CC2541-Q1 [TI]

符合汽车标准的 SimpleLink 低功耗 Bluetooth® 无线 MCU;
CC2541-Q1
型号: CC2541-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合汽车标准的 SimpleLink 低功耗 Bluetooth® 无线 MCU

无线
文件: 总34页 (文件大小:1295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
CC2541-Q1  
ZHCSCU4 JUNE 2014  
CC2541-Q1 汽车用 SimpleLink™ 蓝牙®低能耗无线微控制器 (MCU)  
1 器件概述  
1.1 特性  
1
电池监视器和温度感应器  
8 通道和可配置分辨率的 12 位模数转换器  
射频  
– 2.4GHz 蓝牙低能耗专有 RF 无线 MCU  
(ADC)  
支持 250kbps500kbps1Mbps 2Mbps 数  
据速率  
高级加密标准 (AES) 安全协处理器  
– 2 个功能强大的支持几个串行协议的通用异步接  
收发器 (UART)  
出色的链路预算,不使用外部前段而支持长距离  
应用  
– 23 个通用 I/O 引脚  
(21 × 4mA2 × 20mA)  
– I2C 接口  
高达 0dBm 的可编程输出功率  
出色的接收器灵敏度(1Mbps 时为  
-94dBm)、可选择性和阻断性能  
– 2 个具有 LED 驱动功能的 I/O 引脚  
安全装置定时器  
集成的高性能比较器  
开发工具  
适合于针对符合世界范围内的无线电频率调节系  
统:ETSI EN 300 328 EN 300 440 2 类 (欧  
洲),FCC CFR47 15 部分(美国),和 ARIB  
STD-T66(日本)  
布局  
– CC2541 评估模块  
– SmartRF™ 软件  
提供 IAR 嵌入式 Workbench™  
极少的外部组件  
– 6mm × 6mm 四方扁平无引线 (QFN)-40 封装  
低功率  
有源模式 RX 低至:18.3mA  
有源模式 TX (0dBm)18.6mA  
功率模式 14µs 唤醒):270µs  
功率模式 2(睡眠定时器打开):1µs  
功率模式 3(外部中断):0.5µs  
宽电源电压范围(2V 3.6V)  
微控制器  
符合针对单模式蓝牙低能耗 (BLE) 解决方案的符合  
蓝牙4.0 协议的堆栈  
完全功率优化堆栈,包括控制器和主机  
GAP - 中心设备,外设,或者广播器(包括组  
合角色)  
属性协议 (ATT) / 通用属性配置文件  
(GATT) – 客户端和服务器  
对称式对多重处理 (SMP) - AES-128 加密和  
解密  
具有代码预取功能的高性能和低功率 8051 微控  
制器内核  
L2CAP  
示例应用和配置文件  
– 256KB 系统内可编程闪存  
在所有功率模式下具有保持功能的 8KB RAM  
支持硬件调试  
针对 GAP 中心和外围作用的一般应用  
距离临近,加速计,简单关键字,和电池  
GATT 服务  
扩展基带自动化,包括自动确认和地址解码  
所有功率模式中对所有相关寄存器的保持  
外设  
BLE 软件栈内支持更多应用  
多重配置选项  
单芯片配置,允许应用运行在 CC2541 -  
Q1:  
功能强大的 5 通道直接内存访问 (DMA)  
红外 (IR) 生成电路  
通用定时器(1 16 位,2 8 位)  
具有捕捉功能的 32kHz 睡眠定时器  
精确数字接收到的数字信号强度指示器 (RSSI) 支  
针对外部微处理器上运行应用的网络处理器接  
– BTool - 用于评估、开发和测试的 Windows PC  
应用  
支持空中下载更新  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SWRS128  
 
 
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
1.2 应用  
2.4GHz 蓝牙低能耗系统  
专有 2.4GHz 系统  
遥控门锁(被动式遥感)  
轮胎气压监视  
诊断和维护  
电缆更换  
传感器节点  
信息娱乐与媒体  
智能手机连接  
信标  
接近传感  
接口和控制  
1.3 说明  
CC2541-Q1 是一款针对蓝牙低功耗和专有 2.4GHz 应用的功耗优化型无线 MCU 解决方案。 此器件可构建  
稳定耐用的网络节点,同时保证总物料成本低廉。 CC2541-Q1 结合了领先的 RF 收发器的出色性能以及符  
合行业标准的增强型 8051 MCU、系统内可编程闪存、8KB RAM 和多种其它功能强大的特性和外设。  
CC2541-Q1 非常适用于需要超低功耗的系统,具体由各种工作模式指定。 运行模式间较短的转换时间进一  
步使低能耗变为可能。  
CC2541-Q1 采用 6mm x 6mm QFN40 封装。  
器件信息(1)  
封装  
部件号  
CC2541F256TRHARQ1  
封装尺寸  
RHA (40)  
RHA (40)  
6.00mm x 6.00mm  
6.00mm x 6.00mm  
CC2541F256TRHATQ1  
(1) 更多信息请参见 8,机械封装和可订购信息。  
2
器件概述  
版权 © 2014, Texas Instruments Incorporated  
 
 
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
1.4 功能方框图  
1-1 所示为 CC2541-Q1 框图。  
VDD (2 V–3.6 V)  
DCOUPL  
WATCHDOG  
TIMER  
ON-CHIP VOLTAGE  
REGULATOR  
RESET_N  
RESET  
XOSC_Q2  
XOSC_Q1  
32-MHz  
POWER-ON RESET  
BROWN OUT  
CRYSTAL OSC  
CLOCK MUX  
and  
CALIBRATION  
P2_4  
P2_3  
P2_2  
P2_1  
P2_0  
32.768-kHz  
SLEEP TIMER  
CRYSTAL OSC  
HIGH-  
DEBUG  
INTERFACE  
32-kHz  
SPEED  
RC-OSC  
POWER MANAGEMENT CONTROLLER  
RC-OSC  
SRAM  
RAM  
PDATA  
XRAM  
IRAM  
P1_7  
P1_6  
P1_5  
P1_4  
P1_3  
P1_2  
P1_1  
P1_0  
8051 CPU  
CORE  
MEMORY  
ARBITRATOR  
FLASH  
FLASH  
SFR  
DMA  
UNIFIED  
IRQ CTRL  
FLASH CTRL  
1 KB SRAM  
P0_7  
P0_6  
P0_5  
P0_4  
P0_3  
P0_2  
P0_1  
P0_0  
ANALOG COMPARATOR  
FIFOCTRL  
RADIO REGISTERS  
AES  
ENCRYPTION  
AND  
DECRYPTION  
DS  
Link Layer Engine  
ADC  
AUDIO/DC  
DEMODULATOR  
MODULATOR  
SDA  
SCL  
I2C  
USART 0  
RECEIVE  
TRANSMIT  
USART 1  
TIMER 1 (16-Bit)  
TIMER 2  
(BLE LL TIMER)  
RF_P  
RF_N  
TIMER 3 (8-Bit)  
TIMER 4 (8-Bit)  
DIGITAL  
ANALOG  
MIXED  
B0301-13  
1-1. 方框图  
版权 © 2014, Texas Instruments Incorporated  
器件概述  
3
 
 
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能方框图............................................ 3  
修订历史记录............................................... 5  
Terminal Configuration and Functions.............. 6  
3.1 Pin Diagram .......................................... 6  
3.2 Pin Descriptions ...................................... 7  
Specifications ............................................ 8  
4.1 Absolute Maximum Ratings .......................... 8  
4.2 Handling Ratings ..................................... 8  
4.3 Recommended Operating Conditions ................ 8  
4.15 Analog Temperature Sensor ........................ 13  
4.16 Comparator Characteristics ......................... 13  
4.17 ADC Characteristics................................. 14  
4.18 DC Characteristics .................................. 15  
4.19 Control Input AC Characteristics.................... 15  
4.20 SPI AC Characteristics.............................. 16  
4.21 Debug Interface AC Characteristics ................ 17  
4.22 Timer Inputs AC Characteristics .................... 18  
4.23 Typical Characteristics .............................. 19  
Detailed Description ................................... 21  
5.1 Functional Block Diagram........................... 21  
5.2 Block Descriptions................................... 21  
Application Information............................... 24  
6.1 Input/Output Matching............................... 24  
6.2 Crystal ............................................... 25  
2
3
4
5
6
4.4  
Thermal Characteristics for RHA Package........... 8  
4.5 Electrical Characteristics ............................. 9  
4.6 General Characteristics .............................. 9  
4.7 RF Receive Section................................. 10  
4.8 RF Transmit Section ................................ 11  
4.9 32-MHz Crystal Oscillator ........................... 11  
4.10 32.768-kHz Crystal Oscillator ....................... 12  
4.11 32-kHz RC Oscillator................................ 12  
4.12 16-MHz RC Oscillator ............................... 12  
4.13 RSSI Characteristics ................................ 13  
4.14 Frequency Synthesizer Characteristics ............. 13  
6.3  
On-Chip 1.8-V Voltage Regulator Decoupling ...... 25  
Power-Supply Decoupling and Filtering............. 25  
6.4  
7
8
器件和文档支持 .......................................... 26  
7.1 文档支............................................. 26  
7.2 商标.................................................. 27  
7.3 静电放电警告 ........................................ 27  
7.4 术语表 ............................................... 27  
机械封装和可订购信息 .................................. 27  
4
内容  
版权 © 2014, Texas Instruments Incorporated  
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
2 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
日期  
修订版本  
注释  
最初发布。  
2014 6 月  
*
Copyright © 2014, Texas Instruments Incorporated  
修订历史记录  
5
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
3 Terminal Configuration and Functions  
The CC2541-Q1 pinout is shown in Figure 3-1 and a short description of the pins follows.  
3.1 Pin Diagram  
40 39 38 37 36 35 34 33 32 31  
GND  
SCL  
R_BIAS  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
AVDD4  
AVDD1  
AVDD2  
RF_N  
SDA  
3
GND  
4
P1_5  
P1_4  
P1_3  
P1_2  
P1_1  
DVDD2  
5
AGND  
Exposed Die Attached Pad  
RF_P  
6
7
AVDD3  
XOSC_Q2  
XOSC_Q1  
8
9
10  
AVDD5  
11 12 13 14 15 16 17 18 19 20  
P0076-14  
NOTE: The exposed ground pad must be connected to a solid ground plane, as this is the ground connection for the chip.  
Figure 3-1. RHA PACKAGE (TOP VIEW)  
6
Terminal Configuration and Functions  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
 
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
3.2 Pin Descriptions  
Table 3-1. Pin Descriptions  
PINS  
TYPE  
DESCRIPTION  
NAME  
AVDD1  
AVDD2  
AVDD3  
AVDD4  
AVDD5  
AVDD6  
DCOUPL  
DVDD1  
DVDD2  
GND  
NO.  
28  
27  
24  
29  
21  
31  
40  
39  
10  
1
Power (analog)  
Power (analog)  
Power (analog)  
Power (analog)  
Power (analog)  
Power (analog)  
Power (digital)  
Power (digital)  
Power (digital)  
Ground pin  
Ground  
2-V–3.6-V analog power-supply connection  
2-V–3.6-V analog power-supply connection  
2-V–3.6-V analog power-supply connection  
2-V–3.6-V analog power-supply connection  
2-V–3.6-V analog power-supply connection  
2-V–3.6-V analog power-supply connection  
1.8-V digital power-supply decoupling. Do not use for supplying external circuits.  
2-V–3.6-V digital power-supply connection  
2-V–3.6-V digital power-supply connection  
Connect to GND  
GND  
4
The ground pad must be connected to a solid ground plane.  
GND  
Ground pin  
Digital I/O  
Connect to GND  
P0_0  
19  
18  
17  
16  
15  
14  
13  
12  
11  
9
Port 0.0  
P0_1  
Digital I/O  
Port 0.1  
P0_2  
Digital I/O  
Port 0.2  
P0_3  
Digital I/O  
Port 0.3  
P0_4  
Digital I/O  
Port 0.4  
P0_5  
Digital I/O  
Port 0.5  
P0_6  
Digital I/O  
Port 0.6  
P0_7  
Digital I/O  
Port 0.7  
P1_0  
Digital I/O  
Port 1.0 – 20-mA drive capability  
P1_1  
Digital I/O  
Port 1.1 – 20-mA drive capability  
Port 1.2  
P1_2  
8
Digital I/O  
P1_3  
7
Digital I/O  
Port 1.3  
P1_4  
6
Digital I/O  
Port 1.4  
P1_5  
5
Digital I/O  
Port 1.5  
P1_6  
38  
37  
36  
35  
34  
33  
32  
30  
20  
26  
Digital I/O  
Port 1.6  
P1_7  
Digital I/O  
Port 1.7  
P2_0  
Digital I/O  
Port 2.0  
P2_1/DD  
P2_2/DC  
P2_3/ OSC32K_Q2  
P2_4/ OSC32K_Q1  
RBIAS  
RESET_N  
RF_N  
Digital I/O  
Port 2.1 / debug data  
Port 2.2 / debug clock  
Digital I/O  
Digital I/O, Analog I/O Port 2.3/32.768 kHz XOSC  
Digital I/O, Analog I/O Port 2.4/32.768 kHz XOSC  
Analog I/O  
Digital input  
RF I/O  
External precision bias resistor for reference current  
Reset, active-low  
Negative RF input signal to LNA during RX  
Negative RF output signal from PA during TX  
RF_P  
SCL  
25  
2
RF I/O  
Positive RF input signal to LNA during RX  
Positive RF output signal from PA during TX  
I2C clock or digital I/O Can be used as I2C clock pin or digital I/O. Leave floating if not used. If  
grounded disable pull up  
SDA  
3
I2C clock or digital I/O Can be used as I2C data pin or digital I/O. Leave floating if not used. If  
grounded disable pull up  
XOSC_Q1  
XOSC_Q2  
22  
23  
Analog I/O  
Analog I/O  
32-MHz crystal oscillator pin 1 or external clock input  
32-MHz crystal oscillator pin 2  
Copyright © 2014, Texas Instruments Incorporated  
Terminal Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
4 Specifications  
4.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
Supply voltage  
All supply pins must have the same voltage  
3.9  
V
Voltage on any digital pin  
Input RF level  
VDD + 0.3 3.9  
V
10  
dBm  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
4.2 Handling Ratings  
MIN  
–40  
–1  
MAX  
125  
1
UNIT  
Tstg  
Storage temperature range  
°C  
All pins  
Human Body Model (HBM), per AEC  
Q100-002(1)  
kV  
V
Electrostatic discharge  
(ESD) performance:  
All pins  
(Excluding pins 25 and 26)  
VESD  
–2  
2
Charged Device Model (CDM), per AEC Q100-011  
–500  
500  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
4.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX  
UNIT  
Operating ambient temperature range, TA  
Operating supply voltage  
–40  
2
105  
3.6  
°C  
V
4.4 Thermal Characteristics for RHA Package  
NAME  
RΘJC  
RΘJB  
RΘJA  
PsiJT  
PsiJB  
RθJC  
DESCRIPTION  
°C/W  
AIR FLOW (m/s)(1)  
Junction-to-case (top)  
Junction-to-board  
16.1  
5.5  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
30.6  
0.2  
5.4  
Junction-to-case (bottom)  
1.0  
(1) m/s = meters per second  
8
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
4.5 Electrical Characteristics  
Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C and VDD = 3 V,  
1 Mbps, GFSK, 250-kHz deviation, Bluetooth low energy mode, and 0.1% BER  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
RX mode, standard mode, no peripherals active, low MCU  
activity  
18.3  
RX mode, high-gain mode, no peripherals active, low MCU  
activity  
20.8  
mA  
TX mode, –20 dBm output power, no peripherals active, low  
MCU activity  
17.2  
TX mode, 0 dBm output power, no peripherals active, low  
MCU activity  
18.6  
270  
Power mode 1. Digital regulator on; 16-MHz RCOSC and 32-  
MHz crystal oscillator off; 32.768-kHz XOSC, POR, BOD and  
sleep timer active; RAM and register retention  
Icore  
Core current consumption  
Power mode 2. Digital regulator off; 16-MHz RCOSC and 32-  
MHz crystal oscillator off; 32.768-kHz XOSC, POR, and sleep  
timer active; RAM and register retention  
µA  
1
Power mode 3. Digital regulator off; no clocks; POR active;  
RAM and register retention  
0.5  
Low MCU activity: 32-MHz XOSC running. No radio or  
peripherals. Limited flash access, no RAM access.  
6.7  
mA  
Timer 1. Timer running, 32-MHz XOSC used  
Timer 2. Timer running, 32-MHz XOSC used  
Timer 3. Timer running, 32-MHz XOSC used  
Timer 4. Timer running, 32-MHz XOSC used  
Sleep timer, including 32.753-kHz RCOSC  
ADC, when converting  
90  
90  
Peripheral current consumption  
(Adds to core current Icore for each  
peripheral unit activated)  
60  
μA  
Iperi  
70  
0.6  
1.2  
mA  
4.6 General Characteristics  
Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C and VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
WAKE-UP AND TIMING  
Digital regulator on, 16-MHz RCOSC and 32-MHz crystal  
oscillator off. Start-up of 16-MHz RCOSC  
Power mode 1 Active  
4
120  
500  
μs  
μs  
Digital regulator off, 16-MHz RCOSC and 32-MHz crystal  
oscillator off. Start-up of regulator and 16-MHz RCOSC  
Power mode 2 or 3 Active  
Crystal ESR = 16 . Initially running on 16-MHz RCOSC,  
with 32-MHz XOSC OFF  
μs  
μs  
Active TX or RX  
With 32-MHz XOSC initially on  
Proprietary auto mode  
BLE mode  
180  
130  
150  
RX/TX turnaround  
μs  
RADIO PART  
RF frequency range  
Programmable in 1-MHz steps  
2379  
2496  
MHz  
2 Mbps, GFSK, 500-kHz deviation  
2 Mbps, GFSK, 320-kHz deviation  
1 Mbps, GFSK, 250-kHz deviation  
1 Mbps, GFSK, 160-kHz deviation  
500 kbps, MSK  
Data rate and modulation format  
250 kbps, GFSK, 160-kHz deviation  
250 kbps, MSK  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
9
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
4.7 RF Receive Section  
Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C, VDD = 3 V, fc = 2440 MHz  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
1 Mbps, GFSK, 250-kHz Deviation, Bluetooth low energy Mode, 0.1% BER  
High-gain mode  
Receiver sensitivity(1)(2)  
–94  
dBm  
–88  
Standard mode  
Saturation(2)  
Co-channel rejection(2)  
BER < 0.1%  
5
–6  
dBm  
dB  
Wanted signal –67 dBm  
±1 MHz offset, 0.1% BER, wanted signal –67 dBm  
±2 MHz offset, 0.1% BER, wanted signal –67 dBm  
±3 MHz offset, 0.1% BER, wanted signal –67 dBm  
>6 MHz offset, 0.1% BER, wanted signal –67 dBm  
Minimum interferer level < 2 GHz (Wanted signal –67 dBm)  
Minimum interferer level [2 GHz, 3 GHz] (Wanted signal –67 dBm)  
Minimum interferer level > 3 GHz (Wanted signal –67 dBm)  
Minimum interferer level  
–2  
26  
In-band blocking rejection(2)  
dB  
34  
33  
–21  
–27  
–8  
Out-of-band blocking  
rejection(2)  
dBm  
Intermodulation(2)  
–36  
dBm  
kHz  
Including both initial tolerance and drift. Sensitivity better than -67dBm,  
250 byte payload. BER 0.1%  
Frequency error tolerance(3)  
–250  
–80  
250  
80  
Symbol rate error  
tolerance(4)  
Maximum packet length. Sensitivity better than –67 dBm, 250 byte  
payload. BER 0.1%  
ppm  
ALL RATES/FORMATS  
Spurious emission in RX.  
Conducted measurement  
f < 1 GHz  
f > 1 GHz  
–67  
–57  
dBm  
dBm  
Spurious emission in RX.  
Conducted measurement  
(1) The receiver sensitivity setting is programmable using a TI BLE stack vendor-specific API command. The default value is standard  
mode.  
(2) Results based on standard-gain mode.  
(3) Difference between center frequency of the received RF signal and local oscillator frequency  
(4) Difference between incoming symbol rate and the internally generated symbol rate  
10  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
4.8 RF Transmit Section  
Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C, VDD = 3 V and fc = 2440 MHz  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dBm  
dB  
Delivered to a single-ended 50-Ω load through a balun using  
maximum recommended output power setting  
0
Output power  
Delivered to a single-ended 50-Ω load through a balun using  
minimum recommended output power setting  
–20  
20  
Programmable output power Delivered to a single-ended 50-Ω load through a balun using  
range  
minimum recommended output power setting  
f < 1 GHz  
–52  
–48  
dBm  
dBm  
Spurious emission conducted f > 1 GHz  
measurement  
Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and  
EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan)  
Differential impedance as seen from the RF port (RF_P and RF_N)  
toward the antenna  
Optimum load impedance  
70 +j30  
Ω
Designs with antenna connectors that require conducted ETSI compliance at 64 MHz should insert an LC  
resonator in front of the antenna connector. Use a 1.6-nH inductor in parallel with a 1.8-pF capacitor. Connect  
both from the signal trace to a good RF ground.  
4.9 32-MHz Crystal Oscillator  
Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C and VDD = 3 V  
PARAMETER  
Crystal frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
32  
MHz  
Crystal frequency accuracy  
requirement(1)  
–40  
40 ppm  
ESR  
C0  
Equivalent series resistance  
Crystal shunt capacitance  
Crystal load capacitance  
Start-up time  
6
1
60  
7
pF  
pF  
ms  
CL  
10  
16  
0.25  
The crystal oscillator must be in power down for a guard  
time before it is used again. This requirement is valid for  
all modes of operation. The need for power-down guard  
time can vary with crystal type and load.  
Power-down guard time  
3
ms  
(1) Including aging and temperature dependency, as specified by [1]  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
 
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
4.10 32.768-kHz Crystal Oscillator  
Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C and VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Crystal frequency  
32.768  
kHz  
Crystal frequency accuracy requirement(1)  
Equivalent series resistance  
Crystal shunt capacitance  
Crystal load capacitance  
Start-up time  
–40  
40  
130  
2
ppm  
kΩ  
pF  
pF  
s
ESR  
C0  
40  
0.9  
12  
CL  
16  
0.4  
(1) Including aging and temperature dependency, as specified by [1]  
4.11 32-kHz RC Oscillator  
Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C and VDD = 3 V.  
PARAMETER  
Calibrated frequency(1)  
TEST CONDITIONS  
MIN  
TYP  
32.753  
±0.2%  
0.4  
MAX UNIT  
kHz  
Frequency accuracy after calibration  
Temperature coefficient(2)  
Supply-voltage coefficient(3)  
Calibration time(4)  
%/°C  
%/V  
ms  
3
2
(1) The calibrated 32-kHz RC oscillator frequency is the 32-MHz XTAL frequency divided by 977.  
(2) Frequency drift when temperature changes after calibration  
(3) Frequency drift when supply voltage changes after calibration  
(4) When the 32-kHz RC oscillator is enabled, it is calibrated when a switch from the 16-MHz RC oscillator to the 32-MHz crystal oscillator  
is performed while SLEEPCMD.OSC32K_CALDIS is set to 0.  
4.12 16-MHz RC Oscillator  
Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C and VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
16  
MAX  
UNIT  
Frequency(1)  
MHz  
Uncalibrated frequency accuracy  
Calibrated frequency accuracy  
Start-up time  
±18%  
±0.6%  
10  
μs  
μs  
Initial calibration time(2)  
50  
(1) The calibrated 16-MHz RC oscillator frequency is the 32-MHz XTAL frequency divided by 2.  
(2) When the 16-MHz RC oscillator is enabled, it is calibrated when a switch from the 16-MHz RC oscillator to the 32-MHz crystal oscillator  
is performed while SLEEPCMD.OSC_PD is set to 0.  
12  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
4.13 RSSI Characteristics  
Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C and VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2 Mbps, GFSK, 320-kHz Deviation, 0.1% BER and 2 Mbps, GFSK, 500-kHz Deviation, 0.1% BER  
Reduced gain by AGC algorithm  
64  
64  
79  
99  
±6  
1
Useful RSSI range(1)  
dB  
High gain by AGC algorithm  
Reduced gain by AGC algorithm  
RSSI offset(1)  
dBm  
High gain by AGC algorithm  
Absolute uncalibrated accuracy(1)  
Step size (LSB value)  
dB  
dB  
All Other Rates/Formats  
Standard mode  
64  
64  
98  
107  
±3  
1
Useful RSSI range(1)  
High-gain mode  
dB  
Standard mode  
RSSI offset(1)  
dBm  
High-gain mode  
Absolute uncalibrated accuracy(1)  
Step size (LSB value)  
dB  
dB  
(1) Assuming CC2541-Q1 EM reference design. Other RF designs give an offset from the reported value.  
4.14 Frequency Synthesizer Characteristics  
Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C, VDD = 3 V and fc = 2440 MHz  
PARAMETER  
TEST CONDITIONS  
At ±1-MHz offset from carrier  
MIN  
TYP  
–109  
–112  
–119  
MAX  
UNIT  
Phase noise, unmodulated carrier  
At ±3-MHz offset from carrier  
At ±5-MHz offset from carrier  
dBc/Hz  
4.15 Analog Temperature Sensor  
Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C and VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
12-bit  
/ 1°C  
0.1 V  
°C  
Output  
1480  
4.5  
1
Temperature coefficient  
Voltage coefficient  
Measured using integrated ADC, internal band-gap voltage  
reference, and maximum resolution  
Initial accuracy without calibration  
Accuracy using 1-point calibration  
Current consumption when enabled  
±10  
±5  
°C  
0.5  
mA  
4.16 Comparator Characteristics  
TA = 25°C, VDD = 3 V. All measurement results are obtained using the CC2541-Q1 reference designs, post-calibration.  
PARAMETER  
Common-mode maximum voltage  
Common-mode minimum voltage  
Input offset voltage  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
VDD  
–0.3  
1
V
mV  
µV/°C  
mV/V  
nA  
Offset vs temperature  
Offset vs operating voltage  
Supply current  
16  
4
230  
0.15  
Hysteresis  
mV  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
4.17 ADC Characteristics  
TA = 25°C and VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
VDD is voltage on AVDD5 pin  
VDD is voltage on AVDD5 pin  
MIN  
0
TYP  
MAX  
UNIT  
V
Input voltage  
VDD  
VDD  
VDD  
External reference voltage  
0
V
External reference voltage differential VDD is voltage on AVDD5 pin  
0
V
Input resistance, signal  
Full-scale signal(1)  
Simulated using 4-MHz clock speed  
Peak-to-peak, defines 0 dBFS  
197  
2.97  
5.7  
kΩ  
V
Single-ended input, 7-bit setting  
Single-ended input, 9-bit setting  
7.5  
Single-ended input, 10-bit setting  
Single-ended input, 12-bit setting  
Differential input, 7-bit setting  
9.3  
10.3  
6.5  
ENOB(1)  
Effective number of bits  
bits  
Differential input, 9-bit setting  
8.3  
Differential input, 10-bit setting  
10  
Differential input, 12-bit setting  
11.5  
9.7  
10-bit setting, clocked by RCOSC  
12-bit setting, clocked by RCOSC  
7-bit setting, both single and differential  
Single ended input, 12-bit setting, –6 dBFS(1)  
Differential input, 12-bit setting, –6 dBFS(1)  
Single-ended input, 12-bit setting(1)  
Differential input, 12-bit setting(1)  
Single-ended input, 12-bit setting, –6 dBFS(1)  
Differential input, 12-bit setting, –6 dBFS(1)  
10.9  
0–20  
–75.2  
–86.6  
70.2  
79.3  
78.8  
88.9  
Useful power bandwidth  
Total harmonic distortion  
kHz  
dB  
THD  
Signal to nonharmonic ratio  
dB  
dB  
Differential input, 12-bit setting, 1-kHz sine  
(0 dBFS), limited by ADC resolution  
CMRR  
Common-mode rejection ratio  
Crosstalk  
>84  
>84  
Single ended input, 12-bit setting, 1-kHz sine  
(0 dBFS), limited by ADC resolution  
dB  
Offset  
Midscale  
–3  
0.68%  
0.05  
0.9  
mV  
Gain error  
12-bit setting, mean(1)  
12-bit setting, maximum(1)  
12-bit setting, mean(1)  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity  
LSB  
LSB  
4.6  
12-bit setting, maximum(1)  
12-bit setting, mean, clocked by RCOSC  
12-bit setting, max, clocked by RCOSC  
Single ended input, 7-bit setting(1)  
Single ended input, 9-bit setting(1)  
Single ended input, 10-bit setting(1)  
Single ended input, 12-bit setting(1)  
Differential input, 7-bit setting(1)  
Differential input, 9-bit setting(1)  
Differential input, 10-bit setting(1)  
Differential input, 12-bit setting(1)  
7-bit setting  
13.3  
10  
29  
35.4  
46.8  
57.5  
66.6  
40.7  
51.6  
61.8  
70.8  
20  
SINAD  
(–THD+N)  
Signal-to-noise-and-distortion  
dB  
9-bit setting  
36  
Conversion time  
μs  
10-bit setting  
68  
12-bit setting  
132  
(1) Measured with 300-Hz sine-wave input and VDD as reference.  
14 Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
ADC Characteristics (continued)  
TA = 25°C and VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.2  
4
MAX  
UNIT  
mA  
Power consumption  
Internal reference VDD coefficient  
mV/V  
Internal reference temperature  
coefficient  
0.4  
mV/10°C  
V
Internal reference voltage  
1.24  
4.18 DC Characteristics  
TA = 25°C, VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Logic-0 input voltage  
0.5  
Logic-1 input voltage  
2.4  
–50  
–50  
V
Logic-0 input current  
Input equals 0 V  
50  
50  
nA  
nA  
kΩ  
V
Logic-1 input current  
Input equals VDD  
I/O-pin pullup and pulldown resistors  
Logic-0 output voltage, 4- mA pins  
Logic-1 output voltage, 4-mA pins  
Logic-0 output voltage, 20- mA pins  
Logic-1 output voltage, 20-mA pins  
20  
Output load 4 mA  
Output load 4 mA  
Output load 20 mA  
Output load 20 mA  
0.5  
0.5  
2.5  
2.5  
V
V
V
4.19 Control Input AC Characteristics  
TA = –40°C to 105°C, VDD = 2 V to 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
The undivided system clock is 32 MHz when crystal oscillator is used.  
The undivided system clock is 16 MHz when calibrated 16-MHz RC  
oscillator is used.  
System clock, fSYSCLK  
tSYSCLK = 1/ fSYSCLK  
16  
32  
MHz  
See item 1, Figure 4-1. This is the shortest pulse that is recognized  
as a complete reset pin request. Note that shorter pulses may be  
recognized but do not lead to complete reset of all modules within the  
chip.  
RESET_N low duration  
Interrupt pulse duration  
1
µs  
ns  
See item 2, Figure 4-1.This is the shortest pulse that is recognized as  
an interrupt request.  
20  
RESET_N  
1
2
Px.n  
T0299-01  
Figure 4-1. Control Input AC Characteristics  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
 
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
4.20 SPI AC Characteristics  
TA = –40°C to 105°C, VDD = 2 V to 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
250  
250  
TYP MAX UNIT  
Master, RX and TX  
Slave, RX and TX  
Master  
t1  
SCK period  
ns  
SCK duty cycle  
SSN low to SCK  
50%  
Master  
63  
63  
63  
63  
t2  
t3  
ns  
Slave  
Master  
SCK to SSN high  
ns  
Slave  
t4  
t5  
t6  
t7  
MOSI early out  
MOSI late out  
MISO setup  
MISO hold  
Master, load = 10 pF  
Master, load = 10 pF  
Master  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
90  
10  
Master  
SCK duty cycle  
MOSI setup  
MOSI hold  
Slave  
50%  
t10  
t11  
t9  
Slave  
35  
10  
Slave  
MISO late out  
Slave, load = 10 pF  
Master, TX only  
Master, RX and TX  
Slave, RX only  
Slave, RX and TX  
95  
8
4
Operating frequency  
MHz  
8
4
SCK  
t2  
t3  
SSN  
t4  
t5  
MOSI  
D0  
X
D1  
t6  
t7  
MISO  
X
D0  
X
T0478-01  
Figure 4-2. SPI Master AC Characteristics  
16  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
SCK  
t2  
t3  
SSN  
MISO  
MOSI  
t8  
t9  
D0  
X
D1  
t10  
t11  
X
D0  
X
T0479-01  
Figure 4-3. SPI Slave AC Characteristics  
4.21 Debug Interface AC Characteristics  
TA = –40°C to 105°C, VDD = 2 V to 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fclk_dbg  
Debug clock frequency (see Figure 4-4)  
Allowed high pulse on clock (see Figure 4-4)  
Allowed low pulse on clock (see Figure 4-4)  
12  
t1  
t2  
35  
35  
ns  
EXT_RESET_N low to first falling edge on debug clock (see  
Figure 4-6)  
t3  
t4  
t5  
167  
83  
ns  
ns  
ns  
Falling edge on clock to EXT_RESET_N high (see Figure 4-  
6)  
EXT_RESET_N high to first debug command (see Figure 4-  
6)  
83  
t6  
t7  
t8  
Debug data setup (see Figure 4-5)  
Debug data hold (see Figure 4-5)  
Clock-to-data delay (see Figure 4-5)  
2
4
ns  
ns  
ns  
Load = 10 pF  
30  
Time  
DEBUG_CLK  
P2_2  
t1  
t2  
1/fclk_dbg  
T0436-01  
Figure 4-4. Debug Clock – Basic Timing  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
 
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
Time  
DEBUG_CLK  
P2_2  
RESET_N  
t3  
t4  
t5  
T0437-01  
Figure 4-5. Debug Enable Timing  
Time  
DEBUG_CLK  
P2_2  
DEBUG_DATA  
(to CC2541)  
P2_1  
DEBUG_DATA  
(from CC2541)  
P2_1  
t6  
t7  
t8  
Figure 4-6. Data Setup and Hold Timing  
4.22 Timer Inputs AC Characteristics  
TA = –40°C to 105°C, VDD = 2 V to 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Synchronizers determine the shortest input pulse that can be  
recognized. The synchronizers operate at the current system  
clock rate (16 MHz or 32 MHz).  
Input capture pulse duration  
1.5  
tSYSCLK  
18  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
4.23 Typical Characteristics  
22  
21.5  
21  
20.5  
20  
20.5  
20  
19.5  
19  
19.5  
19  
18.5  
18.5  
18  
18  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (qC)  
Temperature (qC)  
Figure 4-7. RX Current vs Temperature  
Figure 4-8. TX Current vs Temperature  
-80  
-82  
-84  
-86  
-88  
-90  
-92  
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (qC)  
Temperature (qC)  
Figure 4-9. RX Sensitivity vs Temperature  
Figure 4-10. TX Power vs Temperature  
20  
19.5  
19  
19.2  
19.1  
19  
18.9  
18.8  
18.7  
18.6  
18.5  
18  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Voltage (V)  
Voltage (V)  
Figure 4-11. RX Current vs Supply Voltage  
Figure 4-12. TX Current vs Supply Voltage  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
−84  
4
2
−86  
−88  
−90  
−92  
0
−2  
−4  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Frequency (MHz)  
Voltage (V)  
G007  
G008  
1-Mbps GFSK 250-kHz Standard Gain Setting  
TA = 25°C  
TX Power Setting = 0 dBm  
TA = 25°C  
Figure 4-13. RX Sensitivity vs Supply Voltage  
Figure 4-14. TX Power vs Supply Voltage  
−84  
4
2
−86  
−88  
−90  
−92  
0
−2  
−4  
2400 2410 2420 2430 2440 2450 2460 2470 2480  
2400 2410 2420 2430 2440 2450 2460 2470 2480  
Frequency (MHz)  
Frequency (MHz)  
1-Mbps GFSK 250-kHz Standard Gain Setting  
TA = 25°C  
G009  
G010  
TX Power Setting = 0 dBm  
TA = 25°C  
Vcc = 3 V  
Vcc = 3 V  
Figure 4-15. RX Sensitivity vs Frequency  
Figure 4-16. TX Power vs Frequency  
Table 4-1. Output Power(1)(2)  
TX POWER Setting  
Typical Output Power (dBm)  
0xE1  
0xD1  
0xC1  
0xB1  
0xA1  
0x91  
0x81  
0x71  
0x61  
0x51  
0x41  
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
(1) Measured on Texas Instruments CC2541-Q1 EM reference design with TA = 25°C, VDD = 3 V and fc =  
2440 MHz. See SWRU191 for recommended register settings.  
(2) 1 Mbsp, GFSK, 250-kHz deviation, Bluetooth low energy mode, 1% BER  
20  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
5 Detailed Description  
5.1 Functional Block Diagram  
A block diagram of the CC2541-Q1 is shown in Figure 5-1. The modules can be roughly divided into one  
of three categories: CPU-related modules; modules related to power, test, and clock distribution; and  
radio-related modules. In the following subsections, a short description of each module is given.  
VDD (2 V–3.6 V)  
WATCHDOG  
TIMER  
ON-CHIP VOLTAGE  
REGULATOR  
RESET_N  
RESET  
DCOUPL  
XOSC_Q2  
XOSC_Q1  
32-MHz  
POWER-ON RESET  
BROWN OUT  
CRYSTAL OSC  
CLOCK MUX  
and  
CALIBRATION  
P2_4  
P2_3  
P2_2  
P2_1  
P2_0  
32.768-kHz  
SLEEP TIMER  
CRYSTAL OSC  
HIGH-  
DEBUG  
INTERFACE  
32-kHz  
SPEED  
RC-OSC  
POWER MANAGEMENT CONTROLLER  
RC-OSC  
SRAM  
RAM  
PDATA  
XRAM  
IRAM  
P1_7  
P1_6  
P1_5  
P1_4  
P1_3  
P1_2  
P1_1  
P1_0  
8051 CPU  
CORE  
MEMORY  
ARBITRATOR  
FLASH  
FLASH  
SFR  
DMA  
UNIFIED  
IRQ CTRL  
FLASH CTRL  
1 KB SRAM  
P0_7  
P0_6  
P0_5  
P0_4  
P0_3  
P0_2  
P0_1  
P0_0  
ANALOG COMPARATOR  
FIFOCTRL  
RADIO REGISTERS  
AES  
ENCRYPTION  
AND  
DECRYPTION  
DS  
Link Layer Engine  
ADC  
AUDIO/DC  
DEMODULATOR  
MODULATOR  
SDA  
SCL  
I2C  
USART 0  
RECEIVE  
TRANSMIT  
USART 1  
TIMER 1 (16-Bit)  
TIMER 2  
(BLE LL TIMER)  
RF_P  
RF_N  
TIMER 3 (8-Bit)  
TIMER 4 (8-Bit)  
DIGITAL  
ANALOG  
MIXED  
B0301-13  
Figure 5-1. CC2541-Q1 Block Diagram  
5.2 Block Descriptions  
A block diagram of the CC2541-Q1 is shown in Figure 5-1. The modules can be roughly divided into one  
of three categories: CPU-related modules; modules related to power, test, and clock distribution; and  
radio-related modules. In the following subsections, a short description of each module is given.  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
21  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
 
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
5.2.1 CPU and Memory  
The 8051 CPU core is a single-cycle 8051-compatible core. It has three different memory access busses  
(SFR, DATA, and CODE/XDATA), a debug interface, and an 18-input extended interrupt unit.  
The memory arbiter is at the heart of the system, as it connects the CPU and DMA controller with the  
physical memories and all peripherals through the SFR bus. The memory arbiter has four memory-access  
points, access of which can map to one of three physical memories: an SRAM, flash memory, and  
XREG/SFR registers. It is responsible for performing arbitration and sequencing between simultaneous  
memory accesses to the same physical memory.  
The SFR bus is drawn conceptually in Figure 5-1 as a common bus that connects all hardware  
peripherals to the memory arbiter. The SFR bus in the block diagram also provides access to the radio  
registers in the radio register bank, even though these are indeed mapped into XDATA memory space.  
The 8-KB SRAM maps to the DATA memory space and to parts of the XDATA memory spaces. The  
SRAM is an ultralow-power SRAM that retains its contents even when the digital part is powered off  
(power mode 2 and mode 3).  
The 256 KB flash block provides in-circuit programmable non-volatile program memory for the device,  
and maps into the CODE and XDATA memory spaces.  
5.2.2 Peripherals  
Writing to the flash block is performed through a flash controller that allows page-wise erasure and 4-  
bytewise programming. See User Guide for details on the flash controller.  
A versatile five-channel DMA controller is available in the system, accesses memory using the XDATA  
memory space, and thus has access to all physical memories. Each channel (trigger, priority, transfer  
mode, addressing mode, source and destination pointers, and transfer count) is configured with DMA  
descriptors that can be located anywhere in memory. Many of the hardware peripherals (AES core, flash  
controller, USARTs, timers, ADC interface, etc.) can be used with the DMA controller for efficient  
operation by performing data transfers between a single SFR or XREG address and flash/SRAM.  
Each CC2541-Q1 contains a unique 48-bit IEEE address that can be used as the public device address  
for a Bluetooth device. Designers are free to use this address, or provide their own, as described in the  
Bluetooth specfication.  
The interrupt controller services a total of 18 interrupt sources, divided into six interrupt groups, each of  
which is associated with one of four interrupt priorities. I/O and sleep timer interrupt requests are serviced  
even if the device is in a sleep mode (power modes 1 and 2) by bringing the CC2541-Q1 back to the  
active mode.  
The debug interface implements a proprietary two-wire serial interface that is used for in-circuit  
debugging. Through this debug interface, it is possible to erase or program the entire flash memory,  
control which oscillators are enabled, stop and start execution of the user program, execute instructions  
on the 8051 core, set code breakpoints, and single-step through instructions in the code. Using these  
techniques, it is possible to perform in-circuit debugging and external flash programming elegantly.  
The I/O controller is responsible for all general-purpose I/O pins. The CPU can configure whether  
peripheral modules control certain pins or whether they are under software control, and if so, whether  
each pin is configured as an input or output and if a pullup or pulldown resistor in the pad is connected.  
Each peripheral that connects to the I/O pins can choose between two different I/O pin locations to ensure  
flexibility in various applications.  
The sleep timer is an ultralow-power timer that can either use an external 32.768-kHz crystal oscillator or  
an internal 32.753-kHz RC oscillator. The sleep timer runs continuously in all operating modes except  
power mode 3. Typical applications of this timer are as a real-time counter or as a wake-up timer to get  
out of power mode 1 or mode 2.  
22  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
A built-in watchdog timer allows the CC2541-Q1 to reset itself if the firmware hangs. When enabled by  
software, the watchdog timer must be cleared periodically; otherwise, it resets the device when it times  
out.  
Timer 1 is a 16-bit timer with timer/counter/PWM functionality. It has a programmable prescaler, a 16-bit  
period value, and five individually programmable counter/capture channels, each with a 16-bit compare  
value. Each of the counter/capture channels can be used as a PWM output or to capture the timing of  
edges on input signals. It can also be configured in IR generation mode, where it counts timer 3 periods  
and the output is ANDed with the output of timer 3 to generate modulated consumer IR signals with  
minimal CPU interaction.  
Timer 2 is a 40-bit timer. It has a 16-bit counter with a configurable timer period and a 24-bit overflow  
counter that can be used to keep track of the number of periods that have transpired. A 40-bit capture  
register is also used to record the exact time at which a start-of-frame delimiter is received/transmitted or  
the exact time at which transmission ends. There are two 16-bit output compare registers and two 24-bit  
overflow compare registers that can be used to give exact timing for start of RX or TX to the radio or  
general interrupts.  
Timer 3 and timer 4 are 8-bit timers with timer/counter/PWM functionality. They have a programmable  
prescaler, an 8-bit period value, and one programmable counter channel with an 8-bit compare value.  
Each of the counter channels can be used as PWM output.  
USART 0 and USART 1 are each configurable as either an SPI master/slave or a UART. They provide  
double buffering on both RX and TX and hardware flow control and are thus well suited to high-throughput  
full-duplex applications. Each USART has its own high-precision baud-rate generator, thus leaving the  
ordinary timers free for other uses. When configured as SPI slaves, the USARTs sample the input signal  
using SCK directly instead of using some oversampling scheme, and are thus well-suited for high data  
rates.  
The AES encryption/decryption core allows the user to encrypt and decrypt data using the AES  
algorithm with 128-bit keys. The AES core also supports ECB, CBC, CFB, OFB, CTR, and CBC-MAC, as  
well as hardware support for CCM.  
The ADC supports 7 to 12 bits of resolution with a corresponding range of bandwidths from 30-kHz to 4-  
kHz, respectively. DC and audio conversions with up to eight input channels (I/O controller pins) are  
possible. The inputs can be selected as single-ended or differential. The reference voltage can be internal,  
AVDD, or a single-ended or differential external signal. The ADC also has a temperature-sensor input  
channel. The ADC can automate the process of periodic sampling or conversion over a sequence of  
channels.  
The I2C module provides a digital peripheral connection with two pins and supports both master and slave  
operation. I2C support is compliant with the NXP I2C specification version 2.1 and supports standard mode  
(up to 100 kbps) and fast mode (up to 400 kbps). In addition, 7-bit device addressing modes are  
supported, as well as master and slave modes.  
The ultralow-power analog comparator enables applications to wake up from PM2 or PM3 based on an  
analog signal. Both inputs are brought out to pins; the reference voltage must be provided externally. The  
comparator output is connected to the I/O controller interrupt detector and can be treated by the MCU as a  
regular I/O pin interrupt.  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
23  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
6 Application Information  
Few external components are required for the operation of the CC2541-Q1. A typical application circuit is  
shown in Figure 6-1.  
2 V±3.6 V  
Power Supply  
Optional 32-kHz Crystal(1)  
C331  
C401  
C321  
R301  
1 GND  
RBIAS 30  
AVDD4 29  
AVDD1 28  
AVDD2 27  
RF_N 26  
Antenna  
(50 )  
2 SCL  
L251  
C251  
C252  
L261  
3 SDA  
4 GND  
5 P1_5  
6 P1_4  
7 P1_3  
8 P1_2  
9 P1_1  
10 DVDD2  
L253  
L252  
CC2541Q1  
C261  
RF_P 25  
DIE ATTACH PAD:  
AVDD3 24  
XOSC_Q2 23  
XOSC_Q1 22  
AVDD5 21  
C262  
C253  
XTAL1  
C221  
C231  
(1) 32-kHz crystal is mandatory when running the BLE protocol stack in low-power modes, except if the link layer is in  
the standby state (Vol. 6 Part B Section 1.1 in [1]).  
NOTE: Different antenna alternatives will be provided as reference designs.  
Power supply decoupling capacitors are not shown. Digital I/O not connected  
Figure 6-1. CC2541-Q1 Application Circuit  
Table 6-1. Overview of External Components (Excluding Supply Decoupling Capacitors)  
Component  
C401  
Description  
Value  
1 µF  
Decoupling capacitor for the internal 1.8-V digital voltage regulator  
Precision resistor ±1%, used for internal biasing  
R301  
56 kΩ  
6.1 Input/Output Matching  
When using an unbalanced antenna such as a monopole, a balun should be used to optimize  
performance. The balun can be implemented using low-cost discrete inductors and capacitors. See  
reference design, CC2541-Q1EM, for recommended balun.  
6.2 Crystal  
24  
Application Information  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2541-Q1  
 
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
An external 32-MHz crystal, XTAL1, with two loading capacitors (C221 and C231) is used for the 32-MHz  
crystal oscillator. See Section 4.9 for details. The load capacitance seen by the 32-MHz crystal is given  
by:  
1
CL =  
+ Cparasitic  
1
1
+
C221 C231  
(1)  
XTAL2 is an optional 32.768-kHz crystal, with two loading capacitors (C321 and C331) used for the  
32.768-kHz crystal oscillator. The 32.768-kHz crystal oscillator is used in applications where both very low  
sleep-current consumption and accurate wake-up times are needed. The load capacitance seen by the  
32.768-kHz crystal is given by:  
1
CL =  
+ Cparasitic  
1
1
+
C321 C331  
(2)  
A series resistor may be used to comply with the ESR requirement.  
6.3 On-Chip 1.8-V Voltage Regulator Decoupling  
The 1.8-V on-chip voltage regulator supplies the 1.8-V digital logic. This regulator requires a decoupling  
capacitor (C471) for stable operation.  
6.4 Power-Supply Decoupling and Filtering  
Proper power-supply decoupling must be used for optimum performance. The placement and size of the  
decoupling capacitors and the power supply filtering are very important to achieve the best performance in  
an application. TI provides a compact reference design that should be followed very closely.  
版权 © 2014, Texas Instruments Incorporated  
Application Information  
25  
提交文档反馈意见  
产品主页链接: CC2541-Q1  
CC2541-Q1  
ZHCSCU4 JUNE 2014  
www.ti.com.cn  
7 器件和文档支持  
7.1 文档支持  
7.1.1 相关文档ꢀ  
1. Bluetooth® Core 技术规范文档,版本 4.0  
http://www.bluetooth.com/SiteCollectionDocuments/Core_V40.zip  
2. 适用于 2.4GHz IEEE 802.15.4 ZigBee® 应用的 CC253x 片上系统解决方案/适用于 2.4GHz 低功耗蓝  
应用的 CC2541-Q1 片上系统解决方案(文献编号 SWRU191)  
3. CC254x 使用 TPS62730 节省电流(文献编号 SWRA365)。  
7.1.1.1 其他信息  
德州仪器 (TI) 为工业和消费类应用中所使用的专有应用和标准无线应用提供各种经济实用的低功耗射频解决  
方案。 其中包括适用于 1GHz 以下频段和 2.4GHz 频段的射频收发器、射频发送器、射频前端和片上系统  
以及各种软件解决方案。  
此外,德州仪器 (TI) 还提供广泛的相关支持,例如开发工具、技术文档、参考设计、应用专业技术、客户支  
持、第三方服务以及大学计划。  
低功耗射频 E2E 在线社区设有技术支持论坛并提供视频和博客,您有机会在此与全球同领域工程师交流互  
动。  
凭借丰富的供选产品解决方案、可实现的最终应用以及广泛的技术支持,德州仪器 (TI) 能够为您提供最全面  
的低功耗射频产品组合。 专业打造射频技术!  
有关低功耗射频的详细信息,请参见7.1.1.27.1.1.3 7.1.1.4。  
7.1.1.2 德州仪器 (TI) 低功耗射频网站  
论坛、视频和博客  
射频设计帮助  
E2E 交流互动  
访问 www.ti.com/lprf-forum 立即体验。  
7.1.1.3 德州仪器 (TI) 低功耗射频开发者网络  
德州仪器 (TI) 建立了一个大型低功耗射频开发合作伙伴网络,帮助客户加快应用开发。 此网络中包括推荐  
的公司、射频顾问和独立设计工作室,他们可提供一系列硬件模块产品和设计服务,其中包括:  
射频电路、低功耗射频和 ZigBee® 设计服务  
低功耗射频和 ZigBee 模块解决方案以及开发工具  
射频认证服务和射频电路制造  
需要有关模块、工程服务或开发工具的帮助?  
请搜索低功耗射频开发者网络工具查找适合的合作伙伴。  
www.ti.com/lprfnetwork  
26  
器件和文档支持  
版权 © 2014, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC2541-Q1  
 
 
CC2541-Q1  
www.ti.com.cn  
ZHCSCU4 JUNE 2014  
7.1.1.4 低功耗射频电子新闻简报  
通过低功耗射频电子新闻简报,您能够了解到最新的产品、新闻稿、开发者相关新闻以及关于德州仪器 (TI)  
低功耗射频产品其它新闻和活动。 低功耗射频电子新闻简报文章包含可获取更多在线信息的链接。  
访问  
www.ti.com/lprfnewsletter 立即注册  
7.2 商标  
SimpleLink is a trademark of Texas Instruments.  
蓝牙 is a registered trademark of Bluetooth SIG, Inc..  
ZigBee is a registered trademark of ZigBee Alliance.  
All other trademarks are the property of their respective owners.  
7.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
7.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
8 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知  
且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
机械封装和可订购信息  
27  
提交文档反馈意见  
产品主页链接: CC2541-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC2541F256TRHARQ1  
CC2541F256TRHATQ1  
ACTIVE  
VQFN  
VQFN  
RHA  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
CC2541Q1  
F256  
ACTIVE  
RHA  
NIPDAU  
CC2541Q1  
F256  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040H  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
0.5  
0.3  
A
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
PIN 1 INDEX AREA  
6.1  
5.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
2X 4.5  
EXPOSED  
THERMAL PAD  
11  
20  
36X 0.5  
10  
21  
SEE SIDE WALL  
DETAIL  
2X  
41  
SYMM  
4.5  
4.5 0.1  
SEE TERMINAL  
DETAIL  
1
30  
0.3  
0.2  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
SYMM  
0.5  
0.3  
40X  
4219055/B 08/22/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.5)  
SYMM  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
4X  
(1.27)  
(
0.2) TYP  
VIA  
(0.73)  
(5.8)  
TYP  
4X  
41  
SYMM  
(1.46)  
36X (0.5)  
10  
21  
(R0.05)  
TYP  
11  
(0.73) TYP  
4X (1.46)  
20  
4X (1.27)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219055/B 08/22/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.46) TYP  
9X ( 1.26)  
(R0.05) TYP  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
41  
(1.46)  
TYP  
SYMM  
(5.8)  
36X (0.5)  
10  
21  
METAL  
TYP  
11  
20  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
70% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
4219055/B 08/22/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

CC2541EMK

Bluetooth® Low Energy CC2540 Development Kit
TI

CC2541F128RHAR

2.4-GHz Bluetooth™ low energy and Proprietary System-on-Chip
TI

CC2541F128RHAT

2.4-GHz Bluetooth low energy and Proprietary System-on-Chip
TI

CC2541F256RHAR

2.4-GHz Bluetooth™ low energy and Proprietary System-on-Chip
TI

CC2541F256RHAT

2.4-GHz Bluetooth low energy and Proprietary System-on-Chip
TI

CC2541F256TRHARQ1

符合汽车标准的 SimpleLink 低功耗 Bluetooth® 无线 MCU | RHA | 40 | -40 to 105
TI

CC2541F256TRHATQ1

符合汽车标准的 SimpleLink 低功耗 Bluetooth® 无线 MCU | RHA | 40 | -40 to 105
TI

CC2541_12

2.4-GHz Bluetooth? low energy and Proprietary System-on-Chip
TI

CC2543

System-on-Chip for 2.4-GHz RF Applications
TI

CC2543RHBR

2.4GHz 射频超值系列 SoC,具有 32kB 闪存、16 GPIO、I2C、SPI 和 UART | RHB | 32 | -40 to 85
TI

CC2543RHBT

2.4GHz 射频超值系列 SoC,具有 32kB 闪存、16 GPIO、I2C、SPI 和 UART | RHB | 32 | -40 to 85
TI

CC2543RHMR

IC SPECIALTY MICROPROCESSOR CIRCUIT, Microprocessor IC:Other
TI