CDCE813QPWRQ1 [TI]

具有 2.5V 和 3.3V 输出的可编程 1-PLL 时钟合成器和抖动消除器 | PW | 14 | -40 to 105;
CDCE813QPWRQ1
型号: CDCE813QPWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 2.5V 和 3.3V 输出的可编程 1-PLL 时钟合成器和抖动消除器 | PW | 14 | -40 to 105

时钟
文件: 总34页 (文件大小:1614K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
具有 2.5V 3.3V 输出的 CDCE813-Q1 可编程 1-PLL 时钟合成器  
和抖动消除器  
1 特性  
2 应用  
1
符合汽车 应用要求  
仪表组  
具有符合 AEC-Q100 标准的下列特性:  
音响主机  
导航系统  
器件温度等级 2–40°C 105°C 的环境工作  
温度范围  
高级驾驶辅助系统 (ADAS)  
器件 HBM ESD 分类等级 H2  
器件 CDM ESD 分类等级 C6  
3 说明  
CDCE813-Q1 器件是一款基于模块化锁相环 (PLL) 的  
低成本、高性能、可编程时钟合成器。它们最多可从单  
个输入频率中生成 3 个输出时钟。借助集成的可配置  
PLL,可在系统内针对任何时钟频率(高达 230MHz)  
对每个输出进行编程。  
系统内可编程和 EEPROM  
串行可编程易失性寄存器  
用于存储客户设置的非易失性 EEPROM  
灵活的输入计时理念  
外部晶体:8MHz 32MHz  
高达 160MHz 的单端 LVCMOS  
CDCE813-Q1 具有独立的输出电源引脚 VDDOUT,可提  
2.5V 3.3V 电压。  
高达 230MHz 的自由可选输出频率  
低噪声 PLL 内核  
此输入接受外部晶振或 LVCMOS 时钟信号。凭借可选  
片载 VCXO,可将输出频率与外部控制信号同步。  
已集成的 PLL 环路滤波器组件  
低电平周期抖动(典型值 50ps)  
PLL 支持 SSC(扩频时钟),从而改善抗电磁干扰  
(EMI) 性能。  
1.8V 器件电源(内核电压)  
独立的输出电源引脚:3.3V 2.5V  
灵活的时钟驱动器  
器件信息(1)  
三个用户可定义的控制输入 [S0S1S2],例  
SSC 选择、频率切换、输出使能或断电  
器件型号  
封装  
封装尺寸(标称值)  
CDCE813-Q1  
TSSOP (14)  
5.00mm × 4.40mm  
生成适用于视频、音频、USBIEEE1394 和  
RFIDBluetooth®WLAN、以太网和 GPS 的  
高精度时钟  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
生成可与 TI-DaVinci™OMAP™DSP 配合  
使用的共同时钟频率  
器件比较  
可订购产品  
CDCE813R02-Q1  
CDCE813-Q1  
S0 控制引脚默认功能  
Y1 输出使能(高电平有效)  
未使用(1)  
可编程 SSC 调制  
启用 0-PPM 时钟生成功能  
采用 TSSOP 封装  
典型应用原理图  
适用于简易 PLL 设计和编程的开发和编程套件(TI  
ClockPro™编程软件)  
PCLK  
CDCE813-Q1  
I2C  
SoC  
To Display  
Image Data  
Serializer  
Copyright © 2017, Texas Instruments Incorporated  
(1) 必须由 I2C 控制启用输出。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS705  
 
 
 
 
 
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
目录  
9.3 Feature Description................................................. 12  
9.4 Device Functional Modes........................................ 15  
9.5 Programming........................................................... 15  
9.6 Register Maps......................................................... 17  
10 Application and Implementation........................ 21  
10.1 Application Information.......................................... 21  
10.2 Typical Application ................................................ 21  
11 Power Supply Recommendations ..................... 25  
12 Layout................................................................... 26  
12.1 Layout Guidelines ................................................. 26  
12.2 Layout Example .................................................... 26  
13 器件和文档支持 ..................................................... 27  
13.1 文档支持................................................................ 27  
13.2 接收文档更新通知 ................................................. 27  
13.3 社区资源................................................................ 27  
13.4 ....................................................................... 27  
13.5 静电放电警告......................................................... 27  
13.6 Glossary................................................................ 27  
14 机械、封装和可订购信息....................................... 27  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics .......................................... 6  
7.6 Timing Requirements................................................ 8  
7.7 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 11  
9.1 Overview ................................................................. 11  
9.2 Functional Block Diagram ....................................... 11  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (May 2018) to Revision C  
Page  
向数据表中添加了 CDCE813R02-Q1 可订购信息 .................................................................................................................. 1  
添加了器件对比 .................................................................................................................................................................. 1  
Added default configuration information to the S0 pin description......................................................................................... 4  
Removed 'CDCE813-Q1' text from the VDDOUT pin description. The information applies to both CDCE813-Q1 and  
CDCE813R02-Q1 orderables................................................................................................................................................. 4  
Added S0 pin information in the Overview section............................................................................................................... 11  
Added S0 pin information to the Default Device Configuration section................................................................................ 13  
Added CDCE813R02-Q1 Default Configuration graphic...................................................................................................... 14  
Changed S0 pin information in the Factory Default Setting for Control Terminal Register tablenote.................................. 14  
Added Y1_ST1 default settings for the CDCE813-Q1 and CDCE813R02-Q1 orderables .................................................. 18  
Added Y1_1 default settings for the CDCE813-Q1 and CDCE813R02-Q1 orderables....................................................... 18  
Changes from Revision A (May 2018) to Revision B  
Page  
Changed the text in the Default Device Configuration section from: However the outputs are disabled by default and  
need to be turned on through I2C or with the S0 pin to: However the outputs are disabled by default and need to be  
turned on through I2C........................................................................................................................................................... 13  
Changed the Factory Default Setting table and Default Configuration graphic text to show that the Y1 outputs as 3-  
state when S0 = 1 or S0 = 0................................................................................................................................................. 14  
Changed the default value of the SLAVE_ADR 1:0 bits from: 00b to: 01b in the Generic Configuration Register table .... 18  
Changed the default value of the Y1_ST0 3:2 bits from: 11b to: 01b in the Generic Configuration Register table............. 18  
Changed the default value of the BCOUNT 7:1 bits from: 20h to: 00h in the Generic Configuration Register table .......... 18  
Changed the default value of the Y2Y3_1 bit from: 1b to: 0b in the PLL1 Configuration Register table............................. 19  
2
版权 © 2017–2019, Texas Instruments Incorporated  
 
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
Changes from Original (January 2017) to Revision A  
Page  
Changed the Factory Default Setting table and Default Configuration graphic text to show that S0 = 1 means Y1  
outputs 3-state and S0 = 0 means Y1 is enabled ................................................................................................................ 14  
版权 © 2017–2019, Texas Instruments Incorporated  
3
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
5 说明 (续)  
为了轻松实现器件自定义来满足应用需要,该器件支持使用非易失性 EEPROM 进行编程。所有器件设置均可通过  
I2C 总线(一种两线制串行接口)进行编程。  
CDCE813-Q1 1.8V 内核环境下运行,无需额外使用独立的 XTAL 振荡器,可减少组件数量并缩减电路板尺寸。  
它的运行温度范围为 –40°C 105°C。  
6 Pin Configuration and Functions  
PW Package  
14-Pin TSSOP  
Top View  
Xin/CLK  
S0  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Xout  
SDA/S1  
SCL/S2  
Y1  
VDD  
Vctr  
GND  
GND  
Y2  
VDDOUT  
VDDOUT  
8
Y3  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
GND  
5, 10  
G
I
Ground  
SCL: serial clock input LVCMOS (default configuration), 500-kΩ internal pullup; or  
S2: user-programmable control input, LVCMOS input, 500-kΩ internal pullup  
SCL/S2  
SDA/S1  
12  
13  
SDA: bidirectional serial data input or output (default configuration), LVCMOS internal pullup; or  
S1: user-programmable control input, LVCMOS input, 500-kΩ internal pullup  
I/O or I  
User-programmable control input S0, LVCMOS input, 500-kΩ internal pullup  
CDCE813-Q1 default:  
S0 = 1: Y1 is 3-state,  
S0 = 0: Y1 is 3-state  
S0  
2
I
CDCE813R02-Q1 default:  
S0 = 1: Y1 is enabled,  
S0 = 0: Y1 is 3-state  
Vctr  
4
3
I
VCXO control voltage (leave open or pull up when not used)  
1.8-V power supply for the device  
VDD  
P
P
I
VDDOUT  
Xin/CLK  
Xout  
Y1  
6, 7  
1
3.3-V or 2.5-V supply for all outputs  
Crystal oscillator input or LVCMOS clock input (selectable through the I2C bus)  
Crystal oscillator output (leave open or pull up when not used)  
LVCMOS output  
14  
11  
9
O
O
O
O
Y2  
LVCMOS output  
Y3  
8
LVCMOS output  
(1) G = Ground, I = Input, O = Output, P = Power  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
2.5  
UNIT  
V
VDD  
VDDOUT  
VI  
Supply voltage  
Output clocks supply voltage  
Input voltage(2)(3)  
Output voltage(2)  
CDCE813-Q1  
3.6 + 0.5  
VDD + 0.5  
VDDOUT + 0.5  
20  
V
V
VO  
V
II  
Input current (VI < 0, VI > VDD  
)
mA  
mA  
IO  
Continuous output current  
50  
TJ  
Maximum junction temperature  
Storage temperature  
125  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
(3) SDA and SCL can go up to 3.6 V as stated in the Recommended Operating Conditions table.  
7.2 ESD Ratings  
VALUE  
±2000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
1.7  
NOM  
MAX  
1.9  
UNIT  
VDD  
VO  
Device supply voltage  
1.8  
V
V
V
V
V
Output Yx supply voltage, VDDOUT  
Low-level input voltage, LVCMOS  
High-level input voltage, LVCMOS  
Input voltage threshold, LVCMOS  
Input voltage range, S0  
CDCE813-Q1  
2.3  
3.6  
VIL  
0.3 × VDD  
VIH  
0.7 × VDD  
VI(thresh)  
0.5 × VDD  
0
0
0
1.9  
3.6  
1.9  
±12  
±10  
15  
VI(S)  
V
V
Input voltage range S1, S2, SDA, SCL (VI(thresh) = 0.5 VDD  
)
VI(CLK)  
IOH, IOL  
Input voltage range CLK  
VDDOUT = 3.3 V  
VDDOUT = 2.5 V  
Output current  
mA  
CL  
TA  
Output load, LVCMOS  
pF  
°C  
Operating ambient temperature  
–40  
105  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
MIN  
NOM  
27  
MAX  
UNIT  
CRYSTAL AND VCXO SPECIFICATIONS(1)  
fXtal  
Crystal input frequency range (fundamental mode)  
Effective series resistance  
Pulling range (0 V Vctr 1.8 V)(2)  
8
32  
MHz  
ESR  
fPR  
100  
±120  
0
±150  
ppm  
V
Vctr  
Frequency control voltage  
VDD  
220  
20  
C0 / C1  
CL  
Pullability ratio  
On-chip load capacitance at Xin and Xout  
0
pF  
(1) For more information about VCXO configuration, and crystal recommendation, see application report VCXO Application Guideline for  
CDCE(L)9xx Family (SCAA085).  
(2) Pulling range depends on crystal type, on-chip crystal load capacitance, and PCB stray capacitance; pulling range of minimum ±120  
ppm applies for crystal listed in the application report VCXO Application Guideline for CDCE(L)9xx Family (SCAA085).  
7.4 Thermal Information  
CDCE813-Q1  
THERMAL METRIC(1)(2)  
PW (TSSOP)  
14 PINS  
110.6  
35.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
53.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.1  
ψJB  
52.8  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
(2) The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-K board).  
7.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
OVERALL PARAMETER  
All outputs off,  
All PLLS on  
Per PLL  
11  
9
fCLK = 27 MHz,  
fVCO = 135 MHz,  
fOUT = 27 MHz  
IDD  
Supply current (see Figure 1)  
mA  
No load, all outputs on,  
fOUT = 27 MHz  
IDD(OUT)  
IDD(PD)  
V(PUC)  
Supply current (see Figure 2)  
VDDOUT = 3.3 V  
1.3  
30  
mA  
Power-down current. Every circuit  
powered down except I2C  
fIN = 0 MHz, VDD = 1.9 V  
μA  
Supply voltage VDD threshold for  
power-up control circuit  
0.85  
70  
1.45  
V
fVCO  
fOUT  
VCO frequency range of PLL  
LVCMOS output frequency  
230 MHz  
230 MHz  
VDDOUT = 3.3 V  
(1) All typical values are at respective nominal VDD  
.
6
Copyright © 2017–2019, Texas Instruments Incorporated  
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
Electrical Characteristics (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
LVCMOS PARAMETER  
VIK  
II  
LVCMOS input voltage  
LVCMOS input current  
VDD = 1.7 V, II = –18 mA  
–1.2  
±5  
V
VI = 0 V or VDD, VDD = 1.9 V  
μA  
LVCMOS input current for S0, S1,  
and S2  
IIH  
IIL  
VI = VDD, VDD = 1.9 V  
VI = 0 V, VDD = 1.9 V  
5
μA  
μA  
LVCMOS input current for S0, S1,  
and S2  
–4  
Input capacitance at Xin/CLK  
Input capacitance at Xout  
VIClk = 0 V or VDD  
VIXout = 0 V or VDD  
VIS = 0 V or VDD  
6
2
3
CI  
pF  
V
Input capacitance at S0, S1, and S2  
CDCE813-Q1, LVCMOS PARAMETER FOR VDDOUT = 3.3-V MODE  
VDDOUT = 3 V, IOH = –0.1 mA  
2.9  
2.4  
2.2  
VOH  
LVCMOS high-level output voltage  
VDDOUT = 3 V, IOH = –8 mA  
VDDOUT = 3 V, IOH = –12 mA  
VDDOUT = 3 V, IOL = 0.1 mA  
VDDOUT = 3 V, IOL = 8 mA  
VDDOUT = 3 V, IOL = 12 mA  
PLL bypass  
0.1  
0.5  
0.8  
VOL  
LVCMOS low-level output voltage  
Propagation delay  
V
3.2  
tPLH, tPHL  
ns  
PLL enabled (fCLK = fVCO), 70 MHz fVCO  
85 MHz  
1.6  
4.3  
tr, tf  
Rise and fall time  
Cycle-to-cycle jitter(2)  
Peak-to-peak period jitter(2)  
Output skew (see Table 2)(3)  
VDDOUT = 3.3 V (20%–80%)  
1 PLL switching, Y2-to-Y3, 10,000 cycles  
1 PLL switching, Y2-to-Y3  
0.6  
50  
60  
ns  
ps  
ps  
ps  
tjit(cc)  
tjit(per)  
tsk(o)  
odc  
200  
200  
440  
55%  
fOUT = 50 MHz, Y1-to-Y3  
(4)  
Output duty cycle  
fVCO = 100 MHz, Pdiv = 1  
45%  
CDCE813-Q1, LVCMOS PARAMETER FOR VDDOUT = 2.5-V MODE  
VDDOUT = 2.3 V, IOH = –0.1 mA  
2.2  
1.7  
1.6  
VOH  
LVCMOS high-level output voltage  
VDDOUT = 2.3 V, IOH = –6 mA  
VDDOUT = 2.3 V, IOH = –10 mA  
VDDOUT = 2.3 V, IOL = 0.1 mA  
VDDOUT = 2.3 V, IOL = 6 mA  
VDDOUT = 2.3 V, IOL = 10 mA  
PLL bypass  
V
V
0.1  
0.5  
0.7  
VOL  
LVCMOS low-level output voltage  
tPLH, tPHL  
tr, tf  
Propagation delay  
3.6  
0.8  
50  
ns  
ns  
ps  
ps  
ps  
Rise and fall time  
VDDOUT = 2.5 V (20%–80%)  
1 PLL switching, Y2-to-Y3, 10,000 cycles  
1 PLL switching, Y2-to-Y3  
fOUT = 50 MHz, Y1-to-Y3  
tjit(cc)  
tjit(per)  
tsk(o)  
Cycle-to-cycle jitter(2)  
Peak-to-peak period jitter(2)  
Output skew (see Table 2)(3)  
Output duty cycle(4)  
200  
200  
440  
55%  
60  
odc  
fVCO = 100 MHz, Pdiv = 1  
45%  
(2) Jitter depends on configuration. Jitter data is for input frequency = 27 MHz, fVCO = 108 MHz, fOUT = 27 MHz (measured at Y2).  
(3) The tsk(o) specification is only valid for equal loading of each bank of outputs, and the outputs are generated from the same divider.  
(4) odc depends on the output rise and fall time (tr and tf); data sampled on the rising edge (tr)  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
TEST CONDITIONS  
MIN TYP(1)  
I2C PARAMETER  
VIK  
IIH  
SCL and SDA input clamp voltage  
SCL and SDA input current  
I2C input high voltage(5)  
VDD = 1.7 V, II = –18 mA  
VI = VDD, VDD = 1.9 V  
–1.2  
±10  
V
μA  
V
VIH  
0.7 × VDD  
0.3 ×  
VDD  
VIL  
I2C input low voltage(5)  
V
0.2 ×  
VDD  
VOL  
CI  
SDA low-level output voltage  
SCL-SDA input capacitance  
IOL = 3 mA, VDD = 1.7 V  
VI = 0 V or VDD  
V
3
10  
pF  
EEPROM SPECIFICATION  
EEcyc  
EEret  
Programming cycles of EEPROM  
Data retention  
100  
10  
1000  
cycles  
years  
(5) SDA and SCL pins are 3.3-V tolerant.  
7.6 Timing Requirements  
over recommended ranges of supply voltage, load, and operating free-air temperature  
MIN  
NOM  
MAX  
UNIT  
CLK_IN  
PLL bypass mode  
0
8
160  
160  
3
fCLK  
LVCMOS clock input frequency  
MHz  
ns  
PLL mode  
tr and tf  
Rise and fall time, CLK signal (20% to 80%)  
Duty cycle of CLK at VDD / 2  
40%  
60%  
I2C (SEE Figure 13)  
Standard mode  
Fast mode  
0
0
100  
400  
fSCL  
SCL clock frequency  
kHz  
μs  
Standard mode  
Fast mode  
4.7  
0.6  
4
tsu(START) START setup time (SCL high before SDA low)  
th(START) START hold time (SCL low after SDA low)  
Standard mode  
Fast mode  
μs  
0.6  
4.7  
1.3  
4
Standard mode  
Fast mode  
tw(SCLL)  
tw(SCLH)  
th(SDA)  
SCL low-pulse duration  
μs  
Standard mode  
Fast mode  
SCL high-pulse duration  
SDA hold time (SDA valid after SCL low)  
SDA setup time  
μs  
0.6  
0
Standard mode  
Fast mode  
3.45  
0.9  
μs  
0
Standard mode  
Fast mode  
250  
100  
tsu(SDA)  
ns  
Standard mode  
Fast mode  
1000  
300  
tr  
SCL-SDA input rise time  
SCL-SDA input fall time  
STOP setup time  
ns  
ns  
μs  
tf  
300  
Standard mode  
Fast mode  
4
0.6  
4.7  
1.3  
tsu(STOP)  
Standard mode  
Fast mode  
tBUS  
Bus free time between a STOP and START condition  
μs  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
 
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
7.7 Typical Characteristics  
30  
16  
14  
12  
10  
8
V
= 1.8 V  
V
V
= 1.8 V,  
= 3.3 V,  
DD  
DD  
DDOUT  
25  
20  
15  
10  
5
no load  
3 Outputs on  
1 PLL on  
1 Output on  
6
4
all PLL off  
2
0
all Outputs off  
0
10 30 50 70 90 110 130 150 170 190 210 230  
- Output Frequency - MHz  
10  
60  
f
110  
160  
210  
f
- Frequency - MHz  
OUT  
VCO  
Figure 2. CDCE813-Q1 Output Current  
vs Output Frequency  
Figure 1. CDCE813-Q1 Supply Current  
vs PLL Frequency  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
CDCE813-Q1  
1 kW  
1 kW  
LVCMOS  
10 pF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 3. Test Load  
CDCE813-Q1  
LVCMOS  
LVCMOS  
series  
driver  
impedance  
~ 50 W  
line impedance  
termination  
Zo = 50 W  
(optional)  
Copyright © 2017, Texas Instruments Incorporated  
Figure 4. Test Load for 50-Board Environment  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
9 Detailed Description  
9.1 Overview  
The CDCExxx-Q1 devices are modular PLL-based, low-cost, high-performance, programmable clock  
synthesizers, multipliers, and dividers. They generate up to three output clocks from a single input frequency.  
Each output can be programmed in-system for any clock frequency up to 230 MHz, using the integrated  
configurable PLL.  
The CDCExxx-Q1 devices have separate output supply pins, VDDOUT, with output of 2.5 V to 3.3 V.  
The input accepts an external crystal or LVCMOS clock signal. If an external crystal is used, an on-chip load  
capacitor is adequate for most applications. The value of the load capacitor is programmable from 0 pF to 20 pF.  
Additionally, a selectable on-chip VCXO allows synchronization of the output frequency to an external control  
signal, that is, the PWM signal.  
The deep M / N divider ratio allows the generation of zero-ppm audio-video, networking (WLAN, Bluetooth,  
Ethernet, GPS) or interface (USB, IEEE1394, memory stick) clocks from, for example, a 27-MHz reference input  
frequency.  
The PLL supports spread-spectrum clocking (SSC). SSC can be center-spread or down-spread clocking, which  
is a common technique to reduce electromagnetic interference (EMI).  
Based on the PLL frequency and the divider settings, the internal loop filter components are automatically  
adjusted to achieve high stability and optimized jitter transfer characteristics.  
The device supports nonvolatile EEPROM programming for easy customization of the device to the application. It  
is preset to a factory default configuration (see Default Device Configuration). It can be reprogrammed to a  
different application configuration before PCB assembly, or reprogrammed by in-system programming. All device  
settings are programmable through the SDA-SCL bus, a 2-wire serial interface.  
Three programmable control inputs, S0, S1, and S2, can be used to select different frequencies, change SSC  
setting for lowering EMI, or control other features like outputs disable to low, outputs in Hi-Z state, power down,  
PLL bypass, and so forth). For CDCE813-Q1, the S0 pin is unused by default. For the CDCE813R02-Q1, the S0  
control input pin provides output enable (OE) control for output Y1 only.  
The CDCE813-Q1 core operates in a 1.8-V environment. It operates in a temperature range of –40°C to 105°C.  
9.2 Functional Block Diagram  
GND  
V
DD  
V
DDOUT  
Input Clock  
V
ctr  
LV  
Pdiv1  
10-Bit  
Y1  
CMOS  
Xin/CLK  
VCXO  
XO  
LV  
CMOS  
Pdiv2  
Y2  
Y3  
PLL 1  
LVCMOS  
7-Bit  
with SSC  
Xout  
LV  
Pdiv3  
7-Bit  
CMOS  
PLL Bypass  
EEPROM  
Programming  
and I2C  
Register  
S0  
S1/SDA  
S2/SCL  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Control Terminal Configuration  
The CDCE813-Q1 device has three user-definable control terminals (S0, S1, and S2), which allow external  
control of device settings. They can be programmed to any of the following functions:  
Spread-spectrum clocking selection spread type and spread amount selection  
Frequency selection switching between any of two user-defined frequencies  
Output state selection output configuration and power-down control  
The user can predefine up to eight different control settings. Table 1 and Table 2 explain these settings.  
Table 1. Control Terminal Definition  
EXTERNAL CONTROL  
PLL1 SETTING  
Y1 SETTING  
BITS  
PLL frequency  
selection  
Output Y2 and Y3  
selection  
Control function  
SSC selection  
Output Y1 and power-down selection  
(1)  
Table 2. PLL1 Setting  
SSCx [3 BITS]  
SSC SELECTION (CENTER AND DOWN)  
CENTER  
DOWN  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0% (off)  
±0.25%  
±0.5%  
0% (off)  
–0.25%  
–0.5%  
±0.75%  
±1.0%  
–0.75%  
–1.0%  
±1.25%  
±1.5%  
–1.25%  
–1.5%  
±2.0%  
–2.0%  
(1) Center and down-spread, Frequency0, Frequency1, State0, and State1 are user-definable in PLL1  
configuration register.  
(1)  
Table 3. PLL1 Setting, Frequency Selection  
FSx  
0
FUNCTION  
Frequency 0  
Frequency 1  
1
(1) Frequency0 and Frequency1 can be any frequency within the  
specified fVCO range.  
(1)  
Table 4. PLL1 Setting, Output Selection (Y2, Y3)  
Y2, Y3  
FUNCTION  
State 0  
0
1
State 1  
(1) State0 or State1 selection is valid for both outputs of the  
corresponding PLL module and can be power down, Hi-Z state, low,  
or active.  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
 
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
(1)  
Table 5. Y1 Setting  
Y1  
0
FUNCTION  
State 0  
State 1  
1
(1) State0 and State1 are user definable in the generic configuration  
register and can be power down, Hi-Z state, low, or active.  
The S1/SDA and S2/SCL pins of the CDCE813-Q1 device are dual-function pins. In the default configuration,  
they are defined as SDA and SCL for the serial programming interface. They can be programmed as control pins  
(S1 and S2) by setting the appropriate bits in the EEPROM.  
NOTE  
Changes to the control register (Bit [6] of byte 02h) have no effect until they are written  
into the EEPROM.  
Once they are set as control pins, the serial programming interface is no longer available. However, if VDDOUT is  
forced to GND, the two control pins, S1 and S2, temporally act as serial programming pins (SDA and SCL).  
S0 is not a multi-use pin; it is a control pin only.  
9.3.2 Default Device Configuration  
The internal EEPROM of the CDCE813-Q1 device is pre-configured with a factory default configuration as shown  
in Figure 5 (the input frequency is routed through PLL1 to the outputs as a default). This mode can be used to  
clean the jitter of an incoming clock signal. For the CDCE813-Q1, the outputs are disabled by default and must  
be turned on through I2C. For the CDCE813R02-Q1, output Y1 is enabled through the S0 control pin (active  
high), while outputs Y2 and Y3 are either in a tri-state condition or disabled by the register default. Y1 is enabled  
when S0 is floating because S0 has an internal pullup.  
The default setting appears either after power is supplied or after a power-down – power-up sequence until it is  
reprogrammed by the user to a different application configuration. A new register setting is programmed through  
the serial I2C interface.  
VDDOUT  
VDD  
GND  
Vctr  
LV  
CMOS  
Pdiv1 = 1  
Y1 = 3-state  
1.8V LVCMOS  
CLK input  
LVCMOS  
LV  
CMOS  
Pdiv2 = 0  
PLL 1 enabled  
FIN = FVCO  
Y2 = 3-state  
Y3 = 3-state  
(disabled)  
LV  
CMOS  
Pdiv3 = 0  
(disabled)  
PLL Bypass  
^1_ = outputs 3-State  
^0_ = outputs 3-State  
S0  
Programming  
and  
SDA/SCL Register  
SDA  
Programming Bus  
SCL  
Figure 5. CDCE813-Q1 Default Configuration  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
 
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
VDDOUT  
VDD  
GND  
Vctr  
LV  
CMOS  
Pdiv1 = 1  
Y1 = enable  
through S0 pin  
1.8V LVCMOS  
CLK input  
LVCMOS  
LV  
CMOS  
Pdiv2 = 0  
PLL 1 enabled  
FIN = FVCO  
Y2 = 3-state  
Y3 = 3-state  
(disabled)  
LV  
CMOS  
Pdiv3 = 0  
(disabled)  
PLL Bypass  
Programming  
^1_ = Y1 output enable  
^0_ = Y1 output 3-state  
S0  
and  
SDA  
SCL  
Programming Bus  
SDA/SCL Register  
Figure 6. CDCE813R02-Q1 Default Configuration  
Table 6 shows the factory default setting for the Control Terminal Register.  
NOTE  
Even though eight different register settings are possible, in the default configuration, only  
the first two settings (0 and 1) can be selected with S0, as S1 and S2 are configured as  
programming pins in default mode.  
(1)  
Table 6. Factory Default Setting for Control Terminal Register  
Y1  
PLL1 SETTINGS  
GPN  
EXTERNAL CONTROL PINS  
OUTPUT  
SELECTION  
FREQUENCY  
SELECTION  
SSC  
SELECTION  
OUTPUT  
SELECTION  
S2  
S1  
S0  
0
Y1  
FS1  
SSC1  
Off  
Y2Y3  
3-state  
3-state  
3-state  
3-state  
SCL (I2C)  
SCL (I2C)  
SCL (I2C)  
SCL (I2C)  
SDA (I2C)  
SDA (I2C)  
SDA (I2C)  
SDA (I2C)  
3-state  
3-state  
3-state  
Enabled  
fVCO1_0  
fVCO1_0  
fVCO1_0  
fVCO1_0  
CDCE813-Q1  
1
Off  
0
Off  
CDCE813R02-  
Q1  
1
Off  
(1) In default mode or when programmed respectively, S1 and S2 act as serial programming interface, I2C. They do not have any control-  
pin function but they are internally interpreted as if S1 = 0 and S2 = 0. For the CDCE813-Q1, S0 is an unused control pin by default. For  
the CDCE813R02-Q1, S0 provides output enable (OE) control output Y1 only.  
9.3.3 I2C Serial Interface  
The CDCE813-Q1 device operates as a slave device on the 2-wire serial I2C bus compatible with the popular  
SMBus or I2C specification. It operates in the standard-mode transfer (up to 100 kbps) and fast-mode transfer  
(up to 400 kbps) and supports 7-bit addressing.  
The S1/SDA and S2/SCL pins of the CDCE813-Q1 device are dual-function pins. In the default configuration,  
they are used as the I2C serial programming interface. They can be reprogrammed as general-purpose control  
pins, S1 and S2, by changing the corresponding EEPROM setting, byte 02h, bit [6].  
9.3.4 Data Protocol  
The device supports Byte Write and Byte Read and Block Write and Block Read operations.  
For Byte Write/Read operations, the system controller can individually access addressed bytes.  
For Block Write/Read operations, the bytes are accessed in sequential order from lowest to highest byte (with  
most-significant bit first) with the ability to stop after any complete byte has been transferred. The numbers of  
bytes read out are defined by Byte Count in the generic configuration register. At the Block Read instruction, all  
bytes defined in Byte Count must be read out to finish the read cycle correctly.  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
Once a byte has been sent, it is written into the internal register and is effective immediately. This applies to  
each transferred byte, regardless of whether this is a Byte Write or a Block Write sequence.  
If the EEPROM write cycle is initiated, the internal SDA registers are written into the EEPROM. During this write  
cycle, data is not accepted at the I2C bus until the write cycle is completed. However, data can be read out  
during the programming sequence (Byte Read or Block Read). The programming status can be monitored by  
EEPIP, byte 01h–bit 6.  
The offset of the indexed byte is encoded in the command code, as described in Table 7.  
Table 7. Slave Receiver Address (7 Bits)  
DEVICE  
A6  
1
A5  
1
A4  
0
A3  
0
A2  
1
A1(1)  
A0(1)  
R/W  
1/0  
1/0  
1/0  
1/0  
CDCE813-Q1  
CDCEx925  
CDCEx937  
CDCEx949  
0
0
0
0
1
0
1
0
1
1
0
0
1
1
1
0
1
1
1
1
0
1
1
(1) Address bits A0 and A1 are programmable through the I2C bus (byte 01, bits [1:0]. This allows addressing up to 4 devices connected to  
the same I2C bus. The least-significant bit of the address byte designates a write or read operation.  
9.4 Device Functional Modes  
9.4.1 SDA and SCL Hardware Interface  
Figure 7 shows how the CDCE813-Q1 clock synthesizer is connected to the I2C serial interface bus. Multiple  
devices can be connected to the bus, but it may be necessary to reduce the speed (400 kHz is the maximum) if  
many devices are connected.  
Note that the pullup resistors (RP) depend on the supply voltage, bus capacitance, and number of connected  
devices. The recommended pullup value is 4.7 k. The resistor must meet the minimum sink current of 3 mA at  
VOLmax = 0.4 V for the output stages (for more details see the SMBus or I2C Bus specifications in the Timing  
Requirements table).  
CDCE813-Q1  
Rp  
Rp  
Master  
SDA  
Slave  
SCL  
CBUS CBUS  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7. I2C Hardware Interface  
9.5 Programming  
Table 8. Command Code Definition  
BIT  
DESCRIPTION  
0 = Block Read or Block Write operation  
1 = Byte Read or Byte Write operation  
7
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
 
 
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
Programming (continued)  
Table 8. Command Code Definition (continued)  
BIT  
DESCRIPTION  
(6:0)  
Byte offset for Byte Read, Block Read, Byte Write, and Block Write operations  
1
7
1
1
8
1
1
S
Slave Address  
A
Data Byte  
A
P
R/W  
MSB  
LSB  
MSB  
LSB  
S
Start Condition  
Sr Repeated Start Condition  
1 = Read (Rd) From CDCE9xx Device; 0 = Write (Wr) to CDCE9xxx  
Acknowledge (ACK = 0 and NACK =1)  
Stop Condition  
R/W  
A
P
Master-to-Slave Transmission  
Slave-to-Master Transmission  
Figure 8. Generic Programming Sequence  
1
7
1
1
8
1
8
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Data Byte  
A
P
Figure 9. Byte Write Protocol  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Sr  
Slave Address  
Rd  
A
8
1
1
Data Byte  
A
P
Figure 10. Byte Read Protocol  
1
7
1
1
8
1
8
1
S
Slave Address  
Wr  
A
CommandCode  
A
Byte Count = N  
A
8
1
8
1
8
1
1
Data Byte 0  
A
Data Byte 1  
A
Data Byte N-1  
A
P
(1) Data byte 0 bits [7:0] is reserved for Revision Code and Vendor Identification. Also, it is used for internal test purpose  
and should not be overwritten.  
Figure 11. Block Write Protocol  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Sr  
Slave Address  
Rd  
A
8
1
8
1
8
1
1
Byte Count N  
A
Data Byte 0  
A
Data Byte N-1  
A
P
Figure 12. Block Read Protocol  
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
Bit 7 (MSB)  
Bit 6  
Bit 0 (LSB)  
P
S
A
P
t
w(SCLL)  
t
w(SCLH)  
t
r
t
f
V
IH  
SCL  
V
IL  
t
t
t
su(START)  
h(START)  
su(SDA)  
t
t
h(SDA)  
su(STOP)  
t
f
t
t
r
(BUS)  
V
IH  
SDA  
V
IL  
Figure 13. Timing Diagram for I2C Serial Control Interface  
9.6 Register Maps  
9.6.1 I2C Configuration Registers  
The clock input, control pins, PLLs, and output stages are user configurable. The following tables and  
explanations describe the programmable functions of the CDCE813-Q1 device. All settings can be manually  
written into the device through the I2C bus or easily programmed by using the TI ClockPro™ programming  
software. The TI ClockPro™ programming software allows the user to make all settings quickly, and  
automatically calculates the values for optimized performance at lowest jitter.  
Table 9. I2C Registers  
ADDRESS OFFSET  
REGISTER DESCRIPTION  
Generic configuration register  
PLL1 configuration register  
TABLE  
Table 11  
Table 12  
00h  
10h  
The grey-highlighted bits, described in the configuration register tables in the following pages, belong to the  
control terminal register. The user can predefine up to eight different control settings. These settings then can be  
selected by the external control pins, S0, S1, and S2. See the Control Terminal Configuration section.  
Table 10. Configuration Register, External Control Terminals  
Y1  
PLL1 SETTINGS  
EXTERNAL  
CONTROL PINS  
OUTPUT  
SELECTION  
OUTPUT SELECTION  
FREQUENCY SELECTION  
SSC SELECTION  
S2  
0
S1  
0
S0  
0
Y1  
FS1  
SSC1  
Y2Y3  
0
1
2
3
4
5
6
7
Y1_0  
Y1_1  
Y1_2  
Y1_3  
Y1_4  
Y1_5  
Y1_6  
Y1_7  
04h  
FS1_0  
FS1_1  
FS1_2  
FS1_3  
FS1_4  
FS1_5  
FS1_6  
FS1_7  
13h  
SSC1_0  
SSC1_1  
SSC1_2  
SSC1_3  
SSC1_4  
SSC1_5  
SSC1_6  
SSC1_7  
10h–12h  
Y2Y3_0  
Y2Y3_1  
Y2Y3_2  
Y2Y3_3  
Y2Y3_4  
Y2Y3_5  
Y2Y3_6  
Y2Y3_7  
15h  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Address offset(1)  
(1) Address offset refers to the byte address in the configuration register in Table 11 and Table 12.  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
 
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
Table 11. Generic Configuration Register  
OFFSET(1) BIT(2)  
ACRONYM  
E_EL  
RID  
DEFAULT(3)  
DESCRIPTION  
Device identification (read-only): 1 is CDCE813-Q1 (3.3 Vout)  
7
1b  
Xb  
1h  
0b  
00h  
6:4  
3:0  
7
Revision identification number (read-only)  
Vendor identification number (read-only)  
Reserved – always write 0  
VID  
0 – EEPROM programming is completed.  
1 – EEPROM is in programming mode.  
6
5
EEPIP  
0b  
0b  
EEPROM programming Status:(4) (read-only)  
Permanently lock EEPROM data(5)  
0 – EEPROM is not locked.  
1 – EEPROM is permanently locked.  
EELOCK  
Device power down (overwrites S0, S1, and S2 settings; configuration register settings are unchanged)  
Note: PWDN cannot be set to 1 in the EEPROM.  
01h  
4
PWDN  
0b  
0 – Device active (PLL1 and all outputs are enabled)  
1 – Device power down (PLL1 in power down and all outputs in Hi-Z state)  
00 – Xtal  
10 – LVCMOS  
11 – Reserved  
3:2  
INCLK  
10b  
Input clock selection:  
01 – VCXO  
SLAVE_AD  
R
1:0  
7
01b  
1b  
Address bits A0 and A1 of the slave receiver address  
M1  
Clock source selection for output Y1:  
0 – Input clock  
1 – PLL1 clock  
Operation mode selection for pins 12 and 13(6)  
6
SPICON  
0b  
0 – Serial programming interface SDA (pin 13) and SCL (pin 12)  
1 – Control pins S1 (pin 13) and S2 (pin 12)  
CDCE813-Q1: 01b  
CDCE813R02-Q1:  
11b  
02h  
5:4  
3:2  
Y1_ST1  
Y1_ST0  
Y1-State0/1 definition  
00 – Device power down (all PLLs in power down and all  
outputs in Hi-Z state)  
10 – Y1 disabled to low  
11 – Y1 enabled  
01b  
01 – Y1 disabled to Hi-Z state  
1:0  
7:0  
7
Pdiv1 [9:8]  
Pdiv1 [7:0]  
Y1_7  
0 – Divider reset and stand-by  
1 to 1023 – Divider value  
001h  
10-bit Y1-output-divider Pdiv1:  
03h  
04h  
0b  
0b  
0b  
0b  
0b  
0b  
6
Y1_6  
5
Y1_5  
4
Y1_4  
0 – State0 (predefined by Y1_ST0)  
1 – State1 (predefined by Y1_ST1)  
Y1_x State selection(7)  
3
Y1_3  
2
Y1_2  
CDCE813-Q1: 0b  
CDCE813R02-Q1: 1b  
1
0
Y1_1  
Y1_0  
0b  
00h  
0b  
Crystal load capacitor selection(8)  
00h – 0 pF  
01h – 1 pF  
02h – 2 pF  
7:3  
2:0  
XCSEL  
05h  
:14h to 1Fh – 20 pF  
Reserved – do not write other than 0  
(1) Writing data beyond 20h may affect device function.  
(2) All data transferred with the MSB first  
(3) Unless customer-specific setting  
(4) During EEPROM programming, no data is allowed to be sent to the device through the I2C bus until the programming sequence is  
completed. Data, however, can be read out during the programming sequence (Byte Read or Block Read).  
(5) If this bit is set to high in the EEPROM, the actual data in the EEPROM is permanently locked. No further programming is possible.  
Data, however can still be written through the I2C bus to the internal register to change device function on the fly, but new data can no  
longer be saved to the EEPROM. EELOCK is effective only if written into the EEPROM.  
(6) Selection of control pins is effective only if written into the EEPROM. Once written into the EEPROM, the serial programming pins are no  
longer available. However, if VDDOUT is forced to GND, the two control pins, S1 and S2, temporarily act as serial programming pins  
(SDA-SCL), and the two slave receiver address bits are reset to A0 = 0 and A1 = 0.  
(7) These are the bits of the control terminal register (see Table 10 ). The user can predefine up to eight different control settings. These  
settings then can be selected by the external control pins, S0, S1, and S2.  
(8) The internal load capacitor (C1, C2) must be used to achieve the best clock performance. External capacitors should be used only to  
finely adjust CL by a few picofarads. The value of CL can be programmed with a resolution of 1 pF for a crystal load range of 0 pF to 20  
pF. For CL > 20 pF, use additional external capacitors. The device input capacitance value must be considered, which always adds 1.5  
pF (6 pF//2 pF) to the selected CL. For more about VCXO configuring and crystal recommendation, see application report VCXO  
Application Guideline for CDCE(L)9xx Family (SCAA085).  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
CDCE813-Q1  
www.ti.com.cn  
OFFSET(1) BIT(2)  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
Table 11. Generic Configuration Register (continued)  
ACRONYM  
DEFAULT(3)  
DESCRIPTION  
7-bit byte count (defines the number of bytes which will be sent from this device at the next Block Read transfer); all bytes  
must be read out to finish the read cycle correctly.  
7:1  
BCOUNT  
00h  
06h  
0– No EEPROM write cycle  
1 – Start EEPROM write cycle (internal registers are saved to the EEPROM)  
(4)(9)  
0
EEWRITE  
0b  
0h  
Initiate EEPROM write cycle  
07h-0Fh  
Unused address range  
(9) The EEPROM WRITE bit must be sent last. This ensures that the content of all internal registers are stored in the EEPROM. The  
EEWRITE cycle is initiated with the rising edge of the EEWRITE bit. A static level-high does not trigger an EEPROM WRITE cycle. The  
EEWRITE bit must be reset to low after the programming is completed. The programming status can be monitored by reading out  
EEPIP. If EELOCK is set to high, no EEPROM programming is possible.  
Table 12. PLL1 Configuration Register  
OFFSET(1)  
BIT(2)  
7:5  
4:2  
1:0  
7
ACRONYM  
SSC1_7 [2:0]  
SSC1_6 [2:0]  
SSC1_5 [2:1]  
SSC1_5 [0]  
SSC1_4 [2:0]  
SSC1_3 [2:0]  
SSC1_2 [2]  
SSC1_2 [1:0]  
SSC1_1 [2:0]  
SSC1_0 [2:0]  
FS1_7  
DEFAULT(3)  
DESCRIPTION  
(4)  
000b  
SSC1: PLL1 SSC selection (modulation amount).  
10h  
000b  
Down  
000 (off)  
Center  
000 (off)  
001 – 0.25%  
010 – 0.5%  
011 – 0.75%  
100 – 1.0%  
101 – 1.25%  
110 – 1.5%  
111 – 2.0%  
001 ± 0.25%  
010 ± 0.5%  
011 ± 0.75%  
100 ± 1.0%  
101 ± 1.25%  
110 ± 1.5%  
111 ± 2.0%  
000b  
6:4  
3:1  
0
000b  
000b  
11h  
12h  
000b  
7:6  
5:3  
2:0  
7
000b  
000b  
0b  
(4)  
FS1_x: PLL1 frequency selection  
6
FS1_6  
0b  
5
FS1_5  
0b  
4
FS1_4  
0b  
13h  
14h  
15h  
0 – fVCO1_0 (predefined by PLL1_0 – multiplier/divider value)  
1 – fVCO1_1 (predefined by PLL1_1 – multiplier/divider value)  
3
FS1_3  
0b  
2
FS1_2  
0b  
1
FS1_1  
0b  
0
FS1_0  
0b  
0 – PLL1  
7
6
MUX1  
M2  
0b  
1b  
PLL1 multiplexer:  
1 – PLL1 bypass (PLL1 is in power down)  
0 – Pdiv1  
1 – Pdiv2  
Output Y2 multiplexer:  
Output Y3 Multiplexer:  
00 – Pdiv1-divider  
01 – Pdiv2-divider  
10 – Pdiv3-divider  
11 – Reserved  
5:4  
M3  
10b  
3:2  
1:0  
Y2Y3_ST1  
Y2Y3_ST0  
00b  
01b  
00 – Y2 and Y3 disabled to Hi-Z state (PLL1 is in power down)  
01 – Y2 and Y3 disabled to Hi-Z state  
10–Y2 and Y3 disabled to low  
Y2, Y3-  
State0/1definition:  
11 – Y2 and Y3 enabled  
(4)  
7
6
5
4
3
2
1
0
Y2Y3_7  
Y2Y3_6  
Y2Y3_5  
Y2Y3_4  
Y2Y3_3  
Y2Y3_2  
Y2Y3_1  
Y2Y3_0  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Y2Y3_x output state selection.  
0 – State0 (predefined by Y2Y3_ST0)  
1 – State1 (predefined by Y2Y3_ST1)  
(1) Writing data beyond 20h may adversely affect device function.  
(2) All data is transferred MSB-first.  
(3) Unless a custom setting is used  
(4) The user can predefine up to eight different control settings. In normal device operation, these settings can be selected by the external  
control pins, S0, S1, and S2.  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
Table 12. PLL1 Configuration Register (continued)  
OFFSET(1)  
BIT(2)  
ACRONYM  
DEFAULT(3)  
DESCRIPTION  
PLL1 SSC down or center  
selection:  
0 – Down  
1 – Center  
7
SSC1DC  
0b  
16h  
0 – Reset and standby  
1 to 127 – Divider value  
6:0  
7
Pdiv2  
00h  
0b  
7-bit Y2-output-divider Pdiv2:  
Reserved – do not write other than 0  
7-bit Y3-output-divider Pdiv3:  
17h  
0 – Reset and standby  
1 to 127 – Divider value  
6:0  
Pdiv3  
00h  
18h  
19h  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
PLL1_0N [11:4]  
PLL1_0N [3:0]  
PLL1_0R [8:5]  
PLL1_0R[4:0]  
PLL1_0Q [5:3]  
PLL1_0Q [2:0]  
PLL1_0P [2:0]  
1FFh  
000h  
PLL1_0(5): 30-bit multiplier or divider value for frequency fVCO1_0  
(for more information, see PLL Frequency Planning).  
1Ah  
10h  
100b  
1Bh  
00 – fVCO1_0 < 125 MHz  
01 – 125 MHz fVCO1_0 < 150 MHz  
10 – 150 MHz fVCO1_0 < 175 MHz  
1:0  
VCO1_0_RANGE  
00b  
fVCO1_0 range selection:  
11 – fVCO1_0 175 MHz  
1Ch  
1Dh  
1Eh  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
PLL1_1N [11:4]  
PLL1_1N [3:0]  
PLL1_1R [8:5]  
PLL1_1R[4:0]  
PLL1_1Q [5:3]  
PLL1_1Q [2:0]  
PLL1_1P [2:0]  
1FFh  
000h  
PLL1_1(5): 30-bit multiplier or divider value for frequency fVCO1_1  
(for more information, see PLL Frequency Planning).  
10h  
1Fh  
100b  
00 – fVCO1_1 < 125 MHz  
01 – 125 MHz fVCO1_1 < 150 MHz  
10 – 150 MHz fVCO1_1 < 175 MHz  
1:0  
VCO1_1_RANGE  
00b  
fVCO1_1 range selection:  
11 – fVCO1_1 175 MHz  
(5) PLL settings limits: 16 q 63, 0 p 7, 0 r 511, 0 < N < 4096  
20  
Copyright © 2017–2019, Texas Instruments Incorporated  
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The CDCE813-Q1 device is an easy-to-use, high-performance, programmable CMOS clock synthesizer which  
can be used as a crystal buffer, clock synthesizer with separate output supply pin. The CDCE813-Q1 device  
features an on-chip loop filter and spread-spectrum modulation. Programming can be done through the I2C  
interface, or previously saved settings can be loaded from on-chip EEPROM. The pins S0, S1, and S2 can be  
programmed as control pins to select various output settings. This section shows some examples of using the  
CDCE813-Q1 device in various applications.  
10.2 Typical Application  
Figure 14 shows the application example of CDCE813-Q1 in combination with an SoC processor and an FPD-  
Link3 serializer, serving as a PCLK jitter cleaner.  
VDD_1p8  
VDDO_3p3  
L2  
120 Q  
L1  
120 Q  
C1  
0.1 F  
C4  
1000pF  
C6  
0.1µF  
C2  
0.01 F  
C3  
1000 pF  
C5  
0.01µF  
U2  
3
4
6
7
VDDOUT  
VDDOUT  
VDD  
R1  
U1  
VCTRL  
XIN/CLK  
XOUT  
R2  
11  
9
4.7k  
GND  
Y1  
Y2  
Y3  
R3  
860 Q  
1
18 Q  
GND  
U3  
PCLK  
14  
R4  
8
1 lQ  
PCLK  
5
10  
GND  
GND  
S0  
SDA  
SCL  
GND  
13  
12  
CDCE813-Q1  
SoC  
To Display  
GND  
Serializer  
Image Data  
Copyright © 2017, Texas Instruments Incorporated  
Figure 14. PCLK Jitter Cleaner Reference Design  
10.2.1 Design Requirements  
The CDCE813-Q1 device supports spread-spectrum clocking (SSC) with multiple control parameters:  
Modulation amount (%)  
Modulation frequency (>20 kHz)  
Center spread or down spread (± or –)  
Copyright © 2017–2019, Texas Instruments Incorporated  
21  
 
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
Typical Application (continued)  
Figure 15. Modulation Frequency (fm) and Modulation Amount  
10.2.2 Detailed Design Procedure  
10.2.2.1 Spread-Spectrum Clock (SSC)  
Spread-spectrum modulation is a method to spread emitted energy over a larger bandwidth. In clocking, spread  
spectrum can reduce electromagnetic interference (EMI) by reducing the level of emission from clock distribution  
network.  
CDCS502 with a 25-MHz Crystal, FS = 1, fOUT = 100 MHz, and 0%, ±0.5, ±1%, and ±2% SSC  
Figure 16. Comparison Between Typical Clock Power Spectrum and Spread-Spectrum Clock  
Spread spectrum clocking can be used to help reduce EMI to meet design specifications. For example, a  
specified EMI threshold of 55 dB/mV would require ±1% spread-spectrum clocking to meet this requirement.  
22  
Copyright © 2017–2019, Texas Instruments Incorporated  
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
Typical Application (continued)  
10.2.2.2 PLL Frequency Planning  
At a given input frequency (fIN), the output frequency (fOUT) of the CDCE813-Q1 device is calculated with  
Equation 1.  
ƒIN  
´
N
ƒOUT  
=
Pdiv  
M
M (1 to 511) and N (1 to 4095) are the multiplier or divider values of the PLL,  
and Pdiv (1 to 127) is the output divider.  
(1)  
(2)  
The target VCO frequency (ƒVCO) of each PLL is calculated with Equation 2.  
N
ƒVCO = ƒIN  
´
M
The PLL internally operates as fractional divider and needs the following multiplier or divider settings:  
N
P = 4 – int(log2N / M); if P < 0 then P = 0  
Q = int(N' / M)  
R = N– M × Q  
where  
int(X) = integer portion of X  
N= N × 2P  
N M  
80 MHz ƒVCO 230 MHz  
16 Q 63  
0 P 4  
0 R 51  
Example:  
for ƒIN = 27 MHz; M = 1; N = 4; Pdiv = 2  
fOUT = 54 MHz  
for ƒIN = 27 MHz; M = 2; N = 11; Pdiv = 2  
fOUT = 74.25 MHz  
fVCO = 108 MHz  
fVCO = 148.50 MHz  
P = 4 – int(log24) = 4 – 2 = 2  
N' = 4 × 22 = 16  
P = 4 – int(log25.5) = 4 – 2 = 2  
N' = 11 × 22 = 44  
Q = int(16) = 16  
Q = int(22) = 22  
R = 16 – 16 = 0  
R = 44 – 44 = 0  
The values for P, Q, R, and N’ are automatically calculated when using TI Pro-Clock™ software.  
10.2.2.3 Crystal Oscillator Start-Up  
When the CDCE813-Q1 device can be used as a crystal buffer, the crystal oscillator start-up dominates the start-  
up time compared to the internal PLL lock time. Figure 17 shows the oscillator start-up sequence for a 27-MHz  
crystal input with an 8-pF load. The start-up time for the crystal is on the order of approximately 250 µs  
compared to approximately 10 µs of lock time. In general, lock time is an order of magnitude less compared to  
the crystal start-up time.  
Copyright © 2017–2019, Texas Instruments Incorporated  
23  
 
 
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
Typical Application (continued)  
Figure 17. Crystal Oscillator Start-Up vs PLL Lock Time  
10.2.2.4 Frequency Adjustment With Crystal Oscillator Pulling  
The frequency for the CDCE813-Q1 device is adjusted for media and other applications with the VCXO control  
input Vctr. If a PWM-modulated signal is used as a control signal for the VCXO, an external filter is needed.  
LP  
CDCE813-Q1  
Vctrl  
PWM  
control  
signal  
Xin/CLK  
Xout  
Copyright © 2017, Texas Instruments Incorporated  
Figure 18. Frequency Adjustment Using PWM Input to the VCXO Control  
10.2.2.5 Unused Inputs and Outputs  
If VCXO-pulling functionality is not required, Vctr should be left floating. All other unused inputs should be set to  
GND. Unused outputs should be left floating.  
If one output block is not used, TI recommends disabling it. However, TI recommends providing a supply for all  
output blocks, even if they are disabled.  
10.2.2.6 Switching Between XO and VCXO Mode  
When the CDCE813-Q1 device is in the crystal-oscillator or VCXO configuration, the internal capacitors require  
different internal capacitance. The following steps are recommended to switch to VCXO mode when the  
configuration for the on-chip capacitor is still set for XO mode. To center the output frequency to 0 ppm:  
1. While in XO mode, put Vctr = VDD / 2  
2. Switch from XO mode to VCXO mode  
3. Program the internal capacitors to obtain 0 ppm at the output.  
24  
Copyright © 2017–2019, Texas Instruments Incorporated  
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
Typical Application (continued)  
10.2.3 Application Curves  
Figure 19, Figure 20, Figure 21, and Figure 22 show CDCE813-Q1 measurements with the SSC feature enabled.  
Device configuration: 27-MHz input, 27-MHz output.  
Figure 19. fOUT = 27 MHz,  
Figure 20. fOUT = 27 MHz,  
VCO frequency < 125 MHz, SSC (2% Center)  
VCO frequency > 175 MHz, SSC (1%, Center)  
Figure 22. Output Spectrum With SSC On,  
2% Center  
Figure 21. Output Spectrum With SSC Off  
11 Power Supply Recommendations  
There is no restriction on the power-up sequence. In case VDDOUT is applied first, TI recommends grounding the  
VDD. In case VDDOUT is powered while VDD is floating, there is a risk of high current flowing on the VDDOUT pins.  
The device has a power-up control that is connected to the 1.8-V supply. This keeps the whole device disabled  
until the 1.8-V supply reaches a sufficient voltage level. Then the device switches on all internal components,  
including the outputs. If a 3.3-V VDDOUT is available before the 1.8-V, the outputs stay disabled until the 1.8-V  
supply has reached a certain level.  
Copyright © 2017–2019, Texas Instruments Incorporated  
25  
 
 
CDCE813-Q1  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
When the CDCE813-Q1 device is used as a crystal buffer, any parasitic across the crystal affect the pulling  
range of the VCXO. Therefore, take care in placing the crystal units on the board. Crystals must be placed as  
close to the device as possible, ensuring that the routing lines from the crystal terminals to Xin and Xout have the  
same length.  
If possible, cut out both ground plane and power plane under the area where the crystal and the routing to the  
device are placed. In this area, always avoid routing any other signal line, as it could be a source of noise  
coupling.  
Additional discrete capacitors can be required to meet the load capacitance specification of certain crystals. For  
example, a 10.7-pF load capacitor is not fully programmable on the chip, because the internal capacitor can  
range from 0 pF to 20 pF with steps of 1 pF. The 0.7-pF capacitor therefore can be discretely added on top of an  
internal 10-pF capacitor.  
To minimize the inductive influence of the trace, TI recommends placing this small capacitor as close to the  
device as possible and symmetrically with respect to Xin and Xout.  
Figure 23 shows a conceptual layout detailing recommended placement of power-supply bypass capacitors. For  
component-side mounting, use 0402 body-size capacitors to facilitate signal routing. Keep the connections  
between the bypass capacitors and the power supply on the device as short as possible. Ground the other side  
of the capacitor using a low-impedance connection to the ground plane.  
12.2 Layout Example  
1
4
3
2
1
3
2
Place crystal with associated load  
capacitors close to the chip.  
Place series termination resistors at  
clock outputs to improve signal integrity.  
4
Place bypass capacitors close to the  
Use ferrite beads to isolate the device  
supply pins from board noise sources.  
device pins; ensure wide frequency range.  
Figure 23. Annotated Layout  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
 
CDCE813-Q1  
www.ti.com.cn  
ZHCSG21C JANUARY 2017REVISED APRIL 2019  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
请参阅如下相关文档:  
《面向 CDCE(L)9xx 系列的 VCXO 应用指南》(文献编号:SCAA085)  
《针对 CDCE(L)9xx 系列选择晶振的实际问题》(文献编号:SLEA071)  
《针对 CDCE(L)9xx 系列的 I2C/EEPROM 常规使用》(文献编号:SCAA104)  
《使用硅器件替代晶体或晶体振荡器》(文献编号:SNAA217)  
I2C CDCE(L)949CDCE(L)937CDCE(L)925CDCE(L)813 中的应用》(SCAA105)  
《使用低频字时钟为音频数据转换器生成低相位噪声时钟》(文献编号:SCAA088)  
13.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 商标  
DaVinci, OMAP, ClockPro, E2E are trademarks of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CDCE813QPWRQ1  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
14  
14  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
CE813Q  
E813Q02  
CDCE813R02TPWRQ1  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CDCE813QPWRQ1  
TSSOP  
PW  
PW  
14  
14  
2000  
2000  
330.0  
330.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
CDCE813R02TPWRQ1 TSSOP  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CDCE813QPWRQ1  
TSSOP  
TSSOP  
PW  
PW  
14  
14  
2000  
2000  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
CDCE813R02TPWRQ1  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY