTR-DRBG) that in turn is used to generate random numbers for keys,  
initialization vectors (IVs), and other random number requirements. Hardware acceleration of AES CTR-DRBG is  
supported.  
The CC2340R5 device includes a complete SHA 256 library in ROM, reducing the code footprint of the  
application. Uses cases may include generating digests for use in digital signature algorithms, data integrity  
checks, and password storage.  
Together with a large selection of open-source cryptography libraries provided with the Software Development  
Kit (SDK), this allows for secure and future proof IoT applications to be easily built on top of the platform.  
9.6 Timers  
A large selection of timers are available as part of the CC2340R5 device. These timers are:  
Real-Time Clock (RTC)  
The RTC is a 67-bit, 2-channel timer running on the LFCLK system clock. The RTC is active in STANDBY  
and ACTIVE power states. When the device enters the RESET or SHUTDOWN state the RTC is reset.  
The RTC accumulates time elapsed since reset on each LFCLK. The RTC counter is incremented by LFINC  
at a rate of 32.768 kHz. LFINC indicates the period of LFCLK in μs, with an additional granularity of 16  
fractional bits.  
The counter can be read from two 32-bit registers. RTC.TIME8U has a range of approximately 9.5 hours with  
an LSB representing 8 microseconds. RTC.TIME524M has a range of approximately 71.4 years with an LSB  
representing 524 milliseconds.  
There is hardware synchronization between the system timer (SYSTIM) and the RTC so that the multi-  
channel and higher resolution SYSTIM remain in synchronization with the RTCs time base.  
The RTC has two channels: one compare channel and one capture channel and is capable of waking the  
device out of the standby power state. The RTC compare channel is typically used only by system software  
and only during the standby power state.  
System Timer (SYSTIM)  
The SYSTIM is a 34-bit, 5-channel wrap-around timer with a per-channel selectable 32b slice with either a 1  
us resolution and 1h11m35s range or 250 ns resolution and 17m54s range. All channels support both capture  
and single-shot compare (posting an event) operation. One channel is reserved for system software, three  
channels are reserved for radio software and one channel is freely available to user applications.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
44  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
For software convenience a hardware synchronization mechanism automatically ensures that the RTC and  
SYSTIM share a common time base (albeit with different resolutions/spans). Another software convenience  
feature is that SYSTIM qualifies any submitted compare values so that the timer channel will immediately  
trigger if the submitted event is in the immediate past (4.294s with 1 us resolution and 1.049s with 250 ns  
resolution).  
General Purpose Timers (LGPT)  
The CC2340R5 device provides four LGPTs with 3 × 16 bit timers and 1× 24 bit timer, all running on up to 48  
MHz. The LGPTs support a wide range of features such as:  
3 capture/compare channels  
One-shot or periodic counting  
Pulse width modulation (PWM)  
Time counting between edges and edge counting  
Input filter implemented on each of the channels for all timers  
IR generation feature available on Timer-0  
Dead band feature available on Timer-1  
The timer capture/compare and PWM signals are connected to IOs via IO controller module (IOC) and the  
internal timer event connections to CPU, DMA and other peripherals are via the event fabric, which allows the  
timers to interact with signals such as GPIO inputs, other timers, DMA and ADC. Two LGPTs (2× 16 bit  
timers) supports quadrature decoder mode to enable buffered decoding of quadrature-encoded sensor  
signals. The LGPTs are available in device Active and Idle power modes.  
9-1. Timer Comparison  
Feature  
Timer 0  
Timer 1  
Timer 2  
Timer 3  
Counter Width  
Quadrature Decoder  
Park Mode on Fault  
16-bit counter width  
24-bit counter width  
24-bit counter width  
24-bit counter width  
Yes  
No  
No  
No  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
Programmable Dead-  
Band Insertion  
Watchdog timer  
The watchdog timer is used to regain control if the system operates incorrectly due to software errors. Upon  
counter expiry, the watchdog timer resets the device when periodic monitoring of the system components and  
tasks fails to verify proper functionality. The watchdog timer runs on a 32 kHz clock rate and operates in  
device active, idle, and standby modes and cannot be stopped once enabled.  
9.7 Serial Peripherals and I/O  
The CC2340R5 device provides 1xUART, 1xSPI and 1xI2C serial peripherals  
The SPI module supports both SPI controller and peripheral up to 12 MHz with configurable phase and polarity.  
The UART module implement universal asynchronous receiver and transmitter functions. They support flexible  
baud-rate generation up to a maximum of 3 Mbps and IRDA SIR mode of operation.  
The I2C module is used to communicate with devices compatible with the I2C standard. The I2C interface can  
handle 100 kHz and 400 kHz operation, and can serve as both controller and target.  
The I/O controller (IOC) controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals  
to be assigned to I/O pins in a fixed manner over DIOs. All digital I/Os are interrupt and wake-up capable, have a  
programmable pullup and pulldown function, and can generate an interrupt on a negative or positive edge  
(configurable). When configured as an output, pins can function as either push-pull, open-drain, or open source.  
Some GPIOs have high-drive capabilities, which are marked in bold in 7.  
For more information, see the CC23xx SimpleLink™ Wireless MCU Technical Reference Manual.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
9.8 Battery and Temperature Monitor  
A combined temperature and battery voltage monitor is available in the CC2340R5 device. The battery and  
temperature monitor allows an application to continuously monitor on-chip temperature and supply voltage and  
respond to changes in environmental conditions as needed. The module contains window comparators to  
interrupt the system CPU when temperature or supply voltage go outside defined windows. These events can  
also be used to wake up the device from Standby mode through the Always-On (AON) event fabric.  
9.9 µDMA  
The device includes a direct memory access (µDMA) controller. The µDMA controller provides a way to offload  
data-transfer tasks from the system CPU, thus allowing for more efficient use of the processor and the available  
bus bandwidth. The µDMA controller can perform a transfer between memory and peripherals. The µDMA  
controller has dedicated channels for each supported on-chip module and can be programmed to automatically  
perform transfers between peripherals and memory when the peripheral is ready to transfer more data.  
Some features of the µDMA controller include the following (this is not an exhaustive list):  
Channel operation of up to 8 channels, with 6 channels having dedicated peripheral interface and 2 channels  
having ability to be triggered via configurable events.  
Transfer modes: memory-to-memory, memory-to-peripheral, peripheral-to-memory, and  
peripheral-to-peripheral  
Data sizes of 8, 16, and 32 bits  
Ping-pong mode for continuous streaming of data  
9.10 Debug  
On-chip debug is supported through the serial wire debug (SWD) interface, which is an ARM bi-directional 2-wire  
protocol that communicates with the JTAG Test Access Port (TAP) controller and allows for complete debug  
functionality. SWD is fully compatible with Texas Instruments' XDS family of debug probes.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
46  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
9.11 Power Management  
To minimize power consumption, the CC2340R5 supports a number of power modes and power management  
features (see 9-2).  
9-2. Power Modes  
SOFTWARE CONFIGURABLE POWER MODES (1)  
RESET PIN  
MODE  
HELD  
ACTIVE  
Active  
On  
IDLE  
Off  
STANDBY  
Off  
SHUTDOWN  
CPU  
Off  
Off  
Off  
Off  
Off  
No  
Off  
Off  
Off  
Off  
Off  
Off  
No  
Off  
Flash  
Available  
On  
Off  
SRAM  
On  
Retention  
Off  
Radio  
Available  
On  
Available  
On  
Supply System  
CPU register retention  
SRAM retention  
Duty Cycled  
Full (2)  
Full  
Full  
Full  
Full  
Full  
48 MHz high-speed clock  
(HFCLK)  
HFXT  
HFXT  
Duty Cycled  
Off  
Off  
Off  
Off  
Off  
Off  
LFXT or  
LFOSC  
LFXT or  
LFOSC  
32 kHz low-speed clock (LFCLK)  
Peripherals  
LFXT or LFOSC  
IOC, BATMON,  
RTC, LPCOMP  
Available  
Available  
Wake-up on RTC  
N/A  
N/A  
Available  
Available  
On  
Available  
Available  
On  
Off  
Available  
On  
Off  
Off  
On  
Off  
On  
Off  
Wake-up on pin edge  
Wake-up on reset pin  
Brownout detector (BOD)  
Power-on reset (POR)  
Watchdog timer (WDT)  
On  
On  
On  
Duty Cycled  
On  
Off  
On  
On  
On  
Available  
Available  
Available  
Off  
(1) Availableindicates that the specific IP or feature can be enabled by user application in the corresponding device operating modes.  
Onindicates that the specific IP or feature is turned on irrespective of the user application configuration of the device in the  
corresponding device operating mode. Offindicates that the specific IP or feature is turned off and not available for the user  
application in the corresponding device operating mode.  
(2) Software-based retention of CPU registers with context save and restore when entering and exiting standby power mode  
In the Active mode, both of MCU and AON power domains are powered. Clock gating is used to minimize power  
consumption. Clock gating to peripherals/subsystems is controlled manually by the CPU..  
In Idle mode the CPU is in sleep but selected peripherals and subsystems (such as the radio) can be active.  
Infrastructure (Flash, ROM, SRAM, bus) clock gating is possible depending on state of the DMA and debug  
subsystem.  
In Standby mode, only the always-on (AON) domain is active. An external wake-up event, RTC event, or  
comparator event (LP-COMP) is required to bring the device back to active mode. Pin Reset will also drive the  
device from Standby to Active. MCU peripherals with retention do not need to be reconfigured when waking up  
again, and the CPU continues execution from where it went into standby mode. All GPIOs are latched in standby  
mode.  
In Shutdown mode, the device is entirely turned off (including the AON domain), and the I/Os are latched with  
the value they had before entering shutdown mode. A change of state on any I/O pin defined as a wake from  
shutdown pin wakes up the device and functions as a reset trigger. The CPU can differentiate between reset in  
this way and reset-by-reset pin or power-on reset, or thermal shutdown reset, by reading the reset status  
register. The only state retained in this mode are the latched I/O state, 3V register bank, and the flash memory  
contents.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
备注  
The power, RF and clock management for the CC2340R5 device require specific configuration and  
handling by software for optimized performance. This configuration and handling is implemented in the  
TI-provided drivers that are part of the CC2340R5 software development kit (SDK). Therefore, TI  
highly recommends using this software framework for all application development on the device. The  
complete SDK with FreeRTOS, device drivers, and examples are offered free of charge in source  
code.  
9.12 Clock Systems  
The CC2340R5 device has the following internal system clocks.  
The 48 MHz HFCLK is used as the main system (MCU and peripherals) clock. This is driven by the internal 48  
MHz RC Oscillator (HFOSC), which can track its accuracy against an external 48 MHz crystal (HFXT). Radio  
operation requires an external 48 MHz crystal.  
The 32.768 kHz LFCLK is used as the internal low-frequency system clock. It is used for the RTC, the watchdog  
timer (if enabled in standby power mode), and to synchronize the radio timer before or after Standby power  
mode. LFCLK can be driven by the internal 32.8 kHz RC Oscillator (LFOSC), a 32.768 kHz watch-type crystal, or  
clock input in LFXT bypass mode. When using a crystal or the internal RC oscillator, the device can output the  
32 kHz LFCLK signal to other devices, thereby reducing the overall system cost.  
9.13 Network Processor  
Depending on the product configuration, the CC2340R5 device can function as a wireless network processor  
(WNP - a device running the wireless protocol stack with the application running on a separate host MCU), or as  
a system-on-chip (SoC - with the application and protocol stack running on the system CPU inside the device).  
In the first case, the external host MCU communicates with the device using SPI or UART. In the second case,  
the application must be written according to the application framework supplied with the wireless protocol stack.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
48  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
10 Application, Implementation, and Layout  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Reference Designs  
The following reference designs should be followed closely when implementing designs using the CC2340R5  
device.  
Special attention must be paid to RF component placement, decoupling capacitors and DCDC regulator  
components, as well as ground connections for all of these.  
LP-EM-CC2340R5 Design  
Files  
The CC2340R5 LaunchPad Design Files contain detailed schematics and  
layouts to build application specific boards using the CC2340R5 device.  
Sub-1 GHz and 2.4 GHz  
The antenna kit allows real-life testing to identify the optimal antenna for your  
Antenna Kit for LaunchPad™ application. The antenna kit includes 16 antennas for frequencies from 169 MHz  
Development Kit and  
SensorTag  
to 2.4 GHz, including:  
PCB antennas  
Helical antennas  
Chip antennas  
Dual-band antennas for 868 MHz and 915 MHz combined with 2.4 GHz  
The antenna kit includes a JSC cable to connect to the Wireless MCU  
LaunchPad Development Kits and SensorTags.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
10.2 Junction Temperature Calculation  
This section shows the different techniques for calculating the junction temperature under various operating  
conditions. For more details, see Semiconductor and IC Package Thermal Metrics.  
There are two recommended ways to derive the junction temperature from other measured temperatures:  
1. From package temperature:  
T = ψ × P + T  
case  
(1)  
(2)  
J
JT  
2. From board temperature:  
T = ψ × P + T  
board  
J
JB  
P is the power dissipated from the device and can be calculated by multiplying current consumption with supply  
voltage. Thermal resistance coefficients are found in Thermal Resistance Characteristics.  
Example:  
Using Equation 1, the temperature difference between the top of the case and junction temperature is calculated.  
In this example, we assume a simple use case where the radio is transmitting continuously at 0 dBm output  
power. Let us assume we want to maintain a junction temperature of 85 °C and the supply voltage is 3 V. To  
calculate P, look up the current consumption for Tx at 85 °C in the Junction Temperature Calculation. From the  
plot, we see that the current consumption is 7.8 mA. This means that P is 7.8 mA × 3 V = 23.4 mW.  
The maximum case temperature is then calculated as:  
°C  
T
< T − 0.4  
× 23.4mW = 84.991°C  
(3)  
W
case  
j
For various application use cases current consumption for other modules may have to be added to calculate the  
appropriate power dissipation. For example, the MCU may be running simultaneously as the radio, peripheral  
modules may be enabled, and so on. Typically, the easiest way to find the peak current consumption, and thus  
the peak power dissipation in the device, is to measure as described in the Measuring CC13xx and CC26xx  
Current Consumption application report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
50  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
11 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed as follows.  
11.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to all part numbers and/or date-  
code. Each device has one of three prefixes/identifications: X, P, or null (no prefix) (for example, X is in preview;  
therefore, an X prefix/identification is assigned).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Production devices have been characterized fully, and the quality and reliability of the device have been  
demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, RHB).  
For orderable part numbers of devices in the RHB (5-mm x 5-mm) package type, see the Package Option  
Addendum of this document, the Device Information in 3, the TI website (www.ti.com), or contact your TI  
sales representative.  
CC2340 R 5 2 E 0 RKP R  
R = Large Reel  
PREFIX  
X = Experimental Device  
Blank = Qualified Device  
PACKAGE  
RKP = 5 mm x 5 mm QFN  
DEVICE  
SimpleLink™ Bluetooth® 5.3  
Low Energy Wireless MCU  
PRODUCT REVISION  
CONFIGURATION  
R = Regular (+8 dBm)  
TEMPERATURE  
E = 125 °C Ambient  
SRAM SIZE  
2 = 36KB  
FLASH SIZE  
5 = 512KB  
11-1. Device Nomenclature  
11.2 Tools and Software  
The CC2340R5 device is supported by a variety of software and hardware development tools.  
Development Kit  
CC2340R5  
LaunchPad™  
Development Kit  
The CC2340R5 LaunchPad Development Kit enables development of high-  
performance wireless applications that benefit from low-power operation. The kit features  
the CC2340R5 SimpleLink Wireless MCU, which allows you to quickly evaluate and  
prototype 2.4-GHz wireless applications such as Bluetooth 5 Low Energy, Zigbee and  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
Thread, plus combinations of these. The kit works with the LaunchPad ecosystem, easily  
enabling additional functionality like sensors, display and more.  
Software  
SimpleLink™  
CC23xx software  
development kit  
(SDK)  
The SimpleLink CC23xx software development kit (SDK) provides a complete package for  
the development of wireless applications on the CC23xx family of devices. The SDK  
includes a comprehensive software package for the CC2340R5 device, including the  
following protocol stacks:  
Bluetooth Low Energy 4 and 5.3  
The SimpleLink CC23xx SDK is part of TIs SimpleLink MCU platform, offering a single  
development environment that delivers flexible hardware, software and tool options for  
customers developing wired and wireless applications. For more information about the  
SimpleLink MCU Platform, visit https://www.ti.com/simplelink.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
52  
Submit Document Feedback  
Product Folder Links: CC2340R5  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
Development Tools  
Code Composer  
StudioIntegrated  
Development  
Code Composer Studio is an integrated development environment (IDE) that supports TI's  
Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a  
suite of tools used to develop and debug embedded applications. It includes an optimizing  
C/C++ compiler, source code editor, project build environment, debugger, profiler, and  
many other features. The intuitive IDE provides a single user interface taking you through  
each step of the application development flow. Familiar tools and interfaces allow users to  
get started faster than ever before. Code Composer Studio combines the advantages of the  
Eclipse® software framework with advanced embedded debug capabilities from TI resulting  
in a compelling feature-rich development environment for embedded developers.  
Environment (IDE)  
CCS has support for all SimpleLink Wireless MCUs and includes support for EnergyTrace™  
software (application energy usage profiling). A real-time object viewer plugin is available  
for TI-RTOS, part of the SimpleLink SDK.  
Code Composer Studio is provided free of charge when used in conjunction with the XDS  
debuggers included on a LaunchPad Development Kit.  
Code Composer  
Studio™ Cloud  
IDE  
Code Composer Studio (CCS) Cloud is a web-based IDE that allows you to create, edit and  
build CCS and Energia™ projects. After you have successfully built your project, you can  
download and run on your connected LaunchPad. Basic debugging, including features like  
setting breakpoints and viewing variable values is now supported with CCS Cloud.  
IAR Embedded  
Workbench® for  
Arm®  
IAR Embedded Workbench® is a set of development tools for building and debugging  
embedded system applications using assembler, C and C++. It provides a completely  
integrated development environment that includes a project manager, editor, and build  
tools. IAR has support for all SimpleLink Wireless MCUs. It offers broad debugger support,  
including XDS110, IAR I-jetand Segger J-Link. A real-time object viewer plugin is  
available for TI-RTOS, part of the SimpleLink SDK. IAR is also supported out-of-the-box on  
most software examples provided as part of the SimpleLink SDK.  
A 30-day evaluation or a 32 KB size-limited version is available through iar.com.  
SmartRF™ Studio  
SmartRF™ Studio is a Windows® application that can be used to evaluate and configure  
SimpleLink Wireless MCUs from Texas Instruments. The application will help designers of  
RF systems to easily evaluate the radio at an early stage in the design process. It is  
especially useful for generation of configuration register values and for practical testing and  
debugging of the RF system. SmartRF Studio can be used either as a standalone  
application or together with applicable evaluation boards or debug probes for the RF  
device. Features of the SmartRF Studio include:  
Link tests - send and receive packets between nodes  
Antenna and radiation tests - set the radio in continuous wave TX and RX states  
Export radio configuration code for use with the TI SimpleLink SDK RF driver  
Custom GPIO configuration for signaling and control of external switches  
CCS UniFlash  
CCS UniFlash is a standalone tool used to program on-chip flash memory on TI MCUs.  
UniFlash has a GUI, command line, and scripting interface. CCS UniFlash is available free  
of charge.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
11.2.1 SimpleLink™ Microcontroller Platform  
The SimpleLink microcontroller platform sets a new standard for developers with the broadest portfolio of wired  
and wireless Arm® MCUs (System-on-Chip) in a single software development environment. Delivering flexible  
hardware, software and tool options for your IoT applications. Invest once in the SimpleLink software  
development kit and use throughout your entire portfolio. Learn more on ti.com/simplelink.  
11.3 Documentation Support  
To receive notification of documentation updates on data sheets, errata, application notes and similar, navigate  
to the device product folder (CC2340R5). In the upper right corner, click on Alert me to register and receive a  
weekly digest of any product information that has changed. For change details, review the revision history  
included in any revised document.  
The current documentation that describes the MCU, related peripherals, and other technical collateral is listed as  
follows.  
TI Resource Explorer  
TI Resource Explorer  
Software examples, libraries, executables, and documentation are available for your  
device and development board.  
Errata  
CC2340R5 Silicon  
Errata  
The silicon errata describes the known exceptions to the functional specifications for  
each silicon revision of the device and description on how to recognize a device  
revision.  
Application Reports  
All application reports for the CC2340R5 device are found on the device product folder (CC2340R5).  
Technical Reference Manual (TRM)  
CC23xx SimpleLink™ Wireless MCU  
TRM  
The TRM provides a detailed description of all modules and  
peripherals available in the device family.  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
SimpleLink, LaunchPad, Code Composer Studio, EnergyTrace, and TI E2Eare trademarks of Texas  
Instruments.  
I-jetis a trademark of IAR Systems AB.  
J-Linkis a trademark of SEGGER Microcontroller Systeme GmbH.  
Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
Bluetooth® is a registered trademark of Bluetooth SIG.  
CoreMark® is a registered trademark of Embedded Microprocessor Benchmark Consortium Corporation.  
Wi-Fi® is a registered trademark of Wi-Fi Alliance.  
Eclipse® is a registered trademark of Eclipse Foundation.  
IAR Embedded Workbench® is a registered trademark of IAR Systems AB.  
Windows® is a registered trademark of Microsoft Corporation.  
所有商标均为其各自所有者的财产。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
54  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: CC2340R5  
English Data Sheet: SWRS272  
 
 
CC2340R5  
ZHCSSA2B APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS272  
56  
Submit Document Feedback  
Product Folder Links: CC2340R5  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC2340R52E0RKPR  
ACTIVE  
VQFN  
RKP  
40  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
CC2340  
R52  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC2340R52E0RKPR  
VQFN  
RKP  
40  
3000  
330.0  
12.4  
5.3  
5.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RKP 40  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
CC2340R52E0RKPR  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RKP 40  
5 x 5, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229305/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RKP0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
5.1  
4.9  
A
B
PIN 1 INDEX AREA  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.6  
3.4  
(0.1) TYP  
11  
20  
36X 0.4  
10  
21  
41  
SYMM  
4X  
3.6  
0.25  
0.15  
30  
40X  
1
0.1  
C A B  
C
PIN1 ID  
(OPTIONAL)  
40  
31  
0.05  
SYMM  
0.5  
0.3  
40X  
4219083/A 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RKP0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (4.8)  
3.5)  
SYMM  
(
40X (0.6)  
40X (0.2)  
40  
31  
1
30  
36X (0.4)  
SYMM  
2X  
(4.8)  
2X (0.6)  
2X (0.9)  
21  
10  
(R 0.05) TYP  
(Ø 0.2) VIA  
11  
20  
TYP  
2X (0.9283)  
2X (0.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDERMASK  
EXPOSED  
OPENING  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219083/A 03/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RKP0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (4.8)  
SYMM  
9X  
1)  
(
40X (0.6)  
40X (0.2)  
40  
31  
1
30  
36X (0.4)  
SYMM  
2X  
(4.8)  
2X  
(1.2)  
21  
10  
(R 0.05) TYP  
11  
20  
2X (1.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
74% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219083/A 03/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

CC2369

TRANSISTOR | BJT | NPN | 15V V(BR)CEO | 200MA I(C) | TO-92
ETC

CC2400

2.4 GHz Low-Power RF Transceiver
TI

CC2400-RTB1

2.4 GHz Low-Power RF Transceiver
TI

CC2400-RTR1

2.4 GHz Low-Power RF Transceiver
TI

CC2400-STB1

2.4 GHz Low-Power RF Transceiver
TI

CC2400-STR1

2.4 GHz Low-Power RF Transceiver
TI

CC2400DBK

2.4 GHz Low-Power RF Transceiver
TI

CC2400DK

2.4 GHz Low-Power RF Transceiver
TI

CC2400RSU

TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, QCC48, 7 X 7 MM, QFN-48
TI

CC2400RSUR

2.4 GHz Low-Power RF Transceiver
TI

CC2400SK

2.4 GHz Low-Power RF Transceiver
TI

CC2400SKROHS

2.4 GHz Low-Power RF Transceiver
TI