DAC7734 [TI]

16 位四路电压输出串行输入数模转换器;
DAC7734
型号: DAC7734
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16 位四路电压输出串行输入数模转换器

转换器 数模转换器
文件: 总30页 (文件大小:1302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC7734  
D
A
C
7
7
3
4
www.ti.com  
SBAS138A DECEMBER 1999 REVISED OCTOBER 2008  
16-Bit, Quad Voltage Output, Serial Input  
DIGITAL-TO-ANALOG CONVERTER  
DESCRIPTION  
FEATURES  
The DAC7734 is a 16-bit, quad voltage output, digital-to-  
analog converter (DAC) with ensured 16-bit monotonic  
performance over the specified temperature range. It accepts  
24-bit serial input data, has double-buffered DAC input logic  
(allowing simultaneous update of all DACs), and provides a  
serial data output for daisy-chaining multiple DACs.  
Programmable asynchronous reset clears all registers to a  
mid-scale code of 8000h or to a zero-scale of 0000h. The  
DAC7734 can operate from a single +15V supply or from  
+15V and –15V, and +5V supplies.  
LOW POWER: 200mW  
UNIPOLAR OR BIPOLAR OPERATION  
SINGLE SUPPLY OUTPUT RANGE: +10V  
DUAL SUPPLY OUTPUT RANGE: ±10V  
SETTLING TIME: 10µs to 0.003%  
16-BIT MONOTONICITY: –40°C to +85°C  
PROGRAMMABLE RESET TO MID-SCALE  
OR ZERO-SCALE  
DOUBLE-BUFFERED DATA INPUTS  
±1 LSB DNL: –40°C to +85°C  
Low power and small size per DAC make the DAC7734  
ideal for automatic test equipment, DAC-per-pin  
programmers, data acquisition systems, and closed-loop  
servo-control. The DAC7734 is available in a 48-lead  
SSOP package and offers ensured specifications over the  
–40°C to +85°C temperature range.  
APPLICATIONS  
PROCESS CONTROL  
ATE PIN ELECTRONICS  
CLOSED-LOOP SERVO-CONTROL  
MOTOR CONTROL  
DATA ACQUISITION SYSTEMS  
DAC-PER-PIN PROGRAMMERS  
VREF  
L
VREF  
H
AB Sense  
AB Sense  
VREFL AB VREFH AB  
VDD  
VSS  
VCC  
DAC7734  
SDI  
Input  
Register A  
DAC  
Register A  
DAC A  
Shift  
VOUT  
A
A
Register  
SDO  
VOUT  
Sense  
Sense  
Sense  
Sense  
Input  
Register B  
DAC  
Register B  
DAC B  
DAC C  
DAC D  
VOUT  
B
B
VOUT  
Input  
Register C  
DAC  
Register C  
CS  
CLOCK  
RST  
VOUT  
C
C
Control  
Logic  
VOUT  
RESTSEL  
LDAC  
Input  
Register D  
DAC  
Register D  
VOUT  
D
D
LOAD  
VOUT  
VREFL CD VREFH CD  
VREF  
L
VREF  
H
AGND  
DGND  
CD Sense  
CD Sense  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 1999-2008, Texas Instruments Incorporated  
www.ti.com  
SPECIFICATIONS (Dual Supply)  
At TA = TMIN to TMAX, VCC = +15V, VDD = +5V, VSS = 15V, VREFH = +10V, and VREFL = 10V, unless otherwise noted.  
DAC7734E  
TYP  
DAC7734EB  
TYP  
DAC7734EC  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ACCURACY  
Linearity Error (INL)  
TMIN to TMAX  
T = 25°C  
±3  
±4  
±2  
±3  
LSB  
LSB  
Linearity Match  
±4  
±2  
LSB  
Differential Linearity Error (DNL)  
T = 25°C  
±3  
±3  
±2  
±2  
±1  
±1  
LSB  
LSB  
T
MIN to TMAX  
Monotonicity, TMIN to TMAX  
Bipolar Zero Error  
Bipolar Zero Error, TMIN to TMAX  
Full-Scale Error  
Full-Scale Error, TMIN to TMAX  
Bipolar Zero Matching  
14  
15  
16  
Bits  
T = 25°C  
T = 25°C  
±0.01  
±0.025  
±0.05  
±0.025  
±0.05  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
Channel-to-Channel  
Matching  
±0.024  
Full-Scale Matching  
Channel-to-Channel  
Matching  
±0.024  
% of FSR  
ppm/V  
Power Supply Rejection Ratio (PSRR)  
At Full Scale  
25  
ANALOG OUTPUT  
Voltage Output  
Output Current  
Maximum Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
VREF  
±5  
L
VREF  
H
V
mA  
pF  
500  
±20  
Indefinite  
mA  
To VSS, VCC or GND  
REFERENCE INPUT  
Ref High Input Voltage Range  
Ref Low Input Voltage Range  
Ref High Input Current  
VREFL + 1.25  
10  
0.3  
+10  
VREFH 1.25  
2.6  
V
V
mA  
mA  
Ref Low Input Current  
3.2  
0.3  
DYNAMIC PERFORMANCE  
Settling Time  
To ±0.003%, 20V  
Output Step  
9
11  
µs  
Channel-to-Channel Crosstalk  
Digital Feedthrough  
Output Noise Voltage  
See Figure 5  
0.5  
2
60  
LSB  
nV-s  
nV/Hz  
f = 10kHz  
DIGITAL INPUT  
VIH  
VIL  
IIH  
0.7 VDD  
VDD  
0.3 VDD  
±10  
V
V
µA  
µA  
0
IIL  
±10  
DIGITAL OUTPUT  
VOH  
VOL  
IOH = 0.8mA  
IOL = 1.6mA  
3.6  
4.5  
0.3  
V
V
0.4  
POWER SUPPLY  
VDD  
VCC  
VSS  
IDD  
ICC  
ISS  
+4.75  
+14.25  
14.25  
+5.0  
+15.0  
15.0  
50  
6
5  
+5.25  
+15.75  
15.75  
V
V
V
µA  
mA  
mA  
mW  
Power  
170  
200  
+85  
TEMPERATURE RANGE  
Specified Performance  
40  
°C  
Specifications same as grade to the left.  
DAC7734  
2
SBAS138A  
www.ti.com  
SPECIFICATIONS (Single Supply)  
At TA = TMIN to TMAX, VCC = +15V, VDD = +5V, VSS = GND, VREFH = +10V, and VREFL = +50mV, unless otherwise noted.  
DAC7734E  
TYP  
DAC7734EB  
TYP  
DAC7734EC  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ACCURACY  
Linearity Error(1) (INL)  
T = 25°C  
±3  
±4  
±2  
±3  
LSB  
LSB  
T
MIN to TMAX  
Linearity Match  
±4  
±2  
LSB  
Differential Linearity Error (DNL)  
T = 25°C  
±3  
±3  
±2  
±2  
±1  
±1  
LSB  
LSB  
T
MIN to TMAX  
Monotonicity, TMIN to TMAX  
Unipolar Zero  
Unipolar Zero Error, TMIN to TMAX  
Full-Scale Error  
Full-Scale Error, TMIN to TMAX  
Unipolar Zero Matching  
14  
15  
16  
Bits  
T = 25°C  
T = 25°C  
±0.01  
±0.025  
±0.05  
±0.025  
±0.05  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
Channel-to-Channel  
Matching  
±0.024  
Full-Scale Matching  
Channel-to-Channel  
Matching  
±0.024  
% of FSR  
ppm/V  
Power Supply Rejection Ratio (PSRR)  
At Full Scale  
25  
ANALOG OUTPUT  
Voltage Output  
VREFL = 0V, VSS = 0V  
0
VREF  
H
V
R = 10kΩ  
Output Current  
±5  
mA  
pF  
mA  
Maximum Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
500  
±20  
Indefinite  
To VCC or GND  
REFERENCE INPUT  
Ref High Input Voltage Range  
Ref Low Input Voltage Range  
Ref High Input Current  
VREFL + 1.25  
0
0.3  
1.5  
+10  
VREFH 1.25  
1.0  
V
V
mA  
mA  
Ref Low Input Current  
0.3  
DYNAMIC PERFORMANCE  
Settling Time  
To ±0.003%, 10V  
Output Step  
8
10  
µs  
Channel-to-Channel Crosstalk  
Digital Feedthrough  
Output Noise Voltage  
See Figure 6  
0.5  
2
60  
LSB  
nV-s  
nV/Hz  
f = 10kHz  
DIGITAL INPUT  
VIH  
VIL  
IIH  
0.7 VDD  
VDD  
0.3 VDD  
±10  
V
V
µA  
µA  
0
IIL  
±10  
DIGITAL OUTPUT  
VOH  
VOL  
IOH = 0.8mA  
IOL = 1.6mA  
3.6  
4.5  
0.3  
V
V
0.4  
POWER SUPPLY  
VDD  
VCC  
VSS  
IDD  
ICC  
Power  
+4.75  
+14.25  
+5.0  
+15.0  
0
50  
3.5  
50  
+5.25  
+15.75  
V
V
V
µA  
mA  
mW  
70  
TEMPERATURE RANGE  
Specified Performance  
40  
+85  
°C  
Specifications same as grade to the left.  
NOTE: (1) If VSS = 0V, the specification applies at code 0021H and above, due to possible negative zero scale error.  
DAC7734  
SBAS138A  
3
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas Instruments  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and  
installation procedures can cause damage.  
VCC to VSS ........................................................................... 0.3V to +32V  
V
V
CC to AGND ...................................................................... 0.3V to +16V  
SS to AGND ...................................................................... +0.3V to 16V  
AGND to DGND ................................................................. 0.3V to +0.3V  
V
V
V
V
REFH to AGND ..................................................................... 9V to +11V  
REFL to AGND ...................................................................... 11V to +9V  
DD to GND ........................................................................... 0.3V to +6V  
REFH to VREFL ........................................................................ 1V to 22V  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
Digital Input Voltage to GND ................................... 0.3V to VDD + 0.3V  
Digital Output Voltage to GND ................................. 0.3V to VDD + 0.3V  
Maximum Junction Temperature ................................................... +150°C  
Operating Temperature Range ........................................40°C to +85°C  
Storage Temperature Range .........................................65°C to +150°C  
Lead Temperature (soldering, 10s) ............................................... +300°C  
NOTE: (1) Stresses above those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may affect device reliability.  
PACKAGE/ORDERING INFORMATION(1)  
LINEARITY  
ERROR  
(LSB)  
DIFFERENTIAL  
NONLINEARITY  
(LSB)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE  
DAC7734E  
±4  
±3  
SSOP-48  
333  
40°C to +85°C  
DAC7734E  
Rails, 30  
"
"
"
"
"
"
DAC7734E/1K  
Tape and Reel, 1000  
DAC7734EB  
±4  
±2  
SSOP-48  
333  
40°C to +85°C  
DAC7734EB  
Rails, 30  
"
"
"
"
"
"
DAC7734EB/1K  
Tape and Reel, 1000  
DAC7734EC  
±3  
±1  
SSOP-48  
333  
40°C to +85°C  
DAC7734EC  
Rails, 30  
"
"
"
"
"
"
DAC7734EC/1K  
Tape and Reel, 1000  
NOTE: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.  
ESD PROTECTION CIRCUITS  
VCC  
VCC  
VOUT Sense  
RefH  
RefH Sense  
VOUT  
AGND  
RefL Sense  
RefL  
VSS  
VSS  
1 of 2  
1 of 4  
VDD  
VDD  
Typ of Each  
Logic Input Pin  
DGND  
DGND  
SDO  
DAC7734  
4
SBAS138A  
www.ti.com  
PIN CONFIGURATION  
PIN DESCRIPTIONS  
PIN  
NAME  
DESCRIPTION  
Top View  
SSOP  
1
2
3
4
5
6
7
NC  
NC  
No Connection  
No Connection  
Serial Data Input  
Digital Ground  
Data Clock Input  
Digital Ground  
NC  
NC  
1
2
3
4
5
6
7
8
9
48 VOUTA Sense  
47 VOUT  
SDI  
A
DGND  
CLK  
SDI  
46 AGND  
45 VSS  
DGND  
LDAC  
DGND  
CLK  
DAC Register Load Control, Rising Edge  
Triggered  
44 VREFL AB Sense  
43 VREFL AB  
8
DGND  
LOAD  
DGND  
CS  
Digital Ground  
DGND  
LDAC  
DGND  
LOAD  
9
DAC Input Register Load Control, Active Low  
Digital Ground  
10  
11  
12  
13  
14  
15  
42  
41 VREFH AB Sense  
40  
OUTB Sense  
39 VOUT  
38 VOUTC Sense  
VREFH AB  
Chip Select, Active Low  
Digital Ground  
DGND  
SDO  
Serial Data Output  
V
DGND  
RSTSEL  
Digital Ground  
DGND 10  
CS 11  
B
Reset Select. Determines the action of RST. If  
HIGH, a RST common will set the DAC registers  
to mid-scale (8000H). If LOW, a RST command  
will set the DAC registers to zero (0000H).  
DGND 12  
SDO 13  
DGND 14  
RSTSEL 15  
DGND 16  
RST 17  
37  
36  
V
V
OUTC  
DAC7734  
16  
17  
DGND  
RST  
Digital Ground  
REFH CD Sense  
Reset, Rising Edge Triggered. Depending on the  
state of RSTSEL, the DAC registers are set to  
either mid-scale or zero.  
35 VREFH CD  
34  
33  
V
V
REFL CD  
18  
19  
20  
21  
22  
23  
24  
DGND  
NC  
Digital Ground  
No Connection  
REFL CD Sense  
NC  
No Connection  
32 VOUTD Sense  
DGND  
DGND  
VDD  
Digital Ground  
Digital Ground  
DGND 18  
NC 19  
31 VOUT  
30 VSS  
29 VSS  
D
Digital +5V Power Supply  
Digital +5V Power Supply  
VDD  
NC 20  
25  
26  
27  
28  
29  
30  
31  
32  
VCC  
VCC  
Analog +15V Power Supply  
Analog +15V Power Supply  
Analog Ground  
DGND 21  
DGND 22  
VDD 23  
28 AGND  
27 AGND  
26 VCC  
AGND  
AGND  
VSS  
Analog Ground  
Analog 15V Power Supply or 0V Single Supply  
Analog 15V Power Supply or 0V Single Supply  
DAC D Output Voltage  
VSS  
VDD 24  
25 VCC  
VOUT  
D
V
OUTD Sense  
DAC Ds Output Amplifier Inverting Input. Used  
to close feedback loop at load.  
33  
34  
35  
36  
37  
38  
VREFL CD Sense DAC C and D Reference Low Sense Input  
VREFL CD  
REFH CD  
DAC C and D Reference Low Input  
DAC C and D Reference High Input  
V
V
REFH CD Sense DAC C and D Reference High Sense Input  
VOUT  
C
DAC C Output Voltage  
V
OUTC Sense  
DAC Cs Output Amplifier Inverting Input. Used  
to close the feedback loop at the load.  
39  
40  
V
OUTB  
DAC B Output Voltage  
VOUTB Sense  
DAC Bs Output Amplifier Inverting Input. Used  
to close the feedback loop at the load.  
41  
42  
43  
44  
45  
46  
47  
48  
V
REFH AB Sense DAC A and B Reference High Sense Input  
V
REFH AB  
DAC A and B Reference High Input  
DAC A and B Reference Low Input  
VOUTL AB  
V
REFL AB Sense DAC A and B Reference Low Sense Input  
VSS  
Analog 15V Power Supply or 0V Single Supply  
Analog Ground  
AGND  
VOUTA  
DAC A Output Voltage  
VOUTA Sense  
DAC As Output Amplifier Inverting Input. Used  
to close the feedback loop at the load.  
DAC7734  
SBAS138A  
5
www.ti.com  
TYPICAL PERFORMANCE CURVES: VSS = 0V  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = 0, VREFH = +10V, and VREFL = 0V, representative unit, unless otherwise specified.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
+25°C  
(DAC B, +25°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, +25°C)  
2.0  
2.0  
1.5  
1.0  
1.5  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +85°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, +85°C)  
+85°C  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
DAC7734  
6
SBAS138A  
www.ti.com  
TYPICAL PERFORMANCE CURVES: VSS = 0V (Cont.)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = 0, VREFH = +10V, and VREFL = 0V, representative unit, unless otherwise specified.  
+85°C (cont.)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, +85°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, +85°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, 40°C)  
40°C  
(DAC A, 40°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, 40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, 40°C)  
2.0  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
DAC7734  
SBAS138A  
7
www.ti.com  
TYPICAL PERFORMANCE CURVES: VSS = 0V (Cont.)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = 0, VREFH = +10V, and VREFL = 0V, representative unit, unless otherwise specified.  
POSITIVE FULL-SCALE ERROR  
vs TEMPERATURE  
ZERO-SCALE ERROR vs TEMPERATURE  
Code (0000H)  
2
1.5  
1
2
1.5  
1
Code (FFFFH)  
DAC B  
DAC D  
DAC A  
DAC D  
0.5  
0
0.5  
0
DAC C  
DAC B  
0.5  
1  
0.5  
1  
DAC C  
DAC A  
1.5  
2  
1.5  
2  
40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
REFERENCE CURRENT vs CODE  
All DACs Sent to Indicated Code  
(DAC A and B)  
REFERENCE CURRENT vs CODE  
All DACs Sent to Indicated Code  
(DAC C and D)  
VREFH  
VREFH  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.2  
0.4  
VREFL  
VREFL  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
POSITIVE SUPPLY CURRENT  
vs DIGITAL INPUT CODE  
POWER SUPPLY CURRENT vs TEMPERATURE  
4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Data = FFFFH (all DACs)  
No Load  
ICC  
No Load  
ICC  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
IDD  
IDD  
0.5  
0.5  
40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
0
2000H  
4000H  
6000H  
8000H  
A000H  
C000H  
E000H  
FFFFH  
Temperature (°C)  
Digital Input Code  
DAC7734  
8
SBAS138A  
www.ti.com  
TYPICAL PERFORMANCE CURVES: VSS = 0V (Cont.)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = 0, VREFH = +10V, and VREFL = 0V, representative unit, unless otherwise specified.  
OUTPUT VOLTAGE vs SETTLING TIME  
(0V to +10V)  
OUTPUT VOLTAGE vs SETTLING TIME  
(+10V to 0V)  
Large-Signal Settling Time: 5V/div  
Small-Signal Settling Time:  
3LSB/div  
Small-Signal Settling Time:  
3LSB/div  
Large-Signal Settling Time: 5V/div  
+5V  
LDAC  
0
+5V  
LDAC  
0
Time (2µs/div)  
Time (2µs/div)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
MIDSCALE GLITCH PERFORMANCE  
MIDSCALE GLITCH PERFORMANCE  
7FFFH to 8000H  
8000H to 7FFFH  
+5V  
LDAC  
0
+5V  
LDAC  
0
Time (1µs/div)  
Time (1µs/div)  
BROADBAND NOISE  
OUTPUT NOISE VOLTAGE vs FREQUENCY  
120  
100  
80  
60  
40  
20  
0
BW = 10kHz  
Code = 8000H  
100  
1k  
10k  
100k  
1M  
Time (100µs/div)  
Frequency (Hz)  
DAC7734  
SBAS138A  
9
www.ti.com  
TYPICAL PERFORMANCE CURVES: VSS = 0V (Cont.)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = 0, VREFH = +10V, and VREFL = 0V, representative unit, unless otherwise specified.  
POWER SUPPLY REJECTION RATIO vs FREQUENCY  
OUTPUT VOLTAGE vs RLOAD  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
16  
14  
12  
10  
8
Source  
+15V  
6
+5V  
4
2
Sink  
0
100  
1k  
10k  
100k  
1M  
0.01  
0.1  
1
10  
100  
Frequency (Hz)  
RLOAD (k)  
CLOCK FEEDTHROUGH  
SINGLE-SUPPLY CURRENT LIMIT vs INPUT CODE  
Short to Ground  
30  
25  
20  
15  
10  
5
0
5  
10  
15  
20  
25  
30  
Short to VCC  
+5V  
CLK  
0V  
0000H  
2000H  
4000H  
6000H  
8000H  
A000H  
C000H  
E000H  
FFFFH  
Time (50ns/div)  
Input Code  
DAC7734  
10  
SBAS138A  
www.ti.com  
TYPICAL PERFORMANCE CURVES: VSS = 15V  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = 15V, VREFH = +10V, and VREFL = 10V, representative unit, unless otherwise specified.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, +25°C)  
+25°C  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, +25°C)  
2.0  
2.0  
1.5  
1.0  
1.5  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
+85°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +85°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, +85°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
DAC7734  
SBAS138A  
11  
www.ti.com  
TYPICAL PERFORMANCE CURVES: VSS = 15V (Cont.)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = 15V, VREFH = +10V, and VREFL = 10V, representative unit, unless otherwise specified.  
+85°C (cont.)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, +85°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, +85°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, 40°C)  
40°C  
(DAC A, 40°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, 40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, 40°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
DAC7734  
12  
SBAS138A  
www.ti.com  
TYPICAL PERFORMANCE CURVES: VSS = 15V (Cont.)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = 15V, VREFH = +10V, and VREFL = 10V, representative unit, unless otherwise specified.  
REFERENCE CURRENT vs CODE  
All DACs Sent to Indicated Code  
(DAC A and B)  
REFERENCE CURRENT vs CODE  
All DACs Sent to Indicated Code  
(DAC C and D)  
VREFH  
VREFH  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.5  
0.5  
VREFL  
V
REFL  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
POSITIVE FULL-SCALE ERROR vs TEMPERATURE  
(Code FFFFH)  
BIPOLAR ZERO SCALE ERROR vs TEMPERATURE  
(Code 8000H)  
2
2
1.5  
1.0  
1.5  
1
DAC A  
DAC A  
DAC B  
0.5  
0.5  
0
0
0.5  
1.0  
1.5  
2.0  
0.5  
1  
DAC D  
DAC C  
DAC D  
DAC B  
DAC C  
1.5  
2  
40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
NEGATIVE FULL-SCALE ERROR vs TEMPERATURE  
(Code 0000H)  
POWER SUPPLY CURRENT vs TEMPERTURE  
2
1.5  
7
6
5
4
3
2
1
ICC  
1.0  
DAC A  
DAC B  
0.5  
0
0
1  
2  
3  
4  
5  
6  
7  
0.5  
1.0  
1.5  
2.0  
IDD  
DAC C  
ISS  
DAC D  
Data = FFFFH (all DACs)  
No Load  
40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
DAC7734  
SBAS138A  
13  
www.ti.com  
TYPICAL PERFORMANCE CURVES: VSS = 15V (Cont.)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = 15V, VREFH = +10V, and VREFL = 10V, representative unit, unless otherwise specified.  
SUPPLY CURRENT vs CODE  
OUTPUT VOLTAGE vs RLOAD  
7
6
5
4
3
15  
10  
5
ICC  
Source  
2
1
0
IDD  
0
1  
2  
3  
4  
5  
6  
7  
5  
10  
15  
ISS  
Sink  
0000H  
2000H  
4000H  
6000H  
8000H  
A000H  
C000H  
E000H  
FFFFH  
0.01  
0.1  
1
10  
100  
Digital Input Code  
RLOAD (k)  
OUTPUT VOLTAGE vs SETTLING TIME  
OUTPUT VOLTAGE vs SETTLING TIME  
(10V to +10V)  
(+10V to 10V)  
Large-Signal Settling Time: 5V/div  
Small-Signal Settling Time: 3LSB/div  
Large-Signal Settling Time: 5V/div  
Small-Signal Settling Time: 3LSB/div  
+5V  
LDAC  
0
+5V  
LDAC  
0
Time (2µs/div)  
Time (2µs/div)  
DUAL-SUPPLY CURRENT LIMIT vs INPUT CODE  
(Short-to-Ground)  
POWER SUPPLY REJECTION RATIO vs FREQUENCY  
20  
15  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
5
0
15V  
+15V  
5  
10  
15  
20  
+5V  
0000H  
2000H  
4000H  
6000H  
8000H  
A000H  
C000H  
E000H  
FFFFH  
100  
1k  
10k  
100k  
1M  
Digital Input Code  
Frequency (Hz)  
DAC7734  
14  
SBAS138A  
www.ti.com  
TYPICAL PERFORMANCE CURVES: VSS = 15V (Cont.)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = 15V, VREFH = +10V, and VREFL = 10V, representative unit, unless otherwise specified.  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
MID-SCALE GLITCH PERFORMANCE  
MID-SCALE GLITCH PERFORMANCE  
7FFFH to 8000H  
8000H to 7FFFH  
+5V  
LDAC  
0
+5V  
LDAC  
0
Time (1µs/div)  
Time (1µs/div)  
DAC7734  
SBAS138A  
15  
www.ti.com  
The digital input is a 24-bit serial word that contains a 2-bit  
address code for selecting one of four DACs, a quick load  
bit, five unused bits, and the 16-bit DAC code (MSB first).  
The converters can be powered from either a single +15V  
supply or a dual ±15V supply and a +5V logic supply. The  
device offers a reset function that immediately sets all DAC  
output voltages and DAC registers to mid-scale code 8000H  
or to zero-scale, code 0000H. See Figures 2 and 3 for the  
basic operation of the DAC7734.  
THEORY OF OPERATION  
The DAC7734 is a quad voltage output, 16-bit Digital-to-  
Analog Converter (DAC). The architecture is an R-2R  
ladder configuration with the three MSBs segmented, fol-  
lowed by an operational amplifier that serves as a buffer.  
Each DAC has its own R-2R ladder network, segmented  
MSBs, and output op amp, as shown in Figure 1. The  
minimum voltage output (zero-scale) and maximum voltage  
output (full-scale) are set by the external voltage references  
VREFL and VREFH.  
RF  
VOUT Sense  
VOUT  
R
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
VREF  
VREFH Sense  
VREF  
H
L
VREFL Sense  
FIGURE 1. DAC7734 Architecture.  
1
2
3
4
5
6
7
8
9
NC  
NC  
SDI  
VOUTA Sense 48  
0V to +10V  
V
OUTA 47  
AGND 46  
VSS 45  
Serial Data In  
Clock  
DGND  
CLK  
VREFL AB Sense 44  
DGND  
LDAC  
DGND  
LOAD  
V
REFL AB 43  
REFH AB 42  
REFH AB Sense 41  
OUTB Sense 40  
OUTB 39  
OUTC Sense 38  
OUTC 37  
REFH CD Sense 36  
+10.000V  
V
Load DAC Registers  
Load  
V
V
0V to +10V  
0V to +10V  
+10.000V  
10 DGND  
11 CS  
V
V
Chips Select  
Serial Data Out  
12 DGND  
13 SDO  
14 DGND  
15 RSTSEL  
16 DGND  
17 RST  
18 DGND  
19 NC  
DAC7734  
V
V
V
REFH CD 35  
REFL CD 34  
REFL CD Sense 33  
OUTD Sense 32  
V
V
Reset DAC Registers  
V
0V to +10V  
V
OUTD 31  
VSS 30  
VSS 29  
20 NC  
21 DGND  
22 DGND  
23 VDD  
AGND 28  
AGND 27  
VCC 26  
+5V  
+
1µF  
0.1µF  
0.1µF  
1µF  
+
24 VDD  
VCC 25  
+15V  
NC = No Connection  
FIGURE 2. Basic Single-Supply Operation of the DAC7734.  
DAC7734  
16  
SBAS138A  
www.ti.com  
1
2
3
4
5
6
7
8
9
NC  
VOUTA Sense 48  
OUTA 47  
10V to +10V  
NC  
V
SDI  
AGND 46  
VSS 45  
Serial Data In  
Clock  
15V  
DGND  
CLK  
VREFL AB Sense 44  
10.000V  
DGND  
LDAC  
DGND  
LOAD  
VREFL AB 43  
+10.000V  
VREFH AB 42  
VREFH AB Sense 41  
VOUTB Sense 40  
Load DAC Registers  
Load  
10V to +10V  
10V to +10V  
+10.000V  
10 DGND  
11 CS  
V
OUTB 39  
VOUTC Sense 38  
VOUT  
37  
Chips Select  
Serial Data Out  
12 DGND  
13 SDO  
14 DGND  
15 RSTSEL  
16 DGND  
17 RST  
18 DGND  
19 NC  
DAC7734  
C
V
REFH CD Sense 36  
VREFH CD 35  
+5V  
V
REFL CD 34  
REFL CD Sense 33  
OUTD Sense 32  
10.000V  
V
Reset DAC Registers  
V
10V to +10V  
V
OUTD 31  
VSS 30  
VSS 29  
15V  
20 NC  
0.1µF  
0.1µF  
1µF  
+
+
21 DGND  
22 DGND  
23 VDD  
AGND 28  
AGND 27  
VCC 26  
1µF  
0.1µF  
1µF  
+
+5V  
+15V  
24 VDD  
VCC 25  
NC = No Connection  
FIGURE 3. Basic Dual-Supply Operation of the DAC7734.  
The DAC7734 offers a force and sense output configuration  
for the high open-loop gain output amplifier. This feature  
allows the loop around the output amplifier to be closed at  
the load (as shown in Figure 4), thus ensuring an accurate  
output voltage.  
ANALOG OUTPUTS  
When VSS = –15V (dual-supply operation), the output am-  
plifier can swing to within 4V of the supply rails, ensured  
over the –40°C to +85°C temperature range. When  
VSS = 0V (single-supply operation), and with RLOAD also  
connected to ground, the output can swing to ground. Care  
must also be taken when measuring the zero-scale error  
when VSS = 0V. Since the output voltage cannot swing  
below ground, the output voltage may not change for the  
first few digital input codes (0000H, 0001H, 0002H, etc.) if  
the output amplifier has a negative offset. At the negative  
limit of –5mV, the first specified output starts at code 0021H.  
RW1  
VOUTA Sense 48  
RW2  
VOUT  
VOUT  
A
47  
AGND 46  
VSS 45  
DAC7734  
Due to the high accuracy of these DACs, system design  
problems such as grounding and contact resistance become  
very important. A 16-bit converter with a 10V full-scale  
range has a 1LSB value of 152µV. With a load current of  
1mA, series wiring and connector resistance of only 150mΩ  
(RW2) will cause a voltage drop of 150µV, as shown in  
Figure 4. To understand what this means in terms of a  
system layout, the resistivity of a typical 1-ounce copper-  
clad printed circuit board is 1/2 mper square. For a 1mA  
load, a 20 milli-inch wide printed circuit conductor 6 inches  
long will result in a voltage drop of 150µV.  
VREFL AB Sense 44  
+V  
VREFL AB 43  
+10V  
VREFH AB 42  
VREFH AB Sense 41  
RW1  
VOUTB Sense 40  
VOUT  
B
39  
RW2  
VOUT  
FIGURE 4. Analog Output Closed-Loop Configuration  
(1/2 DAC7734). RW represents wiring resis-  
tances.  
DAC7734  
SBAS138A  
17  
www.ti.com  
The current into the VREFH input and out of VREFL depends  
on the DAC output voltages, and can vary from a few  
microamps to approximately 2.0mA. The reference input  
appears as a varying load to the reference. The DAC7734  
features a reference drive and sense connection such that the  
internal errors caused by the changing reference current and  
the circuit impedances can be minimized. Figures 5 through  
9 show different reference configurations, and the effect on  
the linearity and differential linearity.  
REFERENCE INPUTS  
The reference inputs, VREFL and VREFH, can be any voltage  
between VSS + 4V and VCC – 4V, provided that VREFH is at  
least 1.25V greater than VREFL. The minimum output of  
each DAC is equal to VREFL plus a small offset voltage  
(essentially, the offset of the output op amp). The maximum  
output is equal to VREFH plus a similar offset voltage. Note  
that VSS (the negative power supply) must either be  
connected to ground or must be in the range of –14.25V to  
–15.75V. The voltage on VSS sets several bias points within  
the converter. If VSS is not in one of these two configura-  
tions, the bias values may be in error and proper operation  
of the device is not ensured.  
The analog supplies must come up first. If VCC and VSS do not  
come up together, then VSS should come up first. If the power  
supplies for the reference come up first, then the VCC and VSS  
supplies will be powered from the reference via the ESD  
protection diode; see the ESD protection circuits on page 4.  
+V  
VOUTA Sense 48  
OPA2234  
VOUT  
V
OUTA 47  
AGND 46  
45  
VREFL AB Sense 44  
REFL AB 43  
REFH AB 42  
REFH AB Sense 41  
OUTB Sense 40  
OUTB 39  
DAC7734  
2200pF  
10V  
100  
15V  
VSS  
V  
V
1000pF  
1000pF  
+V  
V
100Ω  
V
+10V  
2200pF  
V
V
VOUT  
V  
FIGURE 5. Dual-Supply Configuration-Buffered References, used for Dual-Supply Performance (1/2 DAC7734).  
+V  
VOUTA Sense 48  
VOUT  
VOUT  
A
47  
AGND 46  
VSS 45  
DAC7734  
500  
2200pF  
100Ω  
OPA350  
OPA227  
+0.050V  
50Ω  
VREFL AB Sense 44  
VREFL AB 43  
+V  
99.5kΩ  
1000pF  
1000pF  
VREFH AB 42  
+10V  
100Ω  
VREFH AB Sense 41  
VOUTB Sense 40  
2200pF  
VOUT  
B
39  
VOUT  
NOTE: VREFL has been chosen to be 50mV to allow for current sinking voltage drops across the 100resistor and the output stage of the buffer op amp.  
FIGURE 6. Single-Supply Buffered Reference with a Reference Low of 50mV used for Single-Supply Performance Curves  
(1/2 DAC7734).  
DAC7734  
18  
SBAS138A  
www.ti.com  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, 25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, 25°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, 25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, 25°C)  
2.0  
2.0  
1.5  
1.0  
1.5  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
FIGURE 7. Integral Linearity and Differential Linearity Error Curves for Figure 8.  
+V  
VOUTA Sense 48  
OPA2234  
VOUT  
VOUTA 47  
AGND 46  
VSS 45  
DAC7734  
2200pF  
5V  
100Ω  
VREFL AB Sense 44  
V  
V
REFL AB 43  
REFH AB 42  
REFH AB Sense 41  
OUTB Sense 40  
OUTB 39  
1000pF  
1000pF  
+V  
V
100Ω  
V
+5V  
2200pF  
V
V
VOUT  
V  
FIGURE 8. Dual-Supply Buffered Reference with VREFL = –5V and VREFH = +5V (1/2 DAC7734).  
DAC7734  
SBAS138A  
19  
www.ti.com  
VOUT  
VOUTA Sense 48  
VOUT  
47  
+V  
A
AGND 46  
VSS 45  
DAC7734  
VREFL AB Sense 44  
VREFL AB 43  
1k  
100Ω  
2200pF  
2200pF  
OPA350  
OPA227  
1000pF  
0.05V  
50Ω  
100Ω  
VREFH AB 42  
99kΩ  
VREFH AB Sense 41  
+V  
1000pF  
V
OUTB Sense 40  
VOUT  
39  
B
+5V  
VOUT  
NOTE: VREFL has been chosen to be 50mV to allow for current sinking voltage drops across the 100resistor and the output stage of the buffer op amp.  
FIGURE 9. Single-Supply Buffered Reference with a Reference Low of 50mV and Reference High of +5V.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, 25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, 25°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, 25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, 25°C)  
2.0  
2.0  
1.5  
1.0  
1.5  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
FIGURE 10. Integral Linearity and Differential Linearity Error Curves for Figure 9.  
DAC7734  
20  
SBAS138A  
www.ti.com  
DIGITAL INTERFACE  
device, all of the DAC outputs can be updated simulta-  
neously by the rising edge of LDAC. Additionally, it allows  
the DAC input registers to be written to at any point, then the  
DAC output voltages can be synchronously changed via a  
trigger signal (LDAC).  
Table I shows the basic control logic for the DAC7734. The  
interface consists of a Signal Data Clock (CLK) input, Serial  
Data (SDI), DAC Input Register Load Control Signal  
(LOAD), and DAC Register Load Control Signal (LDAC).  
In addition, a Chip Select (CS) input is available to enable  
serial communication when there are multiple serial devices.  
An asynchronous Reset (RST) input, by the rising edge, is  
provided to simplify start-up conditions, periodic resets, or  
emergency resets to a known state, depending on the status  
of the reset select (RSTSEL) signal.  
Note that CS and CLK are combined with an OR gate, which  
controls the serial-to-parallel shift register. These two inputs  
are completely interchangeable. In addition, care must be  
taken with the state of CLK when CS rises at the end of a  
serial transfer. If CLK is LOW when CS rises, the OR gate  
will provide a rising edge to the shift register, shifting the  
internal data one additional bit. The result will be incorrect  
data and possible selection of the wrong input register(s). If  
both CS and CLK are used, CS should rise only when CLK  
is HIGH. If not, then either CS or CLK can be used to  
operate the shift register. See Table II for more information.  
The DAC code, quick load control, and address are provided  
via a 24-bit serial interface (see Table I). The first two bits  
shifted into the shift register, B23 and B22, are the DAC  
register address. These bits select the input register that will  
be updated when LOAD goes LOW. The third bit, B21, is a  
“Quick Load” bit such that if HIGH, the code in the shift  
register is loaded into ALL DAC input registers when the  
LOAD signal goes LOW, independent of the state of the  
address bits, B23 and B22. If the “Quick Load” bit is LOW,  
the contents of the shift register is loaded only to the DAC  
register that is addressed. Bits B20 through B16 are not used  
and can assume any logical value. The last sixteen bits, B15  
through B0, make up the DAC code to be loaded into the  
selected input register.  
CS(1)  
CLK(1)  
LOAD  
RST  
SERIAL SHIFT REGISTER  
H(2)  
L(4)  
L
X(3)  
L
H
H
H
H
H
H
H
No Change  
No Change  
(5)  
H
Advanced One Bit  
Advanced One Bit  
No Change  
L
X
X
H
H(6)  
H(6)  
L(7)  
H
(8)  
No Change  
NOTES: (1) CS and CLK are interchangeable. (2) H = Logic HIGH.  
(3) X = Dont Care. (4) L = Logic LOW (5) = Positive Logic Transition.  
(6) A HIGH value is suggested in order to avoid a false clockfrom advancing  
the shift register and changing the shift register. (7) If data is clocked into the  
serial register while LOAD is LOW, the selected DAC register will change as  
the shift register bits flowthrough A1 and A0. This will corrupt the data in  
each DAC register that has been erroneously selected. (8) Rising edge of RST  
causes no change in the contents of the serial shift register.  
The internal DAC register is edge-triggered and not level-  
triggered. When the LDAC signal is transitioned from LOW  
to HIGH, the digital word currently in the DAC input  
register is latched. The first set of registers (the DAC input  
registers) are level triggered via the LOAD signal. This  
double-buffered architecture has been designed so that new  
data can be entered for each DAC without disturbing the  
analog outputs. When the new data has been entered into the  
TABLE II. Serial Shift Register Truth Table.  
SERIAL DATA INPUT  
B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9  
QUICK  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
A1  
A0  
X
X
X
X
X
D15 D14 D13 D12 D11 D10 D9  
LOAD  
INPUT  
DAC  
A1  
A0  
CS  
RST  
RSTSEL  
LDAC  
LOAD  
REGISTER  
REGISTER  
MODE  
DAC  
L
L
L
H
L
H
X
X
X
X
L
L
L
H
H
H
H
H
H
X
X
X
X
X
X
L
X
X
X
X
H
X
X
L
L
L
Write  
Write  
Write  
Write  
Hold  
Hold  
Hold  
Hold  
Hold  
Write  
Write Input  
Write Input  
Write Input  
Write Input  
Update  
A
B
C
H
H
X
X
X
X
L
L
D
H
H
X
X
H
H
X
X
All  
All  
All  
All  
Hold  
Hold  
Hold  
Reset to Zero  
Reset to Midscale  
Reset to Zero  
Reset to Midscale  
Reset to Zero  
Reset to Midscale  
H
TABLE I. DAC7734 Logic Truth Table.  
DAC7734  
SBAS138A  
21  
www.ti.com  
SERIAL-DATA OUTPUT  
DIGITALLY-PROGRAMMABLE  
CURRENT SOURCE  
The Serial-Data Output (SDO) is the internal shift register  
output. For DAC7734, the SDO is a driven output and does  
not require an external pull-up. Any number of DAC7734s  
can be daisy-chained by connecting the SDO pin of one  
device to the SDI pin of the following device in the chain,  
as shown in Figure 11.  
The DAC7734 offers a unique set of features that allows a  
wide range of flexibility in designing applications circuits  
such as programmable current sources. The DAC7734 offers  
both a differential reference input, as well as an open-loop  
configuration around the output amplifier. The open-loop  
configuration around the output amplifier allows a transistor  
to be placed within the loop to implement a digitally-  
programmable, unidirectional current source. The availabil-  
ity of a differential reference allows programmability for  
both the full-scale and zero-scale currents. The output cur-  
rent is calculated as:  
DIGITAL TIMING  
Figure 12 and Table III provide detailed timing for the  
digital interface of the DAC7734.  
DIGITAL INPUT CODING  
The DAC7734 input data is in Straight Binary format. The  
output voltage is given by Equation 1.  
VREFH – VREF  
RSENSE  
L
N
(2)  
IOUT  
=
65,536  
+ VREFL / RSENSE  
(
V
REFH – VREFL • N  
)
(
)
(1)  
VOUT = VREFL +  
65,536  
where N is the digital input code. This equation does not  
include the effects of offset (zero-scale) or gain (full-scale)  
errors.  
DAC7734  
DAC7734  
LDAC  
DAC7734  
LDAC  
SCK  
DIN  
LDAC  
CLK  
SDI  
LDAC  
CLK  
SDI  
CS  
CLK  
SDI  
CS  
SDO  
LOAD  
SDO  
LOAD  
SDO  
LOAD  
CS  
CS  
To  
Other  
Serial  
Devices  
LOAD  
FIGURE 11. Daisy-Chaining DAC7734.  
DAC7734  
22  
SBAS138A  
www.ti.com  
(LSB)  
D0  
(MSB)  
A1  
QUICK  
LOAD  
SDI  
A0  
XXXXX D15 D14 D13  
D3  
D2  
D1  
CLK  
CS  
tCSH  
t
css  
tLDDD  
tLD2  
tLD1  
LOAD  
tLDRW  
LDAC  
tDS  
tDH  
SDI  
tSDO  
tCL  
tCH  
CLK  
SDO  
tLDDL  
tLDDH  
LDAC  
VOUT  
tS  
tS  
±0.003%  
ERROR BAND  
±0.003%  
ERROR BAND  
tRSTL  
tRSTH  
RESET  
tRSSH  
tRSSS  
RESETSEL  
FIGURE 12. Digital Input and Output Timing.  
SYMBOL  
DESCRIPTION  
MIN  
MAX  
UNITS  
tDS  
tDH  
tCH  
Data Valid to CLK Rising  
Data Held Valid after CLK Rises  
CLK HIGH  
10  
20  
25  
25  
15  
0
10  
30  
30  
40  
40  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tCL  
CLK LOW  
tCSS  
tCSH  
tLD1  
CS LOW to CLK Rising  
CLK HIGH to CS Rising  
LOAD HIGH to CLK Rising  
CLK Rising to LOAD LOW  
LOAD LOW Time  
tLD2  
tLDRW  
tLDDL  
tLDDH  
tSDO  
tRSSS  
tRSSH  
tRSTL  
tRSTH  
tLDDD  
tS  
LDAC LOW Time  
LDAC HIGH Time  
SDO Propagation Delay  
RESETSEL Valid to RESET HIGH  
RESET HIGH to RESETSEL Not Valid  
RESET LOW Time  
RESET HIGH Time  
LOAD LOW to LDAC Rising Time  
Settling Time  
45  
100  
10  
10  
40  
11 (dual) /10(single)  
TABLE III. Timing Specifications (TA = –40°C to +85°C).  
DAC7734  
SBAS138A  
23  
www.ti.com  
Figure 13 shows a DAC7734 in a 4mA to 20mA current  
output configuration. The output current can be determined  
by Equation 3:  
At full-scale, the output current is 16mA, plus the 4mA, for  
the zero current. At zero scale, the output current is the offset  
current of 4mA (1V/250).  
(3)  
5V 1V  
N
1V  
IOUT  
=
+
250  
65,536  
250Ω  
IOUT  
VPROGRAMMED  
RSENSE  
250Ω  
+V  
VOUTA Sense 48  
OUTA 47  
OPA2350  
V
AGND 46  
VSS 45  
DAC7734  
20kΩ  
2200pF  
100Ω  
1.0V  
VREFL AB Sense 44  
VREFL AB 43  
+V  
80kΩ  
1000pF  
1000pF  
VREFH AB 42  
5V  
100Ω  
V
REFH AB Sense 41  
VOUTB Sense 40  
2200pF  
VOUT  
B
39  
IOUT  
VPROGRAMMED  
RSENSE  
250Ω  
FIGURE 13. 4-to-20mA Digitally Controlled Current Source (1/2 DAC7734).  
DAC7734  
24  
SBAS138A  
www.ti.com  
Revision History  
DATE  
REVISION PAGE  
SECTION  
DESCRIPTION  
1
Updated front page format to current standard; some page layout changed.  
Changed symbol from "tLDDWL" to "tLDDL" (typo).  
10/08  
A
23  
Table III  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DAC7734  
SBAS138A  
25  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC7734E  
DAC7734E/1K  
DAC7734EB  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SSOP  
DL  
DL  
DL  
48  
48  
48  
25  
RoHS & Green  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
DAC7734E  
Samples  
Samples  
Samples  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
DAC7734E  
25  
25  
RoHS & Green  
RoHS & Green  
DAC7734E  
B
DAC7734EC  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
DL  
DL  
48  
48  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
DAC7734E  
C
Samples  
Samples  
DAC7734EC/1K  
1000 RoHS & Green  
NIPDAU  
DAC7734E  
C
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Sep-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DAC7734E  
DAC7734EB  
DAC7734EC  
DL  
DL  
DL  
SSOP  
SSOP  
SSOP  
48  
48  
48  
25  
25  
25  
473.7  
473.7  
473.7  
14.24  
14.24  
14.24  
5110  
5110  
5110  
7.87  
7.87  
7.87  
Pack Materials-Page 1  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY