CDCVF857 [TI]

2.5-V PHASE-LOCK LOOP CLOCK DRIVER; 2.5 -V锁相环时钟驱动器
CDCVF857
型号: CDCVF857
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.5-V PHASE-LOCK LOOP CLOCK DRIVER
2.5 -V锁相环时钟驱动器

时钟驱动器
文件: 总19页 (文件大小:473K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢅ ꢉꢂ ꢊꢋꢌ ꢍꢎꢉꢏ ꢐ ꢀꢑ ꢏ ꢐꢐ ꢊ ꢀꢏ ꢐ ꢀꢑ ꢁ ꢒꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
D
Recommended Applications:  
− DDR Memory Modules  
(DDR400/333/266/200)  
D
Operates From Dual 2.6-V or 2.5-V Supplies  
D
Available in a 40-Pin MLF Package, 48-Pin  
TSSOP Package, 56-Ball MicroStar Junior  
BGA Package  
− Zero Delay Fan-Out Buffer  
D
D
D
D
D
D
Spread Spectrum Clock Compatible  
Operating Frequency: 60 MHz to 220 MHz  
Low Jitter (Cycle-Cycle): 35 ps  
Low Static Phase Offset: 50 ps  
Low Jitter (Period): 30 ps  
D
D
Consumes < 100-µA Quiescent Current  
External Feedback Pins (FBIN, FBIN) Are  
Used to Synchronize the Outputs to the  
Input Clocks  
D
Meets/Exceeds JEDEC Standard  
(JESD82−1) For DDRI-200/266/333  
Specification  
1-To-10 Differential Clock Distribution  
(SSTL2)  
D
D
Meets/Exceeds Proposed DDRI-400  
Specification (JESD82−1A)  
D
Best in Class for V  
= V /2 0.1 V  
OX DD  
Enters Low-Power Mode When No CLK  
Input Signal Is Applied or PWRDWN Is Low  
description  
The CDCVF857 is a high-performance, low-skew, low-jitter, zero-delay buffer that distributes a differential clock  
input pair (CLK, CLK) to 10 differential pairs of clock outputs (Y[0:9], Y[0:9]) and one differential pair of feedback  
clock outputs (FBOUT, FBOUT). The clock outputs are controlled by the clock inputs (CLK, CLK), the feedback  
clocks (FBIN, FBIN), and the analog power input (AV ). When PWRDWN is high, the outputs switch in phase  
DD  
and frequency with CLK. When PWRDWN is low, all outputs are disabled to a high-impedance state (3-state)  
and the PLL is shut down (low-power mode). The device also enters this low-power mode when the input  
frequency falls below a suggested detection frequency that is below 20 MHz (typical 10 MHz). An input  
frequency detection circuit detects the low frequency condition and, after applying a >20-MHz input signal, this  
detection circuit turns the PLL on and enables the outputs.  
When AV is strapped low, the PLL is turned off and bypassed for test purposes. The CDCVF857 is also able  
DD  
to track spread spectrum clocking for reduced EMI.  
Because the CDCVF857 is based on PLL circuitry, it requires a stabilization time to achieve phase-lock of the  
PLL. This stabilization time is required following power up. The CDCVF857 is characterized for both commercial  
and industrial temperature ranges.  
AVAILABLE OPTIONS  
T
A
TSSOP (DGG)  
40-Pin MLF  
56-Ball BGA  
CDCVF857DGG  
(Pb-Free)  
−40°C to 85°C  
−40°C to 85°C  
CDCVF857RTB  
CDCVF857GQL  
CDCVF857RHA  
(Pb-Free, Green)  
Maximum load recommended is 12 pf for 200 MHz. At 12-pf load, maximum T allowed is 70°C.  
A
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢕꢢ  
Copyright 2005, Texas Instruments Incorporated  
ꢞ ꢢ ꢟ ꢞꢗ ꢘꢫ ꢚꢙ ꢝ ꢥꢥ ꢣꢝ ꢛ ꢝ ꢜ ꢢ ꢞ ꢢ ꢛ ꢟ ꢈ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃꢄ ꢅ ꢆ  
ꢇꢈ ꢅꢉꢂ ꢊꢋ ꢌ ꢍꢎꢉꢏ ꢐꢀ ꢑ ꢏꢐ ꢐ ꢊ ꢀꢏ ꢐꢀ ꢑ ꢁꢒ ꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
FUNCTION TABLE  
(Select Functions)  
INPUTS  
OUTPUTS  
Y[0:9] FBOUT  
PLL  
AV  
DD  
PWRDWN  
CLK  
L
CLK  
Y[0:9]  
FBOUT  
GND  
GND  
H
H
L
H
L
L
H
Z
Z
L
H
L
L
H
Z
Z
L
H
L
Bypassed/Off  
H
Bypassed/Off  
X
L
H
L
Z
Z
H
L
Z
Z
H
L
Off  
Off  
On  
On  
Off  
X
L
H
2.5 V (nom)  
2.5 V (nom)  
2.5 V (nom)  
H
H
X
L
H
L
H
H
Z
H
Z
<20 MHz <20 MHz  
Z
Z
DGG PACKAGE (TSSOP)  
(TOP VIEW)  
GND  
Y0  
GND  
1
48  
47  
46  
45  
44  
43  
Y5  
Y5  
V
2
RHA/RTB PACKAGE (MLF)  
(TOP VIEW)  
Y0  
3
V
4
DDQ  
Y1  
DDQ  
Y6  
Y6  
5
Y1  
GND  
GND  
Y2  
6
7
42 GND  
41 GND  
40 Y7  
40 39 38 37 36 35 34 33 32 31  
8
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GND  
Y7  
Y7  
V
9
Y2  
Y2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
Y2  
Y7  
V
V
DDQ  
DDQ  
DDQ  
V
V
PWRDWN  
FBIN  
V
PWRDWN  
FBIN  
DDQ  
CLK  
DDQ  
CLK  
GND  
CLK  
FBIN  
CLK  
FBIN  
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
AV  
V
AV  
FBOUT  
FBOUT  
GND  
Y8  
DD  
DDQ  
DD  
AGND  
GND  
FBOUT  
FBOUT  
AGND  
GND  
Y3  
11 12 13 14 15 16 17 18 19 20  
Y3  
Y8  
V
V
DDQ  
Y4  
DDQ  
Y9  
Y4  
Y9  
40-pin HP-VFQFP-N (6,0 x 6,0-mm Body Size,  
0,5-mm Pitch, M0#220, Variation VJJD-2,  
E2 = D2 = 2,9 mm 0,15 mm) Package Pinouts  
GND  
GND  
48-pin TSSOP (MO-153-ED)  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢅ ꢉꢂ ꢊꢋ ꢌꢍꢎꢉꢏ ꢐ ꢀꢑ ꢏ ꢐꢐ ꢊ ꢀꢏ ꢐ ꢀꢑ ꢁ ꢒꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
MicroStar Junior BGA (GQL) Package  
(TOP VIEW)  
1
2
3
4
5
6
A
B
C
Y6  
Y6  
Y1  
Y1  
NC  
NC  
NC  
GND  
GND  
GND  
GND  
D
E
F
NC  
NB  
NB  
Y7  
Y7  
Y2  
Y2  
PWRDN  
V
V
DDQ  
DDQ  
V
DDQ  
NB  
NC  
NC  
FBIN  
FBIN  
CLK  
CLK  
G
H
J
NC  
NC  
V
DDQ  
V
DDQ  
AV  
DD  
FBOUT  
FBOUT  
GND  
AGND  
GND  
Y8  
Y8  
Y3  
Y3  
K
NB = No ball  
NC = No connection  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃꢄ ꢅ ꢆ  
ꢇꢈ ꢅꢉꢂ ꢊꢋ ꢌ ꢍꢎꢉꢏ ꢐꢀ ꢑ ꢏꢐ ꢐ ꢊ ꢀꢏ ꢐꢀ ꢑ ꢁꢒ ꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
functional block diagram  
3
2
Y0  
Y0  
5
6
Y1  
Y1  
37  
PWRDWN  
Power Down  
and Test  
Logic  
16  
AV  
DD  
10  
9
Y2  
Y2  
20  
19  
Y3  
Y3  
22  
23  
Y4  
Y4  
46  
47  
Y5  
Y5  
13  
14  
CLK  
CLK  
44  
43  
Y6  
Y6  
PLL  
FBIN 36  
39  
40  
Y7  
Y7  
35  
FBIN  
29  
30  
Y8  
Y8  
27  
26  
Y9  
Y9  
32  
33  
FBOUT  
FBOUT  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢅ ꢉꢂ ꢊꢋ ꢌꢍꢎꢉꢏ ꢐ ꢀꢑ ꢏ ꢐꢐ ꢊ ꢀꢏ ꢐ ꢀꢑ ꢁ ꢒꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
Terminal Functions  
TERMINAL  
RHA/RTB  
I/O  
DESCRIPTION  
NAME  
AGND  
AV  
DGG  
17  
GQL  
H1  
9
Ground for 2.5-V analog supply  
2.5-V analog supply  
16  
8
G2  
DD  
CLK, CLK  
13, 14  
35, 36  
32, 33  
5, 6  
F1, F2  
F5, F6  
H6, G5  
I
I
Differential clock input  
FBIN, FBIN  
FBOUT, FBOUT  
25, 26  
21, 22  
Feedback differential clock input  
Feedback differential clock output  
O
1, 7, 8, 18, 24,  
25, 31, 41, 42, 48  
A3, A4, C1, C2, C5,  
C6, H2, H5, K3, K4  
GND  
1, 10  
27  
Ground  
PWRDWN  
37  
E6  
I
Output enable for Y and Y  
2.5-V supply  
4, 11, 12, 15, 21,  
28, 34, 38, 45  
4, 7, 13, 18, 23,  
24, 28, 33, 38  
B3, B4, E1, E2, E5,  
G1, G6, J3, J4  
V
DDQ  
Y0, Y0  
Y1, Y1  
Y2, Y2  
Y3, Y3  
Y4, Y4  
Y5, Y5  
Y6, Y6  
Y7, Y7  
Y8, Y8  
Y9, Y9  
3, 2  
37, 36  
39, 40  
3, 2  
A1, A2  
B2, B1  
D1, D2  
J2, J1  
O
O
O
O
O
O
O
O
O
O
5, 6  
10, 9  
20, 19  
22, 23  
46, 47  
44, 43  
39, 40  
29, 30  
27, 26  
12,11  
14, 15  
34, 35  
32, 31  
29, 30  
19, 20  
17, 16  
K1, K2  
A6, A5  
B5, B6  
D6, D5  
J5, J6  
Buffered output copies of input clock, CLK, CLK  
K6, K5  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
AV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 3.6 V  
,
DDQ  
DD  
Input voltage range, V (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
+ 0.5 V  
+ 0.5 V  
I
DDQ  
DDQ  
Output voltage range, V (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
O
Input clamp current, I (V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
IK  
I
I
DDQ  
O
Output clamp current, I  
(V < 0 or V > V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
OK  
O
DDQ  
Continuous output current, I (V = 0 to V  
Continuous current to GND or V  
Storage temperature range T  
O
O
DDQ  
DDQ  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
q
For TSSOP (DGG) Package (see Note 3)  
q
For MLF (RHA/RTB) Package  
q
JA  
For BGA(GQL) Package (see Note 4)  
JA  
Airflow  
JA  
Low K  
High K  
70°C/W  
Airflow  
0 ft/min  
With 4 Thermal Vias  
Airflow  
High K  
0 ft/min  
89.1°C/W  
78.5°C/W  
44.7°C/W  
0 ft/min  
132.2°C/W  
126.4°C/W  
150 ft/min  
65.3°C/W  
150 ft/min  
150 ft/min  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.  
2. This value is limited to 3.6 V maximum.  
3. The package thermal impedance is calculated in accordance with JESD 51.  
4. Connecting the NC-balls (C3, C4, D3, D4, G3, G4, H3, H4) to a ground plane improves the θ to 114.8°C/W (0 airflow).  
JA  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃꢄ ꢅ ꢆ  
ꢇꢈ ꢅꢉꢂ ꢊꢋ ꢌ ꢍꢎꢉꢏ ꢐꢀ ꢑ ꢏꢐ ꢐ ꢊ ꢀꢏ ꢐꢀ ꢑ ꢁꢒ ꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
recommended operating conditions (see Note 5)  
MIN  
2.3  
TYP  
MAX UNIT  
V
PC1600 − PC3200  
2.7  
DDQ  
AV  
Supply voltage  
V
V
DDQ  
− 0.12  
2.7  
DD  
CLK, CLK, FBIN, FBIN  
PWRDWN  
V
DDQ  
/2 – 0.18  
Low-level input voltage, V  
V
IL  
−0.3  
0.7  
CLK, CLK, FBIN, FBIN  
PWRDWN  
V
DDQ  
/2 + 0.18  
1.7  
High-level input voltage, V  
IH  
V
V
V
DDQ  
V
DDQ  
V
DDQ  
V
DDQ  
+ 0.3  
+ 0.3  
+ 0.6  
+ 0.6  
DC input signal voltage (see Note 5)  
–0.3  
0.36  
0.7  
dc  
ac  
CLK, FBIN  
CLK, FBIN  
Differential input signal voltage, V (see Note 6)  
ID  
V
Input differential pair cross voltage, V (see Notes 7 and 8)  
IX  
V
DDQ  
/2 – 0.2  
V
DDQ  
/2 + 0.2  
−12  
12  
V
High-level output current, I  
mA  
mA  
V/ns  
°C  
OH  
Low-level output current, I  
Input slew rate, SR  
OL  
1
4
Operating free-air temperature, T  
−40  
85  
A
NOTES: 5. The unused inputs must be held high or low to prevent them from floating.  
6. The dc input signal voltage specifies the allowable dc execution of the differential input.  
7. The differential input signal voltage specifies the differential voltage |VTR − VCP| required for switching, where VTR is the true input  
level and VCP is the complementary input level.  
8. The differential cross-point voltage is expected to track variations of V  
be crossing.  
and is the voltage at which the differential signals must  
CC  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
Input voltage  
TEST CONDITIONS  
= 2.3 V, I = 18 mA  
MIN  
TYP  
MAX UNIT  
V
V
All inputs  
V
V
V
V
V
–1.2  
V
IK  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
I
= min to max, I  
= –1 mA  
= –12 mA  
V
– 0.1  
1.7  
OH  
DDQ  
High-level output voltage  
Low-level output voltage  
V
OH  
= 2.3 V, I  
OH  
= min to max, I  
= 1 mA  
= 12 mA  
0.1  
0.6  
OL  
V
OL  
V
V
= 2.3 V, I  
OL  
}
V
V
Output voltage swing  
1.1  
V
– 0.4  
OD  
Differential outputs are terminated with  
DDQ  
w
120 /C = 14 pF (See Figure 3)  
Output differential cross-voltage  
Input current  
V
/2 – 0.1  
V
/2  
V
/2 + 0.1  
10  
L
OX  
DDQ  
DDQ  
DDQ  
I
I
V
V
= 2.7 V, V = 0 V to 2.7 V  
µA  
µA  
I
DDQ  
I
High-impedance state output current  
Power-down current on  
= 2.7 V, V = V  
DDQ  
or GND  
10  
OZ  
DDQ  
O
CLK and CLK = 0 MHz;  
I
20  
100  
µA  
DDPD  
V
DDQ  
+ AV  
DD  
PWRDWN = Low; Σ of I  
and AI  
DD  
DD  
f
= 170 MHz  
= 200 MHz  
6
8
8
10  
O
O
AI  
DD  
Supply current on AV  
Input capacitance  
mA  
pF  
DD  
f
C
V
= 2.5 V, V = V  
or GND  
2
2.5  
3.5  
I
DDQ  
I
DDQ  
All typical values are at a respective nominal V  
The differential output signal voltage specifies the differential voltage VTR − VCP, where VTR is the true output level and VCP is the  
.
DDQ  
complementary output level.  
The differential cross-point voltage is expected to track variations of V  
DDQ  
§
and is the voltage at which the differential signals must be crossing.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢅ ꢉꢂ ꢊꢋ ꢌꢍꢎꢉꢏ ꢐ ꢀꢑ ꢏ ꢐꢐ ꢊ ꢀꢏ ꢐ ꢀꢑ ꢁ ꢒꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
140  
150  
270  
280  
330  
350  
1
UNIT  
f
O
f
O
f
O
f
O
f
O
f
O
= 170 MHz  
= 200 MHz  
= 170 MHz  
= 200 MHz  
= 170 MHz  
= 200 MHz  
120  
125  
220  
230  
280  
300  
Without load  
Differential outputs terminated with  
I
Dynamic current on V  
mA  
DD  
DDQ  
120 /C = 0 pF  
L
Differential outputs terminated with  
120 /C = 14 pF  
L
C  
Part-to-part input capacitance variation  
V
DDQ  
= 2.5 V, V = V  
I
or GND  
or GND  
pF  
pF  
DDQ  
Input capacitance difference between  
CLK and CKB, FBIN, and FBINB  
C
V
= 2.5 V, V = V  
I
0.25  
I(∆)  
DDQ  
.
DDQ  
All typical values are at a respective nominal V  
DDQ  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature  
MIN  
60  
MAX  
220  
220  
60%  
10  
UNIT  
Operating clock frequency  
Application clock frequency  
Input clock duty cycle  
f
MHz  
CLK  
90  
40%  
{
Stabilization time (PLL mode)  
µs  
}
Stabilization time (bypass mode)  
30  
ns  
The time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained,  
a fixed-frequency, fixed-phase reference signal must be present at CLK and V must be applied. Until phase lock is obtained, the specifications  
DD  
for propagation delay, skew, and jitter parameters given in the switching characteristics table are not applicable. This parameter does not apply  
for input modulation under SSC application.  
A recovery time is required when the device goes from power-down mode into bypass mode (AVDD at GND).  
switching characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3.5  
MAX  
UNIT  
ns  
w
t
t
Low-to-high level propagation delay time Test mode/CLK to any output  
High-to-low level propagation delay time Test mode/CLK to any output  
PLH  
PHL  
w
3.5  
ns  
100 MHz (PC1600)  
−65  
−30  
−50  
−35  
−100  
−75  
1
65  
30  
50  
35  
100  
75  
2
t
t
t
Jitter (period), See Figure 7  
ps  
ps  
ps  
jit(per)  
jit(cc)  
133/167/200 MHz (PC2100/2700/3200)  
100 MHz (PC1600)  
Jitter (cycle-to-cycle), See Figure 4  
Half-period jitter, See Figure 8  
133/167/200 MHz (PC2100/2700/3200)  
100 MHz (PC1600)  
jit(hper)  
133/167/200 MHz (PC2100/2700/3200)  
Load: 120 /14 pF  
t
t
Output clock slew rate, See Figure 9  
Static phase offset, See Figure 5  
Output skew, See Figure 6  
V/ns  
ps  
slr(o)  
100/133/167/200 MHz  
–50  
50  
40  
(Ø)  
tsk  
Load: 120 /14 pF 100/133/167/200 MHz  
ps  
(o)  
§
Refers to the transition of the noninverting output.  
This parameter is assured by design but can not be 100% production tested.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃꢄ ꢅ ꢆ  
ꢇꢈ ꢅꢉꢂ ꢊꢋ ꢌ ꢍꢎꢉꢏ ꢐꢀ ꢑ ꢏꢐ ꢐ ꢊ ꢀꢏ ꢐꢀ ꢑ ꢁꢒ ꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
PARAMETER MEASUREMENT INFORMATION  
V
DD  
V
Yx  
R = 60 Ω  
R = 60 Ω  
V
DD  
/2  
V
Yx  
CDCVF857  
GND  
Figure 1. IBIS Model Output Load  
V
DD  
/2  
SCOPE  
−V /2  
DD  
CDCVF857  
C = 14 pF  
Z = 50 Ω  
R = 10 Ω  
Z = 60 Ω  
R = 50 Ω  
(TT)  
V
Z = 50 Ω  
Z = 60 Ω  
R = 10 Ω  
R = 50 Ω  
C = 14 pF  
V
(TT)  
−V /2  
DD  
V
(TT)  
= GND  
−V /2  
DD  
Figure 2. Output Load Test Circuit  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ ꢆ  
ꢈꢅ ꢉꢂ ꢊꢋ ꢌꢍꢎꢉꢏ ꢐ ꢀꢑ ꢏ ꢐꢐ ꢊ ꢀꢏ ꢐ ꢀꢑ ꢁ ꢒꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
V
DD  
PROBE  
CDCVF857  
C = 14 pF  
GND  
Z = 60 Ω  
Z = 60 Ω  
C = 1 pF  
R = 1 MΩ  
R = 120 Ω  
V
(TT)  
C = 1 pF  
C = 14 pF  
R = 1 MΩ  
V
(TT)  
GND  
V
(TT)  
= GND  
GND  
Figure 3. Output Load Test Circuit for Crossing Point  
Yx, FBOUT  
Yx, FBOUT  
t
t
c(n+1)  
c(n)  
t
= t  
− t  
jit(cc) c(n) c(n+1)  
Figure 4. Cycle-to-Cycle Jitter  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃꢄ ꢅ ꢆ  
ꢇꢈ ꢅꢉꢂ ꢊꢋ ꢌ ꢍꢎꢉꢏ ꢐꢀ ꢑ ꢏꢐ ꢐ ꢊ ꢀꢏ ꢐꢀ ꢑ ꢁꢒ ꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
PARAMETER MEASUREMENT INFORMATION  
CLK  
CLK  
FBIN  
FBIN  
t
t
(
) n  
(
) n+1  
n = N  
1
t
(
) n  
t
=
)
(
N
(N > 1000 Samples)  
Figure 5. Phase Offset  
Yx  
Yx  
Yx, FBOUT  
Yx, FBOUT  
t
sk(o)  
Figure 6. Output Skew  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢅ ꢉꢂ ꢊꢋ ꢌꢍꢎꢉꢏ ꢐ ꢀꢑ ꢏ ꢐꢐ ꢊ ꢀꢏ ꢐ ꢀꢑ ꢁ ꢒꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
PARAMETER MEASUREMENT INFORMATION  
Yx, FBOUT  
Yx, FBOUT  
t
c(n)  
Yx, FBOUT  
Yx, FBOUT  
1
f
o
1
t
= t −  
jit(per) cn  
f
= Average input frequency measured at CLK/CLK  
O
f
o
Figure 7. Period Jitter  
Yx, FBOUT  
Yx, FBOUT  
t
t
(hper_n+1)  
(hper_n)  
1
f
o
n = any half cycle  
1
t
= t  
jit(hper) (hper_n) −  
f
= Average input frequency measured at CLK/CLK  
O
2xf  
o
Figure 8. Half-Period Jitter  
V , V  
OH IH  
80%  
80%  
20%  
20%  
20%  
Clock Inputs  
and Outputs  
V , V  
OL IL  
t
t
f
r
V
* V  
V
* V  
80%  
t
20%  
80%  
+
t
+
t
slr(IńO)  
slf(IńO)  
t
r(IńO)  
f(IńO)  
Figure 9. Input and Output Slew Rates  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃꢄ ꢅ ꢆ  
ꢇꢈ ꢅꢉꢂ ꢊꢋ ꢌ ꢍꢎꢉꢏ ꢐꢀ ꢑ ꢏꢐ ꢐ ꢊ ꢀꢏ ꢐꢀ ꢑ ꢁꢒ ꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
Bead  
CARD  
0603  
VIA  
AV DD  
V
DDQ  
0.1 uF  
0603  
4.7 uF  
1206  
2200 pF  
0603  
PLL  
GND  
AGND  
CARD  
VIA  
See Notes 9, 10, and 11  
Figure 10. Recommended AV  
Filtering  
DD  
NOTES: 9. Place the 2200-pF capacitor close to the PLL.  
10. Use a wide trace for the PLL analog power and ground. Connect PLL and capacitors to AGND trace and connect trace to one GND  
via (farthest from the PLL).  
11. Recommended bead: Fair-Rite P/N 2506036017Y0 or equilvalent (0.8 dc maximum, 600 at 100 MHz).  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢅ ꢉꢂ ꢊꢋ ꢌꢍꢎꢉꢏ ꢐ ꢀꢑ ꢏ ꢐꢐ ꢊ ꢀꢏ ꢐ ꢀꢑ ꢁ ꢒꢓ ꢂ ꢎꢒ  
SCAS047D − MARCH 2003 − REVISED JUNE 2005  
THERMAL INFORMATION  
This package incorporates an exposed thermal pad that is designed to be attached directly to an external  
heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB), the PCB can be used  
as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground  
plane or special heatsink structure designed into the PCB. This design optimizes the heat transfer from the  
integrated circuit (IC).  
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report,  
Quad Flatpack No-Lead Packages, Texas Instruments Literature No. SCBA017. This document is available at  
www.ti.com.  
The exposed thermal pad dimensions for this package are shown in the following illustration.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
CDCVF857DGG  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
DGG  
48  
48  
48  
48  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
CDCVF857DGGG4  
CDCVF857DGGR  
CDCVF857DGGRG4  
TSSOP  
TSSOP  
TSSOP  
DGG  
DGG  
DGG  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
CDCVF857GQLR  
CDCVF857RHAR  
ACTIVE  
ACTIVE  
VFBGA  
QFN  
GQL  
RHA  
56  
40  
1000  
TBD  
Call TI  
Level-2A-220C-4 WKS  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
CDCVF857RHARG4  
CDCVF857RHAT  
ACTIVE  
ACTIVE  
ACTIVE  
QFN  
QFN  
QFN  
RHA  
RHA  
RHA  
40  
40  
40  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
CDCVF857RHATG4  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
CDCVF857RTBR  
CDCVF857RTBT  
ACTIVE  
ACTIVE  
QFN  
QFN  
RTB  
RTB  
40  
40  
2500  
250  
TBD  
TBD  
CU SNPB  
CU SNPB  
Level-3-235C-168 HR  
Level-3-235C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PINS SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

CDCVF857DGG

2.5-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF857DGGG4

2.5-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF857DGGR

2.5-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF857DGGRG4

2.5-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF857GQL

2.5-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF857GQLR

2.5-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF857IDGG

PLL BASED CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO48, PLASTIC, MO-153, TSSOP-48
TI

CDCVF857IRTB

PLL BASED CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), QCC40, 6 X 6 MM, 0.5 MM PITCH, MLF-40
TI

CDCVF857RHA

2.5-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF857RHAR

2.5-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF857RHARG4

2.5-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF857RHAT

2.5-V PHASE-LOCK LOOP CLOCK DRIVER
TI