DAC71408RHAT [TI]

具有集成内部基准电压的 8 通道 14 位高电压输出 DAC | RHA | 40 | -40 to 125;
DAC71408RHAT
型号: DAC71408RHAT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成内部基准电压的 8 通道 14 位高电压输出 DAC | RHA | 40 | -40 to 125

转换器
文件: 总60页 (文件大小:3689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
具有内部基准电压的 DACx1408 8 通道 16/14/12 位高电压输出 DAC  
1 特性  
3 说明  
1
性能  
DAC81408DAC71408 DAC61408 (DACx1408)  
是具有引脚兼容性和 16/14/12 位分辨率的 8 通道缓冲  
高电压输出数模转换器 (DAC) 系列产品。DACx1408  
包括一个低漂移 2.5V 内部电压基准,因此在大多数应  
用中无需使用外部精密 基准。这些器件具有单调性,  
并能提供 ±1 LSB INL 的高线性度。  
16 位分辨率下具有单调性  
INL16 位分辨率下为 ±1 LSB(最大值)  
TUEFSR 最大值 ±0.1%  
集成 2.5V 精密内部基准  
初始精度:±2.5mV(最大值)  
低温漂:5ppm/˚C(典型值)  
用户可自行选择输出配置,包括满量程双极输出电压 ±  
20V±10V±5V ±2.5V 和满量程非双极输出电压  
40V20V10V 5V。而且可以对每个 DAC 通道的  
满量程输出电压进行单独编程控制。集成的 DAC 输出  
缓冲器可实现高达 25mA 的灌电流或拉电流,从而减  
少了对额外的运算放大器的需求。每个通道对都可进行  
相应配置,从而提供经过失调校准的差分输出。通过三  
个专用 A-B 切换引脚,可以生成最多具有三种频率的  
抖动信号。  
灵活的输出配置  
输出范围:±2.5V±5V±10V±20V  
0 5V0 10V0 20V0 40V  
差分输出模式  
高驱动能力:±25mA(相对于电源轨的摆幅为  
1.5V)  
三个专用 A-B 切换引脚可用于生成抖动信号  
模拟温度输出  
传感器增益为 –4mV/˚C  
DACx1408 包含的上电复位电路可在加电时将 DAC 输  
出端连接至接地端。输出端会保持该状态,直至器件寄  
存器得到适当的运行配置。  
50MHz SPI 兼容型串行接口  
4 线制模式,工作电压为 1.7V 5.5V  
菊链运行方式  
CRC 误差校验  
DACx1408 之间的通信通过一个支持 1.7V 5.5V  
工作电压的 4 线制串行接口进行。  
温度范围:–40˚C +125˚C  
小型封装  
器件信息(1)  
6mm × 6mm40 引脚 VQFN  
器件型号  
DAC81408  
封装  
封装尺寸(标称值)  
2 应用  
DAC71408  
DAC61408  
VQFN (40)  
6.00mm × 6.00mm  
光纤网络:马赫-曾德调制器偏置控制  
工业自动化  
测试和测量  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
功能方框图  
REF  
REFCMP REFGND  
VIO  
VAA  
VDD  
VCC  
Internal  
Reference  
DAC  
Buffer  
DAC  
Register  
SCLK  
SDI  
Range Config  
SDO  
DAC  
BUF  
OUT0  
CS  
LDAC  
Channel 0  
Channel 1  
RESET  
OUT1  
OUT7  
CLR  
TOGGLE0  
TOGGLE1  
TOGGLE2  
Channel 7  
Power Down Logic  
Resistive Network  
ALMOUT  
Power On Reset  
Temperature Sensor  
TEMPOUT  
DACx1408  
GND  
VSS  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASER3  
 
 
 
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
目录  
9.4 Device Functional Modes........................................ 26  
9.5 Programming........................................................... 28  
9.6 Register Maps......................................................... 31  
10 Application and Implementation........................ 46  
10.1 Application Information.......................................... 46  
10.2 Typical Application ............................................... 46  
11 Power Supply Recommendations ..................... 49  
12 Layout................................................................... 50  
12.1 Layout Guidelines ................................................. 50  
12.2 Layout Example .................................................... 50  
13 器件和文档支持 ..................................................... 51  
13.1 文档支持 ............................................................... 51  
13.2 相关链接................................................................ 51  
13.3 接收文档更新通知 ................................................. 51  
13.4 社区资源................................................................ 51  
13.5 ....................................................................... 51  
13.6 静电放电警告......................................................... 51  
13.7 术语表 ................................................................... 51  
14 机械、封装和可订购信息....................................... 51  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements.............................................. 11  
7.7 Typical Characteristics............................................ 13  
Parameter Measurement Information ................ 21  
Detailed Description ............................................ 22  
9.1 Overview ................................................................. 22  
9.2 Functional Block Diagram ....................................... 22  
9.3 Feature Description................................................. 23  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (July 2018) to Revision A  
Page  
已更改 将 DAC81408 预告信息更改为生产数据”............................................................................................................. 1  
已更改 将 DAC71408 DAC61408 产品预览更改为生产数据” ..................................................................................... 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
5 Device Comparison Table  
DEVICE  
RESOLUTION  
16-Bit  
DAC81408  
DAC71408  
DAC61408  
14-Bit  
12-Bit  
6 Pin Configuration and Functions  
RHA Package  
40-Pin VQFN  
Top View  
NC  
NC  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
NC  
NC  
NC  
NC  
NC  
NC  
OUT0  
OUT1  
OUT2  
OUT3  
VIO  
OUT7  
OUT6  
OUT5  
OUT4  
TEMPOUT  
ALMOUT  
Thermal  
Pad  
GND  
Not to scale  
Copyright © 2018, Texas Instruments Incorporated  
3
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
OUT[0:7]  
NO.  
5 - 8, 23 - 26  
O
O
Analog DAC output voltages.  
No connection.  
1, 2, 3, 4, 27,  
28, 29, 30  
NC  
VIO  
9
PWR  
GND  
IO supply voltage. (1.7 V to 5.5 V). This pin sets the I/O operating voltage for the device.  
Ground reference point for all circuitry on the device.  
GND  
10, 36  
Serial interface data output. The SDO pin must be enabled before operation by setting the SDO-EN bit.  
Data are clocked out of the input shift register on either rising or falling edges of the SCLK pin as specified  
by the FSDO bit (rising edge by default).  
SDO  
11  
O
SCLK  
SDI  
12  
13  
I
I
Serial interface clock.  
Serial interface data input. Data are clocked into the input shift register on each falling edge of the SCLK  
pin.  
Active low serial data enable. This input is the frame synchronization signal for the serial data. When the  
signal goes low, it enables the serial interface input shift register.  
CS  
14  
I
TOGGLE0  
TOGGLE1  
TOGGLE2  
15  
16  
17  
I
I
I
Toggle pins. Control signals for those DAC outputs configured for toggle operation to switch between the  
two DAC data registers associated with each DAC. A logic low updates the DAC output to the value set by  
Register A. A logic high updates the DAC output to the value set by Register B. Connect the TOGGLE  
pins to ground if not using the toggle operation.  
Active low synchronization signal. When the LDAC pin is low, the DAC outputs of those channels  
configured in synchronous mode are updated simultaneously. Connect to VIO if unused.  
LDAC  
RESET  
CLR  
18  
19  
20  
I
I
I
Active low reset input. Logic low on this pin causes the device to issue a power-on-reset event.  
Active low clear input. Logic low on this pin clears all DAC outputs to their clear code. Connect to VIO if  
unused.  
ALMOUT is an open drain alarm output. An external 10-kpull-up resistor to a voltage no higher than VIO  
is required.  
ALMOUT  
21  
O
TEMPOUT  
VCC  
22  
O
Analog temperature monitor output.  
31, 40  
32, 39  
PWR  
PWR  
Output positive analog power supply (9 V to 41.5 V).  
Output negative analog power supply (-21.5 V to 0 V).  
VSS  
Reference input to the device when operating with external reference. When using internal reference, this  
is the reference output voltage pin. Connect a 150-nF capacitor to ground.  
REF  
33  
34  
I/O  
I/O  
Reference compensation capacitor connection. Connect a 330-pF capacitor between REFCMP and  
REFGND.  
REFCMP  
REFGND  
VAA  
35  
37  
38  
GND  
PWR  
PWR  
Ground reference point for the internal reference.  
Analog supply voltage (4.5 V to 5.5 V). This pin must be at the same potential as the VDD pin.  
Digital supply voltage (4.5 V to 5.5 V). This pin must be at the same potential as the VAA pin.  
VDD  
THERMAL  
PAD  
The thermal pad is located on the package underside. The thermal pad should be connected to any  
internal PCB ground plane through multiple vias for good thermal performance.  
4
Copyright © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
MAX  
UNIT  
V
VDD to GND  
VIO to GND  
VCC to GND  
6
6
-0.3  
V
-0.3  
44  
V
Supply voltage  
VSS to GND  
-22  
0.3  
V
REFGND to GND  
VDD to VAA  
-0.3  
0.9  
V
-0.3  
0.3  
V
VCC to VSS  
-0.3  
44  
V
DAC outputs to GND  
TEMPOUT to GND  
REF and REFCMP to GND  
Digital inputs to GND  
SDO to GND  
VSS - 0.3  
-0.3  
VCC + 0.3  
VDD + 0.3  
VDD + 0.3  
VIO + 0.3  
VIO + 0.3  
6
V
V
-0.3  
V
Pin voltage  
-0.3  
V
-0.3  
V
ALARMOUT to GND  
-0.3  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
-40  
150  
°C  
°C  
-60  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
1.7  
9
NOM  
MAX  
5.5  
5.5  
5.5  
41.5  
0
UNIT  
V
(1)  
(1)  
VAA  
VDD  
VIO  
V
V
VCC  
VSS  
V
(2)  
-21.5  
9
V
VCC – VSS  
43  
V
Digital input voltage  
0
VIO  
2.51  
0.6  
125  
V
VREFIN  
VREFGND  
TA  
Reference input voltage to VREFGND  
2.49  
0
2.5  
0
V
(3)  
REFGND pin voltage  
V
Operating ambient temperature  
-40  
°C  
(1) VAA and VDD must be at the same potential.  
(2) VSS is only connected to GND when all DAC outputs are unipolar.  
(3) If VREFGND is not connected to GND, a buffered source must be used to drive it.  
Copyright © 2018, Texas Instruments Incorporated  
5
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.4 Thermal Information  
DACx1408  
THERMAL METRIC(1)  
RHA (VQFN)  
40 PINS  
26.8  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RΘJC(top)  
RΘJB  
14.1  
3.4  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJB  
3.4  
RΘJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
版权 © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
7.5 Electrical Characteristics  
all minimum/maximum specifications at TA = -40to +125and all typical specifications at TA = 25, VCC = 9 V to 41.5 V,  
VSS = -21.5 V to 0 V, VDD = VAA = 4.5 V to 5.5 V, VREFIN = 2.5 V, VIO = 1.7 V to 5.5 V, DAC outputs unloaded, Digital inputs at  
VIO or GND (unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE(1)  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
16  
-1  
Bits  
All ranges, except 0 to 40 V and ±2.5 V  
0 to 40 V and ±2.5 V range  
±0.5  
±1  
1
2
1
LSB  
LSB  
LSB  
Bits  
DAC81408  
Integral nonlinearity (INL)  
-2  
Differential nonlinearity (DNL) Specified 16-bit monotonic  
-1  
±0.5  
Resolution  
14  
DAC71408  
Integral nonlinearity (INL)  
All ranges  
-1  
±0.5  
±0.5  
1
1
LSB  
LSB  
Bits  
Differential nonlinearity (DNL) Specified 14-bit monotonic  
Resolution  
-1  
12  
DAC61408  
TUE  
Integral nonlinearity (INL)  
All ranges  
-1  
±0.5  
±0.5  
1
1
LSB  
LSB  
Differential nonlinearity (DNL) Specified 12-bit monotonic  
-1  
All ranges, except ±2.5 V  
Total unadjusted error  
-0.1  
-0.2  
-0.03  
0
±0.01  
±0.02  
±0.015  
0.04  
0.1  
0.2  
%FSR  
±2.5 V range  
Unipolar offset error  
Unipolar zero-code error  
Bipolar zero error  
All unipolar ranges  
All unipolar ranges  
All bipolar ranges  
All ranges  
0.03 %FSR  
0.1 %FSR  
0.2 %FSR  
0.2 %FSR  
-0.2  
-0.2  
-0.1  
-0.2  
±0.02  
±0.075  
±0.02  
±0.02  
Full-scale error  
All ranges, except ±2.5 V  
±2.5 V range  
0.1  
Gain error  
%FSR  
0.2  
ppm of  
FSR/°C  
Unipolar offset error drift  
Bipolar zero error drift  
Gain error drift  
All unipolar ranges  
All bipolar ranges  
All ranges  
±2  
±2  
±2  
5
ppm of  
FSR/°C  
ppm of  
FSR/°C  
ppm of  
FSR  
Output voltage drift over time TA = 40°C, Full-scale code, 1900 hours  
DIFFERENTIAL MODE PERFORMANCE(1)  
All ranges  
-0.1  
-0.2  
-0.1  
±0.01  
±0.02  
±0.01  
0.1  
TUE  
Total unadjusted error  
Common mode error  
%FSR  
0.2  
±2.5 V range  
All bipolar ranges. Midscale code  
0.1 %FSR  
OUTPUT CHARACTERISTICS  
to VSS and VCC  
(-10 mA IOUT 10 mA)  
1
Output voltage headroom  
V
to VSS and VCC  
(-15 mA IOUT 15 mA)  
1.5  
Full-scale output shorted to VSS  
Zero-scale output shorted to VCC  
Midscale code, -15 mA IOUT 15 mA  
RLOAD = open  
40  
40  
70  
Short circuit current(2)  
mA  
Load regulation  
Maximum capacitive load(3)  
μV/mA  
0
1
nF  
Midscale code  
0.05  
40  
DC output impedance  
Ω
Full-scale code  
(1) End point fit between codes. 16-bit: Code 256 to 65280, 14-bit: Code 128 to 16256, 12-bit: Code 32 to 4064.  
(2) Temporary overload condition protection. Junction temperature can be exceeded during current limit. Operation above the specified  
maximum junction temperature may impair device reliability.  
(3) Specified by design and characterization, not production tested.  
Copyright © 2018, Texas Instruments Incorporated  
7
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = -40to +125and all typical specifications at TA = 25, VCC = 9 V to 41.5 V,  
VSS = -21.5 V to 0 V, VDD = VAA = 4.5 V to 5.5 V, VREFIN = 2.5 V, VIO = 1.7 V to 5.5 V, DAC outputs unloaded, Digital inputs at  
VIO or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DYNAMIC PERFORMANCE  
¼ to ¾ scale and ¾ to ¼ scale settling  
time to ±1 LSB, ±10 V range,  
RL = 5 kΩ, CL = 200 pF  
Output voltage settling time  
12  
µs  
V/µs  
V
0 to 5 V range  
1
4
Slew rate  
All other output ranges  
Power-down to active DAC output.  
±20 V range, midscale code,  
RL = 5 kΩ, CL = 200 pF  
Power-on glitch magnitude  
0.3  
0.1 Hz to 10 Hz, midscale code,  
0 to 5 V range  
Output noise  
15  
78  
µVpp  
Output noise density  
1 kHz, midscale code, 0 to 5 V range  
nV/Hz  
Midscale code, frequency = 60 Hz,  
amplitude 200 mVpp superimposed on  
VDD, VCC or VSS  
AC PSRR  
1
LSB/V  
LSB/V  
Midscale code, VDD = 5 V ± 5%,  
VCC = 20 V, VSS = -20 V  
1
1
1
4
Midscale code, VDD = 5 V,  
VCC = 20 V ± 5%, VSS = -20 V  
DC PSRR  
Midscale code, VDD = 5 V, VCC = 20 V,  
VSS = -20 V ± 5%  
1 LSB change around major carrier,  
0 to 5 V range  
Code change glitch impulse  
nV-s  
nV-s  
0 to 5 V range. Measured channel at  
midscale. Full-scale swing on all other  
channels  
Channel to Channel AC  
crosstalk  
4
0 to 5 V range. Measured channel at  
midscale. All other channels at full-  
scale  
Channel to Channel DC  
crosstalk  
0.25  
1
LSB  
nV-s  
0 to 5 V range. Midscale code,  
fSCLK = 1 MHz  
Digital feedthrough  
8
Copyright © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = -40to +125and all typical specifications at TA = 25, VCC = 9 V to 41.5 V,  
VSS = -21.5 V to 0 V, VDD = VAA = 4.5 V to 5.5 V, VREFIN = 2.5 V, VIO = 1.7 V to 5.5 V, DAC outputs unloaded, Digital inputs at  
VIO or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
EXTERNAL REFERENCE INPUT  
Reference input voltage  
VREFIN  
range  
to VREFGND  
2.49  
2.5  
2.51  
V
Reference input current  
Reference input impedance  
Reference input capacitance  
INTERNAL REFERENCE  
50  
50  
20  
µA  
kΩ  
pF  
Reference output voltage  
VREFOUT  
range  
TA = 25°C  
2.4975  
2.5025  
V
Reference output drift  
5
0.1  
12  
15 ppm/°C  
Reference output impedance  
Reference output noise  
Ω
0.1 Hz to 10 Hz  
µVpp  
Reference output noise  
density  
10 kHz, REFLOAD = 10 nF  
150  
nV/Hz  
Reference load current  
Reference load regulation  
Reference line regulation  
5
80  
20  
mA  
µV/mA  
µV/V  
Source  
Reference output drift over  
time  
TA = 25°C, 1900 hours  
250  
µV  
µV  
First cycle  
±700  
±50  
Reference thermal hysteresis  
Additional cycle  
DIGITAL INPUTS AND OUTPUTS  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
Input current  
0.7 × VIO  
V
0.3 × VIO  
V
µA  
pF  
V
±2  
2
Input pin capacitance  
High-level output voltage  
Low-level output voltage  
Output pin capacitance  
VOH  
VOL  
IOH = 0.2 mA  
IOL = 0.2 mA  
VIO - 0.2  
0.4  
0.4  
V
5
5
pF  
ALARM OUTPUT  
Output pin capacitance  
Low-level output voltage  
pF  
V
VOL  
ILOAD = -0.2 mA  
TEMPERATURE OUTPUT  
VTEMPOUT,0C Output voltage offset at 0  
Sensor gain  
1.34  
-4  
V
mV/°C  
Copyright © 2018, Texas Instruments Incorporated  
9
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = -40to +125and all typical specifications at TA = 25, VCC = 9 V to 41.5 V,  
VSS = -21.5 V to 0 V, VDD = VAA = 4.5 V to 5.5 V, VREFIN = 2.5 V, VIO = 1.7 V to 5.5 V, DAC outputs unloaded, Digital inputs at  
VIO or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER REQUIREMENTS  
Active mode. Internal reference  
enabled. Full-scale code. ±20 V output  
range. SPI static.  
0.05  
0.5  
mA  
IDD  
IAA  
ICC  
VDD supply current  
VAA supply current  
VCC supply current  
Active mode. Internal reference  
disabled. Full-scale code. ±20 V output  
range. SPI static.  
0.05  
0.05  
20  
0.5  
0.5  
30  
mA  
mA  
mA  
Power-down mode  
Active mode. Internal reference  
enabled. Full-scale code. ±20 V output  
range. SPI static.  
Active mode. Internal reference  
disabled. Full-scale code. ±20 V output  
range. SPI static.  
18  
2
28  
85  
10  
mA  
µA  
Power-down mode  
Active mode. Internal reference  
enabled. Full-scale code. ±20 V output  
range. SPI static.  
5
mA  
Active mode. Internal reference  
disabled. Full-scale code. ±20 V output  
range. SPI static.  
5
10  
-5  
10  
30  
mA  
µA  
Power-down mode  
Active mode. Internal reference  
enabled. Full-scale code. ±20 V output  
range. SPI static.  
-10  
mA  
ISS  
VSS supply current  
VIO supply current  
Active mode. Internal reference  
disabled. Full-scale code. ±20 V output  
range. SPI static.  
-10  
-30  
-5  
mA  
Power-down mode  
-10  
µA  
µA  
IIO  
SCLK and SDI toggling at 50 MHz  
350  
500  
10  
Copyright © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
7.6 Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
SERIAL INTERFACE - WRITE OPERATION  
VIO = 1.7 V to 2.7 V  
25  
f(SCLK)  
Serial clock frequency  
SCLK high time  
SCLK low time  
SDI setup time  
SDI hold time  
MHz  
50  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
20  
10  
20  
10  
10  
5
tSCLKHIGH  
tSCLKLOW  
tSDIS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
10  
5
tSDIH  
30  
15  
10  
5
CS to SCLK falling edge  
setup time  
tCSS  
SCLK falling edge to CS  
rising edge  
tCSH  
50  
25  
2.4  
2.4  
4
tCSHIGH  
tDACWAIT  
tBCASTWAIT  
CS hight time  
Sequential DAC update wait  
time  
Broadcast DAC update wait  
time  
4
SERIAL INTERFACE - READ AND DAISY CHAIN OPERATION, FSDO = 0  
VIO = 1.7 V to 2.7 V  
15  
f(SCLK)  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
Serial clock frequency  
SCLK high time  
SCLK low time  
SDI setup time  
SDI hold time  
MHz  
20  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
33  
25  
33  
25  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
5
tSDIH  
30  
20  
8
CS to SCLK falling edge  
setup time  
tCSS  
SCLK falling edge to CS  
rising edge  
tCSH  
5
50  
25  
0
tCSHIGH  
tSDOZD  
tSDODLY  
CS high time  
20  
ns  
20  
SDO tri-state to driven  
SDO output delay  
0
0
35  
ns  
20  
0
Copyright © 2018, Texas Instruments Incorporated  
11  
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Timing Requirements (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
SERIAL INTERFACE - READ AND DAISY CHAIN OPERATION, FSDO = 1  
VIO = 1.7 V to 2.7 V  
25  
f(SCLK)  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
Serial clock frequency  
SCLK high time  
SCLK low time  
SDI setup time  
SDI hold time  
MHz  
35  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
20  
14  
20  
14  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
5
tSDIH  
30  
20  
8
CS to SCLK falling edge  
setup time  
tCSS  
SCLK falling edge to CS  
rising edge  
tCSH  
5
50  
25  
0
tCSHIGH  
tSDOZD  
tSDODLY  
CS high time  
20  
ns  
20  
SDO tri-state to driven  
SDO output delay  
0
0
35  
ns  
20  
0
DIGITAL LOGIC  
CS rising edge to LDAC or  
tLOGDLY  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
40  
20  
CLR falling edge delay time  
ns  
CS rising edge to LDAC or  
CLR falling edge delay time  
tLOGDLY  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
20  
10  
20  
10  
tLDAC  
LDAC low time  
CLR low time  
ns  
ns  
tCLR  
1
tRESET  
POR reset delay  
TOGGLE frequency  
ms  
1
100  
kHz  
100  
fTOGGLE  
12  
版权 © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
7.7 Typical Characteristics  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V. Unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range. Bipolar  
ranges: VSS VMIN – 1.5 V and VCC VMAX + 1.5 V for the DAC range. DAC outputs unloaded, unless otherwise noted.  
1.0  
0.8  
1.0  
0.8  
±2.5V  
±5V  
±10V  
±20V  
0-5V  
0-10 V  
0-20 V  
0-40 V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
D001  
D002  
1. Integral Linearity Error vs Digital Input Code (Bipolar  
2. Integral Linearity Error vs Digital Input Code (Unipolar  
Outputs)  
Outputs)  
1.0  
1.0  
±2.5V  
±5V  
±10V  
±20V  
0-5V  
0-10 V  
0-20 V  
0-40 V  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
D003  
D004  
3. Differential Linearity Error vs Digital Input Code  
4. Differential Linearity Error vs Digital Input Code  
(Bipolar Outputs)  
(Unipolar Outputs)  
0.100  
0.075  
0.050  
0.025  
0.000  
-0.025  
-0.050  
-0.075  
-0.100  
0.100  
0.075  
0.050  
0.025  
0.000  
-0.025  
-0.050  
-0.075  
-0.100  
±2.5V  
±5V  
±10V  
±20V  
0-5V  
0-10 V  
0-20 V  
0-40 V  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
D005  
D006  
5. Total Unadjusted Error vs Digital Input Code (Bipolar  
6. Total Unadjusted Error vs Digital Input Code (Unipolar  
Outputs)  
Outputs)  
版权 © 2018, Texas Instruments Incorporated  
13  
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V. Unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range. Bipolar  
ranges: VSS VMIN – 1.5 V and VCC VMAX + 1.5 V for the DAC range. DAC outputs unloaded, unless otherwise noted.  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
-0.0125  
-0.0250  
-0.0375  
-0.0500  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
-0.0125  
-0.0250  
-0.0375  
-0.0500  
±2.5V  
±5V  
±10V  
±20V  
0-5 V  
0-10 V  
0-20 V  
0-40 V  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
D007  
D008  
7. Common Mode Error vs Digital Input Code (Differential  
8. Common Mode Error vs Digital Input Code (Differential  
Bipolar Outputs)  
Unipolar Outputs)  
1.0  
1.0  
INL MAX  
INL MIN  
DNL MAX  
DNL MIN  
0.8  
0.8  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D009  
D010  
±20-V Output Range  
±20-V Output Range  
9. Integral Linearity Error vs Temperature  
10. Differential Linearity Error vs Temperature  
0.100  
0.075  
0.050  
0.025  
0.000  
-0.025  
-0.050  
-0.075  
-0.100  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
0-5 V  
±2.5 V  
±5 V  
±10 V  
±20 V  
0-5 V  
0-10 V  
0-20 V  
0-40 V  
0-10 V  
0-20 V  
0-40 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D011  
D012  
11. Total Unadjusted Error vs Temperature  
12. Unipolar Offset Error vs Temperature  
14  
版权 © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V. Unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range. Bipolar  
ranges: VSS VMIN – 1.5 V and VCC VMAX + 1.5 V for the DAC range. DAC outputs unloaded, unless otherwise noted.  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
0-5 V  
±2.5 V  
±5 V  
±10 V  
±20 V  
0-10 V  
0-20 V  
0-40 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D013  
D014  
13. Unipolar Zero Code Error vs Temperature  
14. Bipolar Zero Error vs Temperature  
0.100  
0.075  
0.050  
0.025  
0.000  
-0.025  
-0.050  
-0.075  
-0.100  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
±2.5 V  
±5 V  
±10 V  
±20 V  
0-5 V  
±2.5 V  
±5 V  
±10 V  
±20 V  
0-5 V  
0-10 V  
0-20 V  
0-40 V  
0-10 V  
0-20 V  
0-40 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D015  
D016  
15. Gain Error vs Temperature  
16. Full-Scale Error vs Temperature  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
-0.0125  
-0.0250  
-0.0375  
-0.0500  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
-0.0125  
-0.0250  
-0.0375  
-0.0500  
±2.5 V  
±5 V  
±10 V  
±20 V  
0-5 V  
0-10 V  
0-20 V  
0-40 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D017  
D018  
17. Common Mode Error vs Temperature (Differential  
18. Common Mode Error vs Temperature (Differential  
Bipolar Outputs)  
Unipolar Outputs)  
版权 © 2018, Texas Instruments Incorporated  
15  
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V. Unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range. Bipolar  
ranges: VSS VMIN – 1.5 V and VCC VMAX + 1.5 V for the DAC range. DAC outputs unloaded, unless otherwise noted.  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
ICC  
ISS  
IDD  
IAA  
0
-5  
-10  
-15  
-20  
-25  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
D019  
D020  
±20-V Output Range  
±20-V Output Range  
19. Supply Current (IDD, IAA) vs Digital Input Code  
20. Supply Current (ICC, ISS) vs Digital Input Code  
25  
20  
15  
10  
5
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
-5  
-10  
-15  
-20  
-25  
IDD  
IAA  
ICC  
ISS  
0
1.7  
2.65  
3.6  
VIO (V)  
4.55  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D021  
D022  
±20-V Output Range  
±20-V Output Range  
21. Supply Current (IIO) vs Supply Voltage  
22. Supply Current vs Temperature  
90  
75  
60  
45  
30  
15  
0
40  
30  
IDD  
IAA  
ICC  
ISS  
20  
10  
0
-10  
-20  
-30  
-40  
-15  
-30  
Code 0x0000  
Code 0x8000  
Code 0xFFFF  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
Load Current (mA)  
D023  
D024  
±20-V Output Range  
23. Power-Down Current vs Temperature  
±20-V Output Range  
24. Source and Sink Capability  
16  
版权 © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V. Unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range. Bipolar  
ranges: VSS VMIN – 1.5 V and VCC VMAX + 1.5 V for the DAC range. DAC outputs unloaded, unless otherwise noted.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
±20 V  
±10 V  
±20 V  
±10 V  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
Sourcing Current (mA)  
Sinking Current (mA)  
D025  
D026  
Full-scale Code  
Zero Code  
25. VCC Headroom vs Sourcing Current  
26. VSS Footroom vs Sinking Current  
LDAC (5V/div)  
VOUT (5V/div)  
LDAC (5V/div)  
VOUT (5V/div)  
Time (5 msec/div)  
Time (5 msec/div)  
D027  
D028  
±20-V Output Range  
±20-V Output Range  
27. Full-Scale Settling Time, Rising Edge  
28. Full-Scale Settling Time, Falling Edge  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
LDAC (5V/div)  
VOUT (5mV/div)  
Time (0.5msec/div)  
Time (5 msec/div)  
D030  
D029  
0 to 5-V Output Range  
Power-down to Active DAC Mode  
±20-V Output Range  
30. Glitch Impulse, 1 LSB Step  
29. DAC Output Enable Glitch  
版权 © 2018, Texas Instruments Incorporated  
17  
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V. Unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range. Bipolar  
ranges: VSS VMIN – 1.5 V and VCC VMAX + 1.5 V for the DAC range. DAC outputs unloaded, unless otherwise noted.  
20  
15  
10  
5
20  
15  
10  
5
0
0
-5  
-5  
Time (25 msec/div)  
Time (25 msec/div)  
D031  
D032  
±20-V Output Range  
Toggle signal: 1 VPP  
±20-V Output Range  
Toggle signal: 1 VPP  
DC value: 3/4 Full-scale  
DC Change: Midscale to 3/4 Full-scale  
31. Toggle Output Change Response  
32. Toggle Enable Response  
VOUT  
VCC  
VSS  
VOUT  
VCC  
VSS  
VDD = VAA = VIO  
VDD = VAA = VIO  
Time (50 msec/div)  
Time (50 msec/div)  
D033  
D034  
33. Power-Up Response  
34. Power-Down Response  
CLR (5 V/div)  
VOUT (5 V/div)  
CLR (5 V/div)  
VOUT (5 V/div)  
Time (1 msec/div)  
Time (0.5 msec/div)  
D035  
D036  
±20-V Output Range  
Full-scale Code to 0 V  
±20-V Output Range  
Toggle signal: 1 VPP  
DC value at 20 V  
35. Clear Command Response  
36. Clear Command Response in Toggle Mode  
版权 © 2018, Texas Instruments Incorporated  
18  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V. Unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range. Bipolar  
ranges: VSS VMIN – 1.5 V and VCC VMAX + 1.5 V for the DAC range. DAC outputs unloaded, unless otherwise noted.  
1500  
1350  
1200  
1050  
900  
750  
600  
450  
300  
150  
0
Time (1 sec/div)  
100  
1000  
10000  
100000  
Frequency (Hz)  
D038  
D037  
0 to 5-V Output Range  
Midscale Code  
0 to 5-V Output Range  
Midscale Code  
38. DAC Output Noise  
37. DAC Output Noise Density vs Frequency  
2.505  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
2.5005  
2.5004  
2.5003  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
2.4995  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
VDD, VAA (V)  
D039  
D040  
39. Internal Reference Voltage vs Temperature  
40. Internal Reference Voltage vs Supply Voltage  
2.5005  
2.5004  
2.5003  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
2.4995  
1500  
1350  
1200  
1050  
900  
750  
600  
450  
300  
150  
0
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
100  
1000  
10000  
100000  
Hours  
Frequency (Hz)  
D041  
D042  
41. Internal Reference Voltage vs Time  
42. Internal Reference Noise Density vs Frequency  
版权 © 2018, Texas Instruments Incorporated  
19  
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V. Unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range. Bipolar  
ranges: VSS VMIN – 1.5 V and VCC VMAX + 1.5 V for the DAC range. DAC outputs unloaded, unless otherwise noted.  
50%  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
0
Time (1 sec/div)  
0
1
2
3
4
5
6
7
8
9
10  
D043  
Temperature Drift (ppm/oC)  
D044  
43. Internal Reference Noise  
44. Internal Reference Temperature Drift Histogram  
20  
版权 © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
8 Parameter Measurement Information  
tCSHIGH  
tCSS  
tCSH  
CS  
tSCLKLOW  
SCLK  
tSCLKHIGH  
SDI  
Bit 23  
Bit 1  
Bit 0  
tSDIH  
tSDIS  
45. Serial Interface Write Timing Diagram  
tCSHIGH  
tCSS  
tCSH  
CS  
tSCLKLOW tSCLKHIGH  
SCLK  
FIRST READ COMMAND  
ANY COMMAND  
Bit 1  
SDI  
Bit 23  
tSDIS tSDIH  
Bit 22  
Bit 0  
Bit 23  
Bit 23  
Bit 0  
Bit 0  
SDO  
Bit 1  
FSDO = 0  
tSDODLY  
tSDODZ  
DATA FROM FIRST READ COMMAND  
SDO  
Bit 23  
Bit 1 Bit 0  
FSDO = 1  
tSDODLY  
DATA FROM FIRST READ COMMAND  
46. Serial Interface Read Timing Diagram  
版权 © 2018, Texas Instruments Incorporated  
21  
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The DACx1408 is a pin-compatible family of 8-channel, buffered, high-voltage output digital-to-analog converters  
(DACs) with 16-, 14- and 12-bit resolution. The DACx1408 includes a 2.5-V internal reference. A user selectable  
output configuration enables full-scale bipolar output voltages: ±20 V, ±10 V, ±5 V or ±2.5 V and full-scale  
unipolar output voltages: 40 V, 20 V, 10 V or 5 V. The full-scale output range for each DAC channel is  
independently programmable. In addition, each pair of DAC channels can be configured to provide a differential  
output. Three dedicated A-B toggle pins enable dither signal generation with up to three possible frequencies.  
The DACx1408 operates from five supply voltages: VDD, VAA, VCC, VSS and VIO. VDD and VAA are the digital and  
analog supplies for the DACs, internal reference and other low voltage components and must be set at the same  
potential. VCC and VSS are the positive and analog supplies for the DAC output amplifiers. VIO sets the logic  
levels for the digital inputs and outputs.  
Communication to the DACx1408 is performed through a 4-wire serial interface that supports stand-alone and  
daisy-chain operation. The optional frame-error checking provides added robustness to the DACx1408 serial  
interface.  
The DACx1408 incorporates a power-on-reset circuit that connects the DAC outputs to ground at power-up. The  
outputs remain at this state until the device registers are properly configured for operation.  
9.2 Functional Block Diagram  
REF  
REFCMP REFGND  
VIO  
VAA  
VDD  
VCC  
Internal  
Reference  
DAC  
Buffer  
DAC  
Register  
SCLK  
SDI  
Range Config  
SDO  
DAC  
BUF  
OUT0  
CS  
LDAC  
Channel 0  
Channel 1  
RESET  
OUT1  
OUT7  
CLR  
TOGGLE0  
TOGGLE1  
TOGGLE2  
Channel 7  
Power Down Logic  
Resistive Network  
ALMOUT  
Power On Reset  
Temperature Sensor  
TEMPOUT  
DACx1408  
GND  
VSS  
22  
版权 © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
9.3 Feature Description  
9.3.1 Digital-to-Analog Converters (DACs) Architecture  
Each output channel in the DACx1408 consists of an R-2R ladder architecture followed by an output buffer  
amplifier capable of rail-to-rail operation. The output amplifiers can drive 25 mA with 1.5-V headroom from either  
VCC or VSS while maintaining the specified TUE specification for the device. The full-scale output voltage for each  
channel can be individually configured to the following ranges:  
-20 V to +20 V  
-10 V to +10 V  
-5 V to +5 V  
-2.5 V to +2.5 V  
0 V to +40V  
0 V to +20 V  
0 V to +10 V  
0 V to +5 V  
47 shows a block diagram of the DAC architecture.  
REF  
VCC  
2.5V  
Reference  
DAC Range  
Select  
Register  
Serial  
Asynchronous  
Mode  
DAC Buffer  
Register  
(Toggle Reg B)  
DAC Active  
Interface  
Register  
Synchronous Mode  
(Toggle Reg A)  
(LDAC(1) Trigger)  
WRITE  
DAC  
Output  
VOUT  
DAC  
(1)The DAC trigger is generated by either by writing '1' to the LDAC bit or by the /  
LDAC pin in synchronous mode. In asynchronous mode, the DAC latch is transparent.  
TOGGLE  
GND  
VSS  
47. DACx1408 DAC Block Diagram  
9.3.1.1 DAC Transfer Function  
The input data are written to the individual DAC Data registers in straight binary format for all output ranges. The  
DAC transfer function is given by 公式 1.  
CODE  
V
=
× FSR + V  
MIN  
÷
OUT  
n
«
2
(1)  
where  
CODE is the decimal equivalent of the binary code that is loaded to the DAC register. CODE range is from 0  
to 2n – 1.  
n is the DAC resolution in bits. Either 12 (DAC61408), 14 (DAC71408) or 16 (DAC81408).  
FSR is the DAC full-scale range. Equal to VMAX – VMIN for the selected DAC output range.  
VMIN is the lowest voltage for the selected DAC output range.  
版权 © 2018, Texas Instruments Incorporated  
23  
 
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
9.3.1.2 DAC Register Structure  
Data written to the DAC data registers is initially stored in the DAC buffer registers. Transfer of data from the  
DAC buffer registers to the active DAC registers can be configured to happen immediately (asynchronous mode)  
or initiated by a DAC trigger signal (synchronous mode). Once the DAC active registers are updated, the DAC  
outputs change to the new values.  
After a power-on or reset event, all DAC registers are set to zero code, the DAC output amplifiers are powered  
down, and the DAC outputs are clamped to ground.  
9.3.1.2.1 DAC Register Synchronous and Asynchronous Updates  
The update mode for each DAC channel is determined by the status of its corresponding SYNC-EN bit. In  
asynchronous mode, a write to the DAC data register results in an immediate update of the DAC active register  
and DAC output on a CS rising edge. In synchronous mode, writing to the DAC data register doe not  
automatically update the DAC output. Instead the update occurs only after a trigger event. A DAC trigger signal  
is generated either through the LDAC bit or by the LDAC pin. The synchronous update mode enables  
simultaneous update of multiple DAC outputs. In both update modes a minimum wait time of 1 µs is required  
between DAC output updates.  
9.3.1.2.2 Broadcast DAC Register  
The DAC broadcast register enables a simultaneous update of multiple DAC outputs with the same value with a  
single register write. Broadcast operation is only possible when all DAC channels are in single-ended mode  
operation. If one or more outputs are configured in differential mode the broadcast command is ignored.  
Each DAC channel can be configured to update or remain unaffected by a broadcast command by setting the  
corresponding DAC-BRDCAST-EN bit. A register write to the BRDCAST-DATA register forces those DAC  
channels that have been configured for broadcast operation to update their DAC buffer registers to this value.  
The DAC outputs update to the broadcast value according to their synchronous mode configuration.  
9.3.1.2.3 Clear DAC Operation  
The DAC outputs are set in clear mode through the CLEAR pin. In clear mode each DAC data channel is set to  
the clear code associated with its configuration as shown in . A CLR pin logic low forces all DAC channels to  
clear the contents of their buffer and active registers to the clear code, and sets the analog outputs accordingly  
regardless of their synchronization setting.  
1. Clear DAC Value  
UNIPOLAR / BIPOLAR RANGE  
DIFFERENTIAL MODE  
CLEAR CODE  
Zero code  
Unipolar  
Unipolar  
Bipolar  
Bipolar  
No  
Yes  
No  
Midscale code  
Midscale code  
Midscale code  
Yes  
When a DAC is operating in toggle mode, a clear command sets both toggle registers to the clear value.  
9.3.2 Internal Reference  
The DAx1408 include a 2.5-V bandgap reference with a typical temperature drift of 5 ppm/ºC. The internal  
reference is externally available at the REF pin. An external buffer amplifier with a high impedance input is  
required to drive any external load.  
A minimum 150-nF capacitor is recommended between the reference output and GND for noise filtering. A  
compensation capacitor (330 pF, typical) should be connected between the REFCMP pin and REFGND.  
Operation from an external reference is also supported by powering down the internal reference. The external  
reference is applied to the REF pin.  
24  
版权 © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
9.3.3 Device Reset Options  
9.3.3.1 Power-on-Reset (POR)  
The DACx1408 includes a power-on reset function. After the supplies have been established, a POR event is  
issued. The POR causes all registers to initialize to their default values and communication with the device is  
valid only after a 1 ms power-on-reset delay. After a POR event, the device is set in power-down mode where all  
DAC channels and internal reference are powered down and the DAC output pins are connected to ground  
through a 10-kΩ internal resistor.  
9.3.3.2 Hardware Reset  
A device hardware reset event is initiated by a minimum 500 ns logic low on the RESET pin. A hardware reset  
initiates a POR event.  
9.3.3.3 Software Reset  
A device software reset event is initiated by writing the reserved code 0x1010 to SOFT-RESET in the TRIGGER  
register. The software reset command is triggered on the CS rising edge of the instruction. A software reset  
initiates a POR event.  
9.3.4 Thermal Protection  
Due to the DACx1408 DAC channel density and high drive capability it is important to understand the effects of  
power dissipation on the temperature of the device and ensure it does not exceed the maximum junction  
temperature.  
9.3.4.1 Analog Temperature Sensor: TEMPOUT Pin  
The DACx1408 includes an analog temperature monitor with an unbuffered output voltage that is inversely  
proportional to the device junction temperature. The TEMPOUT pin output voltage has a temperature slope of -4  
mV/°C and a 1.34-V offset as described by 公式 2.  
-4 mV  
°C  
V
=
× T + 1.34 V  
TEMPOUT  
«
÷
(2)  
where:  
T is the device junction temperature in °C.  
VTEMPOUT is the temperature monitor output voltage.  
9.3.4.2 Thermal Shutdown  
The DACx1408 incorporates a thermal shutdown that is triggered when the die temperature exceeds 140ºC. A  
thermal shutdown sets the TEMP-ALM bit and causes all DAC outputs to power-down, however the internal  
reference remains powered on. The ALMOUT pin can be configured to monitor a thermal shutdown condition by  
setting the TEMPALM-EN bit. Once a thermal shutdown is triggered, the device stays in shutdown even after the  
device temperature lowers.  
The die temperature must fall below 140ºC before the device can be returned to normal operation. To resume  
normal operation, the thermal alarm must be cleared through the ALM-RESET bit while the DAC channels are in  
power-down mode.  
版权 © 2018, Texas Instruments Incorporated  
25  
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 Toggle Mode  
Each DAC in the device can be independently configured to operate in toggle mode. A DAC channel in toggle  
mode incorporates two DAC registers (Register A and Register B) and can be set to switch repetitively between  
these two values. The DACx1408 toggle mode operation can be configured to introduce a dither signal to the  
DAC output, to generate a periodic signal or to implement ON/OFF signaling, among some examples.  
To update the toggle registers the following sequence should be followed:  
1. Set DAC channel in synchronous mode and disable toggle mode for that channel  
2. Write the desired Register A value to the DAC data register  
3. Issue a DAC trigger signal to load Register A  
4. Write the desired Register B value to the DAC data register  
5. Enable toggle mode to load Register B  
Once both registers are loaded with data, any of the three TOGGLE[2:0] pins can be used to switch those DACs  
configured for toggle operation back and forth between the contents of their two DAC specific registers by using  
an external clock or logic signal. A TOGGLE pin logic low updates the DAC output to the value set by Register A.  
A logic high updates the DAC output to the value set by Register B. The three TOGGLE[2:0] pins give the  
DACx1408 the option to operate with up to three toggle rates.  
Additionally, the device can be configured for software controlled toggle operation by setting the SOFTTOGGLE-  
EN bit. In this mode, any of the three AB-TOG[2:0] bits can be used as a toggle control signal. Setting the  
ABTOG bit to 1 enables Register B and clearing it to 0 enables Register A.  
9.4.2 Differential Mode  
Each pair of DAC channels in the device can be independently configured to operate as a differential output pair.  
The differential output of a DACx-y pair is updated by writing to the DACx channel. For proper operation, the two  
DAC pairs must be configured to the same output range prior to enabling differential mode. 48 and 49  
show the ideal differential output voltages (VDIFF) and common mode voltages (VCM) for a DAC differential pair  
configured for ±20-V and 0 to 40-V operation, respectively.  
Once configured as a differential output, the DACx-y pair can be set for toggle operation by updating the DACx  
toggle registers as described in Toggle Mode.  
Imbalances between the two differential signals result in common-mode and amplitude errors. The device  
incorporates an offset register that enables the user to introduce a voltage offset to the DACy channel of the  
DACx-y differential pair to compensate for a DC offset error between the two channels. The offset compensation  
gives a ±0.2%FSR adjustment window. The differential DAC data register must be rewritten after an update to  
the offset register.  
40  
30  
40  
30  
20  
20  
10  
10  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
DACx  
DACy  
VCM  
VDIFF  
DACx  
DACy  
VCM  
VDIFF  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
D045  
D046  
48. Differential Bipolar Output (16-Bit):  
49. Differential Unipolar Output (16-Bit):  
±20-V Output Range  
0 to 40-V Output Range  
26  
版权 © 2018, Texas Instruments Incorporated  
 
 
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
Device Functional Modes (接下页)  
9.4.3 Power-Down Mode  
The DACx1408 DAC output amplifiers and internal reference power-down status can be individually configured  
and monitored though the PWDWN registers. Setting a DAC channel in power-down mode disables the output  
amplifier and clamps the output pin to ground through an internal 10-kΩ resistor.  
The DAC data registers are not cleared when the DAC goes into power-down which makes it possible to have  
the same output voltage upon return to normal operation. The DAC data registers can also be updated while in  
power-down mode.  
After a power-on or reset event all the DAC channels and the internal reference are in power-down mode. The  
entire device can be configured into power-down or active modes through the DEV-PWDWN bit.  
版权 © 2018, Texas Instruments Incorporated  
27  
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9.5 Programming  
The DACx1408 is controlled through a flexible four-wire serial interface that is compatible with SPI type  
interfaces used on many microcontrollers and DSP controllers. The interface provides access to the DACx1408  
registers and can be configured to daisy-chain multiple devices for write operations. The DACx1408 incorporates  
an optional error checking mode to validate SPI data communication integrity in noisy environments.  
9.5.1 Stand-Alone Operation  
A serial interface access cycle is initiated by asserting the CS pin low. The serial clock SCLK can be a  
continuous or gated clock. SDI data are clocked on SCLK falling edges. A regular serial interface access cycle is  
24 bits long with error checking disabled and 32 bits long with error checking enabled, thus the CS pin must stay  
low for at least 24 or 32 SCLK falling edges. The access cycle ends when the CS pin is de-asserted high. If the  
access cycle contains less than then minimum clock edges, the communication is ignored. If the access cycle  
contains more than the minimum clock edges, only the first 24 or 32 bits are used by the device. When CS is  
high, the SCLK and SDI signals are blocked and the SDO is in a Hi-Z state.  
In an error checking disabled access cycle (24 bits long) the first byte input to SDI is the instruction cycle which  
identifies the request as a read or write command and the 6-bit address to be accessed. The last 16 bits in the  
cycle form the data cycle.  
2. Serial Interface Access Cycle  
BIT  
23  
FIELD  
DESCRIPTION  
Identifies the communication as a read or write command to the address  
register. R/W = 0 sets a write operation. R/W = 1 sets a read operation.  
RW  
22  
x
Don't care bit.  
Register address. Specifies the register to be accessed during the read or  
write operation.  
21-16  
A[5:0]  
Data cycle bits. If a write command, the data cycle bits are the values to  
be written to the register with address A[5:0]. If a read command, the data  
cycle bits are don't care values.  
15-0  
DI[15:0]  
Read operations require that the SDO pin is first enabled by setting the SDO-EN bit. A read operation is initiated  
by issuing a read command access cycle. After the read command, a second access cycle must be issued to get  
the requested data. Data are clocked out on SDO pin either on the falling edge or rising edge of SCLK according  
to the FSDO bit.  
3. SDO Output Access Cycle  
BIT  
23  
FIELD  
RW  
DESCRIPTION  
Echo RW from previous access cycle.  
22  
x
Echo bit 22 from previous access cycle.  
21-16  
15-0  
A[5:0]  
DO[15:0]  
Echo address from previous access cycle.  
Readback data requested on previous access cycle.  
28  
版权 © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
9.5.1.1 Streaming Mode Operation  
Since updating the eight channels data registers requires a large amount of data to be passed to the device, the  
device supports streaming mode. In streaming mode the DAC data registers can be written to the device without  
providing an instruction command for each data register. Streaming mode is enabled by setting the STREN bit.  
Once enabled the streaming operation is implemented by holding the CS active and continuing to shift new data  
into the device.  
The instruction cycle includes the starting address. The device starts writing to this address and automatically  
increments the address as long as CS is asserted. If the last DAC data register address has been reached and  
CS is still asserted, the additional data is ignored by the device.  
/CS  
1
2
X
3
4
5
6
7
8
9
23  
24  
25  
39  
40  
41  
55  
56  
57  
71  
72  
SCLK  
SDI  
STREAM WRITE COMMAND  
ADDRESS N  
ADDRESS N+1  
ADDRESS N+2  
ADDRESS N+3  
W
A5  
A4  
A3  
A2  
A1  
A0  
D15 œ D0  
D15 œ D0  
D15 œ D0  
D15 œ D0  
SDO  
50. Serial Interface Streaming Write Cycle  
9.5.2 Daisy-Chain Operation  
For systems that contain more than one DACx1408 devices, the SDO pin can be used to daisy-chain them  
together. The SDO pin must be enabled by setting the SDO-EN bit before initiating the daisy-chain operation.  
Daisy-chain operation is useful in reducing the number of serial interface lines.  
The first falling edge on the CS pin starts the operation cycle. If more than 24 SCLK pulses are applied while the  
CS pin is kept low, the data ripples out of the shift register and is clocked out on the SDO pin either on the falling  
edge or rising edge of SCLK according to the FSDO bit. By connecting the SDO output of the first device to the  
SDI input of the next device in the chain, a multiple-device interface is constructed. Each device in the system  
requires 24 clock pulses. As a result the total number of clock cycles must be equal to 24 × N, where N is the  
total number of DACx1408 devices in the daisy chain. When the serial transfer to all devices is complete the CS  
signal is taken high. This action transfers the data from the SPI shift registers to the internal registers of each  
device in the daisy chain and prevents any further data from being clocked into the input shift register. Daisy-  
chain operation is not supported while in streaming mode.  
C
B
A
DACx1408  
DACx1408  
DACx1408  
SDO  
SDO  
SDO  
SDI  
SDI  
SDI  
SCLK  
SCLK  
SCLK  
CS  
CS  
CS  
51. Daisy-Chain Layout  
版权 © 2018, Texas Instruments Incorporated  
29  
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9.5.3 Frame Error Checking  
If the DACx1408 is used in a noisy environment, error checking can be used to check the integrity of SPI data  
communication between the device and the host processor. This feature is enabled by setting the CRC-EN bit.  
The error checking scheme is based on the CRC-8-ATM (HEC) polynomial x8 + x2 + x + 1 (that is, 100000111).  
When error checking is enabled, the serial interface access cycle width is 32 bits. The normal 24-bit SPI data is  
appended with an 8-bit CRC polynomial by the host processor before feeding it to the device. In all serial  
interface readback operations the CRC polynomial is output on the SDO pin as part of the 32-bit cycle.  
4. Error Checking Serial Interface Access Cycle  
BIT  
31  
FIELD  
DESCRIPTION  
Identifies the communication as a read or write command to the address  
register. R/W = 0 sets a write operation. R/W = 1 sets a read operation.  
RW  
30  
CRC-ERROR  
A[5:0]  
Reserved bit. Set to zero.  
Register address. Specifies the register to be accessed during the read or  
write operation.  
29-24  
Data cycle bits. If a write command, the data cycle bits are the values to  
be written to the register with address A[5:0]. If a read command, the data  
cycle bits are don't care values.  
23-8  
7-0  
DI[15:0]  
CRC  
8-bit CRC polynomial.  
The DACx1408 decodes the 32-bit access cycle to compute the CRC remainder on CS rising edges. If no error  
exists, the CRC remainder is zero and data are accepted by the device.  
A write operation failing the CRC check causes the data to be ignored by the device. After the write command, a  
second access cycle can be issued to determine the error checking results (CRC-ERROR bit) on the SDO pin.  
If there is a CRC error, the CRC-ALM bit of the status register is set to 1. The ALMOUT pin can be configured to  
monitor a CRC error by setting the CRCALM-EN bit.  
5. Write Operation Error Checking Cycle  
BIT  
31  
FIELD  
RW  
DESCRIPTION  
Echo RW from previous access cycle (RW = 0).  
Returns a 1 when a CRC error is detected, 0 otherwise.  
Echo address from previous access cycle.  
Echo data from previous access cycle.  
30  
CRC-ERROR  
A[5:0]  
29-24  
23-8  
7-0  
DO[15:0]  
CRC  
Calculated CRC value of bits 31:8.  
A read operation must be followed by a second access cycle to get the requested data on the SDO pin. The  
error check result (CRC-ERROR bit) from the read command is output on the SDO pin.  
As in the case of a write operation failing the CRC check, the CRC-ALM bit of the status register is set to 1 and  
the ALMOUT pin, if configured for CRC alerts, is set low.  
6. Read Operation Error Checking Cycle  
BIT  
31  
FIELD  
RW  
DESCRIPTION  
Echo RW from previous access cycle (RW = 1).  
Returns a 1 when a CRC error is detected, 0 otherwise.  
Echo address from previous access cycle.  
Echo data from previous access cycle.  
30  
CRC-ERROR  
A[5:0]  
29-24  
23-8  
7-0  
DO[15:0]  
CRC  
Calculated CRC value of bits 31:8.  
30  
版权 © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
9.6 Register Maps  
7 lists the memory-mapped registers for the device. All register offset addresses not listed in 7 should be  
considered as reserved locations and the register contents should not be modified.  
7. DACx1408 Registers  
Offset  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Bh  
0Ch  
0Eh  
0Fh  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
21h  
22h  
Acronym  
NOP  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
NOP Register  
DEVICEID  
STATUS  
Device ID Register  
Status Register  
SPICONFIG  
GENCONFIG  
BRDCONFIG  
SYNCCONFIG  
TOGGCONFIG0  
TOGGCONFIG1  
DACPWDWN  
DACRANGE0  
DACRANGE1  
TRIGGER  
BRDCAST  
DAC0  
SPI Configuration Register  
General Configuration Register  
Broadcast Configuration Register  
Sync Configuration Register  
DAC[7:4] Toggle Configuration Register  
DAC[3:0] Toggle Configuration Register  
DAC Power-Down Register  
DAC[7:4] Range Register  
DAC[3:0] Range Register  
Trigger Register  
Broadcast Data Register  
DAC0 Data Register  
DAC1  
DAC1 Data Register  
DAC2  
DAC2 Data Register  
DAC3  
DAC3 Data Register  
DAC4  
DAC4 Data Register  
DAC5  
DAC5 Data Register  
DAC6  
DAC6 Data Register  
DAC7  
DAC7 Data Register  
OFFSET0  
OFFSET1  
DAC[6-7;4-5] Differential Offset Register  
DAC[2-3;0-1] Differential Offset Register  
版权 © 2018, Texas Instruments Incorporated  
31  
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Complex bit access types are encoded to fit into small table cells. 8 shows the codes that are used for access  
types in this section.  
8. Access Type Codes  
Access Type  
Code  
R
Description  
Read Type  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
Register Array Variables  
When these variables are used in a register name,  
an offset, or an address, they refer to the value of a  
register array where the register is part of a group  
of repeating registers. The register groups form a  
hierarchical structure and the array is represented  
with a formula.  
i,j,k,l,m,n  
When this variable is used in a register name, an  
offset, or an address it refers to the value of a  
register array.  
y
32  
版权 © 2018, Texas Instruments Incorporated  
 
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
9.6.1 NOP Register (Offset = 00h) [reset = 0000h]  
NOP is shown in 52 and described in 9.  
Return to Summary Table.  
52. NOP Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NOP  
W-0h  
9. NOP Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
No operation. Write 0000h for proper no-operation command.  
NOP  
W
0h  
9.6.2 DEVICEID Register (Offset = 01h) [reset = ----h]  
DEVICEID is shown in 53 and described in 10.  
Return to Summary Table.  
53. DEVICEID Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DEVICEID  
R----h  
4
3
DEVICEID  
R----h  
VERSIONID  
R-0h  
10. DEVICEID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Device ID  
DAC81408: 298h  
DAC71408: 288h  
DAC61408: 248h  
15-2  
1-0  
DEVICEID  
R
---h  
VERSIONID  
R
0h  
Version ID. Subject to change.  
版权 © 2018, Texas Instruments Incorporated  
33  
 
 
 
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9.6.3 STATUS Register (Offset = 02h) [reset = 0000h]  
STATUS is shown in 54 and described in 11.  
Return to Summary Table.  
54. STATUS Register  
15  
7
14  
6
13  
12  
4
11  
10  
9
8
RESERVED  
R-0h  
5
3
2
1
0
RESERVED  
R-0h  
CRC-ALM  
R-0h  
DAC-BUSY  
R-0h  
TEMP-ALM  
R-0h  
11. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-3  
RESERVED  
CRC-ALM  
R
0h  
This bit is reserved.  
2
1
R
R
0h  
0h  
CRC-ALM = 1 indicates a CRC error.  
DAC-BUSY  
DAC-BUSY = 1 indicates DAC registers are not ready for updates.  
TEMP-ALM = 1 indicates die temperature is over +140°C. A thermal  
alarm event forces the DAC outputs to go into power-down mode.  
0
TEMP-ALM  
R
0h  
34  
版权 © 2018, Texas Instruments Incorporated  
 
 
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
9.6.4 SPICONFIG Register (Offset = 03h) [reset = 0A24h]  
SPICONFIG is shown in 55 and described in 12.  
Return to Summary Table.  
55. SPICONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-0h  
TEMPALM-EN DACBUSY-EN  
CRCALM-EN  
R/W-1h  
RESERVED  
R-0h  
R/W-1h  
R/W-0h  
7
6
5
4
3
2
1
0
RESERVED  
SOFTTOGGLE DEV-PWDWN  
-EN  
CRC-EN  
STR-EN  
SDO-EN  
FSDO  
RESERVED  
R-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R-0h  
12. SPICONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
RESERVED  
R
0h  
This bit is reserved.  
11  
10  
TEMPALM-EN  
R/W  
R/W  
1h  
0h  
When set to 1 a thermal alarm triggers the ALMOUT pin.  
When set to 1 the ALMOUT pin is set between DAC output updates.  
Contrary to other alarm events, this alarm resets automatically.  
DACBUSY-EN  
9
8
7
6
CRCALM-EN  
RESERVED  
R/W  
R
1h  
0h  
1h  
0h  
When set to 1 a CRC error triggers the ALMOUT pin.  
This bit is reserved.  
RESERVED  
R
This bit is reserved.  
SOFTTOGGLE-EN  
R/W  
When set to 1 enables soft toggle operation.  
DEV-PWDWN = 1 sets the device in power-down mode  
DEV-PWDWN = 0 sets the device in active mode  
5
DEV-PWDWN  
R/W  
1h  
4
3
2
CRC-EN  
STR-EN  
SDO-EN  
R/W  
R/W  
R/W  
0h  
0h  
1h  
When set to 1 frame error checking is enabled.  
When set to 1 streaming mode operation is enabled.  
When set to 1 the SDO pin is operational.  
Fast SDO bit (half-cycle speedup). When 0, SDO updates during  
SCLK rising edges. When 1, SDO updates during SCLK falling  
edges.  
1
0
FSDO  
R/W  
R
0h  
0h  
RESERVED  
This bit is reserved.  
版权 © 2018, Texas Instruments Incorporated  
35  
 
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9.6.5 GENCONFIG Register (Offset = 04h) [reset = 7F00h]  
GENCONFIG is shown in 56 and described in 13.  
Return to Summary Table.  
56. GENCONFIG Register  
15  
14  
13  
12  
11  
10  
2
9
8
RESERVED  
R-0h  
REF-PWDWN  
R/W-1h  
RESERVED  
R-1h  
7
6
5
4
3
1
0
RESERVED  
RESERVED  
DAC-6-7-DIFF- DAC-4-5-DIFF- DAC-2-3-DIFF- DAC-0-1-DIFF-  
RESERVED  
RESERVED  
EN  
EN  
EN  
EN  
R-0h  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R-0h  
R-0h  
13. GENCONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESERVED  
R
0h  
This bit is reserved.  
REF-PWDWN = 1 powers down the internal reference  
REF-PWDWN = 0 activates the internal reference  
14  
REF-PWDWN  
R/W  
1h  
13-8  
RESERVED  
RESERVED  
RESERVED  
R
R
R
1h  
0h  
0h  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
7
6
5
4
3
2
DAC-6-7-DIFF-EN  
DAC-4-5-DIFF-EN  
DAC-2-3-DIFF-EN  
DAC-0-1-DIFF-EN  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
When set to 1 the corresponding DAC pair is set to operate in  
differential mode. The DAC data registers must be rewritten after  
enabling or disabling differential operation.  
1
0
RESERVED  
RESERVED  
R
R
0h  
0h  
This bit is reserved.  
This bit is reserved.  
36  
版权 © 2018, Texas Instruments Incorporated  
 
 
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
9.6.6 BRDCONFIG Register (Offset = 05h) [reset = FFFFh]  
BRDCONFIG is shown in 57 and described in 14.  
Return to Summary Table.  
57. BRDCONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DAC7-  
DAC6-  
DAC5-  
DAC4-  
BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN  
R-1h  
R-1h  
R-1h  
R-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
7
6
5
4
3
2
1
0
DAC3-  
DAC2-  
DAC1-  
DAC0-  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R-1h  
R-1h  
R-1h  
R-1h  
14. BRDCONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
1h  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
14  
13  
12  
R
R
R
1h  
1h  
1h  
11  
10  
9
DAC7-BRDCAST-EN  
DAC6-BRDCAST-EN  
DAC5-BRDCAST-EN  
DAC4-BRDCAST-EN  
DAC3-BRDCAST-EN  
DAC2-BRDCAST-EN  
DAC1-BRDCAST-EN  
DAC0-BRDCAST-EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
When set to 1 the corresponding DAC is set to update its output to  
the value set in the BRDCAST register. All DAC channels must be  
configured in single-ended mode for broadcast operation. If one or  
more outputs are configured in differential mode the broadcast mode  
is ignored.  
8
7
6
When cleared to  
0 the corresponding DAC output remains  
unaffected by a BRDCAST command.  
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
1h  
1h  
1h  
1h  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
版权 © 2018, Texas Instruments Incorporated  
37  
 
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9.6.7 SYNCCONFIG Register (Offset = 06h) [reset = 0000h]  
SYNCCONFIG is shown in 58 and described in 15.  
Return to Summary Table.  
58. SYNCCONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DAC7-SYNC-  
EN  
DAC6-SYNC-  
EN  
DAC5-SYNC-  
EN  
DAC4-SYNC-  
EN  
R-0h  
7
R-0h  
6
R-0h  
5
R-0h  
4
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
3
2
1
0
DAC3-SYNC-  
EN  
DAC2-SYNC-  
EN  
DAC1-SYNC-  
EN  
DAC0-SYNC-  
EN  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R-0h  
R-0h  
R-0h  
R-0h  
15. SYNCCONFIG Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15  
R
0h  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
14  
13  
12  
RESERVED  
RESERVED  
RESERVED  
R
R
R
0h  
0h  
0h  
11  
10  
9
DAC7-SYNC-EN  
DAC6-SYNC-EN  
DAC5-SYNC-EN  
DAC4-SYNC-EN  
DAC3-SYNC-EN  
DAC2-SYNC-EN  
DAC1-SYNC-EN  
DAC0-SYNC-EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
When set to 1 the corresponding DAC output is set to update in  
response to an LDAC trigger (synchronous mode).  
8
7
When cleared to 0 the corresponding DAC output is set to update  
immediately (asynchronous mode).  
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
0h  
0h  
0h  
0h  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
38  
版权 © 2018, Texas Instruments Incorporated  
 
 
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
9.6.8 TOGGCONFIG0 Register (Offset = 07h) [reset = 0000h]  
TOGGCONFIG0 is shown in 59 and described in 16.  
Return to Summary Table.  
59. TOGGCONFIG0 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0h  
RESERVED  
R-0h  
RESERVED  
R-0h  
RESERVED  
R-0h  
7
6
5
4
3
DAC7-AB-TOGG-EN  
R/W-0h  
DAC6-AB-TOGG-EN  
R/W-0h  
DAC5-AB-TOGG-EN  
R/W-0h  
DAC4-AB-TOGG-EN  
R/W-0h  
16. TOGGCONFIG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
13-12  
11-10  
9-8  
RESERVED  
R
0h  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
RESERVED  
RESERVED  
RESERVED  
R
R
R
0h  
0h  
0h  
7-6  
5-4  
3-2  
DAC7-AB-TOGG-EN  
DAC6-AB-TOGG-EN  
DAC5-AB-TOGG-EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Enables toggle mode operation and configures the toggle pin or soft  
toggle bit:  
0h = Toggle mode disabled  
1h = Toggle mode enabled: TOGGLE0  
2h = Toggle mode enabled: TOGGLE1  
3h = Toggle mode enabled: TOGGLE2  
1-0  
DAC4-AB-TOGG-EN  
R/W  
0h  
版权 © 2018, Texas Instruments Incorporated  
39  
 
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9.6.9 TOGGCONFIG1 Register (Offset = 08h) [reset = 0000h]  
TOGGCONFIG1 is shown in 60 and described in 17.  
Return to Summary Table.  
60. TOGGCONFIG1 Register  
15  
14  
13  
12  
11  
10  
9
8
DAC3-AB-TOGG-EN  
R/W-0h  
DAC2-AB-TOGG-EN  
R/W-0h  
DAC1-AB-TOGG-EN  
R/W-0h  
DAC0-AB-TOGG-EN  
R/W-0h  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
RESERVED  
R-0h  
RESERVED  
R-0h  
RESERVED  
R-0h  
17. TOGGCONFIG1 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
15-14  
13-12  
11-10  
DAC3-AB-TOGG-EN  
DAC2-AB-TOGG-EN  
DAC1-AB-TOGG-EN  
Enables toggle mode operation and configures the toggle pin or soft  
toggle bit:  
0h  
0h = Toggle mode disabled  
0h  
1h = Toggle mode enabled: TOGGLE0  
2h = Toggle mode enabled: TOGGLE1  
3h = Toggle mode enabled: TOGGLE2  
9-8  
DAC0-AB-TOGG-EN  
R/W  
0h  
7-6  
5-4  
3-2  
1-0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
0h  
0h  
0h  
0h  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
40  
版权 © 2018, Texas Instruments Incorporated  
 
 
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
9.6.10 DACPWDWN Register (Offset = 09h) [reset = FFFFh]  
DACPWDWN is shown in 61 and described in 18.  
Return to Summary Table.  
61. DACPWDWN Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-1h  
RESERVED  
R-1h  
RESERVED  
R-1h  
RESERVED  
R-1h  
DAC7-PWDWN DAC6-PWDWN DAC5-PWDWN DAC4-PWDWN  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
7
6
5
4
3
2
1
0
DAC3-PWDWN DAC2-PWDWN DAC1-PWDWN DAC0-PWDWN  
RESERVED  
R-1h  
RESERVED  
R-1h  
RESERVED  
R-1h  
RESERVED  
R-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
18. DACPWDWN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
1h  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
14  
13  
12  
R
R
R
1h  
1h  
1h  
11  
10  
9
DAC7-PWDWN  
DAC6-PWDWN  
DAC5-PWDWN  
DAC4-PWDWN  
DAC3-PWDWN  
DAC2-PWDWN  
DAC1-PWDWN  
DAC0-PWDWN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
8
When set to 1 the corresponding DAC is in power-down mode and  
its output is connected to GND through a 10-kΩ internal resistor.  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
1h  
1h  
1h  
1h  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
This bit is reserved.  
版权 © 2018, Texas Instruments Incorporated  
41  
 
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9.6.11 DACRANGEn Register (Offset = 0Bh - 0Ch) [reset = 0000h]  
DACRANGEn is shown in 62 and described in 19.  
Return to Summary Table.  
62. DACRANGEn Register  
15  
7
14  
13  
12  
4
11  
3
10  
9
8
0
DACa-RANGE[3:0]  
W-0h  
DACb-RANGE[3:0]  
W-0h  
6
5
2
1
DACc-RANGE[3:0]  
W-0h  
DACd-RANGE[3:0]  
W-0h  
19. DACRANGEn Register Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
15-12  
11-8  
7-4  
DACa-RANGE[3:0]  
DACb-RANGE[3:0]  
DACc-RANGE[3:0]  
Sets the output range for the corresponding DAC.  
0000 = 0 to 5 V  
W
0h  
W
0h  
0001 = 0 to 10 V  
0010 = 0 to 20 V  
0100 = 0 to 40 V  
1001 = -5 V to +5 V  
1010 = -10 V to +10 V  
1100 = -20 V to +20 V  
1110 = -2.5 V to +2.5 V  
All others: invalid  
3-0  
DACd-RANGE[3:0]  
W
0h  
The two outputs of a differential DAC pair must be configured to the  
same output range prior to setting them up as a differential pair.  
a: 7 or 3; b: 6 or 2; c: 5 or 1; d: 4 or 0  
42  
版权 © 2018, Texas Instruments Incorporated  
 
 
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
9.6.12 TRIGGER Register (Offset = 0Eh) [reset = 0000h]  
TRIGGER is shown in 63 and described in 20.  
Return to Summary Table.  
63. TRIGGER Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
RESERVED  
W-0h  
ALM-RESET  
W-0h  
7
6
5
4
3
0
AB-TOG2  
W-0h  
AB-TOG1  
W-0h  
AB-TOG0  
W-0h  
LDAC  
W-0h  
SOFT-RESET[3:0]  
W-0h  
20. TRIGGER Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-9  
RESERVED  
W
0h  
This bit is reserved  
Set this bit to 1 to clear an alarm event. Not applicable for a DAC-  
BUSY alarm event.  
8
ALM-RESET  
W
0h  
If soft toggle is enabled set, this bit controls the toggle between  
values for those DACs that have been set in toggle mode 2 in the  
TOGGCONFIG register. Set to 1 to update to Register B and clear to  
0 for Register A.  
7
AB-TOG2  
AB-TOG1  
AB-TOG0  
W
0h  
If soft toggle is enabled set, this bit controls the toggle between  
values for those DACs that have been set in toggle mode 1 in the  
TOGGCONFIG register. Set to 1 to updated to Register B and clear  
to 0 for Register A.  
6
5
W
W
0h  
0h  
If soft toggle is enabled set, this bit controls the toggle between  
values for those DACs that have been set in toggle mode 0 in the  
TOGGCONFIG register. Set to 1 to update to Register B and clear to  
0 for Register A.  
Set this bit to 1 to synchronously load those DACs who have been  
set in synchronous mode in the SYNCCONFIG register.  
4
LDAC  
W
W
0h  
0h  
When set to the reserved code 1010 resets the device to its default  
state.  
3-0  
SOFT-RESET[3:0]  
版权 © 2018, Texas Instruments Incorporated  
43  
 
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9.6.13 BRDCAST Register (Offset = 0Fh) [reset = 0000h]  
BRDCAST is shown in 64 and described in 21.  
Return to Summary Table.  
64. BRDCAST Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BRDCAST-DATA[15:0]  
R/W-0h  
21. BRDCAST Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Writing to the BRDCAST register forces those DAC channels that  
have been set to broadcast in the BRDCONFIG register to update its  
active register data to the BRDCAST-DATA one.  
Data is MSB aligned in straight binary format and follows the format  
below:  
15-0  
BRDCAST-DATA[15:0]  
R/W  
0h  
DAC81408: { DATA[15:0] }  
DAC71408: { DATA[13:0], x, x }  
DAC61408: { DATA[11:0], x, x, x, x}  
x – Don 't care bits  
9.6.14 DACn Register (Offset = 14h - 1Bh) [reset = 0000h]  
DACn is shown in 65 and described in 22.  
Return to Summary Table.  
65. DACn Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DACn-DATA[15:0]  
R/W-0h  
22. DACn Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Stores the 16-, 14- or 12-bit data to be loaded to DACn in MSB  
aligned straight binary format. In differential DAC mode data is  
loaded into the lowest-valued DAC in the DAC pair (in pair DAC 01,  
data is loaded into DAC0 and writes to DAC1 are ignored).  
Data follows the format below:  
DAC81408: { DATA[15:0] }  
DAC71408: { DATA[13:0], x, x }  
DAC61408: { DATA[11:0], x, x, x, x}  
x – Don 't care bits  
15-0  
DACn-DATA[15:0]  
R/W  
0h  
44  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
9.6.15 OFFSETn Register (Offset = 21h - 22h) [reset = 0000h]  
OFFSETn is shown in 66 and described in 23.  
Return to Summary Table.  
66. OFFSETn Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
OFFSETab[7:0]  
R/W-0h  
4
3
OFFSETcd[7:0]  
R/W-0h  
23. OFFSETn Register Field Descriptions  
Bit  
15-8  
Field  
OFFSETab[7:0]  
Type  
Reset  
Description  
R/W  
0h  
Provides offset adjustment to DACy in the differential DACx-y pair in  
two 's complement format.  
Data follows the format below:  
DAC81408:  
Format: { OFFSET[7:0] }  
Range: -128 LSB to +127 LSB  
DAC71408:  
Format: { OFFSET[5:0], x, x }  
Range: -32 LSB to +31 LSB  
7-0  
OFFSETcd[7:0]  
R/W  
0h  
DAC61408:  
Format: { OFFSET[3:0], x, x, x, x}  
Range: -8 LSB to +7 LSB  
x – Don 't care bits  
The differential DAC data register must be rewritten after updating  
the offset register.  
ab: 6-7 or 2-3; cd: 4-5 or 0-1  
版权 © 2018, Texas Instruments Incorporated  
45  
 
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The DACx1408 family provides 8-channel high-voltage and high-current output in both single-ended and  
differential configurations. The outputs can be configured to multiple ranges and square waves can be generated  
using the toggle modes. This makes the DAC family suitable for Automatic Test Equipment (ATE) and servo  
control applications. In addition to these features, the low power-on glitch of this DAC makes it suitable for Motor  
Control applications like CNC machines as well.  
10.2 Typical Application  
67. Schematic for Remote Ground Tracking  
10.2.1 Design Requirements  
In ATE and Motor Control applications, typically the systems are designed modular wherein the control module is  
located spatially away from the Device Under Test (DUT) module. Such a scheme allows ground potentials  
across modules to vary due to the impedance of the interconnects. This ground potential variation, in turn  
introduces inaccuracies to the DAC output when measured with respect to the remote or DUT ground. 67  
provides a method to compensate the variations in the remote ground. The ground variation in such applications  
is typically within ±300 mV that includes DC and 50 Hz/60 Hz mains frequency components. While the best way  
to handle this variation is to put opamps in level shifter configuration at each output, a low cost and low footprint  
solution is always preferable. The following sections focus on the latter approach.  
46  
版权 © 2018, Texas Instruments Incorporated  
 
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
Typical Application (接下页)  
10.2.2 Detailed Design Procedure for Remote Ground Tracking  
In order to make the DAC outputs follow the remote ground, the best approach is to level shift the reference  
input. 67 depicts a method wherein both the REF and REFGND inputs are level shifted with respect to  
DUTGND. However, as the DAC doesn’t allow the REFGND to become negative compared to GND, an offset  
voltage of 300mV needs to be applied as shown. This method requires an external 2.5V reference and a way to  
generate a stable 300-mV reference. A dual opamp U1 is used to shift both REFGND and REF by (DUTGND +  
300-mV offset). 24 provides the nodal analysis of the circuit. As evident, the DAC outputs track the DUTGND  
with an offset of 300mV. This offset can be easily compensated in software. Note that the absolute max values  
between REFGND and GND must be respected. When the absolute max values are reached, they should only  
be for a transient period and not for sustained amount of time.  
24. Nodal Analysis of the Circuit  
DUTGND  
(GND±0.3V)  
VOUT-GND AT  
0V CODE  
VOUT-GND AT 5V VOUT-DUTGND AT VOUT-DUTGND  
REFGND PIN  
REF PIN  
CODE  
5.3V  
5.6V  
5V  
0V CODE  
AT 5V CODE  
0V  
0.3V  
0.6V  
0V  
2.8V  
3.1V  
2.5V  
0.3V  
0.6V  
0V  
0.3V  
5.3V  
0.3V  
-0.3V  
0.3V  
5.3V  
0.3V  
5.3V  
10.2.2.1 Generating 300mV Offset  
There is no off-the-shelf solution for generating a 300-mV offset, unfortunately. 67 depicts a method to  
generate it using discrete components. It uses LM4041 adjustable shunt regulator on high-side from the 2.5-V  
reference. It has a reference input pin that sets the voltage across this device. Given that VRef is 1.233 V,  
choosing R1 = 16 kand R2 = 12 kthe voltage Vo can be calculated by superposition as 2.16 V. This will  
provide an offset of (2.5 V – 2.16 V) = 340 mV that will provide a safe margin from DAC ground.  
10.2.2.2 Amplifier Selection  
The amplifier needs to be bipolar in order to operate linearly near ground. A dual package is preferable for  
optimizing area. Considering these factors, TLV2442A seems to be the best option from cost and accuracy  
points of view. Other parts like OPA2277 can be used when higher accuracy is required.  
10.2.2.3 Passive Component Selection  
In order to minimize additional offset and gain error the gain resistors around the opamps need to be matched.  
An 8-channel resistor network can be used for better matching. Rc and Cc values can be chosen as 22 and  
1000 pF, respectively in order to compensate the pole caused by the large bypass capacitor at the opamp  
outputs.  
版权 © 2018, Texas Instruments Incorporated  
47  
 
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
10.2.3 Application Curves  
68. Power-On Glitch With DUTGND Compensation  
69. INL (Major Code) at Different Values of DUTGND  
48  
版权 © 2018, Texas Instruments Incorporated  
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
11 Power Supply Recommendations  
The DACx1408 requires 5 power supply inputs: VIO, VDD, VAA, VCC and VSS. VDD and VAA should be at  
same level. Assuming VIO and VDD/VAA to be different, there are 4 separate power supply sources required. It  
is recommended to provide a 0.1-µF ceramic capacitor close to each power supply pin. Please note that VCC  
and VSS have 2 pins each. In addition, a 4.7-µF or 10-µF bulk capacitor is recommended for each power supply.  
Tantalum or aluminum types can be chosen for the bulk capacitors. There is no sequencing requirement for the  
power supplies. As the DAC output range is configurable, the power supply headroom should be taken care of  
for achieving linearity at codes close to power supply rails. When sourcing or sinking current from or to the DAC  
output, the heat dissipation needs to be considered. For example, a typical application of MZM bias with 25-mA  
load current from or to 12 channels with 2.5-V power supply headroom can create a power dissipation across the  
DAC of (12*2.5*25 mA) = 0.75 W. The thermal design to dissipate this much of power may involve inclusion of  
heat sinks in order to avoid thermal shutdown of the device.  
版权 © 2018, Texas Instruments Incorporated  
49  
DAC81408, DAC71408, DAC61408  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
The pin out of DACx1408 has been designed in such a way that the analog, digital and power pins are spatially  
separated from each other, which makes the PCB layout simple. An example layout is shown in 70. As  
evident, every power supply pin has a 0.1-µF capacitor close to it. The layout of the analog and digital signals  
should be laid out away from each other or on different PCB layers. It is recommended to provide an unbroken  
reference plane (either ground or VIO) for the digital signals. The higher frequency signals such as SCLK and  
SDI should have appropriate impedance termination in order to address signal integrity.  
12.2 Layout Example  
70. Example Layout  
50  
版权 © 2018, Texas Instruments Incorporated  
 
DAC81408, DAC71408, DAC61408  
www.ti.com.cn  
ZHCSIG8A JULY 2018REVISED NOVEMBER 2018  
13 器件和文档支持  
13.1 文档支持  
13.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
25. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
DAC81408  
DAC71408  
DAC61408  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.5 商标  
E2E is a trademark of Texas Instruments.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
51  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC61408RHAR  
DAC61408RHAT  
DAC71408RHAR  
DAC71408RHAT  
DAC81408RHAR  
DAC81408RHAT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
40  
40  
40  
40  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DAC61408  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
DAC61408  
DAC71408  
DAC71408  
DAC81408  
DAC81408  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC61408RHAR  
DAC61408RHAT  
DAC71408RHAR  
DAC71408RHAT  
DAC81408RHAR  
DAC81408RHAT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
40  
40  
40  
40  
40  
40  
2500  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
2500  
250  
2500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC61408RHAR  
DAC61408RHAT  
DAC71408RHAR  
DAC71408RHAT  
DAC81408RHAR  
DAC81408RHAT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
40  
40  
40  
40  
40  
40  
2500  
250  
367.0  
213.0  
367.0  
213.0  
367.0  
213.0  
367.0  
191.0  
367.0  
191.0  
367.0  
191.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
2500  
250  
2500  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040C  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
6.1  
5.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
4.7 0.1  
2X 4.5  
(0.2) TYP  
11  
20  
36X 0.5  
10  
21  
EXPOSED  
THERMAL PAD  
2X  
41  
SYMM  
4.5  
SEE TERMINAL  
DETAIL  
1
30  
0.3  
0.2  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
SYMM  
0.5  
0.3  
40X  
4219053/B 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.7)  
SYMM  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
4X  
(1.35)  
(
0.2) TYP  
VIA  
(0.75)  
TYP  
41  
(5.8)  
SYMM  
4X  
(1.5)  
36X (0.5)  
10  
21  
(R0.05)  
TYP  
11  
(0.75) TYP  
20  
4X (1.5)  
(5.8)  
4X (1.35)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219053/B 03/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.5) TYP  
9X ( 1.3)  
(R0.05) TYP  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
41  
(1.5)  
TYP  
SYMM  
(5.8)  
36X (0.5)  
10  
21  
METAL  
TYP  
11  
20  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
69% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
4219053/B 03/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY