DAC11001BPFBR [TI]

High-grade, 20-bit, monotonic DAC with ultra-low noise, low glitch and exceptional THD performance | PFB | 48 | -40 to 125;
DAC11001BPFBR
型号: DAC11001BPFBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

High-grade, 20-bit, monotonic DAC with ultra-low noise, low glitch and exceptional THD performance | PFB | 48 | -40 to 125

文件: 总53页 (文件大小:2909K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC11001B  
ZHCSPG5 DECEMBER 2021  
DAC11001B 20 位低噪声、超低谐波失真、  
快速稳定、高电压输出数模转换(DAC)  
1 特性  
3 说明  
20 位单调性1LSB DNL最大值)  
• 积分线性1LSB INL最大值)  
• 低噪声7nV/Hz  
• 独立于代码的低干扰1nV-s  
• 出色THD:  
20kHz fOUT1MHz fDAC 118dB  
• 快速稳定1µs  
20 DAC11001B 是一款高精度、低噪声、电压输  
出、单通道数模转换器 (DAC)DAC11001B 根据设计  
具有单调性并可在所有输出范围内提供出色的线性  
度。  
非缓冲电压输出可提供低噪声性能 (7nV/Hz) 和快速  
稳定时间 (1µs)因此这款器件非常适合低噪声、快速  
控制环路和波形生成应用。DAC11001B 兼具增强型抗  
尖峰脉冲电路以及独立于代码的超低干扰 (1nV-s)可  
实现干净的波形斜坡和超低总谐波失(THD)。  
• 灵活的输出范围VREFPF VREFNF  
• 集成式精密反馈电阻器  
50MHz4 线SPI 兼容接口  
DAC11001B 器件包含上电复位电路因此 DAC 上电  
时使用寄存器中的已知值。使用外部基准可以实现  
VREFPF VREFNF DAC 输出包括非对称输出范  
围。  
– 读回  
– 菊花链  
• 温度范围40°C +125°C  
• 封装48 TQFP  
DAC11001B 使用一个以高达 50MHz 的时钟速率运行  
的多功4 线制串行接口。  
2 应用  
实验室和现场仪表  
光谱仪  
模拟输出模块  
电池测试  
半导体测试  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
DAC11001B  
TQFP (48)  
7.00mm × 7.00mm  
(1) 要了解所有可用封装请参见数据表末尾的封装选项附录。  
任意波形发生(AWG)  
MRI  
X 射线系统  
专业音频放大器机架式)  
IOVDD DVDD VCC AVDD  
REFPS REFPF  
Optional Gain  
OPA828  
C1  
R2  
R1  
+
VREFP  
REFPF  
REFPS  
ROFS  
RCM  
+
SCLK  
SDIN  
R
R
VOUT  
DAC11001B  
OPA828  
REFNS  
REFNF  
Power On Reset  
C2  
+
SYNC  
SDO  
RFB  
OUT  
VREFN  
OPA828  
Buffer  
DAC  
Register  
DAC  
LDAC  
CLR  
Register  
任意波形发生电路  
Power  
Down Logic  
ALARM  
DGND  
VSS AGND  
REFNS REFNF  
功能方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASF03  
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................28  
7.5 Programming............................................................ 29  
7.6 Register Map.............................................................31  
8 Application and Implementation..................................36  
8.1 Application Information............................................. 36  
8.2 Typical Application.................................................... 36  
8.3 System Examples..................................................... 40  
8.4 What to Do and What Not to Do............................... 43  
8.5 Initialization Set Up................................................... 43  
9 Power Supply Recommendations................................44  
9.1 Power-Supply Sequencing........................................46  
10 Layout...........................................................................47  
10.1 Layout Guidelines................................................... 47  
10.2 Layout Example...................................................... 48  
11 Device and Documentation Support..........................49  
11.1 Device Support........................................................49  
11.2 Documentation Support.......................................... 49  
11.3 接收文档更新通知................................................... 49  
11.4 支持资源..................................................................49  
11.5 Trademarks............................................................. 49  
11.6 Electrostatic Discharge Caution..............................49  
11.7 术语表..................................................................... 49  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Timing Requirements: Write, 4.5 V DVDD ≤  
5.5 V............................................................................10  
6.7 Timing Requirements: Write, 2.7 V DVDD  
<
4.5 V............................................................................ 11  
6.8 Timing Requirements: Read and Daisy-Chain  
Write, 4.5 V DVDD 5.5 V..................................... 12  
6.9 Timing Requirements: Read and Daisy-Chain  
Write, 2.7 V DVDD < 4.5 V.......................................13  
6.10 Timing Diagrams ....................................................14  
6.11 Typical Characteristics............................................ 15  
7 Detailed Description......................................................25  
7.1 Overview...................................................................25  
7.2 Functional Block Diagram.........................................25  
7.3 Feature Description...................................................25  
Information.................................................................... 49  
4 Revision History  
DATE  
REVISION  
NOTES  
December 2021  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
NC  
AGND  
REFPF  
REFPS  
REFNF  
REFNS  
OUT  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
NC  
2
AGND  
SDO  
SYNC  
SDIN  
SCLK  
CLR  
3
4
5
6
7
AGND-OUT  
RFB  
8
NC  
9
IOVDD  
DVDD  
DGND  
NC  
ROFS  
10  
11  
12  
RCM  
NC  
Not to scale  
5-1. PFB Package, 48-Pin TQFP, Top View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
2, 35, 38,  
40, 42, 43,  
46, 47  
Analog  
ground  
AGND  
Connect to 0 V.  
Analog  
ground  
AGND-OUT  
AGND-TnH  
8
Connect to 0 V. Measure DAC output voltage with respect to this node.  
Connect to 0 V. Integrated deglitcher clock ground.  
Analog  
ground  
14  
ALARM  
AVDD  
CLR  
19  
39, 41  
30  
Output  
Power  
Input  
Alarm output  
Positive low voltage analog power supply  
DAC registers clear pin, active low  
16, 17, 20,  
21, 22, 23,  
26  
Digital  
ground  
DGND  
Connect to 0 V.  
DVDD  
RFB  
27  
9
Power  
Input  
Digital power supply pin  
Integrated precision resistor feedback node  
Interface power supply pin  
IOVDD  
LDAC  
28  
18  
Power  
Input  
Load DAC pin, active low  
1, 12, 13,  
15, 24, 25,  
29, 36, 37,  
48  
NC  
No connection, leave floating  
OUT  
7
11  
5
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Unbuffered voltage output  
RCM  
Integrated precision resistor common-mode node  
External negative reference input. Connect to 0 V for unipolar DAC output.  
External negative reference sense node  
External positive reference input  
REFNF  
REFNS  
REFPF  
REFPS  
ROFS  
6
3
4
External positive reference sense node  
Integrated precision resistor offset node  
10  
Serial clock input of serial peripheral interface (SPI). Schmitt-trigger logic input.  
Data are transferred at rates of up to 50 MHz.  
SCLK  
31  
Input  
Serial data input. Schmitt-trigger logic input.  
Data are clocked into the input shift register on the falling edge of the serial clock input.  
SDIN  
SDO  
32  
34  
33  
Input  
Output  
Input  
Serial data output. Data are valid on the falling edge of SCLK.  
SPI bus chip select input (active low). Data bits are not clocked into the serial shift register unless  
SYNC is low. When SYNC is high, the SDO pin is in high-impedance status.  
SYNC  
VCC  
VSS  
45  
44  
Power  
Power  
Analog positive power supply  
Analog negative power supply  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
UNIT  
AVDD to AGND  
7
Positive supply voltage  
VCC to VSS  
40  
V
0.3  
VCC to AGND  
40  
0.3  
Negative supply voltage  
VSS to AGND  
0.3  
V
V
19  
Digital and IO supply voltage  
DVDD, IOVDD to DGND  
VREFPF to VREFNF  
VREFPF to VCC  
VREFPF to AGND  
VREFNF to AGND  
VREFNF to VSS  
7
40  
0.3  
0.3  
Positive reference voltage  
VCC + 0.3  
40  
V
0.3  
0.3  
0.3  
19  
Negative reference voltage  
Digital input(s) to DGND  
V
V
V
0.3  
VSS 0.3  
DGND 0.3  
VSS  
IOVDD + 0.3  
VCC  
to AGND (VSS = AGND)  
to VSS  
OUT, RFB, RCM, ROFS pin voltage  
0
VCC  
Alarm pin voltage, ALARM to DGND  
Digital output, SDO to DGND  
Current into any pin  
DVDD + 0.3  
DVDD + 0.3  
10  
V
V
0.3  
0.3  
mA  
°C  
°C  
10  
TJ  
Junction temperature  
150  
Tstg  
Storage temperature  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DAC11001B  
 
 
 
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
AVDD to AGND  
4.5  
5.5  
3  
33  
VSS to AGND  
V
18  
VCC to AGND  
8
V
VCC to VSS  
11  
2.7  
36  
V
DVDD to DGND  
5.5  
5.5  
0.3  
V
IOVDD to DGND  
AGND to DGND  
VIH digital input high voltage  
VIL digital input low voltage  
VREFPF to AGND  
VREFNF to AGND  
VREFPF to VREFNF  
1.7  
V
V
0.3  
0.7 × IOVDD  
V
0.3 × IOVDD  
V
3
15  
3
15  
0
V
V
30  
V
TA  
Operating temperature  
125  
°C  
40  
6.4 Thermal Information  
DAC11001B  
PFB (TQFP)  
48 PINS  
51.0  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
10.3  
16.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJT  
16.0  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
at TA = 40°C to +125°C, VCC = +15 V, VSS = 15 V, AVDD = 5.5 V, DVDD = 3.3 V, IOVDD = 1.8 V, see note(1) for VREFPF and  
VREFNF, OUT pin buffered with unity gain OPA827, ROFS, RCM, RFB unconnected, and all typical specifications at TA =  
25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
STATIC PERFORMANCE  
Resolution  
20  
Bits  
TA = 0°C to 70°C(4)  
VREFPF = 10 V and VREFNF = 0 V  
1
1  
VREFPF = +5 V and VREFNF = 5 V  
INL  
Relative accuracy(2) (3)  
LSB  
1.25  
TA = 0°C to 70°C(4)  
1.25  
2  
2
TA = 40°C to +125°C  
TA = 25°C, 1000 hrs  
TA = 40°C to +125°C  
Relative accuracy drift over time(2)  
Differential nonlinearity(2) (3)  
±0.1  
LSB  
DNL  
1
4
LSB  
1  
4  
TA = 0°C to 70°C, code 0d into DAC,  
unipolar ranges only  
Zero code error(4)  
LSB  
TA = 40°C to +125°C, code 0d into DAC,  
unipolar ranges only  
4
4  
TA = 25°C, unipolar ranges only  
±2  
TA = 0°C to 70°C, code 0d into DAC,  
unipolar ranges only  
±0.04  
ppm  
FSR/°C  
Zero code error temperature coefficient  
TA = 40°C to +125°C, code 0d into DAC,  
unipolar ranges only  
±0.04  
TA = 0°C to 70°C  
8
8  
ppm of  
FSR  
Gain error(2) (4)  
10  
TA = 40°C to +125°C  
TA = 25°C  
10  
±2  
±0.04  
±0.04  
TA = 0°C to 70°C  
ppm  
FSR/°C  
Gain error temperature coefficient  
TA = 40°C to +125°C  
TA = 0°C to 70°C, code 1048575d into DAC  
8
8  
TA = 40°C to +125°C, code 1048575d into  
DAC  
Positive full-scale error(4)  
LSB  
10  
10  
TA = 25°C, code 1048575d into DAC  
TA = 0°C to 70°C  
±2  
±0.04  
±0.04  
ppm  
FSR/°C  
Full-scale error temperature coefficient  
TA = 40°C to +125°C  
OUTPUT CHARACTERISTICS  
Headroom  
From VREFPF to VCC  
From VREFNF to VSS  
From ROFS to RCM  
From RCM to RFB  
5
5
V
V
Footroom  
5
5
DC impedance  
kΩ  
kΩ  
ZO  
DC output impedance  
2.5  
1.5  
1
VCC = 15 V ±20%, VSS = 15 V  
VCC = 15 V, VSS = 15 V ±20%  
Power supply rejection ratio (dc)  
µV/V  
ppm of  
FSR  
Output voltage drift over time  
TA = 25°C, VOUT = midscale, 1000 hr  
1
VOLTAGE REFERENCE INPUT  
Reference input impedance (REFPF)  
DAC at midscale,  
VREFPF = 10 V, VREFNF = 0 V  
5.5  
7
kΩ  
DAC at midscale,  
VREFPF = 10 V, VREFNF = 0 V  
Reference input impedance (REFNF)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
at TA = 40°C to +125°C, VCC = +15 V, VSS = 15 V, AVDD = 5.5 V, DVDD = 3.3 V, IOVDD = 1.8 V, see note(1) for VREFPF and  
VREFNF, OUT pin buffered with unity gain OPA827, ROFS, RCM, RFB unconnected, and all typical specifications at TA =  
25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DYNAMIC PERFORMANCE  
Full-scale settling to 0.1%FSR,  
VREFPF = 10 V, VREFNF = 0 V  
1
3
Full-scale settling to ±1 LSB,  
VREFPF = 10 V, VREFNF = 0 V  
ts  
Output voltage settling time(5)  
µs  
1-mV step settling to ±1 LSB,  
VREFPF = 10 V, VREFNF = 0 V  
2.5  
30  
Full-scale step, measured at OUT pin,  
VREFPF = 10 V, VREFNF = 0 V  
SR  
Slew rate(6)  
V/µs  
V
Measured at unbuffered DAC voltage output,  
VREFPF = 10 V, VREFNF = 0 V  
Power-on glitch magnitude  
0.2  
0.4  
3
0.1-Hz to 10-Hz, DAC at midscale,  
VREFPF = 10 V, VREFNF = 0 V  
µVpp  
µVrms  
Vn  
Output noise  
100-kHz bandwidth, DAC at midscale,  
VREFPF = 10 V, VREFNF = 0 V  
Measured at 1 kHz, 10 kHz, 100 kHz,  
DAC at mid scale,  
VREFPF = 10 V, VREFNF = 0 V  
nV/√  
Hz  
Output noise density  
7
120  
114  
92  
DAC update rate = 768 kHz, fOUT = 1 kHz,  
VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 30-kHz output filter  
DAC update rate = 768 kHz, fOUT = 20 kHz,  
VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 30-kHz output filter  
SFDR Spurious free dynamic range(6)  
dB  
DAC update rate = 1 MHz, fOUT = 100 kHz,  
VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 150-kHz output filter  
DAC update rate = 768 kHz, fOUT = 1 kHz,  
VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 30-kHz output filter  
118  
118  
96  
DAC update rate = 768 kHz, fOUT = 20 kHz,  
VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 30-kHz output filter  
THD  
Total harmonic distortion(6)  
dB  
dB  
DAC update rate = 1 MHz, fOUT = 100 kHz,  
VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 150-kHz output filter  
200-mV, 50-Hz or 60-Hz sine wave  
superimposed on VSS, VCC = 15 V  
95  
95  
Power supply rejection ratio (ac)  
200-mV, 50 Hz or 60 Hz sine wave  
superimposed on VCC, VSS = 15 V  
±1 LSB change around mid code (including  
feedthrough), VREFPF = 10 V, VREFNF = 0 V,  
measured at output of buffer op amp  
Code change glitch impulse  
1
5
nV-s  
mV  
±1 LSB change around mid code (including  
feedthrough), VREFPF = 10 V, VREFNF = 0 V,  
measured at output of buffer op amp  
Code change glitch impulse magnitude  
VREFPF = 10 V ± 10%, VREFNF = 0 V,  
frequency = 100 Hz, DAC at zero scale  
90  
90  
1
Reference feedthrough  
dB  
VREFNF = 10 V ± 10%, VREFPF = 10 V,  
frequency = 100 Hz, DAC at full scale  
SCLK = 1 MHz, DAC static at midscale,  
VREFPF = 10 V, VREFNF = 0 V  
Digital feedthrough  
nV-s  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
at TA = 40°C to +125°C, VCC = +15 V, VSS = 15 V, AVDD = 5.5 V, DVDD = 3.3 V, IOVDD = 1.8 V, see note(1) for VREFPF and  
VREFNF, OUT pin buffered with unity gain OPA827, ROFS, RCM, RFB unconnected, and all typical specifications at TA =  
25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DIGITAL INPUTS  
Hysteresis voltage  
0.4  
±5  
10  
V
Input current  
µA  
pF  
Pin capacitance  
Per pin  
DIGITAL OUTPUTS  
VOL  
Low-level output voltage  
Sinking 200 µA  
Sourcing 200 µA  
0.4  
V
V
IOVDD  
0.5  
VOH  
High-level output voltage  
High impedance leakage  
±5  
10  
µA  
pF  
High impedance output capacitance  
POWER  
IAVDD  
IVCC  
Current flowing into AVDD  
Current flowing into VCC  
Current flowing into VSS  
Current flowing into DVDD  
VREFPF = 10 V, VREFNF = 0 V, midscale code  
VREFPF = 10 V, VREFNF = 0 V, midscale code  
VREFPF = 10 V, VREFNF = 0 V, midscale code  
VREFPF = 10 V, VREFNF = 0 V, midscale code  
2.5  
15  
15  
mA  
mA  
mA  
mA  
IVSS  
IDVDD  
0.5  
0.1  
VREFPF = 10 V, VREFNF = 0 V, midscale code,  
all digital input pins static at IOVDD  
IIOVDD  
Current flowing into IOVDD  
mA  
IREFPF Reference input current (VREFPF  
)
VREFPF = 10 V, VREFNF = 0 V, midscale code  
VREFPF = 10 V, VREFNF = 0 V, midscale code  
7
7
mA  
mA  
IREFNF Reference input current (VREFNF  
)
(1) Specified for the following pairs: VREFPF = 5 V and VREFNF = 0 V; VREFPF = 10 V and VREFNF = 0 V; VREFPF = 5 V and VREFNF = 5 V;  
VREFPF = 10 V and VREFNF = 10 V.  
(2) Calculated between code 0d to 1048575d.  
(3) With device temperature calibration mode enabled and used.  
(4) Specified by design, not production tested.  
(5) Adaptive TnH mode. TnH action is disabled for large code steps. For small steps, TnH action happens with a hold time of 1.2 µs.  
(6) OUT pin buffered with unity gain OPA828.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DAC11001B  
 
 
 
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.6 Timing Requirements: Write, 4.5 V DVDD 5.5 V  
all input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH) / 2,  
SDO loaded with 20 pF, and TA = 40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
33  
UNIT  
SCLK frequency, 1.7 V IOVDD < 2.7 V  
fSCLK  
MHz  
50  
SCLK frequency, 2.7 V IOVDD 5.5 V  
15  
10  
15  
10  
13  
8
SCLK high time, 1.7 V IOVDD < 2.7 V  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK high time, 2.7 V IOVDD 5.5 V  
SCLK low time, 1.7 V IOVDD < 2.7 V  
SCLK low time, 2.7 V IOVDD 5.5 V  
SDI setup, 1.7 V IOVDD < 2.7 V  
SDI setup, 2.7 V IOVDD 5.5 V  
13  
8
SDI hold, 1.7 V IOVDD < 2.7 V  
tSDIH  
SDI hold, 2.7 V IOVDD 5.5 V  
23  
18  
15  
10  
55  
50  
10  
5
SYNC falling edge to SCLK falling edge, 1.7 V IOVDD < 2.7 V  
SYNC falling edge to SCLK falling edge, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC rising edge, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC rising edge, 2.7 V IOVDD 5.5 V  
SYNC high time, 1.7 V IOVDD < 2.7 V  
tCSS  
tCSH  
tCSHIGH  
SYNC high time, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC ignore, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC ignore, 2.7 V IOVDD 5.5 V  
tCSIGNORE  
Synchronous update:  
SYNC rising edge to LDAC falling edge, 1.7 V IOVDD < 2.7 V  
50  
50  
tLDACSL  
ns  
Synchronous update:  
SYNC rising edge to LDAC falling edge, 2.7 V IOVDD 5.5 V  
20  
20  
20  
20  
LDAC low time, 1.7 V IOVDD < 2.7 V  
LDAC low time, 2.7 V IOVDD 5.5 V  
CLR low time, 1.7 V IOVDD < 2.7 V  
CLR low time, 2.7 V IOVDD 5.5 V  
tLDACW  
ns  
ns  
tCLRW  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.7 Timing Requirements: Write, 2.7 V DVDD < 4.5 V  
all input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH) / 2,  
SDO loaded with 20 pF, and TA = 40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
20  
UNIT  
SCLK frequency, 1.7 V IOVDD < 2.7 V  
fSCLK  
MHz  
25  
SCLK frequency, 2.7 V IOVDD 5.5 V  
25  
20  
25  
20  
21  
16  
21  
16  
41  
36  
25  
20  
100  
100  
10  
5
SCLK high time, 1.7 V IOVDD < 2.7 V  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK high time, 2.7 V IOVDD 5.5 V  
SCLK low time, 1.7 V IOVDD < 2.7 V  
SCLK low time, 2.7 V IOVDD 5.5 V  
SDI setup, 1.7 V IOVDD < 2.7 V  
SDI setup, 2.7 V IOVDD 5.5 V  
SDI hold, 1.7 V IOVDD < 2.7 V  
tSDIH  
SDI hold, 2.7 V IOVDD 5.5 V  
SYNC falling edge to SCLK falling edge, 1.7 V IOVDD < 2.7 V  
SYNC falling edge to SCLK falling edge, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC rising edge, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC rising edge, 2.7 V IOVDD 5.5 V  
SYNC high time, 1.7 V IOVDD < 2.7 V  
tCSS  
tCSH  
tCSHIGH  
SYNC high time, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC ignore, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC ignore, 2.7 V IOVDD 5.5 V  
tCSIGNORE  
Synchronous update:  
SYNC rising edge to LDAC falling edge, 1.7 V IOVDD < 2.7 V  
100  
100  
tLDACSL  
ns  
Synchronous update:  
SYNC rising edge to LDAC falling edge, 2.7 V IOVDD 5.5 V  
40  
40  
40  
40  
LDAC low time, 1.7 V IOVDD < 2.7 V  
LDAC low time, 2.7 V IOVDD 5.5 V  
CLR low time, 1.7 V IOVDD < 2.7 V  
CLR low time, 2.7 V IOVDD 5.5 V  
tLDACW  
ns  
ns  
tCLRW  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.8 Timing Requirements: Read and Daisy-Chain Write, 4.5 V DVDD 5.5 V  
all input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH) / 2,  
SDO loaded with 20 pF, and TA = 40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
10  
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
20  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
MHz  
15  
30  
50  
25  
33  
16  
50  
25  
33  
16  
13  
8
tSCLKHIGH  
ns  
tSCLKLOW  
ns  
SDI setup, 1.7 V IOVDD < 2.7 V  
SDI setup, 2.7 V IOVDD 5.5 V  
SDI hold, 1.7 V IOVDD < 2.7 V  
SDI hold, 2.7 V IOVDD 5.5 V  
tSDIS  
ns  
ns  
ns  
ns  
ns  
ns  
13  
8
tSDIH  
30  
20  
15  
10  
55  
50  
10  
5
SYNC falling edge to SCLK falling edge, 1.7 V IOVDD < 2.7 V  
SYNC falling edge to SCLK falling edge, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC rising edge, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC rising edge, 2.7 V IOVDD 5.5 V  
SYNC high time, 1.7 V IOVDD < 2.7 V  
tCSS  
tCSH  
tCSHIGH  
SYNC high time, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC ignore, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC ignore, 2.7 V IOVDD 5.5 V  
tCSIGNORE  
Synchronous update:  
SYNC rising edge to LDAC falling edge, 1.7 V IOVDD < 2.7 V  
50  
50  
tLDACSL  
ns  
ns  
Synchronous update:  
SYNC rising edge to LDAC falling edge, 2.7 V IOVDD 5.5 V  
20  
20  
20  
20  
0
LDAC low time, 1.7 V IOVDD < 2.7 V  
tLDACW  
LDAC low time, 2.7 V IOVDD 5.5 V  
CLR low time, 1.7 V IOVDD < 2.7 V  
tCLRW  
ns  
CLR low time, 2.7 V IOVDD 5.5 V  
35  
SCLK rising edge to SDO valid data, 1.7 V IOVDD < 2.7 V, FSDO = 0  
SCLK rising edge to SDO valid data, 2.7 V IOVDD 5.5 V, FSDO = 0  
SCLK falling edge to SDO valid data, 1.7 V IOVDD < 2.7 V, FSDO = 1  
SCLK falling edge to SDO valid data, 2.7 V IOVDD 5.5 V, FSDO = 1  
SYNC rising edge to SDO HiZ, 1.7 V IOVDD < 2.7 V  
SYNC rising edge to SDO HiZ, 2.7 V IOVDD 5.5 V  
0
25  
ns  
35  
tSDODLY  
0
0
25  
0
20  
ns  
20  
tSDOZ  
0
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.9 Timing Requirements: Read and Daisy-Chain Write, 2.7 V DVDD < 4.5 V  
all input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH) / 2,  
SDO loaded with 20 pF, and TA = 40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
8
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
16  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
MHz  
10  
20  
62  
31  
50  
25  
62  
31  
50  
25  
21  
16  
21  
16  
41  
36  
25  
20  
100  
100  
10  
5
tSCLKHIGH  
ns  
tSCLKLOW  
ns  
SDI setup, 1.7 V IOVDD < 2.7 V  
SDI setup, 2.7 V IOVDD 5.5 V  
SDI hold, 1.7 V IOVDD < 2.7 V  
SDI hold, 2.7 V IOVDD 5.5 V  
tSDIS  
ns  
ns  
ns  
ns  
ns  
ns  
tSDIH  
SYNC falling edge to SCLK falling edge, 1.7 V IOVDD < 2.7 V  
SYNC falling edge to SCLK falling edge, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC rising edge, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC rising edge, 2.7 V IOVDD 5.5 V  
SYNC high time, 1.7 V IOVDD < 2.7 V  
tCSS  
tCSH  
tCSHIGH  
SYNC high time, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC ignore, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC ignore, 2.7 V IOVDD 5.5 V  
tCSIGNORE  
Synchronous update:  
SYNC rising edge to LDAC falling edge, 1.7 V IOVDD < 2.7 V  
100  
100  
tLDACSL  
ns  
ns  
Synchronous update:  
SYNC rising edge to LDAC falling edge, 2.7 V IOVDD 5.5 V  
40  
40  
40  
40  
0
LDAC low time, 1.7 V IOVDD < 2.7 V  
tLDACW  
LDAC low time, 2.7 V IOVDD 5.5 V  
CLR low time, 1.7 V IOVDD < 2.7 V  
tCLRW  
ns  
CLR low time, 2.7 V IOVDD 5.5 V  
40  
SCLK rising edge to SDO valid data, 1.7 V IOVDD < 2.7 V, FSDO = 0  
SCLK rising edge to SDO valid data, 2.7 V IOVDD 5.5 V, FSDO = 0  
SCLK rising edge to SDO valid data, 1.7 V IOVDD < 2.7 V, FSDO = 1  
SCLK rising edge to SDO valid data, 2.7 V IOVDD 5.5 V, FSDO = 1  
SYNC rising edge to SDO HiZ, 1.7 V IOVDD < 2.7 V  
SYNC rising edge to SDO HiZ, 2.7 V IOVDD 5.5 V  
0
30  
ns  
40  
tSDODLY  
0
0
30  
0
20  
ns  
20  
tSDOZ  
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.10 Timing Diagrams  
tCSS  
tCSH  
tCSHIGH  
SYNC  
tCSIGNORE  
tSCLKLOW  
SCLK  
tSCLKHIGH  
tSDIH  
Bit 31  
tSDIS  
SDIN  
Bit 1  
Bit 0  
LDAC1  
tCLRW  
tLDACSL tLDACW  
CLR  
6-1. Serial Interface Write Timing: Standalone Mode  
tCSHIGH  
tCSS  
tCSH  
SYNC  
SCLK  
tCSIGNOR  
E
tSCLKLOW  
tSCLKHIGH  
FIRST READ COMMAND  
Bit 22  
ANY COMMAND  
Bit 22  
SDIN  
Bit 31  
Bit 0  
Bit 31  
Bit 0  
tSDIH  
tSDIS  
DATA FROM FIRST  
READ COMMAND  
SDO  
Bit 31  
Bit 22  
Bit 0  
tSDODZ  
tSDODLY  
LDAC1  
tCLRW  
tLDACSL tLDACW  
CLR  
6-2. Serial Interface Read and Write Timing: Daisy-Chain Mode  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.11 Typical Characteristics  
at TA = 25°C, VCC = 15 V, VSS = 15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
reference amplifier, OPA828 used as output amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled  
(unless otherwise noted)  
2
1.5  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.5  
-1  
UP, 5 V  
UP, 10 V  
BP, ±10 V  
UP, 10 V, [gain = 2x]  
UP, 5 V  
UP, 10 V  
BP, 10 V  
UP, 10 V, [gain = 2x]  
-1.5  
-2  
0
262144  
524288  
Code  
786432  
1048576  
0
262144  
524288  
Code  
786432  
1048576  
6-4. Differential Linearity Error vs Digital Input Code  
6-3. Integral Linearity Error vs Digital Input Code  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
INL max, UP, 5 V  
INL max, UP, 10 V  
INL max, BP, ±10 V  
INL min, UP, 5 V  
INL min, UP, 10 V  
INL min, BP, ±10 V  
INL max, UP, 10 V, [gain 2x]  
INL min, UP, 10 V, [gain 2x]  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature calibration enabled  
Temperature calibration enabled  
6-5. Integral Linearity Error vs Temperature  
6-6. Differential Linearity Error vs Temperature  
4
10  
8
3
2
6
4
1
2
0
0
-2  
-4  
-6  
-1  
-2  
-3  
-4  
UP, 5 V  
BP, 5 V  
UP, 10 V  
BP, 10 V  
UP, 5 V  
BP, 5 V  
UP, 10 V  
BP, 10 V  
-8  
-10  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature calibration enabled  
Temperature calibration enabled  
6-7. Zero Code Error vs Temperature  
6-8. Positive Full-Scale Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C, VCC = 15 V, VSS = 15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
reference amplifier, OPA828 used as output amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled  
(unless otherwise noted)  
15  
12  
9
4
3
2
6
1
3
0
0
-3  
-6  
-9  
-12  
-15  
-1  
-2  
-3  
-4  
UP, 5 V  
BP, 5 V  
UP, 10 V  
BP, 10 V  
INL min, UP, 5 V  
INL max, UP, 5 V  
INL min, BP, ê5 V  
INL max, BP, ê5 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
Supply Voltage, VCC (V) = -VSS (V)  
Temperature calibration enabled  
6-9. Gain Error vs Temperature  
6-10. Integral Linearity Error vs Supply Voltage  
1
0.8  
0.6  
0.4  
0.2  
0
10  
8
6
4
2
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-2  
-4  
-6  
DNL min, UP, 5 V  
DNL max, UP, 5 V  
DNL min, BP, ê5 V  
DNL max, BP, ê5 V  
BP, ê5 V  
UP, 5 V  
-8  
-10  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5 15  
Supply Voltage, VCC (V) = -VSS (V)  
Supply Voltage, VCC (V) = -VSS (V)  
6-11. Differential Linearity Error vs Supply Voltage  
6-12. Zero Code Error vs Supply Voltage  
4
4
BP, 5 V  
UP, 5 V  
BP, 5 V  
UP, 5 V  
3.2  
2.4  
1.6  
0.8  
0
3.2  
2.4  
1.6  
0.8  
0
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-0.8  
-1.6  
-2.4  
-3.2  
-4  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
Supply Voltage, VCC (V) = -VSS (V)  
Supply Voltage, VCC (V) = -VSS (V)  
6-13. Positive Full-Scale Error vs Supply Voltage  
6-14. Gain Error vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C, VCC = 15 V, VSS = 15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
reference amplifier, OPA828 used as output amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled  
(unless otherwise noted)  
4
3
1
0.8  
0.6  
0.4  
0.2  
0
2
1
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1  
-2  
-3  
-4  
INL min  
INL max  
DNL min  
DNL max  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
Reference Voltage, VREFPF (V) = -VREFNF (V)  
Reference Voltage, VREFPF (V) = -VREFNF (V)  
6-15. Integral Linearity Error vs Reference Voltage  
6-16. Differential Linearity Error vs Reference Voltage  
4
3.2  
2.4  
1.6  
0.8  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-1.2  
-1.4  
-1.6  
-1.8  
-2  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
Reference Voltage, VREFPF (V) = -VREFNF (V)  
Reference Voltage, VREFPF (V) = -VREFNF (V)  
6-17. Zero Code Error vs Reference Voltage  
6-18. Gain Error vs Reference Voltage  
1.5  
20  
16  
12  
8
IDVDD  
IIOVDD  
1.2  
0.9  
0.6  
0.3  
0
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
4
0
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
0
262144  
524288  
Code  
786432  
1048576  
Reference Voltage, VREFPF (V) = -VREFNF (V)  
VREFPF = 10 V, VREFNF = 0 V  
6-19. Positive Full-Scale Error vs Reference Voltage  
6-20. Supply Current (DVDD and IOVDD) vs Digital Input Code  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C, VCC = 15 V, VSS = 15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
reference amplifier, OPA828 used as output amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled  
(unless otherwise noted)  
9
7
5
IREFPF  
IREFNF  
3
5
3
1
1
IVCC  
IVSS  
-1  
-3  
-5  
-7  
-9  
-1  
-3  
-5  
0
262144  
524288  
Code  
786432  
1048576  
0
262144  
524288  
Code  
786432  
1048576  
VREFPF = 10 V, VREFNF = 0 V  
VREFPF = 10 V, VREFNF = 0 V  
6-21. Supply Current (VCC and VSS  
)
6-22. Reference Current (VREFPF and VREFNF)  
vs Digital Input Code  
vs Digital Input Code  
50  
40  
30  
20  
10  
0
IDVDD  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
VREFPF = 10 V, VREFNF = 0 V  
6-24. Supply Current (DVDD) vs Temperature  
6-23. Supply Current (AVDD) vs Digital Input Code  
12  
IVCC  
IVSS  
8
4
0
-4  
-8  
-12  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
6-25. Supply Current (VCC and VSS  
)
6-26. Reference Current (VREFPF and VREFNF  
)
vs Temperature  
vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C, VCC = 15 V, VSS = 15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
reference amplifier, OPA828 used as output amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled  
(unless otherwise noted)  
2.4  
2.2  
2
12  
8
IAVDD  
1.8  
1.6  
1.4  
1.2  
1
4
0
0.8  
0.6  
0.4  
0.2  
0
-4  
-8  
-12  
IVCC  
14  
IVSS  
14.5 15  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
11  
11.5  
12  
12.5  
13  
13.5  
Supply Voltage, VCC(V) = -VSS(V)  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
VREFPF = 5 V, VREFNF = 0 V, DAC at midcode  
6-28. Supply Current (VCC and VSS) vs Supply Voltage  
6-27. Supply Current (AVDD) vs Temperature  
1000  
50  
IOVDD = 5V  
IOVDD = 3V  
IOVDD = 1.8 V  
800  
600  
400  
200  
0
40  
30  
20  
10  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
Logic Voltage, VLOGIC (V)  
Logic Voltage, VLOGIC (V)  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
6-29. Supply Current (IOVDD  
)
6-30. Supply Current (IOVDD  
)
vs Input Pin Logic Level  
vs Input Pin Logic Level  
0.005  
0.004  
0.003  
0.002  
0.001  
0
15  
10  
5
0.005  
0.004  
0.003  
0.002  
0.001  
0
15  
VOUT  
LDAC  
VOUT  
LDAC  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
DACV glitch (0.4 nV-s)  
DAC Glitch (0.75 nV-s)  
3E-6 4E-6  
0
1E-6  
2E-6  
Time (s)  
5E-6  
0
1E-6  
2E-6  
3E-6  
Time (s)  
4E-6  
5E-6  
VREFPF = 10 V, VREFNF = 10 V,  
VREFPF = 10 V, VREFNF = 10 V,  
DAC transition midcode to midcode 1  
6-32. Glitch Impulse, Falling Edge, 1-LSB Step  
DAC transition midcode 1 to midcode  
6-31. Glitch Impulse, Rising Edge, 1-LSB Step  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C, VCC = 15 V, VSS = 15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
reference amplifier, OPA828 used as output amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled  
(unless otherwise noted)  
1.6  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
VOUT glitch, rise  
VOUT glitch, fall  
VOUT glitch, rise  
VOUT glitch, fall  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
Code  
Code  
VREFPF = 10 V, VREFNF = 0 V  
VREFPF = 10 V, VREFNF = 10 V  
6-34. Segment Glitch Impulse, 1-LSB Step  
6-33. Segment Glitch Impulse, 1-LSB Step  
1.6  
0.001  
10  
5
VOUT glitch, rise  
VOUT glitch, fall  
1.4  
1.2  
1
0.00075  
0.0005  
0.00025  
0
0
-5  
0.8  
0.6  
0.4  
0.2  
0
-10  
-15  
-20  
-25  
-30  
-0.00025  
-0.0005  
-0.00075  
-0.001  
VOUT  
SCLK  
0
5E-7  
1E-6  
Time (s)  
1.5E-6  
2E-6  
VREFPF = 10 V, VREFNF = 0 V,  
Code  
DAC at midcode, measured at DAC output pin  
6-36. Clock Feedthrough  
0.012  
VREFPF = 5 V, VREFNF = 0 V  
6-35. Segment Glitch Impulse, 1-LSB Step  
45  
42  
39  
36  
33  
30  
27  
24  
21  
18  
15  
12  
9
10.033  
10.028  
10.023  
10.018  
10.013  
10.008  
10.003  
9.998  
40  
30  
20  
10  
0
VOUT (zoomed)  
Settling band (+0.1%)  
Settling band (-0.1%)  
VOUT  
LDAC  
0.01  
0.008  
0.006  
0.004  
0.002  
0
VOUT (zoomed)  
Settling band (+0.1%)  
Settling band (-0.1%)  
VOUT  
LDAC  
-0.002  
-0.004  
-0.006  
-0.008  
-0.01  
-0.012  
-0.014  
-0.016  
-0.018  
-0.02  
-10  
-20  
-30  
-40  
-50  
6
3
0
-3  
9.993  
0
1E-6 2E-6 3E-6 4E-6 5E-6 6E-6 7E-6 8E-6 9E-6 1E-5  
Time(s)  
9.988  
0
1E-6 2E-6 3E-6 4E-6 5E-6 6E-6 7E-6 8E-6 9E-6 1E-5  
Time(s)  
VREFPF = 10 V, VREFNF = 0 V  
VREFPF = 10 V, VREFNF = 0 V  
6-38. Full-Scale Settling Time, Falling Edge  
6-37. Full-Scale Settling Time, Rising Edge  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C, VCC = 15 V, VSS = 15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
reference amplifier, OPA828 used as output amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled  
(unless otherwise noted)  
0.0025  
0.00245  
0.0024  
20  
0.0013  
0.00125  
0.0012  
0.00115  
0.0011  
0.00105  
0.001  
16  
10  
8
0
0
0.00235  
0.0023  
-10  
-20  
-30  
-40  
-50  
-60  
-8  
0.00225  
0.0022  
-16  
-24  
-32  
VOUT (zoomed)  
Settling band (+1 LSB)  
Settling band (-1 LSB)  
LDAC  
VOUT (zoomed)  
Settling band (+1 LSB)  
Settling band (-1 LSB)  
LDAC  
0.00215  
0.0021  
0
1E-6 2E-6 3E-6 4E-6 5E-6 6E-6 7E-6 8E-6 9E-6 1E-5  
Time(s)  
0
1E-6 2E-6 3E-6 4E-6 5E-6 6E-6 7E-6 8E-6 9E-6 1E-5  
Time(s)  
VREFPF = 10 V, VREFNF = 0 V,  
VREFPF = 10 V, VREFNF = 0 V,  
DAC transitions 100 codes around midscale  
DAC transitions 100 codes around midscale  
6-39. 100 Codes Settling Time, Rising Edge  
6-40. 100 Codes Settling Time, Falling Edge  
VOUT (0.1 mV/Div)  
10  
Zero code  
Mid code  
Full code  
9.25  
8.5  
7.75  
7
6.25  
5.5  
4.75  
4
Time (1 s/Div)  
VREFPF = 10 V, VREFNF = 0 V,  
500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
50000 100000  
VREFPF = 10 V, VREFNF = 0 V, measured at DAC output  
DAC at midcode, measured at DAC output pin  
6-41. DAC Output Noise Spectral Density  
6-42. DAC Output Noise: 0.1 Hz to 10 Hz  
0
0
-40  
-80  
-40  
-80  
-120  
-160  
-120  
-160  
0
50  
100  
150  
200  
250  
300  
350 384  
0
40  
80 120 160 200 240 280 320 360384  
Frequency (kHz)  
Frequency (kHz)  
DAC update rate = 768 kHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
DAC update rate = 768 kHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 30-kHz output filter  
sixth-order, low-pass, 30-kHz output filter  
6-43. 1-kHz Spectrum vs Frequency  
6-44. 20-kHz Spectrum vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C, VCC = 15 V, VSS = 15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
reference amplifier, OPA828 used as output amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled  
(unless otherwise noted)  
0
-102  
-104  
-106  
-108  
-110  
-112  
-114  
-116  
-118  
-120  
-40  
-80  
-120  
-160  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (kHz)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
Output Frequency (kHz)  
DAC update rate = 1 MHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
DAC update rate = 768 kHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 150-kHz output filter  
sixth-order, low-pass, 30-kHz output filter  
6-45. 100-kHz Spectrum vs Frequency  
6-46. Spurious Free Dynamic Range  
vs Output Frequency, fDAC = 768 kHz  
-102  
-104  
-106  
-108  
-110  
-112  
-114  
-116  
-118  
-120  
-98  
-100  
-102  
-104  
-106  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
Output Frequency (kHz)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
Output Frequency (kHz)  
DAC update rate = 768 kHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
DAC update rate = 768 kHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 30-kHz output filter  
sixth-order, low-pass, 30-kHz output filter  
6-47. Total Harmonic Distortion  
6-48. Total Harmonic Distortion + Noise  
vs Output Frequency, fDAC = 768 kHz  
vs Output Frequency, fDAC = 768 kHz  
-102  
-104  
-106  
-108  
-110  
-112  
-114  
-116  
-118  
-120  
-120  
-122  
-124  
-126  
-128  
-130  
-132  
-134  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
Output Frequency (kHz)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
Output Frequency (kHz)  
DAC update rate = 768 kHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
DAC update rate = 768 kHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 30-kHz output filter  
sixth-order, low-pass, 30-kHz output filter  
6-49. Second Harmonic Distortion  
6-50. Third Harmonic Distortion  
vs Output Frequency, fDAC = 768 kHz  
vs Output Frequency, fDAC = 768 kHz  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C, VCC = 15 V, VSS = 15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
reference amplifier, OPA828 used as output amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled  
(unless otherwise noted)  
-88  
-92  
-92  
-96  
-96  
-100  
-104  
-108  
-112  
-116  
-120  
-100  
-104  
-108  
-112  
-116  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
Output Frequency (kHz)  
Output Frequency (kHz)  
DAC update rate = 1 MHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
DAC update rate = 1 MHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 150-kHz output filter  
sixth-order, low-pass, 150-kHz output filter  
6-51. Spurious Free Dynamic Range  
6-52. Total Harmonic Distortion  
vs Output Frequency, fDAC = 1 MHz  
vs Output Frequency, fDAC = 1 MHz  
-84  
-86  
-88  
-90  
-92  
-94  
-90  
-94  
-98  
-102  
-106  
-110  
-114  
-118  
-122  
-126  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
Output Frequency (kHz)  
Output Frequency (kHz)  
DAC update rate = 1 MHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
DAC update rate = 1 MHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 150-kHz output filter  
sixth-order, low-pass, 150-kHz output filter  
6-53. Total Harmonic Distortion + Noise  
6-54. Second Harmonic Distortion  
vs Output Frequency, fDAC = 1 MHz  
vs Output Frequency, fDAC = 1 MHz  
-102  
-106  
-110  
-114  
-118  
-122  
-126  
-130  
-134  
-104  
UP_RATE: 00  
UP_RATE: 01  
-106  
-108  
-110  
-112  
-114  
-116  
-118  
0
200  
400  
600  
800  
1000  
=
0
20  
40  
60  
80  
100  
120  
140  
Update Rate (kHz)  
Output Frequency (kHz)  
DAC output frequency = 20 kHz, VREFPF = 4.5 V, VREFNF  
DAC update rate = 1 MHz, VREFPF = 4.5 V, VREFNF = 4.5 V,  
sixth-order, low-pass, 150-kHz output filter  
4.5 V, sixth-order, low-pass, 30-kHz output filter  
6-56. Spurious Free Dynamic Range vs Update Rate  
6-55. Third Harmonic Distortion  
vs Output Frequency, fDAC = 1 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C, VCC = 15 V, VSS = 15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
reference amplifier, OPA828 used as output amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled  
(unless otherwise noted)  
-116  
-118  
-120  
-122  
-124  
-126  
-128  
-130  
-99  
-100  
-101  
-102  
-103  
-104  
-105  
UP_RATE: 00  
UP_RATE: 01  
UP_RATE: 00  
UP_RATE: 01  
0
200  
400  
600  
800  
1000  
=
0
200  
400  
600  
800  
1000  
=
Update Rate (kHz)  
Update Rate (kHz)  
DAC output frequency = 20 kHz, VREFPF = 4.5 V, VREFNF  
DAC output frequency = 20 kHz, VREFPF = 4.5 V, VREFNF  
4.5 V, sixth-order, low-pass, 30-kHz output filter  
4.5 V, sixth-order, low-pass, 30-kHz output filter  
6-57. Total Harmonic Distortion vs Update Rate  
6-58. Total Harmonic Distortion + Noise vs Update Rate  
-116  
-131  
UP_RATE: 00  
UP_RATE: 01  
UP_RATE: 00  
UP_RATE: 01  
-118  
-120  
-122  
-124  
-126  
-128  
-130  
-132  
-132  
-133  
-134  
-135  
0
200  
400  
600  
800  
1000  
=
0
200  
400  
600  
800  
1000  
=
Update Rate (kHz)  
Update Rate (kHz)  
DAC output frequency = 20 kHz, VREFPF = 4.5 V, VREFNF  
DAC output frequency = 20 kHz, VREFPF = 4.5 V, VREFNF  
4.5 V, sixth-order, low-pass, 30-kHz output filter  
4.5 V, sixth-order, low-pass, 30-kHz output filter  
6-59. Second Harmonic Distortion vs Update Rate  
6-60. Third Harmonic Distortion vs Update Rate  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The 20-bit DAC11001B is a single-channel DAC. The unbuffered DAC output architecture is based on an R2R  
ladder that is designed to provide monotonicity and excellent linearity over wide reference and temperature  
ranges. This architecture provides a very low-noise (7 nV/Hz) and fast-settling (1 µs) output. The DAC11001B  
also implements a deglitch circuit that enables low, code-independent glitch at the DAC output. The deglitch  
circuit is extremely useful for creating ultra-low, harmonic-distortion waveform generation.  
The DAC11001B requires external reference voltages on REFPF and REFNF pins. The output of the DAC  
ranges from VREFNF to VREFPF. See 6.3 for VREFPFand VREFNF voltage ranges.  
The DAC11001B also includes precision matched gain setting pins (ROFS, RCM, and RFB), Use these pins and  
an external op amp to scale the DAC output. The DAC11001B incorporates a power-on reset (POR) circuit to  
make sure that the DAC output powers up at zero scale, and remains at zero scale until a valid DAC command  
is issued. The DAC11001B uses a 4-wire serial interface that operates at clock rates of up to 50 MHz.  
7.2 Functional Block Diagram  
IOVDD DVDD VCC AVDD  
REFPS REFPF  
ROFS  
RCM  
SCLK  
SDIN  
R
R
Power On Reset  
SYNC  
SDO  
RFB  
OUT  
Buffer  
DAC  
Register  
DAC  
LDAC  
CLR  
Register  
Power  
Down Logic  
ALARM  
DGND  
VSS AGND  
REFNS REFNF  
7.3 Feature Description  
7.3.1 Digital-to-Analog Converter Architecture  
The DAC11001B provides 20-bit monotonic outputs using an R2R ladder architecture. The DAC output ranges  
between VREFNF and VREFPF based on the 20-bit DAC data, as described in 方程1:  
CODE  
2N  
VOUT = (VREFPF - VREFNF )ì  
+ VREFNF  
(1)  
where  
CODE is the decimal equivalent of the DAC-DATA loaded to the DAC.  
N is the bits of resolution.  
VREFPF, VREFNF is the reference voltage (positive and negative).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DAC11001B  
 
 
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
7.3.2 External Reference  
The DAC11001B requires external references (REFPF and REFNF) to operate. See 6.3 for VREFPF and  
VREFNF voltage ranges.  
The DAC11001B also contains dedicated sense pins, REFPS for REFPF and REFNS for REFNF. The reference  
pins are unbuffered; therefore, use a reference driver circuit for these pins. Set the VREFVAL bits (address 02h)  
as per a reference span equal to (VREFPF VREFNF). For example, the VREFVAL bits must be set to 0100 for  
V
REFPF = 5 V and VREFNF = 5 V.  
7-1 shows an example reference drive circuit for the DAC11001B. 7-1 shows the op-amp options for the  
reference driver circuit.  
VREFP  
+
Voltage  
REFPF  
Reference  
C1  
REFPS  
ROFS  
RCM  
DAC11001B  
RFB  
C2  
REFNS  
REFNF  
+
+
+
VOUT  
DAC-OUT  
VREFN  
7-1. Reference Drive Circuit  
7-1. Reference Op Amp Options  
SELECTION PARAMETERS  
Low voltage and current noise  
Low offset and drift  
OP AMPS  
OPA211, OPA827, OPA828  
OPA189  
7.3.3 Output Buffers  
The DAC11001B outputs are unbuffered. Use an external op amp to buffer the DAC output. The DAC output  
voltage ranges from VREFPF to VREFNF. Two gain-setting resistors are integrated in the DAC11001B. These  
resistors are used to scale the DAC output, minimize the bias current mismatch of the external op amp, and  
generate a negative reference for the REFNF pin. See 8.3.3 for more information. 7-2 shows the op amp  
options for the output drive circuit.  
7-2. Output Op Amp Options  
SELECTION PARAMETERS  
OP AMPS  
OPA827, OPA828  
OPA211, OPA828  
OPA189  
Low bias current  
Low noise  
Low offset and drift  
Fast settling and low THD  
OPA828  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
7.3.4 Internal Power-On Reset (POR)  
The DAC11001B incorporates two internal POR circuits for the DVDD, AVDD, IOVDD, VCC, and VSS supplies. The  
POR signals are ANDed together, so that all supplies must be at the minimum specified values for the device to  
not be in a reset condition. These POR circuits initialize internal registers, as well as set the analog outputs to a  
known state, all while the device supplies are ramping. All registers are reset to default values. The DAC11001B  
powers on with the DAC registers set to zero scale. The DAC output can be powered down by writing 1 to PDN  
(bit 4, address 02h). Typically, the POR function can be ignored as long as the device supplies power up and  
maintain the specified minimum voltage levels. However, a supply drop or brownout can trigger an internal POR  
reset event. 7-2 represents the internal POR threshold levels for the DVDD, AVDD, IOVDD, VCC, and VSS  
supplies.  
Supply (V)  
Supply Max  
Specified supply  
voltage range  
No power-on reset  
Supply Min  
Operation Threshold  
Undefined  
POR Threshold  
Power-on reset  
0.00  
7-2. Relevant Voltage Levels for the POR Circuit  
For the DVDD supply, no internal POR occurs for nominal supply operation from 2.7 V (supply minimum) to 5.5 V  
(supply maximum). For a DVDD supply region between 2.5 V (undefined operation threshold) and 1.6 V (POR  
threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For a DVDD  
supply less than 1.6 V (POR threshold), the internal POR resets as long as the supply voltage is less than 1.6 V  
for approximately 1 ms.  
For the AVDD supply, no internal POR occurs for nominal supply operation from 4.5 V (supply minimum) to 5.5 V  
(supply maximum). For an AVDD supply region between 4.1 V (undefined operation threshold) and 3.3 V (POR  
threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For an AVDD  
supply less than 3.3 V (POR threshold), the internal POR resets as long as the supply voltage is less than 3.3 V  
for approximately 1 ms.  
For the VCC supply, no internal POR occurs for nominal supply operation from 8 V (supply minimum) to 36 V  
(supply maximum). For VCC supply voltages between 7.5 V (undefined operation threshold) to 6 V (POR  
threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For a VCC  
supply less than 6 V (POR threshold), the internal POR resets as long as the supply voltage is less than 6 V for  
approximately 1 ms.  
For the VSS supply, no internal POR occurs for nominal supply operation from 3 V (supply minimum) to 18 V  
(supply maximum). For VSS supply voltages between 2.7 V (undefined operation threshold) to 1.8 V (POR  
threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For a VSS  
supply greater than 1.8 V (POR threshold), the internal POR resets as long as the supply voltage is greater  
than 1.8 V for approximately 1 ms.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
For the IOVDD supply, no internal POR occurs for nominal supply operation from 1.8 V (supply minimum) to  
5.5 V (supply maximum). For IOVDD supply voltages between 1.5 V (undefined operation threshold) and 0.8 V  
(POR threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For an  
IOVDD supply less than 0.8 V (POR threshold), the internal POR resets as long as the supply voltage is less than  
0.8 V for approximately 1 ms.  
In case the DVDD, AVDD, IOVDD, VCC, or VSS supply drops to a level where the internal POR signal is  
indeterminate, power cycle the device followed by a software reset.  
7.3.5 Temperature Drift and Calibration  
The DAC11001B includes a calibration circuit that significantly reduces the temperature drift on integrated and  
differential nonlinearities. By default, this feature is disabled. Enable the temperature calibration feature by  
writing 1 to the EN_TMP_CAL bit (address 02h, B23). After the EN_TMP_CAL bit is set, issue a calibration cycle  
by writing 1 to RCLTMP (address 04h, B8). At this point, the device enters a calibration cycle. Do not issue any  
DAC update command during this period. The device has the capability to indicate the end of calibration using  
two methods:  
1. Read the status bit ALM (address 05h, B12) using SPI.  
2. Issue an alarm on the ALARM pin by setting logic 0. To enable this feature, write 1 to ENALMP bit (address  
02h, B12).  
After the calibration cycle completes, update the DAC code to observe the impact at the DAC output. If the  
environmental temperature changes after calibration, then recalibrate the device.  
7.3.6 DAC Output Deglitch Circuit  
The DAC11001B includes a deglitch (track-and-hold) circuit at the output. This circuit is enabled by default. The  
deglitch circuit minimizes the code-to-code glitch at the DAC output at the expense of the DAC update rate. This  
circuit is disabled by writing 1 to DIS_TNH (bit 7, address 06h). Disable this circuit to enable faster update of the  
DAC output, but with higher code-to-code glitches.  
7.4 Device Functional Modes  
7.4.1 Fast-Settling Mode and THD  
The DAC11001B R2R ladder and deglitch circuit reduce the harmonic distortion for waveform generation  
applications. The fast settling bit (FSET, bit 10, address 02h) is set to 1 by default, so that the DAC is configured  
for enhanced THD performance. The FSET bit can be reset to 0 using an SPI write to enable fast-settling mode.  
In this mode, the DAC deglitcher circuit can be configured using TNH_MASK (bits 19:18, address 02h). These  
bits disable the deglitch circuit for code changes specified in 7-7. These bits are only writable when FSET = 0  
(fast settling enabled) and DIS_TNH = 0 (deglitch circuit enabled).  
7.4.2 DAC Update Rate Mode  
The DAC11001B maximum update rate can be configured up to 1 MHz by using UP_RATE (bits 5:4, address  
06h). These bits change the hold time of the deglitch circuit. The bits are set to a 0.8-MHz DAC update rate by  
default for enhanced THD performance. Changing the maximum update rate of the DAC impacts THD  
performance.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
7.5 Programming  
The DAC11001B is controlled through a flexible, four-wire serial interface that is compatible with serial interfaces  
used on many microcontrollers and DSP controllers. The interface provides read and write access to all registers  
of the DAC11001B. Additionally, the interface can be configured to daisy-chain multiple devices for write  
operations.  
Each serial interface access cycle is exactly 32 bits long, as shown in 7-3. A frame is initiated by asserting the  
SYNC pin low. The frame ends when the SYNC pin is deasserted high. The first bit is read/write bit B31. A write  
is performed when this bit is set to 0, and a read is performed when this bit is set to 1. The next seven bits are  
address bits B30 to B24. The next 20 bits are data. For all writes, data are clocked on the falling edge of SCLK.  
As 7-4 shows, for read access and daisy-chain operation, the data are clocked out on the SDO terminal on  
the rising edge of SCLK.  
SYNC  
1
2
3
4
5
6
7
8
9
31 32  
SCLK  
SDIN  
Write Command  
D31 D30 D29 D28 D27 D26 D25 D24 D23  
‡‡‡  
D1 D0  
7-3. Serial Interface Write Bus Cycle: Standalone Mode  
SYNC  
SCLK  
1
2
3
4
5
6
7
8
9
31 32  
1
2
3
4
5
6
7
8
9
10  
31 32  
Read Command  
D31 D30 D29 D28 D27 D26 D25 D24 D23  
Any Command  
SDIN  
SDO  
‡‡‡  
‡‡‡  
‡‡‡  
D1 D0  
D31 D30 D29 D28 D27 D26 D25 D24 D23  
Read Data  
D1 D0  
D1 D0  
Z-state  
D22  
D31 D30 D29 D28 D27 D26 D25 D24 D23  
7-4. Serial Interface Read Bus Cycle  
7.5.1 Daisy-Chain Operation  
For systems that contain several DAC11001B devices, the SDO pin is used to daisy-chain the devices together.  
The daisy-chain feature is useful in reducing the number of serial interface lines. The first falling edge on the  
SYNC pin starts the operation cycle, as shown in 7-5. SCLK is continuously applied to the input shift register  
while the SYNC pin is kept low. The DAC is updated with the data on rising edge of SYNC pin.  
SYNC  
1
2
3
4
5
6
7
8
9
31 32 33  
63 64 65  
95 96 97  
127 128  
SCLK  
SDIN  
SDO  
Device A Command  
D31 D30 D29 D28 D27 D26 D25 D24  
D23 œ D0  
Device B Command  
Device C Command Device D Command  
Device A Command Device B Command Device C Command  
7-5. Serial Interface Daisy-Chain Write Cycle  
If more than 32 clock pulses are applied, the data ripple out of the shift register and appear on the SDO line.  
These data are clocked out on the rising edge of SCLK and are valid on the falling edge. By connecting the SDO  
output of the first device to the SDI input of the next device in the chain, a multiple-device interface is  
constructed. Each device in the system requires 32 clock pulses.  
As a result, the total number of clock cycles must be equal to 32 × N, where N is the total number of devices in  
the daisy-chain. When the serial transfer to all devices is complete the SYNC signal is taken high. This action  
transfers the data from the SPI shift registers to the internal register of each device in the daisy-chain and  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DAC11001B  
 
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
prevents any further data from being clocked into the input shift register. The DAC11001B implements a bit that  
enables higher speeds for clocking out data from the SDO pin. Enable this feature by setting FSDO (bit 13,  
address 02h) to 1.  
7.5.2 CLR Pin Functionality and Software Clear  
The CLR pin is an asynchronous input pin to the DAC. When activated, this level-sensitive pin clears the DAC  
buffers and DAC latches to the DAC-CLEAR-DATA bits (address 03h). The device exits clear mode on the  
SYNC rising edge of the next valid write to the device. If the CLR pin receives a logic 0 during a write sequence  
during normal operation, the clear mode is activated and the buffer and DAC registers are immediately cleared.  
The DAC registers can also be cleared using the SCLR bit (address 04h, B5); the contents are cleared at the  
rising edge of SYNC.  
7.5.3 Output Update (Synchronous and Asynchronous)  
The DAC11001B offers both a software and hardware simultaneous update and control function. The DAC  
double-buffered architecture has been designed so that new data can be entered for the DAC without disturbing  
the analog output. Data updates can be performed either in synchronous or in asynchronous mode, depending  
on the status of LDAC-MODE bit (address 02h, B14).  
7.5.3.1 Synchronous Update  
In synchronous mode (LDACMODE = 1), the LDAC pin is used as an active-low signal for simultaneous DAC  
updates. Data buffers must be loaded with the desired data before an LDAC low pulse. After an LDAC low pulse,  
the DAC is updated with the last contents of the corresponding data buffers. If the content of a data buffer is not  
changed, the DAC output remains unchanged after the LDAC pin is pulsed low.  
7.5.3.2 Asynchronous Update  
In asynchronous mode (LDACMODE = 0), data are updated with the rising edge of the SYNC (when daisy-chain  
mode is enabled, DSDO = 0), or at the 32nd falling edge of SCLK (When daisy-chain mode is disabled,  
DSDO = 1). For asynchronous updates, the LDAC pin is not required, and must be connected to 0 V  
permanently.  
7.5.4 Software Reset Mode  
The DAC11001B implements a software reset feature. The software reset function uses the SRST bit (address  
04h, B6). When this bit is set to 1, the device resets to the default state.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
7.6 Register Map  
7-3. Register Map  
BIT  
REGISTER  
NAME  
31  
W
30-24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3-0  
0h  
0h  
NOP  
00h  
01h  
NOP  
DAC-DATA  
R/W  
DAC-DATA (20 bits, left-justified)  
EN_  
TMP_  
CAL  
LDAC  
MODE  
CONFIG1  
R/W  
R/W  
02h  
03h  
000  
TNH_MASK  
000  
FSDO  
ENALMP DSDO FSET  
VREFVAL  
0
PDN  
0h  
0h  
DAC-  
CLEAR-  
DATA  
DAC-CLEAR-DATA (8 bits left justified)  
000h  
000h  
TRIGGER  
STATUS  
R/W  
R
04h  
05h  
06h  
0000h  
RCLTMP  
0
SRST SCLR  
0
0h  
0h  
0h  
ALM  
00h  
DIS_TNH  
CONFIG2  
R/W  
0000h  
1
UP_RATE  
7-4. Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write  
Write Type  
W
W
Reset or Default Value  
-n  
Value after reset or the default value  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
7.6.1 NOP Register (address = 00h) [reset = 0x000000h for bits [23:0]]  
7-6. NOP Register Format  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
2
17  
16  
0
Read/  
Write  
Address  
NOP  
W
W
11  
W-00h  
15  
14  
13  
12  
10  
9
8
7
6
5
4
3
1
NOP  
W-000h  
RESERVED  
W-0h  
7-5. NOP Register Field Descriptions  
Bit  
31  
Field  
Type  
Reset  
Description  
Read/Write  
Address  
W
N/A  
Write only register. Must be set to 0.  
00h  
30-24  
23-4  
3-0  
W
N/A  
NOP  
W
00000h  
0h  
No operation; write 00000h  
These bits are reserved.  
RESERVED  
W
7.6.2 DAC-DATA Register (address = 01h) [reset = 0x000000h for bits [23:0]]  
7-7. DAC-DATA Register Format  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
16  
0
Read/  
Write  
Address  
DAC-DATA (20-bit, left justified)  
W
W
11  
R/W-00h  
15  
14  
13  
12  
10  
9
8
7
6
5
4
3
2
DAC-DATA (20-bit, left justified)  
R/W-000h  
RESERVED  
W-0h  
7-6. DAC-DATA Register Field Descriptions  
Bit  
31  
Field  
Type  
Reset  
Description  
Read/Write  
Address  
W
N/A  
Read when set to 1 or write when set to 0  
01h  
30-24  
23-4  
W
N/A  
DAC-DATA[19:0]  
R/W  
00000h  
Stores the 20-bit data to be loaded to the DAC in MSB-aligned,  
straight-binary format.  
3-0  
RESERVED  
W
0h  
These bits are reserved.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
7.6.3 CONFIG1 Register (address = 02h) [reset = 004C80h for bits [23:0]]  
7-8. CONFIG1 Register Format  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Read/  
Write  
Address  
EN_  
TMP_  
CAL  
RESERVED  
TNH_MASK  
RESERVED  
W
W
11  
R/W-0h  
7
W-0h  
R/W-0h  
W-0h  
15  
14  
13  
12  
10  
9
8
6
5
4
3
2
1
0
RSVD  
LDAC  
MODE  
FSDO  
ENALMP  
R/W-0h  
DSDO  
FSET  
VREFVAL  
RSVD  
PDN  
RESERVED  
W-0h  
R/W-1h R/W-0h  
R/W-1h R/W-1h  
R/W-2h  
W-0h R/W-0h  
W-0h  
7-7. CONFIG1 Register Field Descriptions  
Bit  
31  
Field  
Type  
Reset  
N/A  
N/A  
0h  
Description  
Read/Write  
Address  
W
Read when set to 1 or write when set to 0  
02h  
30-24  
23  
W
EN_TMP_CAL  
R/W  
Enables and disables the temperature calibration feature  
0: Temperature calibration feature disabled (default)  
1: Temperature calibration feature enabled  
22-20  
19-18  
RESERVED  
TNH_MASK  
W
0h  
0h  
These bits are reserved.  
R/W  
Mask track and hold (TNH) circuit. This bit is writable only when FSET = 0  
[fast-settling mode] and DIS_TNH = 0 [track-and-hold enabled]  
00: TNH masked for code jump > 214 (default)  
01: TNH masked for code jump > 215  
10: TNH masked for code jump > 213  
11: TNH masked for code jump > 212  
17-15  
14  
RESERVED  
LDACMODE  
W
0h  
1h  
These bits are reserved.  
R/W  
Synchronous or asynchronous mode select bit  
0: DAC output updated on SYNC rising edge  
1: DAC updated on LDAC falling edge (default)  
13  
12  
11  
FSDO  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
1h  
1h  
2h  
Enable Fast SDO  
0: Fast SDO disabled (Default)  
1: Fast SDO enabled  
ENALMP  
DSDO  
Enable ALARM pin to be pulled low, end of temperature calibration cycle  
0: No alarm on the ALARM pin  
1: Indicates end of temperature calibration cycle. ALARM pin pulled low.  
Enable SDO (for readback and daisy-chain)  
1: SDO enabled (default)  
0: SDO disabled  
10  
9-6  
FSET  
Fast-settling vs enhanced THD mode  
0: Fast settling  
1: Enhanced THD (default)  
VREFVAL  
Reference span value bits  
0000: Invalid  
0001: Invalid  
0010: Reference span = 5 V ± 1.25 V (default)  
0011: Reference span = 7.5 V ± 1.25 V  
0100: Reference span = 10 V ± 1.25 V  
0101: Reference span = 12.5 V ± 1.25 V  
0110: Reference span = 15 V ± 1.25 V  
0111: Reference span = 17.5 V ± 1.25 V  
1000: Reference span = 20 V ± 1.25 V  
1001: Reference span = 22.5 V ± 1.25 V  
1010: Reference span = 25 V ± 1.25 V  
1011: Reference span = 27.5 V± 1.25 V  
1100: Reference span = 30 V ± 1.25 V  
5
4
RESERVED  
PDN  
W
0h  
0h  
This bit is reserved.  
R/W  
Powers down and power up the DAC  
0: DAC power up (default)  
1: DAC power down  
3-0  
RESERVED  
W
0h  
These bits are reserved.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
7.6.4 DAC-CLEAR-DATA Register (address = 03h) [reset = 000000h for bits [23:0]]  
7-9. DAC-CLEAR-DATA Register Format  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
Read/  
Write  
Address  
DAC-CLEAR-DATA (8 bits, left justified)  
W
W
11  
R/W-00h  
15  
14  
13  
12  
10  
9
8
7
6
5
4
3
2
1
RESERVED  
W-000h  
RESERVED  
W-0h  
7-8. DAC-CLEAR-DATA Register Field Descriptions  
Bit  
31  
Field  
Type  
Reset  
Description  
Read/Write  
Address  
W
N/A  
Read when set to 1 or write when set to 0  
03h  
30-24  
23-16  
W
N/A  
DAC-CLEAR-DATA  
R/W  
00h  
Stores the 8-bit data to be loaded to the DAC in left-justified, straight-  
binary format. DAC data registers are updated with this value when the  
CLR pin is asserted low  
15-4  
3-0  
RESERVED  
RESERVED  
W
W
000h  
0h  
These bits are reserved.  
These bits are reserved.  
7.6.5 TRIGGER Register (address = 04h) [reset = 000000h for bits [23:0]]  
7-10. TRIGGER Register Format  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
3
18  
2
17  
1
16  
0
Read/  
Write  
Address  
RESERVED  
W
W
11  
W-00h  
15  
14  
13  
12  
10  
9
8
7
6
5
4
RESERVED  
W-00h  
RCLTMP RSVD  
R/W-0h W-0h  
SRST  
R/W-0h  
SCLR  
RSVD  
RESERVED  
W-0h  
R/W-0h  
W-0h  
7-9. TRIGGER Register Field Descriptions  
Bit  
31  
Field  
Type  
Reset  
Description  
Read/Write  
Address  
W
N/A  
Read when set to 1 or write when set to 0  
30-24  
23-9  
8
W
N/A  
04h  
RESERVED  
RCLTMP  
W
0000h  
0h  
These bits are reserved.  
R/W  
Trigger temperature recalibration DAC Codes  
0: No temperature recalibration (default)  
1: DAC codes recalibrated, ALARM pin pulled low (if ENALMP =  
1) and ALM bit (address 05) set to 1 when calibration complete.  
Subsequent DAC codes use the latest calibrated coefficients.  
7
6
RESERVED  
SRST  
W
0h  
0h  
This bit is reserved.  
R/W  
Software reset  
0: No software reset (default)  
1: Software reset initiated, device in default state  
5
SCLR  
R/W  
0h  
Software clear  
0: No software clear (default)  
1: Software clear initiated, DAC registers in clear mode, DAC  
code set by clear select register (address 03h). DAC output  
clears on 32nd SCLK falling (DSDO = 1) or SYNC rising edge  
(DSDO = 0)  
4
RESERVED  
RESERVED  
W
W
0h  
0h  
This bit is reserved.  
3-0  
These bits are reserved.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
7.6.6 STATUS Register (address = 05h) [reset = 000000h for bits [23:0]]  
7-11. STATUS Register Format  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
2
17  
1
16  
0
Read/  
Write  
Address  
RESERVED  
R
W
11  
W-00h  
15  
14  
13  
12  
10  
9
8
7
6
5
4
3
RESERVED  
W-0h  
ALM  
R-0h  
RESERVED  
W-00h  
RESERVED  
W-0h  
7-10. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
N/A  
N/A  
000h  
0
Description  
31  
30-24  
23-13  
12  
Read/Write  
Address  
R
Read only register. Must be set to 1.  
05h  
W
RESERVED  
ALM  
W
These bits are reserved.  
R
Alarm indicator bit, This bit is not masked by ENALMP bit  
0: Temperature recalibration in progress  
1: DAC codes recalibrated, ALARM pin is pulled low (if  
ENALMP = 1). Subsequent DAC codes will use latest calibrated  
coefficients. Reading back this register resets ALARM pin to 1  
status.  
11-4  
3-0  
RESERVED  
RESERVED  
W
W
00h  
0h  
These bits are reserved.  
These bits are reserved.  
7.6.7 CONFIG2 Register (address = 06h) [reset = 000040h for bits [23:0]]  
7-12. CONFIG2 Register Format  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
2
17  
1
16  
0
Read/  
Write  
Address  
RESERVED  
W
W
11  
W-00h  
15  
14  
13  
12  
10  
9
8
7
6
5
4
3
RESERVED  
W-00h  
DIS_TNH RSVD  
R/W-0h W-1h  
UP_RATE  
R/W-0h  
RESERVED  
W-0h  
7-11. CONFIG2 Register Field Descriptions  
Bit  
31  
Field  
Type  
Reset  
Description  
Read/Write  
Address  
W
N/A  
Read when set to 1 or write when set to 0  
30-24  
23-8  
7
W
N/A  
06h  
RESERVED  
DIS_TNH  
W
0000h  
0h  
These bits are reserved.  
R/W  
Disable track and hold:  
0: Track and hold enabled (default)  
1: Track and hold disabled  
6
RESERVED  
UP_RATE  
W
1h  
0h  
This bit is reserved.  
5-4  
R/W  
DAC output max update rate:  
00: 0.8 MHz with 28-MHz SCLK, (default)  
01: 1.05 MHz with 38.5-MHz SCLK  
10: 0.7 MHz with 25.5-MHz SCLK  
11: 0.95 MHz with 34.5-MHz SCLK  
3-0  
RESERVED  
W
0h  
These bits are reserved.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DAC11001B  
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The DAC11001B is targeted for high-precision applications where ultra-high dc accuracy, ultra-low noise, fast  
settling, or high total harmonic distortion (THD) are required. The DAC11001B provides 20-bit monotonic  
resolution and excellent linearity. The DAC11001B finds application in high-performance source measure unit  
(SMU), arbitrary waveform generation (AWG). The DAC11001B is an also excellent choice for closed-loop  
control applications such as microelectromechanical system (MEMS) actuators, linear actuators, precision motor  
control, lens autofocus control in precision microscopy, lens control in mass spectrometer, beam control in  
electron beam lithography, and so on.  
8.2 Typical Application  
8.2.1 Source Measure Unit (SMU)  
A source measure unit (SMU) is a common building block in memory and semiconductor test equipment and  
bench-top source measure units. A DAC is used in an SMU to force a desired voltage or a current to a device-  
under-test (DUT). 8-1 provides a simplified circuit diagram of the force-DAC in an SMU.  
RCABLE  
1 M  
INA188  
GV  
+
1
2
R2  
R1  
SW  
DUT  
OPA828  
C1  
INA188  
VREFP  
+
RCABLE  
GI  
1 M  
REFPF  
REFPS  
+
RSENSE  
DAC11001B  
OPA828  
REFNS  
REFNF  
C2  
+
VREFN  
OPA828  
8-1. Source Measure Unit  
8.2.1.1 Design Requirements  
Force voltage range: ±10 V  
Force current range: ±20 mA  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
The DAC11001B is an excellent choice for this application to meet the 20-bit resolution requirement. Switch SW  
is used to toggle between force-voltage and force-current modes, as shown in 8-1. The OPA828 is a high-  
precision amplifier that provides a good balance between dc and ac performance, and can supply ±30-mA output  
current. The INA188 is a zero-drift instrumentation amplifier with gain selected with an external resistor. The  
external resistor is not shown in the drawing for simplicity. The gain resistor is not required for a gain of 1. 方程式  
2 shows the calculation of the voltage gain when switch SW is in position 1.  
÷
R1  
1
AV  
=
x 1+  
GV  
R2 ◊  
«
(2)  
Precision reference sources are available at 5 V or less. Use a ±5-V reference with a 2x gain configuration to get  
an output of ±10 V. The DAC output amplifier sets the gain at 2, assuming GV = 1, as shown in 方程式 3. R1 and  
R2 are 1-kΩeach. 方程3 shows the calculation for the current gain when the switch is in the position 2.  
÷
R1  
1
AV  
=
x 1+  
RSENSExGI  
R2 ◊  
«
(3)  
In order to get ±20-mA output current range with R1 = R2, RSENSEx GI must be 500. Set GI to 50 so that RSENSE  
is 10-Ω. For a ±20-mA output current, the voltage drop across RSENSE is ±200-mV. In case the design requires a  
lower voltage headroom, choose a higher value for GI and a smaller resistance value for RSENSE  
.
There is no equation to select C1 and C2. The values of C1 and C2 depend on the stability criteria of the  
reference buffers when driving the reference inputs of DAC11001B. The values are obtained through simulation.  
For the OPA828, use C1 = C2 = 100 pF. The 1-MΩresistors in the circuit are used for making sure the amplifiers  
are not left in an open-loop state.  
8.2.1.3 Application Curves  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
0
300000  
600000  
DAC Code  
900000  
8-3. DNL at ±10-V Output  
8-2. INL at ±10-V Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DAC11001B  
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
8.2.2 High-Precision Control Loop  
High-precision control loops are used in precision motion-control applications, such as linear actuator control,  
servo motor control, galvanometer control, and more. The key requirements for such applications is resolution,  
monotonicity, settling time, and code-to-code glitch. 8-4 provides a simplified circuit of a linear actuator control  
circuit, wherein the DAC11001B commands the set point and an analog loop controls the actuator.  
Gain/  
Attenuation  
THS4011  
C1  
Sensor  
Output  
+
VREFP  
REFPF  
REFPS  
+
Linear  
Actuator  
Power  
Amplifier  
DAC11001B  
THS4011  
REFNS  
REFNF  
C2  
THS4011  
+
VREFN  
8-4. High-Precision Control Loop  
8.2.2.1 Design Requirements  
DNL: ±1 LSB max at 20-bits  
Settling time: < 2 µs  
Code-to-code glltch: < 2 nV-s  
8.2.2.2 Detailed Design Procedure  
The DAC11001B provides 20-bit monotonic resolution at < ±1 LSB DNL. The device provides < 2µs setting time  
and < 2nV-s code-to-code glitch for major carry transition. The reference and output buffer used for this design  
is the THS4011, a high-speed amplifier with a 90-ns settling time. For the best settling response, use C1 and C2  
between 10 pF to 50 pF.  
8.2.2.3 Application Curves  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
0
300000  
600000  
DAC Code  
900000  
8-6. DNL at ±5-V Output  
8-5. INL at ±5-V Output  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
8.2.3 Arbitrary Waveform Generation (AWG)  
Arbitrary waveform generation circuits are common in memory and semiconductor test equipment. These circuits  
are used to generate reference ac waveforms to test semiconductor devices. The key performance parameters  
of such circuits are THD, SNR, and the update rate. 8-7 shows the basic building block example of an AWG  
circuit using the DAC11001B.  
Optional Gain  
OPA828  
C1  
R2  
R1  
+
VREFP  
REFPF  
REFPS  
+
VOUT  
DAC11001B  
OPA828  
REFNS  
REFNF  
C2  
+
VREFN  
OPA828  
8-7. Arbitrary Waveform Generation  
8.2.3.1 Design Requirements  
THD at 1 kHz: > 105 dB  
Update rate: 768 kHz  
8.2.3.2 Detailed Design Procedure  
The DAC11001B provides a THD of 115 dB at 1 kHz. The device provides update rates of up to 1 MHz, with  
marginal degradation in THD at higher frequencies. The OPA828 amplifier provides the best balance between  
the voltage and current noise densities, and is therefore an excellent choice to use as reference buffers. The  
OPA828 also offers low-distortion for high-THD applications.  
8.2.3.3 Application Curves  
0
-40  
-80  
-120  
-160  
0
50  
100  
150  
200  
250  
300  
350 384  
Frequency (kHz)  
8-8. 1-kHz Spectrum vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
8.3 System Examples  
This section provides details on the digital interface and the embedded resistor configurations.  
8.3.1 Interfacing to a Processor  
The DAC11001B works with a 4-wire SPI interface. The digital interface of the device to a processor is shown in  
8-9. The DAC11001B has an LDAC input option for synchronous output update. In ac-signal-generation  
applications, the jitter in the LDAC signal contributes to signal-to-noise ratio (SNR). Therefore, the LDAC signal  
must be generated from a low-jitter timer in the processor. The CLR and ALARM pins are static signals, and  
therefore can be connected to general-purpose input-output (GPIO) pins on the processor. All active-low signals  
(SYNC, LDAC, CLR, and ALARM) must be pulled up to IOVDD using 10-kΩ resistors. ALARM is an output pin  
from the DAC; therefore, the corresponding GPIO on the processor must be configured as an input. Either poll  
the GPIO, or configure the GPIO as an interrupt to detect any failure alarm from the DAC. When using a high  
SCLK frequency, use source termination resistors, as shown in 8.3.1. Typically, 33-Ω resistors work on  
printed circuit boards (PCBs) with a 50-Ωtrace impedance.  
IOVDD  
IOVDD  
RS  
RS  
SCLK  
MOSI  
MISO  
CS  
SCLK  
SDIN  
SDO  
RS  
RS  
RS  
Processor  
DAC11001B  
SYNC  
LDAC  
CLR  
TIMER  
GPIO  
GPIO  
ALARM  
DGND  
DGND  
RPULLUP  
IOVDD  
8-9. Interfacing to a Processor  
8.3.2 Interfacing to a Low-Jitter LDAC Source  
When the processor is not able to provide a low-jitter source for the LDAC signal, an external low-jitter LDAC  
source can be used, as shown in 8-10. The processor can take the LDAC signal as an interrupt and trigger  
the SPI frame synchronously.  
IOVDD  
IOVDD  
RS  
RS  
SCLK  
MOSI  
MISO  
CS  
SCLK  
SDIN  
SDO  
RS  
RS  
Processor  
DAC11001B  
SYNC  
LDAC  
CLR  
INT  
GPIO  
GPIO  
ALARM  
RPULLUP  
IOVDD  
DGND  
DGND  
RS  
RS  
Low-Jitter  
LDAC Source  
8-10. Interfacing to an External LDAC Source  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
8.3.3 Embedded Resistor Configurations  
The DAC11001B provides two embedded resistors with values that are double the value of the output  
impedance of the R2R ladder. These resistors can be used in various configurations, as shown in the following  
subsections.  
8.3.3.1 Minimizing Bias Current Mismatch  
The bias current mismatch in the output amplifier can lead to offset error at the output. To minimize mismatch,  
the amplifier must have a matching resistor to that of the R2R output impedance on the feedback path. The  
feedback resistors are used in parallel for this purpose, as shown in 8-11. Some amplifiers may become  
unstable with a feedback resistor in the buffer configuration; therefore, a compensation capacitor (CCOMP) might  
be needed, as shown. The typical value of this capacitor is in the range of 22 pF to 100 pF, depending on the  
amplifier.  
ROFS  
DAC11001B  
2xROUT  
CCOMP  
RCM  
2xROUT  
RFB  
ROUT  
VOUT  
DAC-OUT  
+
8-11. Minimizing Bias Current Mismatch  
8.3.3.2 2x Gain Configuration  
The circuit of 8-11 can be configured for 2x gain by connecting one of the resistor ends to ground, as shown  
in 8-12.  
ROFS  
DAC11001B  
2xROUT  
CCOMP  
RCM  
2xROUT  
RFB  
ROUT  
VOUT  
DAC-OUT  
+
8-12. 2x Gain Configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DAC11001B  
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
8.3.3.3 Generating Negative Reference  
Generating a negative reference is a challenge because of the fact that the circuit needs an inverting amplifier  
involving resistors. The resistor mismatch and temperature drift can lead to inaccuracy. The embedded, matched  
resistors in DAC11001B can be used as shown in 8-13, the inverting amplifier configuration, to generate an  
accurate negative reference voltage.  
VREFP  
+
Voltage  
REFPF  
Reference  
C1  
REFPS  
ROFS  
RCM  
DAC11001B  
RFB  
C2  
REFNS  
REFNF  
+
+
+
VOUT  
DAC-OUT  
VREFN  
8-13. Generating Negative Reference  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
8.4 What to Do and What Not to Do  
8.4.1 What to Do  
Follow recommended grounding, decoupling, and layout schemes for achieving best accuracy.  
Use a low-jitter LDAC source for best ac performance.  
Choose the appropriate amplifiers depending on the application requirements as explained in above sections.  
8.4.2 What Not to Do  
Do not apply the reference before the DAC power supplies are powered on.  
Do not use the reference source directly with the DAC reference inputs without using buffers. or else the  
accuracy drastically degrades.  
8.5 Initialization Set Up  
The following text shows the pseudocode to get started with the DAC11001B:  
//SPI Settings  
//Mode: Mode-1 (CPOL: 0, CPHA: 1)  
//CS Type: Active Low, Per Packet  
//Frame length: 32  
//SYNTAX: WRITE <REGISTER (HEX ADDRESS>, <HEX DATA>  
//Select VREF, TnH mode (Good THD), LDAC mode and power-up the DAC  
WRITE CONFIG (0x02), 0x004C80  
//Write zero code to the DAC  
WRITE DACDATA (0x01), 0x000000  
//Write mid code to the DAC  
WRITE DACDATA (0x01), 0x7FFFF0  
//Write full code to the DAC  
WRITE DACDATA (0x01), 0xFFFFF0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DAC11001B  
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
To get the best performance out of the DAC11001B, the power supply, grounding, and decoupling are very  
important. Use a PCB with a ground-plane reference, which helps in confining the digital return currents. A low  
mutual inductance path is created just beneath the high-frequency digital traces causing the return currents to  
follow the respective signal traces, thus minimizing crosstalk. On the other hand, dc signals spread over the  
ground plane without being confined below the signal trace. Therefore, in precision dc applications, limiting the  
common-impedance coupling is very difficult unless the ground planes are physically separated. 9-1 shows a  
method to divide the grounds so that there is no common-mode current flow between the grounds, while  
maintaining the same dc potential across all grounds. This circuit assumes that the REFGND and LOAD-GND  
are provided from isolated power sources, therefore, there is no common-mode current flow through the  
reference or the load.  
Analog  
Power  
Inputs  
+
+
IOVDD  
DGND  
Isolated Reference  
Power  
Isolated Load  
Power  
AGND  
+
+
Load  
+
VREFP  
VOUT  
REFPF  
REFPS  
REFNS  
REFNF  
Circuit  
REFGND  
C1  
C2  
+
Signal  
Input  
LOAD-GND  
Reference  
Generation  
Circuit  
DAC11001B  
+
VREFN  
LOAD-GND  
DGND  
AGND  
AGND-OUT  
REFGND  
REFGND  
Single-Point Short  
9-1. Power and Signal Grounding  
When the load circuit is powered from a source referenced to AGND, and the LOAD-GND is shorted to AGND at  
the far end, the AGND-OUT must no longer be shorted to AGND locally near the DAC. The local shorting  
creates a ground loop, otherwise. The resulting connection that avoids the ground loop is shown in 9-2.  
Analog  
Power  
Inputs  
+
+
IOVDD  
DGND  
Isolated Reference  
Power  
AGND Shared Between  
DAC and Load  
AGND  
+
+
Load  
+
VREFP  
VOUT  
REFPF  
REFPS  
REFNS  
REFNF  
Circuit  
REFGND  
C1  
C2  
+
Signal  
Input  
AGND  
Reference  
Generation  
Circuit  
DAC11001B  
+
VREFN  
AGND  
DGND  
AGND  
AGND-OUT  
REFGND  
LOAD-GND  
REFGND  
Single-Point Short  
Single-Point Short  
9-2. Grounding Scheme When AGND is Load Ground  
When the reference source is powered from a power source with AGND as the ground, there is a possibility of  
common-impedance coupling causing a code-dependent shift in the reference voltage. To avoid undesired  
coupling, drive REFGND using a buffer that maintains the reference ground potential equals to that of AGND-  
OUT, as shown in 9-3.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
Analog  
Power  
Inputs  
+
+
IOVDD  
DGND  
AGND Shared Between  
DAC and Reference  
AGND Shared Between  
DAC and Load  
AGND  
+
+
Load  
Circuit  
+
VREFP  
VOUT  
REFPF  
REFPS  
REFNS  
REFNF  
AGND  
C1  
C2  
+
Signal  
Input  
AGND  
Reference  
Generation  
Circuit  
DAC11001B  
+
VREFN  
AGND  
DGND  
AGND  
AGND-OUT  
LOAD-GND  
Kelvin Connection  
Close to the Pin  
Single-Point Short  
Single-Point Short  
+
REFGND  
9-3. Connecting the Reference Ground  
Channel-to-channel dc crosstalk is a major concern in multichannel applications, such as battery test equipment.  
While the DAC11001B is single-channel, the crosstalk problem can appear at a system level when using multiple  
DAC11001B devices. The problem becomes severe when the grounds of the loads are shorted together creating  
a possible ground loop. In such cases, avoid the local short between AGND and AGND-OUT. Use a single short  
between AGND and DGND for all the DACs. If the PCB layout allows for the digital signal and analog power  
supplies to be kept separate, DGND and AGND can be combined to a single ground plane. 9-4 shows an  
example circuit for minimizing dc crosstalk across DAC channels in a system.  
Analog  
Power  
Inputs  
+
+
IOVDD  
DGND  
AGND  
+
+
Load  
Circuit  
+
VREFP1  
VOUT1  
REFPF  
REFPS  
REFNS  
REFNF  
AGND  
C1  
C2  
+
Signal  
Input  
AGND  
Reference  
Generation  
Circuit  
DAC11001B  
+
ICROSSTALK = 0  
VREFN1  
AGND  
DGND  
AGND  
AGND-OUT1  
LOAD-GND1  
Kelvin Connection  
Close to the Pin  
Single-Point Short  
+
REFGND1  
Single-Point Short  
Common to all DACs  
AGND Shared  
Across DACs,  
Analog  
Power  
Inputs  
+
+
References, And  
Loads  
IOVDD  
DGND  
AGND  
DGND Shared  
DGND  
AGND  
Across DACs  
+
+
Load  
Circuit  
+
VREFP2  
VOUT2  
REFPF  
REFPS  
REFNS  
REFNF  
AGND  
C3  
C4  
+
Signal  
AGND  
Reference  
Generation  
Circuit  
Input  
DAC11001B  
+
ICROSSTALK = 0  
VREFN2  
AGND  
DGND  
AGND  
AGND-OUT2  
LOAD-GND2  
Kelvin Connection  
Close to the Pin  
+
Single-Point Short  
REFGND2  
9-4. Minimizing Multichannel DC Crosstalk  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DAC11001B  
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
Power-supply bypassing and decoupling is key to keeping power supply noise, switching transients, and  
common-mode currents away from the DAC output. There are three main objective of power-supply bypassing:  
Filtering: Filter out noise and ripple from power supplies  
Bypassing: Supply switching or load transient currents locally by avoiding trace inductances  
Decoupling: Stop local transient currents from impacting other circuits  
To achieve these objectives, use the following 3-element scheme. Place a decoupling capacitor close to every  
power supply pin to provide the local current path for load and circuit switching transients. This capacitor must be  
referenced to the respective load ground for best load transient suppression. Use a 0.1-µF to 1-µF, X7R,  
multilayer ceramic capacitor (MLCC) for this purpose. For analog power supplies, a 10-Ω series resistor  
provides the best decoupling. For filtering the power-supply noise and ripple, 10-µF capacitors work best when  
placed at the power entry point of the board. An example decoupling scheme is shown in 9-5.  
10  
10 F  
10  
10 F  
VSS  
VCC  
œ
1 F  
1 F  
+
15V  
+
15V  
œ
AGND  
AGND  
AGND  
AGND  
Ferrite  
bead  
10 ꢀ  
10 F  
AVDD  
DVDD  
0.1 F  
1 F  
+
5V  
œ
AGND  
AGND  
DGND  
Ferrite  
bead  
IOVDD  
0.1 F  
10 F  
+
3.3V  
œ
DGND  
DGND  
9-5. Power-Supply Decoupling  
9.1 Power-Supply Sequencing  
The DAC11001B does not require any power-supply sequence. However, the power supplies to the AVDD pin  
must be capable of providing 30-mA of current if VSS ramps before AVDD. This current is derived from the AVDD  
pin, and flows out of the VSS pin. This condition is transient, and the device stops consuming this current when  
the power supplies are ramped up. To avoid this condition, make sure to ramp AVDD before VSS  
.
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
PCB layout plays a significant role for achieving desired ac and dc performance from the DAC11001B. The  
DAC11001B has a pinout that supports easy splitting of the noisy and quiet grounds. The digital signals are  
available on two adjacent sides of the device; whereas, the power and analog signals are available separate  
sides. 10-4 shows an example layout, where the different ground planes have been clearly demarcated. The  
figure also shows the best positions for the single-point shorts between the ground planes. For best power-  
supply bypassing, place the bypass capacitors close to the respective power pins as shown. Provide unbroken  
ground reference planes for the digital signal traces, especially for the SPI and LDAC signals.  
10.1.1 PCB Assembly Effects on Precision  
The printed-circuit board (PCB) assembly process, including reflow soldering, imparts thermal stresses on the  
device which can degrade the precision of the device and must be considered in the development of very-high-  
precision systems. Standard reflow guidelines must be followed to achieve the device specified performance.  
For more information please see Texas Instruments, MSL Ratings and Reflow Profiles application report.  
Baking the PCBs after the assembly process can restore the precision of the device to pre-assembly values. 图  
10-1 to 10-3 show the effect of reflow soldering on the typical distribution of INL of the device.  
10-1 shows the INL distribution for a set of DAC11001B devices before the PCB assembly process. Exposing  
the devices to a JEDEC-standard thermal profile for reflow soldering produces the histogram shown in 10-2  
on another set of devices. The standard INL deviation increased due to the thermal stress imparted to the device  
from the reflow process. However, baking DAC11001B units for 60 minutes at 125°C after the reflow soldering  
process produced the distribution given in 10-3. The post-reflow bake restored the INL standard deviation to  
pre-assembly levels.  
10  
9
8
7
6
5
4
3
2
1
0
6.5  
6
INL Min  
INL Max  
INL Min  
INL Max  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-1.00 -0.75 -0.5 -0.25  
0
0.25 0.5 0.75  
1
-1.00 -0.75 -0.5 -0.25  
0
0.25 0.5 0.75  
1
INL (LSB)  
INL (LSB)  
10-2. Typical INL Distribution  
10-1. Typical INL Distribution  
After Reflow Soldering  
Before Reflow Soldering  
9
8
7
6
5
4
3
2
1
0
INL Min  
INL Max  
-1.00 -0.75 -0.5 -0.25  
0
0.25 0.5 0.75  
1
INL (LSB)  
10-3. Typical INL Distribution Post-Reflow Units Baked at 125°C for 60 Minutes  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DAC11001B  
 
 
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
10.2 Layout Example  
POWER INPUT  
VSS  
VCC  
AVDD1  
AVDD2  
AGND  
PLANE  
REFRENCE  
INPUTS  
IOVDD  
AGND and  
DGND short  
DIGITAL  
SIGNALS  
AGND-OUT and  
AGND short  
DAC_OUT  
EMBEDDED  
RESISTORS  
DAC11001B  
IOVDD  
DGND  
PLANE  
DVDD  
AGND-OUT  
PLANE  
IOVDD  
DIGITAL  
SIGNALS  
10-4. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DAC11001B  
 
 
DAC11001B  
ZHCSPG5 DECEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
BP-DAC11001 Evaluation Module  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, BP-DAC11001EVM user's guide  
Texas Instruments, Impact of Code-to-Code Glitch in Precision Applications application brief  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DAC11001B  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC11001BPFBR  
DAC11001BPFBT  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
PFB  
PFB  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
NIPDAU-DCC  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
DAC11001B  
DAC11001B  
NIPDAU-DCC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Dec-2021  
Addendum-Page 2  
MECHANICAL DATA  
MTQF019A – JANUARY 1995 – REVISED JANUARY 1998  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DAC11001BPFBT

High-grade, 20-bit, monotonic DAC with ultra-low noise, low glitch and exceptional THD performance | PFB | 48 | -40 to 125
TI

DAC1108

IC PARALLEL, WORD INPUT LOADING, 12-BIT DAC, DMA17, Digital to Analog Converter
ADI

DAC110BBQ8

D/A Converter, CDIP16,
ADI

DAC110BCQ3

D/A Converter, CDIP16,
ADI

DAC110BIBBQ7

D/A Converter, CDIP16,
ADI

DAC110BIBBQ8

D/A Converter, CDIP16,
ADI

DAC110BIBCQ3

D/A Converter, CDIP16,
ADI

DAC1112

IC 12-BIT DAC, PDMA72, PLASTIC PACKAGE-72, Digital to Analog Converter
ADI

DAC1117

IC 12-BIT DAC, PDMA72, PLASTIC PACKAGE-72, Digital to Analog Converter
ADI

DAC1122J

IC 12-BIT DAC, DMA, 3 X 2 INCH, 0.42 INCH HEIGHT, PACKAGE, Digital to Analog Converter
ADI

DAC1136

HighR esoluti1o6n- a nd1 8-Bit Digital-to-AnaClongv efters
ADI

DAC1136

High Resolution 16 and 18-Bit Digital-to-Analog Converters
INTRONICS