DAC7641YB [TI]

16-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER;
DAC7641YB
型号: DAC7641YB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER

文件: 总22页 (文件大小:1200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
DAC7641  
DAC7641  
®
For most current data sheet and other product  
information, visit www.burr-brown.com  
16-Bit, Voltage Output  
DIGITAL-TO-ANALOG CONVERTER  
FEATURES  
LOW POWER: 2.5mW  
DESCRIPTION  
The DAC7641 is a 16-bit, voltage output digital-to-  
analog converter (DAC) with guaranteed 15-bit mono-  
tonic performance over the specified temperature range.  
It accepts 16-bit parallel input data, has double-buffered  
DAC input logic (allowing asynchronous update), and  
provides a readback mode of the internal input registers.  
Programmable asynchronous reset clears all registers to  
a mid-scale code of 8000H or to a zero-scale of 0000H.  
The DAC7641 can operate from a single +5V supply or  
from +5V and –5V supplies.  
UNIPOLAR OR BIPOLAR OPERATION  
SETTLING TIME: 10µs to 0.003%  
15-BIT LINEARITY AND MONOTONICITY:  
–40°C to +85°C  
PROGRAMMABLE RESET TO MID-SCALE  
OR ZERO-SCALE  
DATA READBACK  
DOUBLE-BUFFERED DATA INPUTS  
Low power and small size per DAC make the DAC7641  
ideal for automatic test equipment, DAC-per-pin  
programmers, data acquisition systems, and closed-  
loop servo-control. The DAC7641 is available in a  
TQFP-32 package, and offers guaranteed specifica-  
tions over the –40°C to +85°C temperature range.  
APPLICATIONS  
PROCESS CONTROL  
ATE PIN ELECTRONICS  
CLOSED-LOOP SERVO-CONTROL  
MOTOR CONTROL  
DATA ACQUISITION SYSTEMS  
DAC-PER-PIN PROGRAMMERS  
VREF  
L
VREFH  
Sense  
Sense  
VREF  
L
VREFH  
VDD  
VSS  
VCC  
16  
I/O  
Buffer  
Input  
Register  
DAC  
Register  
DATA I/O  
DAC  
VOUT  
VOUT Sense  
CS  
Control  
Logic  
R/W  
DAC7641  
AGND DGND  
RST  
RSTSEL  
LDAC  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706  
• Tel: (520) 746-1111  
Twx: 910-952-1111 Internet: http://www.burr-brown.com/  
Cable: BBRCORP Telex: 066-6491  
FAX: (520) 889-1510 Immediate Product Info: (800) 548-6132  
© 2000 Burr-Brown Corporation  
Printed in U.S.A. June, 2000  
PDS-1532A  
SBAS118  
SPECIFICATIONS (Dual Supply)  
At TA = TMIN to TMAX, VDD = VCC = +5V, VSS = –5V, VREFH = +2.5V, and VREFL = –2.5V, unless otherwise noted.  
DAC7641Y  
DAC7641YB  
TYP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
ACCURACY  
Linearity Error  
±3  
±2  
±4  
±3  
±2  
±1  
±3  
±2  
LSB  
LSB  
Bits  
mV  
ppm/°C  
mV  
Differential Linearity Error  
Monotonicity, TMIN to TMAX  
Bipolar Zero Error  
Bipolar Zero Error Drift  
Full-Scale Error  
14  
15  
±1  
5
±1  
5
±3  
10  
±3  
10  
100  
Full-Scale Error Drift  
Power Supply Rejection Ratio (PSRR)  
ppm/°C  
ppm/V  
At Full Scale  
10  
ANALOG OUTPUT  
Voltage Output  
Output Current  
Maximum Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
VREF = –2.5V, RL = 10k, VSS = –5V  
No Oscillation  
VREF  
–1.25  
L
VREF  
+1.25  
H
V
mA  
pF  
500  
–10, +30  
Indefinite  
mA  
GND or VCC or VSS  
REFERENCE INPUT  
Ref High Input Voltage Range  
Ref Low Input Voltage Range  
Ref High Input Current  
VREFL + 1.25  
–2.5  
+2.5  
VREFH – 1.25  
V
V
µA  
µA  
500  
–500  
Ref Low Input Current  
DYNAMIC PERFORMANCE  
Settling Time  
Digital Feedthrough  
Output Noise Voltage  
DAC Glitch  
To ±0.003%, 5V Output Step  
8
2
60  
40  
10  
µs  
nV-s  
nV/Hz  
nV-s  
f = 10kHz  
7FFFH to 8000H or 8000H to 7FFFH  
DIGITAL INPUT  
VIH  
VIL  
IIH  
0.7 • VDD  
V
V
µA  
µA  
0.3 • VDD  
±10  
±10  
IIL  
DIGITAL OUTPUT  
VOH  
VOL  
IOH = –0.8mA  
IOL = 1.2mA  
3.6  
4.5  
0.3  
V
V
0.4  
POWER SUPPLY  
VDD  
VCC  
VSS  
ICC  
IDD  
ISS  
+4.75  
+4.75  
–5.25  
+5.0  
+5.0  
–5.0  
0.4  
15  
–0.5  
4
+5.25  
+5.25  
–4.75  
0.5  
V
V
V
mA  
µA  
mA  
mW  
–0.6  
–40  
–0.4  
5.5  
Power  
TEMPERATURE RANGE  
Specified Performance  
+85  
°C  
Specifications same as DAC7641Y.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
2
DAC7641  
SPECIFICATIONS (Single Supply)  
At TA = TMIN to TMAX, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, and VREFL = 0V, unless otherwise noted.  
DAC7641Y  
DAC7641YB  
TYP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
ACCURACY  
Linearity Error(1)  
±3  
±2  
±4  
±3  
±2  
±1  
±3  
±2  
LSB  
LSB  
Bits  
mV  
ppm/°C  
mV  
Differential Linearity Error  
Monotonicity, TMIN to TMAX  
Zero Scale Error  
Zero Scale Error Drift  
Full-Scale Error  
14  
15  
±1  
5
±1  
5
±3  
10  
±3  
10  
100  
Full-Scale Error Drift  
Power Supply Rejection Ratio (PSRR)  
ppm/°C  
ppm/V  
At Full Scale  
10  
ANALOG OUTPUT  
Voltage Output  
Output Current  
Maximum Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
V
REFL = 0V, VSS = 0V, RL = 10kΩ  
No Oscillation  
0
VREF  
+1.25  
H
V
mA  
pF  
–1.25  
500  
±30  
Indefinite  
mA  
GND or VCC  
REFERENCE INPUT  
Ref High Input Voltage Range  
Ref Low Input Voltage Range  
Ref High Input Current  
VREFL + 1.25  
0
+2.5  
VREFH – 1.25  
V
V
µA  
µA  
250  
–250  
Ref Low Input Current  
DYNAMIC PERFORMANCE  
Settling Time  
Digital Feedthrough  
Output Noise Voltage, f = 10kHz  
DAC Glitch  
To ±0.003%, 2.5V Output Step  
8
2
60  
40  
10  
µs  
nV-s  
nV/Hz  
nV-s  
7FFFH to 8000H or 8000H to 7FFFH  
DIGITAL INPUT  
VIH  
VIL  
IIH  
0.7 • VDD  
V
V
µA  
µA  
0.3 • VDD  
±10  
±10  
IIL  
DIGITAL OUTPUT  
VOH  
VOL  
IOH = –0.8mA  
IOL = 1.2mA  
3.6  
4.5  
0.3  
V
V
0.4  
POWER SUPPLY  
VDD  
VCC  
VSS  
ICC  
IDD  
Power  
+4.75  
+4.75  
0
+5.0  
+5.0  
0
0.4  
15  
+5.25  
+5.25  
0
V
V
V
mA  
µA  
mW  
0.5  
1.8  
2.5  
TEMPERATURE RANGE  
Specified Performance  
–40  
+85  
°C  
Specifications same as DAC7641Y.  
NOTE: (1) If VSS = 0V specification applies at Code 0040H and above due to possible negative zero-scale error.  
®
3
DAC7641  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
VSS to VSS ............................................................................. –0.3V to 11V  
V
V
V
V
DD to GND .......................................................................... –0.3V to 5.5V  
REFL to GND ............................................................ –0.3V to (VSS – VCC  
REFH to GND ........................................................... –0.3V to (VSS – VCC  
REFH to VREFL .................................................................... –0.3V to +11V  
)
)
Digital Input Voltage to GND ................................... –0.3V to VDD + 0.3V  
Digital Output Voltage to GND ................................. –0.3V to VDD + 0.3V  
Maximum Junction Temperature ................................................... +150°C  
Operating Temperature Range ........................................40°C to +85°C  
Storage Temperature Range .........................................65°C to +150°C  
Lead Temperature (soldering, 10s) ............................................... +300°C  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings”  
may cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may affect device reliability.  
PACKAGE/ORDERING INFORMATION  
MINIMUM  
RELATIVE  
ACCURACY  
(LSB)  
DIFFERENTIAL  
NONLINEARITY  
(LSB)  
PACKAGE  
DRAWING  
NUMBER  
SPECIFICATION  
TEMPERATURE  
RANGE  
ORDERING  
NUMBER(1)  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
DAC7641Y  
±4  
"
±3  
"
±3  
"
±2  
"
TQFP-32  
351  
"
351  
"
–40°C to +85°C  
DAC7641Y/250  
DAC7641Y/2K  
DAC7641YB/250  
DAC7641YB/2K  
Tape and Reel  
Tape and Reel  
Tape and Reel  
Tape and Reel  
"
"
"
DAC7641YB  
"
TQFP-32  
"
–40°C to +85°C  
"
NOTES: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K indicates 2000 devices per reel). Ordering 2000 pieces  
of “DAC7641Y/2K” will get a single 2000-piece Tape and Reel.  
®
4
DAC7641  
PIN CONFIGURATION  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
1
2
3
4
5
6
7
8
24 VSS  
23 VOUT Sense  
22 VOUT  
21 RSTSEL  
20 RST  
DAC7641  
19 LDAC  
18 R/W  
DB8  
17 CS  
PIN DESCRIPTIONS  
PIN  
NAME  
DESCRIPTION  
PIN  
NAME  
DESCRIPTION  
1
2
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
CS  
Data Bit 15, MSB  
Data Bit 14  
Data Bit 13  
Data Bit 12  
Data Bit 11  
Data Bit 10  
Data Bit 9  
19  
20  
LDAC  
RST  
DAC Load Strobe, rising-edge triggered.  
Reset,rising-edgetriggered.Dependingonthestate  
of RSTSEL, the DAC registers are set to either mid-  
scale or zero.  
3
4
21  
RSTSEL  
Reset Select. Determines the action of RST. If  
HIGH, a RST command will set the DAC registers to  
mid-scale. IfLOW, aRSTcommandwillsettheDAC  
registers to zero.  
5
6
7
8
Data Bit 8  
22  
23  
VOUT  
DAC Voltage Output  
9
Data Bit 7  
V
OUT Sense  
DAC Output Amplifier Inverting Input. Used to close  
the feedback loop at the load.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Data Bit 6  
24  
VSS  
AGND  
VCC  
Negative Power Supply  
Data Bit 5  
Data Bit 4  
25  
26  
27  
28  
29  
30  
31  
32  
Analog Ground  
Data Bit 3  
Positive Power Supply  
DAC Reference High Sense Input  
DAC Reference High Input  
DAC Reference Low Sense Input  
DAC Reference Low Input  
Digital Ground  
Data Bit 2  
V
REFH Sense  
Data Bit 1  
VREFH  
Data Bit 0, LSB  
V
REFL Sense  
VREFL  
Chip Select, active low.  
R/W  
EnabledbyCS,controlsdatareadandwritefromthe  
input register.  
DGND  
VDD  
Positive Power Supply  
®
5
DAC7641  
TYPICAL PERFORMANCE CURVES: VSS = 0V  
At TA = +25°C, VDD = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(+25°C)  
(+85°C)  
3.0  
2.0  
3.0  
2.0  
1.0  
1.0  
0
0
–1.0  
–2.0  
–3.0  
–1.0  
–2.0  
–3.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(–40°C)  
ZERO-SCALE ERROR vs TEMPERATURE  
2
3.0  
2.0  
1.0  
Code (0040H)  
1.5  
1
0
–1.0  
–2.0  
–3.0  
0.5  
0
2.0  
1.5  
–0.5  
–1  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–1.5  
–2  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Digital Input Code  
POSITIVE FULL-SCALE ERROR vs TEMPERATURE  
Code (FFFFH)  
V
REFH CURRENT vs CODE  
2
1.5  
1
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.5  
0
–0.5  
–1  
–1.5  
–2  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Digital Input Code  
®
6
DAC7641  
TYPICAL PERFORMANCE CURVES: VSS = 0V (Cont.)  
At TA = +25°C, VDD = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
VREFL CURRENT vs CODE  
POWER SUPPLY CURRENT vs TEMPERATURE  
1.0  
0.8  
0.00  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
Data = FFFFH  
No Load  
0.6  
ICC  
0.4  
0.2  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Temperature (°C)  
Digital Input Code  
POSITIVE SUPPLY CURRENT  
vs DIGITAL INPUT CODE  
OUTPUT VOLTAGE vs SETTLING TIME  
(0V to +2.5V)  
0.50  
+5V  
LDAC  
0
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Large-Signal Settling Time: 0.5V/div  
Small-Signal Settling Time: 4LSB/div  
ICC  
0000H 0200H 0400H 0800H 1000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Time (2µs/div)  
Digital Input Code  
OUTPUT VOLTAGE  
vs MIDSCALE GLITCH PERFORMANCE  
OUTPUT VOLTAGE vs SETTLING TIME  
(+2.5V to 2mV)  
+5V  
LDAC  
0
+5V  
LDAC  
0
Small-Signal Settling Time: 4LSB/div  
7FFFH to 8000H  
Large-Signal Settling Time: 0.5V/div  
Time (1µs/div)  
Time (2µs/div)  
®
7
DAC7641  
TYPICAL PERFORMANCE CURVES: VSS = 0V (Cont.)  
At TA = +25°C, VDD = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
OUTPUT VOLTAGE  
BROADBAND NOISE  
vs MIDSCALE GLITCH PERFORMANCE  
+5V  
LDAC  
0
8000H to 7FFFH  
BW = 10kHz  
Code = 8000H  
Time (1µs/div)  
Time (10ms/div)  
LOGIC SUPPLY CURRENT  
vs LOGIC INPUT LEVEL FOR DATA BITS  
OUTPUT NOISE VOLTAGE vs FREQUENCY  
12  
10  
8
1000  
100  
10  
6
4
2
0
0
1
2
3
4
5
10  
100  
1000  
10000  
100000  
1000000  
Logic Input Level for Data Bits (V)  
Frequency (Hz)  
OUTPUT VOLTAGE vs RLOAD  
5
4
3
2
1
0
Source  
Sink  
0.01  
0.1  
1
10  
100  
RLOAD (k)  
®
8
DAC7641  
TYPICAL PERFORMANCE CURVES: VSS = –5V  
At TA = +25°C, VDD = +5V, VSS = –5V, VREFH = +2.5V, VREFL = –2.5V, representative unit, unless otherwise specified.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(+25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(+85°C)  
3.0  
2.0  
3.0  
2.0  
1.0  
1.0  
0
0
–1.0  
–2.0  
–3.0  
–1.0  
–2.0  
–3.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(–40°C)  
VREFH CURRENT vs CODE  
3.0  
0.30  
2.0  
1.0  
0
–1.0  
–2.0  
–3.0  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
ZERO-SCALE ERROR vs TEMPERATURE  
(Code 8000H)  
VREFL CURRENT vs CODE  
0.00  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
2
1.5  
1
0.5  
0
–0.5  
–1  
–1.5  
–2  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Digital Input Code  
®
9
DAC7641  
TYPICAL PERFORMANCE CURVES: VSS = –5V (Cont.)  
At TA = +25°C, VDD = +5V, VSS = –5V, VREFH = +2.5V, VREFL = –2.5V, representative unit, unless otherwise specified.  
NEGATIVE FULL-SCALE ERROR vs TEMPERATURE  
POSITIVE FULL-SCALE ERROR vs TEMPERATURE  
(Code FFFFH)  
(Code 0000H)  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
–0.5  
–1  
–0.5  
–1  
–1.5  
–2  
–1.5  
–2  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
POWER SUPPLY CURRENT  
vs TEMPERATURE  
OUTPUT VOLTAGE vs RLOAD  
1.0  
0.8  
5
4
Data = FFFFH  
No Load  
0.6  
Source  
3
ICC  
0.4  
2
0.2  
1
0.0  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
–5  
ISS  
Sink  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
0.01  
0.1  
1
10  
100  
Temperature (°C)  
RLOAD (k)  
POSITIVE SUPPLY CURRENT  
vs DIGITAL INPUT CODE  
OUTPUT VOLTAGE vs SETTLING TIME  
(–2.5V to +2.5V)  
+5V  
LDAC  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Large-Signal Settling Time: 1V/div  
Small-Signal Settling Time: 2LSB/div  
ICC  
0000H 0200H 0400H 0800H 1000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Time (2µs/div)  
Digital Input Code  
®
10  
DAC7641  
TYPICAL PERFORMANCE CURVES: VSS = –5V (Cont.)  
At TA = +25°C, VDD = +5V, VSS = –5V, VREFH = +2.5V, VREFL = –2.5V, representative unit, unless otherwise specified.  
OUTPUT VOLTAGE vs SETTLING TIME  
(+2.5V to –2.5V)  
+5V  
LDAC  
0
Small-Signal Settling Time:  
2LSB/div  
Large-Signal Settling Time: 1V/div  
Time (2µs/div)  
references VREFL and VREFH, respectively. The digital input  
THEORY OF OPERATION  
is a 16-bit parallel word and the DAC input register offers a  
readback capability. The converters can be powered from  
either a single +5V supply or a dual ±5V supply. The device  
offers a reset function which immediately sets all DAC  
output voltages and DAC registers to mid-scale code 8000H  
or to zero-scale code 0000H. See Figures 2 and 3 for the  
basic operation of the DAC7641.  
The DAC7641 is a voltage output, 16-bit digital-to-analog  
converter (DAC). The architecture is an R-2R ladder con-  
figuration with the three MSBs segmented, followed by an  
operational amplifier that serves as a buffer (see Figure 1).  
The minimum voltage output (zero-scale) and maximum  
voltage output (full-scale) are set by the external voltage  
RF  
VOUT Sense  
VOUT  
R
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
VREF  
VREFH Sense  
VREF  
H
L
VREFL Sense  
FIGURE 1. DAC7641 Architecture.  
®
11  
DAC7641  
+5V  
1µF  
+
0.1µF  
AGND  
0V  
+2.5000V  
DGND  
32 31 30 29 28 27 26 25  
VDD  
VREFL  
VREFH  
VCC  
DGND  
VREFL  
Sense  
VREFH  
Sense  
AGND  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
DB15  
VSS  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
VOUT Sense  
VOUT  
0V to +2.5V  
DAC7641  
RSTSEL  
RST  
DAC RESET MODE SELECT  
DAC RESET  
LDAC  
R/W  
DAC LOAD STROBE  
READ/WRITE STROBE  
CHIP SELECT  
DB8  
CS  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
10 11 12 13 14 15 16  
9
FIGURE 2. Single-Supply Operation.  
+5V  
1µF  
+
1µF  
+
0.1µF  
0.1µF  
–2.500V +2.500V  
–5V  
DGND  
VDD  
32 31 30 29 28 27 26 25  
AGND  
VREFL  
VREFH  
VCC  
DGND  
VREFH  
Sense  
AGND  
VREFL  
Sense  
1
24  
23  
22  
21  
20  
19  
18  
17  
DB15  
VSS  
2
DB14  
VOUT Sense  
VOUT  
3
DB13  
–2.5V to +2.5V  
4
DAC7641  
DB12  
RSTSEL  
RST  
DAC RESET MODE SELECT  
DAC RESET  
5
DB11  
6
DB10  
LDAC  
R/W  
DAC LOAD STROBE  
READ/WRITE STROBE  
CHIP SELECT  
7
DB9  
8
DB8  
CS  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
10 11 12 13 14 15 16  
9
FIGURE 3. Dual-Supply Operation.  
®
12  
DAC7641  
ANALOG OUTPUTS  
+V  
When VSS = –5V (dual supply operation), the output ampli-  
fier can swing to within 2.25V of the supply rails, guaran-  
teed over the –40°C to +85°C temperature range. With VSS  
= 0V (single-supply operation), and with RLOAD also con-  
nected to ground, the output can swing to ground. Care must  
be taken when measuring the zero-scale error with VSS = 0V.  
Since the output voltage cannot swing below ground, the  
output voltage may not change for the first few digital input  
codes (0000H, 0001H, 0002H, etc.) if the output amplifier has  
a negative offset. At the negative limit of –2mV, the first  
specified output starts at code 0040H.  
+2.5V  
VSS  
24  
RW1  
23  
22  
VOUT Sense  
VOUT  
VOUT  
Due to the high accuracy of these D/A converters, system  
design problems such as grounding and contact resistance  
become very important. A 16-bit converter with a 2.5V full-  
scale range has a 1LSB value of 38µV. With a load current  
of 1mA, series wiring and connector resistance (see Figure  
4) of only 40m(RW2) will cause a voltage drop of 40µV.  
To understand what this means in terms of a system layout,  
the resistivity of a typical 1 ounce copper-clad printed circuit  
board is 1/2 mper square. For a 1mA load, a 10 milli-inch  
wide printed circuit conductor 600 milli-inches long will  
result in a voltage drop of 30µV.  
RW2  
DAC7641  
FIGURE 4. Analog Output Closed-Loop Configuration. RW  
represents wiring resistances.  
connected to ground or must be in the range of –4.75V to  
–5.25V. The voltage on VSS sets several bias points within  
the converter. If VSS is not in one of these two configura-  
tions, the bias values may be in error and proper operation  
of the device is not guaranteed.  
The DAC7641 offers a force and sense output configuration  
for the high open-loop gain output amplifier. This feature  
allows the loop around the output amplifier to be closed at the  
load (see Figure 4), thus ensuring an accurate output voltage.  
The current into the VREFH input and out of VREFL depends  
on the DAC output voltages and can vary from a few  
microamps to approximately 0.5mA. The reference input  
appears as a varying load to the reference. If the reference  
can sink or source the required current, a reference buffer is  
not required. The DAC7641 features a reference drive and  
sense connection such that the internal errors caused by the  
changing reference current and the circuit impedances can  
be minimized. Figures 5 through 13 show different reference  
configurations and the effect on the linearity and differential  
linearity.  
REFERENCE INPUTS  
The reference inputs, VREFL and VREFH, can be any voltage  
between VSS + 2.5V and VCC – 2.5V provided that VREFH is  
at least 1.25V greater than VREFL. The minimum output of  
each DAC is equal to VREFL plus a small offset voltage  
(essentially, the offset of the output op amp). The maximum  
output is equal to VREFH plus a similar offset voltage. Note  
that VSS (the negative power supply) must either be  
OPA2234  
–2.5V  
500pF  
–V  
+V  
500pF  
+2.5V  
VSS  
24  
23  
22  
VOUT Sense  
VOUT  
VOUT  
DAC7641  
FIGURE 5. Dual Supply Configuration-Buffered References, used for Dual Supply Performance Curves.  
13  
®
DAC7641  
OPA2350  
2200pF  
2200pF  
100Ω  
100Ω  
2kΩ  
0.05V  
1000pF  
1000pF  
+V  
98kΩ  
+2.5V  
VSS  
24  
23  
22  
VOUT Sense  
VOUT  
VOUT  
DAC7641  
NOTE: VREFL has been chosen to be 50mV to allow for current sinking voltage  
drops across the 100resistor and the output stage of the buffer op amp.  
FIGURE 6. Single-Supply Buffered Reference with a Reference Low of 50mV.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(+25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(+25°C)  
2.5  
2.0  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0.5  
0
–0.5  
–1.0  
–1.5  
2.5  
2.0  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0.5  
0
–0.5  
–1.0  
–1.5  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
FIGURE 8. Integral Linearity and Differential Linearity  
Error Curves for Figure 9.  
FIGURE 7. Integral Linearity and Differential Linearity  
Error Curves for Figure 6.  
®
14  
DAC7641  
OPA2350  
+V  
+V  
2200pF  
100  
100Ω  
+1.25V  
+2.5V  
1000pF  
1000pF  
2200pF  
VSS  
24  
23  
22  
VOUT Sense  
VOUT  
VOUT  
DAC7641  
FIGURE 9. Single-Supply Buffered Reference with VREFL = +1.25V and VREFH = +2.5V.  
+V  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(+25°C)  
+2.5V  
100  
OPA350  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1000pF  
2200pF  
–0.5  
–1.0  
2.0  
1.5  
VSS  
24  
23  
22  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
VOUT Sense  
VOUT  
VOUT  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
DAC7641  
Digital Input Code  
FIGURE 10. Single-Supply Buffered VREFH.  
FIGURE 11. Linearity and Differential Linearity Error Curves  
for Figure 10.  
®
15  
DAC7641  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(+25°C)  
+V  
2.5  
2.0  
+2.5V  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
VSS  
24  
23  
22  
2.0  
1.5  
1.0  
VOUT Sense  
VOUT  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
VOUT  
DAC7641  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
FIGURE 12. Low Cost Single-Supply Configuration.  
FIGURE 13. Linearity and Differential Linearity Error Curves  
for Figure 12.  
DIGITAL TIMING  
DIGITAL INTERFACE  
Figure 14 and Table II provide detailed timing for the digital  
interface of the DAC7641.  
Table I shows the basic control logic for the DAC7641. Note  
that the internal register is edge triggered and not level  
triggered. When the LDAC signal is transitioned to HIGH,  
the digital word currently in the register is latched.  
DIGITAL INPUT CODING  
The DAC7641 input data is in Straight Binary format. The  
output voltage is given by Equation 1.  
The double-buffered architecture is designed so that the  
DAC input register can be written to at any time.  
V
REFH – VREFL • N  
(
)
VOUT = VREFL +  
(1)  
INPUT  
65,536  
R/W  
CS  
RST RSTSEL LDAC REGISTER  
REGISTER  
MODE  
L
H
X
X
X
X
L
L
H
H
X
X
H
H
H
H
X
X
X
X
L
X
X
H
X
X
Write  
Read  
Hold  
Hold  
Hold  
Hold  
Write  
Write Input  
Read Input  
Update  
Hold  
Reset to Zero  
where N is the digital input code. This equation does not  
include the effects of offset (zero-scale) or gain (full-scale)  
errors.  
Hold  
Reset to Zero  
Reset to Midscale Reset to Midscale  
H
TABLE I. DAC7641 Logic Truth Table.  
®
16  
DAC7641  
tWCS  
CS  
tRCS  
tWS  
tWH  
CS  
R/W  
tRDH  
tRDS  
tLH  
R/W  
tLS  
tLWD  
tLX  
tDZ  
±0.003% of FSR  
LDAC  
Data Out  
Data Valid  
tCSD  
Error Band  
tDH  
tDS  
Data In  
tS  
Data Read Timing  
VOUT  
Data Write Timing  
±0.003% of FSR  
Error Band  
tSS  
tSH  
RSTSEL  
tRSH  
tRSS  
RST  
+FS  
VOUT, RSTSEL LOW  
–FS  
+FS  
MS  
VOUT, RSTSEL HIGH  
–FS  
DAC7641 Reset Timing  
FIGURE 14. Digital Input and Output Timing.  
SYMBOL  
DESCRIPTION  
CS LOW for Read  
R/W HIGH to CS LOW  
MIN  
TYP  
MAX  
UNITS  
tRCS  
tRDS  
tRDH  
tDZ  
tCSD  
tWCS  
tWS  
tWH  
tLS  
tLH  
tLX  
tDS  
tDH  
tLWD  
tSS  
tSH  
tRSS  
tRSH  
tS  
150  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
R/W HIGH after CS HIGH  
CS HIGH to Data Bus in High Impedance  
CS LOW to Data Bus Valid  
CS LOW for Write  
10  
100  
150  
100  
40  
0
R/W LOW to CS LOW  
R/W LOW after CS HIGH  
CS LOW to LDAC HIGH  
CS LOW after LDAC HIGH  
LDAC HIGH  
Data Valid to CS LOW  
Data Valid after CS HIGH  
LDAC LOW  
10  
30  
100  
100  
0
10  
100  
0
RSTSEL Valid Before RESET HIGH  
RSTSEL Valid After RESET HIGH  
RESET LOW Before RESET HIGH  
RESET LOW After RESET HIGH  
Settling Time  
200  
10  
10  
10  
TABLE II. Timing Specifications (TA = –40°C to +85°C).  
®
17  
DAC7641  
DIGITALLY-PROGRAMMABLE  
CURRENT SOURCE  
Figure 15 shows a DAC7641 in a 4mA to 20mA current  
output configuration. The output current can be determined  
by Equation 3:  
The DAC7641 offers a unique set of features that allows a  
wide range of flexibility in designing applications circuits  
such as programmable current sources. The DAC7641 offers  
both a differential reference input as well as an open-loop  
configuration around the output amplifier. The open-loop  
configuration around the output amplifier allows transistor  
to be placed within the loop to implement a digitally-  
programmable, uni-directional current source. The availabil-  
ity of a differential reference also allows programmability  
for both the full-scale and zero-scale currents. The output  
current is calculated as:  
(3)  
2.5V – 0.5V  
N Value  
65,536  
0.5V  
IOUT  
=
+
125  
125Ω  
At full-scale, the output current is 16mA plus the 4mA for  
the zero current. At zero scale the output current is the offset  
current of 4mA (0.5V/125).  
VREFH – VREF  
RSENSE  
L
N Value  
65,536  
(2)  
IOUT  
=
+ VREFL / RSENSE  
(
)
OPA2350  
2200pF  
100Ω  
20kΩ  
+0.50v  
1000pF  
80kΩ  
+V  
100Ω  
2200pF  
+2.5V  
1000pF  
IOUT  
VSS  
24  
23  
22  
VOUT Sense  
VOUT  
DAC7641  
VPROGRAMMED  
RSENSE  
125Ω  
FIGURE 15. 4-to-20mA Digitally Controlled Current Source.  
®
18  
DAC7641  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Aug-2008  
PACKAGING INFORMATION  
Orderable Device  
DAC7641Y/250  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TQFP  
PBS  
32  
32  
32  
32  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
DAC7641Y/250G4  
DAC7641YB/250  
DAC7641YB/250G4  
TQFP  
TQFP  
TQFP  
PBS  
PBS  
PBS  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Sep-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
DAC7641Y/250  
DAC7641YB/250  
TQFP  
TQFP  
PBS  
PBS  
32  
32  
250  
250  
177.8  
177.8  
16.4  
16.4  
7.2  
7.2  
7.2  
7.2  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Sep-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC7641Y/250  
DAC7641YB/250  
TQFP  
TQFP  
PBS  
PBS  
32  
32  
250  
250  
190.5  
190.5  
212.7  
212.7  
31.8  
31.8  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

DAC7641YB/250

16-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7641YB/250

16-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7641YB/250G4

PARALLEL, WORD INPUT LOADING, 8us SETTLING TIME, 16-BIT DAC, PQFP32, GREEN, TQFP-32
TI

DAC7641YB/2K

16-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7641YB/2K

PARALLEL, WORD INPUT LOADING, 8us SETTLING TIME, 16-BIT DAC, PQFP32, TQFP-32
TI

DAC7641YB/2KG4

PARALLEL, WORD INPUT LOADING, 8us SETTLING TIME, 16-BIT DAC, PQFP32, GREEN, TQFP-32
TI

DAC7641_08

16-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7641_08

16-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7642

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7642

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7642VFBR

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7642VFBR

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB