DAC3154IRGCR [TI]

具有输入 FIFO 和拉电流的双通道、10 位、500MSPS 数模转换器 (DAC) | RGC | 64 | -40 to 85;
DAC3154IRGCR
型号: DAC3154IRGCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有输入 FIFO 和拉电流的双通道、10 位、500MSPS 数模转换器 (DAC) | RGC | 64 | -40 to 85

先进先出芯片 转换器 数模转换器
文件: 总45页 (文件大小:1417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
双路 12/10 500 每秒百万次采样 (MSPS) 数模转换器  
查询样品: DAC3154 , DAC3164  
1
特性  
应用范围  
2
双通道  
分辨率  
多载波、多模式蜂窝基础设施基站  
雷达  
DAC315410 位  
DAC316412 位  
信号智能  
软件定义无线电  
测试和测量仪器  
最大采样率:500MSPS  
DAC3174 DAC3151/DAC3161/DAC3171 引  
脚兼容的系列  
说明  
DAC3154/DAC3164 是双通道 10/12 位,引脚兼容  
500MSPS 数模转换器 (DAC) 系列。  
输入接口:  
12/10 位宽低压差分信令 (LVDS) 输入  
内部先进先出 (FIFO)  
DAC3154/DAC3164 使用一个带有输入 FIFO 10/12  
位宽 LVDS 数字总线。 为了实现精确的信号同  
步,FIFO 输入和输出指针可在多个器件上同步。 DAC  
输出是电流源型输出,并被端接至依从范围为 -0.5V 至  
1V 的接地 (GND)DAC3154/DAC3164 与双通  
道,14 位,500MSPS 数模转换器 DAC3174,以及单  
通道,14/12-10 位,数模转换器  
芯片到芯片同步  
功率耗散:460mW  
20MHz IF 时的频谱性能  
信噪比 (SNR)DAC3154 为  
62dBFSDAC3164 72dBFS  
无杂散动态范围 (SFDR)DAC3154 为  
76dBcDAC3164 77dBc  
DAC3171/DAC3161/DAC3151 引脚兼容。  
电流源型数模转换器 (DAC)  
依从范围:-0.5V 1.0V  
此器件采用 QFN-64 PowerPAD™ 封装,并且可在整  
个工业温度范围(-40°C 85°C)内工作。  
封装:64 引脚四方扁平无引线 (QFN) (9mm x  
9mm)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SLAS960  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
BLOCK DIAGRAMS  
DACCLKP  
DACCLKN  
DATACLKP  
DATACLKN  
DATA9P  
EXTIO  
BIASJ  
LVPECL  
LVDS  
Clock Distribution  
1.2 V  
Reference  
Programmable  
Delay  
LVDS  
DACA  
Gain  
QMC  
A-offset  
DATA9N  
IOUTAP  
IOUTAN  
10-b  
DACA  
10  
IOUTBP  
IOUTBN  
10-b  
DACB  
10  
LVDS  
DATA0P  
DATA0N  
QMC  
B-offset  
DACB  
Gain  
LVDS  
SYNCP  
SYNCN  
ALIGNP  
ALIGNN  
VDDA33  
Optional Input  
Used for multi-DAC sync  
LVPECL  
Control Interface  
Figure 1. DAC3154  
2
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
DACCLKP  
EXTIO  
LVPECL  
Clock Distribution  
1.2 V  
Reference  
DACCLKN  
DATACLKP  
DATACLKN  
DATA11P  
BIASJ  
LVDS  
LVDS  
Programmable  
Delay  
DACA  
Gain  
QMC  
A-offset  
DATA11N  
IOUTAP  
12-b  
DACA  
IOUTAN  
12  
IOUTBP  
12-b  
DACB  
IOUTBN  
12  
LVDS  
DATA0P  
DATA0N  
QMC  
B-offset  
DACB  
Gain  
LVDS  
SYNCP  
SYNCN  
ALIGNP  
ALIGNN  
VDDA33  
Optional Input  
Used for multi-DAC sync  
LVPECL  
Control Interface  
Figure 2. DAC3164  
Copyright © 2013, Texas Instruments Incorporated  
3
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
PINOUT – DAC3154  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DACCLKP  
TXENABLE  
2
DACCLKN  
ALARM  
SDO  
IOVDD  
SDIO  
SCLK  
SDENB  
RESETB  
NC  
3
CLKVDD18  
4
ALIGNP  
5
ALIGNN  
6
SYNCP  
7
SYNCN  
8
VFUSE  
DAC3154  
9
(MSB) D9P  
10  
D9N  
NC  
11  
D8P  
NC  
12  
D8N  
NC  
13  
D7P  
NC  
14  
D7N  
NC  
GND PAD (backside)  
15  
D6P  
NC  
16  
D6N  
NC  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PIN ASSIGNMENT TABLE – DAC3154  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CONTROL/SERIAL  
SCLK  
43  
42  
44  
I
I
Serial interface clock. Internal pull-down.  
Serial interface clock. Internal pull-up.  
SDENB  
SDIO  
I/O Bi-directional serial data in 3 pin mode (default). In 4-pin interface mode (register XYZ), the SDIO pin in  
an input only. Internal Pull-down.  
SDO  
46  
41  
O
Uni-directional serial interface data in 4 pin mode (register XYZ). The SDO pin is tri-stated in 3-pin  
interface mode (default). Internal Pulldown.  
RESETB  
I
Serial interface reset input. Active low. Initialized internal registers during high to low transition.  
Assynchronous. Internal pull-up.  
ALARM  
47  
48  
O
I
CMOS output for ALARM condition.  
TXENABLE  
Transmit enable active high input. TXENABLE must be high for the DATA to the DAC to be enabled.  
When TXENABLE is low, the digital logic section is forced to all 0, and any input data is ignored. Internal  
pull-down.  
SLEEP  
49  
I
Puts device in sleep, active high. Internal pull-down.  
4
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
PIN ASSIGNMENT TABLE – DAC3154 (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
DATA INTERFACE  
DATA[9:0]P/N  
9/10-  
19/20  
22/23  
26/27-  
31/32  
I
LVDS input data bits for both channels. Each positive/negative LVDS pair has an internal 100 Ω  
termination resistor. Data format relative to DATACLKP/N clock is Double Data Rate (DDR) with two data  
transfers per DATACKP/N clock cycle.  
The data format is interleaved with channel A (rising edge) and channel B falling edge.  
In the default mode (reverse bus not enabled):  
DATA9P/N is most significant data bit (MSB)  
DATA0P/N is most significant data bit (LSB)  
DATACLKP/N  
SYNCP/N  
24/25  
6/7  
I
I
I
DDR differential input data clock. Edge to center nominal timing. Ch A rising edge, Ch B falling edge in  
multiplexed output mode.  
Reset the FIFO or to be used as a syncing source. These two functions are captured with the rising edge  
of DATACLKP/N. The signal captured by the falling edge of DATACLKP/N.  
ALIGNP/N  
4/5  
LVPECL FIFO output syncrhonization. This positive/negative pair is captured with the rising edge of  
DACCLKP/N. It is used to reset the clock dividers and for multiple DAC synchronization. If unused it can  
be left unconnected.  
OUTPUT/CLOCK  
DACCLKP/N  
IOUTAP/N  
1/2  
I
LVPECL clock input for DAC core with a self-bias of approximately CLKVDD18/2.  
61/60  
O
A-Channel DAC current output. An offset binary data pattern of 0x0000 at the DAC input results in a full  
scale current source and the most positive voltage on the IOUTAP pin. Similarly, a 0xFFFF data input  
results in a 0 mA current source and the least positive voltage on the IOUTAP pin.  
IOUTBP/N  
53/54  
O
B-Channel DAC current output. An offset binary data pattern of 0x0000 at the DAC input results in a full  
scale current source and the most positive voltage on the IOUTBP pin. Similarly, a 0xFFFF data input  
results in a 0 mA current source and the least positive voltage on the IOUTBP pin.  
REFERENCE  
EXTIO  
58  
57  
I/O Used as external reference input when internal reference is disabled. Requires a 0.1 µF decoupling  
capacitor to GND when used as reference output.  
BIASJ  
O
Full-scale output current bias. For 20 mA full-scale output current, connect a 960 Ω resistor to GND.  
POWER SUPPLY  
IOVDD  
45  
3
I
I
I
I
I
Supply voltage for CMOS IO’s. 1.8V – 3.3V.  
1.8V clock supply  
CLKVDD18  
DIGVDD18  
VDDA18  
21, 28  
50, 64  
1.8V digital supply. Also supplies LVDS receivers.  
Analog 1.8V supply  
VDDA33  
55, 56,  
59  
Analog 3.3V supply  
VFUSE  
NC  
8
I
Digital supply voltage. (1.8V) This supply pin is also used for factory fuse programming. Connect to  
DVDD pins for normal operation.  
33-40,  
51, 52,  
62, 63  
Not used. These pins can be left open or tied to GROUND in actual application use.  
Copyright © 2013, Texas Instruments Incorporated  
5
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
PINOUT – DAC3164  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DACCLKP  
TXENABLE  
2
DACCLKN  
ALARM  
SDO  
3
CLKVDD18  
4
ALIGNP  
IOVDD  
SDIO  
SCLK  
SDENB  
RESETB  
NC  
5
ALIGNN  
6
SYNCP  
7
SYNCN  
8
VFUSE  
DAC3164  
9
(MSB) D11P  
10  
D11N  
NC  
11  
D10P  
NC  
12  
D10N  
NC  
13  
D9P  
D0N  
14  
D9N  
D0P (LSB)  
D1N  
GND PAD (backside)  
15  
D8P  
16  
D8N  
D1P  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PIN ASSIGNMENT TABLE – DAC3164  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CONTROL/SERIAL  
SCLK  
43  
42  
44  
I
I
Serial interface clock. Internal pull-down.  
Serial interface clock. Internal pull-up.  
SDENB  
SDIO  
I/O Bi-directional serial data in 3 pin mode (default). In 4-pin interface mode (register XYZ), the SDIO pin  
in an input only. Internal Pull-down.  
SDO  
46  
41  
O
Uni-directional serial interface data in 4 pin mode (register XYZ). The SDO pin is tri-stated in 3-pin  
interface mode (default). Internal Pulldown.  
RESETB  
I
Serial interface reset input. Active low. Initialized internal registers during high to low transition.  
Assynchronous. Internal pull-up.  
ALARM  
47  
48  
O
I
CMOS output for ALARM condition.  
TXENABLE  
Transmit enable active high input. TXENABLE must be high for the DATA to the DAC to be enabled.  
When TXENABLE is low, the digital logic section is forced to all 0, and any input data is ignored.  
Internal pull-down.  
SLEEP  
49  
I
Puts device in sleep, active high. Internal pull-down.  
6
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
PIN ASSIGNMENT TABLE – DAC3164 (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
DATA INTERFACE  
DATA[11:0]P/N  
9/10-  
19/20  
22/23,  
26-27-  
35/36  
I
LVDS input data bits for both channels. Each positive/negative LVDS pair has an internal 100 Ω  
termination resistor. Data format relative to DATACLKP/N clock is Double Data Rate (DDR) with two  
data transfers per DATACKP/N clock cycle.  
The data format is interleaved with channel A (rising edge) and channel B falling edge.  
In the default mode (reverse bus not enabled):  
DATA11P/N is most significant data bit (MSB)  
DATA0P/N is most significant data bit (LSB)  
DATACLK[:0]P/N  
SYNCP/N  
24/25  
6/7  
I
I
I
DDR differential input data clock. Edge to center nominal timing. Ch A rising edge, Ch B falling edge  
in multiplexed output mode.  
Reset the FIFO or to be used as a syncing source. These two functions are captured with the rising  
edge of DATACLKP/N. The signal captured by the falling edge of DATACLKP/N.  
ALIGNP/N  
24/25  
LVPECL FIFO output syncrhonization. This positive/negative pair is captured with the rising edge of  
DACCLKP/N. It is used to reset the clock dividers and for multiple DAC synchronization. If unused it  
can be left unconnected.  
OUTPUT/CLOCK  
DACCLKP/N  
IOUTAP/N  
1/2  
I
LVPECL clock input for DAC core with a self-bias of approximately CLKVDD18/2.  
61/60  
O
A-Channel DAC current output. An offset binary data pattern of 0x0000 at the DAC input results in a  
full scale current source and the most positive voltage on the IOUTA1 pin. Similarly, a 0xFFFF data  
input results in a 0 mA current source and the least positive voltage on the IOUTA1 pin. The IOUTA2  
pin is the complement of IOUTA1.  
IOUTBP/N  
53/54  
O
B-Channel DAC current output. An offset binary data pattern of 0x0000 at the DAC input results in a  
full scale current source and the most positive voltage on the IOUTB1 pin. Similarly, a 0xFFFF data  
input results in a 0 mA current source and the least positive voltage on the IOUTB1 pin. The IOUTB2  
pin is the complement of IOUTB1.  
REFERENCE  
EXTIO  
58  
57  
I/O Used as external reference input when internal reference is disabled. Requires a 0.1 µF decoupling  
capacitor to GND when used as reference output.  
BIASJ  
O
Full-scale output current bias. For 20 mA full-scale output current, connect a 960 Ω resistor to GND.  
POWER SUPPLY  
IOVDD  
45  
3
I
I
I
I
I
Supply voltage for CMOS IO’s. 1.8V – 3.3V.  
1.8V clock supply  
CLKVDD18  
DIGVDD18  
VDDA18  
21, 28  
50, 64  
1.8V digital supply. Also supplies LVDS receivers.  
Analog 1.8V supply  
VDDA33  
55, 56,  
59  
Analog 3.3V supply  
VFUSE  
NC  
8
I
Digital supply voltage. (1.8V) This supply pin is also used for factory fuse programming. Connect to  
DVDD pins for normal operation.  
37, 38,  
39, 40,  
51, 52  
62, 63  
Not used. These pins can be left open or tied to GROUND in actual application use.  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA  
PRODUCT  
ECO PLAN  
QUANTITY  
DAC3154IRGCT  
DAC3154IRGCR  
DAC3164IRGC25  
DAC3164IRGCT  
DAC3164IRGCR  
250  
2000  
25  
DAC3154  
GREEN (RoHS  
and no Sb/Br)  
QFN-64  
RGC  
–40°C to 85°C  
Tape and Reel  
DAC3164  
250  
2000  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
Copyright © 2013, Texas Instruments Incorporated  
7
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
–0.5 to 4  
UNIT  
VDDA33 to GND  
VDDA18 to GND  
–0.5 to 2.3  
–0.5 to 2.3  
–0.5 to 4  
Supply voltage  
CLKVDD18 to GND  
V
IOVDD to GND  
DIGVDD18 to GND  
–0.5 to 2.3  
–0.5 to 0.5  
–0.5 to 0.5  
CLKVDD18 to DIGVDD18  
VDDA18 to DIGVDD18  
D[11..0]P, D[11..0]N, DATACLKP, DATACLKN, SYNCP, SYNCN to GND  
DACCLKP, DACCLKN, ALIGNP, ALIGNN  
TXENABLE, ALARM, SDO, SDIO, SCLK, SDENB, RESETB to GND  
IOUTAP, IOUTAN, IOUTBP, IOUTBN to GND  
EXTIO, BIASJ to GND  
–0.5 to DIGVDD18 + 0.5  
–0.5 to CLKVDD18 + 0.5  
–0.5 to IOVDD + 0.5  
–0.7 to 1.4  
Terminal voltage  
range  
V
–0.5 to VDDA33 + 0.5  
–65 to 150  
Storage temperature range  
ESD, Human Body Model  
°C  
kV  
2
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
THERMAL INFORMATION  
DAC3174  
THERMAL METRIC(1)  
UNITS  
QFN (64 PIN)  
θJA  
Junction-to-ambient thermal resistance  
23.0  
7.6  
2.8  
0.1  
2.8  
0.2  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
θJCbot  
(1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。  
8
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
ELECTRICAL CHARACTERISTICS – DC SPECIFICATIONS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, DAC sample rate = 500MSPS, 50% clock  
duty cycle, VDDA33/IOVDD = 3.3V, VDDA18/CLKVDD18/DIGVDD18 = 1.8V, IOUTFS = 20mA (unless otherwise noted).  
DAC3154  
TYP  
DAC3164  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX MIN  
MAX  
Resolution  
DC ACCURACY  
DNL Differential nonlinearity  
INL Integral nonlinearity  
ANALOG OUTPUTS  
10  
12  
Bits  
1 LSB = IOUTFS/210 for  
DAC3154; 1 LSB = IOUTFS/212  
for DAC3164  
±0.04  
±0.15  
±0.2  
±0.5  
LSB  
Coarse gain linearity  
Offset error  
±0.4  
0.01  
±2  
±0.4  
0.01  
±2  
LSB  
Mid code offset  
%FSR  
With external reference  
With internal reference  
With internal reference  
Gain error  
%FSR  
%FSR  
mA  
±2  
±2  
Gain mismatch  
-2  
2
-2  
2
1
Minimum full scale output current  
Maximum full scale output current  
Output compliance range  
Output resistance  
2
2
Nominal full-scale current,  
IOUTFS = 16xIBAIS current  
20  
20  
IOUTFS = 20 mA  
-0.5  
-0.5  
V
300  
5
300  
5
kΩ  
pF  
Output capacitance  
REFERENCE OUTPUT  
VREF  
Reference output voltage  
Reference output current  
1.14  
0.1  
1.2  
1.26 1.14  
1.2  
1.26  
1.25  
V
100  
100  
nA  
REFERENCE INPUT  
VEXTIO Input voltage range  
External reference mode  
1.2  
1
1.25  
0.1  
1.2  
1
V
Input resistance  
Small signal bandwidth  
MΩ  
kHz  
pF  
500  
100  
500  
100  
Input capacitance  
TEMPERATURE COEFFICIENTS  
ppm of  
FSR/°C  
Offset drift  
Gain drift  
±1  
±1  
With external reference  
With internal reference  
±15  
±30  
±8  
±15  
±30  
±8  
Reference voltage drift  
ppm /°C  
POWER SUPPLY  
DIGVDD18, VFUSE, VDDA18,  
CLKVDD18  
1.71  
3.15  
1.71  
1.8  
3.3  
1.71  
3.15  
1.71  
1.8  
3.3  
1.89  
3.45  
3.45  
V
V
V
VDDA33  
Sets CMOS IO voltage levels.  
Nominal 1.8V, 2.5V or 3.3V  
IOVDD  
Copyright © 2013, Texas Instruments Incorporated  
9
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS – DC SPECIFICATIONS (continued)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, DAC sample rate = 500MSPS, 50% clock  
duty cycle, VDDA33/IOVDD = 3.3V, VDDA18/CLKVDD18/DIGVDD18 = 1.8V, IOUTFS = 20mA (unless otherwise noted).  
DAC3154  
TYP  
DAC3164  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX MIN  
MAX  
POWER CONSUMPTION  
IVDDA33 3.3V Analog supply current  
52  
49  
59  
67  
52  
49  
59  
57  
mA  
mA  
ICLKVDD18 1.8V Clock supply current  
MODE 1  
1.8V Digital supply current  
IDIGVDD18  
fDAC = 491.52 MSPS,  
QMC on,  
115  
130  
115  
130  
mA  
(DIGVDD18 and VFUSE)  
IF = 20 MHz  
IIOVDD  
Pdis  
1.8V IO Supply current  
Total power dissipation  
3.3V Analog supply current  
0.002 0.015  
0.002 0.015  
mA  
mW  
mA  
mA  
464  
51  
530  
464  
51  
530  
IVDDA33  
ICLKVDD18 1.8V Clock supply current  
38  
38  
MODE 2  
1.8V Digital supply current  
IDIGVDD18  
fDAC = 320 MSPS,  
QMC on,  
87  
87  
mA  
(DIGVDD18 and VFUSE)  
IF = 20 MHz  
IIOVDD  
Pdis  
1.8V IO Supply current  
Total power dissipation  
3.3V Analog supply current  
0.002  
396  
2.6  
0.002  
396  
2.6  
mA  
mW  
mA  
mA  
IVDDA33  
ICLKVDD18 1.8V Clock supply current  
43  
43  
MODE 3  
1.8V Digital supply current  
IDIGVDD18  
Sleep mode,  
fDAC = 491.52 MSPS,  
DAC in sleep mode  
110  
110  
mA  
(DIGVDD18 and VFUSE)  
IIOVDD  
Pdis  
1.8V IO Supply current  
Total power dissipation  
3.3V Analog supply current  
0.003  
284  
1.6  
0.003  
284  
1.6  
mA  
mW  
mA  
mA  
IVDDA33  
4
4
4
4
ICLKVDD18 1.8V Clock supply current  
1.8  
1.8  
MODE 4  
1.8V Digital supply current  
IDIGVDD18  
Power-down mode,  
no clock,  
1.7  
3
mA  
(DIGVDD18 and VFUSE)  
DAC in sleep mode  
IIOVDD  
Pdis  
1.8V IO Supply current  
Total power dissipation  
Power supply rejection ratio  
Operating temperature  
0.003 0.015  
0.003 0.015  
10 26  
mA  
10  
26  
mW  
PSRR  
T
DC tested  
–0.4  
–40  
0.4 -0.4  
0.4 %/FSR/V  
85 °C  
85  
-40  
10  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
ELECTRICAL CHARACTERISTICS – AC SPECIFICATIONS  
Typical values at T A = 25°C, full temperature range is T MIN = –40°C to T MAX = 85°C, DAC sample rate = 500MSPS, 50%  
clock duty cycle, VDDA33/IOVDD = 3.3V, VDDA18/CLKVDD18/DIGVDD18 = 1.8V, IOUT FS = 20mA (unless otherwise  
noted).  
DAC3154  
DAC3164  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP MAX MIN TYP MAX  
ANALOG OUTPUT  
fDAC  
Maximum sample rate  
500  
500  
MSPS  
ns  
Output settling time to  
0.1%  
ts(DAC)  
tPD  
Transition: Code 0x0000 to 0x3FFF  
11  
2
11  
2
Output propagation delay Does not include digital latency  
ns  
Output rise time 10% to  
90%  
tr(IOUT)  
200  
200  
ps  
Output fall time 90% to  
10%  
tf(IOUT)  
200  
26  
200  
26  
ps  
µs  
Length of delay from DAC input pins to DATA at  
output pins. In normal operation mode including the  
latency of FIFO.  
Digital Latency  
AC PERFORMANCE  
fDAC = 500 MSPS, fout = 10.1 MHz  
fDAC = 500 MSPS, fout = 20.1 MHz  
fDAC = 500 MSPS, fout = 70.1 MHz  
fDAC = 500 MSPS, fout = 10.1 ±0.5 MHz  
fDAC = 500 MSPS, fout = 20.1 ±0.5 MHz  
fDAC = 500 MSPS, fout = 70.1 ±0.5 MHz  
fDAC = 500 MSPS, fout = 150.1 ±0.5 MHz  
fDAC = 500 MSPS, fout = 10.1 MHz  
fDAC = 500 MSPS, fout = 20.1 MHz  
fDAC = 500 MSPS, fout = 70.1 MHz  
81  
76  
82  
77  
Spurious free dynamic  
range  
SFDR  
dBc  
dBc  
69  
70  
82  
83  
81  
82  
IMD3 Intermodulation distortion  
73.5  
61  
74  
61  
147  
146  
146  
158  
156  
153  
NSD  
Noise spectral density  
dBc/Hz  
fDAC = 491.52 MSPS, fout = 30.72 MHz,  
WCDMA TM1  
69  
68  
90  
77  
73  
90  
Adjacent channel leakage  
ratio  
ACLR  
dBc  
dBc  
f AC = 491.52 MSPS, fout = 153.6 MHz,  
WCDMA TM1  
fDAC = 500 MSPS,  
fout = 20 MHz  
Channel isolation  
Copyright © 2013, Texas Instruments Incorporated  
11  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS – DIGITAL SPECIFICATIONS  
Typical values at T A = 25°C, full temperature range is T MIN = –40°C to T MAX = 85°C, DAC sample rate = 500MSPS, 50%  
clock duty cycle, VDDA33/IOVDD = 3.3V, VDDA18/CLKVDD18/DIGVDD18 = 1.8V, IOUT FS = 20mA (unless otherwise  
noted).  
DAC3154  
DAC3164  
PARAMETERS  
TEST CONDITIONS  
UNIT  
MIN TYP  
MAX  
MIN TYP  
MAX  
CMOS DIGITAL INPUTS (RESETB, SDENB, SCLK, SDIO, TXENABLE)  
0.6x  
IOVDD  
0.6x  
IOVDD  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
V
0.25×  
IOVDD  
0.25×  
IOVDD  
IOVDD = 3.3 V, 2.5 V  
or 1.8 V  
IIH  
IIL  
High-level input current  
Low-level input current  
–40  
–40  
40  
40  
-40  
-40  
40  
40  
μA  
μA  
DIGITAL OUTPUTS – CMOS INTERFACE (SDOUT, SDIO)  
IOVDD = 3.3 V, 2.5 V,  
or 1.8 V  
0.85×  
IOVDD  
0.85×  
IOVDD  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
V
0.125×  
IOVDD  
0.125×  
IOVDD  
SERIAL PORT TIMING  
Setup time, SDENB to rising edge of  
SCLK  
ts(SENDB)  
20  
20  
ns  
ts(SDIO)  
th(SDIO)  
t(SCLK)  
Setup time, SDIO to rising edge of SCLK  
Hold time, SDIO from rising edge of SCLK  
Period of SCLK  
10  
5
10  
5
ns  
ns  
ns  
ns  
ns  
100  
40  
40  
100  
40  
40  
t(SCLKH)  
t(SCLKL)  
High time of SCLK  
Low time of SCLK  
Data output delay after falling edge of  
SCLK  
td(DATA)  
TRESET  
10  
10  
ns  
Minimum RESTB pulsewidth  
LVDS INTERFACE (D[x..0]P/N, DA[x..0]P/N , DB[x..0]P/N , DA_CLKP/N, DB_CLKP/N, DATACLKP/N, SYNCP/N, ALIGNP/N)  
Logic high differential input voltage  
threshold  
VA,B+  
VA,B–  
175  
175  
mV  
Logic low differential input voltage  
threshold  
-175  
–175 mV  
VCOM  
ZT  
Input Common Mode Range  
Internal termination  
1.0  
1.2  
2.0  
1.0  
1.2  
2.0  
V
Ω
85 110  
2
135  
85 110  
2
135  
CL  
LVDS input capacitance  
pF  
12  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
ELECTRICAL CHARACTERISTICS – DIGITAL SPECIFICATIONS (continued)  
Typical values at T A = 25°C, full temperature range is T MIN = –40°C to T MAX = 85°C, DAC sample rate = 500MSPS, 50%  
clock duty cycle, VDDA33/IOVDD = 3.3V, VDDA18/CLKVDD18/DIGVDD18 = 1.8V, IOUT FS = 20mA (unless otherwise  
noted).  
DAC3154  
DAC3164  
PARAMETERS  
TEST CONDITIONS  
UNIT  
MIN TYP  
MAX  
MIN TYP  
MAX  
LVDS INPUT TIMING: SINGLE BUS SINGLE CLOCK MODE  
config3 Setting  
datadly clkdly  
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
0
-20  
-120  
-220  
-310  
-390  
-480  
-560  
-630  
70  
-20  
-120  
-220  
-310  
-390  
-480  
-560  
-630  
70  
1
2
3
4
5
6
7
0
0
0
0
0
0
0
Setup D[x..0] valid to DATACLK rising or  
ts(DATA)  
ps  
time  
falling edge  
150  
230  
330  
430  
530  
620  
150  
230  
330  
430  
530  
620  
congfig3 Setting  
datadly  
clkdly  
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
310  
390  
480  
560  
650  
740  
850  
930  
200  
100  
20  
310  
390  
480  
560  
650  
740  
850  
930  
200  
100  
20  
Hold  
time  
D[x..0] valid to DATACLK rising or  
falling edge  
th(DATA)  
ps  
-60  
-60  
-140  
-220  
-290  
-140  
-220  
-290  
Copyright © 2013, Texas Instruments Incorporated  
13  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
0.2  
0.15  
0.1  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.05  
0
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
−0.05  
−0.1  
−0.15  
−0.2  
0
200  
400  
600  
Code  
800  
1000  
0
200  
400  
600  
Code  
800  
1000  
G003  
G004  
Figure 3. DAC3154 Integral Nonlinearity  
Figure 4. DAC3154 Differential Nonlinearity  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0dBFS  
−6dBFS  
−12dBFS  
0dBFS  
−6dBFS  
−12dBFS  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (dB)  
G005  
G006  
Figure 5. DAC3154 SFDR vs Output Frequency Over Input  
Scale  
Figure 6. DAC3154 Second-Order Harmonic Distortion vs  
Output Frequency Over Input Scale  
100  
100  
fDAC = 200 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
90  
90  
80  
70  
60  
50  
40  
30  
20  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G007  
G008  
Figure 7. DAC3154 Third-Order Harmonic Distortion vs  
Output Frequency Over Input Scale  
Figure 8. DAC3154 SFDR vs Output Frequency Over fDAC  
14  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
fDAC = 200 MSPS  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G009  
G010  
Figure 9. DAC3154 IMD3 vs Output Frequency Over Input  
Scale  
Figure 10. DAC3154 IMD3 vs Output Frequency Over fDAC  
170  
170  
fDAC = 200 MSPS  
0dBFS  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
−6dBFS  
−12dBFS  
160  
150  
140  
130  
120  
110  
100  
160  
150  
140  
130  
120  
110  
100  
0
50  
100  
150  
200  
250  
0
100  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G011  
G012  
Figure 11. DAC3154 NSD vs Output Frequency Over Input  
Scale  
Figure 12. DAC3154 NSD vs Output Frequency Over fDAC  
−50  
−50  
Adjacent channel  
Alternate channel  
−60  
−70  
−80  
−90  
−60  
−70  
−80  
−90  
fDAC = 500 MSPS  
−100  
fDAC = 500 MSPS  
−100  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (MHz)  
Output Frequency (MHz)  
G013  
G012  
Figure 13. DAC3154 ACLR (Adjacent Channel) vs Output  
Frequency  
Figure 14. DAC3154 ACLR (Alternate Channel) vs Output  
Frequency  
Copyright © 2013, Texas Instruments Incorporated  
15  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
10  
10  
fDAC = 491. 52MSPS  
fout = 20 MHz  
fDAC = 491. 52MSPS  
fout = 70 MHz  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
10  
50  
90  
130  
170  
210  
250  
10  
50  
90  
130  
170  
210  
250  
Frequency (MHz)  
Frequency (MHz)  
G011  
G016  
Figure 15. DAC3154 Single-Tone Spectral Plot (IF = 20MHz)  
Figure 16. DAC3154 Single-Tone Spectral Plot (IF = 70MHz)  
10  
10  
fDAC = 500 MSPS  
fout = 20 MHz  
fDAC = 500 MSPS  
fout = 70 MHz  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
Tone spacing = 1 MHz  
Tone spacing = 1 MHz  
15  
17  
19  
21  
23  
25  
65  
67  
69  
71  
73  
75  
Frequency (MHz)  
Frequency (MHz)  
G017  
G018  
Figure 17. DAC3154 Two-Tone Spectral Plot (IF = 20MHz)  
Figure 18. DAC3154 Two-Tone Spectral Plot (IF = 70MHz)  
*
*
*
R B W 3 0 k H z  
*
*
*
R B W 3 0 k H z  
V B W 3 0 0 k H z  
V B W 3 0 0 k H z  
R e f - 2 0 d B m  
*
A t t  
5
d B  
S W T  
2
s
R e f - 1 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
- 2 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 1 1 0  
A
A
1
R M  
*
1
R M  
*
C L R W R  
C L R W R  
N O R  
3 D B  
N O R  
3 D B  
C e n t e r 7 0 M H z  
1 . 5 5 M H z /  
S p a n 1 5 . 5 M H z  
W - C D M A 3 G P P F W D  
C e n t e r 7 0 M H z  
4 . 0 8 M H z /  
S p a n 4 0 . 8 M H z  
T x C h a n n e l  
S t a n d a r d : W - C D M A 3 G P P F W D  
T x C h a n n e l s  
A d j a c e n t C h a n n e l  
Lower  
B a n d w i d t h  
3 . 8 4 M H z  
3 . 8 4 M H z  
Power  
-10.64 dBm  
-61.24 dB  
-61.34 dB  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
Upper  
Lower  
Upper  
-69.11 dB  
-69.15 dB  
( R e f )  
Ch1  
Ch2  
Ch3  
Ch4  
-18.62 dBm  
-18.64 dBm  
-18.72 dBm  
-18.70 dBm  
S p a c i n g  
5
M H z  
A l t e r n a t e C h a n n e l  
Lower  
Upper  
-61.11 dB  
-61.39 dB  
Total  
-12.65 dBm  
Figure 19. DAC3154 ACPR Four-Carrier  
WCDMA Test Mode 1  
Figure 20. DAC3154 ACPR Single-Carrier  
WCDMA Test Mode 1  
16  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
*
*
*
R B W 3 0 k H z  
*
*
*
R B W 3 0 k H z  
V B W 3 0 0 k H z  
V B W 3 0 0 k H z  
R e f - 1 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
R e f - 1 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
- 2 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 2 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
A
A
1
R M *  
1
R M  
*
C L R W R  
C L R W R  
N O R  
3 D B  
N O R  
3 D B  
C e n t e r 7 0 M H z  
5 . 8 5 5 0 3 4 5 3 8 M H z /  
S p a n 5 8 . 5 5 0 3 4 5 3 8 M H z  
E - U T R A / L T E S q u a r e  
C e n t e r 7 0 M H z  
2 . 9 2 8 2 7 4 1 9 M H z /  
S p a n 2 9 . 2 8 2 7 4 1 9 M H z  
E - U T R A / L T E S q u a r e  
T x C h a n n e l  
T x C h a n n e l  
B a n d w i d t h  
1 8 . 0 1 5 M H z  
B a n d w i d t h  
9 . 0 1 5 M H z  
Power  
-11.14 dBm  
Power  
-12.33 dBm  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
Lower  
Upper  
-61.93 dB  
-62.21 dB  
Lower  
Upper  
-64.00 dB  
-64.09 dB  
1 8 . 0 1 5 M H z  
2 0 M H z  
9 . 0 1 5 M H z  
1 0 M H z  
S p a c i n g  
S p a c i n g  
Figure 21. DAC3154 ACPR LTE 10-MHz FDD E-TM 1.1  
Figure 22. DAC3154 ACPR LTE 20-MHz FDD E-TM 1.1  
600  
500  
400  
300  
200  
100  
QMC on  
200  
300  
400  
500  
G023  
fDAC (MSPS)  
Figure 23. DAC3154 Power Consumption vs fDAC  
0.4  
0.3  
0.2  
0.15  
0.1  
0.2  
0.1  
0.05  
0
0
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
−0.6  
−0.05  
−0.1  
−0.15  
−0.2  
0
500 1000 1500 2000 2500 3000 3500 4000  
Code  
0
500 1000 1500 2000 2500 3000 3500 4000  
Code  
G024  
G025  
Figure 24. DAC3164 Integral Nonlinearity  
Figure 25. DAC3164 Differential Nonlinearity  
Copyright © 2013, Texas Instruments Incorporated  
17  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0dBFS  
−6dBFS  
−12dBFS  
0dBFS  
−6dBFS  
−12dBFS  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (dB)  
G026  
G027  
Figure 26. DAC3164 SFDR vs Output Frequency Over Input  
Scale  
Figure 27. DAC3164 Second-Order Harmonic Distortion vs  
Output Frequency Over Input Scale  
100  
100  
fDAC = 200 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
90  
90  
80  
70  
60  
50  
40  
30  
20  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G028  
G029  
Figure 28. DAC3164 Third-Order Harmonic Distortion vs  
Output Frequency Over Input Scale  
Figure 29. DAC3164 SFDR vs Output Frequency Over fDAC  
100  
100  
fDAC = 200 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
90  
90  
80  
70  
60  
50  
40  
30  
20  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G030  
G031  
Figure 30. DAC3164 IMD3 vs Output Frequency Over Input  
Scale  
Figure 31. DAC3164 IMD3 vs Output Frequency Over fDAC  
18  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
180  
170  
160  
150  
140  
130  
120  
110  
180  
170  
160  
150  
140  
130  
120  
110  
fDAC = 200 MSPS  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
0
50  
100  
150  
200  
250  
0
100  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G032  
G033  
Figure 32. DAC3164 NSD vs Output Frequency Over Input  
Scale  
Figure 33. DAC3164 NSD vs Output Frequency Over fDAC  
−50  
−50  
Adjacent channel  
Alternate channel  
−60  
−70  
−80  
−90  
−60  
−70  
−80  
−90  
fDAC = 500 MSPS  
−100  
fDAC = 500 MSPS  
−100  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (MHz)  
Output Frequency (MHz)  
G034  
G035  
Figure 34. DAC3164 ACLR (Adjacent Channel) vs Output  
Frequency  
Figure 35. DAC3164 ACLR (Alternate Channel) vs Output  
Frequency  
10  
10  
fDAC = 491. 52MSPS  
fout = 20 MHz  
fDAC = 491. 52MSPS  
fout = 70 MHz  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
10  
50  
90  
130  
170  
210  
250  
10  
50  
90  
130  
170  
210  
250  
Frequency (MHz)  
Frequency (MHz)  
G036  
G037  
Figure 36. DAC3164 Single-Tone Spectral Plot (IF = 20MHz)  
Figure 37. DAC3164 Single-Tone Spectral Plot (IF = 70MHz)  
Copyright © 2013, Texas Instruments Incorporated  
19  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
10  
10  
fDAC = 500 MSPS  
fout = 20 MHz  
fDAC = 500 MSPS  
fout = 70 MHz  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
Tone spacing = 1 MHz  
Tone spacing = 1 MHz  
15  
17  
19  
21  
23  
25  
65  
67  
69  
71  
73  
75  
Frequency (MHz)  
Frequency (MHz)  
G038  
G039  
Figure 38. DAC3164 Two-Tone Spectral Plot (IF = 20MHz)  
Figure 39. DAC3164 Two-Tone Spectral Plot (IF = 70MHz)  
*
*
*
R B W 3 0 k H z  
*
*
*
R B W 3 0 k H z  
V B W 3 0 0 k H z  
V B W 3 0 0 k H z  
R e f - 1 0 d B m  
*
A t t  
5
d B  
S W T  
2
s
R e f - 1 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
- 2 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 2 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
A
A
1
R M  
*
1
R M  
*
C L R W R  
C L R W R  
N O R  
3 D B  
N O R  
3 D B  
C e n t e r 7 0 M H z  
4 . 0 8 M H z /  
S p a n 4 0 . 8 M H z  
C e n t e r 7 0 M H z  
1 . 5 5 M H z /  
S p a n 1 5 . 5 M H z  
W - C D M A 3 G P P F W D  
S t a n d a r d : W - C D M A 3 G P P F W D  
T x C h a n n e l s  
A d j a c e n t C h a n n e l  
Lower  
T x C h a n n e l  
B a n d w i d t h  
3 . 8 4 M H z  
3 . 8 4 M H z  
Power  
-10.70 dBm  
-70.74 dB  
-70.87 dB  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
Upper  
Lower  
Upper  
-77.84 dB  
-77.14 dB  
( R e f )  
Ch1  
Ch2  
Ch3  
Ch4  
-18.70 dBm  
-18.69 dBm  
-18.77 dBm  
-18.75 dBm  
A l t e r n a t e C h a n n e l  
S p a c i n g  
5 M H z  
Lower  
Upper  
-70.86 dB  
-70.84 dB  
Total  
-12.71 dBm  
Figure 40. DAC3164 ACPR Four-Carrier  
WCDMA Test Mode 1  
Figure 41. DAC3164 ACPR Single-Carrier  
WCDMA Test Mode 1  
*
*
*
R B W 3 0 k H z  
*
*
*
R B W 3 0 k H z  
V B W 3 0 0 k H z  
V B W 3 0 0 k H z  
R e f - 2 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
R e f - 2 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 1 1 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 1 1 0  
A
A
1
R M  
*
1
R M *  
C L R W R  
C L R W R  
N O R  
3 D B  
N O R  
3 D B  
C e n t e r 7 0 M H z  
5 . 8 5 5 0 3 4 5 3 8 M H z /  
S p a n 5 8 . 5 5 0 3 4 5 3 8 M H z  
E - U T R A / L T E S q u a r e  
C e n t e r 7 0 M H z  
2 . 9 2 8 2 7 4 1 9 M H z /  
S p a n 2 9 . 2 8 2 7 4 1 9 M H z  
E - U T R A / L T E S q u a r e  
T x C h a n n e l  
T x C h a n n e l  
B a n d w i d t h  
1 8 . 0 1 5 M H z  
B a n d w i d t h  
9 . 0 1 5 M H z  
Power  
-11.20 dBm  
Power  
-12.37 dBm  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
Lower  
Upper  
-70.91 dB  
-70.66 dB  
Lower  
Upper  
-73.67 dB  
-73.46 dB  
1 8 . 0 1 5 M H z  
2 0 M H z  
9 . 0 1 5 M H z  
1 0 M H z  
S p a c i n g  
S p a c i n g  
Figure 42. DAC3164 ACPR LTE 10-MHz FDD E-TM 1.1  
Figure 43. DAC3164 ACPR LTE 20-MHz FDD E-TM 1.1  
20  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
600  
500  
400  
300  
200  
QMC on  
500  
100  
200  
300  
400  
G044  
f
DAC
(MSPS)  
Figure 44. DAC3164 Power Consumption vs fDAC  
Copyright © 2013, Texas Instruments Incorporated  
21  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
DEFINITION OF SPECIFICATIONS  
Adjacent Carrier Leakage Ratio (ACLR): Defined as the ratio in decible relative to the carrier (dBc) between  
the measured power within the channel and that of its adjacent channel.  
Analog and Digital Power Supply Rejection Ratio (APSSR, DPSSR): Defined as the percentage error in the  
ratio of the delta IOUT and delta supply voltage normalized with respect to the ideal IOUT current.  
Differential Nonlinearity (DNL): Defined as the variation in analog output associated with an ideal 1 LSB  
change in the digital input code.  
Gain Drift: Defined as the maximum change in gain, in terms of ppm of full-scale range (FSR) per °C, from the  
value at ambient (25°C) to values over the full operating temperature range.  
Gain Error: Defined as the percentage error (in FSR%) for the ratio between the measured full-scale output  
current and the ideal full-scale output current.  
Integral Nonlinearity (INL): Defined as the maximum deviation of the actual analog output from the ideal output,  
determined by a straight line drawn from zero scale to full scale.  
Intermodulation Distortion (IMD3): The two-tone IMD3 is defined as the ratio (in dBc) of the 3rd-order  
intermodulation distortion product to either fundamental output tone.  
Offset Drift: Defined as the maximum change in DC offset, in terms of ppm of full-scale range (FSR) per °C,  
from the value at ambient (25°C) to values over the full operating temperature range.  
Offset Error: Defined as the percentage error (in FSR%) for the ratio between the measured mid-scale output  
current and the ideal mid-scale output current.  
Output Compliance Range: Defined as the minimum and maximum allowable voltage at the output of the  
current-output DAC. Exceeding this limit may result reduced reliability of the device or adversely affecting  
distortion performance.  
Reference Voltage Drift: Defined as the maximum change of the reference voltage in ppm per degree Celsius  
from value at ambient (25°C) to values over the full operating temperature range.  
Spurious Free Dynamic Range (SFDR): Defined as the difference (in dBc) between the peak amplitude of the  
output signal and the peak spurious signal.  
Signal to Noise Ratio (SNR): Defined as the ratio of the RMS value of the fundamental output signal to the  
RMS sum of all other spectral components below the Nyquist frequency, including noise, but excluding the first  
six harmonics and dc.  
TIMING DIAGRAMS  
D[9:0]P/N  
A3[9:0]  
B3[9:0]  
A4[9:0]  
B4[9:0]  
A5[9:0]  
B5[9:0]  
A6[9:0]  
B6[9:0]  
A7[9:0]  
B7[9:0]  
ts(DATA)  
th(DATA)  
ts(DATA)  
th(DATA)  
DATACLKP/N  
(DDR)  
ts(DATA)  
th(DATA)  
SYNCP/N  
Resets write pointer to position 0  
Figure 45. DAC3154 Input Timing Diagram for Dual Channel DDR Mode  
22  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
D[9:0]P/N  
A3[9:0]  
A4[9:0]  
A5[9:0]  
A6[9:0]  
A7[9:0]  
A8[9:0]  
A9[9:0] A10[9:0] A11[9:0]  
ts(DATA)  
th(DATA)  
DATACLKP/N  
(SDR)  
ts(DATA)  
th(DATA)  
SYNCP/N  
Resets write pointer to position 0  
Figure 46. DAC3154 Input Timing Diagram for Single Channel SDR Mode  
D[11:0]P/N  
A3[11:0] B3[11:0] A4[11:0] B4[11:0] A5[11:0] B5[11:0] A6[11:0] B6[11:0] A7[11:0] B7[11:0]  
ts(DATA)  
th(DATA)  
ts(DATA)  
th(DATA)  
DATACLKP/N  
(DDR)  
ts(DATA)  
th(DATA)  
SYNCP/N  
Resets write pointer to position 0  
Figure 47. DAC3164 Input Timing Diagram for Dual Channel DDR Mode  
D[11:0]P/N  
A3[11:0] A4[11:0] A5[11:0] A6[11:0] A7[11:0] A8[11:0] A9[11:0] A10[11:0] A11[11:0]  
ts(DATA)  
th(DATA)  
DATACLKP/N  
(SDR)  
ts(DATA)  
th(DATA)  
SYNCP/N  
Resets write pointer to position 0  
Figure 48. DAC3164 Input Timing Diagram for Single Channel SDR Mode  
Copyright © 2013, Texas Instruments Incorporated  
23  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
DATA INPUT FORMATS  
Table 1. DAC3154 Dual Channel DDR Mode  
BITS  
DIFFERENTIAL PAIR (P/N)  
D9  
DATACLK RISING EDGE  
DATACLK FALLING EDGE  
A9  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
D8  
D7  
A8  
A7  
D6  
A6  
D5  
A5  
D4  
A4  
D3  
A3  
D2  
A2  
D1  
A1  
A0  
D0  
SYNC  
FIFO Write Reset  
Table 2. DAC3154 Single Channel SDR Mode  
BITS  
DIFFERENTIAL PAIR (P/N)  
DATACLK RISING EDGE  
DATACLK FALLING EDGE  
D9  
D8  
A9  
A8  
D7  
A7  
D6  
A6  
D5  
A5  
D4  
A4  
D3  
A3  
D2  
A2  
D1  
A1  
A0  
D0  
SYNC  
FIFO Write Reset  
Table 3. DAC3164 Dual Channel DDR Mode  
BITS  
DIFFERENTIAL PAIR (P/N)  
DATACLK RISING EDGE  
DATACLK FALLING EDGE  
D11  
D10  
D9  
A11  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
A10  
A9  
D8  
A8  
D7  
A7  
D6  
A6  
D5  
A5  
D4  
A4  
D3  
A3  
D2  
A2  
D1  
A1  
A0  
D0  
SYNC  
FIFO Write Reset  
24  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
Table 4. DAC3164 Single Channel DDR Mode  
BITS  
DIFFERENTIAL PAIR (P/N)  
DATACLK RISING EDGE  
DATACLK FALLING EDGE  
D11  
D10  
D9  
A11  
A10  
A9  
D8  
A8  
D7  
A7  
D6  
A6  
D5  
A5  
D4  
A4  
D3  
A3  
D2  
A2  
D1  
A1  
A0  
D0  
SYNC  
FIFO Write Reset  
Copyright © 2013, Texas Instruments Incorporated  
25  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
SERIAL INTERFACE DESCRIPTION  
The serial port of the DAC3154/DAC3164 is a flexible serial interface which communicates with industry standard  
microprocessors and microcontrollers. The interface provides read/write access to all registers used to define the  
operating modes of DAC3154/DAC3164. It is compatible with most synchronous transfer formats and can be  
configured as a 3 or 4 pin interface by sif4_ena in register config0, bit9. In both configurations, SCLK is the serial  
interface input clock and SDENB is serial interface enable. For 3 pin configuration, SDIO is a bidirectional pin for  
both data in and data out. For 4 pin configuration, SDIO is data in only and SDO is data out only. Data is input  
into the device with the rising edge of SCLK. Data is output from the device on the falling edge of SCLK.  
Each read/write operation is framed by signal SDENB (Serial Data Enable Bar) asserted low. The first frame byte  
is the instruction cycle which identifies the following data transfer cycle as read or write as well as the 7-bit  
address to be accessed. Table 5 indicates the function of each bit in the instruction cycle and is followed by a  
detailed description of each bit. The data transfer cycle consists of two bytes.  
Table 5. Instruction byte of the Serial interface  
MSB  
7
LSB  
0
Bit  
6
5
4
3
2
1
Description  
R/W  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
Identifies the following data transfer cycle as a read or write operation. A high indicates a read  
operation from DAC3154/DAC3164 and a low indicates a write operation to DAC3154/DAC3164.  
[A6 : A0]  
Identifies the address of the register to be accessed during the read or write operation.  
Figure 49 shows the serial interface timing diagram for a DAC3154/DAC3164 write operation. SCLK is the serial  
interface clock input to DAC3154/DAC3164. Serial data enable SDENB is an active low input to  
DAC3154/DAC3164. SDIO is serial data in. Input data to DAC3154/DAC3164 is clocked on the rising edges of  
SCLK.  
Instruction Cycle  
Data Transfer Cycle  
SDENB  
SCLK  
SDIO  
rwb  
A6  
A5  
A4  
A3  
A2  
A1  
t
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
t
(SDENB)  
S
SCLK  
SDENB  
SCLK  
SDIO  
t
(SDIO)  
t
(SDIO)  
H
S
Figure 49. Serial Interface Write Timing Diagram  
Figure 50 shows the serial interface timing diagram for a DAC3154/DAC3164 read operation. SCLK is the serial  
interface clock input to DAC3154/DAC3164. Serial data enable SDENB is an active low input to  
DAC3154/DAC3164. SDIO is serial data in during the instruction cycle. In 3 pin configuration, SDIO is data out  
from the DAC3154/DAC3164 during the data transfer cycle, while SDO is in a high-impedance state. In 4 pin  
configuration, both SDIO and SDO are data out from the DAC3154/DAC3164 during the data transfer cycle. At  
the end of the data transfer, SDIO and SDO will output low on the final falling edge of SCLK until the rising edge  
of SDENB when they will 3-state.  
26  
Copyright © 2013, Texas Instruments Incorporated  
 
 
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
Instruction Cycle  
Data Transfer Cycle  
SDENB  
SCLK  
rwb  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D15  
D14  
D14  
D13  
D13  
D12  
D12  
D11  
D11  
D10  
D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
SDIO  
SDO  
SDENB  
SCLK  
SDIO  
SDO  
Data n  
Data n-1  
t
(Data)  
d
Figure 50. Serial Interface Read Timing Diagram  
REGISTER DESCRIPTIONS  
In the SIF interface there are four types of registers:  
NORMAL: The NORMAL register type allows data to be written and read from. All 16-bits of the data are  
registered at the same time. There is no synchronizing with an internal clock thus all register  
writes are asynchronous with respect to internal clocks. There are three subtypes of NORMAL:  
AUTOSYNC:  
A NORMAL register that causes a sync to be generated after the write is  
finished. These are most commonly used in things like offsets and phaseadd  
where there is a word or block setup that extends across multiple registers  
and all of the registers need to be programmed before any take effect on the  
circuit. For example, the phaseadd is two registers long. It wouldn’t serve the  
user to have the first write 16 of the 32 bits cause a change in the frequency,  
so the design allows all the registers to be written and then when that last  
one for this block is finished, an autosync is generated for the mixer telling it  
to grab all the new SIF values. This will occur on a mixer clock cycle so that  
no meta-stability errors occur.  
No RESET Value: These are NORMAL registers, but for one reason or another reset value can  
not be guaranteed. This could be because the register has some read_only  
bits or some internal logic partially controls the bit values. An example is the  
SIF_CONFIG6 register. The bits come from the temperature sensor and the  
fuses. Depending on which fuses are blown and what the die temp is the  
reset value will be different.  
FUSE controlled: While this isn’t a type of register, you may see this description in the area  
describing the default value for the register. What is means is that fuses will  
change the default value and the value shown in the document is for when  
no fuses are blown.  
READ_ONLY:  
Registers that are internal wires ANDed with the address bus then connected to the SIF  
output data bus.  
WRITE_TO_CLEAR: These registers are just like NORMAL registers with one exception. They can be written  
and read, however, when the internal logic asynchronously sets a bit high in one of  
these registers, that bit stays high until it is written to ‘0’. This way interrupts will be  
captured and stay constant until cleared by the user.  
Copyright © 2013, Texas Instruments Incorporated  
27  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
(LSB)  
Table 6. Register Map  
(MSB)  
Bit 15  
Name  
Address  
Default  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
config0  
0x00  
0x44FC  
qmc_  
offset_ena  
dual_ ena  
chipwidth (1:0)  
reserved  
twos  
sif4_ena  
reserve  
d
fifo_ ena  
alarm_  
out_ena  
alarm_  
out_pol  
alignrx_en syncrx_en lvdsdataclk_  
reserved  
synconly_en  
a
a
a
ena  
alarm_1awa alarm_coll  
config1  
0x01  
0x600E  
iotest_ena bsideclk_e fullword_i 64cnt_ena dacclkgon dataclkgone collision_ena reserve  
daca_  
compliment  
dacb_  
complime  
nt  
sif_sync  
sif_  
alarm_  
reserved  
dual_ena  
na  
nterface_  
ena  
e_ ena  
_ena  
d
sync_ena 2away_en  
a
y_ena  
ision _ena  
config2  
config3  
config4  
config5  
0x02  
0x03  
0x04  
0x05  
0x3FFF  
0x0000  
0x0000  
0x0000  
reserved  
datadlya (2:0)  
reserved  
lvdsdata_ena (13:0)  
iotest_results (13:0)  
clkdlya (2:0)  
datadlyb (2:0)  
clkdlyb (2:0)  
extref_ena  
reserved  
alarm_fro  
m_  
zerochka  
alarm_fro  
m_  
zerochkb  
alarms_from_fifoa (2:0)  
alarms_from_fifob (2:0)  
alarm_dacclk alarm_dat clock_gon alarm_fro  
_ gone  
alarm_fro  
m_ iotesta m_ iotestb  
reserved  
aclk_  
gone  
e
config6  
0x06  
0x0084(D  
AC3164)  
0x0088(D  
AC3154)  
tempdata (7:0)  
fuse_cntl (5:0)  
reserved  
config7  
config8  
config9  
config10  
0x07  
0x08  
0x09  
0x0A  
0xFFFF  
0x4000  
0x8000  
0xF080  
alarms_mask (15:0)  
reserved  
qmc_offseta (12:0)  
qmc_offsetb (12:0)  
fifo_offset (2:0)  
coarse_dac (3:0)  
fuse_  
sleep  
reserved  
reserved  
reserved  
tsense_ clkrecv_ena  
sleep  
sleepa  
sleepb  
reserved  
config11  
config12  
config13  
config14  
config15  
config16  
config17  
config18  
config19  
config20  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x1111  
0x3A7A  
0x36B6  
0x2AEA  
0x0545  
0x1A1A  
0x1616  
0x2AAA  
0x06C6  
0x0000  
reserved  
reserved  
reserved  
reserved  
iotest_pattern0 (13:0)  
iotest_pattern1 (13:0)  
iotest_pattern2 (13:0)  
iotest_pattern3 (13:0)  
iotest_pattern4 (13:0)  
iotest_pattern5 (13:0)  
iotest_pattern6 (13:0)  
iotest_pattern7 (13:0)  
sifdac (13:0)  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
sifdac_  
ena  
reserved  
config21  
config22  
config23  
config24  
config25  
config127  
0x15  
0x16  
0x17  
0x18  
0x19  
0x7F  
0xFFFF  
0x0000  
0x0000  
0x0000  
0x0000  
0x0044  
sleepcntl (15:0)  
fa002_data(15:0)  
fa002_data(31:16)  
fa002_data(47:32)  
fa002_data(63:48)  
reserved  
reserved  
reserved  
reserved  
reserved  
titest_voh  
titest_vol  
vendorid (1:0)  
versionid (2:0)  
28  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
Register name: config0 – Address: 0x00, Default: 0x44FC  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config0  
0x00  
15  
14  
qmc_offset_ena  
dual_ena  
Enable the offset function when asserted.  
Utilizes both DACs when asserted.  
0
1
FUSE  
controlled  
13:12 chipwidth  
Programmable bits for setting the input interface width.  
00: all 14 bits are used. NOTE: not applicable to  
DAC3154/DAC3164.  
00  
01: upper 12 bits are used 10: upper 10 bits are used  
11: upper 10 bits are used  
11  
10  
reserved  
twos  
reserved  
0
1
When asserted, this bit tells the chip to presume 2’s  
complement data is arriving at the input. Otherwise offset  
binary is presumed.  
9
sif4_ena  
When asserted the SIF interface becomes a 4 pin interface.  
This bit has a lower priority than the dieid_ena bit.  
0
0
8
7
reserved  
fifo_ena  
reserved  
When asserted, the FIFO is absorbing the difference between  
INPUT clock and DAC clock. If it is not asserted then the  
FIFO buffering is bypassed but the reversing of bits and  
handling of offset binary input is still available. NOTE: When  
the FIFO is bypassed the DACCCLK and DATACLK must  
be aligned or there may be timing errors; and, it is not  
recommended for actual application use.  
1
6
5
4
alarm_out_ena  
alarm_out_pol  
alignrx_ena  
When asserted the pin alarm becomes an output instead of a  
tri-stated pin.  
1
1
1
This bit changes the polarity of the ALARM signal.  
(0=negative logic, 1=positive logic)  
When asserted the ALIGN pin receiver is powered up. NOTE:  
It is recommended to clear this bit when ALIGNP/N are  
not used.  
3
syncrx_ena  
When asserted the SYNC pin receiver is powered up. NOTE:  
It is recommended to clear this bit when SYNCP/N are  
not used.  
1
2
1
0
lvdsdataclk_ena  
reserved  
When asserted the DATACLK pin receiver is powered up.  
reserved  
1
0
0
synconly_ena  
When asserted the chip is put into the SYNC ONLY mode  
where the SYNC pin is used as the sync input for both the  
front and back of the FIFO.  
Copyright © 2013, Texas Instruments Incorporated  
29  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
Register name: config1 – Address: 0x01, Default: 0x600E  
Register Addr  
Default  
Value  
Bit  
Name  
Function  
Name  
(Hex)  
config1  
0x01 15  
iotest_ena  
Turns on the io-testing circuitry when asserted. This is the circuitry  
that will compare a 8 sample input pattern to SIF programmed  
registers to make sure the data coming into the chip meets  
setup/hold requirements. If this bit is a ‘0’ then the clock to this  
circuitry is turned off for power savings. NOTE: Sample 0 should  
be aligned with the rising edge of SYNC.  
0
14  
bsideclk_ena  
When asserted the input clock for the B side datapath is enabled.  
Otherwise the IO TEST and the FIFO on the B side of the design  
will not get a clock.  
1
13  
12  
reserved  
reserved.  
1
0
64cnt_ena  
This enables the resetting of the alarms after 64 good samples with  
the goal of removing unnecessary errors. For instance on a lab  
board, when checking the setup/hold through IO TEST, there may  
initially be errors, but once the test is up and running everything  
works. Setting this bit removes the need for a SIF write to clear the  
alarm register.  
11  
10  
dacclkgone_ena  
dataclkgone_end  
This allows the DACCLK gone signal from the clock monitor to be  
used to shut the output off.  
0
0
This allows the DATACLK gone signal from the clock monitor to be  
used to shut the output off.  
9
8
7
collision_ena  
reserved  
This allows the collision alarm from the FIFO to shut the output off  
reserved.  
0
0
0
daca_compliment  
When asserted the output to the DACA is complimented. This  
allows the user of the chip to effectively change the + and –  
designations of the DAC output pins.  
6
5
dacb_compliment  
sif_sync  
When asserted the output to the DACB is complimented. This  
allows the user of the chip to effectively change the + and –  
designations of the DAC output pins.  
0
0
This is the SIF_SYNC signal. Whatever is programmed into this bit  
will be used as the chip sync when SIF_SYNC mode is enabled.  
Design is sensitive to rising edges so programming from 0->1 is  
when the sync pulse is generated. 1->0 has no effect.  
4
3
sif_sync_ena  
When asserted enable SIF_SYNC mode.  
0
1
alarm_2away_ena  
When asserted alarms from the FIFO that represent the pointers  
being 2 away are enabled  
2
1
0
alarm_1away_ena  
alarm_collision_ena  
reserved  
When asserted alarms from the FIFO that represent the pointers  
being 1 away are enabled  
1
1
0
When asserted the collision of FIFO pointers causes an alarm to be  
generated  
reserved  
Register name: config2 – Address: 0x02, Default: 0x3FFF  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config2  
0x02  
15  
reserved  
reserved  
reserved  
0
14  
reserved  
0
13:0  
lvdsdata_ena  
These 14 bits are individual enables for the 14 input pin receivers.  
NOTE: It is recommended to clear bit (1:0) for the 12-bit  
DAC3164, and clear bit (3:0) for the 10-bit DAC3154.  
0x3FFF  
30  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
Register name: config3 – Address: 0x03, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config3  
0x03  
15:13 datadlya  
12:10 clkdlya  
Controls the delay of the A data inputs through the LVDS receivers. 000  
0= no additional delay and each LSB adds a nominal 80ps.  
Controls the delay of the A data clock input through the LVDS  
receivers. 0= no additional delay and each LSB adds a nominal  
80ps.  
000  
9:7  
6:4  
datadlyb  
clkdlyb  
Controls the delay of the B data inputs through the LVDS receivers. 000  
0= no additional delay and each LSB adds a nominal 80ps.  
Controls the delay of the B data clock input through the LVDS  
receivers. 0= no additional delay and each LSB adds a nominal  
80ps.  
000  
3
extref_ena  
reserved  
Enable external reference for the DAC when set.  
reserved  
0
2:1  
0
00  
0
dual_clock_ena  
When asserted it tells the LVDS input circuit that there are two  
individual data clocks. NOTE: must be in SIF_SYNC mode, and  
not applicable to DAC3154/DAC3164.  
Register name: config4 – Address: 0x04, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config4  
0x04  
15:14 reserved  
13:0 iotest_ results  
reserved  
00  
WRITE TO  
CLEAR/  
No RESET  
value  
The values of these bits tell which bit in the input word failed during the 0x0000  
io-test pattern comparison. Bit 13 corresponds to the MSB input.  
Copyright © 2013, Texas Instruments Incorporated  
31  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
Register name: config5 – Address: 0x05, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config5  
WRITE TO  
CLEAR  
0x05  
15  
alarm_from_ zerochka  
When this bit is asserted the FIFO A write pointer has an all zeros  
pattern in it. Since this pointer is a shift register, all zeros will cause  
the input point to be stuck until the next sync. The result could be a  
repeated 8T pattern at the output if the mixer is off and no syncs  
occur. Check for this error will tell the user that another sync is  
necessary to restart the FIFO write pointer.  
0
14  
alarm_from_ zerochkb  
When this bit is asserted the FIFO B write pointer has an all zeros  
pattern in it. Since this pointer is a shift register, all zeros will cause  
the input point to be stuck until the next sync. The result could be a  
repeated 8T pattern at the output if the mixer is off and no syncs  
occur. Check for this error will tell the user that another sync is  
necessary to restart the FIFO write pointer.  
0
13:11 alarms_from_ fifoa  
These bits report the FIFO A pointer status.  
000: All fine  
000  
001: Pointers are 2 away  
01X: Pointers are 1 away  
1XX: FIFO Pointer collision  
10:8  
alarms_from_ fifob  
These bits report the FIFO B pointer status.  
000: All fine  
0
001: Pointers are 2 away  
01X: Pointers are 1 away  
1XX: FIFO Pointer collision  
7
6
5
alarm_dacclk_ gone  
alarm_dataclk_ gone  
clock_gone  
Bit gets asserted when the DACCLK has been stopped long for  
enough cycles to be caught. The number of cycles varies with  
interpolation.  
0
0
0
Bit gets asserted when the DATACLK has been stopped long for  
enough cycles to be caught. The number of cycles varies with  
interpolation.  
This bit gets set when either alarm_dacclk_gone or  
alarm_dataclk_gone are asserted. It controls the output of the  
CDRV_SER block. When high, the CDRV_SER block will output  
“0x8000” for each output connected to a DAC. The bit must be  
written to ‘0’ for CDRV_SER outputs to resume normal operation.  
4
3
alarm_from_ iotesta  
alarm_from_ iotestb  
This is asserted when the input data pattern does not match the  
pattern in the iotest_pattern registers.  
0
0
This is asserted when the input data pattern does not match the  
pattern in the iotest_pattern registers.  
2
1
0
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
0
0
0
32  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
Register name: config6 – Address: 0x06, Default: 0x0084 (DAC3164); 0x0088 (DAC3154)  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config6  
0x06  
15:8  
tempdata  
This the output from the chip temperature sensor.  
0x00  
No RESET  
Value  
NOTE: when reading these bits the SIF interface must be exteremly  
slow, 1MHz range.  
7:2  
fuse_cntl  
These are the values of the blown fuses and are used to determine the  
available functionality in the chip.  
NOTE: These bits are READ_ONLY and allow the user to check  
what features have been disabled in the device.  
bit5 = 1: Force full word interface.  
0x21 for  
DAC3164;  
0x22 for  
DAC3154  
bit4 = 1: reserved  
bit3 = 1: reserved  
bit2 = 1: Forces Single DAC Mode. Note: This does not force the  
channel B in sleep mode. In order to do so, user needs to program  
the sleepb SPI bit (config10, bit 5) to "1".  
bit1:0 : Forces a different bits size.  
“00” 14bit.  
“01” 12bit  
“10” 10bit  
“11” 10bit  
1
0
reserved  
reserved  
reserved  
reserved  
0
0
Register name: config7 – Address: 0x07, Default: 0xFFFF  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config7  
0x07  
15:0  
alarms_ mask  
Each bit is used to mask an alarm. Assertion masks the alarm: bit15 =  
alarm_mask_zerochka  
0xFFFF  
bit14 = alarm_mask_zerochkb  
bit13 = alarm_mask_fifoa_collision  
bit12 = alarm_mask_fifoa_1away  
bit11 = alarm_mask_fifoa_2away  
bit10 = alarm_mask_fifob_collision  
bit9 = alarm_mask_fifob_1away  
bit8 = alarm_mask_fifob_2away  
bit7 = alarm_mask_dacclk_gone  
bit6 = alarm_mask_dataclk_gone  
bit5 = Masks the signal which turns off the DAC output when a clock or  
collision occurs. This bit has no effect on the PAD_ALARM output.  
bit4 = alarm_mask_iotesta  
bit3 = alarm_mask_iotestb  
bit2 =  
bit1 =  
bit0 =  
Register name: config8 – Address: 0x08, Default: 0x4000  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config8  
0x08  
15:13 reserved  
12:0 qmc_ offseta  
reserved  
010  
The DAC A offset correction. The offset is measured in DAC LSBs.  
0x0000  
Copyright © 2013, Texas Instruments Incorporated  
33  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
Register name: config9 – Address: 0x09, Default: 0x8000  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config9  
AUTO  
SYNC  
0x09  
15:13 fifo_ offset  
This is the starting point for the READ_POINTER in the FIFO block.  
The READ_POINTER is set to this location when a sync occurs on the  
DACCLK side of the FIFO.  
100  
12:0  
qmc_ offsetb  
The DAC B offset correction. The offset is measured in DAC LSBs.  
0x0000  
NOTE: Writing this register causes an autosync to be generated in  
the QMOFFSET block.  
Register name: config10 – Address: 0x0A, Default: 0xF080  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
Config10  
0x0A 15:12 coarse_ dac  
Scales the output current is 16 equal steps.  
1111  
VrefIO  
´ mem_coarse_daca + 1  
(
)
Rbias  
11  
10  
9
fuse_ sleep  
reserved  
Put the fuses to sleep when set high.  
0
0
0
0
1
0
0
reserved  
reserved  
reserved  
8
tsense_ sleep  
clkrecv_ena  
sleepa  
When asserted the temperature sensor is put to sleep.  
Turn on the DAC CLOCK receiver block when asserted.  
When asserted DACA is put to sleep.  
7
6
5
sleepb  
When asserted DACB is put to sleep. Note: This bit needs to be  
programmed to "1" for single DAC mode.  
4:0  
reserved  
reserved  
00000  
Register name: config11 – Address: 0x0B, Default: 0x1111  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config11  
0x0B 15:12 reserved  
reserved  
reserved  
reserved  
reserved  
0001  
0001  
0001  
0001  
11:8  
7:4  
reserved  
reserved  
reserved  
3:0  
Register name: config12 – Address: 0x0C, Default: 0x3A7A  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config12  
0x0C 15:14 reserved  
13:0 iotest_ pattern0  
reserved  
00  
This is dataword0 in the IO test pattern. It is used with the seven  
other words to test the input data. NOTE: This word should be  
aligned with the rising edge of SYNC when testing the IO  
interface.  
0x3A7A  
Register name: config13 – Address: 0x0D, Default: 0x36B6  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config13  
0x0D 15:14 reserved  
13:0 iotest_ pattern1  
reserved  
00  
This is dataword1 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x36B6  
34  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
Register name: config14 – Address: 0x0E, Default: 0x2AEA  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config14  
0x0E 15:14 reserved  
13:0 iotest_ pattern2  
reserved  
00  
This is dataword2 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x2AEA  
Register name: config15 – Address: 0x0F, Default: 0x0545  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config15  
0x0F 15:14 reserved  
13:0 iotest_ pattern3  
reserved  
00  
This is dataword3 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x0545  
Register name: config16 – Address: 0x10, Default: 0x1A1A  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config16  
0x10  
15:14 reserved  
13:0 iotest_ pattern4  
reserved  
00  
This is dataword4 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x1A1A  
Register name: config17 – Address: 0x11, Default: 0x1616  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config17  
0x11  
15:14 reserved  
13:0 iotest_ pattern5  
reserved  
00  
This is dataword5 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x1616  
Register name: config18 – Address: 0x12, Default: 0x2AAA  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config18  
0x12  
15:14 reserved  
13:0 iotest_ pattern5  
reserved  
00  
This is datawor6 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x2AAA  
Register name: config19 – Address: 0x13, Default: 0x06C6  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config19  
0x13  
15:14 reserved  
13:0 iotest_ pattern7  
reserved  
00  
This is dataword7 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x06C6  
Copyright © 2013, Texas Instruments Incorporated  
35  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
Register name: config20– Address: 0x14, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config20  
0x14  
15  
sifdac_ ena  
When asserted the DAC output is set to the value in sifdac. This  
can be used for trim setting and other static tests.  
0
14  
reserved  
sifdac  
reserved  
0
13:0  
This is the value that is sent to the DACs when sifdac_ena is  
asserted.  
0x0000  
Register name: config21– Address: 0x15, Default: 0xFFFF  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config21  
0x15  
15:0  
sleepcntl  
This controls what blocks get sent a SLEEP signal when the  
PAD_SLEEP pin is asserted. Programming a ‘1’ in a bit will pass  
the SLEEP signal to the appropriate block.  
0xFFFF  
bit15 = DAC A  
bit14 = DAC B  
bit13 = FUSE Sleep  
bit12 = Temperature Sensor  
bit11 = Clock Receiver  
bit10 = LVDS DATA Receivers  
bit9 = LVDS SYNC Receiver  
bit8 = PECL ALIGN Receiver  
bit7 = LVDS DATACLK Receiver  
bit6 =  
bit5 =  
bit4 =  
bit3 =  
bit2 =  
bit1 =  
bit0 =  
Register name: config22– Address: 0x16  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
Default Value  
Default Value  
config22  
READ  
ONLY  
0x16  
15:0  
fa002_ data(15:0)  
Lower 16bits of the DIE ID word  
Register name: config23– Address: 0x17  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
config23  
READ  
ONLY  
0x17  
15:0  
fa002_ data(31:16)  
Lower middle 16bits of the DIE ID word  
Register name: config24– Address: 0x18, Default  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
config24  
READ  
0x18  
15:0  
fa002_ data(47:32)  
Upper middle 16bits of the DIE ID word  
ONLY  
36  
Copyright © 2013, Texas Instruments Incorporated  
DAC3154  
DAC3164  
www.ti.com.cn  
ZHCSB11 MAY 2013  
Register name: config25– Address: 0x19  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config25  
READ  
0x19  
15:0  
fa002_ data(63:48)  
Upper 16bits of the DIE ID word  
ONLY  
Register name: config127– Address: 0x7F, Default: 0x0045  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config127  
READ  
ONLY/No  
RESET  
Value  
0x7F 15:14 reserved  
13:12 reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
00  
00  
00  
00  
0
11:10 reserved  
9:8  
7
reserved  
reserved  
titest_voh  
titest_vol  
vendorid  
versionid  
6
A fixed ‘1’ that can be used to test the Voh at the SIF output.  
A fixed ‘0’ that can be used to test the Vol at the SIF output.  
Fixed to "01".  
1
5
0
4:3  
2:0  
01  
001  
Chip version.  
Synchronization Modes  
There are three modes of syncing included in the DAC3154/DAC3164.  
NORMAL Dual Sync – The SYNC pin is used to align the input side of the FIFO (write pointers) with the A(0)  
sample. The ALIGN pin is used to reset the output side of the FIFO (read pointers) to the offset value.  
Multiple chip alignment can be accomplished with this kind of syncing.  
SYNC ONLY – In this mode only the SYNC pin is used to sync both the read and write pointers of the FIFO.  
There is an asynchornized handoff between the DATACLK and DACCLK when using this mode, therefore it is  
impossible to accurately align multiple chips closer than 2 or 3T.  
SIF_SYNC – When neither SYNC nor ALIGN are used, a programmable SYNC pulse can be used to sync  
the design. However, the same issues as SYNC ONLY apply. There is an asynchornized handoff between  
the serial clock domain and the two sides of the FIFO. Because of the asynchronous nature of the SIF_SYNC  
it is impossible to align the sync up with any sample at the input.  
Note: When ALIGNP/N are not used, it is recommended to clear the alignrx_ena register (config1, bit 4),  
and tie ALIGNP to DIGVDD18 and ALIGNN to GROUND. When SYNCP/N are not used, it is recommended  
to clear register syncrx_ena (config0, bit3), and the unused SYNCP/N pins can be left open or tied to  
GROUND.  
Copyright © 2013, Texas Instruments Incorporated  
37  
DAC3154  
DAC3164  
ZHCSB11 MAY 2013  
www.ti.com.cn  
Alarm Monitoring  
DAC3154/DAC3164 includes flexible alarm monitoring that can be used to alert a possible malfunction scenario.  
All alarm events can be accessed either through the SIP registers and/or through the ALARM pin. Once an alarm  
is set, the corresponding alarm bit in register config5 must be reset through the serial interface to allow further  
testing. The set of alarms includes the following conditions:  
Zero check alarm  
Alarm_from_zerochk. Occurs when the FIFO write pointer has an all zeros pattern. Since the write pointer is a  
shift register, all zeros will cause the input point to be stuck until the next sync event. When this happens a  
sync to the FIFO block is required.  
FIFO alarms  
alarm_from_fifo. Occurs when there is a collision in the FIFO pointers or a collision event is close.  
alarm_fifo_2away. Pointers are within two addresses of each other.  
alarm_fifo_1away. Pointers are within one address of each other.  
alarm_fifo_collision. Pointers are equal to each other.  
Clock alarms  
clock_gone. Occurs when either the DACCLK or DATACLOCK have been stopped.  
alarm_dacclk_gone. Occurs when the DACCLK has been stopped.  
alarm_dataclk_gone. Occurs when the DATACLK has been stopped.  
Pattern checker alarm  
alarm_from_iotest. Occurs when the input data pattern does not match the pattern key.  
To prevent unexpected DAC outputs from propagating into the transmit channel chain, DAC3154, DAC3164  
includes a feature that disables the outputs when a catastrophic alarm occurs. The catastrophic alarms include  
FIFO pointer collision, the loss DACCLK or the loss of DATACLK. When any of these alarms occur the internal  
TXenable signal is driven low, causing a zeroing of the data going to the DAC in <10T. One caveat is if both  
clocks stop, the circuit cannot determine clock loss so no alarms are generated; therefore, no zeroing of output  
data occurs.  
38  
Copyright © 2013, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC3154IRGCR  
DAC3154IRGCT  
DAC3164IRGCR  
DAC3164IRGCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
DAC3154I  
NIPDAU  
NIPDAU  
NIPDAU  
DAC3154I  
DAC3164I  
DAC3164I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
RGC0064H  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.15  
8.85  
A
B
PIN 1 INDEX AREA  
9.15  
8.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
17  
32  
16  
33  
65  
SYMM  
2X 7.5  
7.4 0.1  
60X  
0.5  
1
48  
0.30  
0.18  
64X  
49  
64  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
64X  
0.05  
4219011/A 05/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGC0064H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
7.4)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
(3.45) TYP  
(R0.05) TYP  
(1.16) TYP  
65  
SYMM  
(8.8)  
(
0.2) TYP  
VIA  
33  
16  
32  
17  
(1.16) TYP  
(3.45) TYP  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219011/A 05/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGC0064H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.16) TYP  
65  
SYMM  
(8.8)  
(0.58)  
36X ( 0.96)  
33  
16  
17  
32  
(0.58)  
(1.16)  
TYP  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
61% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219011/A 05/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

DAC3154IRGCT

Dual 12-/10-Bit 500 MSPS Digital-to-Analog Converters
PANJIT

DAC3154IRGCT

具有输入 FIFO 和拉电流的双通道、10 位、500MSPS 数模转换器 (DAC) | RGC | 64 | -40 to 85
TI

DAC3161

Single 14-/12-/10-Bit 500 MSPS Digital-to-Analog Converters
TI

DAC3161IRGCR

12 位 500MSPS 数模转换器 (DAC) | RGC | 64 | -40 to 85
TI

DAC3161IRGCT

12 位 500MSPS 数模转换器 (DAC) | RGC | 64 | -40 to 85
TI

DAC3162

Dual-Channel, 10-/12-Bit, 500-MSPS Digital-to-Analog Converters (DACs)
TI

DAC3162IRGZR

Dual-Channel, 10-/12-Bit, 500-MSPS Digital-to-Analog Converters (DACs)
TI

DAC3162IRGZT

Dual-Channel, 10-/12-Bit, 500-MSPS Digital-to-Analog Converters (DACs)
TI

DAC3164

Dual 12-/10-Bit 500 MSPS Digital-to-Analog Converters
PANJIT

DAC3164

双通道、12 位、500MSPS 数模转换器 (DAC)
TI

DAC3164IRGCR

Dual 12-/10-Bit 500 MSPS Digital-to-Analog Converters
PANJIT

DAC3164IRGCR

双通道、12 位、500MSPS 数模转换器 (DAC) | RGC | 64 | -40 to 85
TI