DAC63202RTER [TI]

具有 I²C 和 SPI 的双通道、12 位、输入和输出电压智能 DAC | RTE | 16 | -40 to 125;
DAC63202RTER
型号: DAC63202RTER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I²C 和 SPI 的双通道、12 位、输入和输出电压智能 DAC | RTE | 16 | -40 to 125

文件: 总85页 (文件大小:3371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
DACx3202 带自动检测I2CPMBus™ SPI 接口12 10 位双路电压和  
电流输出智DAC  
1 特性  
2 应用  
• 具有灵活配置的可编程电压或电流输出  
– 电压输出:  
机架式服务器  
光学模块  
数据中心间互联地铁)  
高性能计算  
标准笔记本电脑  
1 LSB INL DNL10 8 )  
1x1.5x2x3x 4x 增益  
– 电流输出:  
3 说明  
1LSB INL DNL8 )  
±25 μA±50 μA±125 μA±250 μA  
输出范围选项  
12 DAC63202 10 DAC53202 (DACx3202) 是  
引脚兼容系列双通道、缓冲型、电压输出和电流输出智  
能数模转换器 (DAC)。这些 DACx3202 器件支持高阻  
态断电模式并在断电情况下支持高阻态输出。DAC  
输出提供一个强制检测选项可用作可编程比较器和电  
流阱。得益于多功能 GPIO、函数生成和 NVM此类  
DAC 可用于无处理器的 应用和设计复用。这些器  
件自动检测 I2CPMBus SPI 接口并包含内部基  
准。  
• 适合所有通道的可编程比较器模式  
VDD 关闭时提供高阻抗输出  
• 高阻抗和电阻下拉断电模式  
50MHz SPI 兼容型接口  
• 自动检测I2CPMBusSPI 接口  
1.62V VIH (VDD = 5.5V)  
• 可配置为多种功能的通用输入/(GPIO)  
• 生成预定义的波形正弦波、余弦波、三角形波、  
锯齿波  
• 用户可编程的非易失性存储(NVM)  
• 内部、外部或电源作为基准  
• 宽工作电压范围:  
这些功能集与微型封装和低功耗相结合使这些智能  
DAC 成为电压裕量和调节、偏置和校准用直流设定点  
以及波形生成等应用的理想选择。  
器件信息  
器件型号  
封装(1)  
封装尺寸标称值)  
– 电源1.8V 5.5V  
– 温度-40˚C +125˚C  
DACx3202  
WQFN (16)  
3.00mm x 3.00mm  
• 微型封装16 WQFN (3mm × 3mm)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VDD  
10 k  
0.1 μ  
1.5 μ  
VREF  
CAP  
LDO  
L
VIN  
IN  
PH  
VOUT  
Internal  
Reference  
NVM  
SCL/SYNC  
SDA/SCLK  
A0/SDI  
BOOT  
R1  
SMPS / LDO  
GND  
CL  
CB  
R3  
VFB  
R2  
DAC  
REG  
DAC  
BUF  
VOUT/  
IOUT  
SENSE  
R3  
DAC  
REG  
DAC  
BUF  
VOUT/  
IOUT  
PROTECT  
Output Configuration  
Logic  
Power-supply: 0  
Power-supply: 1  
DACx3202  
AGND  
使DACx3202 实现电压裕量和调节  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASF47  
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
Table of Contents  
6.19 Typical Characteristics: Comparator.......................26  
6.20 Typical Characteristics: General............................. 27  
7 Detailed Description......................................................28  
7.1 Overview...................................................................28  
7.2 Functional Block Diagram.........................................28  
7.3 Feature Description...................................................29  
7.4 Device Functional Modes..........................................30  
7.5 Programming............................................................ 47  
7.6 Register Map.............................................................55  
8 Application and Implementation..................................73  
8.1 Application Information............................................. 73  
8.2 Typical Application.................................................... 73  
9 Power Supply Recommendations................................77  
10 Layout...........................................................................77  
10.1 Layout Guidelines................................................... 77  
10.2 Layout Example...................................................... 77  
11 Device and Documentation Support..........................78  
11.1 Documentation Support.......................................... 78  
11.2 接收文档更新通知................................................... 78  
11.3 支持资源..................................................................78  
11.4 Trademarks............................................................. 78  
11.5 Electrostatic Discharge Caution..............................78  
11.6 术语表..................................................................... 78  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics: Voltage Output...................7  
6.6 Electrical Characteristics: Current Output...................9  
6.7 Electrical Characteristics: Comparator Mode............10  
6.8 Electrical Characteristics: General............................11  
6.9 Timing Requirements: I2C Standard Mode............... 12  
6.10 Timing Requirements: I2C Fast Mode.....................12  
6.11 Timing Requirements: I2C Fast Mode Plus............. 12  
6.12 Timing Requirements: SPI Write Operation............13  
6.13 Timing Requirements: SPI Read and Daisy  
Chain Operation (FSDO = 0).......................................13  
6.14 Timing Requirements: SPI Read and Daisy  
Chain Operation (FSDO = 1).......................................13  
6.15 Timing Requirements: GPIO...................................15  
6.16 Timing Diagrams.....................................................15  
6.17 Typical Characteristics: Voltage Output.................. 17  
6.18 Typical Characteristics: Current Output.................. 22  
Information.................................................................... 78  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
May 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
5 Pin Configuration and Functions  
FB0  
OUT0  
NC  
1
2
3
4
12  
11  
10  
9
FB1  
OUT1  
NC  
Thermal Pad  
NC  
NC  
Not to scale  
5-1. RTE (16-pin WQFN) Package, Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Voltage feedback pin for channel 0.  
1
FB0  
Input  
In voltage-output mode, connect to OUT0 for closed-loop amplifier output.  
In current-output mode, keep the FB0 pin unconnected to minimize leakage current.  
2
3
4
OUT0  
NC  
Output  
NC  
Analog output voltage from DAC channel 0.  
No connection. Leave the pin unconnected.  
No connection. Leave the pin unconnected.  
NC  
NC  
General-purpose input/output configurable as LDAC, PD, PROTECT, RESET, SDO, and STATUS.  
5
6
7
8
GPIO/SDO  
SCL/SYNC  
A0/SDI  
Input/Output For STATUS and SDO, connect the pin to the IO voltage with an external pullup resistor.  
If unused, connect the GPIO pin to VDD or AGND using an external resistor. This pin can ramp up before VDD.  
I2C serial interface clock or SPI chip select input. This pin must be connected to the IO voltage using an external  
pullup resistor. This pin can ramp up before VDD.  
Output  
Address configuration pin for I2C or serial data input for SPI.  
Input  
For A0, connect this pin to VDD, AGND, SDA, or SCL for address configuration (7.5.2.2.1).  
For SDI, this pin does not need to be pulled up or pulled down. This pin can ramp up before VDD.  
Bidirectional I2C serial data bus or SPI clock input. This pin must be connected to the IO voltage using an external  
pullup resistor in I2C mode. This pin can ramp up before VDD.  
SDA/SCLK  
Input/Output  
9
NC  
NC  
NC  
NC  
No connection. Leave the pin unconnected.  
No connection. Leave the pin unconnected.  
Analog output voltage from DAC channel 1.  
10  
11  
OUT1  
Output  
Voltage feedback pin for channel 1.  
12  
FB1  
Input  
In voltage-output mode, connect to OUT1 for closed-loop amplifier output.  
In current-output mode, keep the FB1 pin unconnected to minimize leakage current.  
13  
14  
15  
CAP  
AGND  
VDD  
Power  
Ground  
Power  
External bypass capacitor for the internal LDO. Connect a capacitor (approximately 1.5 μF) between CAP and AGND.  
Ground reference point for all circuitry on the device.  
Supply voltage.  
External reference input. Connect a capacitor (approximately 0.1 μF) between VREF and AGND.  
Use a pullup resistor to VDD when the external reference is not used. This pin must not ramp up before VDD. In case  
an external reference is used, make sure the reference ramps up after VDD.  
16  
VREF  
Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Thermal  
pad  
Thermal Pad  
Ground  
Connect the thermal pad to AGND.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
10  
40  
65  
MAX  
6
UNIT  
V
VDD  
Supply voltage, VDD to AGND  
Digital inputs to AGND  
CAP to AGND  
VDD + 0.3  
1.65  
V
V
VFBX to AGND  
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
10  
V
VOUTX to AGND  
V
VREF  
External reference, VREF to AGND  
Current into any pin except the OUTx pins  
Junction temperature  
Storage temperature  
V
mA  
°C  
°C  
TJ  
150  
Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.7  
NOM  
MAX UNIT  
VDD  
VREF  
VIH  
Positive supply voltage to ground (AGND  
)
5.5  
V
V
External reference to ground (AGND  
)
1.7  
VDD  
1.62  
V
Digital input high voltage, 1.7 V < VDD 5.5 V  
Digital input low voltage  
VIL  
0.4  
15  
V
CCAP  
TA  
External capacitor on CAP pin  
Ambient temperature  
0.5  
μF  
°C  
125  
40  
6.4 Thermal Information  
DACx3202  
THERMAL METRIC(1)  
RTE (WQFN)  
UNIT  
16 PINS  
49  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
50  
24.1  
1.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
24.1  
ΨJB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
 
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
DACx3202  
RTE (WQFN)  
16 PINS  
THERMAL METRIC(1)  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
8.7  
°C/W  
(1) For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
6.5 Electrical Characteristics: Voltage Output  
at 1.7 V VDD 5.5 V, DAC reference tied to VDD, gain = 1x, DAC output pin (OUT) loaded with resistive load (RL =  
5 kΩto AGND) and capacitive load (CL = 200 pF to AGND), digital inputs at VDD or AGND, and all minimum and maximum  
specifications at 40°C TA +125°C and typical specifications at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC PERFORMANCE  
DAC63202  
DAC53202  
DAC63202  
DAC53202  
12  
10  
Resolution  
Bits  
4
1
4  
1  
1  
INL Integral nonlinearity(1)  
LSB  
LSB  
DNL Differential nonlinearity(1)  
1
Code 0d into DAC, external reference, VDD = 5.5 V  
6
6
12  
Zero-code error(4)  
mV  
Code 0d into DAC, internal VREF, gain = 4x,  
VDD = 5.5 V  
15  
Zero-code error temperature  
coefficient(4)  
Code 0d into DAC  
±10  
0.3  
µV/°C  
1.7 V VDD < 2.7 V, FBx pin shorted to OUTx, DAC  
code: 32d for 12-bit resolution, 8d for 10-bit resolution  
0.75  
0.5  
0.75  
0.5  
Offset error(4) (6)  
%FSR  
2.7 V VDD 5.5 V, FBx pin shorted to OUTx,  
DAC code: 32d for 12-bit resolution, 8d for 10-bit  
resolution  
0.25  
Offset-error temperature  
coefficient(4)  
FBx pin shorted to OUTx, DAC code: 32d for  
12-bit resolution, 8d for 10-bit resolution  
±0.0003  
0.25  
%FSR/°C  
%FSR  
Between end-point codes: 32d to 4064d for 12-bit  
resolution, 8d to 1016d for 10-bit resolution  
Gain error(4)  
0.5  
0.5  
Gain-error temperature  
coefficient(4)  
Between end-point codes: 32d to 4064d for 12-bit  
resolution, 8d to 1016d for 10-bit resolution  
±0.0008  
%FSR/°C  
1
1.7 V VDD < 2.7 V, DAC at full-scale  
2.7 V VDD 5.5 V, DAC at full-scale  
1  
Full-scale error(4) (6)  
%FSR  
0.5  
0.5  
Full-scale-error temperature  
coefficient(4)  
DAC at full-scale  
±0.0008  
%FSR/°C  
OUTPUT  
Output voltage  
Reference tied to VDD  
0
VDD  
200  
V
RL = infinite, phase margin = 30°  
Phase margin = 30°  
CL  
Capacitive load(2)  
pF  
1000  
VDD = 1.7 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
15  
50  
60  
VDD = 2.7 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
Short-circuit current  
mA  
V
VDD = 5.5 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
To VDD (DAC output unloaded, internal reference =  
1.21 V), VDD 1.21 V gain + 0.2 V  
0.2  
0.8  
To VDD and AGND (DAC output unloaded, external  
reference at VDD, gain = 1x, the VREF pin is not  
shorted to VDD)  
Output-voltage headroom(2)  
%FSR  
To VDD and AGND (ILOAD = 10 mA at VDD = 5.5 V, ILOAD  
= 3 mA at VDD = 2.7 V, ILOAD = 1 mA at VDD = 1.8 V),  
external reference at VDD, gain = 1x, the VREF pin is  
not shorted to VDD  
10  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics: Voltage Output (continued)  
at 1.7 V VDD 5.5 V, DAC reference tied to VDD, gain = 1x, DAC output pin (OUT) loaded with resistive load (RL =  
5 kΩto AGND) and capacitive load (CL = 200 pF to AGND), digital inputs at VDD or AGND, and all minimum and maximum  
specifications at 40°C TA +125°C and typical specifications at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
400  
325  
TYP  
MAX  
UNIT  
DAC output enabled, internal reference (gain = 1.5x or  
2x) or external reference at VDD (gain = 1x), the VREF  
pin is not shorted to VDD  
500  
600  
ZO  
VFB dc output impedance(3)  
kΩ  
DAC output enabled, internal VREF, gain = 3x or 4x  
400  
485  
Power supply rejection ratio  
(dc)  
Internal VREF, gain = 2x, DAC at midscale,  
VDD = 5 V ±10%  
0.25  
mV/V  
µs  
DYNAMIC PERFORMANCE  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to  
10%FSR, VDD = 5.5 V  
20  
25  
tsett Output voltage settling time  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to  
10%FSR, VDD = 5.5 V, internal VREF, gain = 4x  
Slew rate  
VDD = 5.5 V  
0.3  
75  
V/µs  
mV  
At startup (DAC output disabled)  
At startup (DAC output disabled), RL = 100 kΩ  
Power-on glitch magnitude  
200  
DAC output disabled to enabled (DAC registers at zero  
scale), RL = 100 kΩ  
Output-enable glitch  
magnitude  
250  
50  
mV  
f = 0.1 Hz to 10 Hz, DAC at midscale, VDD = 5.5 V  
Output noise voltage (peak to  
peak)  
Vn  
µVPP  
Internal VREF, gain = 4x, f = 0.1 Hz to 10 Hz,  
DAC at midscale, VDD = 5.5 V  
90  
f = 1 kHz, DAC at midscale, VDD = 5.5 V  
0.35  
0.9  
Output noise density  
µV/Hz  
Internal VREF, gain = 4x, f = 1 kHz, DAC at midscale,  
VDD = 5.5 V  
Internal VREF, gain = 4x, 200-mV 50-Hz or 60-Hz sine  
wave superimposed on power supply voltage, DAC at  
midscale  
Power supply rejection ratio  
(ac)(3)  
-68  
dB  
±1-LSB change around midscale (including  
feedthrough)  
Code change glitch impulse  
10  
15  
nV-s  
mV  
Code change glitch impulse  
magnitude  
±1-LSB change around midscale (including  
feedthrough)  
POWER  
Normal operation, DACs at full scale, digital pins static,  
IDD  
Current flowing into VDD(4) (5) external reference at VDD but the VREF pin is not  
shorted to VDD  
150  
µA/ch  
(1) Measured with DAC output unloaded. For external reference and internal reference VDD 1.21 x gain + 0.2 V, between end-point  
codes: 32d to 4064d for 12-bit resolution, 8d to 1016d for 10-bit resolution.  
(2) Specified by design and characterization, not production tested.  
(3) Specified with 200-mV headroom with respect to reference value when internal reference is used.  
(4) Measured with DAC output unloaded.  
(5) The total power consumption is calculated by IDD x (total number of channels powered on) + (sleep-mode current).  
(6) When a DAC channel is configured in IOUT mode for long term and then switched to VOUT mode, the VOUT mode can show  
parametric drift.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
6.6 Electrical Characteristics: Current Output  
at 1.7 V VDD 5.5 V, ±250-µA output range, digital inputs at VDD or AGND, and all minimum and maximum  
specifications at 40°C TA +125°C and typical specifications at TA = 25°C (unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
8
1  
1  
Bits  
LSB  
INL Integral nonlinearity  
DNL Differential nonlinearity  
Offset error  
DAC codes between 0d and 255d  
DAC codes between 0d and 255d  
DAC at midscale  
1
1
LSB  
±1  
%FSR  
%FSR  
Gain error  
DAC codes between 0d and 255d  
±1.3  
OUTPUT  
Output compliance voltage(1)  
To VDD and AGND  
400  
60  
mV  
ZO  
IOUT dc output impedance(2)  
DAC at midscale, DAC output kept at VDD/2  
MΩ  
Power supply rejection ratio  
(dc)  
DAC at midscale, all bipolar ranges, VDD changed from  
4.5 V to 5.5 V  
0.23  
60  
LSB/V  
µs  
DYNAMIC PERFORMANCE  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to 1 LSB  
at 8-bit resolution, VDD = 5.5 V, common-mode voltage  
at OUTx pin is VDD/2  
tsett Output current settling time  
Output noise current (peak to 0.1 Hz to 10 Hz, DAC at midscale,  
Vn  
150  
1
nAPP  
peak)  
VDD = 5.5 V, ±250-µA output range  
f = 1 kHz, DAC at midscale,  
VDD = 5.5 V, ±250-µA output range  
Output noise density  
nA/Hz  
±250-µA output range, 200-mV 50-Hz or 60-Hz sine  
wave superimposed on power-supply voltage, DAC at  
midscale  
Power supply rejection ratio  
(ac)(3)  
0.65  
LSB/V  
POWER  
Normal operation, DACs at full scale, ±25-µA output  
range, digital pins static  
42  
56  
50  
70  
Normal operation, DACs at full scale, ±50-µA output  
range, digital pins static  
IDD  
Current flowing into VDD(3) (4)  
µA/ch  
Normal operation, DACs at full scale, ±125-µA output  
range, digital pins static  
98  
120  
200  
Normal operation, DACs at full scale, ±250-µA output  
range, digital pins static  
167  
(1) Measured between DAC codes 0d and 255d.  
(2) Specified by design and characterization, not production tested.  
(3) The current flowing into VDD does not account for the load current sourced or sinked on the OUTx pins. The VREF pin is connected to  
VDD  
(4) The total power consumption is calculated by IDD x (total number of channels powered on) + (sleep-mode current).  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
6.7 Electrical Characteristics: Comparator Mode  
at 1.7 V VDD 5.5 V, DAC reference tied to VDD, gain = 1x in voltage output mode, DAC output pin (OUT) loaded with  
resistive load (RL = 5 kΩto AGND) and capacitive load (CL = 200 pF to AGND), digital inputs at VDD or AGND, and all  
minimum and maximum specifications at 40°C TA +125°C and typical specifications at TA = 25°C (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
STATIC PERFORMANCE  
1.7 V VDD 5.5 V, DAC at midscale, comparator  
input at Hi-Z, and DAC operating with external  
reference  
Offset error(1) (2)  
0
5
mV  
mV  
5  
VDD = 5.5 V, external reference, TA = 125°C, FBx in Hi-  
Z mode, DAC at full scale and VFB at 0 V or DAC at  
zero scale and VFB at 1.84 V, drift specified for 10  
years of continuous operation  
Offset error time drift(1)  
4
OUTPUT  
VREF connected to VDD, FBx resistor network  
connected to ground  
0
0
VDD  
Input voltage  
V
V
VREF connected to VDD, FBx resistor network  
disconnected from ground  
VDD (1/3 1/100)  
VOL Logic low output voltage  
0.1  
10  
ILOAD = 100 μA, output in open-drain mode  
DYNAMIC PERFORMANCE  
DAC at midscale with 10-bit resolution, FBx input at Hi-  
Z, and transition step at FBx node is  
(VDAC 2 LSB) to (VDAC + 2 LSB), transition time  
measured between 10% and 90% of output, output  
current of 100 µA, comparator output configured in  
push-pull mode, load capacitor at DAC output is  
25 pF  
tresp Output response time  
µs  
(1) Specified by design and characterization, not production tested.  
(2) This specification does not include the total unadjusted error (TUE) of the DAC.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
6.8 Electrical Characteristics: General  
at 1.7 V VDD 5.5 V, DAC reference tied to VDD, gain = 1x in voltage output mode or ±250-µA output range in current  
output mode, DAC output pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) in voltage-output mode and capacitive  
load (CL = 200 pF to AGND), digital inputs at VDD or AGND, and all minimum and maximum specifications at  
40°C TA +125°C and typical specifications at TA = 25°C (unless otherwise noted)  
PARAMETER  
INTERNAL REFERENCE  
Initial accuracy  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
1.1979  
1.212  
1.224  
V
Reference output temperature  
50 ppm/°C  
coefficient(1) (2)  
EXTERNAL REFERENCE  
VREF input impedance(1) (3)  
EEPROM  
192  
kΩ/ch  
20000  
1000  
50  
40°C TA +85°C  
TA = 125°C  
Endurance(1)  
Cycles  
Years  
Data retention(1)  
TA = 25°C  
EEPROM programming write  
cycle time(1)  
200  
ms  
Time taken from power valid (VDD 1.7 V) to output  
valid state (output state as programmed in EEPROM),  
0.5-µF capacitor on the CAP pin  
Device boot-up time(1)  
5
ms  
DIGITAL INPUTS  
Voltage output mode, DAC output static at midscale,  
fast mode plus, SCL toggling  
Digital feedthrough  
20  
10  
nV-s  
pF  
Pin capacitance  
Per pin  
POWER-DOWN MODE  
DAC in sleep mode, internal reference powered down,  
external reference at 5.5 V  
28  
DAC in sleep mode, internal reference  
enabled, additional current through internal reference  
10  
IDD  
Current flowing into VDD(1)  
µA  
DAC channels enabled, internal reference enabled,  
additional current through internal reference per DAC  
channel in voltage-output mode  
12.5  
HIGH-IMPEDANCE OUTPUT  
10  
DAC in Hi-Z output mode, 1.7 V VDD 5.5 V  
VDD = 0 V, VOUT 1.5 V, decoupling capacitor  
between VDD and AGND = 0.1 μF  
200  
nA  
µA  
Current flowing into VOUTX and  
VFBX  
ILEAK  
VDD = 0 V, 1.5 V < VOUT 5.5 V, decoupling capacitor  
between VDD and AGND = 0.1 μF  
500  
±2  
100 kΩbetween VDD and AGND, VOUT 1.25 V,  
series resistance of 10 kΩat OUTx pin  
(1) Specified by design and characterization, not production tested.  
(2) Measured at 40°C and +125°C and calculated the slope.  
(3) Impedances for the DAC channels are connected in parallel.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
6.9 Timing Requirements: I2C Standard Mode  
all input signals are timed from VIL to 70% of Vpull-up, 1.7 V VDD 5.5 V, 40°C TA +125°C, and 1.7 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
fSCLK  
tBUF  
SCL frequency  
100  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
4.7  
4
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
µs  
4.7  
4
µs  
µs  
0
ns  
Data setup time  
250  
4700  
4000  
ns  
SCL clock low period  
ns  
tHIGH  
tF  
SCL clock high period  
Clock and data fall time  
Clock and data rise time  
Data valid time  
ns  
300  
1000  
3.45  
3.45  
ns  
tR  
ns  
tVD_DAT  
tVD_ACK  
µs  
Data valid acknowledge time  
µs  
6.10 Timing Requirements: I2C Fast Mode  
all input signals are timed from VIL to 70% of Vpull-up, 1.7 V VDD 5.5 V, 40°C TA +125°C, and 1.7 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
fSCLK  
tBUF  
SCL frequency  
400  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
1.3  
0.6  
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
µs  
0.6  
µs  
0.6  
µs  
0
ns  
Data setup time  
100  
1300  
600  
ns  
SCL clock low period  
ns  
tHIGH  
tF  
SCL clock high period  
Clock and data fall time  
Clock and data rise time  
Data valid time  
ns  
300  
300  
0.9  
0.9  
ns  
tR  
ns  
tVD_DAT  
tVD_ACK  
µs  
Data valid acknowledge time  
µs  
6.11 Timing Requirements: I2C Fast Mode Plus  
all input signals are timed from VIL to 70% of Vpull-up, 1.7 V VDD 5.5 V, 40°C TA +125°C, and 1.7 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
1
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
0.5  
0.26  
0.26  
0.26  
0
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
tHIGH  
tF  
µs  
µs  
µs  
ns  
Data setup time  
50  
ns  
SCL clock low period  
0.5  
µs  
SCL clock high period  
Clock and data fall time  
Clock and data rise time  
0.26  
µs  
120  
120  
ns  
tR  
ns  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
all input signals are timed from VIL to 70% of Vpull-up, 1.7 V VDD 5.5 V, 40°C TA +125°C, and 1.7 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
0.45  
0.45  
UNIT  
µs  
tVD_DAT  
tVD_ACK  
Data valid time  
Data valid acknowledge time  
µs  
6.12 Timing Requirements: SPI Write Operation  
all input signals are specified with tr = tf = 1 V/ns (10% to 90% of VIO) and timed from a voltage level of (VIL + VIH) / 2,  
1.7 V VIO 5.5 V, 1.7 V VDD 5.5 V, and 40°C TA +125°C  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
f(SCLK)  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
Serial clock frequency  
SCLK high time  
50  
9
9
SCLK low time  
ns  
SDI setup time  
8
ns  
tSDIH  
SDI hold time  
8
ns  
tCSS  
CS to SCLK falling edge setup time  
SCLK falling edge to CS rising edge  
CS hight time  
18  
10  
50  
2
ns  
tCSH  
ns  
tCSHIGH  
tDACWAIT  
ns  
Sequential DAC update wait time for same channel  
µs  
tBCASTWAIT Broadcast DAC update wait time  
2
µs  
6.13 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 0)  
all input signals are specified with tr = tf = 1 V/ns (10% to 90% of VIO) and timed from a voltage level of (VIL + VIH) / 2,  
1.7 V VIO 5.5 V, 1.7 V VDD 5.5 V, 40°C TA +125°C, and FSDO = 0  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
f(SCLK)  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
Serial clock frequency  
1.25  
SCLK high time  
350  
350  
8
SCLK low time  
ns  
SDI setup time  
ns  
tSDIH  
SDI hold time  
8
ns  
tCSS  
SYNC to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge  
SYNC hight time  
400  
400  
1
ns  
tCSH  
ns  
tCSHIGH  
tSDODLY  
µs  
300  
ns  
SCLK rising edge to SDO falling edge, IOL 5 mA, CL = 20 pF.  
6.14 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 1)  
all input signals are specified with tr = tf = 1 V/ns (10% to 90% of VIO) and timed from a voltage level of (VIL + VIH) / 2,  
1.7 V VIO 5.5 V, 1.7 V VDD 5.5 V, 40°C TA +125°C, and FSDO = 1  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
f(SCLK)  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
Serial clock frequency  
SCLK high time  
2.5  
175  
175  
8
SCLK low time  
ns  
SDI setup time  
ns  
tSDIH  
SDI hold time  
8
ns  
tCSS  
SYNC to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge  
SYNC hight time  
300  
300  
1
ns  
tCSH  
ns  
tCSHIGH  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
all input signals are specified with tr = tf = 1 V/ns (10% to 90% of VIO) and timed from a voltage level of (VIL + VIH) / 2,  
1.7 V VIO 5.5 V, 1.7 V VDD 5.5 V, 40°C TA +125°C, and FSDO = 1  
MIN  
NOM  
MAX  
UNIT  
tSDODLY  
300  
ns  
SCLK rising edge to SDO falling edge, IOL 5 mA, CL = 20 pF.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
6.15 Timing Requirements: GPIO  
all input signals are specified with tr = tf = 1 V/ns (10% to 90% of VIO) and timed from a voltage level of (VIL + VIH) / 2,  
1.7 V VIO 5.5 V, 1.7 V VDD 5.5 V, and 40°C TA +125°C  
MIN  
2
NOM  
MAX  
UNIT  
µs  
tGPIHIGH  
tGPILOW  
tGPAWGD  
tCS2LDAC  
tSTP2LDAC  
tLDACW  
GPI high time(1)  
GPI low time(1)  
2
µs  
LDAC falling edge to DAC update delay(2)  
SYNC rising edge to LDAC falling edge  
I2C stop bit rising edge to LDAC falling edge  
LDAC low time  
2
µs  
1
1
2
µs  
µs  
µs  
(1) The SCL, SDA, A0, and A1 pins can be configured as GPIOs that perform different channel-specific or independent operations. The  
actual response time of the GPIO is determined by the delay provided by the configured function and the settling time of the DAC.  
(2) The GPIOs can be configured as channel-specific or global LDAC function.  
6.16 Timing Diagrams  
Low byte ACK cycle  
tR  
tLOW  
tF  
SCL  
tSUSTA  
tHDSTA  
tHIGH  
tSUSTO  
tHDDAT  
tSUDAT  
tHDSTA  
SDA  
tBUF  
S
P
S
P
6-1. I2C Timing Diagram  
tCSS  
tCSH  
tCSHIGH  
SYNC  
SCLK  
SDI  
tSCLKLOW  
tSCLKHIGH  
tSDIH  
tSDIS  
Bit 23  
Bit 1  
Bit 0  
GPIO/  
LDAC  
tCS2LDAC  
tLDACW  
6-2. SPI Write Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
tCSHIGH  
tCSS  
tCSH  
SYNC  
tSCLKLOW tSCLKHIGH  
SCLK  
SDI  
FIRST READ COMMAND  
Bit 23  
ANY COMMAND  
Bit 1  
Bit 22  
Bit 0  
Bit 23  
Bit 23  
Bit 0  
Bit 0  
tSDIS tSDIH  
SDO  
Bit 1  
FSDO = 0  
tSDODLY  
tSDODZ  
DATA FROM FIRST READ COMMAND  
SDO  
Bit 23  
Bit 1 Bit 0  
FSDO = 1  
tSDODLY  
DATA FROM FIRST READ COMMAND  
6-3. SPI Read Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
6.17 Typical Characteristics: Voltage Output  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1x, 12-bit resolution, and DAC outputs unloaded (unless  
otherwise noted)  
4
3.2  
2.4  
1.6  
0.8  
0
4
3.2  
2.4  
1.6  
0.8  
0
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-0.8  
-1.6  
-2.4  
-3.2  
-4  
Channel 1  
Channel 0  
Channel 1  
Channel 0  
32  
544  
1056 1568 2080 2592 3104 3616 4064  
Code  
32  
544  
1056 1568 2080 2592 3104 3616 4064  
Code  
Internal reference, gain = 4x  
6-4. Voltage Output INL vs Digital Input Code  
6-5. Voltage Output INL vs Digital Input Code  
4
3.2  
2.4  
1.6  
0.8  
0
4
3.2  
2.4  
1.6  
0.8  
0
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-0.8  
-1.6  
-2.4  
-3.2  
-4  
CH1 MAX  
CH1 MAX  
CH0 MAX  
CH1 MIN  
CH0 MIN  
CH0 MAX  
CH1 MIN  
CH0 MIN  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
1.8  
2.725  
3.65  
4.575  
5.5  
Temperature (C)  
Supply Voltage (V)  
6-6. Voltage Output INL vs Temperature  
Channel 1  
6-7. Voltage Output INL vs Supply Voltage  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
Channel 1  
Channel 0  
Channel 0  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
32  
544  
1056 1568 2080 2592 3104 3616 4064  
Code  
32  
544  
1056 1568 2080 2592 3104 3616 4064  
Code  
Internal reference, gain = 4x  
6-8. Voltage Output DNL vs Digital Input Code  
6-9. Voltage Output DNL vs Digital Input Code  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
6.17 Typical Characteristics: Voltage Output (continued)  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1x, 12-bit resolution, and DAC outputs unloaded (unless  
otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
CH1 MAX  
CH0 MAX  
CH1 MIN  
CH0 MIN  
CH1 MAX  
CH0 MAX  
CH1 MIN  
CH0 MIN  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
1.8  
2.725  
3.65  
4.575  
5.5  
Temperature (C)  
Supply Voltage (V)  
6-10. Voltage Output DNL vs Temperature  
6-11. Voltage Output DNL vs Supply Voltage  
1.5  
1.2  
0.9  
0.6  
0.3  
0
1.5  
1.2  
0.9  
0.6  
0.3  
0
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
Channel 1  
Channel 0  
Channel 1  
Channel 0  
0
512 1024 1536 2048 2560 3072 3584 4095  
Code  
0
512 1024 1536 2048 2560 3072 3584 4095  
Code  
Internal reference, gain = 4x  
6-12. Voltage Output TUE vs Digital Input Code  
1.5  
6-13. Voltage Output TUE vs Digital Input Code  
1.5  
1.2  
0.9  
0.6  
0.3  
0
1.2  
0.9  
0.6  
0.3  
0
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
Channel 1  
Channel 0  
Channel 1  
Channel 0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
1.8  
2.725  
3.65  
4.575  
5.5  
Temperature (C)  
Supply Voltage (V)  
DAC channels at midscale  
DAC channels at midscale  
6-15. Voltage Output TUE vs Supply Voltage  
6-14. Voltage Output TUE vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
6.17 Typical Characteristics: Voltage Output (continued)  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1x, 12-bit resolution, and DAC outputs unloaded (unless  
otherwise noted)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Channel 1  
Channel 0  
Channel 1  
Channel 0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Temperature (C)  
6-16. Voltage Output Offset Error vs Temperature  
6-17. Voltage Output Gain Error vs Temperature  
10  
2.76  
2.758  
2.756  
2.754  
2.752  
2.75  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
2.748  
2.746  
2.744  
Channel 1  
Channel 0  
2.742  
2.74  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
-5  
-3.75 -2.5 -1.25  
0
1.25  
2.5  
3.75 5  
Load Current (mA)  
DAC channels at midscale  
6-19. Voltage Output AC PSRR vs Frequency  
6-18. Voltage Output vs Load Current  
LDAC (1 V/div)  
VOUT (1 LSB/div)  
LDAC (1 V/div)  
VOUT (1 LSB/div)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Time (s)  
Time (s)  
6-20. Voltage Output Code-to-Code Glitch - Rising Edge  
6-21. Voltage Output Code-to-Code Glitch - Falling Edge  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
6.17 Typical Characteristics: Voltage Output (continued)  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1x, 12-bit resolution, and DAC outputs unloaded (unless  
otherwise noted)  
Trigger (1 V/div)  
VOUT (1 V/div)  
Settling Band (+10% FSR)  
Settling Band (-10% FSR)  
Trigger (1 V/div)  
VOUT (1 V/div)  
Settling Band (+10% FSR)  
Settling Band (-10% FSR)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Time (s)  
Time (s)  
Zero scale to full scale swing  
Full scale to zero scale swing  
6-22. Voltage Output Setting Time - Rising Edge  
6-23. Voltage Output Setting Time - Falling Edge  
VDD (1 V/div)  
VOUT (1 mV/div)  
VDD (1 V/div)  
VOUT (15 mV/div)  
0
200  
400  
600  
800 1000 1200 1400 1600  
Time (s)  
0
200  
400  
600  
800 1000 1200 1400 1600  
Time (s)  
DAC in Hi-Z power-down mode  
6-24. Voltage Output Power-On Glitch  
DAC at zero scale  
6-25. Voltage Output Power-Off Glitch  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
Internal reference, gain = 4x  
6-26. Voltage Output Noise Density  
6-27. Voltage Output Noise Density  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
6.17 Typical Characteristics: Voltage Output (continued)  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1x, 12-bit resolution, and DAC outputs unloaded (unless  
otherwise noted)  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Time (s)  
Time (s)  
Internal reference, gain = 4x, f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
6-29. Voltage Output Flicker Noise  
6-28. Voltage Output Flicker Noise  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
6.18 Typical Characteristics: Current Output  
at TA = 25°C, VDD = 5.5 V, output range: ±250 μA (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
CH1 MAX  
CH0 MAX  
CH1 MIN  
CH0 MIN  
Channel 1  
Channel 0  
0
32  
64  
96  
128  
160  
192  
224  
255  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Code  
Temperature (C)  
6-30. Current Output INL vs Digital Input Code  
6-31. Current Output INL vs Temperature  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
CH1 MAX  
CH0 MAX  
CH1 MIN  
CH0 MIN  
Channel 1  
Channel 0  
0
32  
64  
96  
128  
Code  
160  
192  
224  
255  
1.8  
2.725  
3.65  
4.575  
5.5  
Supply Voltage (V)  
6-33. Current Output DNL vs Digital Input Code  
6-32. Current Output INL vs Supply Voltage  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
CH1 MAX  
CH1 MAX  
CH0 MAX  
CH1 MIN  
CH0 MIN  
CH0 MAX  
CH1 MIN  
CH0 MIN  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
1.8  
2.725  
3.65  
4.575  
5.5  
Temperature (C)  
Supply Voltage (V)  
6-34. Current Output DNL vs Temperature  
6-35. Current Output DNL vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
6.18 Typical Characteristics: Current Output (continued)  
at TA = 25°C, VDD = 5.5 V, output range: ±250 μA (unless otherwise noted)  
2
1.6  
1.2  
0.8  
0.4  
0
2
1.6  
1.2  
0.8  
0.4  
0
-0.4  
-0.8  
-1.2  
-1.6  
-2  
-0.4  
-0.8  
-1.2  
-1.6  
-2  
Channel 1  
Channel 0  
Channel 1  
Channel 0  
0
32  
64  
96  
128  
160  
192  
224  
255  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Code  
Temperature (C)  
DAC channels at midscale  
6-37. Current Output TUE vs Temperature  
6-36. Current Output TUE vs Digital Input Code  
1.5  
1.2  
0.9  
0.6  
0.3  
0
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
Channel 1  
Channel 0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
DAC channels at midscale  
6-39. Current Output Offset Error vs Temperature  
6-38. Current Output TUE vs Supply Voltage  
1.5  
1000  
800  
600  
400  
200  
0
1.2  
0.9  
0.6  
0.3  
0
-200  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-400  
CH1, DAC Code = 0  
CH0, DAC Code = 0  
CH1, DAC Code = 255  
CH0, DAC Code = 255  
-600  
Channel 1  
Channel 0  
-800  
-1000  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Load Voltage (V)  
6-41. Current Output vs Load Voltage  
6-40. Current Output Gain Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
6.18 Typical Characteristics: Current Output (continued)  
at TA = 25°C, VDD = 5.5 V, output range: ±250 μA (unless otherwise noted)  
Trigger (1 V/div)  
IOUT (Zoomed, 10A/div)  
Settling Band (1 LSB)  
Settling Band (+1 LSB)  
Trigger (1 V/div)  
IOUT (Zoomed, 10 A/div)  
Settling Band (1 LSB)  
Settling Band (+1 LSB)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Time (s)  
Time (s)  
6-42. Current Output Setting Time, Rising Edge  
6-43. Current Output Setting Time, Falling Edge  
VDD ( 1 V/div)  
IOUT (40 A/div)  
VDD (1 V/div)  
IOUT (20 A/div)  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Time (s)  
Time (s)  
DAC at mid scale (0 μA) stored in EEPROM  
6-44. Current Output Power-On Glitch  
DAC at mid scale (0 μA)  
6-45. Current Output Power-Off Glitch  
2
1.8  
1.6  
1.4  
1.2  
1
30  
25  
20  
15  
10  
5
0
0.8  
0.6  
0.4  
0.2  
0
-5  
-10  
-15  
-20  
-25  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
0
1
2
3
4
5
6
7
8
9
10  
Time (s)  
f = 0.1 Hz to 10 Hz  
6-47. Current Output Flicker Noise  
6-46. Current Output Noise Density  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
6.18 Typical Characteristics: Current Output (continued)  
at TA = 25°C, VDD = 5.5 V, output range: ±250 μA (unless otherwise noted)  
500  
200  
100  
50  
20  
10  
5
2
1
0.5  
0.2  
10 20 30 50 100 200 500 10002000  
Frequency (Hz)  
10000 30000  
6-48. Current Output AC PSRR vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
6.19 Typical Characteristics: Comparator  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1x, 12-bit resolution, FBx pin in Hi-Z mode, and DAC outputs  
unloaded (unless otherwise noted)  
VOUT (1 V/div)  
VFB (1 LSB/div)  
VOUT (1 V/div)  
VFB (1 LSB/div)  
0
2
4
6
8
10  
0
2
4
6
8
10  
Time (s)  
Time (s)  
Comparator output in push-pull mode  
Comparator output in push-pull mode  
6-49. Comparator Response Time: LowtoHigh Transition  
6-50. Comparator Response Time: HightoLow Transition  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
Channel 1  
Channel 0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
6-51. Comparator Offset Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
6.20 Typical Characteristics: General  
at TA = 25°C, VDD = 5.5 V, and DAC outputs unloaded (unless otherwise noted)  
1.22  
1.219  
1.218  
1.217  
1.216  
1.215  
1.214  
1.213  
1.212  
1.211  
1.21  
1.21314  
1.213126  
1.213112  
1.213098  
1.213084  
1.21307  
1.213056  
1.213042  
1.213028  
1.213014  
1.213  
1.8  
2.725  
3.65  
4.575  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Supply Voltage (V)  
Internal reference  
6-53. Internal Reference vs Supply Voltage  
Internal reference  
6-52. Internal Reference vs Temperature  
30  
27  
24  
21  
18  
15  
12  
9
5
4
3
2
1
0
6
VDD = 1.8 V  
VDD = 3.3 V  
VDD = 5.5 V  
3
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0.5  
3.5  
6.5  
9.5  
12.5  
15  
Temperature (C)  
External Capacitance on CAP Pin (F)  
Sleep mode, internal reference disabled  
6-54. Power-Down Current vs Temperature  
6-55. Boot-Up Time vs Capacitance on CAP pin  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The 12-bit DAC63202 and 10-bit DAC53202 (DACx3202) are a pin-compatible family of dual-channel buffered  
voltage-output and current-output smart digital-to-analog converters (DACs). The DAC channels are  
independently configurable as voltage or current output. The DAC outputs change to Hi-Z when VDD is off; a  
feature useful in voltage-margining applications. These smart DACs contain nonvolatile memory (NVM), an  
internal reference, automatically detectable I2C or SPI interface, PMBus-compatibility in I2C mode, force-sense  
output, and a general-purpose input. These devices support Hi-Z power-down modes by default, which can be  
configured to 10 k-GND or 100 k-GND using the NVM. The DACx3202 have a power-on-reset (POR) circuit  
that makes sure all the registers start with default or user-programmed settings using NVM. The DACx3202  
operate with either an internal reference, external reference, or with a power supply as the reference, and  
provide a full-scale output of 1.8 V to 5.5 V.  
The DACx3202 devices support I2C standard mode (100 kbps), fast mode (400 kbps), and fast mode plus  
(1 Mbps). The I2C interface can be configured with four target addresses using the A0 pin. These devices also  
support specific PMBus commands such as turn on/off, margin high or low, and more. SPI mode supports a 3-  
wire interface by default with up to 50-MHz SCLK input. The GPIO input can be configured as SDO in the NVM  
for SPI read capability. The GPIO input can alternatively be configurable as LDAC, PD, STATUS, FAULT-DUMP,  
RESET, and PROTECT functions.  
The DACx3202 also include digital slew rate control, and support standard waveform generation such as sine,  
cosine, triangular, and sawtooth waveforms. These devices can generate pulse-width modulation (PWM) output  
with the combination of the triangular or sawtooth waveform and the FB pin. The force-sense outputs of the DAC  
channels can be used as programmable comparators. The comparator mode allows programmable hysteresis,  
latching comparator, window comparator, and fault-dump to the NVM. These features enable the DACx3202 to  
go beyond the limitations of a conventional DAC that depends on a processor to function. As a result of  
processor-less operation and the smart feature set, the DACx3202 are called smart DACs.  
7.2 Functional Block Diagram  
CAP  
VREF  
VDD  
LDO  
Internal  
Reference  
A0/SDI  
Nonvolatile  
Memory  
MUX  
SCL/SYNC  
SDA/SCLK  
GPIO/SDO  
DAC  
Register  
DAC  
Buffer  
DAC  
+
OUT0-1  
FB0-1  
BUF  
-
Power On Reset  
R1  
Output  
Configuration  
Function Generation  
Power Down Logic  
Channel 0  
Channel 1  
AGND  
7-1. Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.3 Feature Description  
7.3.1 Smart Digital-to-Analog Converter (DAC) Architecture  
The DACx3202 devices consist of a string architecture with a voltage-output amplifier, as well as an external FB  
pin and voltage-to-current converter for each channel. 7.2 shows the DAC architecture within the block  
diagram that operates from a 1.8-V to 5.5-V power supply. The DAC has an internal voltage reference of 1.21 V.  
Optionally, use an external reference on the VREF pin, or use the power supply as a reference. Voltage output  
mode uses one of these three reference options. Current output mode uses an internal band gap to generate the  
current outputs. Both the voltage- and current-output modes support multiple programmable output ranges.  
The DACx3202 devices support Hi-Z output when VDD is off, maintaining very low leakage current at the output  
pins with up to 1.25 V of forced voltage. The DAC output pin also starts up in high-impedance mode by default,  
making these devices an excellent choice for voltage margining and scaling applications. To change the power-  
up mode to 10 k-GND or 100 k-GND, program the corresponding VOUT-PDN-X field in the COMMON-  
CONFIG register and load these bits in the device NVM.  
The DACx3202 devices support an independent comparator mode for each channel. The respective FBx pin  
acts as an input for the comparator. The DAC architecture supports inversion of the comparator output using  
register settings. The comparator outputs can be push-pull or open-drain. The comparator mode supports  
programmable hysteresis using the margin-high and margin-low register fields, latching comparator, and window  
comparator. The comparator outputs are accessible internally by the device.  
The DACx3202 devices include a smart feature set to enable processor-less operation and high integration. The  
NVM enables a predictable start-up. In the absence of a processor or when the processor or software fails, the  
GPIO triggers the DAC output without the I2C interface. The integrated functions and the FBx pin enable PWM  
output for control applications. The FBx pin enables this device to be used as a programmable comparator. The  
digital slew-rate control and the Hi-Z power-down modes enable a hassle-free voltage margining and scaling  
function.  
7.3.2 Digital Input/Output  
The DACx3202 have four digital IO pins that include I2C, SPI, PMBus, and GPIO interfaces. These devices  
automatically detect I2C and SPI protocols at the first successful communication after power-on, and then  
connect to the detected interface. After an interface protocol is connected, any change in the protocol is ignored.  
The I2C interface uses the A0 pin to select from among four address options. The SPI interface is a 3-wire  
interface by default. No readback capability is available in this mode. The GPIO pin can be configured in the  
register map and then programmed in to the NVM as the SDO pin. The SPI readback mode is slower than the  
write mode. The programming interface pins are:  
I2C: SCL, SDA, A0  
SPI: SCLK, SDI, SYNC, SDO/GPIO  
The GPIO can be configured as multiple functions other than SDO. These are LDAC, PD, STATUS, PROTECT,  
FAULT-DUMP, and RESET. All the digital pins are open-drain when used as outputs. Therefore, all the output  
pins must be pulled up to the desired IO voltage using external resistors.  
7.3.3 Nonvolatile Memory (NVM)  
The DACx3202 contain nonvolatile memory (NVM) bits. These memory bits are user programmable and  
erasable, and retain the set values in the absence of a power supply. All the register bits, shown in the  
highlighted gray cells in 7.6, can be stored in the NVM by setting NVM-PROG = 1 in the COMMON-TRIGGER  
register. The NVM-PROG is an autoresetting bit. The default values for all the registers in the DACx3202 are  
loaded from NVM as soon as a POR event is issued.  
The DACx3202 also implement NVM-RELOAD bit in the COMMON-TRIGGER register. Set this bit to 1 and the  
device starts an NVM-reload operation. After completion, the device autoresets the NVM-RELOAD bit to 0.  
During the NVM write or reload operation, all read/write operations to the device are blocked. 6.8 provides the  
timing specification for the NVM write cycle. The processor must wait for the specified duration before resuming  
any read or write operation on the SPI or I2C interface.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Voltage-Output Mode  
The voltage-output mode for each DAC channel can be entered by selecting the power-up option in the VOUT-  
PDN-X fields in the COMMON-CONFIG register and simultaneously powering down the current output option for  
the respective channels using the IOUT-PDN-X bits in the same register. Short the OUTx and FBx pins of  
respective channels externally for closed-loop amplifier output. An open FBx pin saturates the amplifier output.  
To achieve the desired voltage output, select the correct reference option, select the amplifier gain for the  
required output range, and program the DAC code in the DAC-X-DATA register of the respective channels.  
7.4.1.1 Voltage Reference and DAC Transfer Function  
7-2 shows that there are three voltage reference options possible with the DACx3202: internal reference,  
external reference, and the power supply as reference. The DAC transfer function in the voltage-output and  
comparator modes changes based on the voltage reference selection.  
VDD  
VREF  
Digital  
IO  
EN-INT-REF  
Internal  
DIS-MODE-IN  
Reference  
IOUT-RANGE-X  
MUX  
VOUT-GAIN-X  
VOUT-PDN-X  
IOUT-PDN-X  
VOUT-PDN-X  
+
DAC Ladder  
OUTx  
FBx  
IOUT-PDN-X  
10k /100k  
Internal  
Bandgap  
R1  
R2  
CMP-X-HIZ-IN-DIS or  
VOUT-PDN-X (Hi-Z)  
AGND  
7-2. Voltage Reference Selection and Power-Down Logic  
7.4.1.1.1 Internal Reference  
The DACx3202 contain an internal reference that is disabled by default. To enable the internal reference, write 1  
to bit EN-INT-REF in the COMMON-CONFIG register. The internal reference generates a fixed 1.21-V voltage  
(typical). Use the VOUT-GAIN-X bit in the DAC-X-VOUT-CMP-CONFIG register to achieve gains of 1.5x, 2x, 3x,  
or 4x for the DAC output voltage (VOUT). 方程1 shows DAC transfer function using the internal reference.  
DAC_DATA  
V
=
× V  
× GAIN  
REF  
(1)  
OUT  
N
2
where:  
N is the resolution in bits, 10 (DAC53202), or 12 (DAC63202).  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC-X-DATA bit in the DAC-X-  
DATA register. DAC_DATA ranges from 0 to 2N 1.  
VREF is the internal reference voltage = 1.21 V (typical).  
GAIN = 1.5x, 2x, 3x, or 4x, based on VOUT-X-GAIN bits.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.4.1.1.2 External Reference  
By default, the DACx3202 operate from an external reference input. The external reference option can also be  
selected by configuring the VOUT-GAIN-X field in the DAC-X-VOUT-CMP-CONFIG register appropriately. Write  
1 to the DIS-MODE-IN bit in the DEVICE-MODE-CONFIG register to minimize IDD. The external reference can  
be between 1.7 V and VDD. 方程式 2 shows DAC transfer function when the external reference is used. The  
gain at the output stage of the DAC is always 1x in the external reference mode.  
备注  
The external reference must be less than VDD in both transient and steady-state conditions.  
Therefore, the external reference must ramp up after VDD and ramp down before VDD.  
DAC_DATA  
V
=
× V  
(2)  
OUT  
REF  
N
2
where:  
N is the resolution in bits, 10 (DAC53202), or 12 (DAC63202).  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC-X-DATA field in the DAC-  
X-DATA register. DAC_DATA ranges from 0 to 2N 1.  
VREF is the external reference voltage.  
7.4.1.1.3 Power-Supply as Reference  
The DACx3202 can operate with the power-supply pin (VDD) as a reference. 方程式 3 shows DAC transfer  
function when the power-supply pin is used as reference. The gain at the output stage is always 1x.  
DAC_DATA  
V
=
× V  
(3)  
OUT  
DD  
N
2
where:  
N is the resolution in bits, either 10 (DAC53202), or 12 (DAC63202).  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC-X-DATA bit in the DAC-X-  
DATA register.  
DAC_DATA ranges from 0 to 2N 1.  
VDD is used as the DAC reference voltage.  
7.4.2 Current-Output Mode  
To enter current-output mode for each DAC channel, disable the respective IOUT-PDN-X bits in the COMMON-  
CONFIG register, and set the respective VOUT-PDN-X bits in the same register to Hi-Z power-down mode.  
Select the desired current-output range by writing to the IOUT-RANGE-X bit in the DAC-X-IOUT-MISC-CONFIG  
register. To minimize leakage in current-output mode, disconnect the FBx pin. For the best power-on glitch  
performance, program the NVM with IOUT mode using the smallest output range before powering on the output  
channel, and then immediately program the DAC code and desired output range. The transfer function of the  
output current is shown in 方程4.  
DAC_DATA × I  
I  
MIN  
MAX  
I
=
+ I  
(4)  
OUT  
MIN  
8
2
where:  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC-X-DATA bit as specified in  
7.6.8. DAC_DATA ranges from 0 to 255.  
IMAX is the signed maximum current in the IOUT-RANGE-X setting as specified in 7.6.5.  
IMIN is the signed minimum current in the IOUT-RANGE-X setting as specified in 7.6.5.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.4.3 Comparator Mode  
All the DAC channels can be configured as programmable comparators in the voltage-output mode. To enter the  
comparator mode for a channel, write 1 to the CMP-X-EN bit in the respective DAC-X-VOUT-CMP-CONFIG  
register. The comparator output can be configured as push-pull or open-drain using the CMP-X-OD-EN bit. To  
enable the comparator output on the output pin, write 1 to the CMP-X-OUT-EN bit. To invert the comparator  
output, write 1 to the CMP-X-INV-EN bit. The FBx pin has a finite impedance. By default, the FBx pin is in the  
high-impedance mode. To disable high-impedance on the FBx pin, write 1 to the CMP-X-HIZ-IN-DIS bit. 7-1  
shows the comparator output at the pin for different bit settings.  
备注  
In the Hi-Z input mode, the comparator input range is limited to:  
For GAIN = 1x, 1.5x, or 2x: VFB (VREF × GAIN) / 3  
For GAIN = 3x, or 4x: VFB (VREF × GAIN) / 6  
Any higher input voltage is clipped.  
7-1. Comparator Output Configuration  
CMP-X-EN  
CMP-X-OUT-EN  
CMP-X-OD-EN  
CMP-X-INV-EN  
CMPX-OUT PIN  
Comparator not enabled  
No output  
0
1
1
1
1
1
X
0
1
1
1
1
X
X
0
0
1
1
X
X
0
1
0
1
Push-pull output  
Push-pull and inverted output  
Open-drain output  
Open-drain and inverted output  
7-3 shows the interface circuit when all the DAC channels are configured as comparators. The programmable  
comparator operation is as shown in 7-4. Individual comparator channels can be configured in no-hysteresis,  
with-hysteresis, and window-comparator modes using the CMP-X-MODE bit in the respective DAC-X-CMP-  
MODE-CONFIG register, as shown in 7-2.  
VDD  
10 k  
0.1 μF  
1.5 μF  
VDD  
CAP  
VREF  
+
-
+
-
CMP0  
CMP1  
CMP1-OUT  
CMP0-OUT  
FB0/AIN0  
FB1/AIN1  
(0 V to VFS/3 or 0 V to VFS  
)
(0 V to VFS/3 or 0 V to VFS)  
AGND  
VIO  
10 k  
7-3. Comparator Interface  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
DAC-X-DATA  
FBx/AINx  
OUT-X  
CMP-X-INV-EN = 0  
OUT-X  
CMP-X-INV-EN = 1  
7-4. Programmable Comparator Operation  
7-2. Comparator Mode Selection  
COMPARATOR CONFIGURATION  
CMP-X-MODE BIT FIELD  
00  
01  
Normal comparator mode. No hysteresis or window operation.  
Hysteresis comparator mode. DAC-X-MARGIN-HIGH and DAC-X-MARGIN-LOW registers set the hysteresis.  
Window comparator mode. DAC-X-MARGIN-HIGH and DAC-X-MARGIN-LOW registers set the window  
bounds.  
10  
11  
Invalid setting  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.4.3.1 Programmable Hysteresis Comparator  
7-2 shows that comparator mode provides hysteresis when the CMP-X-MODE bit is set to 01b. 7-5 shows  
that the hysteresis is provided by the DAC-X-MARGIN-HIGH and DAC-X-MARGIN-LOW registers.  
When the DAC-X-MARGIN-HIGH is set to full-code or the DAC-X-MARGIN-LOW is set to zero-code, the  
comparator works as a latching comparator that is, the output is latched after the threshold is crossed. The  
latched output can be reset by writing to the corresponding RST-CMP-FLAG-X bit in the COMMON-DAC-TRIG  
register. 7-6 shows the behavior of a latching comparator with active low output, and 7-7 shows the  
behavior of a latching comparator with active high output.  
备注  
The value of the DAC-X-MARGIN-HIGH register must be greater than the value of the DAC-X-  
MARGIN-LOW register. The comparator output in the hysteresis mode can only be noninverting; that  
is, the CMP-X-INV-EN bit in the DAC-X-VOUT-CMP-CONFIG register must be set to 0. For the reset  
to take effect in latching mode, the input voltage must be within DAC-X-MARGIN-HIGH and DAC-X-  
MARGIN-LOW.  
DAC-X-MARGIN-HIGH  
Hysteresis  
FBx/AINx  
DAC-X-MARGIN-LOW  
OUT-X  
CMP-X-INV-EN = 0  
7-5. Programmable Hysteresis Without Latching Output  
DAC-X-MARGIN-HIGH  
FBx/AINx  
DAC-X-MARGIN-LOW  
(ZERO-CODE)  
OUT-X  
CMP-X-INV-EN = 0  
RST-CMP-FLAG-X  
7-6. Latching Comparator With Active Low Output  
DAC-X-MARGIN-HIGH  
(FULL-CODE)  
FBx/AINx  
DAC-X-MARGIN-LOW  
OUT-X  
CMP-X-INV-EN = 0  
RST-CMP-FLAG-X  
7-7. Latching Comparator With Active High Output  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.4.3.2 Programmable Window Comparator  
Window comparator mode is enabled by setting the CMP-X-MODE bit to 10b (see also 7-2). 7-8 shows  
that the window bounds are set by the DAC-X-MARGIN-HIGH and the DAC-X-MARGIN-LOW registers. The  
output of the window comparator for a given channel is indicated by the respective WIN-CMP-X bit in the CMP-  
STATUS register. The comparator output (WIN-CMP-X) can be latched by writing 1 to the WIN-LATCH-EN bit in  
the COMMON-CONFIG register. After being latched, the comparator output can be reset using the  
corresponding RST-CMP-FLAG-X bit in the COMMON-DAC-TRIG register. For the reset to take effect, the input  
must be within the window bounds.  
DAC-X-MARGIN-HIGH  
FBx/AINx  
DAC-X-MARGIN-LOW  
WIN-CMP-X  
WIN-LATCH-EN = 0  
WIN-CMP-X  
WIN-LATCH-EN = 1  
RST-CMP-FLAG-X  
7-8. Window Comparator Operation  
A single comparator is used per channel to check both the margin-high and margin-low limits of the window.  
Therefore, the window comparator function has a finite response time (see also 6.7). The static behavior of  
the WIN-CMP-X bit is not reflected at the output pins. Set the CMP-X-OUT-EN bit to 0. The WIN-CMP-X bit must  
be read digitally using the communication interface. This bit can also be mapped to the GPIO pin (see also 表  
7-19).  
备注  
The value of the DAC-X-MARGIN-HIGH register must be greater than that of the DAC-X-MARGIN-  
LOW register.  
Set the SLEW-RATE-X bit to 0000b (no-slew) and LOG-SLEW-EN-X bit to 0b in the DAC-X-FUNC-  
CONFIG register to get the best response time from the window comparator.  
The CMP-X-OUT-EN bit in the DAC-X-VOUT-CMP-CONFIG register can be set to 0b to eliminate  
undesired toggling of the OUT pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.4.4 Fault-Dump Mode  
The DACx3202 provides a feature to save a few registers into the NVM when the FAULT-DUMP bit is triggered  
or when the GPIO mapped to fault-dump is triggered (see also 7-18). This feature is useful in system-level  
fault management to capture the state of the device or system just before a fault is triggered, and to allow  
diagnosis after the fault has occurred. The registers saved when fault-dump is triggered, are:  
CMP-STATUS[7:0]  
DAC-0-DATA[15:8]  
DAC-1-DATA[15:8]  
备注  
When the fault-dump cycle is in progress, any change in the data can corrupt the final outcome. Make  
sure the comparator and the DAC codes are stable during the NVM write cycle.  
7-3 shows the storage format of the registers in the NVM.  
7-3. Fault-Dump NVM Storage Format  
NVM ROWS  
B31-B24  
B23-B16  
B15-B8  
B7-B0  
Row1  
CMP-STATUS[7:0]  
DAC-1-DATA[15:8]  
Don't care  
Row2  
Don't care  
DAC-1-DATA[15:8]  
The data captured in the NVM after the fault dump can be read in a specific sequence:  
1. Set the EE-READ-ADDR bit to 0b in the COMMON-CONFIG register, to select row1 of the NVM.  
2. Trigger the read of the selected NVM row by writing 1 to the READ-ONE-TRIG in the COMMON-TRIGGER  
register; this bit autoresets. This action copies that data from the selected NVM row to SRAM addresses  
0x9D (LSB 16 bits from the NVM) and 0x9E (MSB 16 bits from the NVM).  
3. To read the SRAM data:  
a. Write 0x009D to the SRAM-CONFIG register.  
b. Read the data from the SRAM-DATA register to get the LSB 16 bits.  
c. Write 0x009E to the SRAM-CONFIG register.  
d. Read the data from the SRAM-DATA register again to get the MSB bits.  
4. Set the EE-READ-ADDR bit to 1b in the COMMON-CONFIG register, to select row2 of the NVM. Repeat  
steps 2 and 3.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.4.5 Application-Specific Modes  
This section provides the details of application-specific functional modes available in the DACx3202.  
7.4.5.1 Voltage Margining and Scaling  
Voltage margining or scaling is a primary application for the DACx3202. This section provides specific features  
available for this application such as Hi-Z output, slew-rate control, PROTECT input, and PMBus compatibility.  
7.4.5.1.1 High-Impedance Output and PROTECT Input  
All the DAC output channels remain in a high-impedance state (Hi-Z) when VDD is off. 7-9 shows a simplified  
schematic of the DACx3202 used in a voltage-margining application. The series resistor RS is needed in voltage-  
output mode, but is optional in current-output mode. Almost all linear regulators and DC/DC converters have a  
feedback voltage of 1.25 V. The low-leakage currents at the outputs are maintained for VFB of 1.25 V.  
Thus, for all practical purposes, the DAC outputs appear as Hi-Z when VDD of the DAC is off in voltage  
margining and scaling applications. This feature allows for seamless integration of the DACx3202 into a system  
without any need for additional power-supply sequencing for the DAC.  
VIN  
VREG  
VDD  
DAC  
R1  
Linear  
Regulator  
or  
DC/DC  
Converter  
ILEAK  
RS  
VFB  
PROTECT  
1.25 V  
R2  
ZOUT  
7-9. High-Impedance (Hi-Z) Output and PROTECT Input  
The DAC channels power down to Hi-Z at boot up. The outputs can power up with a preprogrammed code that  
corresponds to the nominal output of the DC/DC converter or the linear regulator. This feature allows for smooth  
power up and power down of the DAC without impacting the feedback loop of the DC/DC converter or the linear  
regulator.  
7-18 shows how the GPIO pin of the DACx3202 can be configured as a PROTECT function. PROTECT takes  
the DAC outputs to a predictable state with a slewed or direct transition. This function is useful in systems where  
a fault condition (such as a brownout), a subsystem failure, or a software crash requires that the DAC outputs  
reach a predefined state without the involvement of a processor. The detected event can be fed to the GPIO pin  
that is configured as the PROTECT input. The PROTECT function can also be triggered using the PROTECT bit  
in the COMMON-TRIGGER register. 7-4 shows how to configure the behavior of the PROTECT function in  
the PROTECT-CONFIG field in the DEVICE-MODE-CONFIG register.  
备注  
After the PROTECT function is triggered, the write functionality is disabled on the communication  
interface until the function is completed.  
The PROTECT-FLAG bit in the CMP-STATUS register is set to 1 when the PROTECT function is  
triggered. This bit can be polled by reading the CMP-STATUS register. After the PROTECT  
function is complete, a read command on the CMP-STATUS register resets the PROTECT-FLAG  
bit.  
7-4. PROTECT Function Configuration  
PROTECT-CONFIG FIELD  
FUNCTION  
00  
01  
10  
Switch to Hi-Z power-down (no slew).  
Switch to DAC code stored in NVM (no slew) and then switch to Hi-Z power-down.  
Slew to margin-low code and then switch to Hi-Z power-down.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7-4. PROTECT Function Configuration (continued)  
FUNCTION  
PROTECT-CONFIG FIELD  
11  
Slew to margin-high code and then switch to Hi-Z power-down.  
7.4.5.1.2 Programmable Slew-Rate Control  
When the DAC data registers are written, the voltage on DAC output (VOUT) immediately transitions to the new  
code following the slew rate and settling time specified in the Electrical Characteristics.  
The slew rate control feature allows the user to control the rate at which the output voltage (VOUT) changes.  
When this feature is enabled (using the SLEW-RATE-X[3:0] bits), the DAC output changes from the current code  
to the code in the DAC-X-MARGIN-HIGH or DAC-X-MARGIN-LOW registers (when margin high or low  
commands are issued to the DAC) using the step size and time-period per step set in CODE-STEP-X and  
SLEW-RATE-X bits in the DAC-X-FUNC-CONFIG register:  
SLEW-RATE-X defines the time-period per step at which the digital slew updates.  
CODE-STEP-X defines the number of LSBs by which the output value changes at each update, for the  
corresponding channels.  
7-5 and 7-6 show different settings available for CODE-STEP-X and SLEW-RATE-X. With the default slew  
rate control setting of no-slew, the output changes immediately at a rate limited by the output drive circuitry and  
the attached load.  
When the slew rate control feature is used, the output changes happen at the programmed slew rate. 7-10  
shows that this configuration results in a staircase formation at the output. Do not write to CODE-STEP-X,  
SLEW-RATE-X, or DAC-X-DATA during the output slew operation. 程式 5 provides the equation for the  
calculating the slew time (tSLEW).  
MARGIN-HIGH  
CODE-STEP  
MARGIN-LOW  
TIME PERIOD  
tSLEW  
7-10. Programmable Slew-Rate Control  
SLEW_RATE × MARGIN_HIGH MARGIN_LOW + 1  
t
=
(5)  
SLEW  
CODE_STEP  
where:  
SLEW_RATE is the SLEW-RATE-X setting specified in 7-6.  
CODE_STEP is the CODE-STEP-X setting specified in 7-5.  
MARGIN_HIGH is the DAC-X-MAGIN-HIGH specified in 7.6.2.  
MARGIN_LOW is the DAC-X-MAGIN-LOW specified in 7.6.3.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7-5. Code Step  
REGISTER  
CODE-STEP-X[2]  
CODE-STEP-X[1]  
CODE-STEP-X[0]  
CODE STEP SIZE  
1 LSB (default)  
2 LSB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3 LSB  
4 LSB  
DAC-X-FUNC-CONFIG  
6 LSB  
8 LSB  
16 LSB  
32 LSB  
7-6. Slew Rate  
TIME PERIOD  
(PER STEP)  
REGISTER  
SLEW-RATE-X[3]  
SLEW-RATE-X[2]  
SLEW-RATE-X[1]  
SLEW-RATE-X[0]  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No slew (default)  
4 µs  
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
8 µs  
12 µs  
18 µs  
27 µs  
40.5 µs  
60.75 µs  
91.13 µs  
136.69 µs  
239.2 µs  
418.61 µs  
732.56 µs  
1281.98 µs  
2563.96 µs  
5127.92 µs  
DAC-X-FUNC-CONFIG  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.4.5.1.3 PMBus Compatibility Mode  
The PMBus protocol is an I2C-based communication standard for power-supply management. PMBus contains  
standard command codes tailored to power supply applications. The DACx3202 implement some PMBus  
commands such as Turn Off, Turn On, Margin Low, Margin High, Communication Failure Alert Bit (CML), as well  
as PMBUS revision. 7-11 shows typical PMBus connections. The EN-PMBUS bit in the INTERFACE-CONFIG  
register must be set to 1 to enable the PMBus protocol.  
PMBus-compatible device #1  
ALERT  
CONTROL  
DATA  
CLOCK  
Alert signal  
PMBus-compatible device #2  
ALERT  
Control signal  
CONTROL  
Data  
DATA  
Clock  
CLOCK  
Optional  
Required  
PMBus-compatible device #3  
ALERT  
CONTROL  
DATA  
CLOCK  
7-11. PMBus Connections  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
Similar to I2C, PMBus is a variable length packet of 8-bit data bytes, each with a receiver acknowledge, wrapped  
between a start and stop bit. The first byte is always a 7-bit target address followed by a write bit, sometimes  
called the even address, that identifies the intended receiver of the packet. The second byte is an 8-bit  
command byte, identifying the PMBus command being transmitted using the respective command code. After  
the command byte, the transmitter either sends data associated with the command to write to the receiver  
command register (from least significant byte to most significant byte; see also 7-7), or sends a new start bit  
indicating the desire to read the data associated with the command register from the receiver. Then the receiver  
transmits the data following the same least significant byte first format; see also 7-8.  
7-7. PMBus Update Sequence  
MSB  
....  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
Address (A) byte  
7.5.2.2.1  
Command byte  
7.5.2.2.2  
Data byte - MSDB  
(Optional)  
Data byte - LSDB  
DB [15:8]  
DB [31:24]  
DB [23:16]  
DB [7:0]  
7-8. PMBus Read Sequence  
R/W  
(0)  
R/W  
(1)  
S
MSB  
ACK  
MSB  
LSB  
ACK Sr MSB  
ACK  
MSB  
LSB  
ACK  
MSB  
LSB  
ACK  
Address byte  
7.5.2.2.1  
Command byte  
7.5.2.2.2  
Address byte  
7.5.2.2.1  
Sr  
LSDB  
MSDB (Optional)  
From target  
From controller  
Target  
From controller  
Target  
From controller  
Target  
From target  
Controller  
Controller  
The DACx3202 I2C interface implements some of the PMBus commands. 7-9 shows the supported PMBus  
commands that are implemented in DACx3202.The DAC uses DAC-X-MARGIN-LOW, DAC-X-MARGIN-HIGH  
bits, SLEW-RATE-X, and CODE-STEP-X bits for PMBUS-OPERATION-CMD-X. To access multiple channels,  
write the PMBus page address specified in 7-21 to the PMBUS-PAGE register first, followed by a write to the  
channel-specific register.  
7-9. PMBus Operation Commands  
REGISTER  
PMBUS-OPERATION-CMD-X[15:8]  
DESCRIPTION  
Turn off  
00h  
80h  
94h  
A4h  
Turn on  
PMBUS-OP-CMD-X  
Margin low  
Margin high  
The DACx3202 also implement PMBus features such as group command protocol and communication timeout  
failure. The CML bit in the PMBUS-CML register indicates a communication fault in the PMBus. This bit is reset  
by writing 1.  
To get the PMBus version, read the PMBUS-VERSION register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.4.5.2 Function Generation  
The DACx3202 implement a continuous function or waveform generation feature. These devices can generate a  
triangular wave, sawtooth wave, and sine wave independently for every channel.  
7.4.5.2.1 Triangular Waveform Generation  
The triangular waveform uses the DAC-X-MARGIN-LOW and DAC-X-MARGIN-HIGH registers for minimum and  
maximum levels, respectively. 方程式 6 shows that the frequency of the waveform depends on the min and max  
levels, CODE-STEP and SLEW-RATE settings. An external RC load with a time-constant larger than the slew-  
rate settings can be dominant over the internal frequency calculation. The CODE-STEP-X and SLEW-RATE-X  
settings are available in the DAC-X-FUNC-CONFIG register. Writing 0b000 to the FUNC-CONFIG-X bit field in  
the DAC-X-FUNC-CONFIG register selects triangular waveform.  
1
f
=
(6)  
TRIANGLE_WAVE  
MARGIN_HIGH MARGIN_LOW + 1  
2 × SLEW_RATE ×  
CODE_STEP  
where:  
SLEW_RATE is the SLEW-RATE-X setting specified in 7-6.  
CODE_STEP is the CODE-STEP-X setting specified in 7-5.  
MARGIN_HIGH is the DAC-X-MAGIN-HIGH specified in 7.6.2.  
MARGIN_LOW is the DAC-X-MAGIN-LOW specified in 7.6.3.  
7.4.5.2.2 Sawtooth Waveform Generation  
The sawtooth and the inverse sawtooth waveforms use the DAC-X-MARGIN-LOW and DAC-X-MARGIN-HIGH  
registers for minimum and maximum levels, respectively. 方程式 7 shows that the frequency of the waveform  
depends on the min and max levels, CODE-STEP and SLEW-RATE settings. An external RC load with a time  
constant larger than the slew-rate settings can be dominant over the internal frequency calculation. The CODE-  
STEP-X and SLEW-RATE-X settings are available in the DAC-X-FUNC-CONFIG register. Write 0b001 to the  
FUNC-CONFIG-X bit field in the DAC-X-FUNC-CONFIG register to select sawtooth waveform, and write 0b010  
to select inverse sawtooth waveform.  
1
f
=
(7)  
SAWTOOTH_WAVE  
MARGIN_HIGH MARGIN_LOW + 1  
SLEW_RATE ×  
CODE_STEP  
where:  
SLEW_RATE is the SLEW-RATE-X setting specified in 7-6.  
CODE_STEP is the CODE-STEP-X setting specified in 7-5.  
MARGIN_HIGH is the DAC-X-MAGIN-HIGH specified in 7.6.2.  
MARGIN_LOW is the DAC-X-MAGIN-LOW specified in 7.6.3.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.4.5.2.3 Sine Waveform Generation  
The sine wave function uses 24 preprogrammed points per cycle. 方程式 8 shows that the frequency of the sine  
wave depends on the SLEW-RATE settings:  
1
f
=
(8)  
SINE_WAVE  
24 × SLEW_RATE  
where SLEW_RATE is the SLEW-RATE-X setting specified in 7-6.  
An external RC load with a time constant greater than the slew-rate settings can be dominant over the internal  
frequency calculation. The SLEW-RATE-X setting is available in the DAC-X-FUNC-CONFIG register. Writing  
0b100 to the FUNC-CONFIG-X bit field in the DAC-X-FUNC-CONFIG register selects sine wave. The codes for  
the sine wave are fixed. Use the gain settings at the output amplifier for changing the full-scale output using the  
internal reference option. The gain settings are accessible through the VOUT-GAIN-X bits in the DAC-X-VOUT-  
CMP-CONFIG register. 7-10 shows the list of hard-coded discrete points for the sine wave with 12-bit  
resolution and 7-12 shows the pictorial representation of the sine wave. There are four phase settings  
available for the sine wave that are selected using the PHASE-SEL-X bit in the DAC-X-FUNC-CONFIG register.  
7-10. Sine Wave Data Points  
SEQUENCE  
12-BIT VALUE  
SEQUENCE  
12-BIT VALUE  
0
1
0x800  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
0x800  
0x9A8  
0x658  
2
0xB33  
0x4CD  
0x379  
3
0xC87  
0xD8B  
0xE2F  
0xE66  
4
0x275  
5
0x1D1  
0x19A  
0x1D1  
0x275  
6
7
0xE2F  
0xD8B  
0xC87  
0xB33  
8
9
0x379  
10  
11  
0x4CD  
0x658  
0x9A8  
6
5
7
4
8
3
9
2
10  
1
11  
TIME PERIOD  
0
12  
0
13  
23  
14  
22  
15  
21  
16  
20  
17  
19  
18  
7-12. Sine Wave Generation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.4.6 Device Reset and Fault Management  
This section provides the details of power-on-reset (POR), software reset, and other diagnostics and fault-  
management features of DACx3202.  
7.4.6.1 Power-On Reset (POR)  
The DACx3202 family of devices includes a power-on reset (POR) function that controls the output voltage at  
power up. After the VDD supply has been established, a POR event is issued. The POR causes all registers to  
initialize to default values, and communication with the device is valid only after a POR (boot-up) delay. The  
default value for all the registers in the DACx3202 is loaded from NVM as soon as the POR event is issued.  
When the device powers up, a POR circuit sets the device to the default mode. 7-13 indicates that the POR  
circuit requires specific VDD levels to make sure that the internal capacitors discharge and reset the device at  
power up. To make sure that a POR occurs, VDD must be less than 0.7 V for at least 1 ms. When VDD drops to  
less than 1.65 V, but remains greater than 0.7 V (shown as the undefined region), the device may or may not  
reset under all specified temperature and power-supply conditions. In this case, initiate a POR. When VDD  
remains greater than 1.65 V, a POR does not occur.  
VDD (V)  
5.5 V  
Specified supply  
voltage range  
No power-on reset  
1.71 V  
1.65 V  
Undefined  
0.7 V  
Power-on reset  
0 V  
7-13. Threshold Levels for VDD POR Circuit  
7.4.6.2 External Reset  
An external reset to the device can be triggered through the GPIO pin or through the register map. To initiate a  
device software reset event, write the reserved code 1010 to the RESET field in the COMMON-TRIGGER  
register. A software reset initiates a POR event. 7-18 shows how the GPIO pin can be configured as a RESET  
pin. This configuration must be programmed into the NVM so that the setting is not cleared after the device  
reset. The RESET input must be a low pulse. The device starts the boot-up sequence after the falling edge of  
the RESET input. The rising edge of the RESET input does not have any effect.  
7.4.6.3 Register-Map Lock  
The DACx3202 implement a register-map lock feature that prevents an accidental or unintended write to the  
DAC registers. The device locks all the registers when the DEV-LOCK bit in the COMMON-CONFIG register is  
set to 1. However, the software reset function through the COMMON-TRIGGER register is not blocked when  
using the I2C interface. To bypass the DEV-LOCK setting, write 0101 to the DEV-UNLOCK bits in the COMMON-  
TRIGGER register.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.4.6.4 NVM Cyclic Redundancy Check (CRC)  
The DACx3202 implement a cyclic redundancy check (CRC) feature for the NVM to make sure that the data  
stored in the NVM is uncorrupted. There are two types of CRC alarm bits implemented in DACx3202:  
NVM-CRC-FAIL-USER  
NVM-CRC-FAIL-INT  
The NVM-CRC-FAIL-USER bit indicates the status of user-programmable NVM bits, and the NVM-CRC-FAIL-  
INT bit indicates the status of internal NVM bits The CRC feature is implemented by storing a 16-bit CRC  
(CRC-16-CCITT) along with the NVM data each time NVM program operation (write or reload) is performed and  
during the device start up. The device reads the NVM data and validates the data with the stored CRC. The CRC  
alarm bits (NVM-CRC-FAIL-USER and NVM-CRC-FAIL-INT in the GENERAL-STATUS register) report any  
errors after the data are read from the device NVM. The alarm bits are set only at boot up.  
7.4.6.4.1 NVM-CRC-FAIL-USER Bit  
A logic 1 on NVM-CRC-FAIL-USER bit indicates that the user-programmable NVM data are corrupt. During this  
condition, all registers in the DAC are initialized with factory reset values, and any DAC registers can be written  
to or read from. To reset the alarm bits to 0, issue a software reset (see also 7.4.6.2) command, or cycle  
power to the DAC. A software reset or power-cycle also reloads the user-programmable NVM bits. In case the  
failure persists, reprogram the NVM.  
7.4.6.4.2 NVM-CRC-FAIL-INT Bit  
A logic 1 on NVM-CRC-FAIL-INT bit indicates that the internal NVM data are corrupt. During this condition, all  
registers in the DAC are initialized with factory reset values, and any DAC registers can be written to or read  
from. In case of a temporary failure, to reset the alarm bits to 0, issue a software reset (see also 7.4.6.2)  
command or cycle power to the DAC. A permanent failure in the NVM makes the device unusable.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.4.7 Power-Down Mode  
The DACx3202 output amplifier and internal reference can be independently powered down through the EN-INT-  
REF, VOUT-PDN-X, and IOUT-PDN-X bits in the COMMON-CONFIG register (see also 7-2). At power up, the  
DAC output and the internal reference are disabled by default. In power-down mode, the DAC outputs (OUTx  
pins) are in a high-impedance state. To change this state to 10 k-AGND or 100 k-AGND in the voltage-output  
mode (at power up), use the VOUT-PDN-X bits. The power-down state for current-output mode is always high-  
impedance.  
The DAC power-up state can be programmed to any state (power-down or normal mode) using the NVM. 表  
7-11 shows the DAC power-down bits. The individual channel power-down bits or the global device power-down  
function can be mapped to the GPIO pin using the GPIO-CONFIG register.  
7-11. DAC Power-Down Bits  
REGISTER  
VOUT-PDN-X[1]  
VOUT-PDN-X[0]  
IOUT-PDN-X  
DESCRIPTION  
Power up VOUT-X.  
0
0
1
Power down VOUT-X with 10 kto AGND.  
0
1
1
1
1
0
1
1
1
1
1
0
Power down IOUT-X to Hi-Z.  
Power down VOUT-X with 100 kto AGND.  
Power down IOUT-X to Hi-Z.  
COMMON-CONFIG  
Power down VOUT-X to Hi-Z.  
Power down IOUT-X to Hi-Z (default).  
Power down VOUT-X to Hi-Z.  
Power up IOUT-X.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.5 Programming  
The DACx3202 are programmed through either a 3-wire SPI or 2-wire I2C interface. A 4-wire SPI mode is  
enabled by mapping the GPIO pin as SDO. The SPI readback operates at a lower SCLK than the standard SPI  
write operation. The type of interface is determined based on the first protocol to communicate after device  
power up. After the interface type is determined, the device ignores any change in the type while the device is  
on. The interface type can be changed after a power cycle.  
7.5.1 SPI Programming Mode  
An SPI access cycle for DACx3202 is initiated by asserting the SYNC pin low. The serial clock, SCLK, can be a  
continuous or gated clock. SDI data are clocked on SCLK falling edges. The SPI frame for DACx3202 is 24 bits  
long. Therefore, the SYNC pin must stay low for at least 24 SCLK falling edges. The access cycle ends when the  
SYNC pin is deasserted high. If the access cycle contains less than the minimum clock edges, the  
communication is ignored. By default, the SDO pin is not enabled (three-wire SPI). In the three-wire SPI mode, if  
the access cycle contains more than the minimum clock edges, only the first 24 bits are used by the device.  
When SYNC is high, the SCLK and SDI signals are blocked, and SDO becomes Hi-Z to allow data readback  
from other devices connected on the bus.  
7-12 and 7-14 describe the format for the 24-bit SPI access cycle. The first byte input to SDI is the  
instruction cycle. The instruction cycle identifies the request as a read or write command and the 7-bit address  
that is to be accessed. The last 16 bits in the cycle form the data cycle.  
7-12. SPI Read/Write Access Cycle  
BIT  
FIELD  
DESCRIPTION  
23  
R/W  
Identifies the communication as a read or write command to the address register: R/W = 0 sets a write  
operation. R/W = 1 sets a read operation  
22-16  
15-0  
A[6:0]  
Register address: specifies the register to be accessed during the read or write operation  
DI[15:0]  
Data cycle bits: If a write command, the data cycle bits are the values to be written to the register with  
address A[6:0]. If a read command, the data cycle bits are don't care values.  
SYNC  
1
8
9
24  
1
8
9
24  
SCLK  
Write command  
D16  
Any command  
D16  
D23  
D15  
D0  
D23  
D23  
D15  
D0  
D0  
SDI  
Write command echo  
D16 D15  
HiZ  
HiZ  
HiZ  
SDO  
7-14. SPI Write Cycle  
Read operations require that the SDO pin is first enabled by setting the SDO-EN bit in the INTERFACE-CONFIG  
register. This configuration is called four-wire SPI. A read operation is initiated by issuing a read command  
access cycle. After the read command, a second access cycle must be issued to get the requested data. 7-13  
and 7-15 show the output data format. Data are clocked out on the SDO pin either on the falling edge or rising  
edge of SCLK according to the FSDO bit (see also 6-3).  
7-13. SDO Output Access Cycle  
BIT  
23  
FIELD  
R/W  
DESCRIPTION  
Echo R/W from previous access cycle  
22-16  
A[6:0]  
Echo register address from previous access cycle  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7-13. SDO Output Access Cycle (continued)  
DESCRIPTION  
BIT  
FIELD  
15-0  
DI[15:0]  
Readback data requested on previous access cycle  
SYNC  
1
8
9
24  
1
8
9
24  
SCLK  
Read command  
D16  
Any command  
D16  
D23  
D15  
D0  
D23  
D23  
D15  
D15  
D0  
SDI  
Read Data  
HiZ  
HiZ  
HiZ  
SDO  
D16  
D0  
7-15. SPI Read Cycle  
The daisy-chain operation is also enabled with the SDO pin. 7-16 shows that in daisy-chain mode, multiple  
devices are connected in a chain with the SDO pin of one device is connected to SDI pin of the following device.  
The SPI host drives the SDI pin of the first device in the chain. The SDO pin of the last device in the chain is  
connected to the POCI pin of the SPI host. In four-wire SPI mode, if the access cycle contains multiples of 24  
clock edges, only the last 24 bits are used by the device first device in the chain. If the access cycle contains  
clock edges that are not in multiples of 24, the SPI packet is ignored by the device. 7-17 describes the packet  
format for the daisy-chain write cycle.  
VIO  
VIO  
VIO  
C
B
A
RPULL-UP  
RPULL-UP  
RPULL-UP  
TI SPI Device  
TI SPI Device  
TI SPI Device  
SDO  
SDO  
SDO  
SDI  
SDI  
SDI  
SCLK  
SYNC  
SCLK  
SCLK  
SYNC  
SYNC  
7-16. SPI Daisy-Chain Connection  
SYNC  
SCLK  
1
8
9
24  
25  
48  
49  
72  
Device A command  
D16 D15  
Device B command  
D23 – D1  
Device C command  
D23 – D1  
D23  
D0  
SDI-C  
D0  
D0  
SDO-C  
Device A command  
Device B command  
7-17. SPI Daisy-Chain Write Cycle  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.5.2 I2C Programming Mode  
The DACx3202 devices have a 2-wire serial interface (SCL and SDA), and one address pin (A0); see also 图  
5-1. The I2C bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the bus is idle,  
both SDA and SCL lines are pulled high. All the I2C-compatible devices connect to the I2C bus through the open  
drain I/O pins, SDA and SCL.  
The I2C specification states that the device that controls communication is called a controller, and the devices  
that are controlled by the controller are called targets. The controller generates the SCL signal. The controller  
also generates special timing conditions (start condition, repeated start condition, and stop condition) on the bus  
to indicate the start or stop of a data transfer. Device addressing is completed by the controller. The controller on  
an I2C bus is typically a microcontroller or digital signal processor (DSP). The DACx3202 family operates as a  
target on the I2C bus. A target acknowledges controller commands, and upon controller control, receives or  
transmits data.  
Typically, the DACx3202 family operates as a target receiver. A controller writes to the DACx3202, a target  
receiver. However, if a controller requires the DACx3202 internal register data, the DACx3202 operate as a  
target transmitter. In this case, the controller reads from the DACx3202. According to I2C terminology, read and  
write refer to the controller.  
The DACx3202 family supports the following data transfer modes:  
Standard mode (100 kbps)  
Fast mode (400 kbps)  
Fast mode plus (1.0 Mbps)  
The data transfer protocol for standard and fast modes is exactly the same; therefore, both modes are referred  
to as F/S-mode in this document. The fast mode plus protocol is supported in terms of data transfer speed, but  
not output current. The low-level output current would be 3 mA; similar to the case of standard and fast modes.  
The DACx3202 family supports 7-bit addressing. The 10-bit addressing mode is not supported. The device  
supports the general call reset function. Sending the following sequence initiates a software reset within the  
device: start or repeated start, 0x00, 0x06, stop. The reset is asserted within the device on the rising edge of the  
ACK bit, following the second byte.  
Other than specific timing signals, the I2C interface works with serial bytes. At the end of each byte, a ninth clock  
cycle generates and detects an acknowledge signal. An acknowledge is when the SDA line is pulled low during  
the high period of the ninth clock cycle. 7-18 depicts a not-acknowledge, when the SDA line is left high during  
the high period of the ninth clock cycle.  
Data output  
by transmitter  
Not acknowledge  
Data output  
by receiver  
Acknowledge  
2
9
1
8
SCL from  
controller  
S
Clock pulse for  
acknowledgement  
Start  
condition  
7-18. Acknowledge and Not Acknowledge on the I2C Bus  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.5.2.1 F/S Mode Protocol  
The following steps explain a complete transaction in F/S mode.  
1. The controller initiates data transfer by generating a start condition. 7-19 shows that the start condition is  
when a high-to-low transition occurs on the SDA line while SCL is high. All I2C-compatible devices recognize  
a start condition.  
2. The controller then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit  
(R/W) on the SDA line. During all transmissions, the controller makes sure that data are valid. 7-20 shows  
that a valid data condition requires the SDA line to be stable during the entire high period of the clock pulse.  
All devices recognize the address sent by the controller and compare the address to the respective internal  
fixed address. Only the target device with a matching address generates an acknowledge by pulling the SDA  
line low during the entire high period of the 9th SCL cycle (see also 7-18). When the controller detects this  
acknowledge, the communication link with a target has been established.  
3. The controller generates further SCL cycles to transmit (R/W bit 0) or receive (R/W bit 1) data to the target.  
In either case, the receiver must acknowledge the data sent by the transmitter. The acknowledge signal can  
be generated by the controller or by the target, depending on which is the receiver. The 9-bit valid data  
sequences consists of eight data bits and one acknowledge-bit, and can continue as long as necessary.  
4. 7-19 shows that to signal the end of the data transfer, the controller generates a stop condition by pulling  
the SDA line from low-to-high while the SCL line is high. This action releases the bus and stops the  
communication link with the addressed target. All I2C-compatible devices recognize the stop condition. Upon  
receipt of a stop condition, the bus is released, and all target devices then wait for a start condition followed  
by a matching address.  
SDA  
SDA  
SCL  
SCL  
S
P
Start  
condition  
Stop  
condition  
Change of data  
allowed  
Data line stable  
Data valid  
7-19. Start and Stop Conditions  
7-20. Bit Transfer on the I2C Bus  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.5.2.2 I2C Update Sequence  
7-14 shows that for a single update, the DACx3202 require a start condition, a valid I2C address byte, a  
command byte, and two data bytes.  
7-14. Update Sequence  
MSB  
....  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
Address (A) byte  
7.5.2.2.1  
Command byte  
7.5.2.2.2  
Data byte - MSDB  
DB [15:8]  
Data byte - LSDB  
DB [7:0]  
DB [31:24]  
DB [23:16]  
7-21 shows that after each byte is received, the DACx3202 family acknowledges the byte by pulling the SDA  
line low during the high period of a single clock pulse. These four bytes and acknowledge cycles make up the 36  
clock cycles required for a single update to occur. A valid I2C address byte selects the DACx3202.  
Recognize  
START or  
REPEATED  
START  
condition  
Recognize  
STOP or  
REPEATED  
START  
Generate ACKNOWLEDGE  
signal  
condition  
P
SDA  
Sr  
MSB  
Acknowledgement  
signal from target  
Address  
R/W  
1
SCL  
1
7
8
9
2 - 8  
9
Sr  
or  
P
S
or  
Sr  
ACK  
ACK  
START or  
REPEATED  
START  
REPEATED  
START or  
STOP  
condition  
condition  
7-21. I2C Bus Protocol  
The command byte sets the operating mode of the selected DACx3202 device. For a data update to occur when  
the operating mode is selected by this byte, the DACx3202 device must receive two data bytes: the most  
significant data byte (MSDB) and least significant data byte (LSDB). The DACx3202 device performs an update  
on the falling edge of the acknowledge signal that follows the LSDB.  
When using fast mode (clock = 400 kHz), the maximum DAC update rate is limited to 10 kSPS. Using fast mode  
plus (clock = 1 MHz), the maximum DAC update rate is limited to 25 kSPS. When a stop condition is received,  
the DACx3202 device releases the I2C bus and awaits a new start condition.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.5.2.2.1 Address Byte  
7-15 depicts the address byte, the first byte received from the controller device following the start condition.  
The first four bits (MSBs) of the address are factory preset to 1001. The next three bits of the address are  
controlled by the A0 pin. The A0 pin input can be connected to VDD, AGND, SCL, or SDA. The A0 pin is  
sampled during the first byte of each data frame to determine the address. The device latches the value of the  
address pin, and consequently responds to that particular address according to 7-16.  
7-15. Address Byte  
COMMENT  
MSB  
LSB  
AD6  
1
AD5  
0
AD4  
0
AD3  
AD2  
AD1  
AD0  
R/W  
See 7-16  
General address  
1
0
0 or 1  
0
(target address column)  
Broadcast address  
1
0
0
1
1 1  
7-16. Address Format  
TARGET ADDRESS  
A0 PIN  
000  
001  
010  
011  
AGND  
VDD  
SDA  
SCL  
The DACx3202 supports broadcast addressing, which is used for synchronously updating or powering down  
multiple DACx3202 devices. When the broadcast address is used, the DACx3202 responds regardless of the  
address pin state. Broadcast is supported only in write mode.  
7.5.2.2.2 Command Byte  
7-21 lists the command byte in the ADDRESS column.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.5.2.3 I2C Read Sequence  
To read any register the following command sequence must be used:  
1. Send a start or repeated start command with a target address and the R/W bit set to 0 for writing. The device  
acknowledges this event.  
2. Send a command byte for the register to be read. The device acknowledges this event again.  
3. Send a repeated start with the target address and the R/W bit set to 1 for reading. The device acknowledges  
this event.  
4. The device writes the MSDB byte of the addressed register. The controller must acknowledge this byte.  
5. Finally, the device writes out the LSDB of the register.  
The broadcast address cannot be used for reading.  
7-17. Read Sequence  
R/W  
(0)  
R/W  
(1)  
S
MSB  
ACK  
MSB  
LSB  
ACK Sr MSB  
ACK  
MSB  
LSB  
ACK  
MSB  
LSB  
ACK  
Address byte  
7.5.2.2.1  
Command byte  
7.5.2.2.2  
Address byte  
7.5.2.2.1  
Sr  
MSDB  
LSDB  
From controller  
Target  
From controller  
Target  
From controller  
Target  
From target  
Controller  
From target  
Controller  
7.5.3 General-Purpose Input/Output (GPIO) Modes  
Together with I2C and SPI, the DACx3202 also support a GPIO that can be configured in the NVM for multiple  
functions. This pin allows for updating the DAC output channels and reading status bits without using the  
programming interface, thus enabling processor-less operation. In the GPIO-CONFIG register, write 1 to the  
GPI-EN bit to set the GPIO pin as an input, or write 1 to the GPO-EN bit to set the pin as output. There are  
global and channel-specific functions mapped to the GPIO pin. For channel-specific functions, select the  
channels using the GPI-CH-SEL field in the GPIO-CONFIG register. 7-18 lists the functional options available  
for the GPIO as input and 7-19 lists the options for the GPIO as output. Some of the GP input operations are  
edge-triggered after the device boots up. After the power supply ramps up, the device registers the GPI level and  
executes the associated command. This feature allows the user to configure the initial output state at power-on.  
By default, the GPIO pin is not mapped to any operation. When the GPIO pin is mapped to a specific input  
function, the corresponding software bit functionality is disabled to avoid a race condition. When used as a  
RESET input, the GPIO pin must transmit an active-low pulse for triggering a device reset. All other constraints  
of the functions are applied to the GPIO-based trigger.  
备注  
Pull the GPIO pin high or low when not used. When the GPIO pin is used as RESET, the configuration  
must be programmed into the NVM. Otherwise, the setting is cleared after the device resets.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7-18. General-Purpose Input Function Map  
GPIO EDGE /  
REGISTER  
BIT FIELD  
VALUE  
CHANNELS  
FUNCTION  
LEVEL  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Trigger FAULT-DUMP  
No effect  
0010  
All  
IOUT power-down  
IOUT power-up  
0011  
0100  
As per GPI-CH-SEL  
As per GPI-CH-SEL  
VOUT power-down. Pulldown  
resistor as per the VOUT-PDN-X  
setting  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
VOUT power-up  
Trigger PROTECT function  
No effect  
0101  
0111  
All  
All  
Trigger CLR function  
No effect  
As per GPI-CH-SEL, both the  
SYNC-CONFIG-X and the  
GPI-CH-SEL must be  
Trigger LDAC function  
1000  
Rising edge  
No effect  
configured for every channel.  
GPIO-CONFIG  
GPI-CONFIG  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Stop function generation  
Start function generation  
Trigger margin-low  
1001  
1010  
As per GPI-CH-SEL  
As per GPI-CH-SEL  
Trigger margin-high  
Trigger device RESET. The RESET  
configuration must be programmed  
into the NVM.  
Low pulse  
1011  
1100  
All  
All  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
No effect  
Allows NVM programming  
Blocks NVM programming  
Allows register map update  
Blocks register map write except a  
write to the DEV-UNLOCK field  
through I2C or SPI and the RESET  
fields through I2C  
1101  
All  
Rising edge  
N/A  
Others  
N/A  
Not applicable  
7-19. General-Purpose Output (STATUS) Function Map  
REGISTER  
BIT FIELD  
VALUE  
FUNCTION  
NVM-BUSY  
DAC-1-BUSY  
DAC-0-BUSY  
WIN-CMP-1  
WIN-CMP-0  
Not applicable  
0001  
0100  
0111  
GPIO-CONFIG  
GPO-CONFIG  
1000  
1011  
Others  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.6 Register Map  
7-20. Register Map  
MOST SIGNIFICANT DATA BYTE (MSDB)  
LEAST SIGNIFICANT DATA BYTE (LSDB)  
REGISTER(1) (2)  
BIT15  
BIT14  
BIT13  
BIT12  
BIT11  
BIT10  
BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
NOP  
NOP  
DAC-X-MARGIN-  
HIGH  
DAC-X-MARGIN-HIGH  
DAC-X-MARGIN-LOW  
X
X
DAC-X-MARGIN-  
LOW  
DAC-X-VOUT-  
CMP-CONFIG  
CMP-X-OD-  
EN  
CMP-X-  
OUT-EN  
CMP-X-HIZ- CMP-X-INV-  
IN-DIS EN  
X
X
VOUT-X-GAIN  
X
CMP-X-EN  
DAC-X-IOUT-MISC-  
CONFIG  
IOUT-X-RANGE  
X
DAC-X-CMP-  
MODE-CONFIG  
X
CMP-X-MODE  
VOUT-PDN-0  
X
DAC-X-FUNC-  
CLR-SEL-X  
CONFIG  
SYNC-  
CONFIG-X  
BRD-  
CONFIG-X  
FUNC-GEN-CONFIG-BLOCK-X  
DAC-X-DATA  
DAC-X-DATA  
IOUT-PDN-0  
X
WIN-  
COMMON-CONFIG  
LATCH-EN  
EE-READ-  
ADDR  
DEV-LOCK  
EN-INT-REF  
X
VOUT-PDN-1  
IOUT-PDN-1  
COMMON-  
TRIGGER  
FAULT-  
DUMP  
READ-ONE-  
TRIG  
NVM-  
RELOAD  
DEV-UNLOCK  
RESET  
LDAC  
CLR  
X
PROTECT  
NVM-PROG  
COMMON-DAC-  
TRIG  
RST-CMP- TRIG-MAR- TRIG-MAR-  
START-  
FUNC-1  
RST-CMP- TRIG-MAR- TRIG-MAR-  
FLAG-0 LO-0 HI-0  
START-  
FUNC-0  
X
FLAG-1  
LO-1  
HI-1  
X
NVM-CRC- NVM-CRC-  
DAC-  
BUSY-0  
DAC-  
BUSY-1  
GENERAL-STATUS  
X
NVM-BUSY  
DEVICE-ID  
FAIL-INT  
GF-EN  
FAIL-USER  
PROTECT-  
FLAG  
CMP-  
FLAG-0  
CMP-  
FLAG-1  
CMP-STATUS  
GPIO-CONFIG  
X
WIN-CMP-0  
X
WIN-CMP-1  
X
X
GPO-EN  
GPO-CONFIG  
GPI-CH-SEL  
RESERVED  
GPI-CONFIG  
GPI-EN  
DEVICE-MODE-  
CONFIG  
DIS-MODE-  
IN  
RESERVED  
RESERVED  
PROTECT-CONFIG  
X
INTERFACE-  
CONFIG  
TIMEOUT-  
EN  
FAST-SDO-  
EN  
X
X
EN-PMBUS  
X
X
SDO-EN  
SRAM-CONFIG  
SRAM-DATA  
X
SRAM-ADDR  
SRAM-DATA  
BRDCAST-DATA  
PMBUS-PAGE  
PMBUS-OP-CMD  
PMBUS-CML  
BRDCAST-DATA  
X
PMBUS-PAGE  
PMBUS-OPERATION-CMD-X  
X
Not applicable  
Not applicable  
Not applicable  
Not applicable  
CML  
X
PMBUS-VERSION  
PMBUS-VERSON  
(1) The highlighted gray cells indicate the register bits or fields that are stored in the NVM.  
(2) X = Don't care.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7-21. Register Names  
PMBUS REGISTER ADDR  
I2C/SPI ADDRESS  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ch  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
2Bh  
2Ch  
50h  
NA  
PMBUS PAGE ADDR  
REGISTER NAME  
NOP  
SECTION  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.7  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.8  
7.6.8  
7.6.9  
7.6.10  
7.6.11  
7.6.12  
7.6.13  
7.6.14  
7.6.15  
7.6.16  
7.6.17  
7.6.18  
7.6.19  
7.6.20  
7.6.21  
7.6.21  
7.6.21  
7.6.21  
7.6.22  
7.6.23  
FFh  
00h  
D0h  
25h  
26h  
D1h  
D2h  
D3h  
D4h  
25h  
26h  
DDh  
DEh  
DFh  
E0h  
21h  
21h  
E3h  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
EAh  
EFh  
F0h  
F1h  
00h  
01h  
01h  
01h  
01h  
78h  
98h  
DAC-1-MARGIN-HIGH  
DAC-1-MARGIN-LOW  
DAC-1-VOUT-CMP-CONFIG  
DAC-1-IOUT-MISC-CONFIG  
DAC-1-CMP-MODE-CONFIG  
DAC-1-FUNC-CONFIG  
DAC-0-MARGIN-HIGH  
DAC-0-MARGIN-LOW  
DAC-0-VOUT-CMP-CONFIG  
DAC-0-IOUT-MISC-CONFIG  
DAC-0-CMP-MODE-CONFIG  
DAC-0-FUNC-CONFIG  
DAC-1-DATA  
00h  
FFh  
FFh  
FFh  
FFh  
03h  
03h  
FFh  
FFh  
FFh  
FFh  
00h  
03h  
DAC-0-DATA  
FFh  
COMMON-CONFIG  
COMMON-TRIGGER  
COMMON-DAC-TRIG  
GENERAL-STATUS  
CMP-STATUS  
FFh  
FFh  
FFh  
FFh  
FFh  
GPIO-CONFIG  
FFh  
DEVICE-MODE-CONFIG  
INTERFACE-CONFIG  
SRAM-CONFIG  
FFh  
FFh  
FFh  
SRAM-DATA  
FFh  
BRDCAST-DATA  
All pages  
00h  
PMBUS-PAGE  
NA  
PMBIS-OP-CMD-0  
PMBUS-OP-CMD-1  
PMBUS-OP-CMD-2  
PMBUS-OP-CMD-3  
PMBUS-CML  
NA  
01h  
NA  
02h  
NA  
03h  
NA  
All pages  
All pages  
NA  
PMBUS-VERSION  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7-22. Access Type Codes  
Access Type  
Code  
Description  
X
X
Don't care  
Read Type  
R
R
W
Read  
Write Type  
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.6.1 NOP Register (address = 00h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = D0h  
7-22. NOP Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NOP  
R-0h  
7-23. NOP Register Field Descriptions  
Bit  
15-0  
Field  
NOP  
Type  
Reset  
Description  
R
0000h  
No operation  
7.6.2 DAC-X-MARGIN-HIGH Register (address = 13h, 01h) [reset = 0000h]  
PMBus page address = 03h, 00h, PMBus register address = 25h  
7-23. DAC-X-MARGIN-HIGH Register (X = 0, 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC63202: DAC-X-MARGIN-HIGH[11:0]  
DAC53202: DAC-X-MARGIN-HIGH[9:0]  
X
R/W-0h  
X-0h  
7-24. DAC-X-MARGIN-HIGH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-4  
DAC63202:  
R/W  
000h  
Margin-high code for DAC output  
DAC-X-MARGIN-HIGH[11:0]  
DAC53202:  
Data are in straight-binary format. MSB left aligned.  
Use the following bit alignment:  
DAC-X-MARGIN-HIGH[9:0]  
DAC63202: {DAC-X-MARGIN-HIGH[11:0]}  
DAC53202: {DAC-X-MARGIN-HIGH[9:0], X, X}  
X = Don't care bits.  
3-0  
X
X
0
Don't care  
7.6.3 DAC-X-MARGIN-LOW Register (address = 14h, 02h) [reset = 0000h]  
PMBus page address = 03h, 00h, PMBus register address = 26h  
7-24. DAC-X-MARGIN-LOW Register (X = 0, 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC63202: DAC-X-MARGIN-LOW[11:0]  
DAC53202: DAC-X-MARGIN-LOW[9:0]  
X
R/W-0h  
X-0h  
7-25. DAC-X-MARGIN-LOW Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-4  
DAC63202: DAC-X-MARGIN-LOW[11:0]  
DAC53202: DAC-X-MARGIN-LOW[9:0]  
R/W  
000h  
Margin-low code for DAC output  
Data are in straight-binary format. MSB left aligned.  
Use the following bit alignment:  
DAC63202: {DAC-X-MARGIN-HIGH[11:0]}  
DAC53202: {DAC-X-MARGIN-HIGH[9:0], X, X}  
X = Don't care bits.  
3-0  
X
X
0
Don't care  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.6.4 DAC-X-VOUT-CMP-CONFIG Register (address = 15h, 03h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = DDh, D1h  
7-25. DAC-X-VOUT-CMP-CONFIG Register (X = 0, 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
VOUT-GAIN-X  
X
CMP- CMP- CMP-X- CMP- CMP-  
X-OD- X-OUT- HIZ-IN- X-INV- X-EN  
EN  
EN  
DIS  
EN  
X-0h  
R/W-0h  
X-0h  
R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h  
7-26. DAC-X-VOUT-CMP-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12-10  
X
X
0h  
Don't care  
VOUT-GAIN-X  
R/W  
0h  
000: Gain = 1x, external reference on VREF pin  
001: Gain = 1x, VDD as reference  
010: Gain = 1.5x, internal reference  
011: Gain = 2x, internal reference  
100: Gain = 3x, internal reference  
101: Gain = 4x, internal reference  
Others: Invalid  
9-5  
4
X
X
0h  
0
Don't care  
CMP-X-OD-EN  
R/W  
0: Set OUTx pin as push-pull  
1: Set OUTx pin as open-drain in comparator mode (CMP-X-EN =  
1 and CMP-X-OUT-EN = 1)  
3
2
CMP-X-OUT-EN  
R/W  
R/W  
0
0
0: Generate comparator output but consume internally  
1: Bring comparator output to the respective OUTx pin  
CMP-X-HIZ-IN-DIS  
0: FBx input has high-impedance. Input voltage range is limited.  
1: FBx input is connected to resistor divider and has finite  
impedance. Input voltage range is same as full-scale.  
1
0
CMP-X-INV-EN  
CMP-X-EN  
R/W  
R/W  
0
0
0: Don't invert the comparator output  
1: Invert the comparator output  
0: Disable comparator mode  
1: Enable comparator mode. Current-output must be in power-  
down. Voltage-output mode must be enabled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.6.5 DAC-X-IOUT-MISC-CONFIG Register (address = 16h, 04h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = DEh, D2h  
7-26. DAC-X-IOUT-MISC-CONFIG Register (X = 0, 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
IOUT-RANGE-X  
R/W-0h  
X
X-0h  
X-0h  
7-27. DAC-X-IOUT-MISC-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12-9  
X
X
0h  
Don't care  
IOUT-RANGE-X  
R/W  
0000  
1000: 25 μA to +25 μA  
1001: 50 μA to +50 μA  
1010: 125 μA to +125 μA  
1011: 250 μA to +250 μA  
Others: Invalid  
8-0  
X
X
000h  
Don't care  
7.6.6 DAC-X-CMP-MODE-CONFIG Register (address = 17h, 05h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = DFh, D3h  
7-27. DAC-X-CMP-MODE-CONFIG Register (X = 0, 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
CMP-X-MODE  
R/W-0h  
X
X-0h  
X-0h  
7-28. DAC-X-CMP-MODE-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00h  
00  
Description  
15-12  
11-10  
X
X
Don't care  
CMP-X-MODE  
R/W  
00: No hysteresis or window function  
01: Hysteresis provided using DAC-X-MARGIN-HIGH and DAC-  
X-MARGIN-LOW registers  
10: Window comparator mode with DAC-X-MARGIN-HIGH and  
DAC-X-MARGIN-LOW registers setting window bounds  
11: Invalid  
9-0  
X
X
000h  
Don't care  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.6.7 DAC-X-FUNC-CONFIG Register (address = 18h, 06h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = E0h, D4h  
7-28. DAC-X-FUNC-CONFIG Register (X = 0, 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CLR-SEL-X  
SYNC-  
BRD-  
FUNC-GEN-CONFIG-BLOCK  
CONFIG-X CONFIG-X  
R/W-0h  
R/W-0h R/W-0h  
R/W-0h  
7-29. DAC-X-FUNC-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
CLR-SEL-X  
R/W  
0
0: Clear DAC-X to zero-scale  
1: Clear DAC-X to mid-scale  
14  
13  
SYNC-CONFIG-X  
R/W  
R/W  
0
0
0: DAC-X output updates immediately after a write command  
1: DAC-X output updates with LDAC pin falling-edge or when the  
LDAC bit in the COMMON-TRIGGER register is set to 1  
BRD-CONFIG-X  
0: Don't update DAC-X with broadcast command  
1: Update DAC-X with broadcast command  
7-30. Linear-Slew Mode: FUNC-GEN-CONFIG-BLOCK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
12-11  
PHASE-SEL-X  
R/W  
0
00: 0°  
01: 120°  
10: 240°  
11: 90°  
10-8  
FUNC-CONFIG-X  
R/W  
0
000: Triangular wave  
001: Sawtooth wave  
010: Inverse sawtooth wave  
100: Sine wave  
111: Disable function generation  
Others: Invalid  
7
LOG-SLEW-EN-X  
CODE-STEP-X  
R/W  
R/W  
0
0
0: Enable linear slew  
6-4  
CODE-STEP for linear slew mode:  
000: 1-LSB  
001: 2-LSB  
010: 3-LSB  
011: 4-LSB  
100: 6-LSB  
101: 8-LSB  
110: 16-LSB  
111: 32-LSB  
3-0  
SLEW-RATE-X  
R/W  
0
SLEW-RATE for linear slew mode:  
0000: No slew for margin-high and margin-low. Invalid for  
waveform generation.  
0001: 4 µs/step  
0010: 8 µs/step  
0011: 12 µs/step  
0100: 18 µs/step  
0101: 27.04 µs/step  
0110: 40.48 µs/step  
0111: 60.72 µs/step  
1000: 91.12 µs/step  
1001: 136.72 µs/step  
1010: 239.2 µs/step  
1011: 418.64 µs/step  
1100: 732.56 µs/step  
1101: 1282 µs/step  
1110: 2563.96 µs/step  
1111: 5127.92 µs/step  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7-31. Logarithmic-Slew Mode: FUNC-GEN-CONFIG-BLOCK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
12-11  
PHASE-SEL-X  
R/W  
0
00: 0°  
01: 120°  
10: 240°  
11: 90°  
10-8  
FUNC-CONFIG-X  
LOG-SLEW-EN-X  
R/W  
R/W  
0
0
000: Triangular wave  
001: Sawtooth wave  
010: Inverse sawtooth wave  
100: Sine wave  
111: Disable function generation  
Others: Invalid  
7
1: Enable logarithmic slew.  
In logarithmic slew mode, the DAC output moves from the DAC-  
X-MARGIN-LOW code to the DAC-X-MARGIN-HIGH code, or  
vice versa, in 3.125% steps.  
When slewing in the positive direction, the next step is  
(1 + 0.03125) times the current step.  
When slewing in the negative direction, the next step is  
(1 0.03125) times the current step.  
When DAC-X-MARGIN-LOW is 0, the slew starts from code 1.  
The time interval for each step is defined by RISE-SLEW-X and  
FALL-SLEW-X.  
6-4  
3-1  
0
RISE-SLEW-X  
FALL-SLEW-X  
X
R/W  
R/W  
X
0
0
0
SLEW-RATE for logarithmic slew mode (DAC-X-MARGIN-LOW to  
DAC-X-MARGIN-HIGH):  
000: 4 µs/step  
001: 12 µs/step  
010: 27.04 µs/step  
011: 60.72 µs/step  
100: 136.72 µs/step  
101: 418.64 µs/step  
110: 1282 µs/step  
111: 5127.92 µs/step  
SLEW-RATE for logarithmic slew mode (DAC-X-MARGIN-HIGH  
to DAC-X-MARGIN-LOW):  
000: 4 µs/step  
001: 12 µs/step  
010: 27.04 µs/step  
011: 60.72 µs/step  
100: 136.72 µs/step  
101: 418.64 µs/step  
110: 1282 µs/step  
111: 5127.92 µs/step  
Don't care  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.6.8 DAC-X-DATA Register (address = 1Ch, 19h) [reset = 0000h]  
PMBus page address = 03h, 00h, PMBus register address = 21h  
7-29. DAC-X-DATA Register (X = 0, 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC63202: DAC-X-DATA[11:0]  
DAC53202: DAC-X-DATA[9:0]  
X
R/W-0h  
X-0h  
7-32. DAC-X-DATA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-4  
DAC63202: DAC-X-DATA[11:0]  
DAC53202: DAC-X-DATA[9:0]  
R/W  
000h  
Data for DAC output  
Data are in straight-binary format. MSB left-aligned. MSB left-  
aligned. Use the following bit-alignment:  
DAC63202: {DAC-X-MARGIN-HIGH[11:0]}  
DAC53202: {DAC-X-MARGIN-HIGH[9:0], X, X}  
X = Don't care bits.  
Don't care  
3-0  
X
X
0h  
7.6.9 COMMON-CONFIG Register (address = 1Fh) [reset = 0FFFh]  
PMBus page address = FFh, PMBus register address = E3h  
7-30. COMMON-CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WIN-  
LATCH- LOCK  
EN  
DEV-  
EE-READ-  
ADDR  
EN-INT-  
REF  
VOUT-PDN-0  
IOUT-  
PDN-0  
Don't care  
VOUT-PDN-1  
IOUT-  
PDN-1  
R/W-0h R/W-0h  
R/W-0h  
R/W-0h  
R/W-11b  
R/W-1b  
X-11h  
R/W-11b  
R/W-1b  
7-33. COMMON-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
WIN-LATCH-EN  
R/W  
0
0: Non-latching window-comparator output  
1: Latching window-comparator output  
14  
DEV-LOCK  
R/W  
0
0: Device not locked  
1: Device locked, the device locks all the registers. To set this bit  
back to 0 (unlock device), write to the unlock code to the DEV-  
UNLOCK field in the COMMON-TRIGGER register first, followed  
by a write to the DEV-LOCK bit as 0.  
13  
12  
EE-READ-ADDR  
EN-INT-REF  
R/W  
R/W  
0
0
0: Fault-dump read enable at address 0x00  
1: Fault-dump read enable at address 0x01  
0: Disable internal reference  
1: Enable internal reference. This bit must be set before using  
internal reference gain settings.  
11-10, 2-1 VOUT-PDN-X  
R/W  
11  
00: Power-up VOUT-X  
01: Power-down VOUT-X with 10 kΩto AGND  
10: Power-down VOUT-X with 100 kΩto AGND  
11: Power-down VOUT-X with Hi-Z to AGND  
9, 0  
8-3  
IOUT-PDN-X  
X
R/W  
X
1
0: Power-up IOUT-X  
1: Power-down IOUT-X  
11h  
Don't care  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.6.10 COMMON-TRIGGER Register (address = 20h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = E4h  
7-31. COMMON-TRIGGER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DEV-UNLOCK  
RESET  
LDAC  
CLR  
X
FAULT- PROTECT  
DUMP  
READ-  
ONE-  
TRIG  
NVM-  
PROG RELOAD  
NVM-  
R/W-0h  
R/W-0h  
R/W-0h R/W-0h X-0h R/W-0h  
R/W-0h  
R/W-0h R/W-0h R/W-0h  
7-34. COMMON-TRIGGER Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-8  
7
DEV-UNLOCK  
R/W  
0000  
0101: Device unlocking password  
Others: Don't care  
RESET  
W
0000  
0
1010: POR reset triggered. This bit self-resets.  
Others: Don't care  
LDAC  
R/W  
0: LDAC operation not triggered  
1: LDAC operation triggered if the respective SYNC-CONFIG-X  
bit in the DAC-X-FUNC-CONFIG register is 1. This bit self-resets.  
6
CLR  
R/W  
0
0: DAC registers and outputs unaffected  
1: DAC registers and outputs set to zero-code or mid-code based  
on the respective CLR-SEL-X bit in the DAC-X-FUNC-CONFIG  
register. This bit self-resets.  
5
4
X
X
0
0
Don't care  
FAULT-DUMP  
R/W  
0: Fault-dump is not triggered  
1: Triggers fault-dump sequence. This bit self-resets.  
3
2
1
0
PROTECT  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0: PROTECT function not triggered  
1: Trigger PROTECT function. This bit is self-resetting.  
READ-ONE-TRIG  
NVM-PROG  
0: Fault-dump read not triggered  
1: Read one row of NVM for fault-dump. This bit self-resets.  
0: NVM write not triggered  
1: NVM write triggered. This bit self-resets.  
NVM-RELOAD  
0: NVM reload not triggered  
1: Reload data from NVM to register map. This bit self-resets.  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.6.11 COMMON-DAC-TRIG Register (address = 21h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = E5h  
7-32. COMMON-DAC-TRIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESET-  
CMP-  
FLAG-1  
TRIG-  
MAR-  
LO-1  
TRIG-  
MAR-  
HI-1  
START-  
FUNC-1  
Don't care  
RESET- TRIG-  
TRIG- START-  
MAR- FUNC-0  
HI-0  
CMP-  
MAR-  
LO-0  
FLAG-0  
W-0h  
W-0h  
W-0h  
R/W-0h  
X-0h  
W-0h  
W-0h  
W-0h R/W-0h  
7-35. COMMON-DAC-TRIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15, 3  
RESET-CMP-FLAG-X  
W
0
0: Latching-comparator output unaffected  
1: Reset latching-comparator and window-comparator output.  
This bit self-resets.  
14, 2  
13, 1  
12, 0  
TRIG-MAR-LO-X  
TRIG-MAR-HI-X  
START-FUNC-X  
W
0
0
0
0: Don't care  
1: Trigger margin-low command. This bit self-resets.  
W
0: Don't care  
1: Trigger margin-high command. This bit self-resets.  
R/W  
0: Stop function generation  
1: Start function generation as per FUNC-GEN-CONFIG-X in the  
DAC-X-FUNC-CONFIG register.  
11-4  
X
X
0h  
Don't care  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.6.12 GENERAL-STATUS Register (address = 22h) [reset = 00h, DEVICE-ID, VERSION-ID]  
PMBus page address = FFh, PMBus register address = E6h  
7-33. GENERAL-STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NVM-  
CRC-  
FAIL-INT  
NVM-  
CRC-  
FAIL-  
USER  
X
DAC-0-  
BUSY  
X
DAC-1-  
BUSY  
X
DEVICE-ID  
VERSION-ID  
R-0h  
R-0h  
R-0h  
R-0h  
X-0h  
R-0h  
X-0h  
R
R-0h  
7-36. GENERAL-STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
NVM-CRC-FAIL-INT  
R
0
0: No CRC error in OTP  
1: Indicates a failure in OTP loading. A software  
reset or power-cycle can bring the device out of  
this condition in case of temporary failure.  
14  
NVM-CRC-FAIL-USER  
R
0
0: No CRC error in NVM loading  
1: Indicates a failure in NVM loading. The register  
settings are corrupted. The device allows all  
operations during this error condition. Reprogram  
the NVM to get original state. A software reset  
brings the device out of this temporary error  
condition.  
13  
12  
X
R
R
0
0
Don't care  
DAC-0-BUSY  
0: DAC-0 channel can accept commands  
1: DAC-0 channel does not accept commands  
11-10  
9
X
X
R
0
0
Don't care  
DAC-1-BUSY  
0: DAC-1 channel can accept commands  
1: DAC-1 channel does not accept commands  
8
X
R
R
0
Don't care  
7-2  
DEVICE-ID  
DAC63202: 06h  
DAC53202: 07h  
Device identifier.  
1-0  
VERSION-ID  
R
00  
Version identifier.  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.6.13 CMP-STATUS Register (address = 23h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = E7h  
7-34. CMP-STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
PROTECT- WIN-  
X
WIN- CMP-  
CMP-1 FLAG-  
0
X
CMP-  
FLAG-  
1
FLAG  
CMP-0  
X-0h  
R-0h  
R-0h  
X-0h  
R-0h  
R-0h  
X-0h  
R-0h  
7-37. CMP-STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-9, 6-5,  
2-1  
X
X
0
Don't care  
8
PROTECT-FLAG  
WIN-CMP-X  
R
R
R
0
0
0
0: PROTECT operation not triggered.  
1: PROTECT function is completed or in progress. This bit resets  
to 0 when read.  
7, 4  
3, 0  
Window comparator output from respective channels. The output  
is latched or unlatched based on the WINDOW-LATCH-EN  
setting in the COMMON-CONFIG register.  
CMP-FLAG-X  
Synchronized comparator output from respective channels.  
7.6.14 GPIO-CONFIG Register (address = 24h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = E8h  
7-35. GPIO-CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GF-EN  
R/W-0h  
X
GPO-EN  
R/W-0h  
GPO-CONFIG  
R/W-0h  
GPI-CH-SEL  
R/W-0h  
GPI-CONFIG  
R/W-0h  
GPI-EN  
R/W-0h  
X-0h  
7-38. GPIO-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
GF-EN  
R/W  
0
0: Glitch filter disabled for GP input. This setting provides faster  
response.  
1: Glitch filter enabled for GPI. This setting introduces additional  
propagation delay but provides robustness.  
14  
13  
X
X
0
0
Don't care.  
GPO-EN  
R/W  
0: Disable output mode for GPIO pin.  
1: Enable output mode for GPIO pin.  
12-9  
GPO-CONFIG  
R/W  
0000  
STATUS function setting. The GPIO pin is mapped to the  
following register bits as output:  
0001: NVM-BUSY  
0100: DAC-1-BUSY  
0111: DAC-0-BUSY  
1000: WIN-CMP-1  
1011:WIN-CMP-0  
Others: NA  
8-5  
GPI-CH-SEL  
R/W  
0000  
Two bits correspond to two DAC channels. 0b is disabled and 1b  
is enabled.  
GPI-CH-SEL[0]: Channel 1  
GPI-CH-SEL[3]: Channel 0  
Example: when GPI-CH-SEL is 1001, both channel-0 and  
channel-1 are enabled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7-38. GPIO-CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4-1  
GPI-CONFIG  
R/W  
0000  
GPIO pin input configuration. Global settings act on the entire  
device. Channel-specific settings are dependent on the channel  
selection by the GPI-CH-SEL bits:  
0010: FAULT-DUMP (global). GPIO falling edge triggers fault  
dump, GPIO = 1 has no effect.  
0011: IOUT power up-down (channel-specific). GPIO falling edge  
triggers power down, GPIO rising edge triggers power up.  
0100: VOUT power up-down (channel-specific). The output load  
is as per the VOUT-PDN-X setting. GPIO falling edge triggers  
power down, GPIO rising edge triggers power up.  
0101: PROTECT input (global). GPIO falling edge asserts  
PROTECT function, GPIO = 1 has no effect.  
0111: CLR input (global). GPIO = 0 asserts CLR function, GPIO =  
1 has no effect.  
1000: LDAC input (channel-specific). GPIO falling edge asserts  
LDAC function, GPIO = 1 has no effect. Both the SYNC-CONFIG-  
X and the GPI-CH-SEL must be configured for every channel.  
1001: Start and stop function generation (channel-specific). GPIO  
falling edge stops function generation. GPIO rising edge starts  
function generation.  
1010: Trigger margin high-low (channel-specific). GPIO falling  
edge triggers margin low. GPIO rising edge triggers margin high.  
1011: RESET input (global). The falling edge of the GPIO pin  
asserts the RESET function. The RESET input must be a pulse.  
The GPIO rising edge brings the device out of reset. The RESET  
configuration must be programmed into the NVM. Otherwise the  
setting is cleared after the device reset.  
1100: NVM write protection (global). GPIO falling edge allows  
NVM programming. GPIO rising edge blocks NVM programming.  
1101: Register-map lock (global). GPIO falling edge allows  
update to the register map. GPIO rising edge blocks any register  
map update except a write to the DEV-UNLOCK field through I2C  
or SPI and to the RESET field through I2C.  
Others: Invalid  
0
GPI-EN  
R/W  
0
0: Disable input mode for GPIO pin.  
1: Enable input mode for GPIO pin.  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.6.15 DEVICE-MODE-CONFIG Register (address = 25h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = E9h  
7-36. DEVICE-MODE-CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
DIS-  
MODE-IN  
RESERVED  
PROTECT-  
CONFIG  
RESERVED  
X
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
X-0h  
7-39. DEVICE-MODE-CONFIG Register Field Descriptions  
Bit  
15-14  
13  
Field  
RESERVED  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
00  
0
Always write 0b00  
DIS-MODE-IN  
RESERVED  
Write 1 to this bit for low-power consumption.  
Always write 0b000  
12-10  
9-8  
0
PROTECT-CONFIG  
00  
00: Switch to Hi-Z power-down (no slew)  
01: Switch to DAC code stored in NVM (no slew) and then switch  
to Hi-Z power-down  
10: Slew to margin-low code and then switch to Hi-Z power-down  
11: Slew to margin-high code and then switch to Hi-Z power-down  
7-5  
4-0  
RESERVED  
X
R/W  
R/W  
0
Always write 0b000  
Don't care  
00h  
7.6.16 INTERFACE-CONFIG Register (address = 26h) [reset = 0000h]  
7-37. INTERFACE-CONFIG Register  
15  
14  
X
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TIMEOUT-  
EN  
X
EN-PMBUS  
X
FSDO-  
EN  
X
SDO-  
EN  
X-0h  
R/W-0h  
X-0h  
R/W-0h  
X-0h  
R/W-0h X-0h R/W-0h  
7-40. INTERFACE-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12  
X
X
0h  
Don't care  
TIMEOUT-EN  
R/W  
0
0: I2C timeout disabled  
1: I2C timeout enabled  
11-9  
8
X
X
0h  
0
Don't care  
EN-PMBUS  
R/W  
0: PMBus disabled  
1: Enable PMBus  
7-3  
2
X
X
00h  
0
Don't care  
FSDO-EN  
R/W  
0: Fast SDO disabled  
1: Fast SDO enabled  
1
0
X
X
0
0
Don't care  
SDO-EN  
R/W  
0: SDO disabled  
1: SDO enabled on GPIO pin  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.6.17 SRAM-CONFIG Register (address = 2Bh) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = EFh  
7-38. SRAM-CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
SRAM-ADDR  
R/W-0h  
X-0h  
7-41. SRAM-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
7-0  
X
X
0h  
Don't care  
SRAM-ADDR  
R/W  
0h  
8-bit SRAM address. Writing to this register field configures the  
SRAM address to be accessed next. This address automatically  
increments after a write to the SRAM.  
7.6.18 SRAM-DATA Register (address = 2Ch) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = F0h  
7-39. SRAM-DATA Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SRAM-DATA  
R/W-0h  
7-42. SRAM-DATA Register Field Descriptions  
Bit  
15-0  
Field  
SRAM-ADDR  
Type  
Reset  
Description  
R/W  
0h  
16-bit SRAM data. This data is written to or read from the address  
configured in the SRAM-CONFIG register.  
7.6.19 BRDCAST-DATA Register (address = 50h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = F1h  
7-40. BRDCAST-DATA Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC63202: BRDCAST-DATA[11:0]  
DAC53202: BRDCAST-DATA[9:0]  
X
R/W-0h  
X-0h  
7-43. BRDCAST-DATA Register Field Descriptions  
Bit  
15-4  
Field  
Type  
Reset  
Description  
DAC63202: BRDCAST-DATA[11:0]  
DAC53202: BRDCAST-DATA[9:0]  
R/W  
000h  
Broadcast code for all DAC channels  
Data are in straight-binary format. MSB left-aligned. Use the  
following bit-alignment:  
DAC63202: {DAC-X-MARGIN-HIGH[11:0]}  
DAC53202: {DAC-X-MARGIN-HIGH[9:0], X, X}  
X = Don't care bits.  
The BRD-CONFIG-X bit in the DAC-X-FUNC-CONFIG register  
must be enabled for the respective channels.  
3-0  
X
X
0h  
Don't care.  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
7.6.20 PMBUS-PAGE Register [reset = 0300h]  
PMBus page address = X, PMBus register address = 00h  
7-41. PMBUS-PAGE Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PMBUS-PAGE  
R/W-03h  
X
X-00h  
7-44. PMBUS_OPERATION Register Field Descriptions  
Bit  
Field  
Type  
R/W  
X
Reset  
Description  
15-8  
7-0  
PMBUS-PAGE  
X
03h  
8-bit PMBus page address as specified in 7-21.  
00h  
Not applicable  
7.6.21 PMBUS-OP-CMD-X Register [reset = 0000h]  
PMBus page address = 00h, 01h, 02h, 03h, PMBus register address = 01h  
7-42. PMBUS-OP-CMD-X Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PMBUS-OPERATION-CMD-X  
R/W-00h  
X
X-00h  
7-45. PMBUS-OP-CMD-X Register Field Descriptions  
Bit  
15-8  
Field  
Type  
Reset  
Description  
PMBUS-OPERATION-CMD-X  
R/W  
00h  
PMBus operation commands:  
00h: Turn off  
80h: Turn on  
A4h: Margin high, DAC output margins high to DAC-X-MARGIN-  
HIGH code  
94h: Margin low, DAC output margins low to DAC-X-MARGIN-  
LOW code  
7-0  
X
X
00h  
Not applicable  
7.6.22 PMBUS-CML Register [reset = 0000h]  
PMBus page address = X, PMBus register address = 78h  
7-43. PMBUS-CML Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
CML  
R/W-0h  
X
N/A  
X-00h  
X-0h  
X-00h  
7-46. PMBUS-CML Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00h  
0h  
Description  
15-10  
9
X
X
Don't care  
CML  
R/W  
0: No communication fault  
1: PMBus communication fault for write with incorrect number of  
clocks, read before write command, invalid command address,  
and invalid or unsupported data value; reset this bit by writing 1.  
8
X
X
X
X
0h  
Don't care  
7-0  
00h  
Not applicable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
7.6.23 PMBUS-VERSION Register [reset = 2200h]  
PMBus page address = X, PMBus register address =98h  
7-44. PMBUS-VERSION Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PMBUS-VERSION  
R-22h  
X
X-00h  
7-47. PMBUS-VERSION Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
7-0  
PMBUS-VERSION  
X
R
22h  
PMBus version  
Not applicable  
X
00h  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The DACx3202 are dual-channel buffered, force-sense output, voltage-output and current-output smart DACs  
that include an NVM and internal reference, and available in a tiny 3-mm × 3-mm package.  
In voltage-output mode, short the OUTx and FBx pins for each channel. In current-output mode, leave the  
FBx pins unconnected. The FBx pins function as inputs in comparator mode.  
The external reference must not exceed VDD, either during transient or steady-state conditions. For the best  
Hi-Z output performance, use a pullup resistor on the VREF pin to VDD. In case the VDD remains floating  
during the off condition, place a 100-kΩresistor to AGND for proper detection of the VDD off condition.  
All the digital outputs are open drain; use external pullup resistors on these pins.  
The interface protocol is detected at power-on, and the device locks to the protocol as long as VDD is on.  
When allocating nonoverlapping I2C addresses on a system I2C bus, consider the broadcast address as well.  
I2C timeout can be enabled for robustness.  
SPI mode is 3-wire by default. Configure the GPIO pin as SDO in the NVM for SPI readback capability. The  
SPI clock speed in readback mode is slower than that in write mode.  
Power-down mode sets the DAC outputs in Hi-Z by default. Change the configuration appropriately for  
different power-down settings. The DAC channels can also power-up with a programmed DAC code in the  
NVM.  
8.2 Typical Application  
A power-supply margining and scaling circuit is used to trim, scale, or test the output of a power converter. This  
example circuit is used to test a system by margining the power supplies for adaptive voltage scaling or to  
program a desired value at the output. Adjustable power supplies, such as low-dropout regulators (LDOs) and  
DC/DC converters, provide a feedback or adjust the input that is used to set the desired output. A precision  
voltage-output DAC is the best choice for controlling the power-supply output linearly. 8-1 shows a control  
circuit for a switch-mode power supply (SMPS) using the DACx3202. Typical applications of power-supply  
margining are communications equipment, enterprise servers, test and measurement, and general-purpose  
power-supply modules.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: DAC53202 DAC63202  
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
VDD  
10 kΩ  
0.1 μ  
1.5 μ  
VREF  
CAP  
LDO  
L
VIN  
IN  
PH  
VOUT  
Internal  
Reference  
NVM  
SCL/SYNC  
SDA/SCLK  
A0/SDI  
BOOT  
R1  
SMPS / LDO  
GND  
CL  
CB  
R3  
VFB  
R2  
DAC  
REG  
DAC  
BUF  
VOUT/  
IOUT  
SENSE  
R3  
DAC  
REG  
DAC  
BUF  
VOUT/  
IOUT  
PROTECT  
Output Configuration  
Logic  
Power-supply: 0  
Power-supply: 1  
DACx3202  
AGND  
8-1. Voltage Margining and Scaling  
8-1. Design Parameters  
8.2.1 Design Requirements  
PARAMETER  
VALUE  
Power-supply nominal output  
3.3 V  
0.6 V  
Reference voltage of the converter (VFB  
Margin  
)
±10% (that is, 2.97 V to 3.63 V)  
DAC output range  
1.8 V  
Nominal current through R1 and R2  
100 µA  
8.2.2 Detailed Design Procedure  
The DACx3202 features a Hi-Z power-down mode that is set by default at power-up, unless the device is  
programmed otherwise using the NVM. When the DAC output is at Hi-Z, the current through R3 is zero and the  
SMPS is set at the nominal output voltage of 3.3 V. To have the same nominal condition when the DAC powers  
up, bring up the device at the same output as VFB (that is 0.6 V). This configuration makes sure there is no  
current through R3 even at power-up. Calculate R1 as (VOUT VFB) / 100 µA = 27 kΩ.  
To achieve ±10% margin-high and margin-low conditions, the DAC must sink or source additional current  
through R1. Calculate the current from the DAC (IMARGIN) using 方程9 as 12 µA.  
V
× 1 + MARGIN V  
OUT  
FB  
I
=
I  
(9)  
MARGIN  
NOMINAL  
R
1
where  
IMARGIN is the margin current sourced or sinked from the DAC.  
MARGIN is the percentage margin value divided by 100.  
INOMINAL is the nominal current through R1 and R2.  
VOUT is the output voltage of the respective DAC channel.  
VFB is the reference voltage at the SENSE node of the power converter.  
R1 is the resistance between the output and SENSE pin of the power converter.  
To calculate the value of R3, first decide the DAC output range, and make sure to avoid the codes near zero-  
scale and full-scale for safe operation in the linear region. A DAC output of 20 mV is a safe consideration as the  
minimum output, and (1.8 V 0.6 V 20 mV = 1.18 V) as the maximum output. When the DAC output is at 20  
mV, the power supply goes to margin high, and when the DAC output is at 1.18 V, the power supply goes to  
margin low. Calculate the value of R3 using 方程式 10 as 48.3 kΩ. Choose a standard resistor value and adjust  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
the DAC outputs. Choosing R3 = 47 kΩ makes the DAC margin high code as 1.164 V and the DAC margin low  
code as 36 mV.  
V
V  
FB  
DAC  
I
R =  
(10)  
3
MARGIN  
When the DACx3202 are set to current-output mode, series resistor R3 is not required. Set the DAC output at  
the current-output range of 25 µA to +25 µA, and set the DAC code accordingly to achieve a margin current of  
±12 µA.  
The DACx3202 have a slew-rate feature that is used to toggle between margin high, margin low, and nominal  
outputs with a defined slew rate; see also 7.6.7.  
备注  
The DAC-X-MARGIN-HIGH register value in DACx3202 results in the margin-low value at the power  
supply output. Similarly, the DAC-X-MARGIN-LOW register value in DACx3202 results in the margin-  
high value at the power-supply output.  
The pseudocode for getting started with a power-supply control application is as follows:  
//SYNTAX: WRITE <REGISTER NAME (Hex code)>, <MSB DATA>, <LSB DATA>  
//Write DAC code for nominal output (repeat for all DAC channels)  
//For  
a 1.8-V output range, the 10-bit hex code for 0.6 V is 0x155. With 16-bit left alignment,  
this becomes 0x5540  
WRITE DAC_0_DATA(0x1C), 0x55, 0x40  
//Power-up voltage output on both the channels, enables internal reference  
WRITE COMMON-CONFIG(0x1F), 0x12, 0x01  
//Set channel 0 gain setting to 1.5x internal reference (1.8 V)  
WRITE DAC-0-VOUT-CMP-CONFIG(0x15), 0x08, 0x00  
//Set channel 1 gain setting to 1.5x internal reference (1.8 V)  
WRITE DAC-1-VOUT-CMP-CONFIG(0x3), 0x08, 0x00  
//Configure GPI for Margin-High, Low trigger for all channels  
WRITE GPIO-CONFIG(0x24), 0x01, 0x35  
//Set slew rate and code step (repeat for all channels)  
//CODE_STEP: 2 LSB, SLEW_RATE: 60.72 µs/step  
WRITE DAC-0-FUNC-CONFIG(0x18), 0x00, 0x17  
//Write DAC margin high code (repeat for all channels)  
//For a 1.8-V output range, the 10-bit hex code for 1.164 V is 0x296. With 16-bit left alignment,  
this becomes 0xA540  
WRITE DAC-0-MARGIN-HIGH(0x13), 0xA5, 0x40  
//Write DAC margin low code (repeat for all channels)  
//For a 1.8-V output range, the 10-bit hex code for 36 mV is 0x14. With 16-bit left alignment, this  
becomes 0x0500  
WRITE DAC-0-MARGIN-LOW(0x14), 0x05, 0x00  
//Save settings to NVM  
WRITE COMMON-TRIGGER(0x20), 0x00, 0x02  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: DAC53202 DAC63202  
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
8.2.3 Application Curves  
8-3. Power-Supply Margin Low  
8-2. Power-Supply Margin High  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
DAC53202, DAC63202  
www.ti.com.cn  
ZHCSQC6 MAY 2022  
9 Power Supply Recommendations  
The DACx3202 family of devices does not require specific power-supply sequencing. These devices require a  
single power supply, VDD. However, make sure the external voltage reference is applied after VDD. Use a 0.1-µF  
decoupling capacitor for the VDD pin. Use a bypass capacitor with a value approximately 1.5 µF for the CAP pin.  
10 Layout  
10.1 Layout Guidelines  
The DACx3202 pin configuration separates the analog, digital, and power pins for an optimized layout. For  
signal integrity, separate the digital and analog traces, and place decoupling capacitors close to the device pins.  
10.2 Layout Example  
VREF Pullup  
Resistor  
VDD  
VDD  
Decoupling  
Capacitor  
LDO Bypass  
Capacitor  
GND  
GND  
GND  
VREF Bypass  
Capacitor  
GND  
DACx3202  
1
2
3
4
12  
11  
10  
9
FB0  
FB1  
OUT0  
OUT1  
VIO  
VIO  
VIO  
VIO  
10-1. Layout Example  
Note: The ground and power planes have been omitted for clarity. Connect the thermal pad to ground.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
DAC53202, DAC63202  
ZHCSQC6 MAY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
11.1 Documentation Support  
11.1.1 Related Documentation  
The following EVM user's guide is available: DACx3204 Evaluation Module user's guide  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
PMBusis a trademark of SMIF, Inc..  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: DAC53202 DAC63202  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC53202RTER  
DAC63202RTER  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
D53202  
D63202  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DAC63204

具有 I²C、SPI 且在断电期间处于高阻态输出的四通道 12 位 VOUT 和 IOUT 智能 DAC
TI

DAC63204RTER

具有 I²C、SPI 且在断电期间处于高阻态输出的四通道 12 位 VOUT 和 IOUT 智能 DAC | RTE | 16 | -40 to 125
TI

DAC63204RTET

具有 I²C、SPI 且在断电期间处于高阻态输出的四通道 12 位 VOUT 和 IOUT 智能 DAC | RTE | 16 | -40 to 125
TI

DAC650

12-Bit 500MHz DIGITAL-TO-ANALOG CONVERTER
BB

DAC650JL

12-Bit 500MHz DIGITAL-TO-ANALOG CONVERTER
BB

DAC650JL-4

12-Bit Digital-to-Analog Converter
ETC

DAC650KL

12-Bit 500MHz DIGITAL-TO-ANALOG CONVERTER
BB

DAC6551-Q1

DAC6551-Q1 汽车类 12 位、超低毛刺脉冲、电压输出 DAC
TI

DAC6551AQDGKRQ1

DAC6551-Q1 汽车类 12 位、超低毛刺脉冲、电压输出 DAC | DGK | 8 | -40 to 125
TI

DAC6571

+2.7 V to +5.5 V, I2C INTERFACE, VOLTAGE OUTPUT, 10-BIT DIGITAL-TO-ANALOG CONVERTER
TI

DAC6571IDBVR

+2.7 V to +5.5 V, I2C INTERFACE, VOLTAGE OUTPUT, 10-BIT DIGITAL-TO-ANALOG CONVERTER
TI

DAC6571IDBVT

+2.7 V to +5.5 V, I2C INTERFACE, VOLTAGE OUTPUT, 10-BIT DIGITAL-TO-ANALOG CONVERTER
TI