CSD97396Q4MT [TI]

30A 同步降压 NexFET 功率级 | DPC | 8 | -40 to 150;
CSD97396Q4MT
型号: CSD97396Q4MT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

30A 同步降压 NexFET 功率级 | DPC | 8 | -40 to 150

PC 开关 光电二极管
文件: 总21页 (文件大小:719K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
CSD97396Q4M  
ZHCSEH9 DECEMBER 2015  
CSD97396Q4M 同步降压 NexFET™ 功率级  
1 特性  
2 应用范围  
1
15A 电流下超过 93% 的系统效率  
超级本/笔记本 DC/DC 转换器  
多相 Vcore DDR 解决方案  
最大额定持续电流 30A,峰值 65A  
高频运行(高达 2MHz)  
在网络互联、电信、和计算系统中的负载点同步降  
高密度 – 3.5mm × 4.5mm 小外形尺寸无引线封装  
(SON) 尺寸  
3 说明  
超低电感封装  
CSD97396Q4M NexFET™功率级的设计经过高度优  
化,适用于高功率、高密度同步降压转换器。这个产品  
集成了驱动器集成电路 (IC) NexFET 技术来完善功  
率级开关功能。此驱动器 IC 具有一个内置可选二极管  
仿真功能,此功能可启用断续传导模式 (DCM) 运行来  
提升轻负载效率。此外,驱动器 IC 支持 ULQ 模式,  
此模式支持针对 Windows®8 的联网待机功能。借助于  
三态 PWM 输入,静态电流可减少至 130μA,并支持  
立即响应。当 SKIP# 保持在三态时,电流可减少至  
8µA(恢复切换通常需要 20µs)。这个组合在小型 3.5  
x 4.5mm 外形尺寸封装中实现具有高电流、高效和高  
速开关功能的器件。此外,印刷电路板 (PCB) 封装已  
经过优化,可帮助减少设计时间并简化总体系统设计的  
完成。  
系统优化的 PCB 封装  
超低静态 (ULQ) 电流模式  
3.3V 5V 脉宽调制 (PWM) 信号兼容  
支持强制连续传导模式 (FCCM) 的二极管仿真模式  
输入电压高达 24V  
三态 PWM 输入  
集成型自举二极管  
击穿保护  
符合 RoHS 绿色环保标准-无铅引脚镀层  
无卤素  
器件信息(1)  
封装  
订货编号  
CSD97396Q4M  
CSD97396Q4MT  
介质和数量  
13英寸卷带  
7 英寸卷带  
2500  
250  
SON 3.5mm x 4.5mm  
塑料封装  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
间隔  
应用图表  
典型功率级效率与功率损耗  
ëLb  
100  
90  
80  
70  
60  
50  
10  
8
/{597396  
ëhÜÇ  
ë//  
VDD = 5 V  
VIN = 12 V  
VOUT = 1.8 V  
LOUT = 0.29 mH  
fSW = 500 kHz  
TA = 25èC  
6
ë//  
4
tía1  
+Ls1  
-Ls2  
ëhÜÇ  
ëhÜÇ  
{{  
2
+bÇ/  
-bÇ/  
+Ls2  
0
wÇ  
-Ls2  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
tía2  
D000  
tDb5  
aulꢀi-tꢁꢂse  
/onꢀroller  
/{597396  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLPS572  
 
 
 
CSD97396Q4M  
ZHCSEH9 DECEMBER 2015  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation .......................... 9  
8.1 Application Information.............................................. 9  
8.2 Typical Application ................................................... 9  
8.3 System Example ..................................................... 12  
Layout ................................................................... 14  
9.1 Layout Guidelines ................................................... 14  
9.2 Layout Example ...................................................... 14  
9.3 Thermal Considerations.......................................... 14  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
Detailed Description .............................................. 6  
7.1 Overview ................................................................... 6  
7.2 Functional Block Diagram ......................................... 6  
7.3 Feature Description................................................... 6  
7.4 Device Functional Modes.......................................... 8  
10 器件和文档支持 ..................................................... 15  
10.1 社区资源................................................................ 15  
10.2 ....................................................................... 15  
10.3 静电放电警告......................................................... 15  
10.4 Glossary................................................................ 15  
11 机械、封装和可订购信息....................................... 16  
11.1 机械制图................................................................ 16  
11.2 建议印刷电路板 (PCB) 焊盘图案........................... 17  
11.3 建议模板开口......................................................... 17  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 12 月  
*
最初发布版本。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
CSD97396Q4M  
www.ti.com.cn  
ZHCSEH9 DECEMBER 2015  
5 Pin Configuration and Functions  
SON 3.5 × 4.5 mm  
Top View  
SKIP#  
VDD  
1
2
3
8
7
6
PWM  
BOOT  
PGND  
BOOT_R  
9
PGND  
VSW  
VIN  
4
5
Pin Functions  
PIN  
NAME  
DESCRIPTION  
NO.  
1
SKIP#  
This pin enables the Diode Emulation function. When this pin is held low, diode emulation mode is enabled for the  
Sync FET. When SKIP# is high, the CSD97396Q4M operates in forced continuous conduction mode. A tri-state  
voltage on SKIP# puts the driver into a very low power state.  
2
3
4
5
6
7
VDD  
Supply voltage to gate drivers and internal circuitry.  
PGND  
VSW  
Power ground, needs to be connected to Pin 9 and PCB  
Voltage switching node – pin connection to the output inductor.  
Input voltage pin. Connect input capacitors close to this pin.  
VIN  
BOOT_R  
BOOT  
Bootstrap capacitor connection. Connect a minimum 0.1 µF 16 V X5R, ceramic cap from BOOT to BOOT_R pins. The  
bootstrap capacitor provides the charge to turn on the Control FET. The bootstrap diode is integrated. Boot_R is  
internally connected to VSW  
.
8
PWM  
Pulse width modulated 3-state input from external controller. Logic low sets Control FET gate low and Sync FET gate  
high. Logic high sets Control FET gate high and Sync FET gate Low. Open or High Z sets both MOSFET gates low if  
greater than the Tri-State Shutdown Hold-off Time (t3HT  
)
9
PGND  
Power Ground  
Copyright © 2015, Texas Instruments Incorporated  
3
CSD97396Q4M  
ZHCSEH9 DECEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
TA = 25°C (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–7  
MAX  
UNIT  
V
VIN to PGND  
30  
30  
33  
6
VSW to PGND , VIN to VSW  
VSW to PGND, VIN to VSW (<10 ns)  
VDD to PGND  
V
V
–0.3  
–0.3  
–0.3  
–2  
V
PWM, SKIP# to PGND  
BOOT to PGND  
6
V
35  
38  
6
V
BOOT to PGND (<10 ns)  
BOOT to BOOT_R  
V
–0.3  
V
BOOT to BOOT_R (duty cycle <0.2%)  
8
V
PD  
TJ  
Power dissipation  
8
W
°C  
°C  
Operating temperature  
Storage temperature  
–40  
–55  
150  
150  
Tstg  
(1) Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human body model (HBM)(1)  
Charged device model (CDM)(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
TA = 25°C (unless otherwise noted)  
MIN  
MAX UNIT  
VDD  
Gate drive voltage  
Input supply voltage  
4.5  
5.5  
24  
V
V
(1)  
VIN  
IOUT  
IOUT-PK  
ƒSW  
Continuous output current  
Peak output current(3)  
Switching frequency  
On-time duty cycle  
VIN = 12 V, VDD = 5 V, VOUT = 1.8 V,  
ƒSW = 500 kHz, LOUT = 0.29 µH(2)  
30  
A
65  
A
CBST = 0.1 µF (min)  
2000  
85%  
kHz  
Minimum PWM on-time  
Operating temperature  
40  
ns  
°C  
–40  
125  
(1) Operating at high VIN can create excessive AC voltage overshoots on the switch node (VSW) during MOSFET switching transients. For  
reliable operation, the switch node (VSW) to ground voltage must remain at or below the Absolute Maximum Ratings.  
(2) Measurement made with six 10 µF (TDK C3216X5R1C106KT or equivalent) ceramic capacitors placed across VIN to PGND pins.  
(3) System conditions as defined in Note 2. Peak Output Current is applied for tp = 10 ms, duty cycle 1%  
6.4 Thermal Information  
TA = 25°C (unless otherwise noted)  
THERMAL METRIC  
Junction-to-case thermal resistance (top of package)(1)  
Junction-to-board thermal resistance(2)  
MIN  
TYP  
MAX UNIT  
22.8 °C/W  
2.5 °C/W  
RθJC  
RθJB  
(1)  
(2)  
R
θJC is determined with the device mounted on a 1 inch² (6.45 cm²), 2 oz (0.071 mm thick) Cu pad on a 1.5 inch x 1.5 inch, 0.06 inch  
(1.52 mm) thick FR4 board.  
θJB value based on hottest board temperature within 1 mm of the package.  
R
4
Copyright © 2015, Texas Instruments Incorporated  
CSD97396Q4M  
www.ti.com.cn  
ZHCSEH9 DECEMBER 2015  
6.5 Electrical Characteristics  
TA = 25°C, VDD = POR to 5.5 V (unless otherwise noted)  
PARAMETER  
PLOSS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN = 12 V, VDD = 5 V, VOUT = 1.8 V, IOUT = 15 A,  
ƒSW = 500 kHz, LOUT = 0.29 µH, TJ = 25°C  
Power Loss(1)  
Power Loss(2)  
Power Loss(2)  
1.9  
2.2  
2.6  
W
W
W
VIN = 19 V, VDD = 5 V, VOUT = 1.8 V, IOUT = 15 A,  
ƒSW = 500 kHz, LOUT = 0.29 µH, TJ = 25°C  
VIN = 19 V, VDD = 5 V, VOUT = 1.8 V, IOUT = 15 A,  
ƒSW = 500 kHz, LOUT = 0.29 µH, TJ = 125°C  
VIN  
IQ  
VIN quiescent current  
PWM = Floating, VDD = 5 V, VIN= 24 V  
1
µA  
VDD  
PWM = Float, SKIP# = VDD or 0 V  
SKIP# = Float  
130  
8
µA  
µA  
IDD  
IDD  
Standby supply current  
Operating supply current  
PWM = 50% Duty cycle, ƒSW = 500 kHz  
7.8  
mA  
POWER-ON RESET AND UNDERVOLTAGE LOCKOUT  
VDD Rising  
VDD Falling  
Power-on reset  
UVLO  
4.15  
V
V
3.7  
Hysteresis  
0.2  
mV  
PWM AND SKIP# I/O SPECIFICATIONS  
Pull up to VDD  
1700  
800  
RI  
Input impedance  
kΩ  
Pull down (to GND)  
VIH  
VIL  
Logic level high  
Logic level low  
Hysteresis  
2.65  
1.3  
0.6  
2
V
VIH  
VTS  
0.2  
Tri-state voltage  
Tri-state activation time  
(falling) PWM(2)  
tTHOLD(off1)  
tTHOLD(off2)  
tTSKF  
60  
60  
1
ns  
µs  
Tri-state activation time  
(rising) PWM(2)  
Tri-state activation time  
(falling) SKIP#(2)  
Tri-state activation time  
tTSKR  
1
(2)  
(rising) SKIP#  
t3RD(PWM)  
t3RD(SKIP#)  
Tri-state exit time PWM(2)  
Tri-state exit time SKIP#(2)  
100  
50  
ns  
µs  
BOOTSTRAP SWITCH  
VFBST Forward voltage  
IRLEAK  
Reverse leakage(2)  
IF = 10 mA  
120  
240  
2
mV  
µA  
VBST – VDD = 25 V  
(1) Measurement made with six 10 µF (TDK C3216X5R1C106KT or equivalent) ceramic capacitors placed across VIN to PGND pins.  
(2) Specified by design.  
Copyright © 2015, Texas Instruments Incorporated  
5
CSD97396Q4M  
ZHCSEH9 DECEMBER 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The CSD97396Q4M NexFET™ Power Stage is a highly optimized design for use in a high-power, high-density  
synchronous buck converter.  
7.2 Functional Block Diagram  
7.3 Feature Description  
7.3.1 Powering CSD97396Q4M and Gate Drivers  
An external VDD voltage is required to supply the integrated gate driver IC and provide the necessary gate drive  
power for the MOSFETs. A 1 µF 10 V X5R or higher ceramic capacitor is recommended to bypass VDD pin to  
PGND. A bootstrap circuit to provide gate drive power for the Control FET is also included. The bootstrap supply  
to drive the Control FET is generated by connecting a 100 nF 16 V X5R ceramic capacitor between BOOT and  
BOOT_R pins. An optional RBOOT resistor can be used to slow down the turn on speed of the Control FET and  
reduce voltage spikes on the VSW node. A typical 1 Ω to 4.7 Ω value is a compromise between switching loss  
and VSW spike amplitude.  
7.3.2 Undervoltage Lockout (UVLO) Protection  
The UVLO comparator evaluates the VDD voltage level. As VVDD rises, both the Control FET and Sync FET  
gates hold actively low at all times until VVDD reaches the higher UVLO threshold (VUVLO_H)., Then the driver  
becomes operational and responds to PWM and SKIP# commands. If VDD falls below the lower UVLO threshold  
(VUVLO_L = VUVLO_H – Hysteresis), the device disables the driver and drives the outputs of the Control FET and  
Sync FET gates actively low. Figure 1 shows this function.  
CAUTION  
Do not start the driver in the very low power mode (SKIP# = Tri-state).  
6
Copyright © 2015, Texas Instruments Incorporated  
CSD97396Q4M  
www.ti.com.cn  
ZHCSEH9 DECEMBER 2015  
Feature Description (continued)  
V
UVLO_H  
V
UVLO_L  
V
VDD  
Driver On  
UDG-12218  
Figure 1. UVLO Operation  
7.3.3 PWM Pin  
The PWM pin incorporates an input tri-state function. The device forces the gate driver outputs to low when  
PWM is driven into the tri-state window and the driver enters a low power state with zero exit latency. The pin  
incorporates a weak pull-up to maintain the voltage within the tri-state window during low-power modes.  
Operation into and out of tri-state mode follows the timing diagram outlined in Figure 2.  
When VDD reaches the UVLO_H level, a tri-state voltage range (window) is set for the PWM input voltage. The  
window is defined the PWM voltage range between PWM logic high (VIH) and logic low (VIL) thresholds. The  
device sets high-level input voltage and low-level input voltage threshold levels to accommodate both 3.3 V  
(typical) and 5 V (typical) PWM drive signals.  
When the PWM exits tri-state, the driver enters CCM for a period of 4 µs, regardless of the state of the SKIP#  
pin. Normal operation requires this time period in order for the auto-zero comparator to resume.  
Figure 2. PWM Tri-State Timing Diagram  
7.3.4 SKIP# Pin  
The SKIP# pin incorporates the input tri-state buffer as PWM. The function is somewhat different. When SKIP# is  
low, the zero crossing (ZX) detection comparator is enabled, and DCM mode operation occurs if the load current  
is less than the critical current. When SKIP# is high, the ZX comparator disables, and the converter enters FCCM  
mode. When both SKIP# and PWM are tri-stated, normal operation forces the gate driver outputs low and the  
driver enters a low-power state. In the low-power state, the UVLO comparator remains off to reduce quiescent  
current. When SKIP# is pulled low, the driver wakes up and is able to accept PWM pulses in less than 50 µs.  
Copyright © 2015, Texas Instruments Incorporated  
7
 
CSD97396Q4M  
ZHCSEH9 DECEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
Table 1 shows the logic functions of UVLO, PWM, SKIP#, the Control FET Gate and the Sync FET Gate.  
Table 1. Logic Functions of the Driver IC  
UVLO  
Active  
PWM  
SKIP#  
SYNC FET GATE  
CONTROL FET GATE  
MODE  
Disabled  
DCM(1)  
FCCM  
Low  
High(1)  
High  
Low  
Low  
Low  
Low  
High  
Low  
Low  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Low  
Low  
Low  
High  
High  
Tri-state  
H or L  
H or L  
Tri-state  
Low  
LQ(2)  
ULQ(3)  
Low  
(1) Until zero crossing protection occurs.  
(2) Low quiescent current (LQ)  
(3) Ultra-low quiescent current (ULQ)  
7.3.4.1 Zero Crossing (ZX) Operation  
The zero crossing comparator is adaptive for improved accuracy. As the output current decreases from a heavy  
load condition, the inductor current also reduces and eventually arrives at a valley, where it touches zero current,  
which is the boundary between continuous conduction and discontinuous conduction modes. The SW pin detects  
the zero-current condition. When this zero inductor current condition occurs, the ZX comparator turns off the  
rectifying MOSFET.  
7.3.5 Integrated Boost-Switch  
To maintain a BST-SW voltage close to VDD (to get lower conduction losses on the high-side FET), the  
conventional diode between the VDD pin and the BST pin is replaced by a FET which is gated by the DRVL  
signal.  
7.4 Device Functional Modes  
Table 1 shows the different functional modes of CSD97396. The diode emulation mode is enabled with SKIP#  
pulled low, which improves light load efficiency. With PWM in tri-state, Power Stage enters LQ mode and the  
quiescent current is reduced to 130 µA. When SKIP# is held in tri-state, ULQ mode is enabled and the current is  
decreased to 8 µA.  
8
Copyright © 2015, Texas Instruments Incorporated  
 
CSD97396Q4M  
www.ti.com.cn  
ZHCSEH9 DECEMBER 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The Power Stage CSD97396Q4M is a highly optimized design for synchronous buck applications using NexFET  
devices with a 5 V gate drive. The Control FET and Sync FET silicon are parametrically tuned to yield the lowest  
power loss and highest system efficiency. As a result, a rating method is used that is tailored towards a more  
systems centric environment. The high-performance gate driver IC integrated in the package helps minimize the  
parasitics and results in extremely fast switching of the power MOSFETs. System level performance curves such  
as Power Loss, SOA, and normalized graphs allow engineers to predict the product performance in the actual  
application.  
8.2 Typical Application  
Figure 3. Application Schematic  
Copyright © 2015, Texas Instruments Incorporated  
9
CSD97396Q4M  
ZHCSEH9 DECEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Application Curves  
TJ = 125°C, unless stated otherwise. The Typical CSD97396Q4M System Characteristic curves (see Figure 6 and Figure 7)  
are based on measurements made on a PCB design with dimensions of 4.0" (W) × 3.5" (L) × 0.062" (T) and 6 copper layers  
of 1 oz. copper thickness. See System Example for detailed explanation.  
12  
10  
8
1.05  
1
Typ  
Max  
0.95  
0.9  
0.85  
0.8  
6
4
0.75  
0.7  
2
0.65  
0.6  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Output Current (A)  
TC - Junction Temperature (èC)  
D001  
D002  
VIN = 12 V  
ƒSW = 500 kHz  
VDD = 5 V  
VOUT = 1.8 V  
VIN = 12 V  
ƒSW = 500 kHz  
VDD = 5 V  
VOUT = 1.8 V  
LOUT = 0.29 µH  
LOUT = 0.29 µH  
Figure 4. Power Loss vs Output Current  
Figure 5. Power Loss vs Temperature  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
400 LFM  
200 LFM  
100 LFM  
Nat. conv.  
Min  
Typ  
0
0
0
20  
40  
60  
80  
100  
120  
140  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Board Temperature (èC)  
Ambient Temperature (èC)  
D004  
D003  
VIN = 12 V  
VDD = 5 V  
VOUT = 1.8 V  
VIN = 12 V  
ƒSW = 500 kHz  
VDD = 5 V  
VOUT = 1.8 V  
ƒSW = 500 kHz  
LOUT = 0.29 µH  
LOUT = 0.29 µH  
Figure 7. Typical Safe Operating Area  
Figure 6. Safe Operating Area – PCB Horizontal Mount  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
 
CSD97396Q4M  
www.ti.com.cn  
ZHCSEH9 DECEMBER 2015  
Typical Application (continued)  
TJ = 125°C, unless stated otherwise. The Typical CSD97396Q4M System Characteristic curves (see Figure 6 and Figure 7)  
are based on measurements made on a PCB design with dimensions of 4.0" (W) × 3.5" (L) × 0.062" (T) and 6 copper layers  
of 1 oz. copper thickness. See System Example for detailed explanation.  
1.35  
3.8  
3.3  
2.7  
2.2  
1.6  
1.1  
0.5  
0.0  
-0.5  
1.14  
1.12  
1.1  
1.6  
1.3  
1.1  
0.9  
0.7  
0.4  
0.2  
0.0  
-0.2  
1.3  
1.25  
1.2  
1.08  
1.06  
1.04  
1.02  
1
1.15  
1.1  
1.05  
1
0.95  
0.98  
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
3
5
7
9
11  
13  
15  
17  
19  
21  
23  
Switching Frequency (kHz)  
Input Voltage (V)  
D005  
D006  
VIN = 12 V  
IOUT = 25 A  
VDD = 5 V  
VOUT = 1.8 V  
IOUT = 25 A  
ƒSW = 500 kHz  
VDD = 5 V  
VOUT = 1.8 V  
LOUT = 0.29 µH  
LOUT = 0.29 µH  
Figure 8. Normalized Power Loss vs Frequency  
Figure 9. Normalized Power Loss vs Input Voltage  
1.4  
1.3  
1.2  
1.1  
1
4.4  
3.3  
2.2  
1.1  
0.0  
-1.1  
-2.2  
-3.3  
1.2  
1.15  
1.1  
2.2  
1.7  
1.1  
0.6  
0.0  
-0.6  
-1.1  
-1.7  
1.05  
1
0.9  
0.8  
0.7  
0.95  
0.9  
0.85  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
0
200  
400  
600  
800  
1000  
1200  
Output Voltage (V)  
Output Inductance (nH)  
D007  
D008  
VIN = 12 V  
VDD = 5 V  
IOUT = 25 A  
VIN = 12 V  
VDD = 5 V  
IOUT = 25 A  
ƒSW = 500 kHz  
LOUT = 0.29 µH  
ƒSW = 500 kHz  
VOUT = 1.8 V  
Figure 10. Normalized Power Loss vs Output Voltage  
Figure 11. Normalized Power Loss vs Output Inductance  
40  
9.5  
9.4  
9.3  
9.2  
9.1  
9
35  
30  
25  
20  
15  
10  
5
8.9  
8.8  
8.7  
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Switching Frequency (kHz)  
TC - Junction Temperature (èC)  
D009  
D010  
VIN = 12 V  
VDD = 5 V  
IOUT = 25 A  
VIN = 12 V  
IOUT = 25 A  
VDD = 5 V  
VOUT = 1.8 V  
LOUT = 0.29 µH  
VOUT = 1.8 V  
LOUT = 0.29 µH  
Figure 12. Driver Current vs Frequency  
Figure 13. Driver Current vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
 
CSD97396Q4M  
ZHCSEH9 DECEMBER 2015  
www.ti.com.cn  
8.3 System Example  
8.3.1 Power Loss Curves  
MOSFET centric parameters such as RDS(ON) and Qgd are primarily needed by engineers to estimate the loss  
generated by the devices. In an effort to simplify the design process for engineers, Texas Instruments has  
provided measured power loss performance curves. Figure 4 plots the power loss of the CSD97396Q4M as a  
function of load current. This curve is measured by configuring and running the CSD97396Q4M as it would be in  
the final application (see Figure 14). The measured power loss is the CSD97396Q4M device power loss which  
consists of both input conversion loss and gate drive loss. Equation 1 is used to generate the power loss curve.  
Power Loss = (VIN × IIN) + (VDD × IDD) – (VSW_AVG × IOUT  
)
(1)  
The power loss curve in Figure 4 is measured at the maximum recommended junction temperature of  
TJ = 125°C under isothermal test conditions.  
8.3.2 SOA Curves  
The SOA curves in the CSD97396Q4M datasheet give engineers guidance on the temperature boundaries within  
an operating system by incorporating the thermal resistance and system power loss. Figure 6 and Figure 7  
outline the temperature and airflow conditions required for a given load current. The area under the curve  
dictates the safe operating area. All the curves are based on measurements made on a PCB design with  
dimensions of 4.0 inches (W) × 3.5 inches (L) × 0.062 inch (T) and 6 copper layers of 1 oz. copper thickness.  
8.3.3 Normalized Curves  
The normalized curves in the CSD97396Q4M data sheet give engineers guidance on the Power Loss and SOA  
adjustments based on their application specific needs. These curves show how the power loss and SOA  
boundaries will adjust for a given set of systems conditions. The primary Y-axis is the normalized change in  
power loss and the secondary Y-axis is the change is system temperature required in order to comply with the  
SOA curve. The change in power loss is a multiplier for the Power Loss curve and the change in temperature is  
subtracted from the SOA curve.  
/{5ꢂ73ꢂ6ꢃ4a  
Input Current (IIN  
)
.ooꢁ  
Gate Drive  
Current (IDD  
Vin  
)
!
VDD  
VIN  
!
VDD  
.{Ç  
Cin  
Input Voltage  
CBoot  
/onꢁrol  
C9Ç  
(VIN  
)
ë
I{gꢀꢁe  
Gate Drive  
Voltage (VDD  
ë
5wëI  
)
.ooꢁ_w  
LO  
VO  
Vsw  
VSW  
{YLt#  
tía  
!
[[  
{YLt#  
tía  
{ync  
C9Ç  
Co  
Output Current  
[{gꢀꢁe  
(IOUT  
)
5wë[  
Db5  
PGND  
!verꢀging  
/ircuiꢁ  
ë
Averaged Switched  
Node Voltage  
(VSW_AVG  
)
Figure 14. Power Loss Test Circuit  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
 
CSD97396Q4M  
www.ti.com.cn  
ZHCSEH9 DECEMBER 2015  
System Example (continued)  
8.3.4 Calculating Power Loss and SOA  
The user can estimate product loss and SOA boundaries by arithmetic means (see the Design Example).  
Though the Power Loss and SOA curves in this datasheet are taken for a specific set of test conditions, the  
following procedure will outline the steps engineers should take to predict product performance for any set of  
system conditions.  
8.3.4.1 Design Example  
Operating Conditions: Output Current (lOUT) = 20 A, Input Voltage (VIN ) = 7 V, Output Voltage (VOUT) = 2.0 V,  
Switching Frequency (ƒSW) = 800 kHz, Output Inductor (LOUT) = 0.2 µH  
8.3.4.2 Calculating Power Loss  
Typical Power Loss at 20 A = 3.71 W (Figure 4)  
Normalized Power Loss for switching frequency 1.01 (Figure 8)  
Normalized Power Loss for input voltage 1.04 (Figure 9)  
Normalized Power Loss for output voltage 1.04 (Figure 10)  
Normalized Power Loss for output inductor 1.07 (Figure 11)  
Final calculated Power Loss = 3.71 W × 1.01 × 1.04 × 1.04 × 1.07 4.34 W  
8.3.4.3 Calculating SOA Adjustments  
SOA adjustment for switching frequency 0.16°C (Figure 8)  
SOA adjustment for input voltage 0.42°C (Figure 9)  
SOA adjustment for output voltage 0.46°C (Figure 10)  
SOA adjustment for output inductor 0.74°C (Figure 11)  
Final calculated SOA adjustment = 0.16 + 0.42 + 0.46 + 0.74 1.78°C  
Figure 15. Power Stage CSD97396Q4M SOA  
In the design example above, the estimated power loss of the CSD97396Q4M would increase to 4.23 W. In  
addition, the maximum allowable board and/or ambient temperature would have to decrease by 1.78°C.  
Figure 15 graphically shows how the SOA curve would be adjusted accordingly.  
1. Start by drawing a horizontal line from the application current to the SOA curve.  
2. Draw a vertical line from the SOA curve intercept down to the board/ambient temperature.  
3. Adjust the SOA board/ambient temperature by subtracting the temperature adjustment value.  
In the design example, the SOA temperature adjustment yields a reduction in allowable board/ambient  
temperature of 1.78°C. In the event the adjustment value is a negative number, subtracting the negative number  
would yield an increase in allowable board/ambient temperature.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
 
CSD97396Q4M  
ZHCSEH9 DECEMBER 2015  
www.ti.com.cn  
9 Layout  
9.1 Layout Guidelines  
9.1.1 Recommended PCB Design Overview  
There are two key system-level parameters that can be addressed with a proper PCB design: electrical and  
thermal performance. Properly optimizing the PCB layout will yield maximum performance in both areas. Below  
is a brief description on how to address each parameter.  
9.1.2 Electrical Performance  
The CSD97396Q4M has the ability to switch at voltage rates greater than 10 kV/µs. Special care must be then  
taken with the PCB layout design and placement of the input capacitors, inductor and output capacitors.  
The placement of the input capacitors relative to VIN and PGND pins of CSD97396Q4M device should have the  
highest priority during the component placement routine. It is critical to minimize these node lengths. As such,  
ceramic input capacitors need to be placed as close as possible to the VIN and PGND pins (see Figure 16).  
The example in Figure 16 uses 1 × 1 nF 0402 25 V and 3 × 10 µF 1206 25 V ceramic capacitors (TDK Part #  
C3216X5R1C106KT or equivalent). Notice there are ceramic capacitors on both sides of the board with an  
appropriate amount of vias interconnecting both layers. In terms of priority of placement next to the Power  
Stage C5, C8 and C6, C19 should follow in order.  
The bootstrap cap CBOOT 0.1 µF 0603 16 V ceramic capacitor should be closely connected between BOOT  
and BOOT_R pins  
The switching node of the output inductor should be placed relatively close to the Power Stage  
CSD97396Q4M VSW pins. Minimizing the VSW node length between these two components will reduce the  
(1)  
PCB conduction losses and actually reduce the switching noise level.  
9.2 Layout Example  
Figure 16. Recommended PCB Layout (Top Down View)  
9.3 Thermal Considerations  
The CSD97396Q4M has the ability to use the GND planes as the primary thermal path. As such, the use of  
thermal vias is an effective way to pull away heat from the device and into the system board. Concerns of solder  
voids and manufacturability problems can be addressed by the use of three basic tactics to minimize the amount  
of solder attach that will wick down the via barrel:  
Intentionally space out the vias from each other to avoid a cluster of holes in a given area.  
Use the smallest drill size allowed in your design. The example in Figure 16 uses vias with a 10 mil drill hole  
and a 16 mil capture pad.  
Tent the opposite side of the via with solder-mask.  
In the end, the number and drill size of the thermal vias should align with the end user’s PCB design rules and  
manufacturing capabilities.  
(1) Keong W. Kam, David Pommerenke, “EMI Analysis Methods for Synchronous Buck Converter EMI Root Cause Analysis”, University of  
Missouri – Rolla  
14  
版权 © 2015, Texas Instruments Incorporated  
 
CSD97396Q4M  
www.ti.com.cn  
ZHCSEH9 DECEMBER 2015  
10 器件和文档支持  
10.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
10.2 商标  
NexFET, E2E are trademarks of Texas Instruments.  
Windows is a registered trademark of Microsoft Corporation.  
All other trademarks are the property of their respective owners.  
10.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
10.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2015, Texas Instruments Incorporated  
15  
CSD97396Q4M  
ZHCSEH9 DECEMBER 2015  
www.ti.com.cn  
11 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
11.1 机械制图  
°
c1  
a1  
D2  
4
1
0.300  
(x45°)  
8
5
毫米  
英寸  
标称值  
DIM  
最小值  
0.800  
0.000  
0.150  
2.000  
0.150  
0.150  
3.850  
4.400  
3.400  
2.000  
标称值  
0.900  
0.000  
0.200  
2.200  
0.200  
0.200  
3.950  
4.500  
3.500  
2.100  
最大值  
1.000  
0.080  
0.250  
2.400  
0.250  
0.250  
4.050  
4.600  
3.600  
2.200  
最小值  
0.031  
0.000  
0.006  
0.079  
0.006  
0.006  
0.152  
0.173  
0.134  
0.079  
最大值  
0.039  
0.003  
0.010  
0.095  
0.010  
0.010  
0.160  
0.181  
0.142  
0.087  
A
a1  
b
0.035  
0.000  
0.008  
b1  
b2  
c1  
D2  
E
0.087  
0.008  
0.008  
0.156  
0.177  
E1  
E2  
e
0.138  
0.083  
0.400 典型值  
0.300 典型值  
0.400  
0.016 典型值  
0.012 典型值  
0.016  
K
L
0.300  
0.180  
0.00  
0.500  
0.280  
0.012  
0.007  
0.00  
0.020  
0.011  
L1  
θ
0.230  
0.009  
16  
版权 © 2015, Texas Instruments Incorporated  
CSD97396Q4M  
www.ti.com.cn  
ZHCSEH9 DECEMBER 2015  
11.2 建议印刷电路板 (PCB) 焊盘图案  
(0.006)  
0.150  
(0.016)  
0.400  
(0.010)  
0.250  
(x18)  
(0.006)  
0.150  
(0.024)  
0.600 (x 2)  
(0.008)  
0.200  
(x2)  
(0.087)  
2.200  
R0.100  
R0.100  
0.225 ( x 2)  
(0.009)  
(0.088)  
2.250  
(0.012)  
0.300  
(0.159)  
4.050  
11.3 建议模板开口  
(0.016)  
0.400  
(0.029)  
0.738 (x 8)  
(0.008)  
0.200  
(0.008)  
0.200  
(0.015)  
0.390  
(0.014)  
0.350  
0.300  
R0.100  
(0.012)  
0.850 (x8)  
(0.033)  
(0.012)  
0.300  
R0.100  
(0.004)  
0.115  
0.440 (0.017)  
(0.008)  
0.200  
(0.009)  
0.225  
0.200  
(0.008)  
(0.087)  
2.200  
NOTE: 尺寸单位为 mm(英寸)。  
模板厚度为 100µm。  
版权 © 2015, Texas Instruments Incorporated  
17  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CSD97396Q4M  
CSD97396Q4MT  
ACTIVE  
VSON-CLIP  
VSON-CLIP  
DPC  
8
8
RoHS-Exempt  
& Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
97396M  
97396M  
ACTIVE  
DPC  
RoHS-Exempt  
& Green  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

CSDA1AA

Industrial Control IC
ETC

CSDA1AC

Industrial Control IC
ETC

CSDA1BA

Industrial Control IC
ETC

CSDA1BC

Industrial Control IC
ETC

CSDA1DA

Industrial Control IC
ETC

CSDA1DC

Industrial Control IC
ETC

CSDC1AA

Industrial Control IC
ETC

CSDC1AC

Industrial Control IC
ETC

CSDC1BA

Industrial Control IC
ETC

CSDC1BC

Industrial Control IC
ETC

CSDC1DA

Industrial Control IC
ETC

CSDC1DC

Industrial Control IC
ETC