DAC38RF89IAAVR [TI]

双通道 14 位 8.4GSPS 1x-24x 内插 5GHz 和 7.5GHz PLL 数模转换器 | AAV | 144 | -40 to 85;
DAC38RF89IAAVR
型号: DAC38RF89IAAVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道 14 位 8.4GSPS 1x-24x 内插 5GHz 和 7.5GHz PLL 数模转换器 | AAV | 144 | -40 to 85

转换器 数模转换器
文件: 总147页 (文件大小:4208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
具有 JESD204B 接口、片上 PLL 和宽带插值的 DAC38RF8x 双通道、差  
分输出、14 位、9GSPS、射频采样 DAC  
1 特性  
在双通道运行状态下,无插值时输入接口的数据速率高  
1
3.33GSPS12 位分辨率)和 2.5GSPS16 位分  
辨率)。当用作具有 2x 24x 插值模式的复合基带发  
送器时,DAC38RF82 DAC38RF89 可以合成具有  
16 位输入分辨率的高达 2GHz 带宽的宽带信号和具有  
12 位输入分辨率的 2.66GHz 带宽的宽带信号。  
具有多模式运行方式的 14 位分辨率、9GSPS DAC  
16 位、双通道数据模式  
最大输入速率:2.5GSPS  
宽带数字上变频器  
插值:12468101216、  
182024x  
8 位模式允许以 9GSPS 的最大 DAC 采样率进行输  
入,并可合成 0 4.5GHz 的宽带信号。  
12 位、双通道数据模式  
最大输入速率:3.33GSPS  
可选的低抖动 PLL/VCO 通过允许使用频率较低的参考  
时钟来简化 DAC 时钟的生成。DAC38RF82 和  
DAC38RF89 支持不同的 VCO 频率范围,如器件比较  
所示。  
宽带数字上变频器  
插值:1224x  
8 位、单通道数据模式  
最大输入速率:9GSPS  
JESD204B 接口  
器件信息(1)  
子类 1 支持多芯片同步  
器件型号  
DAC38RF82  
DAC38RF89  
封装  
封装尺寸(标称值)  
最大通道速率:12.5Gbps  
FCBGA (144)  
10.0mm x 10.0mm  
差分输出  
支持直流耦合  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
射频满量程输出功率(采用 2:1 平衡-非平衡变  
压器):  
2.14GHz 时为 3dBm  
32x6MHz 256QAM 载波  
具有旁路功能的内部 PLL VCO  
DAC38RF82fC(VCO) = 5.9 8.9GHz  
DAC38RF89fC(VCO) = 5 7.5GHz  
电源:-1.8V1.0V1.8V  
封装:10mm x 10mm BGA,间距为 0.8mm,  
144 个焊球  
2 应用  
任意波形发生器  
雷达和电子战  
通信测试设备  
符合 DOCSIS 3.0/3.1 要求的直接射频合成  
微波回程  
3 说明  
DAC38RF82 DAC38RF89 是高性能的宽带宽型射  
频采样数模转换器 (DAC),能够实现高达 3.33GSPS  
的双通道输入数据速率或高达 9GSPS 8 位单通道  
运行状态。这些器件具有一个多达 8 通道的低功耗  
JESD204B 接口,最大比特率为 12.5Gbps。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASEA6  
 
 
 
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 25  
8.4 Device Functional Modes........................................ 62  
8.5 Register Maps ........................................................ 66  
Application and Implementation ...................... 128  
9.1 Application Information.......................................... 128  
9.2 Typical Application ............................................... 129  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics - DC Specifications........... 8  
7.6 Electrical Characteristics - Digital Specifications .... 10  
7.7 Electrical Characteristics - AC Specifications ......... 13  
7.8 PLL/VCO Electrical Characteristics ........................ 16  
7.9 Timing Requirements.............................................. 17  
7.10 Typical Characteristics.......................................... 18  
Detailed Description ............................................ 23  
8.1 Overview ................................................................. 23  
8.2 Functional Block Diagrams ..................................... 23  
9
10 Power Supply Recommendations ................... 133  
10.1 Power Supply Sequencing.................................. 134  
11 Layout................................................................. 134  
11.1 Layout Guidelines ............................................... 134  
11.2 Layout Example .................................................. 136  
12 器件和文档支持 ................................................... 137  
12.1 相关链接.............................................................. 137  
12.2 接收文档更新通知 ............................................... 137  
12.3 支持资源.............................................................. 137  
12.4 ..................................................................... 137  
12.5 静电放电警告....................................................... 137  
12.6 Glossary.............................................................. 137  
13 机械、封装和可订购信息..................................... 137  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (August 2017) to Revision C  
Page  
Changed the tr NOM value from 50 ns To 50 ps in the Anaolog Output of the Timing Requirements table ....................... 17  
Changed the tf NOM value from 50 ns To 50 ps in the Anaolog Output of the Timing Requirements table ....................... 17  
Changed the MPY values in Table 4.................................................................................................................................... 27  
Changed The title From: SerDes PLL Modes Selection To: SerDes PLL Multiplier (MPY) Values in in Table 4................ 27  
Added section: Digital Quadrature Modulator....................................................................................................................... 53  
Added section: Low Power Coarse Resolution Mixing Modes............................................................................................. 54  
Added cross reference to MPY values in Table 132 ......................................................................................................... 124  
Changed the enable/disable description for bit [15:13] of Table 134 ................................................................................ 126  
Changes from Revision A (April 2017) to Revision B  
Page  
已删除 将特性 中的插值:12424x”更改为插值:1224x” .................................................................................... 1  
Changed the ALARM pin From: alarm_out_pol To: alm_out_pol in the Pin Functions table................................................. 5  
Changed the Description of pins A3, A4, A7, A6, A9, A10, A12, E12, F11, F7, G6, H5, H7, J6, J11 in the Pin  
Functions table ....................................................................................................................................................................... 5  
Changed description of TXENABLE pin in the PIN Functions table ...................................................................................... 6  
Changed the MAX value of VEE18N rail From: 0.5 V To 0.3 V in the Absolute Maximum Ratings table............................. 7  
Added "Supply Voltage Range" to the Recommended Operating Conditions table .............................................................. 7  
Changed DNL typical value From: ±0.5 to ±3 LSB in Electrical Characteristics - DC Specifications table ........................... 8  
Changed INL typical value From: ±1 To: ±4 LSB in Electrical Characteristics - DC Specifications table.............................. 8  
Added "Reference voltage drift" to the Electrical Characteristics - DC Specifications table.................................................. 8  
Changed Power Dissipation Test Condition From: MODE 5: dual channel, 8-bit input mode, 2x Interpolation To:  
MODE 5: dual channel, 8-bit input mode, 1x Interpolation in the Electrical Characteristics - DC Specifications .................. 9  
Changed the ILOAD values to negative for CMOS interface parameter, low-level output voltage, in the Electrical  
2
版权 © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Characteristics - Digital Specifications table......................................................................................................................... 10  
Added 0 dBFS to the condition statement for the Electrical Characteristics - AC Specifications table ............................... 13  
Added MIN and TYP value to maximum DAC sample rate for DAC38RF89 only in the Electrical Characteristics - AC  
Specifications table............................................................................................................................................................... 13  
Added NSD values for DAC38RF82 with on-chip PLL enabled to Electrical Characteristics - AC Specifications table...... 15  
Changed the Isolation values in the TEST CONDITIONS, TYP value From: 74 dBc To: 82 dBc and 56 dBc To 73  
dBc in the Electrical Characteristics - AC Specifications table............................................................................................. 15  
Added Figure 16 ................................................................................................................................................................... 19  
Added MPY value for 16.5x in the Table 4........................................................................................................................... 27  
Changed input rate max and fdac max for 6x interpolation mode in Table 9 ..................................................................... 30  
Changed input data rate From: 6666 MSPS To: 3333 MSPS for LMFSHd=41380, 2x interpolation in Table 9 ................ 31  
Changed Table 12, JESD204B frame format for LMFSHd=84111 ..................................................................................... 31  
Changed Table 14, JESD204B frame format for LMFSHd=44210 ...................................................................................... 32  
Changed Table 16, JESD204B frame format for LMFSHd = 24410.................................................................................... 32  
Changed Table 17, JESD204B frame format for LMFSHd = 44210.................................................................................... 32  
Changed Table 18, JESD204B frame format for LMFSHd = 88210.................................................................................... 33  
Changed Table 19, JESD204B frame format for LMFSHd = 24410.................................................................................... 33  
Changed Table 20, JESD204B frame format for LMFSHd=48410 ...................................................................................... 33  
Changed Table 21, JESD204B frame format for LMFSHd = 24310.................................................................................... 33  
Changed Table 22, JESD204B frame format for LMFSHd = 48310.................................................................................... 33  
Changed Table 23, JESD204B frame format for LMFSHd = 81180.................................................................................... 34  
Changed Table 24, JESD204B frame format for LMFSHd = 41380.................................................................................... 34  
Changed Table 26, JESD204B frame format for LMFSHd = 41121.................................................................................... 35  
Added Table 27, JESD204B frame format for LMFSHd = 41121 ........................................................................................ 36  
Changed Table 38 ................................................................................................................................................................ 47  
Changed register field programming values for LMFSHd=24410, 41380, 41121 and 24310 in the Register  
Programming for JESD and Interpolation Mode table.......................................................................................................... 52  
Changed the bit positions of N_M1 register field From: 12-8 To: 4-0 in the Table 42 table ................................................ 53  
Changed the bit positions of N_M1’ (NPRIME_M1) register field From: 4-0 To: 12-0 in the Table 42 table....................... 53  
Changed the description of DAC PLL alarm in Alarm Monitoring ........................................................................................ 58  
Changed from BIST_ENA to Reserved in Table 61 ............................................................................................................ 78  
Changed from BIST_ZERO to Reserved in Table 61 ......................................................................................................... 78  
Changed the description of OUTSUM_SEL field in Table 69 ............................................................................................. 84  
Changed the Description of Bit 11 From "dummy data generation" to "distortion enhancement" in Table 116 ............... 114  
已更改 the junction temp and loop filter voltage range for PLL tuning in 142 ............................................................... 128  
Changes from Original (February 2017) to Revision A  
Page  
Corrected the NSD values for -9dBFS in Electrical Characteristics - AC Specifications table ........................................... 15  
Added PLL/VCO characteristics table to PLL/VCO Electrical Characteristics ..................................................................... 16  
Added JESD204B clock phase register setting to Table 41 ................................................................................................ 52  
Removed descriptions for CLKJESD_DIV register from Table 41 ...................................................................................... 52  
Added JESD204B clock phase register setting to Table 42 ................................................................................................ 52  
Added information about the DAC output total current for various full scale current settings in DAC Fullscale Output  
Current ................................................................................................................................................................................. 60  
Changed Bit 0 of Table 128 From: Enables the GSM PLL To: Reserved.......................................................................... 121  
Changed Table 130 ........................................................................................................................................................... 123  
Changed description of SERDES_REFCLK_DIV register field in Table 131 .................................................................... 124  
Copyright © 2017–2020, Texas Instruments Incorporated  
3
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Changed Bit 12:11, 6:5 and 4:2 of Table 134 ................................................................................................................... 126  
4
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
5 Device Comparison Table  
PART NUMBER  
DAC38RF82  
DAC38RF89  
ANALOG OUTPUT TYPE  
VCO0 CENTER FREQUENCY  
VCO1 CENTER FREQUENCY  
Differential  
Differential  
5.9 GHz  
5 GHz  
8.9 GHz  
7.5 GHz  
6 Pin Configuration and Functions  
AAV Package  
144-Pin (FCBGA)  
Top View  
A
B
C
D
E
F
G
H
J
K
L
M
12  
11  
10  
9
DACCLKSE VSSCLK  
AGND  
VOUT2+  
VOUT2-  
AGND  
VDDOUT18 VDDOUT18  
AGND  
VOUT1-  
VOUT1+  
AGND  
VSSCLK  
VSSCLK  
AGND  
EXTIO  
AGND  
AGND  
VDDA1  
VDDA18  
VDDA18  
VDDA1  
VSSCLK  
VSSCLK  
VSSCLK  
DGND  
AGND  
VEE18N  
RESET  
ALARM  
GPI0  
AGND  
VEE18N  
SCLK  
AGND  
SDIO  
SDO  
DACCLK+ VDDAPLL18  
DACCLK- VDDAPLL18  
VEE18N  
VEE18N  
VSSCLK  
VDDL2_1  
VDDL2_1  
RBIAS VDDAVCO18VDDAVCO18 VSSCLK  
VDDCLK1 VDDCLK1  
8
VSSCLK  
CLKTX+  
CLKTX-  
VDDDIG1  
SYSREF-  
SYSREF+  
DGND  
VSSCLK  
VDDTX18  
VDDTX1  
VDDDIG1  
VDDS18  
VDDS18  
DGND  
ATEST  
SYNC1+  
SYNC1-  
VDDDIG1  
SYNC0+  
SYNC0-  
DGND  
VDDPLL1 VDDPLL1  
VSSCLK  
VDDE1  
DGND  
VDDL1_1  
DGND  
VDDL1_1  
VDDE1  
DGND  
SLEEP  
GPO0  
GPO1  
DGND  
DGND  
DGND  
DGND  
RX1-  
SDEN  
GPI1  
7
VDDDIG1  
DGND  
DGND  
VDDDIG1  
VDDDIG1  
VDDDIG1  
VDDDIG1  
DGND  
6
VDDE1  
VDDDIG1  
VDDDIG1  
AMUX0  
DGND  
VDDE1  
TRST  
TXENABLE  
DGND  
RX3+  
RX3-  
5
VDDDIG1  
VSENSE  
IFORCE  
DGND  
VDDDIG1  
VDDDIG1  
AMUX1  
DGND  
VDDIO18  
TMS  
4
TDI  
TDO  
TCLK  
3
VDDT1  
VDDR18  
RX4+  
VDDT1  
VDDR18  
RX0+  
TESTMODE  
DGND  
RX2-  
2
RX2+  
1
RX7+  
RX7-  
RX6-  
RX6+  
RX5+  
RX5-  
RX4-  
RX0-  
RX1+  
Not to scale  
Copyright © 2017–2020, Texas Instruments Incorporated  
5
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
C11, C12, D11, E11,  
F12, J12, K11, L11,  
M11, M12  
AGND  
Analog ground.  
CMOS output for ALARM condition. Default polarity is active low, but can be changed to active high via  
RESET_CONFIG alm_out_pol control bit..  
K8  
ALARM  
O
G3  
F3  
AMUX0  
O
O
O
O
O
I
Analog test pin for SerDes, Lane 0 to Lane 3. Can be left floating.  
AMUX1  
Analog test pin for SerDes, Lane 4 to Lane 7. Can be left floating.  
C8  
A7  
ATEST  
Analog test pin for DAC, references and PLL. Can be left floating.  
CLKTX+  
CLKTX-  
Divided output clock, internal 100 Ω differential termination, self-biased, positive terminal.  
Divided output clock, internal 100 Ω differential termination, self-biased, negative terminal.  
Device clock, internal 100 Ω differential termination, self-biased, positive terminal.  
Device clock, internal 100 Ω differential termination, self-biased, negative terminal.  
Single ended device clock optional input. Can be left floating if not used, internal 50 Ω termination.  
A6  
A10  
A9  
DACCLK+  
DACCLK-  
DACCLKSE  
I
A12  
I
A2, B2, C2, D2, D6, E2,  
E7, F2, F6, G2, G7, H6,  
J7, K2, L2, L3, L4, L5,  
M6  
DGND  
-
Digital ground.  
C10  
K7  
M7  
L7  
EXTIO  
GPI0  
I/O  
-
Requires a 0.1 μF decoupling capacitor to AGND.  
Factory use only. User should GND.  
Factory use only. User should GND.  
Used for CMOS SYNC0\ signal.  
GPI1  
-
GPO0  
GPO1  
IFORCE  
O
O
O
L6  
Used for CMOS SYNC1\ signal.  
D3  
Test pin for on chip parametrics. Can be left floating.  
Full-scale output current bias. Change the full-scale output current through DACFS in register DACFS  
(8.5.72). Expected to be 3.6 kΩ to GND for 40 mA full scale output.  
C9  
K9  
RBIAS  
O
I
Active low input for chip RESET, which resets all the programming registers to their default state. Internal  
pull-up.  
RESET  
J1  
K1  
M1  
L1  
RX0+  
RX0-  
RX1+  
RX1-  
RX2+  
RX2-  
RX3+  
RX3-  
RX4+  
RX4-  
RX5+  
RX5-  
RX6+  
RX6-  
RX7+  
RX7-  
SCLK  
SDEN  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CML SerDes interface lane 0 input, positive  
CML SerDes interface lane 0 input, negative  
CML SerDes interface lane 1 input, positive  
CML SerDes interface lane 1 input, negative  
CML SerDes interface lane 2 input, positive  
CML SerDes interface lane 2 input, negative  
CML SerDes interface lane 3 input, positive  
CML SerDes interface lane 3 input, negative  
CML SerDes interface lane 4 input, positive  
CML SerDes interface lane 4 input, negative  
CML SerDes interface lane 5 input, positive  
CML SerDes interface lane 5 input, negative  
CML SerDes interface lane 6 input, positive  
CML SerDes interface lane 6 input, negative  
CML SerDes interface lane 7 input, positive  
CML SerDes interface lane 7 input, negative  
Serial interface clock. Internal pull-down.  
M2  
M3  
M5  
M4  
H1  
G1  
E1  
F1  
D1  
C1  
A1  
B1  
L9  
M8  
Active low serial data enable, always an input to the DAC38RFxx. Internal pull-up.  
Serial interface data. Bi-directional in 3-pin mode (default) and uni-directional input 4-pin mode. Internal  
pull-down.  
M10  
M9  
SDIO  
SDO  
I/O  
O
Uni-directional serial interface data output in 4-pin mode. The SDO pin is tri-stated in 3-pin interface  
mode (default).  
L8  
C4  
C3  
C7  
C6  
SLEEP  
I
Active high asynchronous hardware power-down input. Internal pull-down.  
Synchronization request to transmitter for JESD204B link 0, LVDS positive output.  
Synchronization request to transmitter for JESD204B link 0, LVDS negative output.  
Synchronization request to transmitter for JESD204B link 1, LVDS positive output.  
Synchronization request to transmitter for JESD204B link 1, LVDS negative output.  
SYNC0+  
SYNC0-  
SYNC1+  
SYNC1-  
O
O
O
O
6
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
LVPECL SYSREF positive input, internal 100 Ω differential termination, self biased. This  
positive/negative pair is captured with the rising edge of DACCLKP/N. It is used for multiple DAC  
synchronization.  
A3  
SYSREF+  
I
I
LVPECL SYSREF negative input, self biased, internal 100 Ω differential termination. (See the SYSREF+  
description)  
A4  
SYSREF-  
K4  
H4  
J4  
TCLK  
TDI  
I
I
JTAG test clock. Internal pull-down  
JTAG test data in. Internal pull-up  
JTAG test data out. Internal pull-up  
TDO  
O
This pin is used for factory testing.  
Recommended to connect to ground for normal operation.  
K3  
TESTMODE  
-
K5  
J5  
TMS  
I
I
JTAG test mode select. Internal pull-up  
TRST  
JTAG test reset. Internal pull-up. Must be connected to ground if not used  
Transmit enable active high input. Internal pull-down.  
This pin is ORed with spi_txenable bit in JESD_FIFO register to enable analog output data transmission.  
To enable analog output data transmission, pull CMOS TXENABLE pin to high.  
To disable analog output, pull CMOS TXENABLE pin to low. The DAC output is forced to midscale.  
K6  
TXENABLE  
I
F11, J11  
G11, H11  
D8, E8  
VDDA1  
I
I
I
I
I
Analog 1 V supply voltage. Must be separated from VDDDIG1 supply for best performance.  
Analog 1.8 V supply voltage. (1.8 V)  
VDDA18  
VDDPLL1  
VDDAPLL18  
VDDAVCO18  
Analog 1 V supply for PLL.  
B9, B10  
D9, E9  
PLL analog supply voltage. (1.8 V)  
Analog supply voltage for VCO (1.8 V)  
Internal clock buffer supply voltage (1 V).  
It is recommended to isolate this supply from VDDDIG1 and VDDA1.  
G9, H9  
VDDCLK1  
I
G8, H8  
VDDL1_1  
VDDL2_1  
I
I
DAC core supply voltage. (1 V)  
DAC core supply voltage. (1 V)  
G10, H10  
A5, B5, C5, D5, D7, E3,  
E4, E5, E6, F4, F5, G4, VDDDIG1  
G5  
Digital supply voltage. (1 V).  
It is recommended to isolate this supply from VDDCLK1 and VDDA1.  
I
I
Digital Encoder supply voltage (1 V).  
Must be separated from VDDDIG1 supply  
F7, H7, G6, J6  
VDDE1  
H5  
VDDIO18  
VDDOUT18  
VDDR18  
VDDS18  
VDDT1  
I
I
Supply voltage for all digital I/O and CMOS I/O. (1.8 V)  
DAC output supply. (1.8 V)  
G12, H12  
H2, J2  
I
Supply voltage for SerDes. (1.8 V)  
B3, B4  
I
Supply voltage for LVDS SYNC0+/- and SYNC1+/- (1.8 V)  
Supply voltage for SerDes termination. (1 V)  
Supply voltage for divided clock output. (1 V)  
Supply voltage for divided clock output . (1.8 V)  
Analog supply voltage. (-1.8 V)  
H3, J3  
I
B6  
VDDTX1  
VDDTX18  
VEE18N  
VOUT1+  
VOUT1-  
VOUT2+  
VOUT2-  
VSENSE  
I
B7  
I
D10, E10, K10, L10  
I
L12  
K12  
D12  
E12  
D4  
O
O
O
O
O
DAC channel 1 output.  
DAC channel 1 complementary output.  
DAC channel 2 output.  
DAC channel 2 complementary output.  
Test pin for on chip parametrics. Can be left floating.  
A8, A11, B8, B11, B12,  
F8, F9, F10, J8, J9, J10  
VSSCLK  
-
Clock ground.  
Copyright © 2017–2020, Texas Instruments Incorporated  
7
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VDDDAC1, VDDDIG1, VDDL1_1, VDDL2_1,  
VDDCLK1, VDDT1, VDDCLK1, VDDTX1, VDDE1  
–0.3  
1.3  
V
VDDR18, VDDIO18, VDDS18, VDDAPLL18,  
VDDAREF18, VDDAOUT18, VDDA18,  
VDDAVCO18, VDDTX18  
Supply Voltage Range(2)  
–0.3  
2.45  
V
VEE18N  
–2  
0.3  
0.3  
V
V
V
Voltage between AGND and DGND  
–0.3  
–0.5  
RX[0..7]+/-  
VDDDIG1 + 0.5 V  
SDEN, SCLK, SDIO, SDO, TXENABLE, ALARM,  
RESET, SLEEP, TMS, TCLK, TDI, TDO, TRST,  
TESTMODE, GPI0, GPI1, GPO0, GPO1  
–0.5  
VDDIO + 0.5 V  
V
CLKOUT+/-  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
VDDTX18 + 0.5 V  
VDDCLK1 + 0.5 V  
VDDS18 + 0.5 V  
V
V
V
DACCLK+/-, SYSREF+/-, DACCLKSE  
SYNC0+/-, SYNC1+/-  
IOUT1+/-, IOUT2+/-  
RBIAS, EXTIO, ATEST  
IFORCE, VSENSE  
Pin Voltage Range(2)  
VDDAOUT18 + 0.5 V  
VDDAOUT18 + 0.5 V  
VDDDIG1 + 0.5 V  
VDDT1 + 0.5 V  
20  
V
V
V
AMUX1, AMUX0  
V
Peak input current (any input)  
Peak total input current (all inputs)  
Junction temperature TJ  
mA  
mA  
°C  
°C  
°C  
–30  
150  
85  
Operating free-air temperature, TA  
Storage temperature, Tstg  
–40  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Measured with respect to AGND or DGND.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
°C  
Recommended operating temperature  
Maximum rated operating junction temperature(1)  
Recommended free-air temperature  
105  
TJ  
125  
–40  
°C  
TA  
85  
°C  
VDDA18, VDDAPLL18, VDDS18,  
VDDIO18, VDDR18, VDDAPLL18,  
VDDOUT18, VDDAVCO18  
1.71  
1.8  
1.89  
Supply Voltage Range  
VDDDIG1 VDDA1, VDDT1, VDDAPLL1,  
VDDCLK1, VDDL1_1, VDDL2_1,  
VDDTX1, VDDE1  
V
0.95  
1
1.05  
VEE18N  
–1.89  
–1.8  
–1.71  
(1) Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate  
8
Copyright © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
7.4 Thermal Information  
DAC38RF82  
DAC38RF89  
THERMAL METRIC(1)  
UNIT  
AAV (FCBGA)  
144 PINS  
RθJA  
Junction-to-ambient thermal resistance  
25  
1.0  
7.7  
0.1  
7.7  
N/A  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics - DC Specifications  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, nominal supplies, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC ACCURACY  
8-bit Input Mode  
8
12  
16  
14  
Digital Input Resolution  
12-bit Input Mode  
16-bit Input Mode  
bits  
DAC Core Resolution  
bits  
LSB  
LSB  
DNL Differential nonlinearity  
INL Integral nonlinearity  
±3  
±4  
Analog Output  
Gain Error  
±2  
30  
%FSR  
mA  
Full scale output current  
10  
40  
2:1 transformer coupled into 50 Ω- load.  
Transformer (TCM2-452X-2+) loss not de-  
embedded  
P(OUTFS)  
Full scale output power  
3
dBm  
2.1 GHz output frequency  
Output Compliance Range  
Output capacitance  
Output resistance  
1.3  
2.3  
V
Single ended to ground  
Differential  
1.5  
pF  
100  
ohms  
Reference Output: EXTIO  
VREF Reference output voltage  
0.9  
100  
±8  
V
nA  
Reference output current  
Reference voltage drift  
ppm/°C  
Power Supply Current and consumption  
1 V Digital supplies: VDDDIG1  
815  
1300  
1250  
mA  
mA  
1 V Analog supplies: VDDA1 VDDACLK1  
VDDTX1 VDDAPLL1 VDDT1 VDDE1  
1144  
MODE 1: dual channel, 12-bit input mode, 2x  
Interpolation, Sin(x)/x enabled, fDAC = 6 GHz,  
CLKTX Disabled  
1.8 V Supplies: VDDA18 VDDOUT18  
VDDAVCO18 VDDAPLL18 VDDR18  
VDDIO18 VDDS18 VDDTX18  
218  
270  
mA  
-1.8 V Supply: VEE18N  
Power Dissipation  
159  
2638  
798  
180  
mA  
mW  
mA  
PDIS  
3360  
1 V Digital supplies: VDDDIG1  
1 V Analog supplies: VDDA1 VDDACLK1  
VDDTX1 VDDAPLL1 VDDT1 VDDE1  
1026  
222  
mA  
mA  
MODE 2: dual channel, 16-bit input mode, 2x  
Interpolation, Sin(x)/x enabled, fDAC = 5 GHz,  
CLKTX Disabled  
1.8 V Supplies: VDDA18 VDDOUT18  
VDDAVCO18 VDDAPLL18 VDDR18  
VDDIO18 VDDS18 VDDTX18  
-1.8 V Supply: VEE18N  
Power Dissipation  
159  
mA  
PDIS  
2510  
mW  
Copyright © 2017–2020, Texas Instruments Incorporated  
9
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics - DC Specifications (continued)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, nominal supplies, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1V Digital supplies: VDDDIG1  
500  
mA  
1 V Analog supplies: VDDA1 VDDACLK1  
VDDTX1 VDDAPLL1 VDDT1 VDDE1  
751  
218  
mA  
mA  
MODE 3: dual channel, 12-bit input mode, 2x  
Interpolation, Sin(x)/x enabled, fDAC = 3 GHz,  
CLKTX Disabled  
1.8 V Supplies: VDDA18 VDDOUT18  
VDDAVCO18 VDDAPLL18 VDDR18  
VDDIO18 VDDS18 VDDTX18  
-1.8V Supply: VEE18N  
Power Dissipation  
159  
1930  
517  
mA  
mW  
mA  
PDIS  
PDIS  
PDIS  
PDIS  
1 V Digital supplies: VDDDIG1  
1 V Analog supplies: VDDA1 VDDACLK1  
VDDTX1 VDDAPLL1 VDDT1 VDDE1  
708  
222  
mA  
mA  
MODE 4: dual channel, 16-bit input mode, 2x  
Interpolation, Sin(x)/x enabled, fDAC = 2.5  
GHz, CLKTX Disabled  
1.8 V Supplies: VDDA18 VDDOUT18  
VDDAVCO18 VDDAPLL18 VDDR18  
VDDIO18 VDDS18 VDDTX18  
-1.8 V Supply: VEE18N  
Power Dissipation  
159  
1911  
624  
mA  
mW  
mA  
1 V Digital supplies: VDDDIG1  
1 V Analog supplies: VDDA1 VDDACLK1  
VDDTX1 VDDAPLL1 VDDT1 VDDE1  
1469  
218  
mA  
mA  
MODE 5: dual channel, 8-bit input mode, 1x  
Interpolation, Sin(x)/x enabled, fDAC = 9 GHz,  
CLKTX Disabled  
1.8 V Supplies: VDDA18 VDDOUT18  
VDDAVCO18 VDDAPLL18 VDDR18  
VDDIO18 VDDS18 VDDTX18  
-1.8 V Supply: VEE18N  
Power Dissipation  
159  
2772  
63  
mA  
mW  
mA  
1 V Digital supplies: VDDDIG1  
568  
105  
1 V Analog supplies: VDDA1 VDDACLK1  
VDDTX1 VDDAPLL1 VDDT1 VDDE1  
18  
47  
mA  
mA  
1.8 V Supplies: VDDA18 VDDOUT18  
VDDAVCO18 VDDAPLL18 VDDR18  
VDDIO18 VDDS18 VDDTX18  
MODE 6: Power down mode, no clock, DAC  
in sleep, SerDes in sleep, CLKTX Disabled  
51  
-1.8 V Supply: VEE18N  
Power Dissipation  
23  
208  
25  
28  
mA  
mW  
mA  
mA  
mA  
815  
fDAC = 8847 MSPS, Clock Out Divider Enabled  
fDAC = 5898 MSPS, Clock Out Divider Enabled  
Clock Out Enabled  
VDDTX1  
19  
VDDTX18  
16  
10  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
7.6 Electrical Characteristics - Digital Specifications  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, external differential clock mode at 9  
GSPS, 12x Interpolation, fOUT = 2.14 GHz, I(OUTFS) = 40 mA, nominal supplies, LMFSHd = 84111, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CML SerDes Inputs: RX[7:0]+/-  
VDIFF  
Receiver input amplitude  
50  
1200  
mV  
TERM = 111  
TERM = 001  
TERM = 100  
TERM = 101  
600  
700  
0
VCOM  
Input Common Mode Voltage  
mV  
250  
100  
ZDDIFF  
fSerDes  
Internal differential termination  
SerDes bit rate  
85  
115  
Ω
0.78125  
12.5  
Gbps  
Differential Clock Inputs: SYSREF±, DACCLK±  
fDACCLK  
VCOM  
VI(DPP)  
ZT  
DACCLK input frequency  
Input common mode voltage  
Differential input peak-to-peak voltage  
Internal termination  
0.1  
9
GHz  
V
0.5  
800  
100  
2
2000  
mV  
Ω
CL  
Input capacitance  
pF  
Duty cycle (DACCLK only  
40%  
60%  
LVDS Output: SYNC0±, SYNC1±  
VCOM  
ZT  
Output common mode voltage  
1.2  
100  
500  
V
Ω
Internal termination  
VOD  
Differential output voltage swing  
mV  
CML Output: DIVCLKOUT±  
VOD CML OUTPUT: CLKTX+/-  
1300  
mV  
CMOS Interface: SDEN, SCLK, SDIO, SDO, TXENABLE, ALARM, RESET, SLEEP, TMS, TCLK, TDI, TDO, TRST, TESTMODE, SYNCSE1,  
SYNCSE2  
0.7 x  
VDDIO  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
V
0.3 x  
VDDIO  
IIH  
IIL  
CI  
High-level input current  
Low-level input current  
CMOS input capacitance  
–40  
–40  
40  
40  
µA  
µA  
pF  
2
VDDIO –  
0.2  
ILOAD = –100 µA  
ILOAD = –2 mA  
VOH  
High-level output voltage  
Low-level output voltage  
V
V
0.8 x  
VDDIO  
ILOAD = 100 µA  
ILOAD = 2 mA  
0.2  
0.5  
VOL  
Latency  
full rate, RATE = “00”  
half rate, RATE = “01”  
quarter rate, RATE = “10”  
eighth rate, RATE = “11”  
34  
29  
RX SerDes Digital Delay  
UI  
26.5  
26.25  
JESD  
clock  
cycles  
SerDes output to JED204B elastic buffer  
input latency  
21 -39  
Copyright © 2017–2020, Texas Instruments Incorporated  
11  
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics - Digital Specifications (continued)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, external differential clock mode at 9  
GSPS, 12x Interpolation, fOUT = 2.14 GHz, I(OUTFS) = 40 mA, nominal supplies, LMFSHd = 84111, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LMFSHD = 41121 or 82121, 1x Interpolation  
LMFSHD = 41121 or 82121, 2x Interpolation  
LMFSHD = 41121 or 82121, 4x Interpolation  
LMFSHD = 41380 or 82380, 1x Interpolation  
LMFSHD = 41380 or 82380, 2x Interpolation  
LMFSHD = 81180, 1x Interpolation  
269  
417  
717  
293  
465  
289  
LMFSHD = 82121, 6x Interpolation  
269  
LMFSHD = 82121, 8x Interpolation  
1120  
1602  
2091  
817  
LMFSHD = 82121, 12x Interpolation  
LMFSHD = 82121, 16x Interpolation  
LMFSHD = 42111 or 84111, 6x Interpolation  
LMFSHD = 42111 or 84111, 8x Interpolation  
1057  
LMFSHD = 42111 or 84111, 10x  
Interpolation  
1184  
1532  
1997  
2142  
LMFSHD = 42111 or 84111, 12x  
Interpolation  
LMFSHD = 42111 or 84111, 16x  
Interpolation  
LMFSHD = 42111 or 84111, 18x  
Interpolation  
LMFSHD = 42111 or 84111, 24x  
Interpolation  
2941  
1020  
1473  
DAC clock  
cycles  
LMFSHD = 22210 or 44210, 8x Interpolation  
Digital Latency: JESD Buffer to DAC Output  
LMFSHD = 22210 or 44210, 12x  
Interpolation  
LMFSHD = 22210 or 44210, 16x  
Interpolation  
1917  
2050  
2275  
2821  
1912  
LMFSHD = 22210 or 44210, 18x  
Interpolation  
LMFSHD = 22210 or 44210, 20x  
Interpolation  
LMFSHD = 22210 or 44210, 24x  
Interpolation  
LMFSHD = 12410 or 24410, 16x  
Interpolation  
LMFSHD = 12410 or 24410, 24x  
Interpolation  
2786  
916  
LMFSHD = 44210 or 88210, 8x Interpolation  
LMFSHD = 44210 or 88210, 12x  
Interpolation  
1317  
LMFSHD = 44210 or 88210, 16x  
Interpolation  
1709  
2509  
1672  
1593  
LMFSHD = 44210 or 88210, 24x  
Interpolation  
LMFSHD = 24410 or 48410, 16x  
Interpolation  
LMFSHD = 24410 or 48410, 24x  
Interpolation  
12  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Electrical Characteristics - Digital Specifications (continued)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, external differential clock mode at 9  
GSPS, 12x Interpolation, fOUT = 2.14 GHz, I(OUTFS) = 40 mA, nominal supplies, LMFSHd = 84111, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
13  
9
MAX  
UNIT  
LMFSHD = 41121 or 82121, 1x Interpolation  
LMFSHD = 41121 or 82121, 2x Interpolation  
LMFSHD = 41121 or 82121, 4x Interpolation  
LMFSHD = 41380 or 82380, 1x Interpolation  
LMFSHD = 41380 or 82380, 2x Interpolation  
LMFSHD = 81180, 1x Interpolation  
6
15  
10  
6
LMFSHD = 82121, 6x Interpolation  
5
LMFSHD = 82121, 8x Interpolation  
5
LMFSHD = 82121, 12x Interpolation  
5
LMFSHD = 82121, 16x Interpolation  
5
LMFSHD = 42111 or 84111, 6x Interpolation  
LMFSHD = 42111 or 84111, 8x Interpolation  
16  
16  
LMFSHD = 42111 or 84111, 10x  
Interpolation  
15  
15  
13  
15  
LMFSHD = 42111 or 84111, 12x  
Interpolation  
LMFSHD = 42111 or 84111, 16x  
Interpolation  
LMFSHD = 42111 or 84111, 18x  
Interpolation  
LMFSHD = 42111 or 84111, 24x  
Interpolation  
15  
8
JESD  
clock  
LMFSHD = 22210 or 44210, 8x Interpolation  
SYSREF TO JESD LMFC RESET  
cycles  
LMFSHD = 22210 or 44210, 12x  
Interpolation  
7
LMFSHD = 22210 or 44210, 16x  
Interpolation  
6
7
5
4
9
LMFSHD = 22210 or 44210, 18x  
Interpolation  
LMFSHD = 22210 or 44210, 20x  
Interpolation  
LMFSHD = 22210 or 44210, 24x  
Interpolation  
LMFSHD = 12410 or 24410, 16x  
Interpolation  
LMFSHD = 12410 or 24410, 24x  
Interpolation  
7
29  
27  
LMFSHD = 44210 or 88210, 8x Interpolation  
LMFSHD = 44210 or 88210, 12x  
Interpolation  
LMFSHD = 44210 or 88210, 16x  
Interpolation  
26  
25  
8
LMFSHD = 44210 or 88210, 24x  
Interpolation  
LMFSHD = 24410 or 48410, 16x  
Interpolation  
LMFSHD = 24410 or 48410, 24x  
Interpolation  
6
Copyright © 2017–2020, Texas Instruments Incorporated  
13  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
7.7 Electrical Characteristics - AC Specifications  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, external differential clock mode at 9  
GSPS, 12x Interpolation, 0 dBFS, fOUT = 2.14 GHz, I(OUTFS) = 40 mA, nominal supplies, LMFSHd = 84111, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analog Output  
fDAC Maximum DAC sample rate  
AC Performance - CW  
DAC38RF82 only  
DAC38RF89 only  
9
GSPS  
8.4  
9
fCLK = 6 GHz , fOUT = 501 MHz  
fCLK = 6 GHz , fOUT = 951 MHz  
fCLK = 6 GHz , fOUT = 1851 MHz  
fCLK = 6 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 501 MHz  
fCLK = 9 GHz , fOUT = 951 MHz  
fCLK = 9 GHz , fOUT = 1851 MHz  
fCLK = 9 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 3651 MHz  
fCLK = 6 GHz , fOUT = 501 MHz  
fCLK = 6 GHz , fOUT = 951 MHz  
fCLK = 6 GHz , fOUT = 1851 MHz  
fCLK = 6 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 501 MHz  
fCLK = 9 GHz , fOUT = 951 MHz  
fCLK = 9 GHz , fOUT = 1851 MHz  
fCLK = 9 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 3651 MHz  
fCLK = 6 GHz , fOUT = 501 MHz  
fCLK = 6 GHz , fOUT = 951 MHz  
fCLK = 6 GHz , fOUT = 1851 MHz  
fCLK = 6 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 501 MHz  
fCLK = 9 GHz , fOUT = 951 MHz  
fCLK = 9 GHz , fOUT = 1851 MHz  
fCLK = 9 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 3651 MHz  
fCLK = 6 GHz , fOUT = 501 MHz  
fCLK = 6 GHz , fOUT = 951 MHz  
fCLK = 6 GHz , fOUT = 1851 MHz  
fCLK = 6 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 501 MHz  
fCLK = 9 GHz , fOUT = 951 MHz  
fCLK = 9 GHz , fOUT = 1851 MHz  
fCLK = 9 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 3651 MHz  
63  
62  
58  
57  
62  
61  
61  
54  
51  
97  
93  
88  
77  
94  
90  
85  
82  
79  
72  
71  
74  
71  
69  
69  
72  
71  
67  
72  
65  
57  
57  
71  
65  
62  
54  
51  
Spurious Free Dynamic Range 0 –  
fDAC/2  
SFDR  
SFDR  
SFDR  
HD2  
dBc  
dBc  
dBc  
dBc  
Spurious Free Dynamic Range within  
500 MHz fOUT ± 250 MHz  
Spurious Free Dynamic Range  
excluding HD2, HD3 and CMP2 0 –  
fDAC/2  
2nd Order Harmonic  
14  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Electrical Characteristics - AC Specifications (continued)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, external differential clock mode at 9  
GSPS, 12x Interpolation, 0 dBFS, fOUT = 2.14 GHz, I(OUTFS) = 40 mA, nominal supplies, LMFSHd = 84111, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fCLK = 6 GHz , fOUT = 501 MHz  
63  
62  
71  
69  
62  
61  
66  
65  
67  
85  
85  
82  
79  
78  
76  
73  
74  
68  
92  
87  
81  
78  
95  
89  
84  
79  
74  
80  
76  
fCLK = 6 GHz , fOUT = 951 MHz  
fCLK = 6 GHz , fOUT = 1851 MHz  
fCLK = 6 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 501 MHz  
fCLK = 9 GHz , fOUT = 951 MHz  
fCLK = 9 GHz , fOUT = 1851 MHz  
fCLK = 9 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 3651 MHz  
fCLK = 6 GHz , fOUT = 501 MHz  
fCLK = 6 GHz , fOUT = 951 MHz  
fCLK = 6 GHz , fOUT = 1851 MHz  
fCLK = 6 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 501 MHz  
fCLK = 9 GHz , fOUT = 951 MHz  
fCLK = 9 GHz , fOUT = 1851 MHz  
fCLK = 9 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 3651 MHz  
fCLK = 6 GHz , fOUT = 501 MHz  
fCLK = 6 GHz , fOUT = 951 MHz  
fCLK = 6 GHz , fOUT = 1851 MHz  
fCLK = 6 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 501 MHz  
fCLK = 9 GHz , fOUT = 951 MHz  
fCLK = 9 GHz , fOUT = 1851 MHz  
fCLK = 9 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 3651 MHz  
fCLK = 6 GHz , fOUT = 501 ± 5 MHz, –6 dBFS each tone  
fCLK = 6 GHz , fOUT = 951 ± 5 MHz, –6 dBFS each tone  
HD3  
3rd Order Harmonic  
dBc  
CMP2  
Fs/2 clock mixing product (Fs/2 – fOUT  
)
dBc  
Fs/N (N = 4, 8, 16) clock mixing product  
(fOUT ± Fs/N)  
CMP4+  
dBc  
fCLK = 6 GHz , fOUT = 1851 ± 5 MHz, –6 dBFS each  
tone  
73  
72  
fCLK = 6 GHz , fOUT = 2651 ± 5 MHz, –6 dBFS each  
tone  
Third-order two-tone intermodulation  
distortion  
fCLK = 9 GHz , fOUT = 501 ± 5 MHz, –6 dBFS each tone  
fCLK = 9 GHz , fOUT = 951 ± 5 MHz, –6 dBFS each tone  
80  
75  
IMD3  
dBc  
fCLK = 9 GHz , fOUT = 1851 ± 5 MHz, –6 dBFS each  
tone  
70  
70  
68  
fCLK = 9 GHz , fOUT = 2651 ± 5 MHz, –6 dBFS each  
tone  
fCLK = 9 GHz , fOUT = 3651 ± 5 MHz, –6 dBFS each  
tone  
Copyright © 2017–2020, Texas Instruments Incorporated  
15  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics - AC Specifications (continued)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, external differential clock mode at 9  
GSPS, 12x Interpolation, 0 dBFS, fOUT = 2.14 GHz, I(OUTFS) = 40 mA, nominal supplies, LMFSHd = 84111, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fCLK = 6 GHz , fOUT = 501 MHz  
–170  
fCLK = 6 GHz , fOUT = 951 MHz  
–163  
–157  
–155  
–172  
–166  
–157  
–156  
–153  
–172  
–164  
–162  
–162  
–159  
–172  
–166  
–157  
–173  
–167  
–159  
–155  
–151  
–169  
–167  
–162  
–162  
–157  
82  
fCLK = 6 GHz , fOUT = 1851 MHz  
fCLK = 6 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 501 MHz  
fCLK = 9 GHz , fOUT = 951 MHz  
fCLK = 9 GHz , fOUT = 1851 MHz  
fCLK = 9 GHz , fOUT = 2651 MHz  
fCLK = 9 GHz , fOUT = 3651 MHz  
fCLK = 6 GHz , fOUT = 501 MHz, –9 dBFS  
fCLK = 6 GHz , fOUT = 951 MHz, –9 dBFS  
fCLK = 6 GHz , fOUT = 1851 MHz, –9 dBFS  
fCLK = 9 GHz , fOUT = 2651 MHz, –9 dBFS  
fCLK = 9 GHz , fOUT = 3651 MHz, –9 dBFS  
fCLK = 5 GHz , fOUT = 501 MHz  
Noise Spectral Density > 50 MHz  
offset(1)  
NSD  
dBFS/Hz  
fCLK = 5 GHz , fOUT = 951 MHz  
fCLK = 5 GHz , fOUT = 1851 MHz  
fCLK = 7.5 GHz , fOUT = 501 MHz  
fCLK = 7.5 GHz , fOUT = 951 MHz  
fCLK = 7.5 GHz , fOUT = 1851 MHz  
fCLK = 7.5 GHz , fOUT = 2651 MHz  
fCLK = 7.5 GHz , fOUT = 3651 MHz  
fCLK = 5 GHz , fOUT = 501 MHz, –9 dBFS  
fCLK = 5 GHz , fOUT = 951 MHz, –9 dBFS  
fCLK = 5 GHz , fOUT = 1851 MHz, –9 dBFS  
fCLK = 7.5 GHz , fOUT = 2651 MHz, –9 dBFS  
fCLK = 7.5 GHz , fOUT = 3651 MHz, –9 dBFS  
fOUT = 1856 MHz  
NSD  
(on-chip  
PLL)  
Noise Spectral Density > 50 MHz offset  
On-chip PLL enabled  
dBFS/Hz  
Isolation between DAC A and DAC B  
analog output  
Isolation  
dBc  
fOUT = 3105 MHz  
73  
(1) Also valid for on-chip PLL enabled in DAC38RF82  
16  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
7.8 PLL/VCO Electrical Characteristics  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, internal PLL/VCO clock mode, 12x  
Interpolation, fOUT = 1.8 GHz, I(OUTFS) = 40 mA, nominal supplies, LMFSHd = 84111, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
DAC38RF82  
MIN TYP  
DAC38RF89  
UNIT  
MAX  
MIN  
TYP  
MAX  
PLL/VCO  
fref  
Reference clock  
frequency  
100  
100  
fVCO  
/4  
100  
100  
fVCO  
/4  
MHz  
MHz  
MHz  
MHz  
KHz  
fPFD  
fvcoL  
fvcoH  
fBW  
Frequency of phase &  
frequency detector  
500  
6720  
9000  
500  
5600  
8400  
Low VCO operating  
frequency  
5240  
7960  
500  
4500  
6600  
High VCO operating  
frequency  
Loop filter bandwidth  
500  
Low VCO Phase Noise  
600 KHz  
-123  
-132  
-135  
-146  
Frequ  
ency  
1.2 MHz  
fvco = 6 GHz,CP=5, fPFD = 500 MHz,  
measured at output frequency = 1.8 GHz  
1.8 MHz  
Offset  
6.0 MHz  
dBc/Hz  
600 KHz  
-123  
-132  
-136  
-147  
Frequ  
ency  
1.2 MHz  
fvco = 5 GHz,CP=5, fPFD = 312.5 MHz,  
measured at output frequency = 1.8 GHz  
1.8 MHz  
Offset  
6.0 MHz  
High VCO Phase Noise  
600 kHz  
-123  
-131  
-135  
-148  
Frequ  
ency  
1.2 MHz  
fvco = 9 GHz, CP=5, fPFD = 500 MHz,  
measured at output frequency = 1.8 GHz  
1.8 MHz  
Offset  
6.0 MHz  
dBc/Hz  
600 kHz  
-124  
-132  
-136  
-148  
Frequ  
ency  
1.2 MHz  
fvco = 7.5 GHz, CP=5, fPFD = 468.75 MHz,  
measured at output frequency = 1.8 GHz  
1.8 MHz  
Offset  
6.0 MHz  
Copyright © 2017–2020, Texas Instruments Incorporated  
17  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
7.9 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Digital Input Timing Specifications  
Timing: SYSREF+/-  
Setup time, SYSREF+/- valid to rising  
edge of DACCLK+/-  
ts(SYSREF)  
SYSREF Capture assist disabled  
SYSREF Capture assist disabled  
50  
50  
ps  
ps  
Hold time, SYSREF+/- valid after rising  
edge of DACCLK+/-  
th(SYSREF)  
Timing: Serial Port  
ts(/SDEN)  
ts(SDIO)  
th(SDIO)  
Setup time, SDEN to rising edge of SCLK  
20  
10  
5
ns  
ns  
ns  
µs  
ns  
ns  
ns  
Setup time, SDIO valid to rising edge of SCLK  
Hold time, SDIO valid after rising edge of SCLK  
temperature sensor read  
All other registers  
1
t(SCLK)  
Period of SCLK  
100  
25  
25  
td(Data)  
tRESET  
Analog Output  
Data output delay after falling edge of SCLK  
Minimum RESET pulse width  
ts(DAC)  
Output settling time to 0.1%  
1
50  
50  
ns  
ps  
ps  
tr  
Output rise time 10% to 90%  
Output fall time 90% to 10%  
tf  
Latency  
RX SerDes AnalogDelay  
DAC wake-up time  
250  
90  
ps  
µs  
IOUT current settling to 1% of IOUTFS  
from deep sleep  
IOUT current settling to less than 1% of  
IOUTFS in deep sleep  
DAC sleep time  
90  
µs  
18  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
7.10 Typical Characteristics  
Unless otherwise noted, all plots are at TA = 25°C, nominal supply voltages, fDAC = 8847.36MSPS, 12x interpolation, 0dBFS  
digital input, 40 mA full scale output current , LMFSHd = 84111 and PLL is disabled.  
180  
174  
168  
162  
156  
150  
144  
138  
132  
126  
120  
180  
174  
168  
162  
156  
150  
144  
138  
132  
126  
120  
-12dBFS  
-9dBFS  
-6dBFS  
0dBFS  
Iout=40mA  
Iout=30mA  
Iout=20mA  
Iout=10mA  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
D005  
D011  
Figure 1. NSD vs Output Frequency Over Input Scale  
Figure 2. NSD vs Output Frequency Over Output Current  
IoutFS  
180  
80  
-12dBFS  
-6dBFS  
0dBFS  
174  
168  
162  
156  
150  
144  
138  
132  
126  
120  
75  
70  
65  
60  
55  
50  
45  
40  
35  
5 GHz VCO (DAC38RF89)  
7.5GHz VCO (DAC38RF89)  
6 GHz VCO (DAC38RF82)  
9 GHz VCO (DAC38RF82)  
9 GHz External clock  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
D012  
D002  
Figure 3. NSD vs Output Frequency Over Clocking Option  
Figure 4. HD2 vs Output Frequency Over Input Scale  
80  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
Iout=10mA  
5 GHz VCO (DAC38RF89)  
7.5GHz VCO (DAC38RF89)  
6 GHz VCO (DAC38RF82)  
9 GHz VCO (DAC38RF82)  
9 GHz External clock  
75  
70  
65  
60  
55  
50  
45  
40  
35  
Iout=20mA  
Iout=30mA  
Iout=40mA  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
D010  
D012  
Figure 5. HD2 vs Output Frequency Over Output Current  
IoutFS  
Figure 6. HD2 vs Output Frequency Over Clocking Option  
Copyright © 2017–2020, Texas Instruments Incorporated  
19  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise noted, all plots are at TA = 25°C, nominal supply voltages, fDAC = 8847.36MSPS, 12x interpolation, 0dBFS  
digital input, 40 mA full scale output current , LMFSHd = 84111 and PLL is disabled.  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
Iout=10mA  
Iout=20mA  
Iout=30mA  
Iout=40mA  
-12dBFS  
-6dBFS  
0dBFS  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
D004  
D024  
Figure 7. HD3 vs Output Frequency Over Input Scale  
Figure 8. HD3 vs Output Frequency Over Output Current  
IoutFS  
80  
80  
-12dBFS  
-6dBFS  
0dBFS  
75  
70  
65  
60  
55  
50  
45  
40  
35  
75  
70  
65  
60  
55  
50  
45  
40  
35  
5 GHz VCO (DAC38RF89)  
7.5GHz VCO (DAC38RF89)  
6 GHz VCO (DAC38RF82)  
9 GHz VCO (DAC38RF82)  
9 GHz External clock  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
D012  
D001  
Figure 9. HD3 vs Output Frequency Over Clocking Option  
Figure 10. SFDR vs Output Frequency Over Input Scale  
80  
90  
Iout=10mA  
5 GHz VCO (DAC38RF89)  
7.5GHz VCO (DAC38RF89)  
6 GHz VCO (DAC38RF82)  
9 GHz VCO (DAC38RF82)  
9 GHz External clock  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
75  
70  
65  
60  
55  
50  
45  
40  
35  
Iout=20mA  
Iout=30mA  
Iout=40mA  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
D008  
D012  
Figure 11. SFDR vs Output Frequency Over Output Current  
IoutFS  
Figure 12. SFDR vs Output Frequency Over Clocking Option  
20  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Typical Characteristics (continued)  
Unless otherwise noted, all plots are at TA = 25°C, nominal supply voltages, fDAC = 8847.36MSPS, 12x interpolation, 0dBFS  
digital input, 40 mA full scale output current , LMFSHd = 84111 and PLL is disabled.  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
5 GHz VCO (DAC38RF89)  
7.5GHz VCO (DAC38RF89)  
6 GHz VCO (DAC38RF82)  
9 GHz VCO (DAC38RF82)  
9 GHz External clock  
-18dBFS  
-12dBFS  
-6dBFS  
0dBFS  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
D006  
D012  
-18 dBFS digital backoff  
Figure 13. IMD3 vs Output Frequency Over Input Scale  
Figure 14. IMD3 vs Output Frequency Over Clocking Option  
6
5
4
90  
DAC A to B  
DAC B to A  
86  
82  
3
2
78  
74  
70  
66  
62  
58  
54  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
50  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
D000  
D002  
Figure 15. Power vs Output Frequency  
Figure 16. Isolation vs Output Frequency  
Copyright © 2017–2020, Texas Instruments Incorporated  
21  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise noted, all plots are at TA = 25°C, nominal supply voltages, fDAC = 8847.36MSPS, 12x interpolation, 0dBFS  
digital input, 40 mA full scale output current , LMFSHd = 84111 and PLL is disabled.  
-60  
-80  
-100  
-120  
-140  
-160  
CP=1  
CP=2  
CP=3  
CP=4  
CP=5  
CP=6  
CP=7  
CP=8  
CP=9  
CP=10  
CP=11  
CP=12  
CP=13  
CP=14  
CP=15  
CP=2  
CP=3  
CP=4  
CP=5  
CP=6  
CP=7  
CP=8  
CP=9  
CP=10  
CP=11  
CP=12  
CP=13  
CP=14  
CP=15  
-80  
-100  
-120  
-140  
-160  
1000  
10000  
100000 1000000  
Freq offset (Hz)  
1E+7  
5E+7  
1000  
10000  
100000 1000000  
Freq offset (Hz)  
1E+7  
5E+7  
D027  
D003  
VCO frequency = 8.85 GHz  
Measured at 1.8 GHz  
VCO frequency = 7.5 GHz  
Measured at 1.8 GHz  
Figure 17. DAC38RF82 VCO1 Phase Noise vs Offset  
Frequency Over Charge pump current  
Figure 18. DAC38RF89 VCO1 Phase Noise vs Offset  
Frequency Over Charge pump current  
-90  
-90  
div4  
div3  
div2  
div4  
div3  
div2  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
1000  
10000  
100000 1000000  
Freq offset (Hz)  
1E+7  
5E+7  
1000  
10000  
100000 1000000  
Freq offset (Hz)  
1E+7  
5E+7  
D028  
D004  
VCO frequency = 8.85 GHz  
VCO frequency = 7.5 GHz  
Figure 19. DAC38RF82 VCO1 Output Clock Phase Noise vs  
Offset frequency Over Divider Ratio  
Figure 20. DAC38RF89 VCO1 Output Clock Phase Noise vs  
Offset frequency Over Divider Ratio  
22  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Typical Characteristics (continued)  
Unless otherwise noted, all plots are at TA = 25°C, nominal supply voltages, fDAC = 8847.36MSPS, 12x interpolation, 0dBFS  
digital input, 40 mA full scale output current , LMFSHd = 84111 and PLL is disabled.  
-80  
-100  
-120  
-140  
-160  
-80  
-100  
-120  
-140  
-160  
CP=1  
CP=2  
CP=3  
CP=4  
CP=5  
CP=6  
CP=7  
CP=8  
CP=9  
CP=10  
CP=11  
CP=12  
CP=13  
CP=14  
CP=15  
CP=1  
CP=2  
CP=3  
CP=4  
CP=5  
CP=6  
CP=7  
CP=8  
CP=9  
CP=10  
CP=11  
CP=12  
CP=13  
CP=14  
CP=15  
1000  
10000  
100000 1000000  
Freq offset (Hz)  
1E+7  
5E+7  
1000  
10000  
100000 1000000  
Freq offset (Hz)  
1E+7  
5E+7  
D029  
D001  
VCO frequency = 5.9 GHz  
Measured at 1.8 GHz  
VCO frequency = 5.0 GHz  
Measured at 1.8 GHz  
Figure 21. DAC38RF82 VCO0 Phase Noise vs Offset  
Frequency Over Charge Pump Current  
Figure 22. DAC38RF89 VCO0 Phase Noise vs Offset  
Frequency Over Charge Pump Current  
-100  
-100  
div4  
div3  
div2  
div4  
div3  
div2  
-110  
-120  
-130  
-140  
-150  
-160  
-110  
-120  
-130  
-140  
-150  
-160  
1000  
10000  
100000 1000000  
Freq offset (Hz)  
1E+7  
5E+7  
1000  
10000  
100000 1000000  
Freq offset (Hz)  
1E+7  
5E+7  
D030  
D030  
VCO frequency = 5.9 GHz  
VCO frequency = 5.0 GHz  
Figure 23. DAC38RF82 VCO0 Output clock Phase Noise vs  
Offset Frequency Over Divider Ratio  
Figure 24. DAC38RF89 VCO0 Output clock Phase Noise vs  
Offset Frequency Over Divider Ratio  
Copyright © 2017–2020, Texas Instruments Incorporated  
23  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DAC38RF82 and DAC38RF89 are high performance, wide bandwidth RF-sampling digital-to-analog (DACs)  
that are capable of dual channel input data rate up to 3.33 GSPS or single-channel operation with 8-bits up to 9-  
GSPS. The devices have a low power JESD204B Interface with up to 8 lanes, with a maximum bit rate of 12.5  
Gbps. In dual channel operation, the input interface is capable of data rates up to 3.33 GSPS at 12-bits and 2.5  
GSPS at 16-bits resolution without interpolation. When used as a complex baseband transmitter with  
interpolation modes from 2x to 24x, the DAC38RF82 (or DAC38RF89) is capable of synthesizing wideband  
signals up to 2 GHz bandwidth with 16-bit input resolution and 2.66 GHz bandwidth with 12-bit input resolution.  
The 8-bit mode allows an input at the full 9 GSPS maximum DAC sample rate and can synthesize wideband  
signals from 0 to 4.5 GHz. An optional low jitter PLL/VCO simplifies the DAC clock generation by allowing use of  
a lower frequency reference clock. DAC38RF82 and DAC38RF89 support different VCO frequency ranges,  
summarized in Device Comparison Table.  
8.2 Functional Block Diagrams  
DACCLK+  
CLKTX+  
Divider  
/2, /3, /4  
Low Jitter  
PLL  
Clock  
Distribution  
CLKTXœ  
DACCLKœ  
VDDTX1  
DACCLKSE  
Multi-band DUC Channel 2 (multi-DUC2)  
NCO 3  
VDDTX18  
DACB  
Gain  
SYSREF+  
I
SYSREFœ  
Q
I
VOUT2+  
14-b  
DAC  
x
sin(x)  
RX[4..7]+  
100 W  
VOUT2œ  
RX[4..7]œ  
Q
SYNC2\+  
SYNC2\œ  
VDDT1  
NCO 4  
NCO 1  
0.9 V  
Ref  
EXTIO  
RBIAS  
TESTMODE  
VDDR18  
I
RX[0..3]+  
Q
I
VOUT1+  
14-b  
DAC  
x
sin(x)  
100 W  
RX[0..3]œ  
VOUT1œ  
SYNC1\+  
Q
VEE18N  
VDDA18  
ATEST  
DACA  
Gain  
NCO 2  
SYNC1\œ  
VDDS18  
Multi-band DUC Channel 1 (multi-DUC1)  
AMUX0/1  
IFORCE  
Temp  
Sensor  
JTAG  
Control Interface  
VSENSE  
Figure 25. 12-, 16-Bit Input Mode Block Diagram  
24  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Functional Block Diagrams (continued)  
DACCLK+  
CLKTX+  
Divider  
/2, /3, /4  
Low Jitter  
PLL  
Clock  
Distribution  
CLKTX-  
DACCLK-  
VDDTX1  
DACCLKSE  
VDDTX18  
SYSREF+  
SYSREF-  
RX[4..7]+  
RX[4..7]-  
DACA  
Gain  
SYNC2\+  
SYNC2\-  
VOUT1+  
VOUT1-  
14-b  
DAC  
x
100W  
sin(x)  
8
VDDT1  
VDDR18  
RX[0..3]+  
RX[0..3]-  
0.9 V  
Ref  
EXTIO  
RBIAS  
TESTMODE  
SYNC1\+  
VEE18N  
SYNC1\-  
VDDS18  
VDDA18  
ATEST  
AMUX0/1  
IFORCE  
Temp  
Sensor  
JTAG  
Control Interface  
VSENSE  
Copyright © 2016, Texas Instruments Incorporated  
Figure 26. 8-Bit Input Mode Block Diagram  
Copyright © 2017–2020, Texas Instruments Incorporated  
25  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 SerDes Inputs  
The DAC38RF82 (or DAC38RF89) RX [0..7]+/- differential inputs are each internally terminated to a common  
point via 50 Ω, as shown in Figure 27.  
RXP  
0.7V  
50O  
To  
TERM  
Equalizer  
&
Samplers  
=001  
Level  
Shift  
TERM  
=100  
50pF  
TERM  
=101  
50O  
0.25V  
RXN  
Figure 27. Serial Lane Input Termination  
Common mode termination is via a 50 pF capacitor to GND. The common mode voltage and termination of the  
differential signal can be controlled in a number of ways to suit a variety of applications via field TERM in register  
SRDS_CFG2 (8.5.87), as described in Table 1.  
NOTE  
AC coupling is recommended for JESD204B compliance.  
Table 1. Receiver Termination Selection  
TERM  
EFFECT  
000  
Reserved  
Common point set to 0.7 V. This configuration is for AC coupled systems. The transmitter has no effect on the  
receiver common mode, which is set to optimize the input sensitivity of the receiver. Note: this mode is not  
compatible with JESD204B.  
001  
01x  
100  
101  
110  
Reserved  
Common point set to GND. This configuration is for applications that require a 0 V common mode.  
Common point set to 0.25 V. This configuration is for applications that require a low common mode.  
Reserved  
Common point floating. This configuration is for DC coupled systems in which the common mode voltage is set by  
the attached transmit link partner to 0 and 0.6 V. Note: this mode is not compatible with JESD204B  
111  
Input data is sampled by the differential sensing amplifier using clocks derived from the clock recovery algorithm.  
The polarity of RX+ and RX- can be inverted by setting the bit of the corresponding lane in field INVPAIR in  
register SRDS_POL (8.5.88) to “1”. This can potentially simplify PCB layout and improve signal integrity by  
avoiding the need to swap over the differential signal traces.  
Due to processing effects, the devices in the RX+ and RX- differential sense amplifiers will not be perfectly  
matched and there will be some offset in switching threshold. The DAC38RF82 (or DAC38RF89) contains  
circuitry to detect and correct for this offset. This feature can be enabled by setting ENOC in register  
SRDS_CFG1 (8.5.86) to “1”. It is anticipated that most users will enable this feature.  
8.3.2 SerDes Rate  
The DAC38RF82 (or DAC38RF89) has eight configurable JESD204B serial lanes. The highest speed of each  
SerDes lane is 12.5 Gbps. Because the primary operating frequency of the SerDes is determined by its reference  
clock and PLL multiplication factor, there is a limit on the lowest SerDes rate supported. To support lower speed  
application, each receiver should be configured to operate at half, quarter or eighth of the full rate via field RATE  
in register SRDS_CFG2 (8.5.87). Refer to Table 2 for details.  
26  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Table 2. Lane Rate Selection  
RATE  
00  
EFFECT  
Full rate. Four data samples taken per SerDes PLL output clock cycle.  
Half rate. Two data samples taken per SerDes PLL output clock cycle.  
Quarter rate. One data samples taken per SerDes PLL output clock cycle.  
Eighth rate. One data samples taken every two SerDes PLL output clock cycles.  
01  
10  
11  
8.3.3 SerDes PLL  
The DAC38RF82 (or DAC38RF89) has two integrated PLLs, one PLL is to provide the clocking of DAC, refer to  
the DAC PLL section; the other PLL is to provide the clocking for the high speed SerDes. The reference  
frequency of the SerDes PLL can be in the range of 100-800 MHz nominal, and 300-800 MHz optimal. The  
reference frequency is derived from DACCLK divided down by the value in field SerDes_REFCLK_DIV in register  
SRDS_CLK_CFG (8.5.84), as shown in Figure 28. Field SerDes_CLK_SEL in register SRDS_CLK_CFG (8.5.84)  
determines if the DACCLK input or DAC PLL output is used as the source of the SerDes PLL reference. If the  
DACCLK input is used, a pre-divider set by field SerDes_REFCLK_PREDIV in register SRDS_CLK_CFG  
(8.5.84) should be used to reduce the frequency of the DACCLK.  
SERDES_REFCLK_PREDIV  
Predivider  
DAC PLL  
0
1
SERDES  
PLL  
REFCLK  
DACCLK+  
DACCLK-  
divider  
0
1
DACCLKSE  
SERDES_REFCLK_DIV  
SERDES_REFCLK_SEL  
SEL_EXTCLK_DIFFSE  
Figure 28. Reference Clock of SerDes PLL  
During normal operation, the clock generated by PLL is 4-25 times the reference frequency, according to the  
multiply factor selected via the field MPY] in register SRDS_PLL_CFG (8.5.85). In order to select the appropriate  
multiply factor and reference clock frequency, it is first necessary to determine the required PLL output clock  
frequency. The relationship between the PLL output clock frequency and the lane rate is determined by field  
RATE in register SRDS_CFG2 (8.5.87) is shown in Table 3. Having computed the PLL output frequency, the  
reference frequency can be obtained by dividing this by the multiply factor specified via MPY.  
Copyright © 2017–2020, Texas Instruments Incorporated  
27  
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Table 3. Relationship Between Lane Rate and SerDes PLL Output Frequency  
RATE  
00  
LINE RATE  
x Gbps  
PLL OUTPUT FREQUENCY  
0.25x GHz  
01  
x Gbps  
0.5x GHz  
10  
x Gbps  
1x GHz  
11  
x Gbps  
2x GHz  
Table 4. SerDes PLL Multiplier (MPY) Values  
MPY  
0x10  
EFFECT  
4x  
0x14  
5x  
0x18  
6x  
0x20  
8x  
0x21  
8.25x  
10x  
0x28  
0x30  
12x  
0x32  
12.5x  
15x  
0x3C  
0x40  
16x  
0x42  
16.5x  
20x  
0x50  
0x58  
22x  
0x64  
25x  
Other codes  
Reserved  
The wide range of multiply factors combined with the different rate modes means it is often possible to achieve a  
given line rate from multiple different reference frequencies. The configuration which utilizes the highest  
reference frequency achievable is always preferable.  
The SerDes PLL VCO must be in the nominal range of 1.5625 - 3.125 GHz. It is necessary to adjust the loop  
filter depending on the operating frequency of the VCO. If the PLL output frequency is below 2.17 GHz, VRANGE  
in register SRDS_PLL_CFG (8.5.84) should be set high.  
Performance of the integrated PLL can be optimized according to the jitter characteristics of the reference clock  
by setting the appropriate loop bandwidth via field LB in register SRDS_PLL_CFG (8.5.84). The loop bandwidth  
is obtained by dividing the reference frequency by BWSCALE, where the BWSCALE is a function of both LB and  
PLL output frequency as shown in Table 5.  
Table 5. SerDes PLL Loop Bandwidth Selection  
LB  
EFFECT  
BWSCALE vs PLL OUTPUT FREQUENCY  
3.125 GHz  
2.17 GHz  
1.5625 GHz  
00  
01  
10  
11  
Medium loop bandwidth  
Ultra high loop bandwidth  
Low loop bandwidth  
13  
7
14  
8
16  
8
21  
10  
23  
11  
30  
14  
High loop bandwidth  
An approximate loop bandwidth of 8 – 30 MHz is suitable and recommended for most systems where the  
reference clock is via low jitter clock input buffer. For systems where the reference clock is via a low jitter input  
cell, but of low quality, an approximate loop bandwidth of less than 8 MHz may offer better performance. For  
systems where the reference clock is cleaned via an ultra-low jitter LC-based cleaner PLL, a high loop bandwidth  
up to 60 MHz is more appropriate. Note that the use of ultra-high loop bandwidth setting is not recommended for  
PLL multiply factor of less than 8.  
28  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
A free running clock output is available when field ENDIVCLK in register SRDS_PLL_CFG (8.5.85) is set high. It  
runs at a fixed divided-by-80 of the PLL output frequency and can be output on the ALARM pin by setting field  
DTEST to “0001” (lanes 0 – 3) or “0010” (lanes 4 – 7) in register DTEST (8.5.76).  
8.3.4 SerDes Equalizer  
All channels of the DAC38RF82 (or DAC38RF89) incorporate an adaptive equalizer, which can compensate for  
channel insertion loss by attenuating the low frequency components with respect to the high frequency  
components of the signal, thereby reducing inter-symbol interference. Figure 29 shows the response of the  
equalizer, which can be expressed in terms of the amount of low frequency gain and the frequency up to which  
this gain is applied (i.e., the frequency of the ’zero’). Above the zero frequency, the gain increases at 6 dB/octave  
until it reaches the high frequency gain.  
dB  
6
-6.3  
Log10MHz  
108  
414  
Frequency  
Figure 29. Equalizer Frequency Response  
The equalizer can be configured via fields EQ and EQHLD in register SRDS_CFG1 (8.5.86). Table 6 and Table 7  
summarize the options. When enabled, the receiver equalization logic analyzes data patterns and transition times  
to determine whether the low frequency gain should be increased or decreased. The decision logic is  
implemented as a voting algorithm with a relatively long analysis interval. The slow time constant that results  
reduces the probability of incorrect decisions but allows the equalizer to compensate for the relatively stable  
response of the channel. The lock time for the adaptive equalizer is data dependent, and so it is not possible to  
specify a generally applicable absolute limit. However, assuming random data, the maximum lock time will be  
6x106 divided by the CDR activity level. For field CDR in register SRDS_CFG1 (8.5.86) = 110, the activity level  
is 1.5 x 106 UI.  
When EQ[2] = 0, finer control of gain boost is available using the EQBOOST IEEE1500 tuning chain field, as  
shown in Table 6.  
Table 6. Receiver Equalization Configuration  
EQ  
EFFECT  
No equalization. The equalizer provides a flat response at the maximum gain. This setting may be  
appropriate if jitter at the receiver occurs predominantly as a result of crosstalk rather than  
frequency dependent loss.  
00  
01  
10  
11  
Fully adaptive equalization. The zero position is determined by the selected operating rate, and the  
low frequency gain of the equalizer is determined algorithmically by analyzing the data patterns and  
transition positions in the received data. This setting should be used for most applications.  
[1-0]  
Precursor equalization analysis. The data patterns and transition positions in the received data are  
analyzed to determine whether the transmit link partner is applying more or less precursor  
equalization than necessary.  
Postcursor equalization analysis. The data patterns and transition positions in the received data are  
analyzed to determine whether the transmit link partner is applying more or less post-cursor  
equalization than necessary.  
Copyright © 2017–2020, Texas Instruments Incorporated  
29  
 
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Table 6. Receiver Equalization Configuration (continued)  
EQ  
EFFECT  
0
1
Default  
[2]  
Boost. Equalizer gain boosted by 6 dB, with a 20% reduction in bandwidth, and an increase of  
5mW power consumption. May improve performance over long links.  
Table 7. Receiver Equalizer Hold  
EQHOLD  
EFFECT  
Equalizer adaption enabled. The equalizer adaption and analysis algorithm is enabled. This should be the default  
state.  
0
Equalizer adaption held. The equalizer is held in its current state. Additionally, the adaption and analysis algorithm  
is reset.  
1
Table 8. Relationship Between Lane Rate and SerDes PLL Output Frequency  
EQBOOST  
GAIN BOOST (dB)  
BANDWIDTH CHANGE (%)  
POWER INCREASE (mW)  
00  
01  
01  
11  
0
2
4
6
0
0
0
5
5
-30  
10  
-20  
When EQ is set to 010 or 011, the equalizer is reconfigured to provide analytical data about the amount of pre  
and post cursor equalization respectively present in the received signal. This can in turn be used to adjust the  
equalization settings of the transmitting link partner, where a suitable mechanism for communicating this data  
back to the transmitter exists. Status information is provided by setting field DTEST in register DTEST (8.5.76) to  
“0111” for EQOVER and “0110” for EQUNDER. The procedure is as follows:  
1. Enable the equalizer by setting fields EQHLD low and EQ to “001” (register SRDS_CFG1 8.5.86). Allow  
sufficient time for the equalizer to adapt;  
2. Set EQHLD to 1 to lock the equalizer and reset the adaption algorithm. This also causes both EQOVER and  
EQUNDER to become low;  
3. Wait at least 48 UI, and proportionately longer if the CDR activity is less than 100%, to ensure the 1 on  
EQHLD is sampled and acted upon;  
4. Set EQ to “010” or “011”, and EQHLD to 0. The equalization characteristics of the received signal are  
analysed (the equalizer response will continue to be locked);  
5. Wait at least 150×103 UI to allow time for the analysis to occur, proportionately longer if the CDR activity is  
less than 100%;  
6. Examine EQOVER and EQUNDER for results of analysis  
If EQOVER is high, it indicates the signal is over equalized;  
If EQUNDER is high, it indicates the signal is under equalized;  
7. Set EQHLD to 1;  
8. Repeat items 3–7 if required;  
9. Set EQ to “001”, and EQHLD to 0 to exit analysis mode and return to normal adaptive equalization.  
NOTE  
When changing EQ from one non-zero value to another, EQHLD must already be 1. If this  
is not the case, there is a chance the equalizer could be reset by a transitory input state  
(i.e., if EQ is momentarily 000). EQHLD can be set to 0 at the same time as EQ is  
changed.  
As the equalizer adaption algorithm is designed to equalize the post cursor, EQOVER or  
EQUNDER will only be set during post cursor analysis if the amount of post cursor  
equalization required is more or less than the adaptive equalizer can provide.  
30  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.3.5 JESD204B Descrambler  
The descrambler is a 16-bit parallel self-synchronous descrambler based on the polynomial 1 + x14 + x15. From  
the JESD204B specification, the scrambling/descrambling process only occurs on the user data, not on the code  
group synchronization or the ILA sequence. Each multi-DUC has a separate descrambler that can be enabled  
independently. The descrambler is enabled by field SCR in the multi-DUC paged register JESD_N_HD_SCR  
(8.5.49).  
8.3.6 JESD204B Frame Assembly  
The DAC38RF82 (or DAC38RF89) may be programmed as a single or dual DAC device, with one JESD RX  
block designated for each DAC. The two JESD RX blocks can be programmed to operate as two separate links  
or as a single link.  
The JESD204B defines the following parameters:  
L is the number of lanes  
M is the number of I or Q streams per device (2 = 1 IQ pair, 4 = 2 IQ pairs, 8 = 4 IQ pairs)  
F is the number of octets per frame clock period  
S is the number of samples per frame  
HD is the High-Density bit which controls whether a sample may be divided over more lanes  
N = NPRIME is the number of bits per sample (12 or 16 - bits)  
Fields K and L are found in multi-DUC paged register JESD_K_L (8.5.46), M and S in multi-DUC paged register  
JESD_M_S (8.5.48), and N, NPRIME and HD in multi-DUC paged register JESD_N_HD_SCR (8.5.49).  
Table 9 lists the available JESD204B formats, interpolation rates and sample rate limits for the DAC38RF82 (or  
DAC38RF89). The ranges are limited by the SerDes PLL VCO frequency range, the SerDes PLL reference clock  
range, the maximum SerDes line rate, and the maximum DAC sample frequency. Table 10 through Table 27 lists  
the frame formats for each mode. In the frame format tables, i CH (N) [x:y] and q CH (N) [x:y] are bits x through y  
of the I and Q samples at time N of DUC channel CH. If [x..y] is not listed, the full sample is assumed. For  
example, i0(0)[15:8] are bits 15 – 8 of the I sample at time 0, and q(1) is the full Q sample at time 1.  
Table 9. JESD204B Formats for DAC38RF82 and DAC38RF89  
L-M-F-S-Hd  
1 TX  
L-M-F-S-Hd  
2 TX  
Input  
Resolution  
IQ pairs per  
DAC  
Input rate  
max (MSPS)  
fDAC Max  
(MSPS)  
Frame Format  
Interp  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1500  
1125  
750  
9000  
9000  
9000  
9000  
7500  
9000  
9000  
9000  
9000  
9000  
9000  
5000  
7500  
9000  
9000  
9000  
9000  
5000  
7500  
8
82121  
42111  
NA  
1 TX: Table 10  
12  
16  
6
562.5  
1250  
1125  
900  
8
10  
12  
16  
18  
24  
8
1 TX: Table 11  
2 TX: Table 12  
84111  
750  
562.5  
500  
375  
625  
12  
16  
18  
20  
24  
16  
24  
625  
562.5  
500  
1 TX: Table 13  
2 TX: Table 14  
22210  
12410  
44210  
24410  
450  
375  
312.5  
312.5  
1 TX: Table 15  
2 TX: Table 16  
Copyright © 2017–2020, Texas Instruments Incorporated  
31  
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Table 9. JESD204B Formats for DAC38RF82 and DAC38RF89 (continued)  
L-M-F-S-Hd  
1 TX  
L-M-F-S-Hd  
2 TX  
Input  
Resolution  
IQ pairs per  
DAC  
Input rate  
max (MSPS)  
fDAC Max  
(MSPS)  
Frame Format  
Interp  
16  
16  
16  
16  
16  
16  
2
2
2
2
2
2
8
625  
625  
5000  
7500  
9000  
9000  
5000  
7500  
12  
16  
24  
16  
24  
1 TX: Table 17  
2 TX: Table 18  
44210  
24410  
88210  
48410  
562.5  
375  
312.5  
312.5  
1 TX: Table 19  
2 TX: Table 20  
1 TX: Table 21  
2 TX: Table 22  
24310  
81180  
48310  
NA  
12  
8
2
24  
375  
9000  
1 TX: Table 23  
real input  
1
1
2
1
2
4
9000  
3333  
3333  
2500  
2500  
2250  
9000  
3333  
6666  
2500  
5000  
9000  
1 TX: Table 24  
2 TX: Table 25  
41380  
82380  
12  
real input(1)  
1 TX: Table 26  
2 TX: Table 27  
41121  
82121  
16  
real input(1)  
(1) Can also be used as I-Q pair per 2 DACs. See description in Wideband DUC (wide-DUC)  
Table 10. JESD204B Frame Format for LMFSHd = 82121  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
lane RX0  
lane RX1  
lane RX2  
lane RX3  
lane RX4  
lane RX5  
lane RX6  
lane RX7  
i0[15:8]  
i0[7:0]  
i1[15:8]  
i1[7:0]  
q0[15:8]  
q0[7:0]  
q1[15:8]  
q1[7:0]  
Table 11. JESD204B Frame Format for LMFSHd = 42111  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
lane RX0  
lane RX1  
lane RX2  
lane RX3  
i0[15:8]  
i0[7:0]  
q0[15:8]  
q0[7:0]  
Table 12. JESD204B Frame Format for LMFSHd = 84111  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
lane RX0  
lane RX1  
A-i0[15:8](1)  
A-i0[7:0](2)  
(1) DAC A, I sample 0, MSB byte  
(2) DAC A, I sample 0, LSB byte  
32  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Table 12. JESD204B Frame Format for LMFSHd = 84111 (continued)  
lane RX2  
lane RX3  
lane RX4  
lane RX5  
lane RX6  
lane RX7  
A-q0[15:8]  
A-q0[7:0]  
B-i0[15:8]  
B-i0[7:0]  
B-q0[15:8]  
B-q0[7:0]  
Table 13. JESD204B Frame Format for LMFSHd = 22210  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
12  
15  
3
16  
20  
4
lane RX0  
lane RX1  
i0  
q0  
Table 14. JESD204B Frame Format for LMFSHd = 44210  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
12  
15  
3
16  
20  
4
lane RX0  
lane RX1  
lane RX2  
lane RX3  
A-i0(1)  
A-q0  
B-i0  
B-q0  
(1) DAC A, I sample 0  
Table 15. JESD204B Frame Format for LMFSHd = 12410  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
12  
15  
3
16  
20  
4
20  
25  
5
24  
30  
6
28  
35  
7
32  
40  
8
lane RX0  
i0  
q0  
Table 16. JESD204B Frame Format for LMFSHd = 24410  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
12  
15  
3
16  
20  
4
20  
25  
5
24  
30  
6
28  
35  
7
32  
40  
8
lane RX0  
lane RX1  
A-i0(1)  
B-i0  
A-q0  
B-q0  
(1) DAC A, I sample 0  
Table 17. JESD204B Frame Format for LMFSHd = 44210  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
12  
15  
3
16  
20  
4
lane RX0  
lane RX1  
lane RX2  
A1-i0(1)  
A1-q0(2)  
A2-i0  
(1) DAC A, MultiDUC 1, I sample 0  
(2) DAC A, MultiDUC 2, I sample 0  
Copyright © 2017–2020, Texas Instruments Incorporated  
33  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Table 17. JESD204B Frame Format for LMFSHd = 44210 (continued)  
lane RX3  
A2-q0  
Table 18. JESD204B Frame Format for LMFSHd = 88210  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
12  
15  
3
16  
20  
4
lane RX0  
lane RX1  
lane RX2  
lane RX3  
lane RX4  
lane RX5  
lane RX6  
lane RX7  
A1-i0(1)  
A1-q0  
A2-i0  
A2-q0  
B1-i0  
B1-q0  
B2-i0  
B1-q0  
(1) DAC A, MultiDUC 1, I sample 0  
Table 19. JESD204B Frame Format for LMFSHd = 24410  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
12  
15  
3
16  
20  
4
20  
25  
5
24  
30  
6
28  
35  
7
32  
40  
8
lane RX0  
lane RX1  
A1-i0(1)  
A2-i0  
A1-q0  
A2-q0  
(1) DAC A, MultiDUC 1, I sample 0  
Table 20. JESD204B Frame Format for LMFSHd = 48410  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
12  
15  
3
16  
20  
4
20  
25  
5
24  
30  
6
28  
35  
7
32  
40  
8
lane RX0  
lane RX1  
lane RX2  
lane RX3  
A1-i0(1)  
A2-i0  
A1-q0  
A2-q0  
B1-q0  
B2-q0  
B1-i0  
B2-i0  
(1) DAC A, MultiDUC 1, I sample 0  
Table 21. JESD204B Frame Format for LMFSHd = 24310  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
12  
15  
3
16  
20  
4
20  
25  
5
24  
30  
6
2
lane RX0  
lane RX1  
A1-i0(1)  
A1-q0  
A2-q0  
A2-i0  
(1) DAC A, MultiDUC 1, I sample 0  
Table 22. JESD204B Frame Format for LMFSHd = 48310  
# un bits  
# en bits  
4
5
8
12  
15  
16  
20  
20  
25  
24  
30  
10  
34  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Table 22. JESD204B Frame Format for LMFSHd = 48310 (continued)  
Nibble  
1
2
3
4
5
6
lane RX0  
lane RX1  
lane RX2  
lane RX3  
A1-i0(1)  
A2-i0  
B1-i0  
B2-i0  
A1-q0  
A2-q0  
B1-q0  
B2-q0  
(1) DAC A, MultiDUC 1, I sample 0  
Table 23. JESD204B Frame Format for LMFSHd = 81180  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
lane RX0  
lane RX1  
lane RX2  
lane RX3  
lane RX4  
lane RX5  
lane RX6  
lane RX7  
A0(1)  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
(1) DAC A, sample 0  
Table 24. JESD204B Frame Format for LMFSHd = 41380  
# un bits  
# en bits  
Nibble  
lane 0  
4
5
1
8
10  
12  
15  
3
16  
20  
4
20  
25  
24  
30  
6
2
5
A-0(1)  
A-2  
A-4  
A-6  
A-1  
A-3  
A-5  
A-7  
lane 1  
lane 2  
lane 3  
(1) DAC A, sample 0  
Table 25. JESD204B Frame Format for LMFSHd = 82380  
# un bits  
# en bits  
Nibble  
lane 0  
lane 1  
lane 2  
lane 3  
lane 4  
lane 5  
lane 6  
lane 7  
4
5
1
8
12  
15  
3
16  
20  
4
20  
25  
24  
30  
6
10  
2
5
i(0)  
i(2)  
i(4)  
i(6)  
q(0)  
q(2)  
q(4)  
q(6)  
i(1)  
i(3)  
i(5)  
i(7)  
q(1)  
q(3)  
q(5)  
q(7)  
Copyright © 2017–2020, Texas Instruments Incorporated  
35  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Table 26. JESD204B Frame Format for LMFSHd = 41121  
# un bits  
# en bits  
Nibble  
lane 0  
4
5
1
8
10  
2
A-0[15:8](1)  
A-0[7:0](2)  
A-1[15:8]  
A-1[7:0]  
lane 1  
lane 2  
lane 3  
(1) DAC A, sample 0, MSB byte  
(2) DAC A, sample 0, LSB byte  
Table 27. JESD204B Frame Format for LMFSHd = 82121  
# un bits  
# en bits  
Nibble  
4
5
1
8
10  
2
lane RX0  
lane RX1  
lane RX2  
lane RX3  
lane RX4  
lane RX5  
lane RX6  
lane RX7  
A-0[15:8](1)  
A-0[7:0](2)  
A-1[15:8]  
A-1[7:0]  
B-0[15:8]  
B-0[7:0]  
B-1[15:8]  
B-1[7:0]  
(1) DAC A, sample 0, MSB byte  
(2) DAC A, sample 0, LSB byte  
36  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.3.7 SYNC Interface  
The DAC38RF82 (or DAC38RF89) JESD204B interface has two differential SYNC outputs called SYNC0 and  
SYNC1 to support one or two links. Alternatively, GPO0 and GPO1 can be used to output SYNC as a single-  
ended CMOS level. Each of the differential or CMOS outputs is enabled by a 2-bit register (fields GPO0_SEL,  
GPO1_SEL, SYNC0B_SEL, SYNC1B_SEL in register IO_CONFIG 8.5.2), with bit 0 enabling multi-DUC1 SYNC  
and bit 1 enabling multi-DUC2 SYNC. If both are enabled, the SYNC\ signals are OR’ed.  
The SYNC signal can be asserted low by the receiver either to make a synchronization request to  
initialize/reinitialize the link or to report an error to the transmitter. Synchronization requests must have a  
minimum duration of five frames plus nine octets rounded up to the nearest whole number of frames. To report  
an error, the SYNC signal is asserted for exactly two frames. The transmitter interprets any negative edge of its  
SYNC input as an error and any SYNC assertion lasting four frames or longer as a synchronization request. See  
the following sections in the standard for more details.  
7.6.3 Errors requiring re-initialization  
7.6.4 Error reporting via SYNC interface  
8.4 SYNC signal decoding  
8.3.8 Single or Dual Link Configuration  
The DAC38RF82 (or DAC38RF89) JESD204B interface can be configures with one or two links. The advantage  
of using two links, one for each DAC, is that one link can be re-established without affecting the other link and  
DAC.  
The configuration for each mode of operation are:  
1. Dual DAC, dual link  
a. Program fields OCTETPATH0_SEL to OCTETPATH7_SEL in multi-DUC paged registers  
JESD_CROSSBAR1 (8.5.57) and JESD_CROSSBAR2 (8.5.58) so that each multi-DUC will pick data off  
of the appropriate SerDes lane.  
b. Appropriate bits in field LANE_ENA in multi-DUC paged register JESD_LN_EN (8.5.45) must be set for  
each multi-DUC enable the lanes used.  
c. Field ONE_DAC_ONLY in register RESET_CONFIG (8.5.1) should be ‘0’ (default).  
2. Dual DAC, single link  
a. Program OCTETPATH0_SEL to OCTETPATH7_SEL in multi-DUC paged registers JESD_CROSSBAR1  
(8.5.57) and JESD_CROSSBAR2 (8.5.58) so that each multi-DUC will pick data off the appropriate  
SerDes lane.  
b. Appropriate bits in field LANE_ENA in multi-DUC paged register JESD_LN_EN (8.5.45) must be set for  
each multi-DUC enable the lanes used.  
c. Set field ONE_LINK_ONLY to ‘1’ to configure TXENABLE output.  
3. Single DAC, single link  
a. Set Field ONE_DAC_ONLY in register RESET_CONFIG (8.5.1) to ‘1’ to gate clocks to unused multi-  
DUC2 for power savings.  
b. ONE_LINK_ONLY bit does not matter in this case.  
8.3.9 Multi-Device Synchronization  
In many applications, such as multi antenna systems where the various transmit channels information is  
correlated, it is required that the latency across the link is deterministic and multiple DAC devices are completely  
synchronized such that their outputs are phase aligned. The DAC38RF82 (or DAC38RF89) achieves the  
deterministic latency using SYSREF (JESD204B Subclass 1).  
SYSREF is generated from the same clock domain as DACCLK. After having resynchronized its local multiframe  
clock (LMFC) to SYSREF, the DAC will request a link re-initialization via SYNC interface. Processing of the  
signal on the SYSREF input can be enabled and disabled via the SPI interface.  
The SYSREF capture circuit and the timing requirements relative to device clock are described in SYSREF  
Capture Circuit.  
Copyright © 2017–2020, Texas Instruments Incorporated  
37  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.3.10 SYSREF Capture Circuit  
The JESD204B standard for Device Subclass 1 introduces a SYSREF signal that can be used as a global timing  
reference to align the phase of the internal local multiframe clock (LMFC) and frame clock across multiple  
devices. This allows the system to achieve deterministic latency and align data samples across several data  
converters. The SYSREF signal accomplishes this goal by identifying a device clock edge for each chip that can  
be used as an alignment reference. In particular, the LMFC and frame clock align to the device clock edge upon  
which the SYSREF transition from “0” to “1” is sampled. SYSREF may be periodic, one-shot, or “gapped”  
periodic and its period must be a multiple of the LMFC period.  
Figure 30. SYSREF Signal Timing  
With high-speed device clocks, the phase of the SYSREF signals relative to the device clock must meet the  
setup/hold time requirements of each individual device clock. Historically, this has been done by controlling the  
board-level routing delay and/or employing commercial clock distribution capable of generating device clocks and  
SYSREF signals with programmable delays and with the option of splitting SYSREF into multiple SYSREFS,  
each with its own fine-tuned delay. Since the DAC38RF82 (or DAC38RF89) supports device clock frequencies  
up to 9 GHz, a SYSREF capture circuit is includes in the DAC38RF82 (or DAC38RF89) that allows a relaxation  
in meeting the device clock setup and hold.  
The SYSREF capture circuit provides:  
tolerance to manufacturing and environmental variations in SYSREF phase  
immunity to sampling errors due to setup/hold/meta-stability  
information about phase of SYSREF relative to DAC clock inside the data converter  
software compensation for phase misalignment due to PCB design errors  
The concepts behind the SYSREF capture scheme are illustrated in Figure 31.  
38  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Figure 31. SYSREF Capture Strategy and Phase Tolerance Windows  
To understand Figure 31, to begin with we’ll ignore the SYSREF phase tolerance windows in the lower portion of  
the figure and focus on the blue clock waveform at the top of the figure. This waveform represents the device  
clock input to a particular DAC chip. The green arrows, labeled “R” and “F”, correspond to the rising and falling  
edges of this clock (ignoring for the moment the additional arrows labeled “ER” and "EF”). While previous  
devices with lower device clocks captured SYSREF only on the rising edge of the device clock, the new scheme  
samples SYSREF on the falling edge as well, which provides more flexibility when optimizing the setup and hold  
time of the SYSREF capture path. Moreover, each time a rising SYSREF edge is captured, the chip remembers  
the clock phase during which the event occurred, and the system designer can later read back the phase  
information to observe the SYSREF timing relative to the device clock at the internal capture point. If SYSREF  
transitions close to the rising or falling clock edge sampling points the capture flop setup and hold time may not  
be met and the observed phase may be unreliable and subject to meta-stability phenomenon.  
To reduce the sensitivity to setup/hold/meta-stability concerns an “early” version of the device clock is generated  
within the DAC and additional SYSREF samples are taken at the “early falling” and “early rising” edges of the  
clock (labeled “EF” and “ER”, respectively, in Figure 31). The resulting set of four samples is used to narrow  
down the timing of the rising SYSREF edge to one of four possible clock phases. If the rising SYSREF transition  
takes place between the “EF” and “F” samples, then SYSREF is said to occur in phase θ1. Similarly, if it takes  
place between the “F” and “ER” samples, then it is said to occur in phase θ2. If SYSREF transitions between the  
“ER” and “R” samples, then it is said to occur in phase θ3. And, finally, if the SYSREF rising edge event happens  
between the “R” and “EF” samples, then it is said to occur in phase θ4. As mentioned before, the chip  
remembers all observed SYSREF phases and the user can later read them back. Since the delay between  
“early” and “on time” versions of the clock is intentionally chosen to be larger than the setup/hold/meta-stability  
window, at most one of the four samples can be affected even when the SYSREF transitions right at one of the  
four sampling points. Thus, the uncertainty in the observed SYSREF timing is limited to adjacent phases, and  
with twice as many sampling phases the resolution of the timing information is improved by a factor of two.  
Referring to the lower portion of Figure 31, the user can now see how this information regarding the observed  
SYSREF phases is used to devise a reliable SYSREF capture methodology with a high degree of tolerance to  
manufacturing and environmental variations in SYSREF phase. Based on the SYSREF phases observed for a  
particular DAC chip during system characterization, the system designer can select one of four so-called “phase  
tolerance window” options (denoted “’00”, “01”, “10”, and “11”) to maximize immunity to manufacturing and  
environmental variations. For example, consider the default phase tolerance window labeled “window=00” in the  
figure. If, during characterization, the system designer observes (by reading back the recorded phase  
observations) that the rising SYSREF edge nominally occurs in either θ1 or θ2 or both (i.e. θ12) then he would  
Copyright © 2017–2020, Texas Instruments Incorporated  
39  
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
program that particular DAC chip to use phase tolerance window “00”. This mapping is indicated in the figure  
with the label “θ1|θ12|θ2: window=00”. Having programmed the device to use window “00”, all future SYSREF  
events that occur in θ1 or θ2 would trigger the LMFC and frame clock to be aligned using the following rising  
clock edge as the alignment reference (as indicated by the red arrow pointing to rising clock edge “R” and  
labeled “Window=00/01 alignment edge”).  
The full extent of each phase tolerance window is indicated in the figure using “box and whisker” plots. For the  
“window=00” example, the “box” portion of the plot indicates that the phase tolerance window is centered on θ12  
(to be precise on the boundary between θ1 and θ2) and the “whisker” portion indicates that even if the rising  
edge of SYSREF occurs as early as the preceding θ4 or as late as the following θ3 it still results in LMFC and  
frame clock alignment to the same rising clock edge indicated by the red arrow labeled “Window=00/01  
alignment edge”. When programmed for phase tolerance window “00”, the DAC chip is tolerant to variations in  
the SYSREF timing ranging from a rising SYSREF edge that occurs just after one rising edge of clock to just  
before the next rising edge of the clock. The qualifying phrases “just after” and “just before” are used here to  
indicate that the SYSREF transition must occur far enough away from the rising edges of the clock to avoid  
setup/hold violations and prevent the device from concluding that the SYSREF transition has crossed out off the  
phase tolerance window when in fact it has not. The tolerance range for window “00” is from rising clock edge to  
rising clock edge and is indicated in the figure by the green text labeled “tolerance = RR”.  
Following the above example, if characterization reveals SYSREF timing centered on θ23 then phase tolerance  
window “01” (with tolerance for SYSREF rising edge events from EF to EF) should be chosen. Notice that this  
option is tolerant even to rising SYSREF edges that occur after the rising device clock edge (i.e. in θ4) and will  
treat them just as if they had occurred in one of the earlier three phases, aligning to the same rising device clock  
edge indicated by the red arrow labeled “Window=00/01 Alignment Edge”. This allows the system designer to  
tolerate PCB design errors and/or environmental and manufacturing variations – achieving his intended  
alignment without having to make physical changes to the board to adjust the SYSREF timing.  
Similarly, if characterization indicates that SYSREF timing is centered on θ34 or θ41 then phase tolerance  
window “10” or “11” can be selected, resulting in tolerance for “FF” or “ERER” SYSREF timing, respectively.  
Note, however, that in these two cases the alignment reference edge is by default taken to be the subsequent  
rising edge of the device clock. Since this may not be the desired behavior, the DAC38RF82 (or DAC38RF89)  
allows the user to program in an optional alignment offset of θ1 if the default offset of 0 does not achieve the  
desired alignment. This feature is illustrated in Figure 32 where the user can see that by setting the alignment  
offset to -1, phase tolerance windows “10” and “11” can be made to trigger alignment to the earlier rising device  
clock edge used by windows “00” and “01”. Alternatively, the window “00” and “01” alignment edge can be  
pushed one cycle later by setting their alignment offset to +1.  
Figure 32. Optional SYSREF Alignment Offset  
40  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Several important controls related to SYSREF alignment and capture timing are contained in register  
SYSR_CAPTURE (8.5.78). For example, as mentioned before, the device is capable of monitoring the observed  
phases of the rising SYSREF edge events; however, in order to avoid unwanted noise coupling from the  
SYSREF circuits into the DAC output, the SYSREF monitoring circuits are disabled by default. Field  
SYSR_STATUS_ENA enables SYSREF status monitoring. Field SYSR_PHASE_WDW contains the the phase  
tolerance window selected for normal operation, which is optimized during characterization. Field  
SYSR_ALIGN_DLY contains the control that allows the system designer to optionally offset the SYSREF  
alignment event by ±1 device clock cycles. Field SYSR_STATUS_ENA enables the SYSREF capture alignment  
accumulation and will generate alarms when enabled. Writing a “1” to field SYSR_ALIGN_SYNC clears the  
accumulated SYSREF alignment statistics. The SYSREF alignment block can be bypassed completely by field  
SYSREF_BYPASS_ALIGN, in which case SYSREF is latched by the rising edge of DACCLK.  
When field SYSR_STATUS_ENA is high the device records the phase associated with each SYSREF event for  
use in characterizing the SYSREF capture timing and selecting an appropriate phase tolerance window. The  
phase data is available in two forms. First, each of the four phases has a corresponding “sticky” alarm flag  
indicating which phases have been observed since the last time the register was cleared. In addition, the device  
also accumulates statistics on the relative number of occurrences of each phase spanning multiple SYSREF  
events using saturating 8-bit counters. These accumulated real-time SYSREF statistics allow us to account for  
time-varying effects during characterization such as potential timing differences between the 1st and Nth edges  
in a “gapped” SYSREF pulse train. The counters are fields PHASE1_CNT and PHASE2_CNT in register  
SYSREF12_CNT (8.5.10), PHASE3_CNT and PHASE4_CNT in register SYSREF34_CNT (8.5.11), and  
ALIGN_TO_R1_CNT and ALIGN_TO_R3_CNT in register SYSREF_ALIGN_R (8.5.9).  
The accumulated SYSREF statistics can be cleared by writing ‘1’ to SYSR_ALIGN_SYNC. This sync signal  
affects only the SYSREF statistics monitors and does not cause a sync of any other portions of the design.  
Before collecting phase statistics, the user must first enable the SYSREF status monitoring logic by setting the  
SYSR_STATUS_ENA bit. The user must then generate  
a repeating SYSREF input before using  
SYSR_ALIGN_SYNC to clear the statistic counters. This is necessary to flush invalid data out of the status  
pipeline.  
The “sticky” alarm flags indicating which of the four phases have been observed since the last  
SYSR_ALIGN_SYNC write of ‘1’ are fields ALM_SYSRPHASE1 to ALM_SYSRPHASE4 and are contained in the  
ALM_SYSREF_DET register (8.5.6).  
8.3.11 JESD204B Subclass 0 Support  
Some functionality has been implemented to support Subclass 0 operation. Note that programming the  
SUBCLASSV configuration parameter has no functional impact on the logic. The value programmed for  
SUBCLASSV is only used in the initial lane alignment (ILA) sequence. The following configuration parameters  
are used to support Subclass 0 operation:  
Field SYSREF_MODE in register JESD_SYSR_MODE (8.5.56) = 0  
Field DISABLE_ERR_RPT in register JESD_ERR_OUT (8.5.53) = 1  
Field MIN_LATENCY_ENA in register JESD_MATCH (8.5.50) = 1  
Copyright © 2017–2020, Texas Instruments Incorporated  
41  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.3.12 SerDes Test Modes through Serial Programming  
The DAC38RF82 (or DAC38RF89) supports a number of basic pattern generation and verification of SerDes via  
the serial interface. Three pseudo random bit stream (PRBS) sequences are available, along with an alternating  
0/1 pattern and a 20-bit user-defined sequence. The 27 - 1, 231 - 1 or 223 – 1 sequences implemented can often  
be found programmed into standard test equipment, such as a Bit Error Rate Tester (BERT). Pattern generation  
and verification selection is via field TESTPATT in register SRDS_CFG1 (8.5.86), as shown in Table 28.  
Table 28. SerDes Test Pattern Selection  
TESTPATT  
000  
EFFECT  
Test mode disabled.  
001  
Alternating 0/1 Pattern. An alternating 0/1 pattern with a period of 2 UI.  
010  
Verify 27 - 1 PRBS. Uses a 7-bit LFSR with feedback polynomial x7 + x6 + 1.  
011  
Verify 223 - 1 PRBS. Uses an ITU O.150 conformant 23-bit LFSR with feedback polynomial x23 + x18 + 1.  
Verify 231 - 1 PRBS. Uses an ITU O.150 conformant 31-bit LFSR with feedback polynomial x31 + x28 + 1.  
100  
User-defined 20-bit pattern. Uses the USR PATT IEEE1500 Tuning instruction field to specify the pattern. The default  
value is 0x66666.  
101  
11x  
Reserved.  
Pattern verification compares the output of the serial to parallel converter with an expected pattern. When there  
is a mismatch, the TESTFAIL bit is driven high, which can be programmed to come out the ALARM terminal by  
setting field DTEST in register DTEST (8.5.76) to “0011”.  
8.3.13 SerDes Test Modes through IEEE 1500 Programming  
DAC38RF82 (or DAC38RF89) also provide a number of advanced diagnostic capabilities controlled by the IEEE  
1500 interface. These are:  
Accumulation of pattern verification errors;  
The ability to map out the width and height of the receive eye, known as Eye Scan;  
Rreal-time monitoring of internal voltages and currents;  
The SerDes blocks support the following IEEE1500 instructions:  
Table 29. IEEE1500 Instruction for SerDes Receivers  
INSTRUCTION  
OPCODE  
DESCRIPTION  
Bypass. Selects a 1-bit bypass data register. Use when accessing other macros on the same  
IEEE1500 scan chain.  
ws_bypass  
0x00  
ws_cfg  
ws_core  
0x35  
0x30  
0x31  
0x32  
0x34  
0x33  
Configuration. Write protection options for other instructions.  
Core. Fields also accessible via dedicated core-side ports.  
Tuning. Fields for fine tuning macro performance.  
ws_tuning  
ws_debug  
ws_unshadowed  
ws_char  
Debug. Fields for advanced control, manufacturing test, silicon characterization and debug.  
Unshadowed. Fields for silicon characterization.  
Char. Fields used for eye scan.  
The data for each SerDes instruction is formed by chaining together sub-components called head, body (receiver  
or transmitter) and tail. DAC38RF82 (or DAC38RF89) uses two SerDes receiver blocks R0 and R1, each of  
which contains 4 receive lanes (channels), the data for each IEEE1500 instruction is formed by chaining {head,  
receive lane 0, receive lane 1, receive lane 2, receive lane 3, tail}. A description of bits in head, body and tail for  
each instruction is given as follows:  
NOTE  
All multi-bit signals in each chain are packed with bits reversed e.g. mpy[7:0] in ws_core  
head subchain is packed as {retime, enpll, mpy[0:7], vrange, lb[0:1]}. All DATA REGISTER  
READS from SerDes Block R0 should read 1 bit more than the desired number of bits and  
discard the first bit received on TDO e.g., to read 40-bit data from R0 block, 41 bits should  
be read off from TDO and the first bit received should be discarded. Similarly, any data  
written to SerDes Block R0 Data Registers should be prefixed with an extra 0.  
42  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Table 30. ws_cfg Chain  
FIELD  
DESCRIPTION  
HEAD (STARTING FROM THE MSB OF CHAIN)  
RETIME  
No function.  
CORE_WE  
Core chain write enable.  
RECEIVER (FOR EACH LANE 0, 1, 2, 3)  
CORE_WE  
TUNING_WE  
Core chain write enable.  
Tuning chain write enable.  
Reserved.  
DEBUG_WE  
CHAR_WE  
Char chain write enable.  
Reserved.  
UNSHADOWED_WE  
TAIL (ENDING WITH THE LSB OF CHAIN)  
CORE_WE  
TUNING_WE  
DEBUG_WE  
RETIME  
Core chain write enable.  
Tuning chain write enable.  
Reserved.  
No function.  
CHAIN LENGTH = 26 BITS  
Copyright © 2017–2020, Texas Instruments Incorporated  
43  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Table 31. ws_core Chain  
FIELD  
DESCRIPTION  
HEAD (STARTING FROM THE MSB OF CHAIN)  
RETIME  
No function.  
PLL enable.  
ENPLL  
MPY[7:0]  
VRANGE  
ENDIVCLK  
LB[1:0]  
PLL multiply.  
VCO range.  
Enable DIVCLK output  
Loop bandwidth  
RECEIVER (FOR EACH LANE 0,1,2,3)  
ENRX  
SLEEPRX  
BUSWIDTH[2:0]  
RATE[1:0]  
INVPAIR  
Receiver enable.  
Receiver sleep mode.  
Bus width.  
Operating rate.  
Invert polarity.  
TERM[2:0]  
ALIGN[1:0]  
LOS[2:0]  
Termination.  
Symbol alignment.  
Loss of signal enable.  
Clock/data recovery.  
Equalizer.  
CDR[2:0]  
EQ[2:0]  
EQHLD  
Equalizer hold.  
ENOC  
Offset compensation.  
Loopback.  
LOOPBACK[1:0]  
BSINRXP  
BSINRXN  
RESERVED  
Testpatt[2:0]  
TESTFAIL  
LOSTDTCT  
BSRXP  
Boundary scan initialization.  
Boundary scan initialization.  
Reserved.  
Test pattern selection.  
Test failure (real time).  
Loss of signal detected (real time).  
Boundary scan data.  
Boundary scan data.  
Offset compensation in progress.  
Receiver signal over equalized.  
Receiver signal under equalized.  
Loss of signal detected (sticky).  
BSRXN  
OCIP  
EQOVER  
EQUNDER  
LOSTDTCT  
Re-alignment done, or aligned comma output  
(sticky).  
SYNC  
RETIME  
No function.  
TAIL (ENDING WITH THE LSB CHAIN)  
CLKBYP[1:0]  
SLEEPPLL  
RESERVED  
LOCK  
Clock bypass.  
PLL sleep mode.  
Reserved.  
PLL lock (real time).  
Boundary scan initialization clock.  
Enable TX boundary scan.  
Enable RX boundary scan.  
RX pulse boundary scan.  
Reserved.  
BSINITCLK  
ENBSTX  
ENBSRX  
ENBSPT  
RESERVED  
NEARLOCK  
UNLOCK  
PLL near to lock.  
PLL lock (sticky).  
44  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Table 31. ws_core Chain (continued)  
FIELD  
CFG OVR  
RETIME  
DESCRIPTION  
Configuration over-ride.  
No function.  
CHAIN LENGTH = 196 BITS  
Table 32. ws_tuning Chain  
FIELD  
DESCRIPTION  
HEAD (STARTING FROM THE MSB OF CHAIN)  
RETIME No function.  
RECEIVER (FOR EACH LANE 0,1,2,3)  
PATTERRTHR[2:0]  
Resync error threshold.  
PRBS timer.  
PATT TIMER  
RXDSEL[3:0]  
ENCOR  
Status select.  
Enable clear-on-read for error counter.  
EQZ OVRi Equalizer zero.  
Equalizer zero over-ride.  
EQ OVRi Equalizer gain observe or set.  
Equalizer over-ride.  
EQZERO[4:0]  
EQZ OVR  
EQLEVEL[15:0]  
EQ OVR  
EQBOOST[1:0]  
RXASEL[2:0]  
Equalizer gain boost.  
Selects amux output.  
TAIL (ENDING WITH THE LSB CHAIN)  
ASEL[3:0]  
USR PATT[19:0]  
RETIME  
Selects amux output.  
User-defined test pattern.  
No function.  
CHAIN LENGTH = 174 BITS  
Table 33. ws_char Chain  
FIELD  
DESCRIPTION  
HEAD (STARTING FROM THE MSB OF CHAIN)  
RETIME No function.  
RECEIVER (FOR EACH LANE 0,1,2,3)  
Test failure (sticky).  
TESTFAIL  
ECOUNT[11:0]  
ESWORD[7:0]  
ES[3:0]  
Error counter.  
Eye scan word masking.  
Eye scan.  
ESPO[6:0]  
Eye scan phase offset.  
Eye scan compare bit select.  
Eye scan voltage offset.  
Eye scan voltage offset override.  
Eye scan run length.  
Eye scan run.  
ES BIT SELECT[4:0]  
ESVO[5:0]  
ESVO OVR  
ESLEN[1:0]  
ESRUN  
ESDONE  
Eye scan done.  
TAIL (ENDING WITH THE LSB CHAIN)  
RETIME  
No function.  
CHAIN LENGTH = 194 BITS  
Copyright © 2017–2020, Texas Instruments Incorporated  
45  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.3.14 Error Counter  
All receive channels include a 12-bit counter for accumulating pattern verification errors. This counter is  
accessible via the ECOUNT IEEE1500 Char field. It is an essential part of the eye scan capability (see the Eye  
Scan section).  
The counter increments once for every cycle that the TESTFAIL bit is detected. The counter does not increment  
when at its maximum value (i.e., all 1s). When an IEEE1500 capture is performed, the count value is loaded into  
the ECOUNT scan elements (so that it can be scanned out), and the counter is then reset, provided NCOR is set  
high.  
ECOUNT can be used to get a measure of the bit error rate. However, as the error rate increases, it becomes  
less accurate due to limitations of the pattern verification capabilities. Specifically, the pattern verifier checks  
multiple bits in parallel (as determined by the Rx bus width), and it is not possible to distinguish between 1 or  
more errors.  
8.3.15 Eye Scan  
All receive channels provide features which facilitate mapping the received data eye or extracting a symbol  
response. A number of fields accessible via the IEEE1500 Char scan chain allow the required low level data to  
be gathered. The process of transforming this data into a map of the eye or a symbol response must then be  
performed externally, typically in software.  
The basic principle used is as follows:  
Enable dedicated eye scan input samplers, and generate an error when the value sampled differs from the  
normal data sample;  
Apply a voltage offset to the dedicated eye scan input samplers, to effectively reduce their sensitivity;  
Apply a phase offset to adjust the point in the eye that the dedicated eye scan data samples are taken;  
Reset the error counter to remove any false errors accumulated as a result of the voltage or phase offset  
adjustments;  
Run in this state for a period of time, periodically checking to see if any errors have occurred;  
Change voltage and/or phase offset, and repeat.  
Alternatively, the algorithm can be configured to optimize the voltage offset at a specified phase offset, over a  
specified time interval.  
Eye scan can be used in both synchronous and asynchronous systems, while receiving normal data traffic. The  
IEEE1500 Char fields used to directly control eye scan and symbol response extraction are ES, ESWORD, ES  
BIT SELECT, ESLEN, ESPO, ESVO, ESVO OVR, ESRUN and ESDONE. Eye scan errors are accumulated in  
ECOUNT.  
The required eyescan mode is selected via the ES field, as shown in Table 34. When enabled, only data from  
the bit position within the 20-bit word specified via ES BIT SELECT is analyzed. In other words, only eye scan  
errors associated with data output at this bit position will accumulate in ECOUNT. The maximum legal ES BIT  
SELECT is 10011.  
Table 34. Eye Scan Mode Selection  
ES[3:0]  
EFFECT  
0000  
Disabled. Eye scan is disabled.  
Compare. Counts mismatches between the normal sample and the eye scan sample if ES[2] = 0, and matches  
otherwise.  
0x01  
0x10  
0x11  
0100  
Compare zeros. As ES = 0x01, but only analyses zeros, and ignores ones.  
Compare ones. As ES = 0x01, but only analyses ones, and ignores zeroes.  
Count ones. Increments ECOUNT when the eye scan sample is a 1.  
Average. Adjusts ESVO to the average eye opening over the time interval specified by ESLEN. Analyses zeroes when  
ES[2] = 0, and ones when ES[2]= 1.  
1x00  
1001  
1110  
Outer. Adjusts ESVO to the outer eye opening (i.e. lowest voltage zero, highest voltage 1) over the time interval  
specified by ESLEN. 1001 analyses zeroes, 1110 analyses ones.  
1010  
1101  
Inner. Adjusts ESVO to the inner eye opening (i.e. highest voltage zero, lowest voltage 1) over the time interval  
specified by ESLEN. 1010 analyses zeroes, 1101 analyses ones.  
46  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Table 34. Eye Scan Mode Selection (continued)  
ES[3:0]  
EFFECT  
Timed Compare. As ES = 001x, but analyses over the time interval specified by ESLEN. Analyses zeroes when ES[2] =  
0, and ones when ES[2] = 1.  
1x11  
When ES[3] = 0, the selected analysis runs continuously. However, when ES[3] = 1, only the number of qualified  
samples specified by ESLed, as shown in Table 35. In this case, analysis is started by writing a 1 to ESRUN (it is  
not necessary to set it back to 0). When analysis completes, ESDONE is set to 1.  
Table 35. Eye Scan Run Length  
ESLen  
00  
NUMBER OF SAMPLES ANALYZED  
127  
1023  
8095  
65535  
01  
10  
11  
When ESVO OVR = 1, the ESVO field determines the amount of offset voltage that is applied to the eye scan  
data samplers associated with rxpi and rxni. The amount of offset is variable between 0 and 300 mV in  
increments of ~10 mV, as shown Table 36. When ES[3] = 1, ESVO OVR must be 0 to allow the optimized  
voltage offset to be read back via ESVO.  
Table 36. Eye Scan Voltage Offset  
ESVO  
100000  
OFFSET (mV)  
-310  
111110  
111111  
000000  
000001  
000010  
-20  
-10  
0
10  
20  
011111  
300  
The phase position of the samplers associated with rxpi and rxni, is controlled to a precision of 1/32UI. When ES  
is not 00, the phase position can be adjusted forwards or backwards by more than one UI using the ESPO field,  
as shown in Table 37. In normal use, the range should be limited to ±0.5 UI (+15 to –16 phase steps).  
Table 37. Eye Scan Phase Offset  
ESPO  
011111  
OFFSET (1/32 UI)  
+63  
000001  
000000  
111111  
+1  
0
-1  
100000  
-64  
Copyright © 2017–2020, Texas Instruments Incorporated  
47  
 
 
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.3.16 JESD204B Pattern Test  
The DAC38RF82 (or DAC38RF89) supports the following test patterns for JESD204B:  
Link layer test pattern by setting field JESD_TEST_SEQ in register JESD_LN_EN (8.5.45) and monitoring the  
lane alarms (1 = fail, 0 = pass)  
Verify repeating /D.21.5/ high frequency pattern for random jitter (RJ)  
Verify repeating /K.28.5/ mixed frequency pattern for deterministic jitter (DJ)  
Verify repeating initial lane alignment (ILA) sequence  
RPAT, JSPAT or JTSPAT pattern can be verified using errors counter of 8b/10b errors produced over an  
amount of time to get an estimate of BER.  
Transport layer test pattern: implements a short transport layer pattern check based on F = 1, 2, 4 or 8. The  
short test pattern has a duration of one frame period and is repeated continuously for the duration of the test.  
Each sample has a unique value that can be identified with the position of the sample in the user data format.  
The sample values are such that correct sample values will never be decoded at the receiver if there is a  
mismatch between the mapping formats being used at the transmitter and receiver devices. This can  
generally be accomplished by ensuring there are no repeating sub patterns within the stream of samples  
being transmitted. Refer to the JESD204B standard section 5.1.6 for more details.  
The DAC38RF82 (or DAC38RF89) expects the test samples, in a frame, transmitted by an logic device as per  
Table 38:  
Table 38. Short Test Patterns  
JESD Mode  
82121  
i0  
7CB8, F431  
7CB8  
q0  
6DA9, E520  
F431  
i1  
n/a  
q1  
n/a  
42111  
n/a  
n/a  
22210  
7CB8  
F431  
n/a  
n/a  
12410  
7CB8  
F431  
n/a  
n/a  
44210  
7CB8  
F431  
6DA9  
6DA9  
n/a  
E520  
E520  
n/a  
24410  
7CB8  
F431  
41121  
7CB8, F431  
n/a  
7C00, B800, F400, 3100, 6D00,  
A900, E500, 2000  
81180  
24310  
41380  
n/a  
F430  
n/a  
n/a  
6DA0  
n/a  
n/a  
E520  
n/a  
7CB0  
7CB0, F430, 6DA0, E520, F870,  
E960, DA50, CB40  
The short test pattern has duration of one frame period and is repeated continuously for the duration of the test.  
Each sample has a unique value that can be identified with the position of the sample in the user data format.  
The sample values are such that correct sample values will never be decoded at the receiver if there is a  
mismatch between the mapping formats being used at the transmitter and receiver devices. This can generally  
be accomplished by ensuring there are no repeating sub patterns within the stream of samples being transmitted.  
Following are the steps required to execute the short test functionality in DAC38RF82 (or DAC38RF89).  
1. Configure other registers, make sure clocks are up and running.  
2. Start driving short test patterns  
3. Clear short test alarm by writing ‘0’ to field ALM_FROM_SHORTTEST in register ALM_SYSREF_PAP  
(8.5.67). This is a paged register, one for each Multi-DUC.  
4. Enable short test by writing a ‘1’ to field SHORTTEST_ENA in register MULTIDUC_CFG2 (8.5.14).  
5. Read the short test alarm from field ALM_FROM_SHORTTEST in register ALM_SYSREF_PAP (8.5.67).  
This is a paged register, one for each Multi-DUC  
If the alarm read from the register is high, the short test has detected an error.  
48  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.3.17 Wideband DUC (wide-DUC)  
Each DAC output in the DAC38RF82 ((or DAC38RF89)) can be supported by a wide band digital up-converter  
(DUC), which is called a wide-DUC. Figure 33 shows the implementation and signal processing features of the  
wide-DUC which is only available in the 2-TX modes (Table 9). For complex inputs, the in-phase (or I-channel) is  
path AB of DAC A and the phase of the NCO in this path (7.5.19) must be set to 0 degrees. Similarly, the  
quadrature phase (or Q-channel) is path AB of DAC B and the phase of the NCO in this path (7.5.19) must be  
set to 90 degrees. The NCO frequency in both I and Q paths (7.5.20) must be set to the same value. The SPI  
interface registers for the wide-DUC are addressed through paging, with page 1 supporting the I-channel and  
page 2 supporting Q-channel configuration of the wide-DUC. Register PAGE_SET (8.5.8) is used to set the  
pages. Both pages can be selected at the same time to program both channels of wide-DUC simultaneously.  
The output of I and Q channels are added together using the output summation block (Figure 33). Bit 0 and Bit 2  
of the register field OUTSUM_SEL must be set to for this to be accomplished.  
48-bit  
NCO1  
cos  
Input  
Mux  
Multiband  
summation  
I
Path AB  
(DAC A)  
x
sin(x)  
PAP  
Gain  
xN  
12/16  
CMIX control  
( n x Fs/4)  
Delay  
CMIX control  
( n x Fs/4)  
Q
x
sin(x)  
PAP  
Gain  
Path AB  
(DAC B)  
xN  
12/16  
sin  
48-bit  
NCO2  
Copyright © 2016, Texas Instruments Incorporated  
Figure 33. DAC38RF82 Wide-DUC Signal Processing Block Diagram  
8.3.18 Interpolation Block  
The DAC38RF82 (or DAC38RF89) provides the optional interpolation of 2x in 12-bit input mode and 2x or 4x in  
16-bit input mode. In addition, 1x interpolation can be used in 8, 12 or 16-bit input modes to pass the data  
directly to the DAC output. The SPI interface registers for the multi-DUCs are addressed through paging, with  
page 0 supporting the I channel and page 1 supporting the Q channel. Register PAGE_SET (8.4.8) is used to set  
the pages. Both pages can be selected at the same time to program both multi-DUCs simultaneously with the  
same settings.  
8.3.18.1 Multi-DUC input  
Each interpolation block accepts data from up to 8 SerDes lanes. A crossbar switch allows any SerDes lane to  
be mapped to any other SerDes lane. The crossbar switch is controlled by fields OCTETPATHx_SEL (x = [0..7])  
in Registers JESD_CROSSBAR1 (8.5.57) and JESD_CROSSBAR2 (8.5.58).  
Copyright © 2017–2020, Texas Instruments Incorporated  
49  
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.3.18.2 Interpolation Filters  
The digital upconverter first increases the sample rate of the IQ signal from the input sample rate to the final  
DAC sample rate through a series of interpolation filters. Different sets of filters are used to achieve different  
rates, as shown in Table 39. The interpolation rate is selected by field INTERP in register MULTIDUC_CFG1  
(8.5.13).  
Table 39. FIR filters Used for Different Interpolation Rates  
FILTERS USED  
Interpolation Rate  
FIR0 (2x)  
FIR1 (2x)  
2
4
x
x
x
The FIR filter coefficients are shown in Table 40 The FIR filters are design with a passband BW of 0.4 x fINPUT, a  
stopband attenuation of 90 dBc and ripple of < 0.001 dB. The composite frequency response for each  
interpolation factor are shown in Figure 34to Figure 41.  
20  
0
20  
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
0.075  
0.15  
0.225  
f/Fdac  
0.3  
0.375  
0.45  
0
0.075  
0.15  
0.225  
f/Fdac  
0.3  
0.375  
0.45  
D001  
D002_8x  
Figure 34. Composite Magnitude Response for 6x  
Interpolation  
Figure 35. Composite Magnitude Response for 8x  
Interpolation  
20  
0
20  
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
0.075  
0.15  
0.225  
f/Fdac  
0.3  
0.375  
0.45  
0
0.075  
0.15  
0.225  
f/Fdac  
0.3  
0.375  
0.45  
D003  
D004  
Figure 36. Composite Magnitude Response for 10x  
Interpolation  
Figure 37. Composite Magnitude Response for 12x  
Interpolation  
50  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
20  
0
20  
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
-160  
-160  
0
0.075  
0.15  
0.225  
f/Fdac  
0.3  
0.375  
0.45  
0
0.075  
0.15  
0.225  
f/Fdac  
0.3  
0.375  
0.45  
D005  
D006  
Figure 38. Composite Magnitude Response for 16x  
Interpolation  
Figure 39. Composite Magnitude Response for 18x  
Interpolation  
20  
0
20  
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
0.075  
0.15  
0.225  
f/Fdac  
0.3  
0.375  
0.45  
0
0.075  
0.15  
0.225  
f/Fdac  
0.3  
0.375  
0.45  
D007  
D001  
Figure 40. Composite Magnitude Response for 20x  
Interpolation  
Figure 41. Composite Magnitude Response for 24x  
Interpolation  
Table 40. FIR Filter Coefficients  
tap  
1
FIR0  
6
FIR1  
-12  
0
LPFIR0_5X  
-6  
FIR2  
29  
LPFIR0_3X  
-14  
FIR3  
3
LPFIR1_3X INVSINC  
25  
1
-4  
2
0
-22  
0
-61  
0
88  
3
-19  
0
84  
-51  
-214  
0
-125  
-25  
0
22  
13  
-50  
592  
-50  
13  
-4  
4
0
-89  
-95  
-576  
5
47  
0
-336  
0
-117  
-106  
-18  
1209  
2048  
1209  
0
181  
150  
256  
150  
0
-1764  
-2263  
491  
6
681  
7
-100  
0
1006  
0
972  
8
171  
347  
8139  
18625  
26365  
26365  
18625  
8139  
491  
9
192  
0
-2691  
0
449  
-214  
0
-1475  
-3519  
-3528  
707  
-25  
0
1
10  
11  
12  
13  
14  
15  
16  
745  
-342  
0
10141  
16384  
10141  
0
930  
29  
3
841  
572  
0
338  
9337  
19445  
26299  
26299  
-618  
-1892  
-3147  
-914  
0
-2691  
0
-2263  
-1764  
Copyright © 2017–2020, Texas Instruments Incorporated  
51  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Table 40. FIR Filter Coefficients (continued)  
tap  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
FIR0  
1409  
0
FIR1  
1006  
0
LPFIR0_5X  
-3872  
-3500  
-1564  
2121  
7336  
13430  
19426  
24231  
26904  
26904  
24231  
19426  
13430  
7336  
2121  
-1564  
-3500  
-3872  
-3147  
-1892  
-618  
FIR2  
LPFIR0_3X  
19445  
9337  
707  
FIR3  
LPFIR1_3X INVSINC  
-576  
22  
-2119  
0
-336  
0
88  
-3528  
-3519  
-1475  
347  
25  
3152  
0
84  
0
-4729  
0
-12  
972  
7420  
0
681  
181  
-13334  
0
-95  
-125  
-61  
41527  
65536  
41527  
0
-14  
-13334  
0
7420  
0
-4729  
0
338  
3152  
0
841  
930  
-2119  
0
745  
449  
1409  
0
171  
-18  
-914  
0
-106  
-117  
572  
0
-89  
-51  
-342  
0
-22  
-6  
192  
0
-100  
0
47  
0
-19  
0
6
52  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.3.18.3 JESD204B Modes, Interpolation and Clock phase Programming  
Table 41 lists the register field values required for each JESD204B mode interpolation mode and clock phase.  
The register field addresses are listed in Table 42.  
Table 41. Register Programming for JESD and Interpolation Mode  
Mode  
L-M-F-S-Hd  
Register Field Programming  
CLKJESD  
_OUT_DI  
V
CLOCK  
PHASES  
(1-0)  
CLKJESD  
_DIV  
(3-0)  
N_M1/N’_  
M1  
(4-0)  
INTERP  
(4-0)  
L_M1  
(4-0)  
F_M1  
(7-0)  
M_M1  
(7-0)  
S_M1  
(4-0)  
Interp  
HD  
1 TX/2TX  
(3-0)  
6
8
11  
11  
11  
11  
10  
11  
11  
11  
11  
11  
11  
01  
10  
11  
11  
11  
11  
01  
10  
01  
10  
11  
11  
01  
10  
11  
00  
00  
01  
01  
11  
11  
00011  
00100  
00110  
01000  
00011  
00100  
00101  
00110  
01000  
01001  
01100  
00100  
00110  
01000  
01001  
01010  
01100  
01000  
01100  
00100  
00110  
01000  
01100  
01000  
01100  
00000  
00000  
00001  
00000  
000001  
00010  
01100  
0110  
0111  
1010  
1011  
0010  
0011  
0101  
0110  
0111  
1001  
1010  
0001  
0010  
0011  
0100  
0101  
0110  
0001  
0010  
0001  
0010  
0011  
0110  
0001  
0010  
0011  
1100  
1101  
0000  
0001  
0011  
0011  
0011  
0100  
0110  
0111  
0011  
0100  
0101  
0110  
0111  
1000  
1010  
0100  
0110  
0111  
1000  
1001  
1010  
0111  
1010  
0100  
0110  
0111  
1010  
0111  
1010  
0001  
0000  
0001  
0000  
0001  
0010  
1010  
82121/NA  
00111  
00011  
0x00  
0x00  
0x01  
0x01  
00001  
00000  
1
01111  
01111  
12  
16  
6
8
10  
12  
16  
18  
24  
8
42111/84111  
1
12  
16  
18  
20  
24  
16  
24  
8
22210/44210  
00001  
0x01  
0x01  
00000  
0
01111  
12410/24410  
44210/88210  
00000  
00011  
0x03  
0x01  
0x01  
0x03  
00000  
00000  
0
0
01111  
01111  
12  
16  
24  
16  
24  
1
24410/48410  
81180/NA  
00001  
00111  
00011  
0x03  
0x00  
0x02  
0x03  
0x00  
0x00  
00000  
00111  
00111  
0
0
0
01111  
00111  
01011  
1
41380/82380  
2
1
41121/ 82121  
24310/48310  
2
00011  
00001  
0x00  
0x02  
0x00  
0x03  
00001  
00000  
1
0
01111  
01011  
4
24  
Table 42. Register Field Addresses for JESD204B Mode, Interpolation and Clock Phase Programming  
Register Field Name  
INTERP  
Register  
Register Address  
Bit(s)  
12-8  
15-12  
11-8  
4-0  
Hyperlink  
MULTIDUC_CFG1  
0x0A  
8.5.13  
CLKJESD_DIV  
CLKJESD_OUT_DIV  
L_M1  
SerDes_CLK  
0x25  
8.5.28  
JESD_K_L  
0x4C  
0x4B  
8.5.47  
8.5.46  
F_M1  
JESD_RBD_F  
7-0  
M_M1  
15-8  
4-0  
JESD_M_S  
0x4D  
8.5.48  
S_M1  
Copyright © 2017–2020, Texas Instruments Incorporated  
53  
 
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Table 42. Register Field Addresses for JESD204B Mode, Interpolation and Clock Phase  
Programming (continued)  
Register Field Name  
HD  
Register  
Register Address  
Bit(s)  
6
Hyperlink  
N_M1  
JESD_N_HD_SCR  
JESD_LN_EN  
0x4E  
0x4A  
4-0  
8.5.49  
N_M1’ (NPRIME_M1)  
JESD_PHASE_MODE  
12-8  
1-0  
8.5.45  
All registers are paged!  
8.3.18.4 Digital Quadrature Modulator  
Each DUC in the DAC38RF8x has digital quadrature modulator (DQM) blocks with independent Numerically  
Controlled Oscillators (NCO) that converts the complex input signal to a real signal with flexible frequency  
placement between 0 and fDAC/2. The NCOs are enabled by fields NCOAB_ENA and NCOCD_ENA in register  
MULTIDUC_CFG2 (8.5.14). The NCOs have 48-bit frequency registers (FREQ_NCOAB (8.5.25) and  
FREQ_NCOCD (8.5.26)) and 16-bit phase registers (PHASE_NCOAB (8.5.23) and PHASE_NCOCD (8.5.24))  
that generate the sine and cosine terms for the complex mixing. The NCO block diagram is shown in Figure 42.  
48  
16  
sin  
Accumulator  
CLK RESET  
48  
48  
48  
16  
16  
Look Up  
Table  
Frequency  
Register  
16  
cos  
16  
FDAC  
NCO SYNC  
via  
syncsel_NCO(3:0)  
Phase  
Register  
Figure 42. NCO Block Diagram  
Synchronization of the NCOs occurs by resetting the NCO accumulators to zero. The synchronization source is  
selected by fields SYNCSEL_NCOAB and SYNCSEL_NCOCD in register SYNCSEL1 (8.5.29). The frequency  
word in the FREQ_NCOAB and FREQ_NCOCD registers are added to the accumulators every clock cycle, fDAC  
.
The frequency and phase offset of the NCOs are:  
FREQ _NCOAB or CD ì f  
(
)
DAC  
f
=
NCOAB or CD  
(
)
48  
2
(1)  
(2)  
PHASE _NCOAB or CD  
(
)
/
= 2Œ ì  
AB or CD  
(
)
16  
2
Treating the complex channels as complex vectors of the form I + j Q, the output of the DQM is:  
MIXERAB _GAIN-1  
(
ì 2  
AB  
)
Output  
= I  
ìcos 2Œf  
t + /  
-Q  
ìsin 2Œf  
t + /  
(
)
(
)
}
{
AB  
INPUTAB  
NCOAB  
AB  
INPUTAB  
-Q ìsin 2Œf  
INPUTCD  
NCOAB  
(3)  
(4)  
MIXERCD_GAIN-1  
(
t + / ì2  
NCOCD CD  
)
Output  
= I  
ìcos 2Œf  
t + /  
CD  
(
)
(
)
}
{
CD  
INPUTCD  
NCOCD  
Where t is the time since the last resetting of the NCO accumulator and the fields MIXERAB_GAIN and  
MIXERCD_GAIN in register MULTIDUC_CFG2 (8.5.13) are either 0 or 1.  
The maximum output amplitude of the DQM occurs if IIN(t) and QIN(t) are simultaneously full scale amplitude and  
the sine and cosine arguments are equal to an integer multiple of π/4.  
54  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
With MIXERAB_GAIN or MIXERCD_GAIN = 0, the gain through the DQM is sqrt(2)/2 or -3 dB. This loss in signal  
power is in most cases undesirable, and it is recommended that the gain function be used to increase the signal  
by 3 dB to compensate. With MIXERAB_GAIN or MIXERCD_GAIN = 1, the gain through the DQM is sqrt(2) or  
+3 dB, which can cause clipping of the signal if IIN(t) and QIN(t) are simultaneously near full scale amplitude and  
should therefore be used with caution.  
8.3.18.5 Low Power Coarse Resolution Mixing Modes  
In addition to the NCO the DAC38RFxx also has a coarse mixer block capable of shifting the input signal  
spectrum by the fixed mixing frequencies ±N x fDAC/8. Using the coarse mixer instead of the full mixers will result  
in lower power consumption.  
Treating the two complex channels as complex vectors of the form I(t) + j Q(t), the outputs of the coarse mixer is  
equivalent to:  
Output  
= I  
ìcos 2Œf  
t -Q  
ì sin 2Œf  
t
(
)
(
)
AB  
INPUTAB  
CMIX _ AB  
INPUTAB  
CMIX _ AB  
(5)  
(6)  
Output = I  
CD INPUTCD  
ìcos 2Œf  
t -Q  
ì sin 2Œf  
t
(
)
(
)
CMIX _CD  
INPUTCD  
CMIX _CD  
Where fCMIX_AB and fCMIX_CD and the fixed mixing frequency selected by fields CMIX_AB or CMIX_CD in register  
CMIX (8.5.21). The coarse mixer blocks are disabled by setting CMIX_AB and CMIX_CD to 0x0.  
The NCO and coarse mixers can be enabled simultaneously, although this is not useful in most cases as the full  
frequency range can be covered by the NCO.  
8.3.18.6 Inverse Sinc Filter  
The DAC38RF82 (or DAC38RF89) has a 9-tap inverse Sinc filter (INVSINC) that runs at the DAC update rate  
(fDAC) that can be used to flatten the frequency response of the sample-and-hold output. The DAC sample-and-  
hold output sets the output current and holds it constant for one DAC clock cycle until the next sample, resulting  
in the well known sin(x)/x or Sinc(x) frequency response (Figure 43, red line). The inverse sinc filter response  
(Figure 43, blue line) has the opposite frequency response from 0 to 0.4 x fDAC, resulting in the combined  
response (Figure 43, green line). Between 0 to 0.4 x fDAC, the inverse sinc filter compensates the sample-and-  
hold roll-off with less than 0.03 dB error.  
The inverse sinc filter has a gain > 1 at all frequencies. Therefore, the signal input to INVSINC must be reduced  
from full scale to prevent saturation in the filter. The amount of back-off required depends on the signal  
frequency, and is set such that at the signal frequencies the combination of the input signal and filter response is  
less than 1 (0 dB). For example, if the signal input to INVSINC is at 0.25 x fDAC, the response of INVSINC is 0.9  
dB, and the signal must be backed off from full scale by 0.9 dB to avoid saturation. The advantage of INVSINC  
having a positive gain at all frequencies is that the user is then able to optimize the back-off of the signal based  
on its frequency.  
The inverse sinc filters are enabled by field ISFIR_ENA in register MULTIDUC_CFG1 (8.5.13).  
4
3
FIR4  
2
1
0
Corrected  
–1  
–2  
–3  
–4  
sin(x)/x  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
f/fDAC  
G056  
Figure 43. Composite Magnitude Spectrum for INVSINC  
Copyright © 2017–2020, Texas Instruments Incorporated  
55  
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.3.19 PA Protection Block  
The DAC38RFxx incorporates an optional power amplifier protection (PAP) block to monitor when the input  
signal is two large, for example when an interface error occurs, and reduces the output signal power of the DAC.  
The PAP block achieves the functionality of reducing the input signal that crosses the threshold through three  
main sub-blocks. These are PAP trigger generation block, PAP gain state machine and GAIN block.  
The PAP block keeps track of the input signal power by maintaining a sliding window accumulation of last N  
samples. N is selectable to be 32, 64 or 128 based on the setting (Table 43) of fields PAPAB_SEL_DLY in  
register PAP_CFG_AB (8.5.35) and PAPCD_SEL_DLY in register PAP_CFG_CD (8.5.36). The average  
amplitude of input signal is computed by dividing accumulated value by the number of samples in the delay-line  
(N). The result is then compared against the threshold in fields PAPAB_THRESH in register PAP_CFG_AB  
(8.5.35) and PAPCD_THRESH in register PAP_CFG_CD (8.5.36). If the threshold is violated, gain state machine  
is triggered which generated gain value to ramp down the DAC output signal amplitude. After the input signal  
returns to normal value, the state machine ramps up the DAC output signal amplitude.  
Table 43. PAP Delay Line Selection  
pap_sel_dly[1:0]  
# of samples averaged  
00  
01  
10  
11  
32  
64  
128  
Reserved  
The generation of the PAP trigger as explained as follows:  
The I and Q samples are treated separately – either can trigger attenuation  
In dual DUC modes, each IQ pair is treated separately and has a separate gain block  
8 samples at the input are put through an absolute value circuit (all 2’s complement)  
Next these values are vector summed to get a 12 bit result  
Then 12 bit result is placed into the delay line and summed into the accumulator  
The accumulator is also subtracting out the delayed 12 bit word corresponding to N = 32, N = 64 or N = 128  
Finally the accumulator output is divided down by N and rounded to 13 bits. These 13 bits are compared to  
the threshold in the SPI registers. A pap_trig occurs if the threshold is exceeded.  
The PAP gain state machine generates the pap gain value to be applied on the output stream to reduce the  
output signal amplitude. The state machine below is used to control the attenuation of the DAC output and the  
gaining up of the signal again once the trigger is released.  
56  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
pap_trig=0  
pap_gain=1  
Normal  
pap_trig=1  
pap_trig=1  
Attenuate  
Gain  
wait_cnt_load_r=0  
pap_trig=0  
wait_cnt_load_r=1  
Wait  
pap_trig=1  
Copyright © 2017, Texas Instruments Incorporated  
Figure 44. PAP Gain State Machine  
The normal operating condition for the PAP block is the NORMAL state in Figure 44. However, when the PAP  
block detects an error condition it sets the pap_trig signal to ‘1’ causing a state transition from NORMAL  
operation to the ATTENUATE state.  
In the ATTENUTATE state the data path gain is scaled from 1.0 down to 0.0 by a programmable step amount set  
by fields PAPAB_GAIN_STEP in register PAP_GAIN_AB (8.5.31) and PAPCD_GAIN_STEP in register  
PAP_GAIN_CD (8.5.33). This value is always positive with the decimal place located between the MSB and  
MSB-1. Unity is equal to “1000000000”. Each clock cycle (16 samples) the PAP_GAIN is stepped down by  
PAPAB_GAIN_STEP and PAPCD_GAIN_STEP until the gain is 0.  
After PAP_GAIN is 0, the state machine moves on to the WAIT state. Here a programmable counter counts clock  
cycles to allow the condition for the pap_trig to be fixed. Fields PAPAB_WAIT in register PAP_WAIT_AB (8.5.32)  
and PAPCD_WAIT in register PAP_WAIT_CD (8.5.34) are used to select the number of clock cycles (samples =  
16 x PAPAB_WAIT or 16 x PAPCD_WAIT) to wait before moving to the next state. Once the WAIT counter  
equals zero and pap_trig=’0’, the state machine moves on to the GAIN state. If the WAIT equals 0 but pap_trig  
still equals ‘1’ then the state machine stays in the WAIT state until pap_trig =’0’.  
8.3.20 Gain Block  
The GAIN block also has additional output gain control through fields GAINAB in register GAINAB (8.5.39) and  
GAINCD in register GAINCD (8.5.40). Similar to PAP_GAIN value, the output gain is always positive with unity  
when GAINAB or GAINCD = ”010000000000”.  
To reduce the power, the gain block clock has been gated whenever the pap is disabled and GAINAB or  
GAINCD is set to unity.  
8.3.21 Output Summation  
The OUTSUM block allows addition of samples from each DUC in the multi-DUC. It is also possible to add the  
output samples from the adjacent multi-DUC. Field OUTSUM_SEL in register OUTSUM (8.5.22) controls the  
summation for each multi-DUC. The functionality of the block can be represented by the following equation:  
Copyright © 2017–2020, Texas Instruments Incorporated  
57  
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
OUTSUM  
output  
= SAME  
+ SAME  
CD  
+ ADJ  
+ ADJ  
AB CD  
AB  
(7)  
In order to avoid overflow, rounding operation is performed after the addition to reduce the word size back to 16-  
bits. Exact number of bits rounded depends on the number of channels added. Table 44 shows the description of  
round after the summation.  
Table 44. OUTSUM Scaling and Rounding  
# OF CHANNELS ADDED  
# OF BITS ROUNDED  
0
1
2
3
4
0, Use bits[15:0] from the result  
Use bits[16:1] from the result and bit[0] used for rounding  
Use bits[17:2] from the result and bits[1:0] used for rounding  
Use bits[18:3] from the result and bit[2:0 used for rounding  
Use bits[19:4] from the result and bit[3:0] used for rounding  
8.3.22 Output Delay  
The signal following output summation can be programmably delayed by 0-15 DACCLK cycles through field  
OUTPUT_DELAY in register OUTSUM (8.5.20). The block takes 16 sample words (vec16) from both the A and B  
paths and shifts the them to 32 sample long delay line.  
8.3.23 Polarity Inversion  
The signal following the output delay can be inverted by a 2’s complement conversion allowing the + and - DAC  
outputs to be swapped by asserting field DAC_COMPLEMENT in register MULTIDUC_CFG1 (8.5.13).  
8.3.24 Temperature Sensor  
The DAC38RF82 (or DAC38RF89) incorporates a temperature sensor block which monitors the die temperature  
by measuring the voltage across 2 transistors. The voltage is converted to an 8-bit digital word using a  
successive approximation (SAR) analog to digital conversion process. The result is scaled, limited and formatted  
as a twos complement value representing the temperature in degrees Celsius.  
The sampling is controlled by the serial interface signals SDEN and SCLK. If the temperature sensor is enabled  
by writing a 0 to field TSENSE_SLEEP in register SLEEP_CONFIG (8.5.70), a conversion takes place each time  
the serial port is written or read. The data is only read and sent out by the digital block when the temperature  
sensor is read in field TEMPDATA in register TEMP_PLLVOLT (8.5.7). The conversion uses the first eight clocks  
of the serial clock as the capture and conversion clock, the data is valid on the falling eighth SCLK. The data is  
then clocked out of the chip on the rising edge of the ninth SCLK. No other clocks to the chip are necessary for  
the temperature sensor operation. As a result the temperature sensor is enabled even when the device is in  
sleep mode.  
In order for the process described above to operate properly, the serial port read from register TEMP_PLLVOLT  
must be done with an SCLK period of at least 1 μs. If this is not satisfied the temperature sensor accuracy is  
greatly reduced.  
8.3.25 Alarm Monitoring  
The DAC38RF82 (or DAC38RF89) includes a flexible set of alarm monitoring that can be used to alert of a  
possible malfunction scenario. All the alarm events can be accessed either through the SIP registers and/or  
through the ALARM output. Once an alarm is set, the corresponding alarm bit must be reset through the serial  
interface to allow further testing. The set of alarms includes the following conditions:  
JESD alarms  
Fields ALM_LANEx_ERR in registers JESD_ALM_Lx (x = 0-7, 8.5.59 to 8.5.66):  
multiframe alignment_error. Occurs when multiframe alignment fails  
frame alignment error. Occurs when multiframe alignment fails  
link configuration error. Occurs when there is wrong link configuration  
elastic buffer overflow. Occurs when bad RBD value is used  
elastic buffer match error. Occurs when the first non-/K/ doesn’t match the programmed data  
code synchronization error  
58  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8b/10b not-in-table decode error  
8b/10b disparity error  
Field ALM_FROM_SHORTTEST in register ALM_SYSREF_PAP (8.5.67): Occurs when the short pattern  
test fails.  
SerDes alarms  
Field ALM_SD_LOTDET in register ALM_SD_DET 8.5.5): Occurs when there are loss of signal detect  
from SerDes lanes.  
Fields ALM_FIFOx_FLAGS in registers JESD_ALM_Lx (x = 0-7, 8.5.59 to 8.5.66):  
FIFO write error. Occurs if write request and FIFO is full.  
FIFO write full: Occurs if FIFO is full.  
FIFO read error. Occurs if read request and FIFO is empty.  
FIFO read empty: Occurs if FIFO is empty.  
Field ALM_SD0_PLL in register ALM_SYSREF_DET (8.5.6): Occurs if the PLL in the SerDes block 0  
goes out of lock.  
Field ALM_SD1_PLL in register ALM_SYSREF_DET (8.5.6): Occurs if the PLL in the SerDes block 1  
goes out of lock.  
SYSREF alarm  
Field ALM_SYSREF_ERR in register ALM_SYSREF_PAP (8.5.67): Occurs when the SYSREF is received  
at an unexpected time. If too many of these occur it will cause the JESD to go into synchronization mode  
again.  
DAC PLL alarm  
Field PLL_LOCK in register ALM_SYSREF_DET (8.5.6). This register field is asserted when the PLL is  
unlocked. When used as an alarm output, a high signal indicates that the PLL is unlocked if the  
ALM_OUT_POL bit in register RESET_CONFIG is set to 1.  
PAP alarm  
Field ALM_PAP in register ALM_SYSREF_PAP (8.5.67): Occurs when the average power is above the  
threshold. While any alarm_pap is asserted the attenuation for the appropriate data path is applied.  
8.3.26 Differential Clock Inputs  
Figure 45 shows the preferred configuration for driving the DACCLK+/- and SYSREF+/- with a differential  
ECL/PECL source.  
LVPCL Driver  
0.01 mF  
C
100 W  
AC  
0.01 mF  
240 W  
240 W  
Copyright © 2016, Texas Instruments Incorporated  
Figure 45. Preferred Clock Input Configuration With a Differential ECL/PECL Clock Source  
8.3.27 CMOS Digital Inputs  
Figure 46 shows a schematic of the equivalent CMOS digital inputs of the DAC38RF82 (or DAC38RF89). SDIO,  
SCLK, TCLK, SLEEP, TESTMODE and TXENABLE have internal pull-down resistors while SDEN, RESET,  
TMS, TDI and TRST have internal pull-up resistors. See the Specifications table for logic thresholds. The pull-up  
and pull-down circuitry is approximately equivalent to 10 kΩ.  
Copyright © 2017–2020, Texas Instruments Incorporated  
59  
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
VDDIO18  
VDDIO18  
10 k  
SDIO  
SCLK  
TCLK  
SLEEP  
SDENB  
RESETB  
TMS  
400 ꢀ  
400 ꢀ  
internal  
digital in  
internal  
digital in  
TDI  
TXENABLE  
TESTMODE  
TRSTB  
10 kꢀ  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 46. CMOS Digital Equivalent Input  
60  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.3.28 DAC Fullscale Output Current  
The DAC38RF82 (or DAC38RF89) uses a bandgap reference and control amplifier for biasing the full-scale  
output current. The DAC full scale output current is set by a combination of the fixed current through the external  
resistor RBIAS (connected to pin BIASJ) and current from course trim current sources:  
IOUT  
= I + I  
RBIAS coarsetrim  
FS  
(8)  
The bias current IBIAS through resistor RBIAS is defined by the on-chip bandgap reference voltage VBG (nominally  
0.9 V) and control amplifier. For normal operation, it is recommended that RBIAS is set to 3.6 kΩ for a fixed  
current through RBIAS of 250 µA. This current is scaled 128x internally, giving:  
V
0.9V  
BG  
I
= 128ì  
= 128ì  
= 32 mA  
RBIAS  
R
3.6 kꢀ  
BIAS  
(9)  
The course trim current sources are configured through SPI register field DACFS in register DACFS (8.5.72), as  
follows:  
I
= 2mA × DACFS -11  
(
)
coarsetrim  
(10)  
From the discussion above, the DAC full scale output current can be configured from 40 mA (DACFS[3:0] =  
1111) down to 10 mA (DACFS[3:0] = 0000). In addition to the full scale signal current set by SPI register DACFS  
(8.5.72), an extra DC bias current is required to set the operating point of the output current sources(Table 45).  
Table 45. DAC output current  
DACFS ( 8.5.72)  
Signal current (mA)  
Total bias current (mA)(1)  
0
1
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
1
1
2
2
3
3
4
5
5
6
6
7
7
8
8
9
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
(1) The bias current per each complementary output is half the total bias current  
An external decoupling capacitor CEXT of 0.1 μF should be connected externally to terminal EXTIO for  
compensation. The full-scale output current can be adjusted from 40 mA down to 10 mA by varying resistor RBIAS  
From 3.6 kΩ to 14.4 kΩ.  
8.3.29 Current Steering DAC Architecture  
The DACs in the DAC38RF82 (or DAC38RF89) consist of a segmented array of NMOS current sources, capable  
of sinking a full-scale output current up to 40 mA (see Figure 47). Differential current switches direct the current  
to either one of the complimentary output nodes VOUT1/2+ or VOUT1/2-. Complimentary output currents enable  
differential operation, thus canceling out common mode noise sources (digital feed-through, on-chip and PCB  
noise), dc offsets, even order distortion components, and increasing signal output power by a factor of four.  
Copyright © 2017–2020, Texas Instruments Incorporated  
61  
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
VDDOUT18  
Zext+  
Zext-  
VOUT1/2+  
VOUT1/2-  
100 W  
IOUT-  
IOUT+  
VDEE18N  
(-1.8V)  
Figure 47. Current Steering DAC Architecture for DAC38RF82 (or DAC38RF89)  
Referring to Figure 47, the total output current IOUTFS is fixed, and is switched to either the + or – output by  
switches S(N):  
IOUT = IOUT + + IOUT-  
FS  
(11)  
Since the output stage is a current sinking architecture, it will denote current into the DAC as + current, and the  
current flows IOUT+ and IOUT- into terminals VOUT1/2+ and VOUT1/2- respectively. IOUT+ and IOUT- can be  
expressed as:  
IOUT ìCODE  
FS  
16384  
IOUT+ =  
(12)  
IOUT ì 16383 -CODE  
(
16384  
)
FS  
IOUT- =  
(13)  
where CODE is the decimal representation of the 14-bit DAC core data input word. Note the signal path up to the  
DAC is 16-bits and the 2 LSBs are truncated for the DAC core data input word.  
8.3.30 DAC Transfer Function  
The DAC38RF82 (or DAC38RF89) has a differential output and is terminated internally with a differential 100-Ω  
load. The DAC38RF82 (or DAC38RF89) output compliance range is 1.3 to 2.3 V. Note that care should be taken  
not to exceed the compliance voltages at node VOUT1/2+ and VOUT1/2-, which would lead to increased signal  
distortion.  
Referring again to Figure 47, denote the external impedance as seen by VOUT1/2+ as Zext+ and by VOUT1/2-  
as Zext-. Note that Zext+ and Zext- should terminate to VDDOUT18 to supply the output current for the DAC.  
Also, Zext+ and Zext- are ideally identical to maintain the differential balance of the output. The voltage at nodes  
VOUT1/2+ and VOUT1/2- generated by the current flow through the impedance is  
IOUT +ì 100+ Zext +  
(
)
IOUT - ìZext -  
100+ Zext + +Zext -  
VOUT1/ 2+ =  
ì Zext + +  
ì Zext +  
100+ Zext + +Zext -  
(
)
(
)
(14)  
62  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
IOUT - ì 100+ Zext -  
(
)
ì Zext + +  
IOUT +ìZext +  
100+ Zext + +Zext -  
VOUT1/ 2- =  
ì Zext -  
100+ Zext + +Zext -  
(
)
(
)
(15)  
The DAC38RF82 (or DAC38RF89) can be easily configured to drive a doubly terminated 50-Ω cable using a  
properly selected 2:1 RF transformer (Figure 48). Note that the center tap of the primary input of the transformer  
has to be connected to the VDDOUT18 supply (nominally 1.8 V) to enable a DC current flow into the DAC. The  
AC load impedance as seen through 2:1 transformer is 100 Ω, which is split equally into Zext+ = Zext- = 50 Ω.  
The DC impedance for the transformer is a short to the center tap of the transformer, which drives the common  
mode of VOUT1/2+ and VOUT1/2- to 1.8V. To calculate the peak to peak output swing VOUT1/2PP at each  
node, the equations above simplify to:  
VOUT1/ 2  
=VOUT1/ 2 +  
-VOUT1/ 2 +  
PP  
IOUT+=IOUT IOUT -=0  
IOUT-=IOUT ,IOUT+=0  
FS  
(
)
(
)
FS,  
(16)  
(17)  
IOUT ì 50ì150IOUT ì 50ì 50ꢀ  
FS FS  
VOUT1/ 2  
=
-
= IOUT ì 25ꢀ  
FS  
PP  
200ꢀ  
200ꢀ  
With IOUTOUTFS = 40 mA, the swing becomes 1 VPP at each node. With the common mode at 1.8 V due to the  
center tap, the voltage at VOUT1/2+ and VOUT1/2- varies between 1.3 and 2.3 V, which is the compliance range  
of the DAC.  
The differential output swing is 2x VOUT1/2PP, or 2 VPPDIFF. On the load side of the transformer, this reduces to  
1.414 VPP, for a transferred load power of 7 dBm (assuming no loss).  
2 : 1  
VOUT1/2+  
RLOAD  
100 W  
50 W  
VOUT1/2-  
VDDADAC18  
(1.8V)  
Figure 48. Driving a 50-Ω Load Using a 2:1 Impedance Ratio Transformer (DAC38RF82 (or DAC38RF89))  
The DAC38RF82 (or DAC38RF89) can also be DC coupled. In this case, the termination voltage can be raised  
above 1.8 V (for example 2.3 V) so that the common mode for the output pin is nominally 1.8 V.  
8.4 Device Functional Modes  
8.4.1 Clocking Modes  
The DAC38RF82 (or DAC38RF89) has both a single ended clock input DACCLKSE and a differential clock input  
DACCLK+/- to clock the device. The clock input is selected by field SEL_EXTCLK_DIFFSE in register  
CLK_PLL_CFG (8.5.79). The DAC38RF82 (or DAC38RF89) can be clock directly with a high frequency input  
clock at the DAC sample rate (PLL Bypass Mode), or an optional on-chip low-jitter phase-locked loop (PLL) can  
be used to generate the high frequency DAC sample clock internally from a lower frequency reference clock  
input (PLL Mode).  
8.4.2 PLL Bypass Mode Programming  
In PLL bypass mode a high quality clock is sourced to the DACCLK inputs. This clock is used to directly clock  
the DAC38RF82 (or DAC38RF89) DAC cores. This mode gives the device best performance and is  
recommended for extremely demanding applications.  
The bypass mode is selected by setting the following:  
1. Set field PLL_ENA in register CLK_PLL_CFG (8.5.79) to “0” to bypass the PLL circuitry.  
2. Set field PLL_SLEEP in register SLEEP_CONFIG (8.5.70) to “1” to put the PLL and VCO into sleep mode.  
Copyright © 2017–2020, Texas Instruments Incorporated  
63  
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.3 Internal PLL/VCO  
The DAC38RF82 (or DAC38RF89) has an internal clock generation circuit consisting of a PLL and two selectable  
VCOs, as shown in Figure 49.  
High VCO  
PFD  
and  
charge pump  
Output  
buffer  
DAC  
CLK  
ó N  
PLL_N(4-0)  
Feedback  
Low VCO  
ó M  
ó 4  
PLL_M(7-0)  
Figure 49. Internal PLL/VCO Block Diagram  
DAC38RF82 (or DAC38RF89) each have a low VCO (VCO0) and high VCO (VCO1), but they are tuned to  
different center frequencies in each device. The VCO frequency ranges for each device are summarized in  
Electrical Characteristics - Digital Specifications. The VCO is selected through field PLL_VCOSEL in register  
PLL_CONFIG2 (8.5.81), with ‘0’ selecting the low VCO and a ‘1’ the high VCO. The 7 bit VCO tuning code in  
field PLL_VCO in register PLL_CONFIG2 (8.5.81) is used to tune the VCO frequency from the lowest frequency  
in the range to the highest frequency for the particular VCO used. For the low VCO the center VCO frequency is  
achieved with PLL_VCO = 63decimal and for the high VCO the center frequency is achieved with PLL_VCO =  
63decimal  
.
The supply current, and therefore; the analog signal amplitude in the VCO is controlled using the field  
PLL_VCO_RDAC in register PLL_CONFIG1 (8.5.80). This control signal should be set 15decimal initially for 18 mA  
supply current in the VCO and ~1.4 VPP single ended oscillation amplitude.  
The PLL has no prescaler, so the DAC sample rate is the VCO frequency. In the PLL feedback path a fixed ÷ 4  
frequency divider block receives the VCO output clock and divides its frequency by 4. The maximum operating  
frequency of the phase-frequency detector (PFD) and charge pump (CP) requires this. The M (feedback) clock  
divider takes the output clock signal from the fixed ÷4 block and divides it by a programmable ratio set by the 8-  
bit field in field PLL_M_M1 in register PLL_CONFIG1 (8.5.80). The programmable division ratio range is ÷1 to  
÷256, and is the value of the 8 bit unsigned binary code + 1. Although it is possible to program the M divider to  
÷1, ÷2 and ÷3, these values should not be used. As stated previously the PFD and CP have a finite maximum  
operating frequency, which is the VCO frequency divided by the fixed divider ratio multiplied by the minimum  
allowable M divider ratio.  
PFD_CP  
Fmax  
= Fvco / Fixed _div x Mdiv  
(
)
min  
(18)  
The N (reference) divider determines the ratio between the input reference clock frequency and the PFD  
operating frequency, and is set by the 5-bit field PLL_N_M1 in register CLK_PLL_CFG (8.5.79). The division ratio  
range is ÷1 to ÷32, and is the value of the 5-bit unsigned binary code + 1.  
64  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Device Functional Modes (continued)  
The charge pump output current amplitude is set using the 4-bit field PLL_CP_ADJ in in register PLL_CONFIG2  
(8.5.81). The current amplitude is simply the digital code multiplied by the unit current amplitude of 100 µA. In a  
nominal condition, with the DAC38RF82 VCO0 running at 5.898 GHz, and with the M divider set to ÷4, the PFD  
will run at 368.625 MHz, and the change pump current should set to 6decimal, which gives 600 µA charge pump  
output current for a good phase margin of 69 degrees. If a higher M ratio (for lower PFD frequencies) are  
required the charge pump output current must be increased to maintain good loop stability and prevent excessive  
peaking in the phase noise response. The charge pump output current setting PLL_CP_ADJ should be adjusted  
in relation to the feedback (M) divider ratio PLL_M_M1 according to the following table to maintain a constant  
phase margin of 69 degrees.  
Table 46. M vs Kp for Maintaining Good Stability  
M
4
CP_ADJ  
6
9
6
8
12  
15  
10  
Similarly for the DAC38RF82 VCO2 running at 8.847 GHz, and with the M divider set to ÷4, the PFD will run at  
552.9375 MHz as shown above. Here the change pump current should set to 6decimal, which gives 600 µA charge  
pump output current for a good phase margin of 69 degrees.  
8.4.4 CLKOUT  
The DAC38RF82 (or DAC38RF89) has a programmable output clock on CLKTX+/- balls that is a divided version  
of the internal DAC sample clock, either with or without PLL. Two frequency dividers, either DACCLK/3 or  
DACCLK/4, are available by programming field CLK_TX_DIV4 in register CLK_OUT (8.5.71). The output swing  
voltage is programmable from approximately 125 to 1460 mVPP-DIFF through field CLK_TX_SWING in register  
CLK_OUT (8.5.71).  
Field CLK_TX_IDLE in register CLK_OUT (8.5.71) enables an idle state, in which the pins are driven to the  
proper common-mode levels in order to charge the external AC coupling caps but the clock output is disabled.  
The output clock circuit can be put to sleep by field CLK_TX_SLEEP in register SLEEP_CONFIG (8.5.70).  
8.4.5 Serial Peripheral Interface (SPI)  
The serial port of the DAC38RF82 (or DAC38RF89) is a flexible serial interface which communicates with  
industry standard microprocessors and microcontrollers. The interface provides read/write access to all registers  
used to define the operating modes of DAC38RF82 (or DAC38RF89). It is compatible with most synchronous  
transfer formats and can be configured as a 3 or 4 terminal interface by SIF4_ENA in register IO_CONFIG  
(8.5.2). In both configurations, SCLK is the serial interface input clock and SDEN is serial interface enable. For 3  
terminal configuration, SDIO is a bidirectional terminal for both data in and data out. For 4 terminal configuration,  
SDIO is bidirectional and SDO is data out only. Data is input into the device with the rising edge of SCLK. Data is  
output from the device on the falling edge of SCLK.  
The SPI registers are reset by writing a 1 to SPI_RESET in register RESET_CONFIG (8.5.1).  
Each read/write operation is framed by signal SDEN (Serial Data Enable Bar) asserted low. The first frame byte  
is the instruction cycle which identifies the following data transfer cycle as read or write as well as the 7-bit  
address to be accessed. Figure 50 indicates the function of each bit in the instruction cycle and is followed by a  
detailed description of each bit. The data transfer cycle consists of two bytes.  
Figure 50. Instruction Byte of the Serial Interface  
Bit  
7 (MSB)  
R/W  
6
5
4
3
2
1
0
Description  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W - Identifies the following data transfer cycle as a read or write operation. A high indicates a read operation from DAC38RF82 (or  
DAC38RF89) and a low indicates a write operation to DAC38RF82 (or DAC38RF89)  
A6:A0 - Identifies the address of the register to be accessed during the read or write operation.  
Copyright © 2017–2020, Texas Instruments Incorporated  
65  
 
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Figure 51 shows the serial interface timing diagram for a DAC38RF82 (or DAC38RF89) write operation. SCLK is  
the serial interface clock input to DAC38RF82 (or DAC38RF89). Serial data enable SDEN is an active low input  
to DAC38RF82 (or DAC38RF89). SDIO is serial data input. Input data to DAC38RF82 (or DAC38RF89) is  
clocked on the rising edges of SCLK.  
Instruction Cycle  
Data Transfer Cycle  
SDEN\  
SCLK  
SDIO  
rwb  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tS(SDEN\)  
tSCLK  
SDEN\  
SCLK  
SDIO  
tS(SDIO) tH(SDIO)  
Figure 51. Serial Interface Write Timing Diagram  
Figure 52 shows the serial interface timing diagram for a DAC38RF82 (or DAC38RF89) read operation. SCLK is  
the serial interface clock input to DAC38RF82 (or DAC38RF89). Serial data enable SDEN is an active low input  
to DAC38RF82 (or DAC38RF89). SDIO is serial data input during the instruction cycle. In 3 pin configuration,  
SDIO is data out from the DAC38RF82 (or DAC38RF89) during the data transfer cycle, while SDO is in a high-  
impedance state. In 4 pin configuration, both SDIO and SDO are data out from the DAC38RF82 (or  
DAC38RF89) during the data transfer cycle. At the end of the data transfer, SDIO and SDO will output low on the  
final falling edge of SCLK until the rising edge of SDEN when they will 3-state.  
Instruction Cycle  
Data Transfer Cycle  
SDEN\  
SCLK  
SDIO  
SDO  
rwb  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D15  
D14  
D14  
D13  
D13  
D12  
D12  
D11  
D11  
D10  
D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
SDEN\  
SCLK  
SDIO  
SDO  
Data n  
Data n-1  
td(Data)  
Figure 52. Serial Interface Read Timing Diagram  
n the SIF interface there are four types of registers:  
8.4.5.1 NORMAL (RW)  
The NORMAL register type allows data to be written and read from. All 16-bits of the data are registered at the  
same time. There is no synchronizing with an internal clock thus all register writes are asynchronous with respect  
to internal clocks. There are three subtypes of NORMAL:  
1. AUTOSYNC: A NORMAL register that causes a sync to be generated after the write is finished. These are  
used when it is desirable to synchronize the block after writing the register or if a single field that spans  
across multiple registers. For instance, the NCO requires three 16-bit register writes to set the frequency.  
Upon writing the last of these registers an autosync is generated to deliver the entire field to the NCO block  
66  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
at once, rather than in pieces after each individual register write. For a field that spans multiple registers, all  
non-AUTOSYNC registers for the field must be written first before the actual AUTOSYNC register.  
2. No RESET Value: These are NORMAL registers, but the reset value cannot be specified. This could be  
because the register has some read only bits or some internal logic partially controls the bit values.  
3. READ_ONLY (R): Registers that can only be read.  
8.4.5.2 WRITE_TO_CLEAR (W0C)  
These registers are just like NORMAL registers with one exception. They can be written and read, however,  
when the internal logic asynchronously sets a bit high in one of these registers, that bit stays high until it is  
written to ‘0’. This way interrupts will be captured and stay constant until cleared by the user.  
8.5 Register Maps  
Table 47. Register Summary  
Address  
Reset  
Acronym  
Register Name  
Section  
General Configuration Registers (PAGE_SET[2:0] = 000)  
0x00  
0x01  
0x5803  
0x1800  
0xFFFF  
0xFFFF  
0x0000  
0x0000  
variable  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0008  
RESET_CONFIG  
IO_CONFIG  
Chip Reset and Configuration  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
IO Configuration  
Lane Signal Detect Alarm Mask  
Clock Alarms Mask  
0x02  
ALM_SD_MASK  
ALM_CLK_MASK  
ALM_SD_DET  
ALM_SYSREF_DET  
TEMP_PLLVOLT  
Reserved  
0x03  
0x04  
SERDES Loss of Signal Detection Alarms  
SYSREF Alignment Circuit Alarms  
Temperature Sensor and PLL Loop Voltage  
Reserved  
0x05  
0x06  
0x07-0x08  
0x09  
PAGE_SET  
Page Set  
8.5.8  
0x0A-0x77  
0x78  
Reserved  
Reserved  
SYSREF_ALIGN_R  
SYSREF12_CNT  
SYSREF34_CNT  
Reserved  
SYSERF Align to r1 and r3 Count  
SYSREF Phase Count 1 and 2  
SYSREF Phase Count 3 and 4  
Reserved  
8.5.9  
8.5.10  
8.5.11  
0x79  
0x7A  
0x7B-0x7E  
0x7F  
VENDOR_VER  
Vendor ID and Chip Version  
8.5.12  
8.5.13  
Multi-DUC Configuration Registers (PAGE_SET[0] = 1 for multi-DUC1, PAGE_SET[1] = 1 for multi-DUC2)  
0x0A  
0x0B  
0x02B0  
0x0000  
0x2402  
0x8300  
0x00FF  
0x1F83  
0xFFFF  
0xFFFF  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0010  
0x7700  
0x0000  
MULTIDUC_CFG1  
Reserved  
Multi-DUC Configuration (PAP, Interpolation)  
Reserved  
0x0C  
MULTIDUC_CFG2  
JESD_FIFO  
Multi-DUC Configuration (Mixers)  
JESD FIFO Control  
Alarm Mask 1  
8.5.14  
8.5.15  
8.5.16  
8.5.17  
8.5.18  
8.5.19  
8.5.20  
0x0D  
0x0E  
ALM_MASK1  
ALM_MASK2  
ALM_MASK3  
ALM_MASK4  
JESD_LN_SKEW  
Reserved  
0x0F  
Alarm Mask 2  
0x10  
Alarm Mask 3  
0x11  
Alarm Mask 4  
0x12  
JESD Lane Skew  
0x13-0x16  
0x17  
Reserved  
CMIX  
CMIX Configuration  
Reserved  
8.5.21  
8.5.22  
0x18  
Reserved  
0x19  
OUTSUM  
Output Summation and Delay  
Reserved  
0x1A-0x1B  
0x1C  
Reserved  
PHASE_NCOAB  
PHASE_NCOCD  
FREQ_NCOAB  
FREQ_NCOCD  
SYSREF_CLKDIV  
SERDES_CLK  
Reserved  
Phase offset for AB path NCO  
Phase offset for CD path NCO  
Frequency for AB path NCO  
Frequency for CD path NCO  
SYSREF Use for Clock Divider  
Serdes Clock Control  
Reserved  
8.5.23  
8.5.24  
8.5.25  
8.5.26  
8.5.27  
8.5.28  
0x1D  
0x1E-0x20  
0x21-0x23  
0x24  
0x25  
0x26  
Copyright © 2017–2020, Texas Instruments Incorporated  
67  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Register Maps (continued)  
Table 47. Register Summary (continued)  
Address  
0x27  
Reset  
0x1144  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x1FFF  
0x1FFF  
0x0000  
0x0000  
0x0000  
0x0800  
0x0800  
0x0000  
0x0000  
0x0000  
0x0044  
0x190A  
0x31C3  
0x0000  
0x0003  
0x1300  
0x1303  
0x0100  
0x0F4F  
0x1CC1  
0x0000  
0x00FF  
0x00FF  
Acronym  
SYNCSEL1  
Register Name  
Sync Source Selection  
Sync Source Selection  
PAP path AB Gain Attenuation Step  
PAP path AB Wait Time at Gain = 0  
PAP path CD Gain Attenuation Step  
PAP path CD Wait Time at Gain = 0  
PAP path AB Configuration  
PAP path CD Configuration  
Configuration for DAC SPI Constant  
DAC SPI Constant  
Section  
8.5.29  
8.5.30  
8.5.31  
8.5.32  
8.5.33  
8.5.34  
8.5.35  
8.5.36  
8.5.37  
8.5.38  
0x28  
SYNCSEL2  
0x29  
PAP_GAIN_AB  
PAP_WAIT_AB  
PAP_GAIN_CD  
PAP_WAIT_CD  
PAP_CFG_AB  
PAP_CFG_CD  
SPIDAC_TEST1  
SPIDAC_TEST2  
Reserved  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
Reserved  
0x32  
GAINAB  
Gain for path AB  
8.5.39  
8.5.40  
0x33  
GAINCD  
Gain for path CD  
0x34-0x40  
0x41  
Reserved  
Reserved  
JESD_ERR_CNT  
Reserved  
JESD Error Counter  
8.5.41  
0x42-0x45  
0x46  
Reserved  
JESD_ID1  
JESD ID 1  
8.5.42  
8.5.43  
8.5.44  
0x47  
JESD_ID2  
JESD ID 2  
0x48  
JESD_ID3  
JESD ID 3 and Subclass  
Reserved  
0x49  
Reserved  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
JESD_LN_EN  
JESD_RBD_F  
JESD_K_L  
JESD Lane Enable  
8.5.45  
8.5.46  
8.5.47  
8.5.48  
8.5.49  
8.5.50  
8.5.51  
8.5.52  
8.5.53  
JESD RBD Buffer and Frame Octets  
JESD K and L Parameters  
JESD M and S Parameters  
JESD N, HD and SCR Parameters  
JESD Character Match and Other  
JESD Link Configuration Data  
JESD Sync Request  
JESD_M_S  
JESD_N_HD_SCR  
JESD_MATCH  
JESD_LINK_CFG  
JESD_SYNC_REQ  
JESD_ERR_OUT  
0x50  
0x51  
0x52  
JESD Error Output  
JESD Configuration Value used for ILA  
Check  
0x53  
0x54  
0x0100  
0x8E60  
JESD_ILA_CFG1  
JESD_ILA_CFG2  
8.5.54  
8.5.55  
JESD Configuration Value used for ILA  
Check  
0x55-0x5B  
0x5C  
0x0000  
0x0001  
0x0000  
0x0123  
0x4567  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Reserved  
JESD_SYSR_MODE  
Reserved  
Reserved  
JESD SYSREF Mode  
Reserved  
8.5.56  
0x5D-0x5E  
0x5F  
JESD_CROSSBAR1  
JESD_CROSSBAR2  
Reserved  
JESD Crossbar Configuration 1  
JESD Crossbar Configuration 2  
Reserved  
8.5.57  
8.5.58  
0x60  
0x61-0x63  
0x64  
JESD_ALM_L0  
JESD_ ALM_L1  
JESD_ ALM_L2  
JESD_ALM_L3  
JESD_ALM_L4  
JESD_ALM_L5  
JESD_ALM_L6  
JESD_ALM_L7  
ALM_SYSREF_PAP  
ALM_CLKDIV1  
Reserved  
JESD Alarms for Lane 0  
JESD Alarms for Lane 1  
JESD Alarms for Lane 2  
JESD Alarms for Lane 3  
JESD Alarms for Lane 4  
JESD Alarms for Lane 5  
JESD Alarms for Lane 6  
JESD Alarms for Lane 7  
SYSREF and PAP Alarms  
Clock Divider Alarms 1  
Reserved  
8.5.59  
8.5.60  
8.5.61  
8.5.62  
8.5.63  
8.5.64  
8.5.65  
8.5.66  
8.5.67  
8.5.68  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E-0x77  
68  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
Register Maps (continued)  
Table 47. Register Summary (continued)  
Address  
Reset  
Acronym  
Register Name  
Section  
Miscellaneous Configuration Registers (PAGE_SET[1:0] = 00, PAGE_SET[2] = 1)  
0x0A  
0x0B  
0xFC03  
0x0022  
0xA002  
0xF000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x03F3  
0x1000  
0x0000  
0x0200  
0x0308  
0x4018  
0x0000  
0x0018  
0x0000  
0x0002  
0x8228  
0x0088  
0x0909  
0x0000  
0x0000  
0x0000  
CLK_CONFIG  
SLEEP_CONFIG  
CLK_OUT  
Clock Configuration  
Sleep Configuration  
8.5.69  
8.5.70  
8.5.71  
8.5.72  
0x0C  
Divided Output Clock Configuration  
DAC Fullscale Current  
Reserved  
0x0D  
DACFS  
0x0E-0x0F  
0x10  
Reserved  
LCMGEN  
Internal sysref generator  
Counter for internal sysref generator  
SPI SYSREF for internal sysref generator  
Reserved  
8.5.73  
8.5.74  
8.5.75  
0x11  
LCMGEN_DIV  
LCMGEN_SPISYSREF  
Reserved  
0x12  
0x13-0x1A  
0x1B  
DTEST  
Digital Test Signals  
8.5.76  
0x1C-0x22  
0x23  
Reserved  
Reserved  
SLEEP_CNTL  
SYSR_CAPTURE  
Reserved  
Sleep Pin Control  
8.5.77  
8.5.78  
0x24  
SYSREF Capture Circuit Control  
Reserved  
0x25-0x30  
0x31  
CLK_PLL_CFG  
PLL_CONFIG1  
PLL_CONFIG2  
LVDS_CONFIG  
PLL_FDIV  
Clock Input and PLL Configuration  
PLL Configuration 1  
8.5.79  
8.5.80  
8.5.81  
8.5.82  
8.5.83  
0x32  
0x33  
PLL Configuration 2  
0x34  
LVDS Output Configuration  
Fuse farm clock divider  
Reserved  
0x35  
0x36-0x3A  
0x3B  
Reserved  
SRDS_CLK_CFG  
SRDS_PLL_CFG  
SRDS_CFG1  
SRDS_CFG2  
SRDS_POL  
Serdes Clock Configuration  
Serdes PLL Configuration  
Serdes Configuration 1  
Serdes Configuration 2  
Serdes Polarity Control  
Reserved  
8.5.84  
8.5.85  
8.5.86  
8.5.87  
8.5.88  
0x3C  
0x3D  
0x3E  
0x3F  
0x40-0x75  
0x76  
Reserved  
SYNCBOUT  
JESD204B SYNCB Output  
8.5.89  
Copyright © 2017–2020, Texas Instruments Incorporated  
69  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.1 Chip Reset and Configuration Register (address = 0x00) [reset = 0x5803]  
Figure 53. Chip Reset and Configuration Register (RESET_CONFIG)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 48. RESET_CONFIG Field Descriptions  
Bit  
15  
14  
Field  
Type  
RW  
Reset  
Description  
SPI_RESET  
ALM_OUT_POL  
0
1
This will reset all the SPI registers once programmed.  
RW  
Changes the polarity of the alarm output.  
0= active low  
1= active high  
13  
12  
11  
10:7  
6
ALM_OUT_ENA  
SYSCLK_ENA  
AUTOLOAD_TRIG  
Reserved  
RW  
RW  
RW  
RW  
RW  
RW  
0
Turn on the alarm pin  
1
Turns on the dividers for the SYSCLK to the Fusefarm  
Causes a Fuse AUTOLOAD to be executed.  
Reserved  
1
0000  
ONE_DAC_ONLY  
ONE_LINK_ONLY  
0
0
When set high only the SLICE0 is available.  
5
This needs to be set high when a single link setup is being  
programmed to get the correct TXENABLE signal generation  
4:2  
1
Reserved  
RW  
RW  
RW  
000  
1
Reserved  
INIT_SLICE1  
INIT_SLICE0  
Puts the multi-DAC2 JESD into initialization state  
Puts the multi-DAC1 JESD into initialization state  
0
1
70  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.2 IO Configuration Register (address = 0x01) [reset = 0x1800]  
Figure 54. IO Configuration Register (IO_CONFIG)  
15  
0
14  
0
13  
0
12  
1
11  
1
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 49. IO_CONFIG Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
GPO0_SEL  
RW  
00  
Selects the JESD SYNC_N signal coming out the GPO0 pin.  
Both bits can be asserted which does an oring of the SYNC_N  
signals from each multi-DUC.  
bit 0 = 1 then multi-DUC1 SYNC_N used  
bit 1 = 1 then multi-DUC2 SYNC_N is used  
13:12  
11:10  
9:8  
SYNC0B_SEL  
SYNC1B_SEL  
GPO1_SEL  
RW  
RW  
RW  
01  
10  
00  
Selects the JESD SYNC_N signal coming out the SYNC0B pin.  
Both bits can be asserted which does an oring of the SYNC_N  
signals from each multi-DUC.  
bit 0 = 1 then multi-DUC1 SYNC_N used  
bit 1 = 1 then multi-DUC2 SYNC_N is used  
Selects the JESD SYNC_N signal coming out the SYNC1B pin.  
Both bits can be asserted which does an oring of the SYNC_N  
signals from each multi-DUC.  
bit 0 = 1 then multi-DUC1 SYNC_N used  
bit 1 = 1 then multi-DUC2 SYNC_N is used  
Selects the JESD SYNC_N signal coming out the GPO1 pin.  
Both bits can be asserted which does an oring of the SYNC_N  
signals from each multi-DUC.  
bit 0 = 1 then multi-DUC1 SYNC_N used  
bit 1 = 1 then multi-DUC2 SYNC_N is used  
7
6
SPI4_ENA  
Reserved  
ATEST  
RW  
RW  
RW  
0
When set to a '1' the chip is in 4 pin SPI interface mode.  
Reserved  
0
5:0  
000000  
Select the analog test points:  
000000: ATEST is off (ATEST Must be off during normal  
operation)  
000001, 010001, 000110: VSSCLK  
000010: VDDPLL1  
000101: VDDCLK  
000111, 001010, 010000: VDDAPLL18  
001011: VDDAVCO18  
001101: VDDS18  
001110: VDDE1  
001111, 111010, 111011, 111100: DGND  
010011: VDDTX1  
101001, 110001: AGND  
101111, 111101, 111110, 11111: VDDDIG1  
110000: VDDA18  
Copyright © 2017–2020, Texas Instruments Incorporated  
71  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.3 Lane Single Detect Alarm Mask Register (address = 0x02) [reset = 0xFFFF]  
Figure 55. Lane Single Detect Alarm Mask Register (ALM_SD_MASK)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
0
2
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 50. ALM_SD_MASK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Used to mask alarms  
bit 15 - bit 8 : Reserved  
bit7 : lane 7 loss of signal detect  
bit6 : lane 6 loss of signal detect  
bit5 : lane 5 loss of signal detect  
bit4 : lane 4 loss of signal detect  
bit3 : lane 3 loss of signal detect  
bit2 : lane 2 loss of signal detect  
bit1 : lane1 loss of signal detect  
bit0 : lane 0 loss of signal detect  
15:0  
ALM_SD_MASK  
R/W  
0xFFFF  
8.5.4 Clock Alarms Mask Register (address = 0x03) [reset = 0xFFFF  
Figure 56. Clock Alarms Mask Register (ALM_CLK_MASK)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
0
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 51. ALM_CLK_MASK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Used to mask alarms  
bit 15 - bit 8 : Reserved  
bit 7 : alarm_sysrefphase4  
bit 6 : alarm_sysrefphase3  
bit 5 : alarm_sysrefphase2  
bit 4 : alarm_sysrefphase1  
bit 3 : alarm_align_to_r3  
bit 2 : alarm_align_to_r1  
bit 1 : alarm_sd0_pll  
15:0  
ALM_CLK_MASK  
R/W  
0xFFFF  
bit 0 : alarm_sd1_pll  
72  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.5 SERDES Loss of Signal Detection Alarms Register (address = 0x04) [reset = 0x0000]  
Figure 57. SERDES Loss of Signal Detection Alarms Register (ALM_SD_DET)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
0
5
0
4
0
3
0
2
1
1
0
0
0
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset  
Table 52. ALM_SD_DET Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
Reserved  
W0C  
0x00  
Reserved  
Loss of signal detect outputs from the SERDES lanes:  
bit 7 = lane7 loss of signal  
bit 6 = lane6 loss of signal  
bit 5 = lane5 loss of signal  
7:0  
ALM_SD_LOSDET  
W0C  
0x00  
bit 4 = lane4 loss of signal  
bit 3 = lane3 loss of signal  
bit 2 = lane2 loss of signal  
bit 1 = lane1 loss of signal  
bit 0 = lane0 loss of signal  
Copyright © 2017–2020, Texas Instruments Incorporated  
73  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.6 SYSREF Alignment Circuit Alarms Register (address = 0x05) [reset = 0x0000]  
Figure 58. SYSREF Alignment Circuit Alarms Register (ALM_SYSREF_DET)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
0
5
0
4
0
3
0
2
1
1
0
0
1
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset  
Table 53. ALM_SYSREF_DET Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:9  
Reserved  
W0C  
0000000  
Reserved  
If high the sysrefphase4 state has been observed in the  
sysrefalign logic at least once since the last sysrefalign sync.  
8
7
6
5
ALM_SYSRPHASE4  
ALM_SYSRPHASE3  
ALM_SYSRPHASE2  
ALM_SYSRPHASE1  
W0C  
W0C  
W0C  
W0C  
0
0
0
0
If high the sysrefphase3 state has been observed in the  
sysrefalign logic at least once since the last sysrefalign sync.  
If high the sysrefphase2 state has been observed in the  
sysrefalign logic at least once since the last sysrefalign sync.  
If high the sysrefphase1 state has been observed in the  
sysrefalign logic at least once since the last sysrefalign sync.  
If high the align_to_r3 state has been observed in the sysrefalign  
logic at least once since the last sysrefalign sync. TI Internal use  
only.  
4
3
2
ALM_ALIGN_TO_R3  
ALM_ALIGN_TO_R1  
ALM_SD0_PLL  
W0C  
W0C  
W0C  
0
0
0
If high the align_to_r1 state has been observed in the sysrefalign  
logic at least once since the last sysrefalign sync. TI Internal use  
only.  
Driven high if the PLL in the Serdes 0 block goes out of lock. A  
false alarm is generated at startup when the PLL is locking. User  
will have to reset this bit after start to monitor accurately.  
Driven high if the PLL in the Serdes 1 block goes out of lock. A  
false alarm is generated at startup when the PLL is locking. User  
will have to reset this bit after start to monitor accurately.  
1
0
ALM_SD1_PLL  
PLL_LOCK  
W0C  
W0C  
0
0
Asserted when PLL is unlocked.  
74  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.7 Temperature Sensor and PLL Loop Voltage Register (address = 0x06) [reset = variable]  
Figure 59. Temperature Sensor and PLL Loop Voltage Register (TEMP_PLLVOLT)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R
R
R
R
R
R
R
R
7
0
6
0
5
0
4
0
3
0
2
1
1
1
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 54. TEMP_PLLVOLT Field Descriptions  
Bit  
15:8  
7:5  
Field  
Type  
R
Reset  
0x00  
Description  
TEMPDATA  
PLL_LFVOLT  
Reserved  
8 bits of data from the tempurature sensor  
PLL Loop filter voltage  
R
0b000  
0b000  
4:0  
R
Reserved  
8.5.8 Page Set Register (address = 0x09) [reset = 0x0000]  
Figure 60. Page Set Register (PAGE_SET)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 55. PAGE_SET Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Each bit selects a page that is active. Multiple pages can be  
selected at the same time. No bits asserted means that  
MASTER is the only page selected.  
bit 0 = page0 : multi-DUC1  
15:0  
PAGE_SET  
R/W  
0x0000  
bit 1 = page1 : multi-DUC2  
bit 2 = page2 : DIG_MISC  
bit 3-15: Reserved  
Copyright © 2017–2020, Texas Instruments Incorporated  
75  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.9 SYSREF Align to r1 and r3 Count Register (address = 0x78) [reset = 0x0000]  
Figure 61. SYSREF Align to r1 and r3 Count Register (SYSREF_ALIGN_R)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R
R
R
R
R
R
R
R
7
0
6
1
5
1
4
1
3
1
2
0
1
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 56. SYSREF_ALIGN_R Field Descriptions  
Bit  
15:8  
7:0  
Field  
Type  
R
Reset  
0x00  
0x00  
Description  
ALIGN_TO_R1_CNT  
ALIGN_TO_R3_CNT  
Part of the SYSREF Align block  
Part of the SYSREF Align block  
R
8.5.10 SYSREF Phase Count 1 and 2 Register (address = 0x79) [reset = 0x0000]  
Figure 62. SYSREF Phase Count 1 and 2 Register (SYSREF12_CNT)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R
R
R
R
R
R
R
R
7
0
6
1
5
1
4
1
3
1
2
0
1
0
0
1
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 57. SYSREF12_CNT Field Descriptions  
Bit  
15:8  
7:0  
Field  
Type  
R
Reset  
0x00  
0x00  
Description  
PHASE2_CNT  
PHASE1_CNT  
Part of the SYSREF Align block  
Part of the SYSREF Align block  
R
76  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.11 SYSREF Phase Count 3 and 4 Register (address = 0x7A) [reset = 0x0000]  
Figure 63. SYSREF Phase Count 3 and 4 Register (SYSREF34_CNT)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R
R
R
R
R
R
R
R
7
0
6
1
5
1
4
1
3
1
2
0
1
1
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 58. SYSREF34_CNT Field Descriptions  
Bit  
15:8  
7:0  
Field  
Type  
R
Reset  
0x00  
0x00  
Description  
PHASE4_CNT  
PHASE3_CNT  
Part of the SYSREF Align block  
Part of the SYSREF Align block  
R
8.5.12 Vendor ID and Chip Version Register (address = 0x7F) [reset = 0x0008]]  
Figure 64. Vendor ID and Chip Version Register (VENDOR_VER)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R
R
R
R
R
R
R
R
7
0
6
1
5
1
4
1
3
1
2
1
1
1
0
1
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 59. VENDOR_VER Field Descriptions  
Bit  
15  
Field  
Type  
R
Reset  
0
Description  
AUTOLOAD_DONE  
EFC_ERR  
Reserved  
Asserted when the Fusefarm Autoload sequence is done  
The error output from the fuse farm.  
Reserved  
14:10  
9:5  
R
00000  
00000  
01  
R
4:3  
VENDORID  
VERSION  
R
TI identification  
2:0  
R
001  
Bits to determine what version of build for the chip.  
Copyright © 2017–2020, Texas Instruments Incorporated  
77  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.13 Multi-DUC Configuration (PAP, Interpolation) Register (address = 0x0A) [reset = 0x02B0]  
Figure 65. Multi-DUC Configuration (PAP, Interolation) Register (MULTIDUC_CFG1)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
1
6
0
5
0
4
0
3
1
2
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 60. MULTIDUC_CFG1 Field Descriptions  
Bit  
15  
14  
Field  
Type  
R/W  
R/W  
Reset  
Description  
When asserted the SLICE uses both IQ paths  
DUAL_IQ  
ISFIR_ENA  
0
0
Turns on the inverse sync filter for the AB and CD paths when  
programmed to 1.  
13  
Not used  
INTERP  
R/W  
R/W  
0
Not used  
12:8  
00010  
Determines the interpolation amount.  
00000: 1x  
00001: 2x  
00010: 4x  
00011: 6x  
00100: 8x  
00101: 10x  
00110: 12x  
01000: 16x  
01001: 18x  
01010: 20x  
01100: 24x  
7
6
5
4
ALM_ZEROS_TXEN  
DAC_COMPLEMENT  
ALM_ZEROS_JESD  
ALM_OUT_ENA  
R/W  
R/W  
R/W  
R/W  
1
0
1
1
When asserted any alarm that isn’t masked will mid-level the  
DAC output by setting the txenable_from_dig to ‘0’  
When asserted the DAC output will be 2's complemented. This  
helps with hookup at the board level.  
When asserted any alarm that isn’t masked will zero the data  
coming out of the JESD block.  
When asserted the output from the selected SLICE will be  
passed on to the MASTER alarm control if it is also turned on  
then the alarm will be sent to the pad_alarm pin.  
3
2
1
0
PAPA_ENA  
PAPB_ENA  
PAPC_ENA  
PAPD_ENA  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Turns on the Power Amp Protection logic for path A.  
Turns on the Power Amp Protection logic for path B.  
Turns on the Power Amp Protection logic for path C.  
Turns on the Power Amp Protection logic for path D.  
78  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.14 Multi-DUC Configuration (Mixers) Register (address = 0x0C) [reset = 0x2402]  
Figure 66. Multi-DUC Configuration (Mixers) Register (MULTIDUC_CFG2)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 61. MULTIDUC_CFG2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
DAC_BITWIDTH  
R/W  
0b00  
Determines the bit width of the data going to the DAC  
00: 14 bits  
01: 14 bits  
10: 12 bits  
11: 11 bits  
13  
ZERO_INVLD_DATA  
R/W  
1
When asserted; the data from the JESD block is zeroed in the  
mapper to prevent goofy output from the DAC. For test purposes  
this bit should be desasserted  
12  
11  
10  
9
SHORTTEST_ENA  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
1
0
0
0
0
0
0
00  
1
Turns on the JESD SHORT pattern test (5.1.6.2)  
Reserved  
Reserved  
Reserved  
MIXERAB_ENA  
MIXERCD_ENA  
MIXERAB_GAIN  
MIXERCD_GAIN  
NCOAB_ENA  
NCOCD_ENA  
Reserved  
Turns on the mixer for the A and B streams  
Turns on the mixer for the C and D streams  
Adds 6dB of gain when asserted  
Adds 6dB of gain when asserted  
When high the full NCO block is turned on.  
When high the full NCO block is turned on.  
Reserved  
8
7
6
5
4
3:2  
1
TWOS  
When asserted the chip is expecting 2's complement data is  
arriving through the JESD; otherwise offset binary is expected  
0
Reserved  
R/W  
0
Reserved  
Copyright © 2017–2020, Texas Instruments Incorporated  
79  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.15 JESD FIFO Control Register (address = 0x0D) [reset = 0x1300]  
Figure 67. JESD FIFO Control Register (JESD_FIFO)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 62. JESD_FIFO Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
FIFO_ZEROS_DATA  
R/W  
1
When asserted FIFO errors zero the data out of the JESD block.  
For test purposes this could be turned off to allow test patterns  
in the FIFO.  
14:13  
12  
NOT USED  
R/W  
R/W  
000  
0
Not Used  
SRDS_FIFO_ALM_CLR  
Set to 1 to clear FIFO errors. Must be set to 0 for proper FIFO  
operation  
11  
Not used  
R/W  
R/W  
0
Not used  
10:8  
FIFO_OFFSET  
0000  
Used to set the difference between read and write pointers in  
the JESD FIFO.  
7:1  
0
Reserved  
R/W  
R/W  
0
0
Reserved  
SPI_TXENABLE  
When asserted the internal value of txenable = '1'  
8.5.16 Alarm Mask 1 Register (address = 0x0E) [reset = 0x00FF]  
Figure 68. Alarm Mask 1 Register (ALM_MASK1)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
1
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 63. ALM_MASK1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
ALM_MASK1  
R/W  
0x00FF  
Each bit is used to mask an alarm. Assertion masks the alarm:  
bit 15 = mask lane7 lane errors  
bit 14 = mask lane6 lane errors  
bit 13 = mask lane5 lane errors  
bit 12 = mask lane4 lane errors  
bit 11 = mask lane3 lane errors  
bit 10 = mask lane2 lane errors  
bit 9 = mask lane1 lane errors  
bit 8 = mask lane0 lane errors  
bit 7 = mask lane7 FIFO flags  
bit 6 = mask lane6 FIFO flags  
bit 5 = mask lane5 FIFO flags  
bit 4 = mask lane4 FIFO flags  
bit 3 = mask lane3 FIFO flags  
bit 2 = mask lane2 FIFO flags  
bit 1 = mask lane1 FIFO flags  
bit 0 = mask lane0 FIFO flags  
80  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.17 Alarm Mask 2 Register (address = 0x0F) [reset = 0xFFFF]  
Figure 69. Alarm Mask 2 Register (ALM_MASK2)  
15  
0
14  
0
13  
12  
11  
10  
9
0
8
x
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
1
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 64. ALM_MASK2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
ALMS_MASK2  
R/W  
0xFFFF  
Each bit is used to mask an alarm. Assertion masks the alarm:  
bit 15 = not used  
bit 14 = not used  
bit 13 = not used  
bit 12 = mask SYSREF errors on link0  
bit 11 = mask alarm from JESD shorttest  
bit 10 = mask alarm from PAPD  
bit 9 = mask alarm from PAPC  
bit 8 = mask alarm from PAPB  
bit 7 = mask alarm from PAPA  
bit 6 = not used  
bit 5 = not used  
bit 4 = not used  
bit 3 = not used  
bit 2 = not used  
bit 1 = mask alarm_clkdiv192_eq_zero  
bit 0 = mask alarm_clkdiv192_eq_mult1  
Copyright © 2017–2020, Texas Instruments Incorporated  
81  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.18 Alarm Mask 3 Register (address = 0x10) [reset = 0xFFFF]  
Figure 70. Alarm Mask 3 Register (ALM_MASK3)  
15  
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
1
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 65. ALM_MASK3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
ALMS_MASK3  
R/W  
0xFFFF  
Each bit is used to mask an alarm. Assertion masks the alarm:  
bit 15 = mask alarm_clkdiv8_eq_zero  
bit 14 = mask alarm_clkdiv12_eq_zero  
bit 13 = mask alarm_clkdiv16_eq_zero  
bit 12 = mask alarm_clkdiv18_eq_zero  
bit 11 = mask alarm_clkdiv20_eq_zero  
bit 10 = mask alarm_clkdiv32_eq_zero  
bit 9 = mask alarm_clkdiv36_eq_zero  
bit 8 = mask alarm_clkdiv40_eq_zero  
bit 7 = mask alarm_clkdiv48_eq_zero  
bit 6 = mask alarm_clkdiv64_eq_zero  
bit 5 = mask alarm_clkdiv72_eq_zero  
bit 4 = mask alarm_clkdiv80_eq_zero  
bit 3 = mask alarm_clkdiv96_eq_zero  
bit 2 = maskalarm_ clkdiv128_eq_zero  
bit 1 = mask alarm_clkdiv144_eq_zero  
bit 0 = mask alarm_clkdiv160_eq_zero  
82  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.19 Alarm Mask 4 Register (address = 0x11) [reset = 0xFFFF]  
Figure 71. Alarm Mask 4 Register (ALM_MASK4)  
15  
0
14  
0
13  
12  
11  
10  
9
0
8
x
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
1
3
0
2
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 66. ALM_MASK4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
ALMS_MASK4  
R/W  
0xFFFF  
Each bit is used to mask an alarm. Assertion masks the alarm:  
bit 15 = mask alarm_clkdiv8_eq_mult1  
bit 14 = mask alarm_clkdiv12_eq_mult1  
bit 13 = mask alarm_clkdiv16_eq_mult1  
bit 12 = mask alarm_clkdiv18_eq_mult1  
bit 11 = mask alarm_clkdiv20_eq_mult1  
bit 10 = mask alarm_clkdiv32_eq_mult1  
bit 9 = mask alarm_clkdiv36_eq_mult1  
bit 8 = mask alarm_clkdiv40_eq_mult1  
bit 7 = mask alarm_clkdiv48_eq_mult1  
bit 6 = mask alarm_clkdiv64_eq_mult1  
bit 5 = mask alarm_clkdiv72_eq_mult1  
bit 4 = mask alarm_clkdiv80_eq_mult1  
bit 3 = mask alarm_clkdiv96_eq_mult1  
bit 2 = maskalarm_ clkdiv128_eq_mult1  
bit 1 = mask alarm_clkdiv144_eq_mult1  
bit 0 = mask alarm_clkdiv160_eq_mult1  
Copyright © 2017–2020, Texas Instruments Incorporated  
83  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.20 JESD Lane Skew Register (address = 0x12) [reset = 0x0000]  
Figure 72. JESD Lane Skew Register (JESD_LN_SKEW)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R
R
R
R
R
R
R
R
7
0
6
0
5
0
4
1
3
0
2
0
1
1
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 67. JESD_LN_SKEW Field Descriptions  
Bit  
15:5  
4:0  
Field  
Type  
R
Reset  
Description  
NOT USED  
0x0000  
0b00000  
Not used  
MEMIN_LANE_SKEW  
R
Measure of the lane skew for each link only. Bits are  
READ_ONLY  
8.5.21 CMIX Configuration Register (address = 0x17) [reset = 0x0000]  
Figure 73. CMIX Configuration Register (CMIX)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
1
3
0
2
1
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 68. CMIX Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
These bits turn on the different coarse mixing options.  
Combining the different options together can result in every  
possible n x Fs/8 [n=0->7]. Below is the valid programming  
table:  
cmix=(mem_fs8; mem_fs4; mem_fs2; mem_fsm4)  
0000 : no mixing  
0001 : -fs/4  
0010 : fs/2  
15:12  
CMIX_AB  
R/W  
0x0  
0100 : fs/4  
1000 : fs/8  
1100 : 3fs/8  
1010 : 5fs/8  
1110 : 7fs/8  
00000000  
0
11:4  
Reserved  
CMIX_CD  
R/W  
R/W  
Reserved  
These bits turn on the different coarse mixing options.  
Combining the different options together can result in every  
possible n x Fs/8 [n=0->7]. Below is the valid programming  
table:  
cmix=(mem_fs8; mem_fs4; mem_fs2; mem_fsm4)  
0000 : no mixing  
0001 : -fs/4  
0010 : fs/2  
3:0  
0x0  
0100 : fs/4  
1000 : fs/8  
1100 : 3fs/8  
1010 : 5fs/8  
1110 : 7fs/8  
84  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.22 Output Summation and Delay Register (address = 0x19) [reset = 0x0000]  
Figure 74. Output Summation and Delay Register (OUTSUM)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
1
3
1
2
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 69. OUTSUM Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0x0  
Description  
15:12  
11:4  
OUTPUT_DELAY  
Reserved  
Delays the output to the DAC 0 to 15 clock cycles  
Reserved  
0x00  
Selects the output summing functions. Each bit selects another  
sample to sum. Multiple bits can be selected.  
bit 0 = add the path AB sample  
3:0  
OUTSUM_SEL  
R/W  
0x0  
bit 1 = add the path CD sample  
bit 2 = add adjacent DAC path AB sample  
bit 3 = add adjacent DAC path CD sample  
8.5.23 NCO Phase Path AB Register (address = 0x1C) [reset = 0x0000]  
Figure 75. NCO Phase Path AB Register (PHASE_NCOAB)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
1
3
1
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 70. PHASE_NCOAB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
The phase offset for the FULL NCO1 in the AB datapath.  
15:0  
PHASE_NCO1  
Auto  
Sync  
0x0000  
8.5.24 NCO Phase Path CD Register (address = 0x1D) [reset = 0x0000]  
Figure 76. NCO Phase Path CD Register (PHASE_NCOCD)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
1
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 71. PHASE_NCOCD Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
The phase offset for the FULL NCO2 in the CD datapath.  
15:0  
PHASE_NCO12  
Auto  
Sync  
0x0000  
Copyright © 2017–2020, Texas Instruments Incorporated  
85  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.25 NCO Frequency Path AB Register (address = 0x1E-0x20) [reset = 0x0000 0000 0000]  
Figure 77. NCO Frequency Path AB Register (FREQ_NCOAB)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
1
3
1
2
1
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 72. FREQ_NCOAB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0x0000  
0000  
47:0  
FREQ_NCOAB  
R/W  
NCO frequency word for AB data path.  
0000  
8.5.26 NCO Frequency Path CD Register (address = 0x21-0x23) [reset = 0x0000 0000 0000]  
Figure 78. NCO Frequency Path CD Register (FREQ_NCOCD)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
0
2
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 73. FREQ_NCOCD Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0x0000  
0000  
47:0  
FREQ_NCOCD  
R/W  
NCO frequency word for CD data path.  
0000  
86  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.27 SYSREF Use for Clock Divider Register (address = 0x24) [reset = 0x0010]  
Figure 79. SYSREF Use for Clock Divder Register (SYSREF_CLKDIV)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
0
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 74. SYSREF_CLKDIV Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0
Reserved  
Programmable delay the SYSREF by N dacclk cycles to the  
CDRV_SER clock dividers. By offsetting the clock to the  
different multi-DUC blocks, clock mixing could potentially be  
reduced.  
14:12  
11:7  
CDRVSER_SYSREF_DLY  
Not used  
R/W  
R/W  
000  
00000  
Not used  
Determines how SYSREF is used to sync the clock dividers in  
the CDRV_SER block.  
000 = Don’t use SYSREF pulse  
6:4  
SYSREF_MODE  
R/W  
001  
001 = Use all SYSREF pulses  
010 = Use only the next SYSREF pulse  
011 = Skip one SYSREF pulse then use only the next one  
100 = Skip one SYSREF pulse then use all pulses.  
Delays the SYSREF into the CDRV_SER capture FF through 1  
of 4 choices. This allows for extra delay in case the timing of the  
clock or SYSREF path isn’t as good as we think.  
3:2  
1:0  
SYSREF_DLY  
Reserved  
R/W  
R/W  
00  
00  
Reserved  
Copyright © 2017–2020, Texas Instruments Incorporated  
87  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.28 Serdes Clock Control Register (address = 0x25) [reset = 0x7700]  
Figure 80. Serdes Clock Control Register (SERDES_CLK)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
0
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 75. SERDES_CLK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
This controls the selection of the clk_jesd output  
0000 = div4  
0001 = div8  
0010 = div12  
0011 = div16  
0100 = div18  
0101 = div20  
15:12  
CLKJESD_DIV  
R/W  
0x7  
0110 = div24  
0111 = div32  
1001 = div36  
1010 = div48  
1011 = div64  
1100 = div5.333  
1101 = div10.666  
1110 = div21p333  
This controls the selection of the clk_jesd_out output  
0000 = div8  
0001 = div16  
0010 = div32  
0011 = div48  
0100 = div64  
0101 = div80  
0110 = div96  
0111 = div128  
1000 = div144  
1001 = div160  
1010 = div192  
11:8  
7:0  
CLKJESD_OUT_DIV  
R/W  
R/W  
0x7  
0x0  
Reserved  
Reserved  
88  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.29 Sync Source Control 1 Register (address = 0x27) [reset = 0x1144]  
Figure 81. Sync Source Control 1 Register (SYNCSEL1)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
0
2
1
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 76. SYNCSEL1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Controls the syncing of the double buffered SPI registers for the  
mixerAB block. These bits are enables so a ‘1’ in the bit place  
allows the sync to pass to the block.  
bit 0 = auto-sync from SPI register write  
bit 1 = sysref  
15:12  
SYNCSEL_MIXERAB  
R/W  
0x1  
bit 2 = sync_out from JESD  
bit 3 = mem_spi_sync  
Controls the syncing of the double buffered SPI registers for the  
mixerCD block. These bits are enables so a ‘1’ in the bit place  
allows the sync to pass to the block.  
bit 0 = auto-sync from SPI register write  
bit 1 = sysref  
11:8  
7:4  
SYNCSEL_MIXERCD  
SYNCSEL_NCOAB  
SYNCSEL_NCOCD  
R/W  
R/W  
R/W  
0x1  
0x4  
0x4  
bit 2 = sync_out from JESD  
bit 3 = mem_spi_sync  
Controls the syncing of NCOAB accumulators. These bits are  
enables so a ‘1’ in the bit place allows the sync to pass to the  
block.  
bit 0 = ‘0’  
bit 1 = sysref  
bit 2 = sync_out from JESD  
bit 3 = mem_spi_sync  
Controls the syncing of NCOCD accumulators. These bits are  
enables so a ‘1’ in the bit place allows the sync to pass to the  
block.  
bit 0 = ‘0’  
3:0  
bit 1 = sysref  
bit 2 = sync_out from JESD  
bit 3 = mem_spi_sync  
Copyright © 2017–2020, Texas Instruments Incorporated  
89  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.30 Sync Source Control 2 Register (address = 0x28) [reset = 0x0000]  
Figure 82. Sync Source Control 2 Register (SYNCSEL2)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
1
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 77. SYNCSEL2 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0x0  
Description  
15:12  
11:8  
Reserved  
Reserved  
SYNCSEL_PAPAB  
0x0  
Select the sync for the PAP A and B.  
bit 0 = ‘0’  
bit 1 = sysref  
bit 2 = sync_out from JESD  
bit 3 = mem_spi_sync  
7:4  
SYNCSEL_PAPCD  
R/W  
0x0  
Select the sync for the PAP C and D.  
bit 0 = ‘0’  
bit 1 = sysref  
bit 2 = sync_out from JESD  
bit 3 = mem_spi_sync  
3:2  
1
Reserved  
SPI_SYNC  
Reserved  
R/W  
R/W  
R/W  
0b00  
Reserved  
0
0
This is used to generate the SPI_SYNC signal  
Reserved  
0
8.5.31 PAP path AB Gain Attenuation Step Register (address = 0x29) [reset = 0x0000]  
Figure 83. PAP path AB Gain Attenuation Step Register (PAP_GAIN_AB)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
1
2
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 78. PAP_GAIN_AB Field Descriptions  
Bit  
15:10  
9:0  
Field  
Type  
Reset  
000000  
0x000  
Description  
NOT USED  
PAPAB_GAIN_STEP  
RW  
Not Used  
Gain attenuation step  
90  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.32 PAP path AB Wait Time Register (address = 0x2A) [reset = 0x0000]  
Figure 84. PAP path AB Wait Time Register (PAP_WAIT_AB)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
1
2
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 79. PAP_WAIT_AB Field Descriptions  
Bit  
15:10  
9:0  
Field  
Type  
Reset  
R/W  
Description  
Reserved  
PAPAB_WAIT  
000000  
0x000  
Reserved  
R/W  
Number of clock cycles to wait after gain = 0  
8.5.33 PAP path CD Gain Attenuation Step Register (address = 0x2B) [reset = 0x0000]  
Figure 85. PAP path CD Gain Attenuation Step Register (PAP_GAIN_CD)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 80. PAP_GAIN_CD Field Descriptions  
Bit  
15:10  
9:0  
Field  
Type  
R/W  
R/W  
Reset  
000000  
0x000  
Description  
Not Used  
Not Used  
PAPCD_GAIN_STEP  
Gain attenuation step  
8.5.34 PAP Path CD Wait Time Register (address = 0x2C) [reset = 0x0000]  
Figure 86. PAP path CD Wait Time Register (PAP_WAIT_CD)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
1
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 81. PAP_WAIT_CD Field Descriptions  
Bit  
15:10  
9:0  
Field  
Type  
R/W  
R/W  
Reset  
000000  
0x000  
Description  
Reserved  
PAPCD_WAIT  
Reserved  
Number of clock cycles to wait after gain = 0  
Copyright © 2017–2020, Texas Instruments Incorporated  
91  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.35 PAP path AB Configuration Register (address = 0x2D) [reset = 0x0FFF]  
Figure 87. PAP path AB Configuration Register (PAP_CFG_AB)  
15  
0
14  
0
13  
12  
0
11  
0
10  
0
9
0
8
x
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 82. PAP_CFG_AB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Controls the length of the delayline in the PAP AB logic.  
00 : N =32  
15:14  
PAPAB_SEL_DLY  
R/W  
00  
01 : N = 64  
10 : N = 128  
11 : Not Valid  
13  
Reserved  
R/W  
R/W  
0
Reserved  
12:0  
PAPAB_THRESH  
0xFFF  
The threshold for the PAP AB trigger.  
8.5.36 PAP path CD Configuration Register (address = 0x2E) [reset = 0x0FFF]  
Figure 88. PAP path CD Configuration Register (PAP_CFG_CD)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
1
2
1
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 83. PAP_CFG_CD Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Controls the length of the delay line in the PAP CD logic.  
00 : N = 32  
01 : N = 64  
10 : N = 128  
11 : Not Valid  
15:14  
PAPCD_SEL_DLY  
R/W  
00  
13  
Reserved  
R/W  
R/W  
0
Reserved  
12:0  
PAPCD_THRESH  
0xFFF  
The threshold for the PAP CD trigger.  
92  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.37 DAC SPI Configuration Register (address = 0x2F) [reset = 0x0000]  
Figure 89. DAC SPI Constant 1 Register (SPIDAC_TEST1)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
1
2
1
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 84. SPIDAC_TEST1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:1  
Reserved  
R/W  
0x0000  
Reserved  
When asserted the DAC output is set to the value in register  
SPIDAC. This can be used for trim setting and other static tests.  
0
SPIDAC_ENA  
R/W  
0
8.5.38 DAC SPI Constant Register (address = 0x30) [reset = 0x0000]  
Figure 90. DAC SPI Constant Register (SPIDAC_TEST2)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 85. SPIDAC_TEST2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
This value replaces the data at the output of the JESD so that  
the DAC value can be controlled  
15:0  
SPIDAC  
R/W  
0x0000  
Copyright © 2017–2020, Texas Instruments Incorporated  
93  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.39 Gain for path AB Register (address = 0x32) [reset = 0x0000]  
Figure 91. Gain for path AB Register (GAINAB)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
0
2
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 86. GAINAB Field Descriptions  
Bit  
15  
Field  
Type  
R/W  
R/W  
Reset  
0
Description  
GAINAB_ENA  
Reserved  
Turns on the path AB gain block  
Reserved  
14:12  
0x0  
Extra control of gain in the GAINAB block. This allows a fix gain  
to be added to the signal if needed.  
11:0  
GAINAB  
R/W  
0x400  
8.5.40 Gain for path CD Register (address = 0x33) [reset = 0x0000]  
Figure 92. Gain for path CD Register (GAINCD)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
0
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 87. GAINCD Field Descriptions  
Bit  
15  
Field  
Type  
R/W  
R/W  
Reset  
0
Description  
GAINCD_ENA  
Reserved  
Turns on the Path CD gain block  
Reserved  
14:12  
0x0  
Extra control of gain in the GAINCD block. This allows a fix gain  
to be added to the signal if needed.  
11:0  
GAINCD  
R/W  
0x400  
94  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.41 JESD Error Counter Register (address = 0x41) [reset = 0x0000]  
Figure 93. JESD Error Counter Register (JESD_ERR_CNT)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R
R
R
R
R
R
R
R
7
0
6
1
5
0
4
0
3
0
2
0
1
0
0
1
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 88. JESD_ERR_CNT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
This is the error count for the JESD link. This is a 16bit value  
that is not cleared until the JESD synchronization is required or  
errcnt_clr is programmed to '1'  
15:0  
JESD_ERR_CNT  
R
0x0000  
8.5.42 JESD ID 1 Register (address = 0x46) [reset = 0x0044]  
Figure 94. JESD ID 1 Register (JESD_ID1)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R
R
R
R
R
R
R
R
7
0
6
1
5
0
4
0
3
0
2
1
1
1
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 89. JESD_ID1 Field Descriptions  
Bit  
15:11  
10:6  
5:1  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
00000  
00001  
00010  
0
Description  
LID0  
JESD ID for lane 0  
JESD ID for lane 1  
JESD ID for lane 2  
Reserved  
LID1  
LID2  
0
Reserved  
Copyright © 2017–2020, Texas Instruments Incorporated  
95  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.43 JESD ID 2 Register (address = 0x47) [reset = 0x190A]  
Figure 95. JESD ID 2 Register (JESD_ID2)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R
R
R
R
R
R
R
R
7
0
6
1
5
0
4
0
3
0
2
1
1
1
0
1
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 90. JESD ID 2 Register (JESD_ID2)  
Bit  
15:11  
10:6  
5:1  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
00011  
00100  
00101  
0
Description  
LID3  
JESD ID for lane 3  
JESD ID for lane 4  
JESD ID for lane 5  
Reserved  
LID4  
LID5  
0
Reserved  
8.5.44 JESD ID 3 and Subclass Register (address = 0x48) [reset = 0x31C3]  
Figure 96. JESD ID 3 Register (JESD_ID3)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
0
3
1
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 91. JESD_ID3 Field Descriptions  
Bit  
15:11  
10:6  
5:4  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
00110  
00111  
00  
Description  
LID6  
JESD ID for lane 6  
JESD ID for lane 7  
Reserved  
LID7  
Reserved  
Selects the JESD subclass supported. Note: “001” is subclass 1  
and “000” is subclass 0 they are the only modes supported; not  
used for operation but used for configuration. See field  
MIN_LATENCY_ENA in register JESD_MATCH (9.5.46) for use  
in subclass0  
3:1  
0
SUBCLASSV  
JESDV  
R/W  
R/W  
001  
1
Selects the version of JESD support(0=A; 1=B) NOTE: JESD  
204B is only supported version.  
96  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.45 JESD Lane Enable Register (address = 0x4A) [reset = 0x0003]  
Figure 97. JESD Lane Enable Register (JESD_LN_EN)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
0
3
1
2
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 92. JESD_LN_EN Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Turn on each lane as needed. Signal is active high.  
bit 15 : lane7 enable  
bit 14 : lane6 enable  
bit 13 : lane5 enable  
15:8  
LANE_ENA  
0x00  
bit 12 : lane4 enable  
bit 11 : lane3 enable  
bit 10 : lane2 enable  
bit 9 : lane1 enable  
bit 8 : lane0 enable  
Set to select and verify link layer test sequences. The error for  
these sequences comes out the lane alarms bit0. 1= a fail and 0  
= pass.  
00 : test sequence disabled  
7:6  
JESD_TEST_SEQ  
00  
01 : verify repeating D.21.5 high frequency pattern for random  
jitter  
10 : verify repeating K.28.5 mixed frequency pattern for  
deterministic jitter  
11 : verify repeating ILA sequence  
5:2  
1:0  
Reserved  
0x0  
11  
Reserved  
Used to tell the JESD block how many clock phases are being  
used for lanes.  
00 = 1 phase  
01 = 2 phases  
10 = 4 phases  
11 = 8 phases  
JESD_PHASE_MODE  
Copyright © 2017–2020, Texas Instruments Incorporated  
97  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.46 JESD RBD Buffer and Frame Octets Register (address = 0x4B) [reset = 0x1300]  
Figure 98. JESD RBD Buffer and Frame Octets Register (JESD_RBD_F)  
15  
14  
13  
12  
0
11  
0
10  
0
9
0
8
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
0
3
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 93. JESD_RBD_F Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
Reserved  
R/W  
00  
Reserved  
This controls the amount of elastic buffers being used in the  
JESD. Larger numbers will mean more latency; but smaller  
numbers may not hold enough data to capture the input skew.  
This value must always be mem_k  
12:8  
7:0  
RBD  
R/W  
R/W  
10011  
0x00  
F_M1  
This is the number of octets in the frame - 1  
8.5.47 JESD K and L Parameters Register (address = 0x4C) [reset = 0x1303]  
Figure 99. JESD K and L Parameters Register (JESD_K_L)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
0
3
1
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 94. JESD_K_L Field Descriptions  
Bit  
15:13  
12:8  
7:5  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
000  
Description  
Reserved  
K_M1  
Reserved  
10011  
0
The number of frames in a multi-frame - 1. 0 k - 1 < 32  
Reserved  
Reserved  
L_M1  
4:0  
00011  
The number of lanes used by the JESD - 1. 0 L -1 < 8  
98  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.48 JESD M and S Parameters Register (address = 0x4D) [reset = 0x0100]  
Figure 100. JESD M and S Parameters Register (JESD_M_S)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
0
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 95. JESD_M_S Field Descriptions  
Bit  
15:8  
7:5  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0x01  
000  
Description  
M_M1  
Reserved  
S_M1  
The number of streams per frame - 1. 0 M - 1 < 256  
Reserved  
4:0  
00000  
The number of samples per stream per frame - 1.  
8.5.49 JESD N, HD and SCR Parameters Register (address = 0x4E) [reset = 0x0F4F]  
Figure 101. JESD N, HD and SCR Parameters Register (JESD_N_HD_SCR)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
0
3
1
2
1
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 96. JESD_N_HD_SCR Field Descriptions  
Bit  
15:13  
12:8  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
000  
01111  
0
Description  
Reserved  
NPRIME_M1  
Reserved  
HD  
Reserved  
The number of adjusted bits per sample - 1  
Reserved  
6
1
High density mode. Samples can cross the lane boundary  
Turn on the scrambler  
5
SCR  
0
4:0  
N_M1  
01111  
The number of bits per sample - 1  
Copyright © 2017–2020, Texas Instruments Incorporated  
99  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.50 JESD Character Match and Other Register (address = 0x4F) [reset = 0x1CC1]  
Figure 102. JESD Character Match and Other Parameters Register (JESD_MATCH)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
0
3
1
2
1
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 97. JESD_MATCH Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
MATCH_DATA  
R/W  
0x1C  
The character to match for buffer release. Normally it is a  
/R/=/K28.0/-0x1C but with these bits the user can program the  
value.  
7
6
5
MATCH_SPECIFIC  
MATCH_CTRL  
R/W  
R/W  
R/W  
1
1
0
Match a specific charater to start the JESD buffering when  
asserted; otherwise the first non-K will start the buffering.  
When asserted the match character is a CONTROL character  
instead of a DATA character.  
NO_LANE_SYNC  
Assert if the TX side does not support lane initialization. This  
way the RX won’t flag errors in the configuration portion of the  
ILA.  
4:2  
1
Not Used  
R/W  
R/W  
000  
0
Not Used  
MIN_LATENCY_ENA  
Enable minimum latency when set. This is needed for subclass  
0 support.  
0
JESD_COMMAALIGN_ENA  
R/W  
1
When asserted the JESD block SERDES comma align signal  
will be added with the SERDES ALIGN bit(0) to control when to  
shut off comma alignment. When this bit is deasserted; then the  
programmed bit(spi_config62(11)) is the only control.  
100  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.51 JESD Link Configuration Data Register (address = 0x50) [reset = 0x0000]  
Figure 103. JESD Link Configuration Data Register (JESD_LINK_CFG)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
1
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 98. JESD_Link_CFG Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
ADJCNT  
R/W  
0x0  
Lane configuration data for link. Reserved by DAC38RF8x  
except for lane configuration checking.  
11  
10-7  
6-2  
ADJDIR  
BID  
R/W  
R/W  
R/W  
R/W  
0
Lane configuration data for link. Reserved by DAC38RF8x  
except for lane configuration checking.  
0x0  
00000  
00  
Lane configuration data for link. Reserved by DAC38RF8x  
except for lane configuration checking.  
CF  
Lane configuration data for link. Reserved by DAC38RF8x  
except for lane configuration checking.  
1-0  
CS  
Lane configuration data for link. Reserved by DAC38RF8x  
except for lane configuration checking.  
8.5.52 JESD Sync Request Register (address = 0x51) [reset = 0x00FF]  
Figure 104. JESD Sync Request Register (JESD_SYNC_REQ)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
1
3
0
2
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 99. JESD_SYNC_REQ Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
DID  
R/W  
0x00  
Lane configuration  
These bits select which errors cause a sync request. Sync  
requests take priority over the error notification; so if sync  
request isn’t desired; set these bits to a ‘0’.  
bit 7 = multi-frame alignment error  
bit 6 = frame alignment error  
7:0  
SYNC_REQUEST  
R/W  
0xFF  
bit 5 = link configuration error  
bit 4 = elastic buffer overflow (bad RBD value)  
bit 3 = elastic buffer end char mismatch (match_ctrl match_data)  
bit 2 = code synchronization error  
bit 1 = 8b/10b not-in-table code error  
bit 0 = 8b/10b disparity error  
Copyright © 2017–2020, Texas Instruments Incorporated  
101  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.53 JESD Error Output Register (address = 0x52) [reset = 0x00FF]  
Figure 105. JESD Error Output Register (JESD_ERR_OUT)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
1
3
0
2
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 100. JESD_ERR_OUT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:10  
Reserved  
R/W  
000000  
Reserved  
Assertion means that errors will not be reported on the sync_n  
output.  
9
8
DISABLE_ERR_RPT  
PHADJ  
R/W  
R/W  
0
0
Lane configuration  
These bits select the errors generated are counted in the err_c  
for the link. The bits also control what signals are sent out the  
pad_syncb pin for error notification.  
bit 7 = multi-frame alignment error  
bit 6 = frame alignment error  
7:0  
ERR_ENA  
R/W  
0xFF  
bit 5 = link configuration error  
bit 4 = elastic buffer overflow (bad RBD value)  
bit 3 = elastic buffer end char mismatch (match_ctrl match_data)  
bit 2 = code synchronization error  
bit 1 = 8b/10b not-in-table code error  
bit 0 = 8b/10b disparity error  
8.5.54 JESD ILA Check 1 Register (address = 0x53) [reset = 0x0100]  
Figure 106. JESD ILA Check 1 Register (JESD_ILA_CFG1)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
1
3
0
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 101. JESD_ILA_CFG1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
JESD M-1 configuration value used only for ILA checking; may  
be set independently of the actual JESD mode  
15:8  
ILA_M  
R/W  
0x01  
JESD F-1 configuration value used only for ILA checking; may  
be set independently of the actual JESD mode  
7:0  
ILA_F  
R/W  
0x00  
102  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.55 JESD ILA Check 2 Register (address = 0x54) [reset = 0x8E60]  
Figure 107. JESD ILA Check 2 Register (JESD_ILA_CFG2)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
1
3
0
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 102. JESD_ILA_CFG2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
JESD HD configuration value used only for ILA checking; may  
be set independently of the actual JESD mode  
15  
ILA_HD  
R/W  
1
JESD L-1 configuration value used only for ILA checking; may  
be set independently of the actual JESD mode  
14:10  
9:5  
ILA_L  
ILA_K  
ILA_S  
R/W  
R/W  
R/W  
00011  
10011  
00000  
JESD K-1 configuration value used only for ILA checking; may  
be set independently of the actual JESD mode  
JESD S-1 configuration value used only for ILA checking; may  
be set independently of the actual JESD mode  
4:0  
8.5.56 JESD SYSREF Mode Register (address = 0x5C) [reset = 0x0001]  
Figure 108. JESD SYSREF Mode Register (JESD_SYSR_MODE)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
1
3
1
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 103. JESD_SYSR_MODE Field Descriptions  
Bit  
15:4  
3
Field  
Type  
R/W  
R/W  
Reset  
0x000  
0
Description  
Reserved  
ERR_CNT_CLR  
Reserved  
A transition from 0->1 causes the error_cnt to be cleared  
Determines how SYSREF is used in the JESD synchronizing  
block.  
000 = Don’t use SYSREF pulse  
001 = Use all SYSREF pulses  
2:0  
SYSREF_MODE  
R/W  
001  
010 = Use only the next SYSREF pulse  
011 = Skip one SYSREF pulse then use only the next one  
100 = Skip one SYSREF pulse then use all pulses.  
101 = skip two SYSREFs and then use one  
110 = skip two SYSREFs and then use all  
Copyright © 2017–2020, Texas Instruments Incorporated  
103  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.57 JESD Crossbar Configuration 1 Register (address = 0x5F) [reset = 0x0123]  
Figure 109. JESD Crossbar Configuration 1 Register (JESD_CROSSBAR1)  
15  
14  
0
13  
0
12  
0
11  
10  
0
9
0
8
x
Reserved  
R/W  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
1
3
1
2
1
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 104. JESD_CROSSBAR1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0
Reserved  
These bits are used by the cross-bar switch to map any lane to  
any other lane. The 3 bit term tells the mapper block what lane  
this particular lane is supposed to be treated as.  
000 = treat as lane0  
001 = treat as lane1  
14:12  
OCTETPATH0_SEL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
000  
010 = treat as lane2  
011 = treat as lane3  
100 = treat as lane4  
101 = treat as lane5  
110 = treat as lane6  
111 = treat as lane7  
11  
Reserved  
0
Reserved  
These bits are used by the cross-bar switch to map any lane to  
any other lane. The 3 bit term tells the mapper block what lane  
this particular lane is supposed to be treated as.  
000 = treat as lane0  
001 = treat as lane1  
010 = treat as lane2  
011 = treat as lane3  
100 = treat as lane4  
101 = treat as lane5  
110 = treat as lane6  
10:8  
OCTETPATH1_SEL  
001  
111 = treat as lane7  
7
Reserved  
0
Reserved  
These bits are used by the cross-bar switch to map any lane to  
any other lane. The 3 bit term tells the mapper block what lane  
this particular lane is supposed to be treated as.  
000 = treat as lane0  
001 = treat as lane1  
010 = treat as lane2  
011 = treat as lane3  
100 = treat as lane4  
101 = treat as lane5  
110 = treat as lane6  
6:4  
OCTETPATH2_SEL  
010  
111 = treat as lane7  
3
Reserved  
0
Reserved  
These bits are used by the cross-bar switch to map any lane to  
any other lane. The 3 bit term tells the mapper block what lane  
this particular lane is supposed to be treated as.  
000 = treat as lane0  
001 = treat as lane1  
010 = treat as lane2  
2:0  
OCTETPATH3_SEL  
011  
011 = treat as lane3  
100 = treat as lane4  
101 = treat as lane5  
110 = treat as lane6  
111 = treat as lane7  
104  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.58 JESD Crossbar Configuration 2 Register (address = 0x60) [reset = 0x4567]  
Figure 110. JESD_CROSSBAR2 Field DBits to Determine What Version of Build for the chip.escriptions  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
1
4
0
3
0
2
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 105. JESD_CROSSBAR2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0
Reserved  
These bits are used by the cross-bar switch to map any lane to  
any other lane. The 3 bit term tells the mapper block what lane  
this particular lane is supposed to be treated as.  
000 = treat as lane0  
001 = treat as lane1  
14:12  
OCTETPATH4_SEL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
100  
010 = treat as lane2  
011 = treat as lane3  
100 = treat as lane4  
101 = treat as lane5  
110 = treat as lane6  
111 = treat as lane7  
11  
Reserved  
0
Reserved  
These bits are used by the cross-bar switch to map any lane to  
any other lane. The 3 bit term tells the mapper block what lane  
this particular lane is supposed to be treated as.  
000 = treat as lane0  
001 = treat as lane1  
010 = treat as lane2  
011 = treat as lane3  
100 = treat as lane4  
101 = treat as lane5  
110 = treat as lane6  
10:8  
OCTETPATH5_SEL  
101  
111 = treat as lane7  
7
Reserved  
0
Reserved  
These bits are used by the cross-bar switch to map any lane to  
any other lane. The 3 bit term tells the mapper block what lane  
this particular lane is supposed to be treated as.  
000 = treat as lane0  
001 = treat as lane1  
010 = treat as lane2  
011 = treat as lane3  
100 = treat as lane4  
101 = treat as lane5  
110 = treat as lane6  
6:4  
OCTETPATH6_SEL  
110  
111 = treat as lane7  
3
Reserved  
0
Reserved  
These bits are used by the cross-bar switch to map any lane to  
any other lane. The 3 bit term tells the mapper block what lane  
this particular lane is supposed to be treated as.  
000 = treat as lane0  
001 = treat as lane1  
010 = treat as lane2  
2:0  
OCTETPATH7_SEL  
111  
011 = treat as lane3  
100 = treat as lane4  
101 = treat as lane5  
110 = treat as lane6  
111 = treat as lane7  
Copyright © 2017–2020, Texas Instruments Incorporated  
105  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.59 JESD Alarms for Lane 0 Register (address = 0x64) [reset = 0x0000]  
Figure 111. JESD Alarms for Lane 0 Register (JBits to determine what version of build for the  
chip.ESD_ALM_L0)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
1
5
1
4
0
3
0
2
1
1
0
0
0
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset; -n = value after reset  
Table 106. JESD_ALM_L0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Lane0 errors:  
bit 15 = multiframe alignment error  
bit 14 = frame alignment error  
bit 13 = link configuration error  
bit 12 = elastic buffer overflow (bad RBD value)  
bit 11 = elastic buffer match error. The first non-/K/ doesn’t  
match “match_ctrl” and “match_data” programmed values.  
bit 10 = code synchronization error  
15:8  
ALM_LANE0_ERR  
W0C  
0x00  
bit 9 = 8b/10b not-in-table code error  
bit 8 = 8b/10b disparity error  
7:4  
3:0  
Reserved  
W0C  
W0C  
0x0  
0x0  
Reserved  
Lane0 FIFO errors:  
bit 3 = write_error : High if write request and FIFO is full (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 2 = write_full : FIFO is FULL  
ALM_FIFO0_FLAGS  
bit 1 = read_error : High if read request with empty FIFO (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 0 = read_empty : FIFO is empty  
106  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.60 JESD Alarms for Lane 1 Register (address = 0x65 01100101) [reset = 0x0000]  
Figure 112. JESD Alarms for Lane 1 Register (JESD_ALM_L1)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
1
5
1
4
0
3
0
2
1
1
0
0
1
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset; -n = value after reset  
Table 107. JESD_ALM_L1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Lane1 errors:  
bit 15 = multiframe alignment error  
bit 14 = frame alignment error  
bit 13 = link configuration error  
bit 12 = elastic buffer overflow (bad RBD value)  
bit 11 = elastic buffer match error. The first non-/K/ doesn’t  
match “match_ctrl” and “match_data” programmed values.  
bit 10 = code synchronization error  
15:8  
ALM_LANE1_ERR  
W0C  
0x00  
bit 9 = 8b/10b not-in-table code error  
bit 8 = 8b/10b disparity error  
7:4  
3:0  
Reserved  
W0C  
W0C  
0x0  
0x0  
Reserved  
Lane1 FIFO errors:  
bit 3 = write_error : High if write request and FIFO is full (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 2 = write_full : FIFO is FULL  
ALM_FIFO1_FLAGS  
bit 1 = read_error : High if read request with empty FIFO (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 0 = read_empty : FIFO is empty  
Copyright © 2017–2020, Texas Instruments Incorporated  
107  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.61 JESD Alarms for Lane 2 Register (address = 0x66) [reset = 0x0000]  
Figure 113. JESD Alarms for Lane 2 Register (JESD_ALM_L2)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
1
5
1
4
0
3
0
2
1
1
1
0
0
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset; -n = value after reset  
Table 108. JESD_ALM_L2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Lane2 errors:  
bit 15 = multiframe alignment error  
bit 14 = frame alignment error  
bit 13 = link configuration error  
bit 12 = elastic buffer overflow (bad RBD value)  
bit 11 = elastic buffer match error. The first non-/K/ doesn’t  
match “match_ctrl” and “match_data” programmed values.  
bit 10 = code synchronization error  
15:8  
ALM_LANE2_ERR  
W0C  
0x00  
bit 9 = 8b/10b not-in-table code error  
bit 8 = 8b/10b disparity error  
7:4  
3:0  
Reserved  
W0C  
W0C  
0x0  
0x0  
Reserved  
Lane2 FIFO errors:  
bit 3 = write_error : High if write request and FIFO is full (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 2 = write_full : FIFO is FULL  
ALM_FIFO2_FLAGS  
bit 1 = read_error : High if read request with empty FIFO (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 0 = read_empty : FIFO is empty  
108  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.62 JESD Alarms for Lane 3 Register (address = 0x67) [reset = 0x0000]  
Figure 114. JESD Alarms for Lane 3 Register (JESD_ALM_L3)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
1
5
1
4
0
3
0
2
1
1
1
0
1
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset; -n = value after reset  
Table 109. JESD_ALM_L3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Lane3 errors:  
bit 15 = multiframe alignment error  
bit 14 = frame alignment error  
bit 13 = link configuration error  
bit 12 = elastic buffer overflow (bad RBD value)  
bit 11 = elastic buffer match error. The first non-/K/ doesn’t  
match “match_ctrl” and “match_data” programmed values.  
bit 10 = code synchronization error  
15:8  
ALM_LANE3_ERR  
W0C  
0x00  
bit 9 = 8b/10b not-in-table code error  
bit 8 = 8b/10b disparity error  
7:4  
3:0  
Reserved  
W0C  
W0C  
0x0  
0x0  
Reserved  
Lane3 FIFO errors:  
bit 3 = write_error : High if write request and FIFO is full (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 2 = write_full : FIFO is FULL  
ALM_FIFO3_FLAGS  
bit 1 = read_error : High if read request with empty FIFO (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 0 = read_empty : FIFO is empty  
Copyright © 2017–2020, Texas Instruments Incorporated  
109  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.63 JESD Alarms for Lane 4 Register (address = 0x68) [reset = 0x0000]  
Figure 115. JESD Alarms for Lane 4 Register (JESD_ALM_L4)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
1
5
1
4
0
3
1
2
0
1
0
0
0
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset; -n = value after reset  
Table 110. JESD_ALM_L4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Lane4 errors:  
bit 15 = multiframe alignment error  
bit 14 = frame alignment error  
bit 13 = link configuration error  
bit 12 = elastic buffer overflow (bad RBD value)  
bit 11 = elastic buffer match error. The first non-/K/ doesn’t  
match “match_ctrl” and “match_data” programmed values.  
bit 10 = code synchronization error  
15:8  
ALM_LANE4_ERR  
W0C  
0x00  
bit 9 = 8b/10b not-in-table code error  
bit 8 = 8b/10b disparity error  
7:4  
3:0  
Reserved  
W0C  
W0C  
0x0  
0x0  
Reserved  
Lane4 FIFO errors:  
bit 3 = write_error : High if write request and FIFO is full (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 2 = write_full : FIFO is FULL  
ALM_FIFO4_FLAGS  
bit 1 = read_error : High if read request with empty FIFO (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 0 = read_empty : FIFO is empty  
110  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.64 JESD Alarms for Lane 5 Register (address = 0x69) [reset = 0x0000]  
Figure 116. 8.4.60 JESD Alarms for Lane 5 Register (address = 0x69) [reset = 0x0000]  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
1
5
1
4
0
3
1
2
0
1
0
0
1
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset; -n = value after reset  
Table 111. JESD_ALM_L5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Lane5 errors:  
bit 15 = multiframe alignment error  
bit 14 = frame alignment error  
bit 13 = link configuration error  
bit 12 = elastic buffer overflow (bad RBD value)  
bit 11 = elastic buffer match error. The first non-/K/ doesn’t  
match “match_ctrl” and “match_data” programmed values.  
bit 10 = code synchronization error  
15:8  
ALM_LANE5_ERR  
W0C  
0x00  
bit 9 = 8b/10b not-in-table code error  
bit 8 = 8b/10b disparity error  
7:4  
3:0  
Reserved  
W0C  
W0C  
0x0  
0x0  
Reserved  
Lane5 FIFO errors:  
bit 3 = write_error : High if write request and FIFO is full (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 2 = write_full : FIFO is FULL  
ALM_FIFO5_FLAGS  
bit 1 = read_error : High if read request with empty FIFO (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 0 = read_empty : FIFO is empty  
Copyright © 2017–2020, Texas Instruments Incorporated  
111  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.65 JESD Alarms for Lane 6 Register (address = 0x6A [reset = 0x0000]  
Figure 117. JESD Alarms for Lane 6 Register (JESD_ALM_L6)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
1
5
1
4
0
3
1
2
0
1
1
0
0
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset; -n = value after reset  
Table 112. JESD_ALM_L6 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Lane6 errors:  
bit 15 = multiframe alignment error  
bit 14 = frame alignment error  
bit 13 = link configuration error  
bit 12 = elastic buffer overflow (bad RBD value)  
bit 11 = elastic buffer match error. The first non-/K/ doesn’t  
match “match_ctrl” and “match_data” programmed values.  
bit 10 = code synchronization error  
15:8  
ALM_LANE6_ERR  
W0C  
0x00  
bit 9 = 8b/10b not-in-table code error  
bit 8 = 8b/10b disparity error  
7:4  
3:0  
Reserved  
W0C  
W0C  
0x0  
0x0  
Reserved  
Lane6 FIFO errors:  
bit 3 = write_error : High if write request and FIFO is full (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 2 = write_full : FIFO is FULL  
ALM_FIFO6_FLAGS  
bit 1 = read_error : High if read request with empty FIFO (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 0 = read_empty : FIFO is empty  
112  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.66 JESD Alarms for Lane 7 Register (address = 0x6B) [reset = 0x0000]  
Figure 118. JESD Alarms for Lane 7 Register (JESD_ALM_L7)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
1
5
1
4
0
3
1
2
0
1
1
0
1
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset; -n = value after reset  
Table 113. JESD Alarms for Lane 7 Register (JESD_ALM_L7)  
Bit  
Field  
Type  
Reset  
Description  
Lane7 errors:  
bit 15 = multiframe alignment error  
bit 14 = frame alignment error  
bit 13 = link configuration error  
bit 12 = elastic buffer overflow (bad RBD value)  
bit 11 = elastic buffer match error. The first non-/K/ doesn’t  
match “match_ctrl” and “match_data” programmed values.  
bit 10 = code synchronization error  
15:8  
ALM_LANE7_ERR  
W0C  
0x00  
bit 9 = 8b/10b not-in-table code error  
bit 8 = 8b/10b disparity error  
7:4  
3:0  
Reserved  
W0C  
W0C  
0x0  
0x0  
Reserved  
Lane7 FIFO errors:  
bit 3 = write_error : High if write request and FIFO is full (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 2 = write_full : FIFO is FULL  
ALM_FIFO7_FLAGS  
bit 1 = read_error : High if read request with empty FIFO (NOTE:  
only released when JESD block is initialize with mem_init_state)  
bit 0 = read_empty : FIFO is empty  
8.5.67 SYSREF and PAP Alarms Register (address = 0x6C) [reset = 0x0000]  
Figure 119. SYSREF and PAP Alarms Register (ALM_SYSREF_PAP)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
1
5
1
4
0
3
1
2
1
1
0
0
0
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset; -n = value after reset  
Table 114. ALM_SYSREF_PAP Field Descriptions  
Bit  
15:13  
12  
Field  
Type  
W0C  
W0C  
W0C  
Reset  
Description  
Reserved  
0
Reserved  
ALM_SYSREF_ERR  
ALM_FROM_SHORTTEST  
Alarm caused when the sysref is placed at an incorrect location  
This is the alarm from JESD during the SHORT TEST checking.  
11  
The alarms from the PAP blocks indicated which PAP was  
triggered. bit0 = PAPA bit1 = PAPB bit2 = PAPC bit3 = PAPD  
10:7  
6:2  
1
ALM_PAP  
W0C  
W0C  
W0C  
W0C  
0x0  
0x0  
0
Reserved  
Reserved  
This is asserted if the clkdiv192 in the CDRV_SER shift register  
is all zeros.  
ALM_DIV192_ZERO  
Not Used  
0
0
Not Used  
Copyright © 2017–2020, Texas Instruments Incorporated  
113  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.68 Clock Divider Alarms 1 Register (address = 0x6D) [reset = 0x0000]  
Figure 120. Clock Divider Alarms 1 Register (ALM_CLKDIV1)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
7
0
6
1
5
1
4
0
3
1
2
1
1
0
0
1
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
LEGEND: R/W = Read/Write; R = Read only; W0C = Write 0 to clear bit; -n = value after reset; -n = value after reset  
Table 115. ALM_CLKDIV1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ALM_DIV8_ZERO  
W0C  
0
Asserted if the clkdiv8 in the CDRV_SER shift register is all  
zeros.  
14  
13  
12  
11  
10  
9
ALM_DIV12_ZERO  
ALM_DIV16_ZERO  
ALM_DIV24_ZERO  
ALM_DIV20_ZERO  
ALM_DIV32_ZERO  
ALM_DIV36_ZERO  
ALM_DIV40_ZERO  
ALM_DIV48_ZERO  
ALM_DIV64_ZERO  
ALM_DIV72_ZERO  
ALM_DIV80_ZERO  
ALM_DIV96_ZERO  
ALM_DIV128_ZERO  
ALM_DIV144_ZERO  
ALM_DIV160_ZERO  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
W0C  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Asserted if the clkdiv12 in the CDRV_SER shift register is all  
zeros.  
Asserted if the clkdiv16 in the CDRV_SER shift register is all  
zeros.  
Asserted if the clkdiv24 in the CDRV_SER shift register is all  
zeros. (Connected to the div18 port)  
Asserted if the clkdiv20 in the CDRV_SER shift register is all  
zeros.  
Asserted if the clkdiv32 in the CDRV_SER shift register is all  
zeros.  
Asserted if the clkdiv36 in the CDRV_SER shift register is all  
zeros.  
8
Asserted if the clkdiv40 in the CDRV_SER shift register is all  
zeros.  
7
Asserted if the clkdiv48 in the CDRV_SER shift register is all  
zeros.  
6
Asserted if the clkdiv64 in the CDRV_SER shift register is all  
zeros.  
5
Asserted if the clkdiv72 in the CDRV_SER shift register is all  
zeros.  
4
Asserted if the clkdiv80 in the CDRV_SER shift register is all  
zeros.  
3
Asserted if the clkdiv96 in the CDRV_SER shift register is all  
zeros.  
2
Asserted if the clkdiv128 in the CDRV_SER shift register is all  
zeros.  
1
Asserted if the clkdiv144 in the CDRV_SER shift register is all  
zeros.  
0
Asserted if the clkdiv160 in the CDRV_SER shift register is all  
zeros.  
114  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.69 Clock Configuration Register (address = 0x0A) [reset = 0xF000]  
Figure 121. Clock Configuration Register (CLK_CONFIG)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 116. CLK_CONFIG Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RCLK_SYNC_ENA  
RW  
1
When asserted the sysref is used to sync the clock divider in the  
centralclkdiv. This should be disabled after initial syncing.  
14  
FRCLK_DIV_ENA  
RW  
1
When asserted the full rate clock divider that provides the DIV4  
phases to the DACs is enabled  
13  
12  
11  
10  
9:2  
1
DACA_FRCLK_ENA  
DACB_FRCLK_ENA  
DACA_DUMDATA  
DACB_DUMDATA  
Reserved  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
When asserted the full rate clock to the DACA block is enabled  
When asserted the full rate clock to the DACB block is enabled  
Enables distortion enhancement for DACA when set high  
Enables distortion enhancement for DACB when set high  
Reserved  
1
0
0
0x000  
QRCLOCK_DACA_ENA  
QRCLOCK_DACB_ENA  
1
1
Turns on the quarter rate clock for DACA when '1'  
Turns on the quarter rate clock for DACB when '1'  
0
8.5.70 Sleep Configuration Register (address = 0x0B) [reset = 0x0022]  
Figure 122. Clock Configuration Register (SLEEP_CONFIG)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 117. SLEEP_CONFIG Field Descriptions  
Bit  
15:9  
8
Field  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
Reset  
Description  
Reserved  
0000000  
Reserved  
VBGR_SLEEP  
Reserved  
0
0
0
1
0
Turns off the 'bandgap-over-R' bias  
Reserved  
7
6
TSENSE_SLEEP  
PLL_SLEEP  
CLKRECV_SLEEP  
Turns off the temperature sensor  
5
Puts the PLL into sleep mode (FUSE Controlled)  
4
When asserted the clock input receiver gets put into sleep  
mode. This also affects the FIFO_OSTR receiver as well.  
3
2
1
0
DACA_SLEEP  
DACB_SLEEP  
CLK_TX_SLEEP  
Reserved  
RW  
RW  
RW  
RW  
0
0
1
0
Puts the DACA into sleep mode  
Puts the DACB into sleep mode  
When asserted the PLL TX clock output is in low power mode.  
Reserved  
Copyright © 2017–2020, Texas Instruments Incorporated  
115  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.71 Divided Output Clock Configuration Register (address = 0x0C) [reset = 0x8000]  
Figure 123. Divided Output Clock Configuration Register (CLK_OUT)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 118. CLK_OUT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
CLK_TX_IDLE  
R/W  
1
When high puts the CLK_TX circuitry in idle mode during which  
the CLKTX+ and CLKTX- output pins are driven to the proper  
common-mode levels in order to charge the external AC  
coupling caps. When low allows the divided clock to be driven  
onto the CLKTX+ and CLKTX- output pins.  
14:13  
CLK_TX_DIVSELECT  
R/W  
01  
Selects either div2, div3 or div 4 output.  
00 = divided by 3  
01 = divided by 4  
10 = divided by 2  
11 = not valid  
12  
Reserved  
R/W  
R/W  
0
Reserved  
11:8  
CLK_TX_SWING  
0x0  
Sets desired swing on CLKTX+ and CLKTX- outputs in mVpp-  
diff  
0x0 125  
0x1 232  
0x2 337  
0x3 440  
0x4 540  
0x5 639  
0x6 736  
0x7 831  
0x8 924  
0x9 1012  
0xA 1097  
0xB 1178  
0xC 1255  
0xD 1329  
0xE 1398  
0xF 1462  
7:3  
2
Reserved  
R/W  
R/W  
R/W  
R/W  
00000  
Reserved  
CLK_TX_FLIP  
TX_SYNC_ENA  
EXTREF_ENA  
0
1
0
Flips the polarity of CLKTX  
Syncs the CLKTX with SYSREF when asserted  
1
0
Allows the chip to use an external refernce(1) or the internal  
reference(0)  
116  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.72 DAC Fullscale Current Register (address = 0x0D) [reset = 0xF000]  
Figure 124. DAC Fullscale Current Register (DACFS)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 119. DACFS Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Scales the output current is 16 equal steps from 10-40mA  
(10mA + 2mA*DACFS)  
15:12  
10:0  
DACFS  
Reserved  
0xF  
0x000  
Reserved  
8.5.73 Internal SYSREF Generator Register (address = 0x10) [reset = 0x0000]  
Figure 125. Internal SYSREF Register (LCMGEN)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 120. LCMGEN Field Descriptions  
Bit  
15:4  
3
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
0x00  
Reserved  
LCMGEN_ENA  
0
0
0
0
Enables the LCM custom logic  
Reset the LCM custom logic  
TBD  
2
LCMGEN_RESET  
LCMGEN_SPI_SYSREF_ENA  
LCM_SYSREF_OUTSEL  
1
0
Chooses between internal and external SYSREF  
8.5.74 Counter for Internal SYSREF Generator Register (address = 0x11) [reset = 0x0000]  
Figure 126. Counter for Internal SYSREF Generator Register (LCMGEN_DIV)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 121. LCMGEN_DIV Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Counter setting for the LCMGEN block  
15:0  
LCMGEN_DIV  
R/W  
0x00  
Copyright © 2017–2020, Texas Instruments Incorporated  
117  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.75 SPI SYSREF for Internal SYSREF Generator Register (address = 0x12) [reset = 0x0000]  
Figure 127. SPI SYSREF for Internal SYSREF Generator Register (LCMGEN_SPISYSREF)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 122. LCMGEN_SPISYSREF Field Descriptions  
Bit  
15:1  
0
Field  
Type  
R/W  
R/W  
Reset  
0x00  
0
Description  
Reserved  
Reserved  
LCMGEN_SPI_SYSREF  
SPI SYSREF for the LCMGEN block  
8.5.76 Digital Test Signals Register (address = 0x1B) [reset = 0x0000]  
Figure 128. Digital Test Signals Register (DTEST)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
1
3
1
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 123. DTEST Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0
Reserved  
Selects the lane to check for the signals selected by field  
DTEST  
14:12  
DTEST_LANE  
R/W  
000  
Allows digital test signals to come out the ALARM pin.  
0000 : Test disabled; normal ALARM pin function  
0001 : SERDES lanes 0 – 3 PLL clock/80  
0010 : SERDES lanes 4 – 7 PLL clock/80  
0011 : TESTFAIL (lane selected by field DTEST_LANE)  
0100 : SYNC (lane selected by field DTEST_LANE)  
0101 : OCIP (lane selected by field DTEST_LANE)  
0110 : EQUNDER (lane selected by field DTEST_LANE)  
0111 : EQOVER (lane selected by field DTEST_LANE)  
1000 – 1111 : not used  
11:8  
7:0  
DTEST  
R/W  
R/W  
0x0  
Reserved  
0x00  
Reserved  
118  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.77 Sleep Pin Control Register (address = 0x23) [reset = 0xFFFF]  
These fields control the routing of the SLEEP signal to different blocks. Assertion means that the SLEEP signal  
will be sent to the block. These bits do not override the SPI bits; just the SLEEP signal from the PAD.  
Figure 129. Sleep Pin Control Register (SLEEP_CNTL)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
0
3
0
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 124. SLEEP_CNTL Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
15:10  
Reserved  
11111  
Reserved  
9
8
CLKOUT_SLEEP  
BG_SLEEP  
1
Allows the output clock to sleep  
Allows the band gap to sleep  
Allows the temp sensor to sleep  
1
7
TEMP_SLEEP  
PLL_CP_SLEEP  
PLL_SLEEP  
CLK_RECV_SLEEP  
Reserved  
1
6
1
Allows the PLL charge pump to sleep  
Allows the PLL to sleep  
Allows the clock receiver to sleep  
Reserved  
5
1
4
1
3:2  
1
11  
1
DACB_SLEEP  
DACA_SLEEP  
Allows DACB to sleep  
0
1
Allows DACA to sleep  
Copyright © 2017–2020, Texas Instruments Incorporated  
119  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.78 SYSREF Capture Circuit Control Register (address = 0x24) [reset = 0x1000]  
Figure 130. SYSREF Capture Circuit Control Register (SYSR_CAPTURE)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
0
4
0
3
0
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 125. SYSR_CAPTURE Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
sysref phase alignment tolerance window Centers sysref capture  
window as follows:  
00 = Centered on phase φ12 (**DEFAULT**)  
01 = Centered on phase φ23  
15:14  
SYSR_PHASE_WDW  
R/W  
00  
10 = Centered on phase φ34  
11 = Centered on phase φ41  
sysref alignment offset delay Optional alignment offset that  
allows system designer to work around hardware (e.g. PCB)  
alignment errors by letting him specify that the sysref pulse  
should be treated as occurring one device clock earlier or later  
than its observed position. Legal settings are as follows:  
00 = Offset by -1 device clock cycles. Treat sysref as if it were  
captured 1 cycle earlier.  
13:12  
SYSR_ALIGN_DLY  
R/W  
01  
01 = No offset (**DEFAULT**)  
10 = Offset by +1 device clock cycles. Treat sysref as if it were  
captured 1 cycle later.  
11 = Reserved  
Enable alignment status monitoring Enable logic that generates  
sysref alignment status information and accumulates statistics  
that can be read by the user.  
11  
SYSR_STATUS_ENA  
R/W  
0
0 = Disable sysref alignment status outputs (**DEFAULT**).  
Used during normal operation.  
1 = Enable sysref alignment status outputs. Used when  
characterizing sysref capture timing.  
10:2  
1
Reserved  
R/W  
R/W  
0x000  
0
Reserved  
SYSR_ALIGN_SYNC  
Write a ‘1’ to this bit to clear accumulated sysref align statistics  
Bypass sysref alignment logic. Bypass the 4x oversampled  
sysref alignment logic and instead capture the sysref signal  
using the legacy implementation of a flip-flop clocked directly by  
the rising edge of the device clock.  
0
SYSR_BYPS_ALIGN  
R/W  
0
0 = Capture sysref using full-featured alignment circuit  
(**DEFAULT**)  
1 = Bypass sysref alignment logic  
NOTE: When mem_sysref_bypass_align is enabled, the other  
sysref alignment controls have no effect.  
120  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.79 Clock Input and PLL Configuration Register (address = 0x31) [reset = 0x0200]  
Figure 131. Clock Input and PLL Configuration Register (CLK_PLL_CFG)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
0
2
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 126. Clock Input and PLL Configuration Register (CLK_PLL_CFG)  
Bit  
Field  
Type  
Reset  
Description  
15:14  
Reserved  
R/W  
00  
Reserved  
Selects the external differential or single ended clock for  
DACCLK.  
0 = differential  
1 = single ended  
13  
SEL_EXTCLK_DIFFSE  
R/W  
0
12  
11  
PLL_RESET  
R/W  
R/W  
0
0
When set the M divider; N divider and PFD are held reset  
When asserted; the SYSREF input is used to sync the N  
dividers of the PLL.  
PLL_NDIVSYNC_ENA  
Enables the PLL output as the DAC clock when set; the clock  
provided at the DACCLKP/N is used as the PLL reference clock.  
When cleared; the PLL is bypassed and the clock provided at  
the DACCLKP/N pins is used as the DAC clock  
10  
9
PLL_ENA  
R/W  
0
1
Must be set to '0' for proper PLL operation.  
1 = Charge pump is put to sleep and can be driven by external  
source through the ATEST pins.  
PLL_CP_SLEEP  
R/W  
8
Reserved  
R/W  
R/W  
0
Reserved  
7:3  
PLL_N_M1  
00000  
Reference clock divider; divide by is N+1  
Adjusts the lock detector sensitivity. Upper bit isn't used:  
x00 - highest sensitivity x11 - lowest sensitivity  
2:0  
LOCKDET_ADJ  
R/W  
000  
Copyright © 2017–2020, Texas Instruments Incorporated  
121  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.80 PLL Configuration 1 Register (address = 0x32) [reset = 0x0308]  
Figure 132. PLL Configuration 1 Register (PLL_CONFIG1)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
0
2
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 127. CONFIG1 Field Descriptions  
Bit  
15:8  
7:4  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0x03  
0x0  
Description  
PLL_M_M1  
Reserved  
VCO feedback divider; divide by is 4(M+1)  
Reserved  
3:0  
PLL_VCO_RDAC  
0x8  
Controls the VCO amplitude  
8.5.81 PLL Configuration 2 Register (address = 0x33) [reset = 0x4018]  
Figure 133. PLL Configuration 2 Register (PLL_CONFIG2)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
0
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 128. PLL_CONFIG2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Selects between two VCOs  
15  
PLL_VCOSEL  
R/W  
0
0 = 5.9 GHz VCO(2 turn inductor in upper VCO)  
1 = 8.9 GHz VCO (1 turn in the lower VCO)  
14:8  
7:6  
PLL_VCO  
Reserved  
R/W  
R/W  
1000000  
000  
VCO frequency range  
Reserved  
Adjusts the charge pump current; 0 to 1.55 mA in 50 µA steps.  
Setting to 0000 will hold the LPF pin at 0 V  
5:2  
PLL_CP_ADJ  
R/W  
0110  
1
0
Reserved  
Reserved  
R/W  
R/W  
0
0
Reserved  
Reserved. Always write 0  
122  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.82 LVDS Output Configuration Register (address = 0x34) [reset = 0x0000]  
Figure 134. LVDS Output Configuration Register (LVDS_CONFIG)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
0
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 129. LVDS_CONFIG Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
LVDS Output current control LSB; allows output current to be  
scaled from ~2 mA to ~4 mA  
15  
LVDS_LOPWRB  
R/W  
0
LVDS Output current control MSB; allows output current to be  
scaled from ~2 mA to ~4 mA  
14  
LVDS_LOPWRA  
R/W  
R/W  
0
0
SYNC LVDS output on chip termination control; 100 Ω when  
cleared; 200 Ω  
Output current settings for the combination of bits 15:13  
110 = 4.00 mA  
010 = 3.50 mA  
13  
LVDS_LPSEL  
100 = 3.00 mA  
000 = 2.50 mA – Default current  
111 = 4.00 mA  
011 = 3.33 mA  
101 = 2.66 mA  
001 = 2.00 mA  
Enable LVDS bias bandgap reference voltage to the ATEST  
multiplexer.  
12  
LVDS_EFUSE_SEL  
LVDS_TRIM  
R/W  
R/W  
0
Adjusts the LVDS 1.2 V reference. LVDS_TRIM_ENA must be  
set and LVDS_EFUSE_SEL must be cleared for these bits to  
have any effect.  
10 +70 mV  
00 -70 mV  
11:10  
00  
01 default  
11 -20 mV.  
When set and LVDS_EFUSE_SEL is cleared; the LVDS_TRIM  
adjustment is enabled. When cleared; the LVDS_TRIM has no  
effect.  
9
LVDS_TRIM_ENA  
R/W  
0
8
7
LVDS_SYNC0\_PD  
Reserved  
R/W  
R/W  
0
0
The SYNC0 LVDS output is in power down.  
Reserved  
SYNC0 LVDS output common mode is 1.2 V when cleared; 0.9  
V when set.  
6
LVDS_SYNC0\_CM  
Reserved  
R/W  
R/W  
0
5:0  
0x00  
Reserved  
Copyright © 2017–2020, Texas Instruments Incorporated  
123  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.83 Fuse Farm clock divider Register (address = 0x35) [reset = 0x0018]  
Figure 135. Fuse Farm clock divider Register (PLL_FDIV)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
1
2
0
1
1
0
1
R/W  
R/W  
R/1W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after rese1t  
Table 130. PLL_FDIV Field Descriptions  
Bit  
15:8  
7:0  
Field  
Type  
R/W  
R/W  
Reset  
0
Description  
Reserved  
PLL_FDIV  
Reserved  
0x18  
Clock divider for the Fuse farm  
124  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.84 Serdes Clock Configuration Register (address = 0x3B) [reset = 0x0002]  
Figure 136. Serdes Clock Configuration Register (SRDS_CLK_CFG)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
1
2
0
1
1
0
1
R/W  
R/W  
R/1W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after rese1t  
Table 131. SRDS_CLK_CFG Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Select either the PLL output of the DACCLK from the pad.  
15  
SERDES_CLK_SEL  
R/W  
0
0 = DACCLK pad  
1 = PLL output  
14:11  
10:2  
SERDES_REFCLK_DIV  
Reserved  
R/W  
R/W  
0x0  
The divide amount for the serdes REFCLK minus 1  
Reserved  
0x000  
These bits select the pre-divide on the DACCLK input clock  
before the DACCLK is used in the dividers used in the SERDES  
PLL REFCLK and the Fusefarm SYSCLK.  
00 = if DACCLK input 2 GHz; prediv is set to div1  
01 = if DACCLK input is 4 GHz and > 2 GHz, prediv is set to  
div2  
1:0  
SERDES_REFCLK_PREDIV  
R/W  
10  
10 = if DACCLK input is 9 GHz and > 4 GHz, prediv is set to  
div4  
11 = Not valid  
8.5.85 Serdes PLL Configuration Register (address = 0x3C) [reset = 0x8228]  
Figure 137. Serdes PLL Configuration Register (SRDS_PLL_CFG)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
1
2
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 132. SRDS_PLL_CFG Field Descriptions  
Bit  
15  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
ENDIVCLK  
CLKBYP  
LB  
1
Enable divided by 5 output clock  
Serdes clock bypass  
14:3  
12:11  
10  
00  
00  
0
Serdes PLL loop bandwidth  
Serdes PLL Sleep  
SLEEPPLL  
VRANGE  
MPY  
9
1
Serdes PLL loop filter range  
8:1  
0
00010100 Serdes reference clock multiplication factor Table 4  
AND'ed with LANE_ENA so it must be set to 1 for correct  
behavior  
CORRECT  
0
Copyright © 2017–2020, Texas Instruments Incorporated  
125  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.86 Serdes Configuration 1 Register (address = 0x3D) [reset = 0x0x0088]  
Figure 138. Serdes Configuration 1 Register (SRDS_CFG1)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 133. RDS_CFG1 Field Descriptions  
Bit  
15  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0
Description  
Reserved  
TESTPATT  
BSINRXN  
BSINRXP  
Reserved  
ENOC  
Reserved  
14:12  
11  
000  
0
Test pattern  
Enable boundary scan - pins  
Enable boundary scan + pins  
Reserved  
10  
0
9:8  
7
00  
1
Enable Serdes offset compensation  
Equalizer hold  
6
EQHLD  
EQ  
0
5:3  
2:0  
001  
000  
Serdes equalizer  
CDR  
Clock data recovery algorithm settings  
126  
Copyright © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
8.5.87 Serdes Configuration 2 Register (address = 0x3E) [reset = 0x0x0909]  
Figure 139. Serdes Configuration 2 Register (SRDS_CFG2)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
1
2
1
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 134. SRDS_CFG2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Enables loss of signal detection.  
000 - Disable detection  
100 - Enable detection  
other - reserved  
15:13  
LOS  
R/W  
000  
Enables external or internal symbol alignment  
00 : Disabled  
01 : Comma alignment  
10: Align jog  
12:11  
10:8  
ALIGN  
TERM  
R/W  
R/W  
01  
Valid programming:  
001 – AC coupling with common mode = 0.7 V  
100 – 0 V common mode.  
001  
101 – 0.25 V common mode  
111 – DC coupling with common mode of 0.6 V.  
(NOTE: This is not compatible with JESD)  
7
Reserved  
RATE  
R/W  
R/W  
0
Reserved  
Selects full (00), half (01), quarter (10) or eighth (11) rate  
operation.  
6:5  
00  
Selects the parallel interface width (16 or 20 bits).  
4:2  
BUSWIDTH  
R/W  
010  
0 : 20 bits  
1: 16 bits  
Powers the receiver down into the sleep (fast power up) state  
when high.  
1
0
SLEEPRX  
Reserved  
R/W  
R/W  
0
1
Reserved  
Copyright © 2017–2020, Texas Instruments Incorporated  
127  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
8.5.88 Serdes Polarity Control Register (address = 0x3F) [reset = 0x0000]  
Figure 140. Serdes Polarity Control Register (SRDS_POL)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
1
2
1
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 135. SRDS_POL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
Reserved  
R/W  
0x00  
Reserved  
Allows the PN pairs of the different lanes to be inverted.  
bit 7 = lane7  
bit 6 = lane6  
bit 5 = lane5  
bit 4 = lane4  
bit 3 = lane3  
bit 2 = lane2  
bit 1 = lane1  
bit 0 = lane0  
7:0  
INVPAIR  
R/W  
0x00  
8.5.89 JESD204B SYNCB OUTPUT Register (address = 0x76) [reset = 0x0000]  
Figure 141. JESD204B SYNCB OUTPUT Register (SYNCBOUT)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
1
4
1
3
1
2
0
1
1
0
1
R/W  
R/W  
R/1W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 136. SYNCBOUT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:2  
Reserved  
R/W  
0x00  
Reserved  
If the CMOS SYNC outputs are turned on, this bit will show the  
status of the JESD SYNCB1 signal  
1
0
SYNCBOUT1  
SYNCBOUT0  
R/W  
R/W  
0
0
If the CMOS SYNC outputs are turned on, this bit will show the  
status of the JESD SYNCB0 signal  
128  
版权 © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Start-up Sequence  
PULL TXENABLE LOW  
ñ
Provide all 1V supply rails, 1.8V rails and -1.8V rail.  
ñ
ñ
ñ
Pull TRSTB pin of the JTAG port low  
Provide a clock to the differential or single ended clock input  
Toggle RESETB pin low then high (recommended pulse duration  
>10us)  
Read SPI Page 0, Register 0x7F  
Bits[15:10] B 10000b  
Bits[15:10]=10000b  
Configure the SPI resgisters for the desired mode  
Increment/decrement  
VCO tune value  
SPI Page 4, address  
0x33, bits[14:8]  
Read page 0, address 0x06  
Tj = bits[15:8]  
On chip PLL mode  
YES  
LFVOLT = bits[7:5]  
NO  
108/ G Çi < 125C, LFVOLT =5or6  
Start SYSREF Generation  
92/ G Çi < 108C, LFVOLT=4or5  
26/ G Çi < 92C, LFVOLT =3or4  
-40/ G Çi < 26C, LFVOLT =2or3  
ñ
Reset encoder block:  
Page 1/2:address 0x24:bits [6:4] = 000b  
Page 1/2:address 0x5C:bits [2:0] = 000b  
Page 4:address 0x0A:bit [15] = 1b  
Ensure at least 2 SYSREF rising edges occur to reset the encoder  
Page 4:address 0x0A:bit [15] = 0b  
ñ
ñ
Put JESD204B core in reset  
Page 0:address 0x00:bits [1:0] = 11b  
Sync CDRV and JESD204B blocks  
Page 1/2:address 0x24:bits [6:4] = 010b  
Ensure at least 2 SYSREF rising edges occur to reset the CDRV  
Page 1/2:address 0x5C:bits [2:0] = 011b  
Ensure at least 2 SYSREF rising edges occur to reset the JESD  
Take JESD Core out of reset  
ñ
Page 0:address 0x00:bits [1:0] = 00b  
Ensure at least 2 SYSREF rising edges occur  
ñ
Clear all DAC alarms: Write 0x0000 to alarm registers on  
Page0: 0x04, 0x05 and Page1/2: 0x64 to 0x6D  
Stop SYSREF generation to DAC (optional)  
Pull TXENABLE HIGH  
Copyright © 2017, Texas Instruments Incorporated  
142. DAC38RF82/89 Recommended Startup Sequence  
版权 © 2017–2020, Texas Instruments Incorporated  
129  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
9.2 Typical Application  
The block diagram of a typical DOCSIS downstream network is shown in 143. The physical layer (PHY) of the  
cable modem termination system (or CMTS) must support normal downstream operating range from 54 MHz to  
1002 MHz as well as extended operating range up to 1794 MHz. The high input bandwidth (up to 3.33 GHz) of  
DAC38RF82 and DAC38RF89 makes these devices suitable for DOCSIS CMTS. Also the integrated high  
performance PLL simplifies system clocking by eliminating the need to generate and distribute high frequency  
sampling clock to the DAC. In the following sections, the performance of DAC38RF82 (and DAC38RF89) used to  
generate DOCSIS 3.0, Annex A, 6 MHz 256-QAM carriers will be described.  
CM  
Hybrid fibre/coax  
Network  
Management  
CMTS  
HFC Network  
Cable Modem Termination  
System  
CM  
Cable modem  
(Home Network)  
143. DOCSIS Downstream Network  
137. DOCSIS CMTS Design Features  
9.2.1 Design Requirements  
Feature  
Frequency range  
No of carriers  
Channel width  
Modulation type  
Modulation rate  
Data rate  
Specification  
54 MHz to 1002 MHz  
1
6 MHz  
256 QAM  
5.3605 Msym/s  
2.4576 GSPS  
>48 dB  
MER (unequalized)  
ACPR  
>70 dBc  
9.2.2 Detailed Design Procedure  
A sample rate of 4.9152 GHz is selected for the DAC. This will make it possible to meet the out of band (up to  
3GHz) spurious requirement of 65 dBc by pushing the DAC images to the 2nd Nyquist zone (2.4576 MHz to  
4.9152 GHz). Because the input data rate is 2.4576 GSPS, the DAC interpolation is set to 2. To generate the  
4.9152 GHz sampling clock for the DAC, a low frequency 409.6 MHz clock is provided to the DAC reference  
clock input. A detailed block diagram is shown in 144  
130  
版权 © 2017–2020, Texas Instruments Incorporated  
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
4915.2 MHz  
409.6 MHz  
SYSREF  
Low Jitter  
PLL  
16 bit, real data  
2.4576 GSPS  
1.333 : 1  
14-b  
DAC  
x
sin(x)  
100Q  
75Q  
2x interp  
144. DOCSIS Downstream Network  
9.2.3 Calculating the JESD204B SerDes rate  
SerDes rate = 1.25 x (M/L) x Baseband data rate x Number of bits per sample (16)  
M is a JESD204B interface parameter that refers to the number of data streams from FPGA to DAC  
L is a JESD204B interface parameter that refers to the number of SerDes lanes used to transmit data  
1.25 is a factor due to the 8B10B encoding of the baseband data  
Example,  
if the baseband data rate = 2457.6 MSPS and L-M-F-S-Hd = 4-1-1-2-1  
SerDes rate = 1.25 x (1/4) x 2457.6 x 16 = 12.288 Gbps  
(19)  
9.2.4 Calculating valid JESD204B SYSREF Frequency  
Valid SYSREF frequencies depend on the following parameters:  
1. Sample clock frequency  
2. JESD204B internal clock divider value (CLKJESD_DIV). This depends on the DAC JESD204B L-M-F-S  
mode and interpolation  
3. Number of octets in a frame (F)  
4. Number of frames in a multi-frame (K)  
Maximum SYSREF frequency = (Sample clock frequency/N),  
where N =LCM(CLKJESD_DIV,4 x K x F). N is the Least common multiple of 4 x K x F and CLKJESD_DIV.  
All valid SYSREF frequencies are integer divisors of the maximum SYSREF frequency.  
Example:  
Given sampling clock frequency = 4.9152 GSPS, interpolation =2, DAC Mode=L-M-F-S=4-1-1-2 and K=20:  
CLKJESD_DIV = 8 (CLKJESD_DIV)  
Maximum SYSREF Frequency = 4915.2 MHz/80 = 61.44 MHz  
Valid SYSREF Frequencies = 61.44 MHz/n, where n is any positive integer.  
版权 © 2017–2020, Texas Instruments Incorporated  
131  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
9.2.5 Application Curves  
145. ACPR Performance of 6 MHz Single Carrier at 591 MHz  
146. ACPR performance of 6 MHz Single Carrier at 998 MHz  
132  
版权 © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
147. Unequalized MER of 6 MHz Single Carrier at 591 MHz  
148. Unequalized MER of 6 MHz Single Carrier at 998 MHz  
版权 © 2017–2020, Texas Instruments Incorporated  
133  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
Internally, DAC38RF82 (DAC38RF89) comprises a digital subsystem, an analog subsystem, and a clock  
subsystem. Ideally, the power supply scheme should be partitioned according to these three relatively  
independent blocks to minimize interactions between them. Most importantly, sensitive analog and clock circuit  
power supply must be separated from digital switching noise to reduce direct coupling and mixing of switching  
spurs. 138 shows the power supply rails for DAC38RF82 (DAC38RF89) grouped under their respective  
domains.  
138. Power Supply Domains  
Supply rail  
VDDIG1  
Nominal voltage (V)  
Domain  
+1.0  
+1.8  
+1.8  
+1.8  
+1.0  
+1.0  
+1.0  
-1.8  
VDDIO18  
VDDR18  
VDDS18  
Digital  
VDDT1  
VDDE1  
VDDL1_1  
VEE18N  
VDDA1  
+1.0  
+1.8  
+1.8  
+1.0  
+1.8  
+1.8  
+1.0  
+1.0  
+1.0  
+1.8  
Analog  
VDDA18  
VDDOUT18  
VDDPLL1  
VDDAPLL18  
VDDAVCO18  
VDDCLK1  
VDDL2_1  
VDDTX1  
VDDTX18  
Clock  
An example power supply scheme suitable for most applications of DAC38RF82 (DAC38RF89) is shown in 图  
149. It is recommended to use ferrite beads (FB) to isolate the individual rails from each other.  
5Vin  
1 V  
TPS62085  
(3 A)  
VDDDIG1 (2.5 A)  
1 V  
VDDT1 (375 mA)  
VDDL1_1 (45 mA)  
VDDL2_1 (45 mA)  
VDDCLK1 (425 mA)  
VDDA1 (25 mA)  
TPS74401  
(2 A)  
1 V  
VDDPLL1 (30 mA)  
VDDTX1 (14 mA)  
VDDE1 (650 mA)  
VDDA18 (45 mA)  
1.8 V  
TPS62085  
(3 A)  
VDDOUT18 (100 mA)  
VDDAVCO18 (40 mA)  
VDDAPLL18 (20 mA)  
1.8 V  
VDDR18 + VDDS18 + VDDIO18 (135 mA)  
VDDTX18 (14 mA)  
LM27761  
(250 mA)  
VEE18 (152 mA)  
œ1.8 V  
Copyright © 2017, Texas Instruments Incorporated  
149. Power Supply Scheme for DAC38RF82 (DAC38RF89)  
134  
版权 © 2017–2020, Texas Instruments Incorporated  
 
 
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
10.1 Power Supply Sequencing  
There are no power supply sequencing requirements for all the 1-V and 1.8-V power supplies. For the -1.8 V  
VEE18 rail, it is recommended that this supply is the last to be enabled. Enabling VEE18 (while other supply  
voltages are disabled) can cause a small negative voltage to be present at the other rails (that is, VDDA1 and  
VDDDIG1). This small negative voltage can interfere with the startup of some DC-DC converters or LDO  
connected to the 1 V and 1.8 V input power rails.  
11 Layout  
11.1 Layout Guidelines  
DAC RF output traces  
Differential 100 Ω co-planar wave guide for output traces is recommended.  
Use short RF traces. Place DAC close to edge of PCB to shorten the length of output and clock traces.  
This helps to minimize PCB loss and coupling  
Stitch the ground plane with ground vias uniformly along the output trace.  
Avoid width/spacing differences when entering a landing pad (eg. a balun) by tapering or by redefining  
width/space rules for the traces  
Power supply planes  
Ensure sufficient lateral spacing between two power planes (about 3x the thickness of the plane is  
recommended)  
Insert ground plane between adjacent power planes where possible  
150. Example Power Plane Routing  
Bypass Capacitors  
Use bypass capacitors with in-pad vias and place between the pin and the power plane. Avoid sharing  
ground vias or pads of bypass caps used for different power rails  
Minimize stubs on bypass capacitors to avoid parasitic inductance  
版权 © 2017–2020, Texas Instruments Incorporated  
135  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
Layout Guidelines (接下页)  
151. Bypass Capacitors Placed on the Power Supply Pin With In-pad Vias  
High speed SerDes traces  
Route all SerDes traces straight and minimized sharp curves or serpentines. Route for best signal integrity  
Some skew between SerDes traces can be tolerated. It is recommended to limit skew between traces to  
320ps or less  
Place ground planes between the SerDes traces for improved isolation  
152. Layout Example of High Speed SerDes Traces  
136  
版权 © 2017–2020, Texas Instruments Incorporated  
DAC38RF82, DAC38RF89  
www.ti.com.cn  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
11.2 Layout Example  
A
B
C
D
E
F
G
H
J
K
L
M
Rbias  
12  
11  
10  
9
Bottom Trace  
Top Trace  
Capacitor  
Resistor  
Via  
8
7
6
5
4
3
2
1
153. Layout Example  
版权 © 2017–2020, Texas Instruments Incorporated  
137  
DAC38RF82, DAC38RF89  
ZHCSGM6C FEBRUARY 2017REVISED APRIL 2020  
www.ti.com.cn  
12 器件和文档支持  
12.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
139. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具和软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
DAC38RF82  
DAC38RF89  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
138  
版权 © 2017–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC38RF82IAAV  
DAC38RF82IAAVR  
DAC38RF89IAAV  
DAC38RF89IAAVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
FCCSP  
FCCSP  
FCCSP  
FCCSP  
AAV  
AAV  
AAV  
AAV  
144  
144  
144  
144  
168  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
DAC38RF82I  
Samples  
Samples  
Samples  
Samples  
1000 RoHS & Green  
168 RoHS & Green  
1000 RoHS & Green  
SNAGCU  
SNAGCU  
SNAGCU  
DAC38RF82I  
DAC38RF89I  
DAC38RF89I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Oct-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC38RF82IAAVR  
DAC38RF89IAAVR  
FCCSP  
FCCSP  
AAV  
AAV  
144  
144  
1000  
1000  
330.0  
330.0  
24.4  
24.4  
10.3  
10.3  
10.3  
10.3  
2.5  
2.5  
16.0  
16.0  
24.0  
24.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC38RF82IAAVR  
DAC38RF89IAAVR  
FCCSP  
FCCSP  
AAV  
AAV  
144  
144  
1000  
1000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Oct-2022  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
DAC38RF82IAAV  
DAC38RF89IAAV  
AAV  
AAV  
FCCSP  
FCCSP  
144  
144  
168  
168  
8 X 21  
8 X 21  
150  
150  
315 135.9 7620 14.65  
315 135.9 7620 14.65  
11  
11  
11.95  
11.95  
Pack Materials-Page 3  
PACKAGE OUTLINE  
AAV0144A  
FCBGA - 1.91 mm max height  
SCALE 1.400  
BALL GRID ARRAY  
10.15  
9.85  
A
B
BALL A1 CORNER  
10.15  
9.85  
(
8)  
(0.67)  
1.91  
1.70  
(0.5)  
C
SEATING PLANE  
NOTE 4  
BALL TYP  
0.405  
0.325  
TYP  
0.1 C  
8.8 TYP  
SYMM  
(0.6) TYP  
(0.6) TYP  
0.8 TYP  
M
L
K
J
H
G
F
SYMM  
8.8  
TYP  
E
D
C
B
A
0.51  
0.41  
144X  
0.15  
0.08  
C A B  
NOTE 3  
C
1
2
3
4
5
6
7
8
9
10  
11  
12  
0.8 TYP  
4219578/C 05/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Dimension is measured at the maximum solder ball diameter, parallel to primary datum C.  
4. Primary datum C and seating plane are defined by the spherical crowns of the solder balls.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
AAV0144A  
FCBGA - 1.91 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
1
3
5
6
7
8
9
10 11  
4
12  
2
A
B
(0.8) TYP  
C
D
E
F
144X ( 0.4)  
SYMM  
G
H
J
K
L
M
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
(
0.4)  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
0.05 MIN  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219578/C 05/2022  
NOTES: (continued)  
5. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
AAV0144A  
FCBGA - 1.91 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
144X ( 0.4)  
10 11  
1
3
5
6
7
8
9
4
12  
2
A
B
(0.8) TYP  
C
D
E
F
SYMM  
G
H
J
K
L
M
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:8X  
4219578/C 05/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DAC38RF90

双通道 14 位 9GSPS 12x-24x 插值 6GHz 和 9GHz PLL 数模转换器 (DAC)
TI

DAC38RF90IAAV

双通道 14 位 9GSPS 12x-24x 插值 6GHz 和 9GHz PLL 数模转换器 (DAC) | AAV | 144 | -40 to 85
TI

DAC38RF90IAAVR

双通道 14 位 9GSPS 12x-24x 插值 6GHz 和 9GHz PLL 数模转换器 (DAC) | AAV | 144 | -40 to 85
TI

DAC38RF93

双通道 14 位 9GSPS 12x-24x 插值 6GHz 和 9GHz PLL 数模转换器 (DAC)
TI

DAC38RF93IAAV

双通道 14 位 9GSPS 12x-24x 插值 6GHz 和 9GHz PLL 数模转换器 (DAC) | AAV | 144 | -40 to 85
TI

DAC38RF93IAAVR

双通道 14 位 9GSPS 12x-24x 插值 6GHz 和 9GHz PLL 数模转换器 (DAC) | AAV | 144 | -40 to 85
TI

DAC38RF96

双通道 14 位 9GSPS 12x-24x 插值 9GHz GSM PLL 数模转换器 (DAC)
TI

DAC38RF96IAAV

双通道 14 位 9GSPS 12x-24x 插值 9GHz GSM PLL 数模转换器 (DAC) | AAV | 144 | -40 to 85
TI

DAC38RF96IAAVR

双通道 14 位 9GSPS 12x-24x 插值 9GHz GSM PLL 数模转换器 (DAC) | AAV | 144 | -40 to 85
TI

DAC38RF97

双通道 14 位 6GSPS 12x-24x 插值 6GHz GSM PLL 数模转换器 (DAC)
TI

DAC38RF97IAAV

双通道 14 位 6GSPS 12x-24x 插值 6GHz GSM PLL 数模转换器 (DAC) | AAV | 144 | -40 to 85
TI

DAC38RF97IAAVR

双通道 14 位 6GSPS 12x-24x 插值 6GHz GSM PLL 数模转换器 (DAC) | AAV | 144 | -40 to 85
TI