DAC7741YC/250 [TI]

具有内部 +10V 参考和并行 I/F 的 16 位单通道数模转换器 | PT | 48 | -40 to 85;
DAC7741YC/250
型号: DAC7741YC/250
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有内部 +10V 参考和并行 I/F 的 16 位单通道数模转换器 | PT | 48 | -40 to 85

转换器 数模转换器
文件: 总23页 (文件大小:767K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC7741  
D
A
C
7
7
4
1
SBAS248B – DECEMBER 2001 – REVISED AUGUST 2007  
16-Bit, Single Channel  
DIGITAL-TO-ANALOG CONVERTER  
With Internal Reference and Parallel Interface  
DESCRIPTION  
FEATURES  
LOW POWER: 150mW MAXIMUM  
The DAC7741 is a 16-bit Digital-to-Analog Converter (DAC)  
which provides 16 bits of monotonic performance over the  
specified operating temperature range and offers a +10V,  
low-drift internal reference. Designed for automatic test equip-  
ment and industrial process control applications, the DAC7741  
output swing can be configured in a ±10V, ±5V, or +10V  
range. The flexibility of the output configuration allows the  
DAC7741 to provide both unipolar and bipolar operation by  
pin strapping. The DAC7741 includes a high-speed output  
amplifier with a maximum settling time of 5µs to ±0.003%  
FSR for a 20V full-scale change and only consumes 100mW  
(typical) of power.  
+10V INTERNAL REFERENCE  
UNIPOLAR OR BIPOLAR OPERATION  
SETTLING TIME: 5µs to ±0.003% FSR  
16-BIT MONOTONICITY, –40°C TO +85°C  
±10V, ±5V OR +10V CONFIGURABLE VOLTAGE  
OUTPUT  
RESET TO MIN-SCALE OR MID-SCALE  
DOUBLE-BUFFERED DATA INPUT  
INPUT REGISTER DATA READBACK  
SMALL LQFP-48 PACKAGE  
The DAC7741 features a standard 16-bit parallel interface with  
double buffering to allow asynchronous updates of the analog  
output and data read-back to support data integrity verification  
prior to an update. A user-programmable reset control allows  
the DAC output to reset to min-scale (0000H) or mid-scale  
(8000H) overriding the DAC register values. The DAC7741 is  
available in a LQFP-48 package and four performance grades  
specified to operate from 0°C to +70°C and 40°C to +85°C.  
APPLICATIONS  
PROCESS CONTROL  
ATE PIN ELECTRONICS  
CLOSED-LOOP SERVO CONTROL  
MOTOR CONTROL  
DATA ACQUISITION SYSTEMS  
REFOUT REFIN  
VDD VSS VCC  
REFADJ  
VREF  
ROFFSET  
Buffer  
RFB2  
REFEN  
CS  
+10V  
Reference  
R/W  
Control  
Logic  
RFB1  
SJ  
RST  
RSTSEL  
Input  
Register  
DAC  
Register  
I/O  
Buffer  
Data I/O  
DAC  
16  
VOUT  
AGND  
DGND  
LDAC  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 2001-2007, Texas Instruments Incorporated  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
VCC to VSS ........................................................................... 0.3V to +34V  
V
V
CC to AGND ...................................................................... 0.3V to +17V  
SS to AGND ...................................................................... 17V to +0.3V  
This integrated circuit can be damaged by ESD. Texas Instru-  
ments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
AGND to DGND ................................................................. 0.3V to +0.3V  
REFIN to AGND ............................................................. 0V to VCC 1.4V  
V
DD to DGND ........................................................................ 0.3V to +6V  
Digital Input Voltage to DGND ................................. 0.3V to VDD + 0.3V  
Digital Output Voltage to DGND .............................. 0.3V to VDD + 0.3V  
Operating Temperature Range ........................................40°C to +85°C  
Storage Temperature Range .........................................65°C to +150°C  
Junction Temperature .................................................................... +150°C  
ESD damage can range from subtle performance degradation  
tocompletedevicefailure. Precisionintegratedcircuitsmaybe  
more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
NOTE: (1) Stresses above those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may affect device reliability.  
PACKAGE/ORDERING INFORMATION  
LINEARITY DIFFERENTIAL  
SPECIFIED  
ERROR  
(LSB)  
NONLINEARITY  
(LSB)  
PACKAGE  
PACKAGE-LEAD DESIGNATOR(1)  
TEMPERATURE  
RANGE  
ORDERING  
NUMBER  
PACKAGE  
MARKING  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
DAC7741Y  
±6  
"
±4  
"
LQFP-48  
PT  
"
40°C to +85°C  
DAC7741Y/250  
DAC7741Y/2K  
DAC7741Y  
Tape and Reel, 250  
Tape and Reel, 2000  
"
"
"
"
DAC7741YB  
±4  
"
±2  
"
LQFP-48  
PT  
"
40°C to +85°C  
DAC7741YB/250  
DAC7741YB/2K  
DAC7741YB  
Tape and Reel, 250  
Tape and Reel, 2000  
"
"
"
"
DAC7741YC  
±3  
"
±1  
"
LQFP-48  
PT  
"
40°C to +85°C  
DAC7741YC/250  
DAC7741YC/2K  
DAC7741YC  
Tape and Reel, 250  
Tape and Reel, 2000  
"
"
"
"
DAC7741YL  
±2  
"
±1  
"
LQFP-48  
PT  
"
0°C to +70°C  
DAC7741YL/250  
DAC7741YL/2K  
DAC7741YL  
Tape and Reel, 250  
Tape and Reel, 2000  
"
"
"
"
NOTE: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = TMIN to TMAX, VCC = +15V, VSS = 15V, VDD = +5V, internal reference enabled, unless otherwise noted.  
DAC7741Y  
TYP  
DAC7741YB  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
ACCURACY  
Linearity Error (INL)  
±6  
±5  
±4  
±4  
±3  
±2  
LSB  
LSB  
LSB  
TA = 25°C  
Differential Linearity Error (DNL)  
Monotonicity  
14  
15  
Bits  
Offset Error  
Offset Error Drift  
Gain Error  
±0.1  
% of FSR  
ppm/°C  
% of FSR  
% of FSR  
ppm/°C  
ppm/V  
±2  
With Internal REF  
With External REF  
With Internal REF  
At Full-Scale  
±0.4  
±0.25  
±0.25  
±0.1  
Gain Error Drift  
PSRR (VCC or VSS  
±15  
50  
±10  
)
200  
ANALOG OUTPUT(1)  
Voltage Output(2)  
+11.4/4.75(1)  
+11.4/11.4(1)  
+11.4/6.4(1)  
0 to 10  
±10  
±5  
V
V
V
Output Current  
Output Impedance  
Maximum Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
±5  
mA  
pF  
mA  
0.1  
200  
±15  
AGND  
Indefinite  
REFERENCE  
Reference Output  
9.96  
10  
400  
±15  
10.04  
9.975  
±10  
10.025  
V
REFOUT Impedance  
REFOUT Voltage Drift  
REFOUT Voltage Adjustment(3)  
REFIN Input Range(4)  
ppm/°C  
mV  
V
±25  
4.75  
VCC 1.4  
REFIN Input Current  
REFADJ Input Range  
10  
nA  
V
Absolute Max Value that  
can be applied is VCC  
0
10  
+2  
REFADJ Input Impedance  
50  
1
kΩ  
mA  
V
V
REF Output Current  
REF Impedance  
2  
DAC7741  
2
SBAS248B  
www.ti.com  
ELECTRICAL CHARACTERISTICS (Cont.)  
All specifications at TA = TMIN to TMAX, VCC = +15V, VSS = 15V, VDD = +5V, internal reference enabled, unless otherwise noted.  
DAC7741Y  
TYP  
DAC7741YB  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE  
Settling Time to ±0.003%  
20V Output Step  
3
5
µs  
RL = 5k, CL = 200pF,  
with external REFOUT  
to REFIN filter(5)  
Digital Feedthrough  
Output Noise Voltage  
2
100  
nV-s  
nV/Hz  
at 10kHz  
DIGITAL INPUT  
VIH  
VIL  
|IH| < 10µA  
|IL| < 10µA  
0.7 VDD  
V
V
0.3 VDD  
DIGITAL OUTPUT  
VOH  
VOL  
IOH = 0.8mA  
IOL = 1.6mA  
3.6  
V
V
0.4  
POWER SUPPLY  
VDD  
VCC  
VSS  
+4.75  
+11.4  
15.75  
15.75  
+5.0  
+5.25  
+15.75  
11.4  
4.75  
V
V
V
Bipolar Operation  
Unipolar Operation  
V
IDD  
ICC  
ISS  
Power  
100  
4
2.5  
85  
µA  
mA  
mA  
mW  
mW  
Unloaded  
Unloaded  
No Load, Ext. Reference  
No Load, Int. Reference  
6
4  
100  
150  
+85  
TEMPERATURE RANGE  
Specified Performance  
40  
°C  
Specifications same as grade to the left.  
NOTES: (1) With minimum VCC /VSS requirements, internal reference enabled.  
(2) Please refer to the Theory of Operationsection for more information with respect to output voltage configurations.  
(3) See Figure 7 for gain and offset adjustment connection diagrams when using the internal reference.  
(4) The minimum value for REFIN must be equal to the greater of VSS +14V and +4.75V, where +4.75V is the minimum voltage allowed.  
(5) Reference low-pass filter values: 100k, 1.0µF (See Figure 10).  
DAC7741  
SBAS248B  
3
www.ti.com  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = TMIN to TMAX, VCC = +15V, VSS = 15V, VDD = +5V, internal reference enabled, unless otherwise noted.  
DAC7741YL  
TYP  
DAC7741YC  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
ACCURACY  
Linearity Error (INL)  
±2  
±1  
±3  
±2  
±1  
LSB  
LSB  
LSB  
T
A = 25°C  
±1  
±2  
Differential Linearity Error (DNL)  
Monotonicity  
Offset Error  
Offset Error Drift  
Gain Error  
16  
16  
Bits  
±0.1  
% of FSR  
ppm/°C  
% of FSR  
% of FSR  
ppm/°C  
ppm/V  
With Internal REF  
With External REF  
With Internal REF  
At Full-Scale  
±0.4  
±0.25  
±0.2  
±0.1  
Gain Error Drift  
±15  
50  
±7  
PSRR (VCC or VSS  
)
200  
ANALOG OUTPUT(1)  
Voltage Output(2)  
+11.4/4.75(1)  
+11.4/11.4(1)  
+11.4/6.4(1)  
0 to 10  
±10  
±5  
V
V
V
Output Current  
Output Impedance  
Maximum Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
±5  
mA  
pF  
mA  
0.1  
200  
±15  
AGND  
Indefinite  
REFERENCE  
Reference Output  
9.96  
10  
400  
±15  
10.04  
9.975  
±7  
10.025  
V
REFOUT Impedance  
REFOUT Voltage Drift  
REFOUT Voltage Adjustment(3)  
REFIN Input Range(4)  
ppm/°C  
mV  
V
±25  
4.75  
VCC 1.4  
REFIN Input Current  
REFADJ Input Range  
10  
nA  
V
Absolute Max Value that  
can be applied is VCC  
0
10  
+2  
REFADJ Input Impedance  
50  
1
kΩ  
mA  
V
V
REF Output Current  
REF Impedance  
2  
DYNAMIC PERFORMANCE  
Settling Time to ±0.003%  
20V Output Step  
3
5
µs  
RL = 5k, CL = 200pF,  
with external REFOUT  
to REFIN filter(5)  
Digital Feedthrough  
Output Noise Voltage  
2
100  
nV-s  
nV/Hz  
at 10kHz  
DIGITAL INPUT  
VIH  
VIL  
|IH| < 10µA  
|IL| < 10µA  
0.7 VDD  
V
V
0.3 VDD  
DIGITAL OUTPUT  
VOH  
VOL  
IOH = 0.8mA  
IOL = 1.6mA  
3.6  
V
V
0.4  
POWER SUPPLY  
VDD  
VCC  
VSS  
+4.00  
+11.4  
15.75  
15.75  
+5.0  
+5.25  
+15.75  
11.4  
4.75  
+4.75  
V
V
V
Bipolar Operation  
Unipolar Operation  
V
IDD  
ICC  
ISS  
Power  
100  
4
2.5  
85  
µA  
mA  
mA  
mW  
mW  
Unloaded  
Unloaded  
No Load, Ext. Reference  
No Load, Int. Reference  
6
4  
100  
150  
70  
TEMPERATURE RANGE  
Specified Performance  
0
40  
+85  
°C  
Specifications same as grade to the left.  
NOTES: (1) With minimum VCC /VSS requirements, internal reference enabled.  
(2) Please refer to the Theory of Operationsection for more information with respect to output voltage configurations.  
(3) See Figure 7 for gain and offset adjustment connection diagrams when using the internal reference.  
(4) The minimum value for REFIN must be equal to the greater of VSS +14V and +4.75V, where +4.75V is the minimum voltage allowed.  
(5) Reference low-pass filter values: 100k, 1.0µF (See Figure 10).  
DAC7741  
4
SBAS248B  
www.ti.com  
PIN CONFIGURATION  
Top View  
LQFP  
48 47 46 45 44 43 42 41 40 39 38 37  
NC  
VSS  
1
2
3
4
5
6
7
8
9
36 NC  
35 DB15  
34 DB14  
33 DB13  
32 DB12  
31 DB11  
30 DB10  
29 DB9  
28 DB8  
27 DB7  
26 TEST  
25 NC  
VCC  
VREF  
ROFFSET  
AGND  
AGND  
RFB2  
RFB1  
DAC7741  
SJ 10  
VOUT 11  
NC 12  
13 14 15 16 17 18 19 20 21 22 23 24  
PIN DESCRIPTIONS  
PIN  
NAME  
DESCRIPTION  
PIN  
NAME  
DESCRIPTION  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
DB8  
DB9  
Data Bit 8  
1
2
3
4
NC  
VSS  
No Connection  
Data Bit 9  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
DB10  
DB11  
DB12  
DB13  
DB14  
DB15  
NC  
Data Bit 10  
VCC  
VREF  
Data Bit 11  
Buffered Output from REFIN, can be used to  
drive external devices. Internally, this pin  
directly drives the DAC circuitry.  
Data Bit 12  
Data Bit 13  
5
6
7
8
ROFFSET  
AGND  
AGND  
RFB2  
Offsetting Resistor  
Data Bit 14  
Analog ground (Must be tied to analog ground)  
Analog ground (Must be tied to analog ground)  
Data Bit 15 (MSB)  
No Connection  
Digital Ground  
Digital Power Supply  
Feedback Resistor 2, used to configure DAC  
output range.  
DGND  
VDD  
9
RFB1  
Feedback Resistor 1, used to configure DAC  
output range.  
RST  
VOUT reset; active LOW, depending on the state of  
RSTSEL, the DAC register is either reset to mid-  
scale or min-scale.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
SJ  
VOUT  
NC  
Summing Junction of the Output Amplifier  
DAC Voltage Output  
No Connection  
No Connection  
No Connection  
No Connection  
Data Bit 0 (LSB)  
Data Bit 1  
40  
LDAC  
DAC register load control, rising edge triggered.  
Data is loaded from the input register to the DAC  
register.  
NC  
41  
42  
CS  
Chip Select, active LOW  
NC  
R/W  
Enabled by CS, controls data read (HIGH) and  
write (LOW) from or to the input register.  
NC  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
NC  
43  
RSTSEL  
REFEN  
Reset Select; determines the action of RST. If  
HIGH, RST will reset the DAC register to mid-  
scale. If LOW, RST will reset the DAC register to  
min-scale.  
Data Bit 2  
Data Bit 3  
44  
Enables internal +10V reference (REFOUT), active  
LOW.  
Data Bit 4  
Data Bit 5  
45  
46  
REFOUT  
Internal Reference Output  
Data Bit 6  
REFADJ  
Internal Reference Trim. (Acts as a gain  
adjustment input when the internal reference is  
used.)  
No Connection  
No Connection  
No Connection  
Reserved, Connect to DGND  
Data Bit 7  
NC  
NC  
47  
48  
REFIN  
NC  
Reference Input  
No Connection  
TEST  
DB7  
DAC7741  
SBAS248B  
5
www.ti.com  
TIMING CHARACTERISTICS  
DAC7741Y  
TYP  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNITS  
tRCS  
tRDS  
tRDH  
tDZ  
CS LOW for Read  
100  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
R/W HIGH to CS LOW  
R/W HIGH after CS HIGH  
CS HIGH to Data Bus High Impedance  
CS LOW to Data Bus Valid  
CS LOW for Write  
10  
10  
70  
tCSD  
tWCS  
tWS  
tWH  
tLS  
85  
100  
30  
10  
10  
40  
0
R/W LOW to CS LOW  
R/W LOW after CS HIGH  
CS LOW to LDAC HIGH  
CS LOW after LDAC HIGH  
LDAC HIGH  
tLH  
tLX  
30  
0
tDS  
Data Valid to CS LOW  
Data Valid after CS HIGH  
LDAC LOW  
tDH  
20  
40  
0
tLWD  
tSS  
RSTSEL Valid Before RST LOW  
RSTSEL Valid After RST HIGH  
RST LOW  
tSH  
10  
30  
tRSS  
tS  
Voltage Output Settling Time  
5
TIMING DIAGRAMS  
tWCS  
CS  
tWS  
tWH  
R/W  
tRCS  
CS  
tRDS  
tDH  
tRDH  
Data In  
DB15-DB0  
Data Valid  
R/W  
tDS  
tLH  
tDZ  
tLS  
tLWD  
Data Valid  
Data Out  
DB15-DB0  
LDAC  
VOUT  
tCSD  
tLX  
tS  
READ CYCLE  
±0.003% of FSR  
Error Bands  
WRITE CYCLE  
RESET TIMING  
tSS  
RSTSEL  
tSH  
tRSS  
RST  
+FS  
tS  
(RSTSEL = LOW)  
VOUT  
Min-Scale  
Mid-Scale  
FS  
+FS  
(RSTSEL = HIGH)  
VOUT  
FS  
DAC7741  
6
SBAS248B  
www.ti.com  
TYPICAL CHARACTERISTICS  
TA = +25°C (unless otherwise noted)  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR vs DIGITAL INPUT CODE  
6
4
2
0
LINEARITY ERROR vs DIGITAL INPUT CODE  
6
4
2
0
2  
2  
4  
6  
4  
6  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.0  
0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR vs DIGITAL INPUT CODE  
6
4
2
0
OFFSET ERROR vs TEMPERATURE  
5
4
3
2  
4  
6  
2
VOUT = 10 to +10V  
1
0
VOUT = 0 to +10V  
2.0  
1.5  
1  
2  
3  
4  
5  
1.0  
0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
40  
15  
10  
35  
60  
85  
Temperature (°C)  
Digital Input Code  
VCC SUPPLY CURRENT vs DIGITAL INPUT CODE  
GAIN ERROR vs TEMPERATURE  
0.125  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
Bipolar Configuration: VOUT = 10V to +10V  
Internal Reference Enabled, TA = 25°C  
Int. Ref, Unipolar Mode: VOUT = 0 to +10V  
Int. Ref, Bipolar Mode:  
0.100  
0.075  
0.050  
0.025  
0.000  
0.025  
VOUT = 10 to +10V  
Ext. Ref, Unipolar Mode:  
OUT = 0 to +10V  
V
Ext. Ref, Bipolar Mode:  
VOUT = 10 to +10V  
40  
15  
10  
35  
60  
85  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Temperature (°C)  
Digital Input Code  
DAC7741  
SBAS248B  
7
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
TA = +25°C (unless otherwise noted)  
VCC SUPPLY CURRENT vs DIGITAL INPUT CODE  
VSS SUPPLY CURRENT vs DIGITAL INPUT CODE  
3.4  
1.50  
1.75  
2.00  
2.25  
2.50  
2.75  
Bipolar Configuration: VOUT = 10V to +10V  
External Reference, REFEN = 5V, TA = 25°C  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
Bipolar Configuration: VOUT = 10V to +10V  
A = 25°C  
T
2.7  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
SUPPLY CURRENT vs LOGIC INPUT VOLTAGE  
SUPPLY CURRENT vs TEMPERATURE  
6
1000  
TA = 25°C, Transition  
Shown for One Data  
Input (CS = 5V, R/W = 0)  
5
4
800  
600  
400  
200  
0
3
ICC  
2
Load Current Excluded, VCC = +15V, VSS = 15V  
1
0
Bipolar VOUT Configuration: 10V to +10V  
1  
2  
3  
4  
ISS  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
40  
15  
10  
35  
60  
85  
VLOGIC (V)  
Temperature (°C)  
HISTOGRAM OF VSS CURRENT CONSUMPTION  
HISTOGRAM OF VCC CURRENT CONSUMPTION  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Bipolar Output Configuration  
Internal Reference Enabled  
Code = 5555H  
Bipolar Output Configuration  
Internal Reference Enabled  
Code = 5555H  
3.50  
3.00  
2.50  
2.00  
1.50  
3.000  
3.500  
4.000  
4.500  
5.000  
ISS (mA)  
ICC (mA)  
DAC7741  
8
SBAS248B  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
TA = +25°C (unless otherwise noted)  
POWER SUPPY REJECTION RATIO vs FREQUENCY  
(Measured at VOUT  
POWER SUPPY REJECTION RATIO vs FREQUENCY  
)
(Measured at VOUT  
)
10  
0
10  
0
Bipolar Configuration: ±10V VOUT, Code FFFFH  
VSS, VCC = 15V + 1Vp-p, VDD = 5V + 0.5Vp-p  
Bipolar Configuration: ±10V VOUT  
Code 8000H  
10  
20  
30  
40  
50  
60  
70  
80  
VSS, VCC = 15V + 1Vp-p  
10  
20  
30  
40  
50  
60  
70  
80  
V
DD = 5V + 0.5Vp-p  
VSS  
VCC  
VSS  
VDD  
VCC  
VDD  
0.01K  
0.1K  
1K  
10K  
100K  
1M  
10M  
0.1K  
1K  
10K  
100K  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
INTERNAL REFERENCE OUTPUT vs TEMPERATURE  
INTERNAL REFERENCE START-UP  
10.015  
10.010  
10.005  
10.000  
9.995  
15V  
0V  
10V  
0V  
9.990  
9.985  
40  
15  
10  
35  
60  
85  
Time (2ms/div)  
Temperature (°C)  
REFOUT VOLTAGE vs LOAD  
OUTPUT VOLTAGE vs RLOAD  
Source  
11.0  
10.5  
10.0  
9.5  
12  
8
Loaded to VCC  
VCC = +15V  
4
0
4  
8  
12  
Sink  
9.0  
Loaded to AGND  
10  
8.5  
1
100  
1K  
0.0  
0.1  
1.0  
10.0  
100.0  
REFOUT LOAD(k)  
RLOAD (kΩ)  
DAC7741  
SBAS248B  
9
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
TA = +25°C (unless otherwise noted)  
POWER-SUPPY REJECTION RATIO vs FREQUENCY  
(Measured at REFOUT  
)
OUTPUT NOISE vs FREQUENCY  
10  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Internal Reference Enabled  
Unipolar Configuration, Internal Reference Enabled  
VSS, VCC = 15V + 1Vp-p,  
DD = 5V + 0.5Vp-p  
V
10  
20  
30  
40  
50  
60  
70  
80  
VCC  
Code FFFFH  
VDD  
VSS  
Code 0000H  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0.01K  
0.1K  
1K  
10K  
100K  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
OUTPUT NOISE vs FREQUENCY  
BROADBAND NOISE  
800  
700  
600  
500  
400  
300  
200  
100  
0
Bipolar Configuration: ±10V, Internal Reference Enabled  
Code 0000H  
Code FFFFH  
Internal Reference Enabled  
Code 8000H  
Filtered with 1.6Hz Low-Pass  
Code FFFFH, Bipolar ±10V Configuration  
10kHz Measurement BW  
0.01K  
0.1K  
1K  
10K  
100K  
1M  
10M  
Time (100µs/div)  
Frequency (Hz)  
UNIPOLAR FULL-SCALE SETTLING TIME  
BIPOLAR FULL-SCALE SETTLING TIME  
Large-Signal Output (5V/div)  
Large-Signal Output (5V/div)  
Small-Signal Error (300µV/div)  
Small-Signal Error (300µV/div)  
Unipolar Configuration: VOUT = 0V to +10V  
Zero-Scale to + Full-Scale Change  
5kΩ, 200pF Load  
Bipolar Configuration: VOUT = 10V to +10V  
Full-Scale to + Full-Scale Change  
5kΩ, 200pF Load  
Time (2µs/div)  
Time (2µs/div)  
DAC7741  
10  
SBAS248B  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
TA = +25°C (unless otherwise noted)  
UNIPOLAR FULL-SCALE SETTLING TIME  
BIPOLAR FULL-SCALE SETTLING TIME  
Small-Signal Error (300µV/div)  
Large-Signal Output (5V/div)  
Bipolar Configuration: VOUT = 10 to +10V  
+Full-Scale to Full-Scale  
5k, 200pF Load  
Time (2µs/div)  
Time (2µs/div)  
MID-SCALE GLITCH  
MID-SCALE GLITCH  
Time (1µs/div)  
Time (1µs/div)  
DIGITAL FEEDTHROUGH  
All Data Bits Toggling (5V/div)  
VOUT = 8000H (100mV/div)  
CS = 5V  
Time (200ns/div)  
DAC7741  
SBAS248B  
11  
www.ti.com  
The digital input is a parallel word made up of the 16-bit DAC  
code, which is then loaded into the DAC register using the  
LDAC input pin. The converter can be powered from ±12V  
to ±15V dual analog supplies and a +5V logic supply. The  
device offers a reset function, which immediately sets the  
DAC output voltage and DAC register to min-scale (code  
0000H) or mid-scale (code 8000H). The data I/O and reset  
functions are discussed in more detail in the following sec-  
tions.  
THEORY OF OPERATION  
The DAC7741 is a voltage output, 16-bit DAC with a +10V  
built-in internal reference. The architecture is an R-2R ladder  
configuration with the three MSBs segmented, followed by  
an operational amplifier that serves as a buffer. The output  
buffer is designed to allow user-configurable output adjust-  
ments, giving the DAC7741 output voltage ranges of 0V to  
+10V, 5V to +5V, or 10V to +10V. Please refer to  
Figures 2, 3, and 4 for pin configuration information.  
ROFFSET  
RFB2  
REFIN  
VREF  
REFADJ  
REFOUT  
R/4  
R/4  
Buffer  
RFB1  
+10V Internal  
Reference  
R/2  
R/2  
R/4  
SJ  
R
VOUT  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
VREF  
AGND  
FIGURE 1. DAC7741 Architecture.  
Data Bus  
VDD  
0.1µF  
1µF  
DGND  
VDD  
NC  
NC  
RST  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
NC  
LDAC  
CS  
Control Bus  
R/W  
Data Bus  
DAC7741  
RSTSEL  
REFEN  
REFOUT  
REFADJ  
REFIN  
NC  
NC  
NC  
VSS  
(0V to +10V)  
0.1µF  
1µF  
VCC  
0.1µF  
1µF  
FIGURE 2. Basic Operation: VOUT = 0 to +10V.  
12  
DAC7741  
SBAS248B  
www.ti.com  
Data Bus  
VDD  
0.1µF  
1µF  
DGND  
VDD  
NC  
NC  
RST  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
NC  
LDAC  
CS  
Control Bus  
R/W  
Data Bus  
DAC7741  
RSTSEL  
REFEN  
REFOUT  
REFADJ  
REFIN  
NC  
NC  
NC  
VSS  
(5V to +5V)  
0.1µF  
1µF  
VCC  
0.1µF  
1µF  
FIGURE 3. Basic Operation: VOUT = 5V to +5V.  
Data Bus  
VDD  
0.1µF  
1µF  
DGND  
VDD  
NC  
NC  
RST  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
NC  
LDAC  
CS  
Control Bus  
R/W  
Data Bus  
DAC7741  
RSTSEL  
REFEN  
REFOUT  
REFADJ  
REFIN  
NC  
NC  
NC  
VSS  
(10V to +10V)  
0.1µF  
1µF  
VCC  
0.1µF  
1µF  
FIGURE 4. Basic Operation: VOUT = 10V to +10V.  
DAC7741  
SBAS248B  
13  
www.ti.com  
the VREF pin. In this configuration, VREF is used to setup the  
DAC7741 output amplifier into one of three voltage output  
modes as discussed earlier. VREF can also be used to drive  
other system components requiring an external reference.  
ANALOG OUTPUTS  
The output amplifier can swing to within 1.4V of the supply  
rails, specified over the 40°C to +85°C temperature range.  
This allows for a ±10V DAC voltage output operation from  
±12V supplies with a typical 5% tolerance.  
The internal reference of the DAC7741 can be disabled when  
use of an external reference is desired. When using an  
external reference, the reference input, REFIN , can be any  
voltage between 4.75V (or VSS + 14V, whichever is greater)  
and VCC 1.4V.  
When the DAC7741 is configured for a unipolar, 0V to 10V  
output, a negative voltage supply is required. This is due to  
internal biasing of the output stage. Please refer to the  
Electrical Characteristicstable for more information.  
The minimum and maximum voltage output values are de-  
pendent upon the output configuration implemented and  
reference voltage applied to the DAC7741. Please note that  
VSS (the negative power supply) must be in the range of  
4.75V to 15.75V for unipolar operation. The voltage on VSS  
sets several bias points within the converter and is required  
in all modes of operation. If VSS is not in one of these two  
configurations, the bias values may be in error and proper  
operation of the device is not ensured.  
DIGITAL INTERFACE  
Table III shows the data format for the DAC7741 and  
Table II illustrates the basic control logic of the device. The  
interface consists of a chip select input (CS), read/write  
control input (R/W), data inputs (DB0-DB15) and a load DAC  
input (LDAC). An asynchronous reset input (RST) which is  
active low, is provided to simplify start-up conditions, periodic  
resets, or emergency resets to a known state, depending on  
the status of the reset select (RSTSEL) signal. The DAC  
code is provided via a 16-bit parallel interface, as shown in  
Table II. The input word makes up the DAC code to be  
loaded into the data input register of the device. The data is  
latched into the input register on rising CS and is loaded into  
the DAC register upon reception of a rising edge on the  
LDAC input. This action updates the analog output, VOUT, to  
the desired value. LDAC inputs of multiple DAC7741 devices  
can be connected when a synchronized update of numerous  
DAC outputs is desired. Please refer to the timing section for  
more detailed data I/O information.  
Supply sequence is important in establishing the correct  
startup of the DAC. The digital supply (VDD) needs to estab-  
lish correct bias conditions before the analog supplies (VCC  
SS) are brought up. If the digital supply cannot be brought  
up first, it must come up before either analog supply (VCC or  
SS), with the preferred sequence of: VSS (device substrate),  
VDD then VCC  
,
V
V
.
REFERENCE INPUTS  
The DAC7741 provides a built-in +10V voltage reference and  
on-chip buffer to allow external component reference drive. To  
use the internal reference, REFEN must be LOW, enabling the  
reference circuitry of the DAC7741 (see Table I) and the  
REFOUT pin must be connected to REFIN. This is the input to  
the on-chip reference buffer. The buffers output is provided at  
ANALOG OUTPUT  
DIGITAL INPUT  
Unipolar Configuration  
Bipolar Configuration  
Unipolar Straight Binary  
Bipolar Offset Binary  
0x0000  
0x0001  
:
Zero (0V)  
Full-Scale (VREF or VREF/2)  
Zero + 1LSB  
Full-Scale + 1LSB  
:
1/2 Full-Scale  
1/2 Full-Scale + 1LSB  
:
:
Bipolar Zero  
Bipolar Zero + 1LSB  
:
REFEN  
ACTION  
0x8000  
0x8001  
:
1
Internal Reference disabled;  
REFOUT = HIGH Impedance  
0
Internal Reference enabled;  
REFOUT = +10V  
0xFFFF  
Full-Scale (VREF 1LSB) +Full-Scale (+VREF 1LSB  
or +VREF/2 1LSB)  
TABLE I. REFEN Action.  
TABLE III. DAC7741 Data Format.  
CONTROL STATUS  
R/W CS RST RSTSEL LDAC  
COMMAND  
Input Register  
DAC Register  
Mode  
L
L
H
X
H, L, ↓  
Write  
Hold  
Write Data to Input Register  
X
H
H
X
Hold  
Write  
Update DAC register with data from input  
register.  
L
H
X
X
L
L
H
H
H
L
X
X
X
L
Transparent  
Read  
Write  
Hold  
Hold  
Write DAC register directly from data bus  
Read data in input register.  
No Change  
H, L, ↓  
H, L, ↓  
X
H
X
Hold  
Reset to Min-Scale Reset to Min-Scale Reset to Input and DAC Register (0000H)  
Min-Scale  
X
X
L
H
X
Reset to Mid-Scale Reset to Mid-Scale Reset to Input and DAC Register (8000H)  
Mid-Scale  
TABLE II. DAC7741 Logic Truth Table.  
14  
DAC7741  
SBAS248B  
www.ti.com  
DAC RESET  
(+VREF  
)
The RST and RSTSEL inputs control the reset of the analog  
output. The reset command is level triggered by a low signal on  
RST. Once RST is LOW, the DAC output will begin settling to  
the mid-scale or min-scale code depending on the state of the  
RSTSEL input. A HIGH value on RSTSEL will cause VOUT to  
reset to the mid-scale code (8000H) and a LOW value will reset  
VOUT to min-scale (0000H). A change in the state of the  
RSTSEL input while RST is LOW will cause a corresponding  
change in the reset command selected internally and conse-  
quently change the output value of VOUT of the DAC. Note that  
a valid reset signal also resets the input register of the DAC to  
the value specified by the state of RSTSEL.  
+ Full Scale  
Gain Adjust  
Rotates  
the Line  
1LSB  
Input =  
0000H  
Input =  
FFFFH  
Zero Scale  
(AGND)  
Digital Input  
Offset Adjust Translates the Line  
FIGURE 5. Relationship of Offset and Gain Adjustments for  
GAIN AND OFFSET CALIBRATION  
VOUT = 0V to +10V Output Configuration.  
The architecture of the DAC7741 is designed in such a way  
as to allow for easily configurable offset and gain calibration  
using a minimum of external components. The DAC7741  
has built-in feedback resistors and output amplifier summing  
points brought out of the package in order to make the  
absolute calibration possible. Figures 5 and 6 illustrate the  
relationship of offset and gain adjustments for the DAC7741  
in a unipolar configuration and in a bipolar configuration,  
(+VREF or +VREF/2)  
+ Full  
Scale  
1LSB  
Input =  
0000H  
Gain  
Adjust  
Rotates  
the Line  
respectively.  
Offset  
Adjust  
Translates  
the Line  
When calibrating the DAC output, offset should be adjusted  
first to avoid first order interaction of adjustments. In unipolar  
mode, the DAC7741 offset is adjusted from code 0000H and  
for either bipolar mode, offset adjustments are made at code  
8000H. Gain adjustment can then be made at code FFFFH for  
each configuration, where the output of the DAC should be  
at +10V for the 0V to +10V 1LSB or ±10V output range and  
+5V 1LSB for the ±5V output range. Figure 7 shows the  
generalized external offset and gain adjustment circuitry  
Input =  
FFFFH  
Input = 8000H  
Full-Scale  
(VREF OR VREF/2)  
Digital Input  
FIGURE 6. Relationship of Offset and Gain Adjustments  
for VOUT = 10V to +10V Output Configuration.  
(Same theory applies for VOUT = 5V to +5V).  
using potentiometers.  
15 REFOUT  
16 REFADJ  
Optional Gain  
17 REFIN  
Adjust  
18 NC  
RPOT1  
ISJ  
R1  
(Other Connections Omitted  
for Clarity)  
RS  
RPOT2  
+
VOADJ  
Optional Offset  
Adjust  
FIGURE 7. Generalized External Calibration Circuitry for Gain and Symmetrical Offset Adjustment.  
DAC7741  
SBAS248B  
15  
www.ti.com  
than 100k) as shown in Figure 7. Since the input imped-  
ance of REFADJ is typically 50k, the smaller the resistance  
of the potentiometer, the more linear the adjustment will be.  
A 10kpotentiometer is suggested if linearity of the refer-  
ence adjustment is of concern.  
OFFSET ADJUSTMENT  
Offset adjustment is accomplished by introducing a small  
current into the summing junction (SJ) of the DAC7741. The  
voltage at SJ, or VSJ, is dependent on the output configura-  
tion of the DAC7741. See Table IV for the required pin  
strapping for a given configuration and the nominal values of  
VSJ for each output range.  
OFFSET ADJUST RANGE  
50  
10V to +10V VOUT  
Configuration  
(1)  
typ  
REFERENCE  
OUTPUT  
PIN STRAPPING  
VSJ  
CONFIGURATION CONFIGURATION ROFFSET RFB1 RFB2  
min (75% of typ)  
25  
Internal  
Reference  
0V to +10V  
10V to +10V  
5V to +5V  
to VREF to VOUT to VOUT  
NC  
to AGND to VOUT to VOUT +1.666V  
+5V  
NC to VOUT +3.333V  
typ  
External  
Reference  
0V to VREF  
VREF to VREF  
to VREF to VOUT to VOUT VREF/2  
0
NC  
NC to VOUT VREF/3  
min (75% of typ)  
VREF/2 to VREF/2 to AGND to VOUT to VOUT VREF/6  
0V to 10V and 5V to +5V  
NOTE: (1) Voltage measured at VSJ for a given configuration.  
25  
50  
VOUT Configuration  
TABLE IV. Nominal VSJ vs. VOUT and Reference Configuration.  
The current level required to adjust the DAC7741 offset can  
be created by using a potentiometer divider as shown in  
Figure 7. Another alternative is to use a unipolar DAC in  
order to apply a voltage, VOADJ, to the resistor RS. A ±2uA  
current range applied to SJ will ensure offset adjustment  
coverage of the ±0.1% maximum offset specification of the  
DAC7741.  
2  
1  
0
1
2
ISJ (µA)  
FIGURE 8. Offset Adjustment Transfer Characteristic.  
When the DAC7741 internal reference is not used, gain  
adjustments can be made via trimming the external refer-  
ence applied to the DAC at REFIN. This can be accomplished  
through using a potentiometer, unipolar DAC, or other means  
of precision voltage adjustment to control the voltage pre-  
sented to the DAC7741 by the external reference. Figure 9  
and Table VI summarize the range of adjustment of the  
internal reference via REFADJ.  
When in a unipolar configuration (VSJ = 5V), only a single  
resistor, RS, is needed for symmetrical offset adjustment with  
a 0V to 10V VOADJ range. When in one of the two bipolar  
configurations, VSJ is either +3.333v (±10V range) or +1.666V  
(±5V range), and circuit values chosen to match those given  
in Table V will provide symmetrical offset adjust. Please refer  
to Figure 7 for component configuration.  
OUTPUT  
CONFIGURATION  
RPOT2  
R1  
RS  
ISJ  
RANGE  
NOMINAL  
OFFSET  
REFOUT ADJUST RANGE  
40  
ADJUSTMENT  
0V to +10V  
10V to +10V  
5V to +5V  
10K  
10K  
10K  
0
5K  
20K  
2.5M  
1.5M  
1M  
±2µA  
±2.2µA  
±1.7µA  
±25mV  
±55mV  
±21mV  
Typical REFOUT  
Adjustment Range  
30  
20  
10  
TABLE V. Recommended External Component Values for  
Symmetrical Offset Adjustment (VREF = 10V).  
Minimum REFOUT  
0
Adjustment Range  
Figure 8 illustrates the typical and minimum offset adjustment  
ranges provided by forcing a current at SJ for a given output  
voltage configuration.  
10  
20  
30  
40  
GAIN ADJUSTMENT  
0
2
4
6
8
10  
When using the internal reference of the DAC7741, gain  
adjustment is performed by adjusting the internal refer-  
ence voltage via the reference adjust pin, REFADJ. The  
effect of a reference voltage change on the gain of the  
DAC output can be seen in the generic equation (for  
unipolar configuration):  
REFADJ (V)  
FIGURE 9. Internal Reference Adjustment Transfer Charac-  
teristic.  
VOLTAGE AT REFADJ  
REFOUT VOLTAGE  
VOUT = VREFIN (N/65536)  
REFADJ = 0V  
REFADJ = 5V or NC(1)  
REFADJ = 10V  
10V + 25mV (min)  
10V  
10V 25mV (max)  
where N is represented in decimal format and ranges from 0  
to 65535.  
NOTE: "NC" is "Not Connected"  
REFADJ can be driven by a low impedance voltage source  
such as a unipolar, 0V to +10V DAC or a potentiometer (less  
TABLE VI. Minimum Internal Reference Adjustment Range.  
DAC7741  
16  
SBAS248B  
www.ti.com  
NOISE PERFORMANCE  
LAYOUT  
Increased noise performance of the DAC output can be  
achieved by filtering the voltage reference input to the  
DAC7741. Figure 10 shows a typical internal reference filter  
schematic. A low-pass filter applied between the REFOUT and  
REFIN pins can increase noise immunity at the DAC and  
output amplifier. The REFOUT pin can source a maximum of  
50µA so care should be taken in order to avoid overloading  
A precision analog component requires careful layout, adequate  
bypassing, and clean, well-regulated power supplies. The  
DAC7741 offers separate digital and analog supplies, as it will  
often be used in close proximity with digital logic, microcontrollers,  
microprocessors, and digital signal processors. The more digital  
logic present in the design and the higher the switching speed,  
the more important it will become to separate the analog and  
digital ground and supply planes at the device.  
the internal reference output.  
Since the DAC7741 has both analog and digital ground pins,  
return currents can be better controlled and have less effect  
on the DAC output error. Ideally, AGND would be connected  
directly to an analog ground plane and DGND to the digital  
ground plane. The analog ground plane would be separate  
from the ground connection for the digital components until  
they were connected at the power entry point of the system.  
43 RSTSEL  
44 REFEN  
The voltages applied to VCC and VSS should be well regulated  
and low noise. Switching power supplies and dc/dc convert-  
ers will often have high-frequency glitches or spikes riding on  
the output voltage. In addition, digital components can create  
similar high-frequency spikes as their internal logic switches  
states. This noise can easily couple into the DAC output  
voltage through various paths between the power connec-  
tions and analog output.  
100k  
45 REFOUT  
1µF  
46 REFADJ  
47 REFIN  
48 NC  
(Other Connections  
Omitted for Clarity)  
In addition, a 1µF to 10µF bypass capacitor in parallel with a  
0.1µF bypass capacitor is strongly recommended for each  
supply input. In some situations, additional bypassing may  
be required, such as a 100µF electrolytic capacitor or even  
a "Pi" filter made up of inductors and capacitorsall designed  
to essentially low-pass filter the analog supplies, removing  
any high frequency noise components.  
FIGURE 10. Internal Reference Filter.  
DAC7741  
SBAS248B  
17  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
250  
250  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC7741YB/250  
DAC7741YC/250  
DAC7741YL/250  
ACTIVE  
LQFP  
LQFP  
LQFP  
PT  
48  
48  
48  
RoHS & Green  
RoHS & Green  
RoHS & Green  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
0 to 70  
DAC7741Y  
Samples  
Samples  
Samples  
B
ACTIVE  
ACTIVE  
PT  
Call TI  
Call TI  
DAC7741Y  
C
PT  
DAC7741Y  
L
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
PT0048A  
LQFP - 1.6 mm max height  
S
C
A
L
E
2
.
0
0
0
LOW PROFILE QUAD FLATPACK  
9.2  
8.8  
7.2  
6.8  
B
A
9.2  
8.8  
7.2  
6.8  
0.27  
48X  
0.17  
0.08  
C A B  
44X 0.5  
4X 5.5  
SEE DETAIL A  
1.6 MAX  
C
SEATING PLANE  
0.1 C  
1.45  
1.35  
0.25  
GAGE PLANE  
0.75  
0.45  
0.5 MIN  
0 -7  
A15.000  
DETAIL A  
4215159/A 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MS-026.  
4. This may also be a thermally enhanced plastic package with leads conected to the die pads.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PT0048A  
LQFP - 1.6 mm max height  
LOW PROFILE QUAD FLATPACK  
PKG  
SYMM  
48  
37  
SEE SOLDER MASK  
DETAILS  
48X (1.6)  
1
36  
48X (0.3)  
44X (0.5)  
PKG SYMM  
(8.2)  
(R0.05) TYP  
12  
25  
13  
24  
(8.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE 10.000  
0.05 MAX  
ALLAROUND  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL EDGE  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215159/A 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PT0048A  
LQFP - 1.6 mm max height  
LOW PROFILE QUAD FLATPACK  
PKG  
SYMM  
48  
37  
48X (1.6)  
1
36  
48X (0.3)  
44X (0.5)  
PKG SYMM  
(8.2)  
(R0.05) TYP  
12  
25  
13  
24  
(8.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 10X  
4215159/A 12/2021  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY