DAC60096IZEB [TI]

具有外部转换触发器的 96 通道、12 位、低功耗、高电压 DAC | ZEB | 196 | -40 to 85;
DAC60096IZEB
型号: DAC60096IZEB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有外部转换触发器的 96 通道、12 位、低功耗、高电压 DAC | ZEB | 196 | -40 to 85

触发器 转换器
文件: 总51页 (文件大小:3235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
DAC60096 具有转换触发器的 96 通道、12 位、低功耗、  
串行输入、高电压输出 DAC  
1 特性  
3 说明  
1
高通道数  
DAC60096 是一款低功耗、快速稳定、96 通道、12  
位数模转换器 (DAC)。该器件可提供 ±10.5V 的未缓冲  
双极性电压输出范围。DAC60096 拥有高通道数、低  
功耗运行和良好线性度等特性,因此是需要大量精确模  
拟输出的系统的理想解决方案。  
96 通道数模转换器 (DAC)  
指定单调性为 12 位  
较宽的未缓冲输出电压范围:±10.5V  
DAC 输出同时更新  
清零功能  
通过一个高速、四线制且兼容行业标准微处理器和微控  
制器的串行接口可以与该器件进行通信。  
集成参考缓冲器:2.5V 输入  
专用 A-B 触发引脚  
DAC60096 经过设置可同时清零或更新所有 DAC。此  
外,通用外部转换触发器使得每个 DAC 通道均可作为  
具有独立幅值控制的方波发生器来运行。  
可利用切换模式生成方波  
SPI™- 兼容串行接口  
4 线模式,3V 5.5V 工作电压  
低功耗:440mW 典型值(工作时)  
工作温度范围:–40°C +85°C  
DAC60096 的额定工作温度范围为 –40°C +85°C,  
并且采用 196 焊球、15mm × 15mm1mm 间距的球  
栅阵列 (BGA) 封装。  
196 焊球、15mm × 15mm NFBGA1mm 间距  
器件信息(1)  
2 应用  
部件号  
DAC60096  
封装  
封装尺寸(标称值)  
光电开关  
NFBGA  
15.0mm x 15.0mm  
光衰减器  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
自动测试设备 (ATE)  
仪表  
典型应用  
2.5-V  
Reference  
DAC60096  
10.5 V  
10.5 V  
œ10.5 V  
RESET  
œ10.5 V  
Subsystem 1  
CS  
SCLK  
SDI  
SDO  
Data  
Buffer 1A  
Data  
Register 1A  
DAC1  
Processor  
Data  
Data  
Buffer 1B  
Register 1B  
Channel 1  
LDAC  
CLEAR  
STATS  
Channel 13  
Channel 24  
TRIGG  
Subsystem 2  
Subsystem 3  
Subsystem 4  
Optical  
Component  
DVDD AVCC AVSS  
AGND DGND REFGND  
3.3 V  
12 V  
œ12 V  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS721  
 
 
 
 
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 19  
7.4 Device Functional Modes........................................ 22  
7.5 Programming .......................................................... 23  
7.6 Register Maps ........................................................ 25  
Application and Implementation ........................ 31  
8.1 Application Information............................................ 31  
8.2 Typical Application ................................................. 32  
Power Supply Recommendations...................... 36  
9.1 Device Reset Options ............................................. 36  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics: DAC DC........................... 7  
6.6 Electrical Characteristics: Square-Wave Output....... 8  
6.7 Electrical Characteristics: General............................ 9  
6.8 Timing Requirements.............................................. 10  
6.9 Typical Characteristics: DC Mode........................... 12  
6.10 Typical Characteristics: Toggle Mode................... 14  
6.11 Typical Characteristics, General ........................... 15  
Detailed Description ............................................ 18  
7.1 Overview ................................................................. 18  
7.2 Functional Block Diagram ....................................... 18  
8
9
10 Layout................................................................... 38  
10.1 Layout Guidelines ................................................. 38  
10.2 Layout Examples................................................... 38  
11 器件和文档支持 ..................................................... 45  
11.1 文档支持 ............................................................... 45  
11.2 社区资源................................................................ 45  
11.3 ....................................................................... 45  
11.4 静电放电警告......................................................... 45  
11.5 Glossary................................................................ 45  
12 机械、封装和可订购信息....................................... 45  
7
4 修订历史记录  
Changes from Original (December 2015) to Revision A  
Page  
已从产品预览更改为量产数据” ............................................................................................................................................ 1  
2
Copyright © 2015–2016, Texas Instruments Incorporated  
 
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
5 Pin Configuration and Functions  
ZEB Package  
196-Ball NFBGA  
Top View  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
DAC14  
G4  
AVSS  
G4  
VREFL VREFH AVCC  
G4 G4 G4  
REF  
GND2  
AVCC VREFH VREFL  
AVSS  
G5  
DAC13  
G5  
14  
13  
12  
11  
10  
9
DNC  
REF2  
DNC  
G5  
G5  
G5  
DAC15 DAC17 DAC20 DAC21 DAC22 DAC24  
G4  
DAC2  
G3  
DAC3  
G5  
DAC5  
G5  
DAC6  
G5  
DAC7  
G5  
DAC8  
G5  
DAC10 DAC12  
G5 G5  
G4  
G4  
G4  
G4  
G4  
DAC16 DAC18 DAC19 DAC23  
G4  
DAC4  
G3  
DAC3  
G3  
DAC1  
G3  
DAC4  
G5  
DAC24 DAC23 DAC21  
DAC9  
G5  
DAC19 DAC11  
G6 G5  
G4  
G4  
G4  
G6  
G6  
G6  
DAC10  
G3  
DAC8  
G3  
DAC6  
G3  
DAC5  
G3  
DAC24  
G2  
DAC1  
G7  
DAC22 DAC20 DAC18 DAC17  
DNC  
DNC  
DNC  
DNC  
G6  
G6  
G6  
G6  
DAC11  
G3  
DAC9  
G3  
DAC7  
G3  
DAC5  
G7  
DAC7  
G7  
DAC16  
G6  
AGND  
AGND  
AGND  
AGND  
DGND  
DVDD  
DVDD  
DGND  
AGND  
DGND  
DVDD  
DVDD  
DGND  
AGND  
AGND  
AGND  
DAC12  
G3  
AVSS  
G3  
VREFL VREFH AVCC  
G3 G3 G3  
AVSS  
S2  
AVSS  
S3  
AVCC VREFH VREFL  
G6 G6 G6  
AVSS  
G6  
DAC15  
G6  
DAC13  
G3  
AVSS  
G3  
VREFL VREFH AVCC  
G3 G3 G3  
AVCC  
S2  
AVCC  
S3  
AVCC VREFH VREFL  
G6 G6 G6  
AVSS  
G6  
DAC14  
G6  
8
DAC14  
G2  
AVSS  
G2  
VREFL VREFH AVCC  
G2 G2 G2  
AVCC  
S1  
AVCC  
S4  
AVCC VREFH VREFL  
G7 G7 G7  
AVSS  
G7  
DAC13  
G7  
7
DAC15  
G2  
AVSS  
G2  
VREFL VREFH AVCC  
G2 G2 G2  
AVSS  
S1  
AVSS  
S4  
AVCC VREFH VREFL  
AVSS  
G7  
DAC12  
G7  
6
G7  
G7  
G7  
DAC16 DAC17 DAC20 DAC21 DAC22  
DAC3  
G7  
DAC4  
G7  
DAC6  
G7  
DAC9  
G7  
DAC11  
G7  
5
AGND  
RESET  
STATS  
AGND  
AGND  
AGND CLEAR AGND  
G2  
G2  
G2  
G2  
G2  
DAC10  
G1  
DAC7  
G1  
DAC19 DAC23  
DAC1  
G1  
DAC2  
G7  
DAC25 DAC21  
G8 G8  
DAC8  
G7  
DAC10  
G7  
4
CS  
SCLK  
SDI  
LDAC  
TRIGG  
AGND  
AGND  
G2  
G2  
DAC11  
G1  
DAC8  
G1  
DAC18  
G2  
DAC3  
G1  
DAC2  
G1  
DAC26 DAC24 DAC19 DAC17 DAC16  
G8 G8 G8 G8 G8  
3
SDO  
DAC12  
G1  
DAC9  
G1  
DAC6  
G1  
DAC5  
G1  
DAC4  
G1  
DAC23 DAC22 DAC20 DAC18 DAC15  
G8  
2
AGND  
REF1  
AGND  
G8  
G8  
G8  
G8  
DAC13  
G1  
AVSS  
G1  
VREFL VREFH AVCC  
REF  
GND1  
AVCC VREFH VREFL  
G8 G8 G8  
AVSS  
G8  
DAC14  
G8  
1
G1  
G1  
G1  
DAC Output  
Subsystem 1  
Digital I/O  
Reference  
AVCC  
AVSS  
DVDD  
Ground  
DAC Output  
Subsystem 2  
Inputs (2.5 V)  
DAC Output  
Subsystem 3  
Reference  
Compensation  
DAC Output  
Subsystem 4  
Do Not Connect  
Copyright © 2015–2016, Texas Instruments Incorporated  
3
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
D10, E10,  
F1, F2, F5, F10,  
G2, G5, G10, H2, H10,  
J1, J2, J5, J10,  
K10, L10  
AGND  
GND Analog ground.  
E1, E6, E7, E8, E9, E14,  
F7, F8, J7, J8,  
K1, K6, K7, K8, K9, K14  
Positive analog supply voltage. (11.2 V to 12.6 V). A 100-nF bypass capacitor for each AVCC_n (n  
PWR = G1, G2, G3, G4, G5, G6, G7, G8, S1, S2, S3 or S4) is required; place as close as possible to the  
pins.  
AVCC  
AVSS  
B1, B6, B7, B8, B9, B14,  
F6, F9, J6, J9,  
N1, N6, N7, N8, N9, N14  
Negative analog supply voltage. (-12.6V to -11.2V). A 100-nF bypass capacitor for each AVSS_n (n  
PWR = G1, G2, G3, G4, G5, G6, G7, G8, S1, S2, S3 or S4) is required; place as close as possible to the  
pins.  
Asynchronous clear control input, active low. When CLEAR is low, all DACs are loaded with code  
000h. When CLEAR is high, all DACs return to normal operation  
CLEAR  
CS  
H5  
G4  
I
I
Serial data enable, active low. This input is the frame synchronization signal for the serial data.  
A1, A2, A3, A4,  
B2, B3, B4, C2, D2, D3,  
E2, E3, E4  
DAC[1-13]_G1  
DAC[14-26]_G2  
DAC[1-13]_G3  
DAC[14-24]_G4  
DAC[3-13]_G5  
DAC[14-26]_G6  
DAC[1-13]_G7  
DAC[14-26]_G8  
O
Subsystem 1 Regular DAC outputs: DAC group 1 and DAC group 2. Each DAC subsystem can be  
controlled independently through the serial interface.  
A5, A6, A7, B5,  
C3, C4, C5,  
D4, D5, E5, E11  
O
O
O
O
O
O
O
A8, A9, A10, A11,  
B10, B11, C10, C11,  
D11, E12, F12, G12, G13  
Subsystem 2 Regular DAC outputs: DAC group 3 and DAC group 4. Each DAC subsystem can be  
controlled independently through the serial interface.  
A12, A13, A14,  
B12, B13, C12, C13,  
D12, D13, E13, F13  
H12, H13, J13, K13, L13,  
M12, M13, N13,  
P12, P13, P14  
Subsystem 3 Regular DAC outputs: DAC group 5 and DAC group 6. Each DAC subsystem can be  
controlled independently through the serial interface.  
J12, K12  
L11, L12, M11, N11, N12,  
P8, P9, P10, P11  
K4, K5, K11, L5,  
M5, M10, N4, N5, N10,  
P4, P5, P6, P7  
Subsystem 4 Regular DAC outputs: DAC group 7 and DAC group 8. Each DAC subsystem can be  
controlled independently through the serial interface.  
K2, K3, L2, L3, L4,  
M2, M3, M4, N2, N3,  
P1, P2, P3  
DGND  
DNC  
G6, G9, H6, H9  
GND Digital ground. Ground reference point for all digital circuitry on the device.  
F11, F14, G11  
H11, J11, J14  
Reserved for factory use. For proper operation, do not connect.  
Digital supply voltage. (3 V to 5.5 V). A 100-nF bypass capacitor is required; place as close as  
possible to the pins.  
DVDD  
LDAC  
G7, G8, H7, H8  
J4  
PWR  
Synchronous DAC load control input, active low. When LDAC is low, the DAC outputs are updated  
immediately after a register write. If left high during DAC register updates, bringing LDAC low  
causes all DAC outputs to update simultaneously.  
I
RESET  
F4  
H1  
I
Reset input, active low. Logic low on this pin causes the device to perform a hardware reset.  
Reference ground. Ground reference point for REF1. REFGND1 should be star connected at the  
system GND source and not connected to the GND plane for best performance.  
REFGND1  
GND  
Reference ground. Ground reference point for REF2. REFGND2 should be star connected at the  
system GND source and not connected to the GND plane for best performance.  
REFGND2  
SCLK  
H14  
H4  
GND  
I
I
Serial interface clock.  
Serial interface data input. Data are clocked into the input shift register on each rising edge of  
SCLK.  
SDI  
H3  
Serial interface data output. The SDO pin is in high impedance when CS is high. Data can be  
clocked out of the input shift register on either rising or falling edges of SCLK as specified by  
PHAINV in the CON register.  
SDO  
G3  
O
STATS  
REF1  
F3  
O
I
DAC output status indicator. Identifies which of the two DAC data registers is active.  
Input voltage reference pin 1 (2.5 V). A 100-nF bypass capacitor between this pin and REFGND1 is  
required.  
G1  
Input voltage reference pin 2 (2.5 V). A 100-nF bypass capacitor between this pin and REFGND2 is  
required.  
REF2  
G14  
I
4
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Trigger input signal. Enables all DAC outputs to toggle between the two DAC data registers  
associated with each DAC. This functionality enables the device to operate as a square-wave  
generator. The DAC registers are prepared for toggle mode operation on a TRIGG rising edge and  
the outputs are toggled on each following TRIGG falling edge.  
TRIGG  
J3  
I
Compensation capacitor connection for the internal 10.5 V reference voltage. A 100-nF bypass  
capacitor for each VREFH_n (n = G1, G2, G3, G4, G5, G6, G7 or G8) is required; place as close as  
possible to the pins.  
D1, D6, D7, D8, D9, D14,  
L1, L6, L7, L8, L9, L14  
VREFH  
VREFL  
O
O
Compensation capacitor connection for the internal -10.5 V reference voltage. A 100-nF bypass  
capacitor for each VREFL_n (n = G1, G2, G3, G4, G5, G6, G7 or G8) is required; place as close as  
possible to the pins.  
C1, C6, C7, C8, C9, C14,  
M1, M6, M7, M8, M9, M14  
Copyright © 2015–2016, Texas Instruments Incorporated  
5
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
UNIT  
AVCC to DGND  
AVSS to DGND  
13  
–13  
0.3  
DVDD to DGND  
Supply voltage  
–0.3  
6
V
AVCC to AVSS  
–0.3  
26  
DGND to AGND  
–0.3  
0.3  
DGND to REFGND[1,2]  
REF1 to REFGND1  
REF2 to REFGND2  
DAC to DGND  
–0.3  
0.3  
–0.3  
6
–0.3  
6
AVSS – 0.3  
AVCC + 0.3  
CLEAR, CS, LDAC, RESET, SCLK, SDI, SDO, TRIGG,  
STATS to DGND  
Pin voltage  
–0.3  
DVDD + 0.3  
V
VREFH to DGND  
VREFL to DGND  
–0.3  
AVSS – 0.3  
–0.3  
AVCC + 0.3  
0.3  
26  
VREFH to adjacent VREFL  
Operating, TA  
–40  
85  
Temperature  
Junction, TJ  
Storage, Tstg  
–40  
150  
150  
°C  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
AVCC  
11.2  
–12.6  
3
12  
–12  
3.3  
24  
12.6  
–11.2  
5.5  
V
V
V
V
AVSS  
DVDD  
AVCC to AVSS  
22.4  
25.2  
DIGITAL INPUTS  
Digital input voltage  
REFERENCE INPUT  
Reference input voltage, VREF  
TEMPERATURE  
Operating ambient temperature, TA  
0
2.475  
–40  
DVDD  
2.525  
85  
V
V
2.5  
°C  
6
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
6.4 Thermal Information  
DAC60096  
THERMAL METRIC(1)  
ZEB (NFBGA)  
UNIT  
196 BALLS  
21.4  
7.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
5.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
5.0  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics: DAC DC  
at AVCC = 11.2 V to 12.6 V, AVSS = –12.6 V to –11.2 V, DVDD = 3 V to 5.5 V, AGND = DGND = REFGND[1,2] = 0 V, REF1 =  
REF2 = 2.5 V (specifications exclude any reference contributions), no load on DACs, and TA = –40°C to +85°C (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC PERFORMANCE  
Resolution  
12  
Bits  
LSB  
INL  
Relative accuracy  
Differential nonlinearity  
Gain error  
±0.15  
±0.1  
±0.05  
±2  
±1  
±0.9  
±0.15  
±7  
DNL  
Specified 12-bit monotonic  
TA = 25°C  
LSB  
%FSR  
mV  
Zero-code error  
Gain error drift  
Zero-code error drift  
TA = 25°C, code 000h  
±1  
ppm/°C  
ppm/°C  
±1  
OUTPUT CHARACTERISTICS  
Output voltage  
–10.5  
10.5  
V
Output impedance  
41  
kΩ  
Measured channel at code 000h, all  
others transition from code 7FFh to 02Bh  
DC crosstalk  
0.5  
LSB  
DAC ouput transition:  
code 800h to 7FFh to within 1 LSB,  
6x load:  
160  
R(SERIES) = 17 kΩ, CLOAD = 300 pF  
Settling time  
Output noise  
µs  
DAC ouput transition:  
code 800h to 7FFh to within 1 LSB,  
1x load:  
65  
60  
R(SERIES) = 100 kΩ, CLOAD = 50 pF  
TA = 25°C, 1 kHz, code 000h  
nV/Hz  
Copyright © 2015–2016, Texas Instruments Incorporated  
7
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
6.6 Electrical Characteristics: Square-Wave Output  
at AVCC = 11.2 V to 12.6 V, AVSS = –12.6 V to –11.2 V, DVDD = 3 V to 5.5 V, AGND = DGND = REFGND[1,2] = 0 V, REF1 =  
REF2 = 2.5 V (specifications exclude any reference contributions), no load on DACs, and TA = –40°C to +85°C (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC OUTPUTS – 6x LOAD: R(SERIES) = 17 kΩ, CLOAD = 300 pF  
For amplitude 9.1 VRMS, amplitude = ±10.5 VPP  
codes 7FFh to 801h  
,
Frequency  
3
kHz  
Frequency = 3 kHz, amplitude = ±10.5 VPP  
codes 7FFh to 801h  
,
,
9.1  
8
VRMS  
Amplitude  
Frequency = 5 kHz, amplitude = ±10.5 VPP  
codes 7FFh to 801h  
VRMS  
Amplitude step precision  
Amplitude temperature drift  
Frequency = 3 kHz, amplitude 1 VRMS  
6
5
mVRMS  
mVRMS  
Frequency = 3 kHz, amplitude = ±5 VPP  
,
codes 3CFh to C31h  
Frequency = 3 kHz, amplitude = ±10.5 VPP  
codes 7FFh to 801h  
,
15  
10  
10  
mVRMS  
mV  
Frequency = 3 kHz, amplitude = ±5 VPP  
,
–10  
–10  
codes 3CFh to C31h  
Offset voltage  
Frequency = 3 kHz, amplitude = ±10.5 VPP  
codes 7FFh to 801h  
,
,
mV  
Frequency = 3 kHz, amplitude = ±10.5 VPP  
10% to 90%, codes 7FFh to 801h  
Rise and fall time  
40  
5
µs  
(1)  
DAC OUTPUTS – 1x LOAD: R(SERIES) = 100 kΩ, CLOAD = 50 pF  
For amplitude 9.1 VRMS, amplitude = ±10.5 VPP  
codes 7FFh and 801h  
,
Frequency  
kHz  
Frequency = 3 kHz, amplitude = ±10.5 VPP  
codes 7FFh to 801h  
,
,
10  
VRMS  
Amplitude  
Frequency = 5 kHz, amplitude = ±10.5 VPP  
codes 7FFh to 801h  
9.5  
VRMS  
Amplitude step precision  
Amplitude temperature drift  
Frequency = 3 kHz, amplitude 1 VRMS  
7
5
mVRMS  
mVRMS  
Frequency = 3 kHz, amplitude = ±5 VPP  
,
codes 3CFh to C31h  
Frequency = 3 kHz, amplitude = ±10.5 VPP  
codes 7FFh to 801h  
,
15  
10  
10  
mVRMS  
mV  
Frequency = 3 kHz, amplitude = ±5 VPP  
,
–10  
–10  
codes 3CFh to C31h  
Offset voltage  
Frequency = 3 kHz, amplitude = ±10.5 VPP  
codes 7FFh to 801h  
,
,
mV  
Frequency = 3 kHz, amplitude = ±10.5 VPP  
10% to 90%, codes 7FFh to 801h  
Rise and fall time  
10  
µs  
(1) Specified by design and characterization. Not tested during production.  
8
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
6.7 Electrical Characteristics: General  
at AVCC = 11.2 V to 12.6 V, AVSS = –12.6 V to –11.2 V, DVDD = 3 V to 5.5 V, AGND = DGND = REFGND[1,2] = 0 V, REF1 =  
REF2 = 2.5 V (specifications exclude any reference contributions), no load on DACs, and TA = –40°C to +85°C (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL REFERENCE INPUTS  
VREF  
Input voltage range  
REF1 and REF2 input pins  
2.475  
2.5  
1
2.525  
V
Reference input current  
Per input pin  
µA  
DIGITAL LOGIC  
VIH  
VIL  
High-level input voltage  
0.7 × DVDD  
DVDD - 0.2  
V
V
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
0.3 × DVDD  
0.4  
VOH  
VOL  
ILOAD = 1 mA, SDO2x = 01  
ILOAD = –1 mA, SDO2x = 01  
V
V
Input capacitance  
20  
pF  
(1)  
POWER REQUIREMENTS  
I(AVCC)  
I(AVSS)  
I(DVDD)  
AVCC supply current  
18.1  
–18.1  
2
25  
10  
22  
10  
30  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
6x load:  
R(SERIES) = 17 kΩ, CLOAD = 300 pF  
frequency = 3 kHz  
48 DAC outputs, codes 7FFh and 801h  
48 DAC outputs, codes 117h and EE9h  
AVSS supply current  
DVDD supply current  
Power consumption  
AVCC supply current  
AVSS supply current  
DVDD supply current  
Power consumption  
AVCC supply current  
AVSS supply current  
DVDD supply current  
Power consumption  
–25  
–22  
–30  
440  
17  
I(AVCC)  
I(AVSS)  
I(DVDD)  
1x load:  
R(SERIES) = 100 kΩ, CLOAD = 50 pF  
frequency = 3 kHz  
48 DAC outputs, codes 7FFh and 801h  
48 DAC outputs, codes 117h and EE9h  
–17  
2
(2)  
415  
25  
I(AVCC)  
I(AVSS)  
I(DVDD)  
6x load:  
–25  
2
R(SERIES) = 17 kΩ, CLOAD = 300 pF  
frequency = 3 kHz  
All DAC outputs, codes 02Bh and FD5h  
10  
650  
760  
(1) Power requirements tested unloaded during production. Load current contribution to power consumption specified by design and  
characterization.  
(2) Specified by design and characterization. Not tested during production.  
Copyright © 2015–2016, Texas Instruments Incorporated  
9
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
6.8 Timing Requirements(1)(2)  
at AVCC = 11.2 V to 12.6 V, AVSS = –12.6 V to –11.2 V, DVDD = 3 V to 5.5 V, AGND = DGND = REFGND[1,2] = 0 V, REF1 =  
REF2 = 2.5 V (specifications exclude any reference contributions), no load on DACs, and TA = –40°C to +85°C (unless  
otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SERIAL INTERFACE – DEFAULT MODE: SDO2X = 01, PHAINV = 01  
Write operation  
32  
18  
MHz  
MHz  
ns  
fSCLK  
SCLK frequency  
Read operation  
Write operation  
Read operation  
Write operation  
Read operation  
14  
26  
14  
26  
5
tPH  
SCLK pulse width high  
SCLK pulse width low  
ns  
ns  
tPL  
ns  
tSU  
SDI setup  
ns  
tH  
SDI hold  
10  
10  
20  
70  
0
ns  
tCSS  
tCSH  
tIAG  
tODZ  
tOZD  
tOD1  
CS setup  
ns  
CS hold  
ns  
Inter-access gap  
SDO driven to tri-state  
SDO tri-state to driven  
SDO output delay  
ns  
Read operation  
Read operation  
Read operation  
20  
20  
20  
ns  
0
ns  
0
ns  
SERIAL INTERFACE – FAST MODE: SDO2X = 10, PHAINV = 10  
Write operation  
32  
32  
MHz  
MHz  
ns  
fSCLK  
SCLK frequency  
Read operation  
Write operation  
Read operation  
Write operation  
Read operation  
14  
14  
14  
14  
5
tPH  
SCLK pulse width high  
SCLK pulse width low  
ns  
ns  
tPL  
ns  
tSU  
SDI setup  
ns  
tH  
SDI hold  
10  
10  
20  
70  
0
ns  
tCSS  
tCSH  
tIAG  
tODZ  
tOZD  
tOD2  
CS setup  
ns  
CS hold  
ns  
Inter-access gap  
SDO driven to tri-state  
SDO tri-state to driven  
SDO output delay  
ns  
Read operation  
Read operation  
Read operation  
20  
20  
20  
ns  
0
ns  
0
ns  
DIGITAL LOGIC  
Delay from power-on-reset to normal operation  
Delay from hardware reset to normal operation  
Delay from software reset to normal operation  
100  
10  
250  
50  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
tRESETDLY Reset delay  
10  
50  
tRESETWD  
tLDACS  
tLDACH  
tTRIGH  
RESET pulse width  
500  
0
LDAC setup  
LDAC hold  
0
TRIGG pulse width high  
TRIGG pulse width low  
STATS output delay  
30  
30  
tTRIGL  
tSTADLY  
25  
(1) Specified by design and characterization. Not tested during production.  
(2) SDO loaded with 10-pF load capacitance for SDO timing specifications.  
10  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
tIAG  
tCSH  
tCSS  
tODZ  
/{  
{/[Y  
{5L  
tPH  
tPL  
Bit 23  
Bit 1  
Bit 0  
tSU  
tH  
ù
ù
{5h  
tOZD  
Figure 1. Serial Interface Write Timing Diagram  
tIAG  
tCSH  
tCSS  
tODZ  
/{  
{/[Y  
{5L  
tPH  
tPL  
Bit 16  
Bit 23  
tSU  
tH  
ù
Z
Z
{5h  
PHAINV = 01‘  
Bit 15  
tOD1  
Bit 0  
tOZD  
ù
Bit 15  
Bit 0  
{5h  
PHAINV = 10‘  
tOD2  
Figure 2. Serial Interface Read Timing Diagram  
tLDACS  
tLDACH  
/{  
[5!/  
tTRIGH  
tTRIGL  
ÇwLDD  
{Ç!Ç{  
tSTADLY  
Figure 3. Digital Logic Timing Diagram  
Copyright © 2015–2016, Texas Instruments Incorporated  
11  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
6.9 Typical Characteristics: DC Mode  
at AVCC = 12 V, AVSS = –12 V, DVDD = 3.3 V, AGND = DGND = REFGND[1,2] = 0 V, REF1 = REF2 = 2.5 V (specifications  
exclude any reference contributions), no load on DACs, and TA = 25°C (unless otherwise noted)  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
0
512 1024 1536 2048  
0
512 1024 1536 2048  
œ2048 œ1536 œ1024 œ512  
œ2048 œ1536 œ1024 œ512  
Code  
Code  
C001  
C002  
Figure 4. Differential Linearity Error (DNL)  
Figure 5. Integral Linearity Error (INL)  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
Max DNL  
Min DNL  
Max INL  
Min INL  
10  
35  
60  
85  
œ40  
œ15  
10  
35  
60  
85  
œ40  
œ15  
TA (°C)  
TA (°C)  
C005  
C006  
Figure 6. DNL vs Temperature  
Figure 7. INL vs Temperature  
2.0  
1.0  
0.05  
0.04  
0.03  
0.02  
0.01  
0.0  
0.00  
œ0.01  
œ0.02  
œ0.03  
œ0.04  
œ0.05  
œ1.0  
œ2.0  
10  
35  
60  
85  
10  
35  
60  
85  
œ40  
œ15  
œ40  
œ15  
TA (°C)  
TA (°C)  
C007  
C008  
Figure 8. Zero-Code Error vs Temperature  
Figure 9. Gain Error vs Temperature  
12  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
Typical Characteristics: DC Mode (continued)  
at AVCC = 12 V, AVSS = –12 V, DVDD = 3.3 V, AGND = DGND = REFGND[1,2] = 0 V, REF1 = REF2 = 2.5 V (specifications  
exclude any reference contributions), no load on DACs, and TA = 25°C (unless otherwise noted)  
2000  
1500  
1000  
500  
0
500  
400  
300  
200  
100  
0
10  
100  
1K  
10K  
100K  
1M  
200  
400  
600  
800  
1000  
Frequency (Hz)  
Capacitive Load (pF)  
C011  
C012  
Figure 10. DAC Output Noise vs Frequency  
Figure 11. Settling Time Amplitude vs Capacitive Load  
Copyright © 2015–2016, Texas Instruments Incorporated  
13  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
6.10 Typical Characteristics: Toggle Mode  
at AVCC = 12 V, AVSS = –12 V, DVDD = 3.3 V, AGND = DGND = REFGND[1,2] = 0 V, REF1 = REF2 = 2.5 V (specifications  
exclude any reference contributions), no load on DACs, and TA = 25°C (unless otherwise noted)  
12  
10  
8
10  
8
1X Load  
6X Load  
6
4
2
6
0
œ2  
œ4  
œ6  
œ8  
œ10  
4
Freq = 100 Hz  
Freq = 1 kHz  
Freq = 3 kHz  
Freq = 5 kHz  
2
0
0
4
8
12  
16  
20  
0
2
4
6
8
10  
Load Multiplier (X)  
Amplitude (VRMS  
)
C013  
C015  
1x load: R(SERIES) = 100 k, CLOAD = 50 pF  
Figure 12. Maximum Amplitude vs Capacitive Load  
Figure 13. Offset vs Amplitude  
5
10  
8
2.5 V
2.5 V
RMS  
RMS  
4
5 V
5 V
RMS  
RMS  
3
6
9 V
9 V
RMS  
RMS  
2
1
0
4
2
0
œ1  
œ2  
œ4  
œ6  
œ8  
œ10  
œ2  
œ3  
œ4  
œ5  
10  
35  
60  
85  
10  
35  
60  
85  
œ40  
œ15  
œ40  
œ15  
TA (°C)  
TA (°C)  
C016  
C017  
Figure 14. Amplitude Drift vs Temperature  
Figure 15. Offset vs Temperature  
0.5  
0.4  
10.0  
8.0  
2.5 V
2.5 VRRMS
RMS  
5 VR
5 VRRMS
RMS  
0.3  
6.0  
9 VR
RMS  
9 VR
RMS  
0.2  
4.0  
0.1  
2.0  
0.0  
0.0  
œ0.1  
œ0.2  
œ0.3  
œ0.4  
œ0.5  
œ2.0  
œ4.0  
œ6.0  
œ8.0  
œ10.0  
11.2  
11.4  
11.6  
11.8  
12.0  
12.2  
12.4  
12.6  
11.2  
11.4  
11.6  
11.8  
12.0  
12.2  
12.4  
12.6  
AVss and AVcc Voltage Magnitude (V)  
AVss and AVcc Voltage Magnitude (V)  
C020  
C021  
Figure 16. Amplitude Drift vs Supply Voltage  
Figure 17. Offset vs Supply Voltage  
14  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
6.11 Typical Characteristics, General  
at AVCC = 12 V, AVSS = –12 V, DVDD = 3.3 V, AGND = DGND = REFGND[1,2] = 0 V, REF1 = REF2 = 2.5 V (specifications  
exclude any reference contributions), no load on DACs, and TA = 25°C (unless otherwise noted)  
12  
10  
8
10  
8
6
5
30  
DAC A  
DAC B  
SCLK  
DAC  
20  
6
6
4
4
4
10  
2
2
3
0
0
0
2
œ2  
œ4  
œ6  
œ8  
œ10  
œ12  
-2  
-4  
-6  
-8  
-10  
œ10  
œ20  
œ30  
1
0
œ1  
0
0.5  
1
1.5  
2
0
150  
300  
450  
600  
750  
900  
Time (ms)  
Time (ns)  
C024  
C025  
DAC A: square-wave output, freq = 1 kHz, full-scale amplitude  
DAC B: zero-code inputs  
All DACs with zero-code inputs  
SCLK frequency = 1 MHz  
Figure 18. DAC to DAC Crosstalk  
Figure 19. SPI to DAC Crosstalk  
14  
14  
10  
6
10  
6
2
2
œ2  
œ2  
œ6  
œ10  
œ14  
AVCC  
AVSS  
DVDD  
REF(1,2)  
AVCC  
AVSS  
DVDD  
REF(1,2)  
DAC  
œ6  
œ10  
DAC  
œ14  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
œ1  
œ1  
Time (ms)  
Time (ms)  
C026  
C027  
Figure 20. Recommended Power-Up Sequence  
Figure 21. Recommended Power-Down Sequence  
15  
8
15  
8
0
0
AVCC  
AVSS  
DVDD  
REF(1,2)  
DAC  
AVCC  
AVSS  
DVDD  
REF(1,2)  
DAC  
œ8  
œ15  
œ8  
œ15  
0
2
4
6
8
0
2
4
5
7
Time (ms)  
Time (ms)  
C028  
C029  
6x load: R(SERIES) = 17 k, CLOAD = 300 pF  
6x load: R(SERIES) = 17 k, CLOAD = 300 pF  
Square-wave output: freq = 1 kHz, full-scale amplitude  
Square-wave output: freq = 1 kHz, full-scale amplitude  
Figure 22. DVDD Collapse and Recover  
Figure 23. AVCC Collapse and Recover  
Copyright © 2015–2016, Texas Instruments Incorporated  
15  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
Typical Characteristics, General (continued)  
at AVCC = 12 V, AVSS = –12 V, DVDD = 3.3 V, AGND = DGND = REFGND[1,2] = 0 V, REF1 = REF2 = 2.5 V (specifications  
exclude any reference contributions), no load on DACs, and TA = 25°C (unless otherwise noted)  
12  
12  
DAC  
DAC  
TRIGG  
CLEAR  
8
TRIGG  
CLEAR  
8
4
4
0
0
œ4  
œ8  
œ12  
œ4  
œ8  
œ12  
0
1
2
3
4
0
1
2
3
4
Time (ms)  
Time (ms)  
C031  
C030  
6x load: R(SERIES) = 17 k, CLOAD = 300 pF  
6x load: R(SERIES) = 17 k, CLOAD = 300 pF  
Square-wave output: freq = 1 kHz, full-scale amplitude  
Square-wave output: freq = 1 kHz, full-scale amplitude  
Figure 25. Clear State to Normal Transition  
Figure 24. Normal to Clear State Transition  
12  
10.0  
DAC  
TRIGG  
LDAC  
8
4
8.0  
6.0  
4.0  
2.0  
0.0  
0
œ4  
œ8  
œ12  
0
1
2
3
4
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Time (ms)  
DVDD  
C032  
C033  
6x load: R(SERIES) = 17 k, CLOAD = 300 pF  
No DAC load  
Square-wave output: freq = 1 kHz, full-scale amplitude  
Square-wave output: freq = 3 kHz, full-scale amplitude  
Figure 26. LDAC DAC Transition  
Figure 27. DVDD Current Consumption  
300  
200  
100  
0
œ100  
œ200  
AVCC  
AVSS  
œ300  
0
512 1024 1536 2048  
œ2048 œ1536 œ1024 œ512  
± Code  
C035  
No DAC load, DVDD = 3.3 V  
No DAC load, DC output, DVDD = 3.3 V  
Square-wave output: freq = 3 kHz  
Figure 28. Unloaded AVCC/AVSS Current Consumption  
Figure 29. Unloaded AVCC/AVSS Current Consumption  
16  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
Typical Characteristics, General (continued)  
at AVCC = 12 V, AVSS = –12 V, DVDD = 3.3 V, AGND = DGND = REFGND[1,2] = 0 V, REF1 = REF2 = 2.5 V (specifications  
exclude any reference contributions), no load on DACs, and TA = 25°C (unless otherwise noted)  
250  
200  
150  
100  
50  
0
Regular: 1 kHz  
Regular: 3 kHz  
Regular: 5 kHz  
œ50  
œ100  
œ150  
œ200  
œ250  
Regular: 1 kHz  
Regular: 3 kHz  
Regular: 5 kHz  
0
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
Load Multiplier (X)  
Load Multiplier (X)  
C036  
C037  
1x load: R(SERIES) = 100 k, CLOAD = 50 pF, DVDD = 3.3 V  
1x load: R(SERIES) = 100 k, CLOAD = 50 pF, DVDD = 3.3 V  
Square-wave output, full-scale amplitude  
Square-wave output, full-scale amplitude  
Figure 30. AVCC Load Current Consumption  
Figure 31. AVSS Load Current Consumption  
Copyright © 2015–2016, Texas Instruments Incorporated  
17  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DAC60096 is a low-power, 96-channel, 12-bit, digital-to-analog converter (DAC). The device provides  
±10.5-V unbuffered bipolar voltage outputs while maintaining extremely low-power operation and good linearity.  
The device integrates dedicated reference buffers that enable operation from an external 2.5-V reference source.  
The DAC60096 can be set up to clear or update all DACs simultaneously. In addition a versatile external  
conversion trigger allows each DAC to operate as an amplitude-independent square-wave generator. The device  
incorporates a reset circuit that ensures all DAC outputs power up and remain at zero scale prior to device  
configuration.  
The DAC60096 features simplify the design of systems requiring a high number of precise analog control signals  
such as those found in optical communications switches and attenuators.  
The DAC60096 is designed as four DAC subsystems. Each DAC subsystem is configured independently through  
a high speed 4-wire serial interface compatible with industry standard microprocessors and microcontrollers. The  
DAC60096 is characterized for operation over the temperature range of –40°C to +85°C, and is available in a  
196-ball, 15-mm × 15-mm, 1-mm pitch BGA package.  
7.2 Functional Block Diagram  
VREFL VREFH  
(x6) (x6)  
VREFH VREFL  
(x6) (x6)  
LDAC  
TRIGG  
RESET  
CLEAR  
STATS  
REF1 REF2  
DAC60096  
Power-On  
Reset  
Control Logic  
Subsystem 1  
CS  
SCLK  
SDI  
Data  
Buffer 1A  
Data  
Register 1A  
Channel1  
DAC1  
DAC1_G1  
DAC2_G1  
DAC3_G1  
Channel2  
Channel3  
SDO  
Data  
Data  
Buffer 1B  
Register 1B  
Channel11  
Channel12  
Channel13  
DAC11_G1  
DAC12_G1  
DAC13_G1  
DAC14_G2 œ DAC24_G2  
Subsystem 2  
Subsystem 3  
Subsystem 4  
DAC1_G3 œ DAC13_G3  
DAC14_G4 œ DAC24_G4  
DAC3_G5 œ DAC13_G5  
DAC14_G6 œ DAC24_G6  
DAC1_G7 œ DAC13_G7  
DAC14_G8 œ DAC26_G8  
DVDD AVCC AVSS  
(ì4) (ì16) (ì16)  
AGND DGND REFGND  
(ì17) (ì4) (ì2)  
18  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
7.3 Feature Description  
7.3.1 Digital-to-Analog Converters (DACs)  
The DAC60096 is a 96-channel, 12-bit digital-to-analog converter (DAC) with integrated reference buffers. Each  
DAC output consists of an R-2R ladder configuration as shown in Figure 32.  
The DAC60096 includes reference buffers that enable bipolar DAC output voltages of ±10.5 V from a 2.5-V  
reference source. The outputs of the reference buffers drive the R-2R ladders.  
R
R
VOUT  
2R  
2R  
S0  
2R  
S1  
2R  
S8  
2R  
E1  
2R  
E2  
2R  
E7  
VREFH  
VREFL  
3-MSBs Decoded into  
7 Equal Segments  
9-Bit R-2R Ladder  
Figure 32. R-2R Ladder Configuration  
7.3.1.1 DAC Transfer Function  
The DAC60096 integrates dedicated reference buffers that enable operation from an external 2.5-V reference  
source. The reference buffers generate the voltages, VREFH and VREFL, required to drive the DAC R-2R  
ladders.  
10.5  
VREFH = VREF  
x
2.5  
(1)  
(2)  
VREFL = -1 x VREFH  
where VREF is the reference input voltage at pins REF1 and REF2.  
Input data are written to the individual DAC data registers in 12-bit twos complement format. After power-on or a  
reset event, all DAC registers are set to zero scale. The DAC transfer function is given by Equation 3.  
Code  
VOUT  
=
x (VREFH - VREFL)  
4096  
(3)  
where Code is the signed decimal equivalent of the binary code loaded to the DAC register and ranges from  
-2048 to 2047 (See Table 1).  
Table 1. DAC Data Format  
DIGITAL CODE  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1000 0000 0001  
1000 0000 0000  
SIGNED DECIMAL VALUE  
DAC OUTPUT VOLTAGE (V)  
+2047  
+2046  
+1  
10.49487  
10.48975  
0.005127  
0
0
–1  
–0.005127  
–10.49487  
–10.5  
–2047  
–2048  
Copyright © 2015–2016, Texas Instruments Incorporated  
19  
 
 
 
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
7.3.1.2 DAC Register Structure  
Each DAC in the device incorporates two data registers: Register A and Register B. These two data registers  
and the TRIGG pin enable toggle mode operation. Alternatively, if the TRIGG pin is left fixed the device is in DC  
mode operation and only one of the data registers is used to control the DAC output (Register A by default).  
Data written to the DAC data registers is initially stored in the DAC buffer registers. Transfer of data from the  
DAC buffer registers to the active DAC registers can be set to happen immediately (asynchronous mode) or  
initiated by an LDAC trigger (synchronous mode). After data are transferred to the DAC active registers, the DAC  
outputs are updated. When the host reads from a DAC data register, the value held in the DAC buffer register is  
returned (not the value held in the DAC active register).  
The DAC update mode is determined by the status of the LDAC input pin. If the LDAC pin is held low the device  
is in asynchronous mode. In asynchronous mode, a write to a DAC data register results in an immediate update  
of the DAC active register and the corresponding output. If LDAC is held high, the device is in synchronous  
mode. In synchronous mode, writing to a DAC data register does not automatically update the DAC output.  
Instead, the update occurs only after an LDAC trigger occurs. An LDAC trigger is generated either through a  
high-to-low transition on the LDAC pin in which case all 96 DACs update at the same time or by the self-clearing  
LDAC bit in each of the four subsystems CON registers (address 0x4, bit 15) which enables synchronization of  
all the DACs in the selected subsystem.  
After the DAC outputs have been configured, a clear event enables the DACs to be loaded with zero-code while  
retaining the previously programmed values, thus allowing the possibility to return to the voltage being output  
before the clear event was issued. Note that the DAC data registers can be updated while the device is in clear  
state allowing the DACs to output new values upon return to normal operation. When the device exits the clear  
state the DAC outputs are immediately loaded with the data in the DAC active registers.  
The device is set into clear state through the CLEAR pin. Setting the CLEAR pin low forces all 96 DACs into  
clear state. Setting the CLEAR pin back high returns all DACs to normal operation. Alternatively, the CLRDAC  
bits in each of the four subsystems CON registers (Address 0x4, bits [5:4]) can be used to enter or exit clear  
state at a subsystem level.  
Serial Interface  
DAC Data Register  
READ  
WRITE  
DAC  
Buffer Register  
A
DAC  
Active Register  
A
0x0000  
(asynchronous mode)  
12-Bit  
DAC  
DAC Output  
LDAC Trigger  
(Synchronous Mode)  
Clear State  
(Asynchronous Mode)  
Toggle Mode  
DAC  
Buffer Register  
B
DAC  
Active Register  
B
Figure 33. DAC60096 DAC Block Diagram  
20  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
7.3.2 Reference Specifications  
The DAC60096 integrates dedicated reference buffers that enable operation from an external 2.5-V reference  
source. The reference buffers generate the ±10.5-V levels used to drive the DACs in the device. A 100-nF  
bypass capacitor should be placed between the REF[1,2] input pins and REFGND[1,2]. Additionally a  
compensation 100-nF bypass capacitor for each VREFH_n and VREFL_n pin (n = G1, G2, G3, G4, G5, G6, G7  
or G8) is required and should be placed as close as possible to the pins.  
100 nF  
(Minimize  
inductance to pin)  
REF[1,2]  
Reference  
(2.5V)  
REFGND[1,2]  
C = 100nF  
(Minimize  
VREFH_n  
+10.5V  
-10.5V  
inductance to pin)  
DAC Reference  
DAC1  
12-b  
C = 100nF  
(Minimize  
VREFL_n  
DAC Reference  
inductance to pin)  
Figure 34. Reference Operation  
Copyright © 2015–2016, Texas Instruments Incorporated  
21  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Toggle Mode  
Each DAC in the device incorporates two DAC registers: Register A and Register B. The TRIGG pin is used to  
switch the DAC outputs back and forth between the contents of the two DAC specific registers. The DAC  
registers are prepared for trigger mode operation on a TRIGG rising edge and the outputs are toggled on each  
following high-to-low transition. This feature enables the generation of 96 amplitude independent square-waves.  
The device incorporates an auto-populate feature that simplifies register configuration in toggle mode. Auto-  
populate is enabled by the APB bits in the CON register (address 0x4, bits [1:0]). When auto-populate is  
enabled, a Register A update automatically loads Register B with the negative value of the data written to A.  
Although the Register B data can be modified by a direct register write, this update does not auto-populate the  
Register A contents.  
The STATS output pin is used to identify the active register. A logic-low is output for Register A and logic-high for  
register B. The STATS pin is in high impedance mode by default and must be enabled by the SDRV bits in the  
CON register for subsystem 1 (address 0x4, bits [9:8]). The SDRV bits in the other three subsystems should be  
set to high impedance mode (default mode).The toggling rate of the STATS terminal is determined by the SDIV  
register (address 0x9). The SDIV register should only be updated after a device reset and before configuring the  
DAC outputs The STATS output pin toggles on every 2SDIV trigger pulse (SDIV = 0, 1, …, 6).  
7.4.2 DC Mode  
A fixed TRIGG pin puts the device in DC mode operation. In DC mode only one of the two DAC data registers is  
used to control the DAC output. If no TRIGG rising edge is detected by the device after power-up, Register A is  
by default the active register.  
22  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
7.5 Programming  
The DAC60096 is controlled through a flexible four-wire serial interface that is compatible with SPI type  
interfaces used on many microcontrollers and DSP controllers. The interface provides read/write access to all  
registers of the DAC60096.  
For simplification of the register structure, communication to the device is done at a subsystem level through the  
PTR global pointer register (address 0x6). Subsystem addressing is done through SID[1:0], where subsystem 1  
is the default setting. Access to all other registers in the device will affect only the subsystem selected by SID.  
The DAC pointer setting, DPTR[4:0], also in the PTR register allows access to the data registers (BUFA and  
BUFB) for any of the DACs in the chosen subsystem.  
Each serial interface access cycle is exactly 24 bits long. A frame is initiated by asserting the CS pin low. The  
frame ends when the CS pin is deasserted high. The frame's first byte input to SDI is the instruction cycle which  
identifies the request as a read or write, streaming or single, and the 4-bit address to be accessed. The following  
bits in the frame form the data cycle. For all writes, data are clocked on the rising edge of SCLK. On read  
access, data are clocked out on the SDO pin on either the falling edge or rising edge of SCLK according to the  
PHAINV setting in each of the four subsystems CON registers (address 0x4, bits [7:6]).  
Table 2. Serial Interface Cycle  
Bit  
Field  
Description  
23  
R/W  
Identifies the communication as a read or write command to the addressed  
register.  
R/W = 0 sets a write operation. R/W = 1 sets a read operation.  
22  
S
Identifies the communication as a streaming operation.  
S = 0 is used for single command instructions. Bit = 1 is used for streaming  
operation.  
21:18  
A[3:0]  
Register address.  
Specifies the register to be accessed during the read or write operation.  
17:16  
15:0  
Reserved  
D[15:0]  
Reserved. Set to zeros for proper operation.  
Data cycle bits.  
If a write command, the data cycle bits are the values to be written to the  
register with address A[3:0]  
If a read command, the data cycle bits are don't care values.  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
SCLK  
SDI  
R/W S=0 A3 A2 A1 A0  
0
0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
All Zeros  
Figure 35. Serial Interface Write Bus Cycle  
CS  
SCLK  
SDI  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
S=0 A3 A2 A1 A0  
All Zeros  
PHAINV = 01  
SDO  
SDO  
All Zeros  
D15 D14 D13D12D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
PHAINV = 10  
All Zeros  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Figure 36. Serial Interface Read Bus Cycle  
Copyright © 2015–2016, Texas Instruments Incorporated  
23  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
In order to simplify write or read operations to multiple DACs in a subsystem, streaming mode is supported. In  
streaming mode, multiple bytes of data can be written to or read from the DAC60096 without specifically  
providing instructions for each byte and is implemented by continually holding the CS pin active and continuing to  
shift new data in or old data out of the device.  
The DAC60096 starts reading or writing data to the DAC data register selected by the PTR register and  
automatically increments the DAC pointer (DPTR) as long as the CS pin is asserted. If the last DAC in the  
chosen subsystem has been reached and the CS pin is still asserted, the data register for this DAC will be  
overwritten with the new data.  
CS  
1
2
3
4
5
6
7
8
9
25  
41  
57  
SCLK  
SDI  
DAC N  
DAC N+1  
DAC N+2  
DAC N+3  
R/W S=1 A3 A2 A1 A0  
0
0
{D11 œ D0, 0, 0, 0, 0} {D11 œ D0, 0, 0, 0, 0} {D11 œ D0, 0, 0, 0, 0} {D11 œ D0, 0, 0, 0, 0}  
SDO  
All Zeros  
Figure 37. Serial Interface Streaming Write Cycle  
CS  
SCLK  
SDI  
1
2
3
4
5
6
7
8
9
25  
41  
57  
R/W S=1 A3 A2 A1 A0  
0
0
DAC N  
DAC N+1  
DAC N+2  
DAC N+3  
SDO  
All Zeros  
{D11 œ D0, 0, 0, 0, 0} {D11 œ D0, 0, 0, 0, 0} {D11 œ D0, 0, 0, 0, 0} {D11 œ D0, 0, 0, 0, 0}  
Figure 38. Serial Interface Streaming Read Cycle  
7.5.1 Frame Error Checking  
If the DAC60096 is used in a noisy environment, error checking can be used to check the integrity of the serial  
interface data communication between the device and the host processor. The frame error checking scheme is  
based on the CRC-CCITT-16 polynomial x16 + x12 + x5 + 1 (that is, 0x1021). The CRC register (address 0x5)  
stores the CRC computation for each single-command or streaming serial interface data write. Reading the CRC  
register resets its contents to 0xFFFF.  
Only valid data cycles are included in the CRC computation. For single-command instructions CRC is calculated  
and updated only after 16 data bits are received. If a data cycle is longer than 16 bits, the additional bits are not  
included into the CRC calculation. For streaming commands CRC is calculated and updated on the multiple 16-  
bit data cycles received. If the number of data bits received is not a multiple of 16, the modulo 16 bits are  
discarded from the CRC calculation.  
24  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
7.6 Register Maps  
Communication to the DAC60096 is done at a subsystem level. Subsystem addressing is done through the  
global pointer register, SID[1:0]. Each subsystem has 16 registers. Access to the data registers of any of the  
DACs in the chosen subsystem is done through a DAC pointer, DPTR[4:0].  
SUB-SYSTEM 4  
SUB-SYSTEM 3  
SUB-SYSTEM 2  
Reg6  
SID[1:0]  
SUB-SYSTEM 1  
DPTR[4:0]  
DAC  
Reg0  
DAC  
Active  
Register A  
Buffer  
Register  
A
...DACn  
DAC2  
0x0000  
Reg0/1  
(Asynchronous Mode)  
12-Bit  
DAC  
DAC1  
LDAC Trigger  
(Synchronous Mode)  
Clear State  
Reg4  
Reg5  
Reg7  
Reg8  
Reg9  
(Asynchronous Mode)  
CON  
CRC  
Square-Wave  
Mode  
DAC  
DAC  
Active  
Register  
B
Reg1  
Buffer  
Register  
B
SWR  
PWRM  
SDIV  
Figure 39. Register Configuration  
Table 3. Register Map  
ADDRESS  
REGISTER SETUP  
REGISTER  
TYPE  
RESET  
A3 A2 A1 A0  
D15  
D14  
D13  
D12  
D11  
D10  
BUFA  
BUFB  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
BUFA  
BUFB  
R/W  
R/W  
--  
0000  
0000  
0000  
0000  
0555  
FFFF  
0000  
0000  
CAFE  
0000  
0000  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
RESERVED  
RESERVED  
CON  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
--  
0
0
0
0
0
0
0
R/W  
R
LDAC  
SDO2x  
SDRV  
PHAINV  
CLRDAC  
0
1
APB  
CRC  
CRC  
PTR  
R
0
0
0
0
SID  
0
0
0
0
0
0
0
0
0
0
DPTR  
SWR  
R/W  
R/W  
R/W  
--  
SWR  
PWRM  
SDIV  
PWRM  
0
0
0
0
0
0
SDIV  
RESERVED  
0xA – 0xF  
------  
Copyright © 2015–2016, Texas Instruments Incorporated  
25  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
7.6.1 8.5.1 BUFA Register (address = 0x0) [reset = 0x0000]  
Figure 40. BUFA Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
BUFA  
R/W  
BUFA  
R/W  
RESERVED  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4. BUFA Register  
Bit  
Field  
Type  
Reset  
Description  
15:4  
BUFA  
R/W  
0000  
Double-buffer MSB aligned 12-bit data for DAC register A. The  
specific DAC accessed by this register must be first set by the  
subsystem address (SID) and DAC pointer (DPTR).  
3:0  
Reserved  
R/W  
0000  
Not used  
7.6.2 BUFB Register (address = 0x1) [reset = 0x0000]  
Figure 41. BUFB Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
BUFB  
R/W  
7
6
5
4
3
BUFB  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 5. BUFB Register  
Bit  
Field  
Type  
Reset  
Description  
15:4  
BUFB  
R/W  
0000  
Double-buffer MSB aligned 12-bit data for DAC register B. The  
specific DAC accessed by this register must be first set by the  
subsystem address (SID) and DAC pointer (DPTR).  
3:0  
Reserved  
R/W  
0000  
Not used  
26  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
7.6.3 CON Register (address = 0x4) [reset = 0x0555]  
Figure 42. CON Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
LDAC  
R/W  
Reserved  
R/W  
SDO2x[1:0]  
R/W  
SDRV[1:0]  
R/W  
7
6
5
4
3
PHAINV[1:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
CLRDAC[1:0]  
Reserved  
R/W  
APB[1:0]  
R/W  
R/W  
Table 6. CON Register  
Bit  
Field  
Type  
Reset  
Description  
15  
LDAC  
R/W  
0
Setting this bit to 1 issues an LDAC trigger at CS rising edge.  
Self-clearing bit.  
14:12  
11:10  
Reserved  
R/W  
R/W  
000  
01  
Not used.  
SDO2x[1:0]  
SDO 1x/2x drive strength:  
01: 1x (default)  
10: 2x  
Writing 00 or 11 has no effect  
9:8  
SDRV[1:0]  
R/W  
01  
SDRV control STATS pin drive type:  
01: Hi-Z. STATS pin is disabled (default)  
10: CMOS Push-pull output. Should only be enabled for  
subsystem 1.  
Writing 00 or 11 has no effect  
7:6  
5:4  
PHAINV[1:0]  
CLRDAC[1:0]  
R/W  
R/W  
01  
01  
PHAINV controls SDO output edge:  
01: SCLK NegEdge (default)  
10: SCLK PosEdge  
Writing 00 or 11 has no effect  
Clear DAC state control:  
01: Normal operating state (default)  
10: Clear DAC state  
Writing 00 or 11 has no effect  
3:2  
1:0  
Reserved  
APB[1:0]  
R/W  
R/W  
01  
01  
Reserved for factory use  
Auto populate B:  
01: Auto-populates BUFB with the negative value of BUFA after  
each BUFA register write. Writing to BUFB has no auto-populate  
effect (default)  
10: Disable auto populate B feature  
Writing 00 or 11 has no effect  
Copyright © 2015–2016, Texas Instruments Incorporated  
27  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
7.6.4 CRC Register (address = 0x5) [reset = 0xFFF]  
Figure 43. CRC Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
0
CRC[15:0]  
R
3
CRC[15:0]  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. CRC Register  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CRC[15:0]  
R
FFFF  
Stores the CRC computation data for each SPI data write. CRC  
includes stream writes. The address byte is not included in the  
CRC computation.  
Reading Reg CRC resets current CRC value to 0xFFFF. CRC is  
calculated when CS is enabled and the data cycle contains a  
multiple of 16 bits. The redundant data are not written into the  
register.  
CRC-CCITT polynomial is used x16 + x12 + x5 + 1, or in hex:  
0x1021 with default 0xFFFF.  
X15  
X14  
X13  
X12  
X11  
X10  
X9  
X8  
X7  
X6  
X5  
X4  
X3  
X2  
X1  
X0  
Figure 44. CRC CCITT 16  
28  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
7.6.5 PTR Register (address = 0x6) [reset = 0x0000]  
Figure 45. PTR Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
0
Reserved  
R/W  
SID[1:0]  
R/W  
Reserved  
R/W  
3
Reserved  
R/W  
DPTR[4:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. PTR Register  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
00  
Description  
15:14  
13:12  
Reserved  
SID[1:0]  
Reserved for factory use  
00  
Subsystem address:  
00: Subsystem 1  
01: Subsystem 2  
10: Subsystem 3  
11: Subsystem 4  
11:8  
7:5  
Reserved  
Reserved  
DPTR[4:0]  
R/W  
R/W  
R/W  
0000  
000  
Not used  
Reserved for factory use  
DAC pointer  
4:0  
0000  
7.6.6 SWR Register (address = 0x7) [reset = 0x0000]  
Figure 46. SWR Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SWR  
R/W  
7
6
5
4
3
SWR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. SWR Register  
Bit  
Field  
Type  
Reset  
Description  
15:0  
SWR  
R/W  
0000  
Writing 0xA5A5 to this register generates a software reset on the  
CS rising edge of the command for a subsystem. The software  
reset is similar to a hardware reset, which resets all registers  
and logic states.  
Reading this register gives the hardware version of the  
subsystem.  
Copyright © 2015–2016, Texas Instruments Incorporated  
29  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
7.6.7 PWRM Register (address = 0x6) [reset = 0xCAFE]  
Figure 47. PWRM Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
0
PWRM  
R/W  
3
PWRM  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. PWRM Register  
Bit  
Field  
Type  
Reset  
Description  
15:0  
PWRM  
R/W  
0000  
DVDD Power Monitor:  
After device power up, the PWRM register is 0xCAFE. Any  
register write to PWRM sets PWRM to 0xABBA. PWRM is reset  
to 0xCAFE after a DVDD collapse initiated POR event. Reading  
PWRM with value 0xCAFE indicates power failure or  
uninitialized value.  
The system controller can monitor PWRM to check for active  
power status. The device toggles the PWRM value after every  
PWRM register read. If the current read value is 0xABBA, the  
next read value will be 0xBAAB, and vice versa.  
The PWRM register only monitors DVDD power failure. AVCC is  
monitored by the analog reset circuit. When there is a power  
failure on AVCC all the DACs in the device go into clear state.  
7.6.8 SDIV Register (address = 0x9) [reset = 0x0000]  
Figure 48. SDIV Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
Reserved  
R/W  
7
6
5
4
3
1
Reserved  
R/W  
SDIV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. SDIV Register  
Bit  
15:3  
2:0  
Field  
Type  
R/W  
R/W  
Reset  
0000  
000  
Description  
Reserved  
SDIV  
Not Used  
Status signal toggle rate:  
STATS pin toggling rate is controlled by SDIV register. SDIV is  
valid between 0 and 6. The STATS pin toggles on every 2SDIV  
trigger pulse.  
The SDIV setting should only be updated after a device reset  
and before configuring the DAC outputs.  
30  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DAC60096 is a low-power, 96-channel, 12-bit, digital-to-analog converter (DAC). The device provides  
unbuffered bipolar voltage outputs up to ±10.5 V.  
This device is suitable for many applications involving multichannel bipolar DACs. Such applications include  
multichannel variable optical attenuators, MEMS mirror control, and ATE level drivers.  
Copyright © 2015–2016, Texas Instruments Incorporated  
31  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
8.2 Typical Application  
An example schematic incorporating the DAC60096 device is shown in Figure 49.  
U1A  
DAC60096NZHR  
AVCC  
C1  
C3  
C7  
C9  
0.1µF  
C2  
E1  
E6  
E7  
E8  
E9  
E14  
K14  
K8  
K9  
K6  
K7  
K1  
F7  
J14  
H13  
H12  
J13  
K13  
L13  
M13  
M12  
N13  
P12  
P13  
P14  
P8  
AVCC_G1  
AVCC_G2  
AVCC_G2  
AVCC_G3  
AVCC_G3  
AVCC_G4  
AVCC_G5  
AVCC_G6  
AVCC_G6  
AVCC_G7  
AVCC_G7  
AVCC_G8  
AVCC_S1  
AVCC_S2  
AVCC_S3  
AVCC_S4  
NC  
DAC3_G5  
DAC4_G5  
DAC5_G5  
DAC6_G5  
DAC7_G5  
DAC8_G5  
DAC9_G5  
DAC10_G5  
DAC11_G5  
DAC12_G5  
DAC13_G5  
DAC14_G6  
DAC15_G6  
DAC16_G6  
DAC17_G6  
DAC18_G6  
DAC19_G6  
DAC20_G6  
DAC21_G6  
DAC22_G6  
DAC23_G6  
DAC24_G6  
NC  
0.1µF  
J12-1  
J12-2  
DVDD  
0.1µF  
J12-5  
J12-6  
C4  
1µF  
C5  
0.1µF  
C6  
0.1µF  
C8  
0.1µF  
0.1µF  
J12-8  
J12-9  
J12-13  
J12-18  
J12-21  
J12-19  
J12-17  
J12-28  
J12-27  
J12-26  
J12-23  
J12-22  
J12-20  
J12-14  
J12-11  
J12-12  
J12-16  
J12-15  
DGND  
0.1µF  
AVCC  
C10  
0.22µF  
C12  
0.22µF  
C17  
0.1µF  
C11  
C16  
0.22µF  
0.22µF  
F8  
P9  
C13  
10µF  
C14  
1µF  
C15  
0.1µF  
J8  
J7  
P10  
P11  
N11  
N12  
M11  
L12  
L11  
K12  
J12  
J11  
PWR_GND  
PWR_GND  
AVSS  
C18  
C20  
C25  
C27  
0.1µF  
C19  
B1  
B6  
B7  
B8  
B9  
B14  
N14  
N8  
N9  
N6  
N7  
N1  
F6  
AVSS_G1  
AVSS_G2  
AVSS_G2  
AVSS_G3  
AVSS_G3  
AVSS_G4  
AVSS_G5  
AVSS_G6  
AVSS_G6  
AVSS_G7  
AVSS_G7  
AVSS_G8  
AVSS_S1  
AVSS_S2  
AVSS_S3  
AVSS_S4  
AVSS  
0.1µF  
0.1µF  
C21  
10µF  
C22  
1µF  
C23  
0.1µF  
C24  
0.1µF  
C26  
0.1µF  
0.1µF  
H11  
NC  
K11  
K4  
K5  
L5  
DAC1_G7  
DAC2_G7  
DAC3_G7  
DAC4_G7  
DAC5_G7  
DAC6_G7  
DAC7_G7  
DAC8_G7  
DAC9_G7  
DAC10_G7  
DAC11_G7  
DAC12_G7  
DAC13_G7  
DAC14_G8  
DAC15_G8  
DAC16_G8  
DAC17_G8  
DAC18_G8  
DAC20_G8  
DAC19_G8  
DAC21_G8  
DAC22_G8  
DAC23_G8  
DAC24_G8  
DAC25_G8  
DAC26_G8  
J12-10  
J14-21  
J14-7  
PWR_GND  
0.1µF  
J14-3  
C28  
0.22µF  
C30  
0.22µF  
C32  
0.1µF  
M10  
M5  
N10  
N4  
N5  
P4  
P5  
P6  
P7  
P1  
P2  
P3  
N3  
N2  
M2  
M3  
M4  
L2  
J12-24  
J14-4  
C29  
C31  
0.22µF  
0.22µF  
F9  
J9  
J12-25  
J14-9  
J6  
J14-6  
J14-8  
DGND  
PWR_GND REF_GND AGND  
DVDD  
J14-5  
J14-2  
PWR_GND  
C33  
0.22µF  
C35  
0.22µF  
G7  
G8  
H7  
H8  
DVDD  
DVDD  
DVDD  
DVDD  
C34  
J14-1  
DGND  
0.22µF  
J14-14  
J14-12  
J14-10  
J14-11  
J14-13  
J14-19  
J14-16  
J14-15  
J14-20  
J14-22  
J14-17  
J14-18  
J14-23  
AVCC  
C36  
0.22µF  
U2  
2
6
5
3
4
G1  
H1  
VIN  
VOUT  
TRIM/NR  
TEMP  
REF1  
C37  
0.1µF  
REFGND1  
REF2  
C38  
10µF  
C39  
0.1µF  
7
C40  
NC  
C41  
1µF  
G14  
H14  
8
1
10µF  
DNC  
DNC  
C42  
0.1µF  
K2  
L3  
GND  
REFGND2  
PWR_GND  
REF5025IDGK  
G6  
G9  
H6  
H9  
L4  
DGND  
DGND  
DGND  
DGND  
REF_GND  
REF_GND  
K3  
DVDD  
DGND  
J1  
1
3
5
7
9
2
TP1  
4
J2 142-0701-201  
1
SDI  
/LDAC  
6
SCLK  
SDO  
STATS  
/CLEAR  
/CS  
/RESET  
8
10  
R1  
R2  
R3  
R4  
R5  
10.0k  
10.0k  
10.0k  
10.0k  
100k  
DGND  
DVDD  
TSW-105-07-G-D  
AGND  
DGND  
PWR_GND  
PWR_GND  
Figure 49. Example Schematic  
32  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
8.2.1 Design Requirements  
Figure 49 uses the parameters shown in Table 12.  
Table 12. Design Parameters  
PARAMETER  
AVCC  
VALUE  
12 V  
5 V  
DVDD  
AVSS  
–12 V  
2.5 V  
2.5 V  
REF1  
REF2  
8.2.2 Detailed Design Procedure  
The following sections display components and applications that may facilitate the design process.  
8.2.2.1 Power-Supply Bypassing  
For accurate, high-resolution performance, all power supply pins should be bypassed to ground with low ESR  
ceramic bypass capacitors. For additional noise filtering, use a 10-µF capacitor in parallel with a 0.1-µF  
capacitor.  
8.2.2.2 Reference Input  
The internal reference buffers of the DAC60096 device require an external 2.5-V reference voltage source, which  
can be driven externally through a precision voltage source or generated from a high precision voltage IC. One  
such integrated circuit is the REF5025, which is a low-noise, low-drift, high precision voltage reference. The basic  
connections are listed in Figure 50. A supply bypass capacitor ranging between 1 µF to 10 µF is recommended.  
A 1-µF to 50-µF output capacitor must be connected from VOUT to GND. The ESR value of the output capacitor  
must be less than or equal to 1.5 to ensure output stability. To help minimize noise, an additional 1-µF  
capacitor is connected from TRIM/NR to GND.  
AVCC  
U2  
2
7
6
5
3
4
VIN  
VOUT  
TRIM/NR  
TEMP  
REFOUT  
C24  
10µF  
C26  
0.1µF  
C27  
10µF  
NC  
C28  
1µF  
8
1
DNC  
DNC  
GND  
PWR_GND  
REF5025IDGK  
REF_GND  
Figure 50. External Reference  
8.2.2.3 TRIGG/Signal Conditioning  
The TRIGG input signal provides the square waveform required for the DAC60096 device to operate as a  
square-wave generator. The DAC registers are prepared for square wave operation on a TRIGG rising edge and  
the outputs toggle on the falling edge. The Timing Requirements(1)(2) table specifies the timing parameters  
required for proper operation.  
The TRIGG input signal can be supplied from a waveform generator or voltage-to-frequency converter. An  
example device with schematic is provided in Figure 51. The device highlighted is the LM231, a precision  
voltage-to-frequency converter with wide range of full-scale frequency (1 Hz to 100 kHz). In Figure 51 the device  
is configured to display 0.05% linearity over an output frequency range of 10 Hz to 4 kHz with and input range of  
25 mV to 12.5 V. For more information, refer to the Typical Applications section of the LM231 datasheet  
(SNOSBI2).  
(1) Specified by design and characterization. Not tested during production.  
(2) SDO loaded with 10-pF load capacitance for SDO timing specifications.  
Copyright © 2015–2016, Texas Instruments Incorporated  
33  
 
 
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
DVDD  
RS  
12 kΩ  
5K Gain Adjust  
10 kΩ  
U1  
REF I  
To DAC60096 TRIG Input  
Freq_Out  
2
6
7
8
3
1
5
4
FREQ OUT  
I OUT  
GND  
THR  
THR  
THR  
RIN  
100 kΩ  
COMP IN  
R/C  
CL  
1 μF  
+Vs  
RL  
100 kΩ  
VS  
GND  
VIN  
Vs  
CIN  
0.1 μF  
LM231AN  
22 kΩ  
GND  
Rt  
6.8 kΩ  
GND  
Ct  
0.01 μF  
47 Ω  
Vs  
(Optional) Offset Adjust  
GND  
GND  
-All resistors 1% tolerance  
-Caps with low dielectric absorption: NP0, C0G, polystyrene, and so on.  
fout = (VIN / 2.09 V) ´ (RS / RL) ´ (1 / (Rt ´ Ct))  
Figure 51. External Precision Voltage-to-Frequency Converter for TRIGG Signal  
8.2.2.4 External Amplifier Selection  
The outputs of the DAC60096 are unbuffered. The output impedance is specified as 41 k. In applications  
requiring an external buffer, the selected amplifier should exhibit both low-offset voltage and input bias current.  
The input bias current of the amplifier creates a potential across the DAC output impedance. This voltage error is  
equivalent to the input bias current multiplied by the DAC output impedance value. For fast settling, the slew rate  
of the operational amplifier should not impede the settling time of the DAC. Output impedance of the DAC is  
constant and code-independent, but in order to minimize gain errors the input impedance of the output amplifier  
should be as high as possible. Additionally, the amplifier adds another time constant, which increases the settling  
time response of the system. A higher 3-dB bandwidth amplifier effectively shortens the settling time, and  
additionally increases the bandwidth of the system.  
VCC  
1
8
U1  
OPA277U  
6
2
3
5
Final Output  
DACOUT  
VSS  
Figure 52. DAC Output With External Amplifier in Voltage-Follower Configuration  
8.2.2.5 Unbuffered Settling Response  
For applications that use the unbuffered output, the typical settling response for different capacitive loads is  
displayed in Figure 53.  
34  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
8.2.3 Application Curves  
500  
400  
300  
200  
100  
0
200  
400  
600  
800  
1000  
Capacitive Load (pF)  
C012  
Figure 53. DAC Settling Time vs Capacitive Load  
Copyright © 2015–2016, Texas Instruments Incorporated  
35  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
It is highly recommended that AVCC is supplied prior to AVSS. DVDD sequencing is not critical. The recommended  
sequence is AVCC followed by AVSS with DVDD and the REF[1,2] inputs applied last.  
Table 13. Input-Voltage Recommendations  
MIN  
11.2  
–12.6  
3
TYP  
12  
MAX  
12.6  
–11.2  
5.5  
UNIT  
AVCC  
V
V
V
V
AVSS  
–12  
3.3  
24  
Supply voltage  
DVDD  
AVCC to AVSS  
22.4  
25.2  
EXTERNAL REFERENCE INPUTS  
VREF  
Reference input voltage  
REF1 and REF2 input pins  
2.475  
2.5  
2.525  
V
9.1 Device Reset Options  
9.1.1 Power-on-Reset (POR)  
The DAC60096 includes a power-on reset function. After the DVDD supply has been established a POR event is  
issued. The POR causes all registers to initialize to their default values and communication with the device is  
valid only after a 250 µs power-on-reset delay. The default value for all DACs is zero-code.  
A power failure on DVDD also results in a power-on-reset event. The PWRM register (address 0x8) can be used  
to monitor a DVDD power failure. After power-up the PWRM register is set to 0xCAFE. Any register write to the  
PWRM register changes its contents to 0xABBA. If a PWRM register read returns 0xCAFE either the PWRM  
register has not been initialized or a DVDD power failure has occured.  
The device also includes an AVCC power failure detection circuit. In contrast to a DVDD power failure, a collapse  
in AVCC does not result in a reset event. An AVCC power failure forces all DACs to go into clear state but does  
not reset the DAC data register values which enables the device to return to normal operation once AVCC  
recovers. Even though the DACs are loaded with zero-code during an AVCC power failure, it is important to note  
that this does not necessarily indicate the DAC outputs will be at 0 V due to AVCC being outside of its supply  
voltage range.  
As long as DVDD and AVCC remain above their specified high threshold a power failure event will not occur. In  
order to ensure a DVDD or AVCC collapse is registered as such by the device, these supplies must be below their  
corresponding low threshold for at least 1 ms. When the supplies drop below their high threshold but remain over  
the lower one (shown as the undefined region of Figure 54 and Figure 55), the device may or may not reset  
(DVDD) or go into clear state (AVCC) under all specified temperature and power-supply conditions.  
36  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
Device Reset Options (continued)  
AVCC (V)  
12.6  
DVDD (V)  
5.5  
Specified Supply  
Voltage Range  
11.2  
Specified Supply  
Voltage Range  
Normal State  
bo tower-hn ꢀeseꢁ  
2.7  
2.2  
6
4
Undefined  
Clear State  
Ündefined  
0.7  
tower-hn ꢀeseꢁ  
0
0
Figure 54. Threshold Levels for DVDD POR Circuit  
9.1.2 Hardware Reset  
Figure 55. Threshold Levels for AVCC Clear Circuit  
A device hardware reset event is initiated by a minimum 500 ns logic low on the RESET pin. A hardware reset  
causes all registers to initialize to their default values and communication with the device is valid only after a 50  
µs reset delay. The default value for all DACs is zero-code.  
9.1.3 Software Reset  
A subsystem software reset event is initiated by writing 0xA5A5 to the SWR register (address 0x7) for that  
particular subsystem. The software reset command is triggered on the CS rising edge of the instruction. As with  
the hardware reset, a software reset causes all registers to initialize to their default values and communication  
with the device is valid only after a 50 µs. Note, however, that the reset only applies to the subsystem being  
addressed during the command. In order to reset the entire device as a hardware reset does, a software reset  
command should be issued to each of the four subsystems in the device.  
Copyright © 2015–2016, Texas Instruments Incorporated  
37  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Bypass all power-supply pins to ground with a low ESR ceramic bypass capacitor. The typical recommended  
bypass capacitance is 0.1-µF to 0.22-µF ceramic with a X7R or NP0 dielectric.  
Place power supplies and VREFH/L bypass capacitors close to pins to minimize inductance and optimize  
performance. Inner supply and reference pads can connect to the bypass arrangement on the bottom layer of  
the PCB through vias to minimize trace length. This is illustrated in Figure 56 and Figure 59.  
Include a 100-nF bypass capacitor for both internal reference inputs between this pin and their respective  
ground pins.  
Use a high-quality ceramic type NP0 or X7R for optimal performance across temperature, and low dissipation  
factor.  
Make sure that the digital and analog sections have proper placement with respect to the digital pins and  
analog pins of the DAC60096 device. The separation of analog and digital blocks allow for better design and  
practice because it reduces coupling into neighboring blocks, and minimizes the interaction between analog  
and digital return currents.  
10.2 Layout Examples  
10.2.1 Optimal Layout Example  
Optimal layout requires the addition of blind vias. This layout reduces trace length and brings the bypass  
capacitor arrangements closer to the device pads. Figure 56 to Figure 59 show the board layouts.  
38  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
Layout Examples (continued)  
Place Bypass Capacitors  
Close to Supply and  
Reference Pins  
1 2 3 4  
6 7 8 9  
5
1. 0.1uF  
2. 0.15uF  
3. 0.15uF  
4. 0.1uF  
5. 0.1uF  
6. 0.1uF  
7. 0.15uF  
8. 0.15uF  
9. 0.1uF  
10. 0.1uF  
11. 0.15uF  
12. 0.15uF  
13. 0.1uF  
14. 0.1uF  
15. 0.1uF  
16. 0.15uF  
17. 0.15uF  
18. 0.1uF  
Pin 1  
14  
15 16 17 18  
10 11 12 13  
Figure 56. DAC60096 Example Board Layout – Top Layer PCB  
Copyright © 2015–2016, Texas Instruments Incorporated  
39  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
Layout Examples (continued)  
Figure 57. DAC60096 Example Board Layout – Internal AVCC and AVSS Plane  
40  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
Layout Examples (continued)  
Figure 58. DAC60096 Example Board Layout – DVDD Internal Plane With Select DAC Outputs  
Copyright © 2015–2016, Texas Instruments Incorporated  
41  
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
Layout Examples (continued)  
Figure 59. DAC60096 Example Board Layout – Bottom Layer PCB.  
(A): Bypass Capacitor Arrangement; (B) Polygon Pours; (C) PAD With Pours  
42  
Copyright © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
Layout Examples (continued)  
10.2.2 Standard Layout Example  
Only through-hole vias are included in this layout. Bypass capacitors are placed as close to their respective  
device pads. Bottom bypass brought out from device. This layout can lead to increased trace length, which will  
increase the series inductance of the net making it more susceptible to noise and voltage spikes. Figure 60 to  
Figure 61 show the board layouts.  
Figure 60. DAC60096 Example Board Layout – Top Layer  
Copyright © 2015–2016, Texas Instruments Incorporated  
43  
 
DAC60096  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
www.ti.com.cn  
Layout Examples (continued)  
Figure 61. DAC60096 Example Board Layout – Bottom Layer  
44  
版权 © 2015–2016, Texas Instruments Incorporated  
DAC60096  
www.ti.com.cn  
ZHCSEG7A DECEMBER 2015REVISED JANUARY 2016  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
LM231 数据表》,SNOSBI2  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
SPI is a trademark of Motorola Inc.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧导航栏。  
版权 © 2015–2016, Texas Instruments Incorporated  
45  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC60096IZEB  
ACTIVE  
NFBGA  
ZEB  
196  
126  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
DAC60096  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
DAC60096IZEB  
ZEB  
NFBGA  
196  
126  
7 X 18  
150  
315 135.9 7620 17.2  
11.3 16.35  
Pack Materials-Page 1  
PACKAGE OUTLINE  
ZEB0196A  
NFBGA - 1.48 mm max height  
SCALE 0.900  
PLASTIC BALL GRID ARRAY  
15.1  
14.9  
A
B
BALL A1 CORNER  
15.1  
14.9  
1.48 MAX  
C
SEATING PLANE  
0.12 C  
0.43  
0.25  
TYP  
BALL TYP  
13 TYP  
SYMM  
(1) TYP  
(1) TYP  
SYMM  
P
N
M
L
K
J
13  
H
G
F
TYP  
E
D
C
0.51  
196X  
0.41  
0.15  
0.08  
C A  
C
B
B
A
1 TYP  
1
2
3
4
5
6 9 10 11 12 13 14  
7
8
1 TYP  
BALL A1 CORNER  
4221792/B 12/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZEB0196A  
NFBGA - 1.48 mm max height  
PLASTIC BALL GRID ARRAY  
(1) TYP  
196X ( 0.45)  
3
4
7
9
1
2
5
6
8
10 11  
12 13 14  
A
B
C
(1) TYP  
D
E
F
SYMM  
G
H
J
K
L
M
N
P
SYMM  
LAND PATTERN EXAMPLE  
SCALE:6X  
METAL UNDER  
SOLDER MASK  
0.05 MAX  
0.05 MIN  
(
0.45)  
METAL  
(
0.45)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221792/B 12/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZEB0196A  
NFBGA - 1.48 mm max height  
PLASTIC BALL GRID ARRAY  
196X ( 0.45)  
(1) TYP  
3
4
7
9
1
2
5
6
8
10 11  
12 13 14  
A
B
C
(1) TYP  
D
E
F
SYMM  
G
H
J
K
L
M
N
P
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:6X  
4221792/B 12/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DAC600AN

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.015us Settling Time, PQCC68,
BB

DAC600BN

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.015us Settling Time, PQCC68,
BB

DAC601H

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.015us Settling Time, CDIP28,
BB

DAC601HSQ

PARALLEL, WORD INPUT LOADING, 0.015us SETTLING TIME, 12-BIT DAC, CDIP28
TI

DAC601HSQ

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.015us Settling Time, CDIP28,
BB

DAC601P

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.015us Settling Time, PDIP28,
BB

DAC601PB

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.015us Settling Time, PDIP28,
BB

DAC601U

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.015us Settling Time, PDSO28,
BB

DAC601UB

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.015us Settling Time, PDSO28,
BB

DAC602H

D/A Converter, 1 Func, Parallel, Word Input Loading, 4us Settling Time, CDIP28,
BB

DAC602H

PARALLEL, WORD INPUT LOADING, 4us SETTLING TIME, 12-BIT DAC, CDIP28, 0.300 INCH, HERMETIC SEALED, SIDE BRAZED, DIP-28
TI

DAC602HSQ

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.015us Settling Time, CDIP28,
BB