DAC7714U/1K [TI]

Quad, Serial Input, 12-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER; 四,串行输入, 12位电压输出数位类比转换器
DAC7714U/1K
型号: DAC7714U/1K
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Quad, Serial Input, 12-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
四,串行输入, 12位电压输出数位类比转换器

转换器
文件: 总17页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC7714  
DAC7714  
®
Quad, Serial Input, 12-Bit, Voltage Output  
DIGITAL-TO-ANALOG CONVERTER  
FEATURES  
DESCRIPTION  
LOW POWER: 250mW (max)  
The DAC7714 is a quad, serial input, 12-bit, voltage  
output Digital-to-Analog Converter (DAC) with guar-  
anteed 12-bit monotonic performance over the –40°C  
to +85°C temperature range. An asynchronous reset  
clears all registers to either mid-scale (800H) or zero-  
scale (000H), selectable via the RESETSEL pin. The  
device can be powered from a single +15V supply or  
from dual +15V and –15V supplies.  
UNIPOLAR OR BIPOLAR OPERATION  
SETTLING TIME: 10µs to 0.012%  
12-BIT LINEARITY AND MONOTONICITY:  
–40°C to +85°C  
USER SELECTABLE RESET TO MID-  
SCALE OR ZERO-SCALE  
Low power and small size makes the DAC7714 ideal  
for process control, data acquisition systems, and  
closed-loop servo-control. The device is available in a  
SO-16 package, and is guaranteed over the –40°C to  
+85°C temperature range.  
SECOND-SOURCE for DAC8420  
SMALL SO-16 PACKAGE  
APPLICATIONS  
ATE PIN ELECTRONICS  
PROCESS CONTROL  
CLOSED-LOOP SERVO-CONTROL  
MOTOR CONTROL  
VCC  
VREFH  
GND  
DATA ACQUISITION SYSTEMS  
DAC  
DAC A  
Register A  
VOUTA  
SDI  
DAC  
Register B  
DAC B  
DAC C  
Serial-to-  
Parallel  
Shift  
VOUTB  
VOUTC  
VOUTD  
12  
Register  
DAC  
Register C  
CLK  
CS  
DAC  
Select  
DAC  
Register D  
DAC D  
VREFL VSS  
LOADDACS  
RESET  
RESETSEL  
International Airport Industrial Park  
Twx: 910-952-1111 • Cable: BBRCORP  
http://www.burr-brown.com/  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706  
FAX: (520) 889-1510 Immediate Product Info: (800) 548-6132  
http://www.ti.com/  
• Tel: (520) 746-1111  
Telex: 066-6491  
Copyright © 2000, Texas Instruments Incorporated  
PDS-1533A  
Printed in U.S.A. September, 2000  
SBAS119  
SPECIFICATIONS (Dual Supply)  
At TA = –40°C to +85°C, VCC = +15V, VSS = –15V, VREFH = +10V, VREFL = –10V, unless otherwise noted.  
DAC7714U  
DAC7714UB  
TYP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
ACCURACY  
Linearity Error  
±2  
±2  
±1  
±1  
±1  
±1  
LSB(1)  
LSB  
Linearity Matching(2)  
Differential Linearity Error  
Monotonicity  
LSB  
TMIN to TMAX  
Code = 000H  
12  
Bits  
Zero-Scale Error  
±2  
LSB  
Zero-Scale Drift  
Zero-Scale Matching(2)  
1
ppm/°C  
LSB  
±2  
±2  
±2  
±1  
Full-Scale Error  
Code = FFFH  
At Full Scale  
LSB  
Full-Scale Matching(2)  
Power Supply Sensitivity  
±1  
LSB  
10  
ppm/V  
ANALOG OUTPUT  
Voltage Output(3)  
Output Current  
VREFL  
–5  
VREFH  
+5  
V
mA  
pF  
Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
No Oscillation  
500  
±20  
mA  
To VSS, VCC, or GND  
Indefinite  
REFERENCE INPUT  
VREFH Input Range  
VREFL Input Range  
VREFL +1.25  
–10  
+10  
V
V
VREFH – 1.25  
Ref High Input Current  
Ref Low Input Current  
–0.5  
–3.5  
3.0  
0
mA  
mA  
DYNAMIC PERFORMANCE  
Settling Time  
To ±0.012%, 20V Output Step  
8
0.25  
2
10  
µs  
LSB  
Channel-to-Channel Crosstalk  
Digital Feedthrough  
Full-Scale Step  
nV-s  
Output Noise Voltage  
f = 10kHz  
65  
nV/Hz  
DIGITAL INPUT  
Logic Levels  
VIH  
IIH ≤ ±10µA  
IIL ≤ ±10µA  
3.325  
V
V
VIL  
1.575  
Data Format  
Straight Binary  
POWER SUPPLY REQUIREMENTS  
VCC  
+14.25  
–15.75  
+15.75  
–14.25  
8.5  
V
V
VSS  
ICC  
6
mA  
mA  
mW  
ISS  
–8  
–6  
Power Dissipation  
180  
250  
TEMPERATURE RANGE  
Specified Performance  
–40  
+85  
°C  
NOTES: (1) LSB means Least Significant Bit; if VREFH equals +10V and VREFL equals –10V, then one LSB equals 4.88mV. (2) All DAC outputs will match within  
the specified error band. (3) Ideal output voltage does not take into account zero or full-scale error.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
2
DAC7714  
SPECIFICATIONS (Single Supply)  
At TA = –40°C to +85°C, VCC = +15V, VSS = GND, VREFH = +10V, VREFL = 0V, unless otherwise noted.  
DAC7714U  
DAC7714UB  
TYP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
ACCURACY  
Linearity Error(1)  
±2  
±2  
±1  
±1  
±1  
±1  
LSB(2)  
LSB  
Linearity Matching(3)  
Differential Linearity Error  
Monotonicity  
LSB  
TMIN to TMAX  
Code = 004H  
12  
Bits  
Zero-Scale Error  
±4  
LSB  
Zero-Scale Drift  
Zero-Scale Matching(3)  
2
ppm/°C  
LSB  
±4  
±4  
±4  
±2  
Full-Scale Error  
Code = FFFH  
At Full Scale  
LSB  
Full-Scale Matching(3)  
Power Supply Sensitivity  
±2  
LSB  
20  
ppm/V  
ANALOG OUTPUT  
Voltage Output(4)  
Output Current  
VREFL  
–5  
VREFH  
+5  
V
mA  
pF  
Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
No Oscillation  
500  
±20  
mA  
To VCC or GND  
Indefinite  
REFERENCE INPUT  
VREFH Input Range  
VREFL Input Range  
VREFL +1.25  
0
+10  
V
V
VREFH – 1.25  
Ref High Input Current  
Ref Low Input Current  
–0.3  
–2.0  
1.5  
0
mA  
mA  
DYNAMIC PERFORMANCE  
Settling Time(5)  
To ±0.012%, 10V Output Step  
8
0.25  
2
10  
µs  
LSB  
Channel-to-Channel Crosstalk  
Digital Feedthrough  
nV-s  
Output Noise Voltage  
f = 10kHz  
65  
nV/Hz  
DIGITAL INPUT/OUTPUT  
Logic Levels  
VIH  
IIH ≤ ±10µA  
IIL ≤ ±10µA  
3.325  
V
V
VIL  
1.575  
15.75  
Data Format  
Straight Binary  
POWER SUPPLY REQUIREMENTS  
VCC  
14.25  
–40  
V
ICC  
3.0  
45  
mA  
mW  
Power Dissipation  
TEMPERATURE RANGE  
Specified Performance  
+85  
°C  
NOTES: (1) If VSS = 0V, specification applies at code 004H and above. (2) LSB means Least Significant Bit; if VREFH equals +10V and VREFL equals 0V, then one  
LSB equals 2.44mV. (3) All DAC outputs will match within the specified error band. (4) Ideal output voltage does not take into account zero or full-scale error.  
(5) Full-scale positive 10V step and negative step from code FFFH to 020H.  
®
3
DAC7714  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
VCC to VSS ........................................................................... –0.3V to +32V  
DISCHARGE SENSITIVITY  
V
V
V
V
V
V
CC to GND ......................................................................... –0.3V to +16V  
SS to GND ......................................................................... +0.3V to –16V  
REFH to GND ....................................................................... –9V to +11V  
REFL to GND (VSS = –15V) ................................................. –11V to +9V  
REFL to GND (VSS = 0V) .................................................... –0.3V to +9V  
REFH to VREFL ....................................................................... –1V to +22V  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Digital Input Voltage to GND .............................................. –0.3V to 5.8V  
Digital Output Voltage to GND ............................................ –0.3V to 5.8V  
Maximum Junction Temperature ................................................... +150°C  
Operating Temperature Range ........................................40°C to +85°C  
Storage Temperature Range .........................................65°C to +150°C  
Lead Temperature (soldering, 10s) ............................................... +300°C  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings”  
may cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may affect device reliability.  
PACKAGE/ORDERING INFORMATION  
MAXIMUM  
LINEARITY  
ERROR  
MAXIMUM  
DIFFERENTIAL  
LINEARITY  
(LSB)  
PACKAGE  
DRAWING  
NUMBER  
SPECIFICATION  
TEMPERATURE  
RANGE  
ORDERING  
NUMBER(1)  
TRANSPORT  
MEDIA  
PRODUCT  
(LSB)  
PACKAGE  
DAC7714U  
±2  
"
±1  
"
±1  
"
±1  
"
SO-16  
211  
"
211  
"
–40°C to +85°C  
DAC7714U  
DAC7714U/1K  
DAC7714UB  
Rails  
Tape and Reel  
Rails  
"
"
SO-16  
"
"
DAC7714UB  
–40°C to +85°C  
"
"
DAC7714UB/1K  
Tape and Reel  
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /1K indicates 1000 devices per reel). Ordering 1000 pieces  
of “DAC7714UB/1K” will get a single 1000-piece Tape and Reel.  
ESD PROTECTION CIRCUITS  
VCC  
VCC  
REFH  
VOUT  
REFL  
VSS  
VSS  
Internal VDD  
GND  
Typical of Each  
Logic Input Pin  
®
4
DAC7714  
PIN DESCRIPTIONS—U Package  
PIN CONFIGURATION—U Package  
PIN  
LABEL  
DESCRIPTION  
Top View  
SO  
1
2
3
4
VCC  
Positive Analog Supply Voltage, +15V nominal.  
DAC D Voltage Output  
VOUTD  
VOUTC  
VREFL  
DAC C Voltage Output  
Reference Input Voltage Low. Sets minimum  
output voltage for all DACs.  
5
VREFH  
Reference Input Voltage High. Sets maximum  
output voltage for all DACs.  
VCC  
VOUTD  
VOUTC  
VREFL  
VREFH  
VOUTB  
VOUTA  
VSS  
1
2
3
4
5
6
7
8
16 RESETSEL  
15 RESET  
14 LOADDACS  
13 NIC  
6
7
8
VOUTB  
VOUTA  
VSS  
DAC B Voltage Output  
DAC A Voltage Output  
Negative Analog Supply Voltage, 0V or –15V  
nominal.  
9
GND  
SDI  
Ground  
DAC7714U  
10  
11  
12  
13  
14  
Serial Data Input  
Serial Data Clock  
Chip Select Input  
Not Internally Connected  
12 CS  
CLK  
11 CLK  
CS  
10 SDI  
NIC  
9
GND  
LOADDACS  
The selected DAC register becomes transparent  
when LOADDACS is LOW. It is in the latched  
state when LOADDACS is HIGH.  
15  
16  
RESET  
Asynchronous Reset Input. Sets all DAC  
registers to either zero-scale (000H) or mid-  
scale (800H) when LOW. RESETSEL determines  
which code is active.  
RESETSEL  
When LOW, a LOW on RESET will cause all  
DAC registers to be set to code 000H. When  
RESETSEL is HIGH, a LOW on RESET will set  
the registers to code 800H.  
®
5
DAC7714  
TYPICAL PERFORMANCE CURVES: VSS = 0V  
At TA = +25°C, VCC = +15V, VSS = 0V, VREFH = +10V, VREFL = 0V, representative unit, unless otherwise specified.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
Single Channel 25°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
Single Channel 85°C  
(Typical of Each Output Channel)  
(Typical of Each Output Channel)  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
000H 200H  
400H 600H  
800H  
A00H C00H  
E00H FFFH  
000H 200H  
400H 600H  
800H  
A00H C00H  
E00H FFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
Single Channel –40°C  
ZERO-SCALE ERROR vs TEMPERATURE  
(Code 004H)  
(Typical of Each Output Channel)  
2.0  
1.5  
0.5  
0.4  
0.3  
0.2  
0.1  
DAC C  
DAC A  
0
1.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0.5  
0
0.5  
0.4  
–0.5  
–1.0  
–1.5  
–2.0  
DAC B  
DAC D  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
000H 200H  
400H 600H  
800H  
A00H C00H  
E00H FFFH  
Temperature (°C)  
Digital Input Code  
CURRENT vs CODE  
All DACs Set to Indicated Code  
FULL-SCALE ERROR vs TEMPERATURE  
(Code FFFH)  
VREFH  
2.0  
1.5  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
DAC C  
DAC B  
1.0  
0.5  
–0.2  
–0.4  
DAC A  
VREFL  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–0.5  
–1.0  
–1.5  
–2.0  
DAC D  
000H 200H  
400H 600H  
800H  
A00H C00H  
E00H FFFH  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Digital Input Code  
®
6
DAC7714  
TYPICAL PERFORMANCE CURVES: VSS = 0V (Cont.)  
At TA = +25°C, VCC = +15V, VSS = 0V, VREFH = +10V, VREFL = 0V, representative unit, unless otherwise specified.  
POSITIVE SUPPLY CURRENT  
POWER SUPPLY CURRENT vs TEMPERATURE  
vs DIGITAL INPUT CODE  
4.5  
3.5  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0
No Load, All 4 DACs Set to Indicated Code  
ICC  
2.5  
ICC  
1.5  
0.5  
–0.5  
000H 200H 400H 600H 800H A00H C00H E00H FFFH  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature (°C)  
Digital Input Code  
OUTPUT VOLTAGE vs SETTLING TIME  
(+10V to Code 020H)  
OUTPUT VOLTAGE vs SETTLING TIME  
(0V to +10V)  
Large Signal  
Settling Time: 5V/div  
Large Signal  
Settling Time: 5V/div  
Small Signal  
Small Signal  
Settling Time: 1LSB/div  
Settling Time: 1LSB/div  
+5V  
+5V  
LOADDACS  
0
LOADDACS  
0
Time (2µs/div)  
Time (2µs/div)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
MID-SCALE GLITCH PERFORMANCE  
MID-SCALE GLITCH PERFORMANCE  
7FFH to 800H  
800H to 7FFH  
+5V  
+5V  
LOADDACS  
0
LOADDACS  
0
Time (1µs/div)  
Time (1µs/div)  
®
7
DAC7714  
TYPICAL PERFORMANCE CURVES: VSS = 0V (Cont.)  
At TA = +25°C, VCC = +15V, VSS = 0V, VREFH = +10V, VREFL = 0V, representative unit, unless otherwise specified.  
OUTPUT NOISE vs FREQUENCY  
OUTPUT VOLTAGE vs RLOAD  
1000  
100  
10  
15  
12  
9
Code 020H  
Source  
6
Code FFFH  
3
Sink  
0
0
0.1  
1
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
100  
Frequency (kHz)  
R
LOAD (kW)  
SINGLE SUPPLY CURRENT LIMIT vs INPUT CODE  
Short to Ground  
POWER SUPPLY REJECTION RATIO vs FREQUENCY  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
20  
15  
10  
5
+15V  
0
–5  
–10  
–15  
–20  
Short to VCC  
101  
102  
103  
104  
105  
106  
000H 200H 400H 600H 800H A00H C00H E00H FFFH  
Frequency (Hz)  
Digital Input Code  
®
8
DAC7714  
TYPICAL PERFORMANCE CURVES: VSS = –15V  
At TA = +25°C, VCC = +15V, VSS = –15V, VREFH = +10V, VREFL = –10V, representative unit, unless otherwise specified.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
Single Channel 85°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
Single Channel 25°C  
(Typical of Each Output Channel)  
(Typical of Each Output Channel)  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
000H 200H  
400H 600H  
800H  
A00H C00H  
E00H FFFH  
000H 200H  
400H 600H  
800H  
A00H C00H  
E00H FFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
Single Channel –40°C  
CURRENT vs CODE  
All DACs Set to Indicated Code  
VREFH  
(Typical of Each Output Channel)  
0.5  
0.4  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
VREFL  
0.5  
0.4  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
000H 200H  
400H 600H  
800H  
A00H C00H E000H FFFH  
000H 200H  
400H 600H  
800H  
A00H C00H  
E00H FFFH  
Digital Input Code  
Digital Input Code  
BIPOLAR ZERO-SCALE ERROR vs TEMPERATURE  
(Code 800H)  
POSITIVE FULL-SCALE ERROR vs TEMPERATURE  
(Code FFFH)  
2.0  
1.5  
2.0  
1.5  
DAC C  
1.0  
1.0  
DAC C  
0.5  
0.5  
DAC B  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
DAC D  
DAC A  
DAC D  
DAC B  
DAC A  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
®
9
DAC7714  
TYPICAL PERFORMANCE CURVES: VSS = –15V (Cont.)  
At TA = +25°C, VCC = +15V, VSS = –15V, VREFH = +10V, VREFL = –10V, representative unit, unless otherwise specified.  
NEGATIVE FULL-SCALE ERROR vs TEMPERATURE  
POWER SUPPLY CURRENT vs TEMPERATURE  
(Code 000H)  
8
6
2.0  
1.5  
ICC  
DAC C  
4
1.0  
DAC A  
2
0.5  
0
0
–2  
–4  
–6  
–8  
–0.5  
–1.0  
–1.5  
–2.0  
DAC B  
DAC D  
ISS  
Data = FFFH (all DACs)  
No Load  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
OUTPUT VOLTAGE vs RLOAD  
SUPPLY CURRENT vs CODE  
8
6
15  
ICC  
10  
5
Source  
4
No Load, All 4 DACs Set to Indicated Code  
2
0
0
–2  
–4  
–6  
–8  
–5  
–10  
–15  
Sink  
ISS  
000H 200H 400H 600H 800H A00H C00H E00H FFFH  
0.01  
0.1  
1
10  
100  
R
LOAD (k)  
Digital Input Code  
OUTPUT VOLTAGE vs SETTLING TIME  
(+10V to –10V)  
OUTPUT VOLTAGE vs SETTLING TIME  
(–10V to +10V)  
Large Signal  
Settling Time: 5V/div  
Large Signal  
Settling Time: 5V/div  
Small Signal  
Settling Time: 0.5LSB/div  
Small Signal  
Settling Time: 0.5LSB/div  
+5V  
+5V  
LOADDACS  
0
LOADDACS  
0
Time (2µs/div)  
Time (2µs/div)  
®
10  
DAC7714  
TYPICAL PERFORMANCE CURVES: VSS = –15V (Cont.)  
At TA = +25°C, VCC = +15V, VSS = –15V, VREFH = +10V, VREFL = –10V, representative unit, unless otherwise specified.  
DUAL SUPPLY CURRENT LIMIT vs INPUT CODE  
POWER SUPPLY REJECTION RATIO vs FREQUENCY  
SHORT TO GROUND  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
20  
15  
10  
5
–15V  
0
+15V  
–5  
–10  
–15  
–20  
101  
102  
103  
104  
105  
106  
000H 200H 400H 600H 800H A00H C00H E00H FFFH  
Frequency (Hz)  
Digital Input Code  
OUTPUT VOLTAGE  
MID-SCALE GLITCH PERFORMANCE  
BROADBAND NOISE  
7FFH to 800H  
800H to 7FFH  
+5V  
LOADDACS  
0
Time (1ms/div)  
Time (1µs/div)  
OUTPUT NOISE vs FREQUENCY  
1000  
100  
Noise at any code  
10  
0
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
®
11  
DAC7714  
At the negative offset limit of –4LSB (–9.76mV), for the  
single-supply case, the first specified output starts at code  
004H.  
THEORY OF OPERATION  
The DAC7714 is a quad, serial input, 12-bit, voltage output  
DAC. The architecture is a classic R-2R ladder configura-  
tion followed by an operational amplifier that serves as a  
buffer. Each DAC has its own R-2R ladder network and  
output op amp, but all share the reference voltage inputs, as  
shown in Figure 1. The minimum voltage output (“zero-  
scale”) and maximum voltage output (“full-scale”) are set by  
external voltage references (VREFL and VREFH, respectively).  
The digital input is a 16-bit serial word that contains the  
12-bit DAC code and a 2-bit address code that selects one of  
the four DACs (the two remaining bits are unused). The  
converter can be powered from a single +15V supply or a  
dual ±15V supply. Each device offers a reset function which  
immediately sets all DAC output voltages and internal  
registers to either zero-scale (code 000H) or mid-scale (code  
800H). The reset code is selected by the state of the  
RESETSEL pin (LOW = 000H, HIGH = 800H). Figures 2  
and 3 show the basic operation of the DAC7714.  
REFERENCE INPUTS  
The reference inputs, VREFL and VREFH, can be any voltage  
between VSS + 4V and VCC – 4V provided that VREFH is at  
least 1.25V greater than VREFL. The minimum output of  
each D/A is equal to VREFL – 1LSB plus a small offset  
voltage (essentially, the offset of the output op amp). The  
maximum output is equal to VREFH plus a similar offset  
voltage. Note that VSS (the negative power supply) must  
either be connected to ground or must be in the range of  
–14.75V to –15.75V. The voltage on VSS sets several bias  
points within the converter. If VSS is not in one of these two  
configurations, the bias values may be in error and proper  
operation of the device is not guaranteed.  
The current into the reference inputs depends on the DAC  
output voltages and can vary from a few microamps to  
approximately 3mA. The reference input appears as a vary-  
ing load to the reference. If the reference can sink or source  
the required current, a reference buffer is not required. See  
“Reference Current vs Code” in the Typical Performance  
Curves.  
ANALOG OUTPUTS  
When VSS = –15V (dual supply operation), the output  
amplifier can swing to within 4V of the supply rails, over the  
–40°C to +85°C temperature range. With VSS = 0V (single-  
supply operation), the output can swing to ground. Note that  
the settling time of the output op amp will be longer with  
voltages very near ground. Care must also be taken when  
measuring the zero-scale error when VSS = 0V. If the output  
amplifier has a negative offset, the output voltage may not  
change for the first few digital input codes (000H, 001H,  
002H, etc.) since the output voltage cannot swing below  
ground.  
The analog supplies must come up before the reference  
power supplies, if they are separate. If the power supplies for  
the references come up first, then the VCC and VSS supplies  
will be powered from the reference via the ESD protection  
diodes (see page 4).  
RF  
VOUT  
R
R
R
R
R
R
R
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
VREFH  
VREFL  
FIGURE 1. DAC7714 Architecture.  
®
12  
DAC7714  
+15V  
+
DAC7714  
1µF to 10µF  
0.1µF  
0.1µF  
1
2
3
4
5
6
7
8
VCC  
RESETSEL 16  
Reset DACs(1)  
VOUTD  
VOUTC  
VREFL  
VREFH  
VOUTB  
VOUTA  
VSS  
RESET 15  
LOADDACS 14  
NIC 13  
0V to +10.0V  
0V to +10.0V  
Update Selected Register  
+10.000V  
Chip Select  
Clock  
CS 12  
CLK 11  
0V to +10.0V  
0V to +10.0V  
Serial Data In  
SDI 10  
GND  
9
NOTE: (1) As configured, RESET LOW sets all internal registers to code 000H (0V).  
If RESETSEL is HIGH, RESET LOW sets all internal registers to code 800H (5V).  
FIGURE 2. Basic Single-Supply Operation of the DAC7714.  
DAC7714  
+15V  
+
1µF to 10µF  
0.1µF  
+5V  
1
2
3
4
5
6
7
8
VCC  
RESETSEL 16  
Reset DACs(1)  
VOUTD  
VOUTC  
VREFL  
VREFH  
VOUTB  
VOUTA  
VSS  
RESET 15  
LOADDACS 14  
NIC 13  
–10V to +10V  
–10V to +10V  
Update Selected Register  
–10.0V  
0.1µF  
0.1µF  
Chip Select  
Clock  
CS 12  
+10.0V  
CLK 11  
Serial Data In  
SDI 10  
–10V to +10V  
–10V to +10V  
GND  
9
–15V  
1µF to 10µF  
0.1µF  
+
NOTE: (1) As configured, RESET LOW sets all internal registers to code 800H (0V).  
If RESETSEL is LOW, RESET LOW sets all internal registers to code 000H (–10V).  
FIGURE 3. Basic Dual-Supply Operation of the DAC7714.  
Note that CS and CLK are combined with an OR gate and  
the output controls the serial-to-parallel shift register inter-  
nal to the DAC7714 (see the block diagram on the front of  
this data sheet). These two inputs are completely inter-  
changeable. In addition, care must be taken with the state of  
CLK when CS rises at the end of a serial transfer. If CLK is  
LOW when CS rises, the OR gate will provide a rising edge  
to the shift register, shifting the internal data one additional  
bit. The result will be incorrect data and possible selection of  
the wrong DAC.  
DIGITAL INTERFACE  
Figure 4 and Table I provide the basic timing for the  
DAC7714. The interface consists of a serial clock (CLK),  
serial data (SDI), and a load DAC signal (LOADDACS). In  
addition, a chip select (CS) input is available to enable serial  
communication when there are multiple serial devices. An  
asynchronous reset input (RESET) is provided to simplify  
start-up conditions, periodic resets, or emergency resets to a  
known state.  
The DAC code and address are provided via a 16-bit serial  
interface (see Figure 4). The first two bits select the DAC  
register that will be updated when LOADDACS goes LOW  
(see Table II). The next two bits are not used. The last 12 bits  
is the DAC code which is provided, most significant bit first.  
If both CS and CLK are used, then CS should rise only when  
CLK is HIGH. If not, then either CS or CLK can be used to  
operate the shift register. See Table III for more information.  
®
13  
DAC7714  
(MSB)  
D11  
(LSB)  
D0  
SDI  
A1  
A0  
X
X
D10  
D9  
D3  
D2  
D1  
CLK  
CS  
tCSH  
t
css  
tLD2  
tLD1  
LOADDACS  
tLDDW  
tDS  
tDH  
SDI  
tCL  
tCH  
CLK  
tLDDW  
LOADDACS  
VOUT  
tS  
tS  
1 LSB  
ERROR BAND  
1 LSB  
ERROR BAND  
tRSTW  
RESET  
tRSSH  
RESETSEL  
FIGURE 4. DAC7714 Timing.  
SYMBOL  
DESCRIPTION  
MIN  
TYP MAX UNITS  
STATE OF  
SELECTED  
DAC  
SELECTED  
DAC  
REGISTER  
tDS  
Data Valid to CLK Rising  
25  
20  
30  
50  
55  
15  
40  
15  
45  
25  
70  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tDH  
Data Held Valid after CLK Rises  
CLK HIGH  
A1  
A0  
LOADDACS RESET  
REGISTER  
tCH  
L(1)  
L
L
H
L
L
L
H(2)  
H
A
B
Transparent  
Transparent  
Transparent  
Transparent  
(All Latched)  
Reset(4)  
tCL  
CLK LOW  
tCSS  
tCSH  
tLD1  
tLD2  
tLDDW  
tRSSH  
tRSTW  
tS  
CS LOW to CLK Rising  
CLK HIGH to CS Rising  
LOADDACS HIGH to CLK Rising  
CLK Rising to LOADDACS LOW  
LOADDACS LOW Time  
RESETSEL Valid to RESET LOW  
RESET LOW Time  
H
L
H
C
H
X(3)  
H
X
X
L
H
D
H
X
H
NONE  
ALL  
X
L
NOTES: (1) L = Logic LOW. (2) H = Logic HIGH. (3) X = Don’t Care.  
(4) Resets to either 000H or 800H, per the RESETSEL state  
(LOW = 000H, HIGH = 800H). When RESET rises, all registers that are in  
their latched state retain the reset value.  
Settling Time  
TABLE I. Timing Specifications (TA = –40°C to +85°C).  
TABLE II. Control Logic Truth Table.  
®
14  
DAC7714  
CS(1)  
CLK(1) LOADDACS RESET  
SERIAL SHIFT REGISTER  
LAYOUT  
H(2)  
L(4)  
L
X(3)  
L
H
H
H
H
No Change  
No Change  
A precision analog component requires careful layout, ad-  
equate bypassing, and clean, well-regulated power supplies.  
As the DAC7714 offers single-supply operation, it will often  
be used in close proximity with digital logic, microcontrollers,  
microprocessors, and digital signal processors. The more  
digital logic present in the design and the higher the switch-  
ing speed, the more difficult it will be to achieve good  
performance from the converter.  
(5)  
H
H
Advanced One Bit  
Advanced One Bit  
No Change  
L
X
X
H
H
H(6)  
H(6)  
L(7)  
H
H
L(8)  
No Change  
NOTES: (1) CS and CLK are interchangeable. (2) H = Logic HIGH. (3) X =  
Don’t Care. (4) L = Logic LOW (5) = Positive Logic Transition. (6) A HIGH  
value is suggested in order to avoid a “false clock” from advancing the shift  
register and changing the shift register. (7) If data is clocked into the serial  
register while LOADDACS is LOW, the selected DAC register will change as  
the shift register bits “flow” through A1 and A0. This will corrupt the data in  
each DAC register that has been erroneously selected. (8) RESET LOW  
causes no change in the contents of the serial shift register.  
Because the DAC7714 has a single ground pin, all return  
currents, including digital and analog return currents, must  
flow through the GND pin. Ideally, GND would be con-  
nected directly to an analog ground plane. This plane would  
be separate from the ground connection for the digital  
components until they were connected at the power entry  
point of the system.  
TABLE III. Serial Shift Register Truth Table.  
The power applied to VCC (as well as VSS, if not grounded)  
should be well regulated and low noise. Switching power  
supplies and DC/DC converters will often have high-fre-  
quency glitches or spikes riding on the output voltage. In  
addition, digital components can create similar high-fre-  
quency spikes as their internal logic switches states. This  
noise can easily couple into the DAC output voltage through  
various paths between the power connections and analog  
output.  
Digital Input Coding  
The DAC7714 input data is in Straight Binary format. The  
output voltage is given by the following equation:  
(VREFH – VREFL ) N  
VOUT = VREFL  
+
4096  
where N is the digital input code (in decimal). This equation  
does not include the effects of offset (zero-scale) or gain  
(full-scale) errors.  
®
15  
DAC7714  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Oct-2003  
PACKAGING INFORMATION  
ORDERABLE DEVICE  
STATUS(1)  
PACKAGE TYPE  
PACKAGE DRAWING  
PINS  
PACKAGE QTY  
DAC7714U  
DAC7714U/1K  
DAC7714UB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
48  
1000  
48  
DAC7714UB/1K  
1000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

DAC7714U/1KG4

SERIAL INPUT LOADING, 8us SETTLING TIME, 12-BIT DAC, PDSO16, GREEN, SOIC-16
TI

DAC7714UB

Quad, Serial Input, 12-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7714UB/1K

Quad, Serial Input, 12-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7714UB/1KG4

SERIAL INPUT LOADING, 8us SETTLING TIME, 12-BIT DAC, PDSO16, GREEN, SOIC-16
TI

DAC7714UBG4

四路串行输入 12 位电压输出数模转换器 | DW | 16 | -40 to 85
TI

DAC7714UG4

Quad, Serial Input, 12-Bit, Voltage Output Digital-To-Analog Converter 16-SOIC -40 to 85
TI

DAC7715

Quad, Serial Input, 12-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7715

Quad, Serial Input, 12-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7715U

Quad, Serial Input, 12-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7715U

Quad, Serial Input, 12-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7715U/1K

D/A Converter, 4 Func, Serial Input Loading, 8us Settling Time, PDSO16, SOIC-16
BB

DAC7715U/1K

Quad, Serial Input, 12-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI