DAC7750IPWP [TI]

适用于 4mA 至 20mA 电流环路应用的 12 位、单通道、可编程电流输出 DAC | PWP | 24 | -40 to 125;
DAC7750IPWP
型号: DAC7750IPWP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 4mA 至 20mA 电流环路应用的 12 位、单通道、可编程电流输出 DAC | PWP | 24 | -40 to 125

文件: 总58页 (文件大小:5382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
DACx750 适用4-20mA 电流环路应用的单通道、  
12 16 位可编程电流输出数模转换器  
1 特性  
3 说明  
• 电流输出选项  
DAC7750 DAC8750 (DACx750) 是完全集成的低成  
本、精密 12 位和 16 位数模转换器 (DAC)旨在满足  
工业过程控制应用的要求。这些器件经编程可提供范围  
介于 4-20mA0-20mA 0-24mA 电流输出。  
DACx750 包括可靠性功能例如 SPI 帧上的 CRC 错  
误校验、看门狗计时器、开路、合规电压和热警报。此  
可通过访问一个内部高精度电阻器来监控输出电  
流。  
0mA 24mA  
4mA 20mA  
0mA 20mA  
±0.1% FSR 典型总体未调误(TUE)  
DNL±1LSB 最大值  
• 最大环路合规性电压AVDD 2V  
• 内5V 基准10ppm/°C最大值)  
4.6V 内部电源输出  
CRC 帧错误校验  
• 看门狗计时器  
• 热警报  
• 开路警报  
• 用于监控输出电流的引脚  
• 片上故障警报  
• 针对偏移和增益的用户校准  
• 宽温度范围40°C 125°C  
• 封装6mm × 6mm 40 VQFN 24 引脚  
HTSSOP  
这些器件包括一个上电复位功能以确保器件在某个已  
知状态IOUT 被禁用并且处于高阻抗状态上电。如  
果输出被启用CLR 引脚将电流输出设定为低电平。  
对零和增益寄存器进行编程以便对终端系统内的器件  
进行数字校准。输出转换率也可通过寄存器进行编程。  
这些器件可以在电流输出上叠加外部 HART® 信号并  
10V 36V 电源供电。  
器件信息  
封装(1)  
HTSSOP (24)  
VQFN (40)  
封装尺寸标称值)  
7.80mm × 4.40mm  
6.00mm × 6.00mm  
器件型号  
DACx750  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
模拟输出模块  
CPUPLC 控制器)  
流量变送器  
• 其他传感器变送器  
传动器  
过程分析pH、气体、浓度、力和湿度)  
DVDD  
DVDD-EN  
REFOUT  
REFIN  
HART-IN  
AVDD  
DACx750  
Internal  
Reference  
LATCH  
SCLK  
DIN  
DAC Input  
Register  
R3-SENSE  
Current Output Stage  
Thermal  
Alarm  
SDO  
BOOST  
IOUT  
Pre-  
Conditioning  
DAC  
User Calibration  
Gain/Offset  
Register  
Current  
Source  
ALARM  
ISET-R  
IGAIN  
IENABLE  
CLR  
Slew Rate  
Control  
Watchdog  
Timer  
GND  
方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS538  
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................21  
8.4 Device Functional Modes..........................................28  
8.5 Programming............................................................ 32  
8.6 Register Maps...........................................................34  
9 Application and Implementation..................................37  
9.1 Application Information............................................. 37  
9.2 Typical Application.................................................... 39  
10 Power Supply Recommendations..............................42  
11 Layout...........................................................................42  
11.1 Layout Guidelines................................................... 42  
11.2 Layout Example...................................................... 43  
12 Device and Documentation Support..........................44  
12.1 Documentation Support.......................................... 44  
12.2 接收文档更新通知................................................... 44  
12.3 支持资源..................................................................44  
12.4 Trademarks.............................................................44  
12.5 Electrostatic Discharge Caution..............................44  
12.6 术语表..................................................................... 44  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................4  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics.............................................7  
7.6 Electrical Characteristics: AC....................................10  
7.7 Timing Requirements: Write Mode............................10  
7.8 Timing Requirements: Readback Mode....................10  
7.9 Timing Diagrams ...................................................... 11  
7.10 Typical Characteristics............................................12  
8 Detailed Description......................................................20  
8.1 Overview...................................................................20  
8.2 Functional Block Diagram.........................................20  
Information.................................................................... 44  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (January 2018) to Revision D (December 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changed Loop compliance voltage to Reference input voltage, and Reference input voltage to External  
reference current in Recommended Operating Conditions ............................................................................... 6  
Changed Digital input low voltage test condition upper limit from 2.6 V to 3.6 V in Recommended Operating  
Conditions ..........................................................................................................................................................6  
Deleted Timing Requirements: Daisy-Chain Mode section and Daisy-Chain Mode Timing figure................... 11  
Deleted Power-Supply Sequence section; content moved to Power Supply Recommendations section........ 22  
Deleted daisy-chain operation content from Watchdog Timer section..............................................................24  
Deleted The DACx750 Shares the SPI Bus With Other Devices subsection from Watchdog Timer section... 24  
Deleted daisy-chain operation from Frame Error Checking section................................................................. 24  
Added CRC fault reset command of 0x96 to Frame Error Checking section................................................... 24  
Deleted The DACx750 Shares the SPI Bus With Other Devices subsection................................................... 24  
Changed duplicated 010 step-size from 0.125 to 0.25 in Table 8-3, Slew Rate Step-Size Options ................ 26  
Added CRC fault reset command to Table 8-8, Write Address Functions .......................................................32  
Deleted Daisy-Chain Operation section............................................................................................................33  
Added Multiple Devices on the Bus section......................................................................................................33  
Changed Table 8-11 to delete daisy-chain operation and add CRC fault reset................................................34  
Changed DCEN to Reserved for DB3 in Control Register table.......................................................................34  
Deleted text stating CAP2 pin is only available for the 40-pin VQFN package.................................................37  
Added series resistance for supply and corrected HART-IN capacitance for Figure 9-3..................................39  
Added content from deleted Power-Supply Sequence section to Power Supply Recommendations section.. 42  
Added fast supply ramp and series resistance content to Power-Supply Recommendations .........................42  
Added power supply series resistance to Figure 11-1, Layout Example ......................................................... 43  
Changes from Revision B (June 2016) to Revision C (January 2018)  
Page  
Added last paragraph to User Calibration section............................................................................................ 25  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
Added last paragraph to Programmable Slew Rate section.............................................................................26  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DAC7750 DAC8750  
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
5 Device Comparison Table  
DIFFERENTIAL  
NONLINEARITY (LSB)  
PRODUCT  
RESOLUTION  
TUE (FSR)  
DAC8750  
DAC7750  
16  
12  
0.2%  
0.2%  
±1  
±1  
6 Pin Configuration and Functions  
NC  
ALARM  
GND  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
NC  
CAP2  
CAP1  
GND  
BOOST  
IOUT  
CLR  
ThermalPad  
LATCH  
SCLK  
DIN  
R3-SENSE  
HART-IN  
DVDD-EN  
NC  
SDO  
NC  
NC  
Not to scale  
6-1. RHA Package, 40-Pin VQFN, Top View  
GND  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
AVDD  
DVDD  
ALARM  
GND  
2
NC  
3
CAP2  
4
CAP1  
GND  
5
BOOST  
IOUT  
CLR  
6
ThermalPad  
LATCH  
SCLK  
DIN  
7
R3-SENSE  
HART-IN  
DVDD-EN  
REFIN  
8
9
SDO  
10  
11  
12  
GND  
REFOUT  
ISET-R  
GND  
Not to scale  
6-2. PWP Package, 24-Pin HTSSOP, Top View  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
RHA  
(VQFN)  
PWP  
(HTSSOP)  
NAME  
Alarm pin. Open drain output. External pullup resistor required (10 kΩ). The  
pin goes low (active) when the ALARM condition is detected (open circuit,  
over temperature, timeout, and so on).  
ALARM  
2
3
Digital output  
AVDD  
BOOST  
CAP1  
CAP2  
36  
27  
28  
29  
24  
20  
21  
22  
Supply input  
Analog output  
Analog input  
Analog input  
Positive analog power supply.  
Boost pin. External transistor connection (optional).  
Connection for output filtering capacitor (optional).  
Connection for output filtering capacitor (optional).  
Clear input. Logic high on this pin causes the part to enter CLEAR state.  
Active high.  
CLR  
DIN  
5
8
6
9
2
Digital input  
Digital input  
Serial data input. Data are clocked into the 24-bit input shift register on the  
rising edge of the serial clock input. Schmitt-Trigger logic input.  
Supply input  
or output  
DVDD  
39  
Digital power supply. Can be input or output, depending on DVDD-EN pin.  
Internal power-supply enable pin. Connect this pin to GND to disable the  
internal supply, or leave this pin unconnected to enable the internal supply.  
When this pin is connected to GND, an external supply must be connected  
to the DVDD pin.  
DVDD-EN  
GND  
23  
16  
Digital input  
12, 13, 14,  
15, 37  
1, 11, 12  
Supply input  
Ground reference point for all analog circuitry of the device.  
GND  
3, 4  
24  
4, 5  
17  
Supply input  
Analog input  
Analog output  
Ground reference point for all digital circuitry of the device.  
Input pin for HART modulation.  
HART-IN  
IOUT  
26  
19  
Current output pin  
Connection pin for external precision resistor (15 kΩ). See 8 of this data  
sheet.  
ISET-R  
LATCH  
16  
6
13  
7
Analog input  
Digital input  
Load DAC registers input. A rising edge on this pin loads the input shift  
register data into the DAC data and control registers and updates the DAC  
output.  
1, 10, 11,  
19, 20, 21,  
22, 30, 31,  
32, 33, 34,  
35, 38, 40  
NC  
23  
18  
No connection.  
This pin is used as a monitoring feature for the output current. The voltage  
measured between the R3-SENSE pin and the BOOST pin is directly  
proportional to the output current.  
R3-SENSE  
25  
Analog output  
Internal reference output. Connects to REFIN when using internal  
reference.  
REFOUT  
REFIN  
SCLK  
17  
18  
7
14  
15  
8
Analog output  
Analog input  
Digital input  
Digital output  
Reference input  
Serial clock input of the SPI. Data can be transferred at rates up to 30 MHz.  
Schmitt-Trigger logic input.  
SDO  
9
10  
Serial data output. Data are valid on the rising edge of SCLK.  
The thermal pad is internally connected to GND. For enhanced thermal  
performance, thermally connect the pad to a copper plane. The pad can be  
electrically connected to the same potential as the GND pin or left  
electrically unconnected provided a supply connection is made at the GND  
pin.  
Thermal Pad  
Supply input  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DAC7750 DAC8750  
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX  
UNIT  
V
AVDD to GND  
40  
DVDD to GND  
6
V
IOUT to GND  
AVDD  
V
REFIN to GND  
6
V
REFOUT to GND  
ALARM to GND  
6
V
6
DVDD + 0.3  
DVDD + 0.3  
10  
V
Digital input voltage to GND  
SDO to GND  
V
V
Current into REFOUT  
Operating temperature  
mA  
°C  
°C  
°C  
125  
40  
65  
TJ  
Junction temperature  
Storage temperature  
150  
Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human body model (HBM) ESD stress voltage(2)  
Charged device model (CDM) ESD stress voltage(3)  
VESD  
Electrostatic discharge(1)  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
in to the device.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
MIN  
10  
NOM  
MAX  
36  
UNIT  
V
AVDD  
DVDD  
Analog supply voltage  
Digital supply voltage  
2.7  
5.5  
V
Reference input voltage  
4.95  
5.05  
V
External reference current  
Loop compliance voltage (output = 24 mA)(1)  
Digital input high voltage  
30  
µA  
V
AVDD 2  
VIH  
VIL  
2
V
3.6 V < AVDD < 5.5 V  
2.7 V < AVDD < 3.6 V  
0.8  
0.6  
Digital Input low voltage  
V
Specified performance temperature  
125  
°C  
40  
(1) Loop compliance voltage is defined as the voltage at the IOUT pin  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
 
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.4 Thermal Information  
DAC7750, DAC8750  
THERMAL METRIC(1)  
RHA (VQFN)  
40 PINS  
32.9  
PWP (HTSSOP)  
UNIT  
24 PINS  
32.3  
14.1  
12.2  
0.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17.2  
7.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
7.5  
12  
ψJB  
RθJC(bot)  
1.4  
0.63  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
at AVDD = 10 V to 36 V, GND = 0 V, REFIN = 5 V external, DVDD = 2.7 V to 5.5 V, and all specifications are from 40°C to  
+125°C (unless otherwise noted); for IOUT, RL = 300 Ω; typical specifications are at 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT OUTPUT  
RANGE bits = 111  
RANGE bits = 110  
RANGE bits = 101  
DAC8750  
0
0
24  
20  
20  
Current output  
Resolution  
mA  
4
16  
12  
Bits  
DAC7750  
CURRENT OUTPUT ACCURACY (0 mA TO 20 mA AND 0 mA TO 24 mA)(1)  
0.2%  
0.16%  
0.08%  
±1  
TA = 40°C to +125°C  
0.2%  
0.16%  
0.08%  
Total unadjusted error, TUE  
FSR  
TA = 40°C to +85°C  
TA = 25°C  
±0.02%  
Differential nonlinearity, DNL  
Relative accuracy, INL(3)  
Monotonic  
LSB  
FSR  
±0.08%  
±0.024%  
0.17%  
0.1%  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
TA = 25°C  
0.17%  
0.1%  
Offset error  
FSR  
ppm FSR/°C  
FSR  
±0.01%  
±5  
0.07%  
0.07%  
Offset error temperature coefficient  
Full-scale error  
0.2%  
0.16%  
0.08%  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
TA = 25°C  
0.2%  
0.16%  
0.08%  
±0.015%  
±5  
Internal RSET  
Full-scale error temperature coefficient  
ppm FSR/°C  
External RSET  
±10  
0.2%  
0.15%  
0.08%  
0.17%  
0.12%  
0.05%  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
TA = 25°C  
0.2%  
0.15%  
0.08%  
0.17%  
0.12%  
0.05%  
Internal RSET  
External RSET  
±0.01%  
Gain error  
FSR  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
TA = 25°C  
±0.01%  
±3  
Internal RSET  
External RSET  
Gain error temperature coefficient  
Output current drift vs time  
ppm FSR/°C  
ppm FSR  
±8  
Internal RSET  
External RSET  
±50  
±25  
TA = 125°C, 1000 hrs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
at AVDD = 10 V to 36 V, GND = 0 V, REFIN = 5 V external, DVDD = 2.7 V to 5.5 V, and all specifications are from 40°C to  
+125°C (unless otherwise noted); for IOUT, RL = 300 Ω; typical specifications are at 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT OUTPUT ACCURACY (4 mA TO 20 mA)(1)  
0.25%  
0.08%  
0.29%  
0.25%  
0.1%  
TA = 40°C to +125°C  
0.25%  
0.08%  
0.29%  
0.25%  
0.1%  
Internal RSET  
TA = 25°C  
±0.02%  
Total unadjusted error, TUE  
External RSET  
FSR  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
TA = 25°C  
±0.02%  
Differential nonlinearity, DNL  
Relative accuracy, INL(3)  
Monotonic  
±1  
LSB  
FSR  
±0.08%  
±0.024%  
0.22%  
0.2%  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
0.22%  
0.2%  
Internal RSET  
External RSET  
Offset error  
0.2%  
FSR  
ppm FSR/°C  
FSR  
0.2%  
0.18%  
0.07%  
0.18%  
0.07%  
Internal and external RSET, TA = 25°C  
±0.01%  
±3  
Offset error temperature coefficient  
Full-scale error  
0.25%  
0.08%  
0.29%  
0.25%  
0.1%  
TA = 40°C to +125°C  
0.25%  
0 .08%  
0.29%  
0.25%  
0 .1%  
Internal RSET  
External RSET  
TA = 25°C  
±0.015%  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
TA = 25°C  
±0.015%  
±5  
Internal RSET  
External RSET  
Full-scale error temperature coefficient  
ppm FSR/°C  
±10  
0.2%  
0.15%  
0.08%  
0.16%  
0.12%  
0.05%  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
TA = 25°C  
0.2%  
0.15%  
0.08%  
0.16%  
0.12%  
0.05%  
Internal RSET  
External RSET  
±0.01%  
Gain error  
FSR  
TA = 40°C to +125°C  
TA = 40°C to +85°C  
TA = 25°C  
±0.01%  
±3  
Internal RSET  
External RSET  
Gain error temperature coefficient  
Output current drift vs time  
ppm FSR/°C  
ppm FSR  
±8  
Internal RSET  
External RSET  
±50  
±75  
TA = 125°C, 1000 hrs  
CURRENT OUTPUT STAGE(2)  
Loop compliance voltage(4)  
Inductive load(5)  
Output = 24 mA  
V
AVDD 2  
50  
50  
mH  
DC PSRR  
1
μA/V  
MΩ  
Output impedance  
Code = 0x8000  
R3 RESISTOR  
R3 resistor value  
36  
40  
40  
44  
Ω
R3 resistor temperature coefficient  
EXTERNAL REFERENCE INPUT  
Reference input voltage  
External reference current  
Reference input capacitance  
ppm/°C  
4.95  
5
30  
10  
5.05  
V
REFIN = 5.0 V  
μA  
pF  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
at AVDD = 10 V to 36 V, GND = 0 V, REFIN = 5 V external, DVDD = 2.7 V to 5.5 V, and all specifications are from 40°C to  
+125°C (unless otherwise noted); for IOUT, RL = 300 Ω; typical specifications are at 25°C  
PARAMETER  
INTERNAL REFERENCE OUTPUT  
Reference output  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
4.995  
5.005  
±10  
V
Reference temperature coefficient(2)  
Output noise (0.1 Hz to 10 Hz)  
Noise spectral density  
Capacitive load  
ppm/°C  
TA = 40°C to +85°C  
TA = 25°C  
14  
185  
600  
±5  
μVPP  
nV/Hz  
nF  
TA = 25°C, 10 kHz  
Load current  
mA  
Short-circuit current  
REFOUT shorted to GND  
25  
mA  
AVDD = 24 V, TA = 25°C, sourcing  
AVDD = 24 V, TA = 25°C, sinking  
55  
Load regulation  
μV/mA  
μV/V  
120  
±1.2  
Line regulation  
DVDD INTERNAL REGULATOR  
Output voltage  
AVDD = 24 V  
4.6  
V
mA  
Output load current(2)  
Load regulation  
10  
3.5  
1
mV/mA  
mV/V  
mA  
Line regulation  
Short-circuit current  
Capacitive load stability(2)  
DIGITAL INPUTS  
AVDD = 24 V, to GND  
35  
2.5  
μF  
High-level input voltage, VIH  
2
V
V
3.6 V < AVDD < 5.5 V  
2.7 V < AVDD < 3.6 V  
0.8  
0.6  
Low-level input voltage, VIL  
Hysteresis voltage  
Input current  
0.4  
10  
V
DVDD-EN, VIN 5 V  
All pins other than DVDD-EN  
Per pin  
2.7  
μA  
pF  
±1  
Pin capacitance  
DIGITAL OUTPUTS  
0.4  
Low-level output voltage, VOL, sinking 200 μA  
HIigh-level output voltage, VOH, sourcing 200 μA  
High-impedance leakage  
V
SDO  
DVDD 0.5  
±1  
μA  
10-kΩpullup resistor to  
0.4  
Low-level output voltage,  
DVDD  
V
VOL  
ALARM  
2.5 mA  
0.6  
±1  
High-impedance leakage  
μA  
High-impedance output capacitance  
10  
pF  
POWER SUPPLY  
AVDD  
10  
36  
5.5  
3
V
V
DVDD  
Internal regulator disabled  
2.7  
Outputs disabled, external DVDD  
Outputs disabled, internal DVDD  
Code = 0x0000, IOUT enabled  
VIH = DVDD, VIL = GND, interface idle  
AVDD = 36 V, IOUT = 0 mA, DVDD = 5 V  
AIDD  
4
mA  
3
DIDD  
1
mA  
Power dissipation  
TEMPERATURE  
Thermal alarm  
95  
115  
mW  
142  
18  
°C  
°C  
Thermal alarm hysteresis  
(1) DAC8750 and DAC7750 current output range is set by writing to RANGE bits in control register at address 0x55.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DAC7750 DAC8750  
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
(2) Specified by design and characterization; not production tested.  
(3) For 0-mA to 20-mA and 0-mA to 24-mA ranges, INL is calculated beginning from code 0x0100 for DAC8750 and from code 0x0010 for  
DAC7750.  
(4) Loop compliance voltage is defined as the voltage at the IOUT pin.  
(5) For stability, use slew rate limit feature or add a capacitor between IOUT and GND  
7.6 Electrical Characteristics: AC  
At AVDD = 10 V to 36 V, GND = 0 V, REFIN= 5 V external and DVDD = 2.7 V to 5.5 V. For IOUT, RL = 300 Ω. All  
specifications 40°C to 125°C (unless otherwise noted). Typical specifications are at 25°C.  
PARAMETER(1)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC PERFORMANCE  
16-mA step, to 0.1% FSR, no L (inductance)  
16-mA step, to 0.1% FSR, L < 1 mH  
10  
25  
μs  
μs  
Output current settling time  
AC PSRR  
200-mV, 50-Hz or 60-Hz sine wave superimposed  
on power-supply voltage  
dB  
75  
(1) Specified by characterization, not production tested.  
7.7 Timing Requirements: Write Mode  
at TA = 40°C to 125°C and DVDD = 2.7 V to 5.5 V (unless otherwise noted)(1)  
MIN  
33  
13  
13  
13  
40  
5
MAX  
UNIT  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
SCLK cycle time  
SCLK low time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
SCLK high time  
LATCH delay time  
LATCH high time(2)  
Data setup time  
Data hold time  
7
LATCH low time  
CLR pulse duration  
CLR activation time  
40  
20  
5
(1) Specified by design, not production tested.  
(2) Based on digital interface circuitry only. When writing to DAC control and configuration registers, consider the analog output  
specifications in 7.6.  
7.8 Timing Requirements: Readback Mode  
at TA = 40°C to 125°C and DVDD = 2.7 V to 5.5 V (unless otherwise noted)(1)  
MIN  
60  
25  
25  
13  
40  
5
MAX  
UNIT  
ns  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
SCLK cycle time  
SCLK low time  
ns  
SCLK high time  
ns  
LATCH delay time  
ns  
LATCH high time  
ns  
Data setup time  
ns  
Data hold time  
7
ns  
LATCH low time  
40  
ns  
Serial output delay time (CL, SDO = 15 pF)  
LATCH rising edge to SDO 3-state (CL, SDO = 15 pF)  
35  
35  
ns  
ns  
(1) Specified by design, not production tested.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
 
 
 
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.9 Timing Diagrams  
t1  
1
2
24  
SCLK  
t3  
t4  
t2  
t5  
LATCH  
t8  
t7  
t6  
DB23  
DIN  
DB0  
t9  
CLR  
t10  
IOUT  
7-1. Write Mode Timing  
t11  
t13  
SCLK  
LATCH  
DIN  
1
2
24  
t14  
1
2
8
9
22  
23  
24  
t12  
t15  
t18  
t17  
t16  
DB23  
NOP condition  
DB0  
DB23  
X
DB0  
t19  
DB0  
t20  
Input word specifies  
register to be read  
SDO  
X
X
X
DB16  
Undefined data  
First eight bits are  
don’t care bits  
Selected register  
data clocked out  
7-2. Readback Mode Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.10 Typical Characteristics  
at TA = 25°C (unless otherwise noted)  
5.005  
5.004  
5.003  
5.002  
5.001  
5.000  
4.999  
4.998  
4.997  
4.996  
4.995  
25  
20  
15  
10  
5
0
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (oC)  
C003  
Temperature Drift (ppm/oC)  
30 units shown  
AVDD = 24 V  
C002  
7-4. Internal Reference Temperature Drift Histogram  
7-3. REFOUT vs Temperature  
5.004  
5.003  
5.002  
5.001  
5.000  
4.999  
4.998  
4.997  
4.996  
5.0050  
5.0025  
5.0000  
4.9975  
4.9950  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
10  
14  
18  
22  
26  
30  
34  
38  
Load Current (mA)  
AVDD (V)  
C001  
C002  
AVDD = 24 V  
7-5. REFOUT vs Load Current  
TA = 25°C  
7-6. REFOUT vs AVDD  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Time (2 s/div)  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C006  
C001  
AVDD = 24 V  
7-7. REFOUT Noise PSD vs Frequency  
AVDD = 24 V  
7-8. Internal Reference, Peak-to-Peak Noise (0.1 Hz to 10 Hz)  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
AVDD (4 V/div)  
REFOUT (2 V/div)  
Time (200 µs/div)  
10  
13  
16  
19  
22  
25  
28  
31  
34  
37  
AVDD (V)  
C002  
C004  
AVDD = 10 V  
External DVDD  
IOUT = 0 mA  
7-9. REFOUT Transient vs Time  
7-10. AIDD vs AVDD  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
8
7
6
5
4
3
2
1
0
-1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
5
External DVDD (V)  
Load Current (mA)  
C001  
C002  
TA = 25°C  
External DVDD  
TA = 25°C  
Internal DVDD  
7-11. DIDD vs External DVDD  
7-12. Internal DVDD vs Load Current  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
0 mA to 24 mA Internal RSET  
0 mA to 24 mA Internal RSET, BOOST  
0 mA to 24 mA External RSET  
0 mA to 24 mA External RSET, BOOST  
10  
100  
1k  
10k  
100k  
1M  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Frequency (Hz)  
C001  
C009  
AVDD = 18 V  
CLOAD = 100 nF  
AVDD = 24 V  
7-14. IOUT TUE vs Code (0 mA to 24 mA)  
RLOAD = 300 Ω  
7-13. Internal DVDD PSRR vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DAC7750 DAC8750  
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
0.05  
0.05  
0.00  
0.00  
-0.05  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.10  
0 mA to 20 mA Internal RSET  
0 mA to 20 mA Internal RSET, BOOST  
-0.15  
0 mA to 20 mA External RSET  
4 mA to 20 mA Internal RSET  
0 mA to 20 mA External RSET, BOOST  
-0.20  
4 mA to 20 mA Internal RSET, BOOST  
4 mA to 20 mA External RSET  
4 mA to 20 mA External RSET, BOOST  
-0.25  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
C006  
C003  
AVDD = 24 V  
7-15. IOUT TUE vs Code (0 mA to 20 mA)  
AVDD = 24 V  
7-16. IOUT TUE vs Code (4 mA to 20 mA)  
RLOAD = 300 Ω  
RLOAD = 300 Ω  
0.08  
0.12  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0 mA to 20 mA  
0 mA to 24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
0 mA to 24 mA  
4 mA to 20 mA  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (oC)  
Temperature (oC)  
C008  
C009  
AVDD = 10 V  
AVDD = 10 V  
RLOAD = 300 Ω  
RLOAD = 300 Ω  
7-17. IOUT TUE vs Temperature (Internal RSET  
)
7-18. IOUT TUE vs Temperature (External RSET)  
0.05  
0.05  
Max Total Unadjusted Error  
0.04  
Max Total Unadjusted Error  
0.04  
0.03  
0.02  
0.03  
0.02  
0.01  
0.01  
Min Total Unadjusted Error  
0.00  
Min Total Unadjusted Error  
-0.01  
0
10  
14  
18  
22  
26  
30  
34  
38  
10  
14  
18  
22  
26  
30  
34  
38  
AVDD (V)  
AVDD (V)  
C006  
C005  
0-mA to 24-mA range  
0-mA to 24-mA range  
7-20. IOUT TUE vs Supply (External RSET  
RLOAD = 300 Ω  
RLOAD = 300 Ω  
7-19. IOUT TUE vs Supply (Internal RSET  
)
)
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
0.016  
0.016  
0.012  
0.008  
0.004  
0.000  
-0.004  
-0.008  
-0.012  
-0.016  
0 mA to 20 mA Internal RSET  
0 mA to 24 mA Internal RSET  
0 mA to 20 mA Internal RSET, BOOST  
0 mA to 20 mA External RSET  
0.012  
0.008  
0.004  
0.000  
-0.004  
-0.008  
-0.012  
-0.016  
0 mA to 24 mA Internal RSET, BOOST  
0 mA to 24 mA External RSET  
0 mA to 20 mA External RSET, BOOST  
0 mA to 24 mA External RSET, BOOST  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
C007  
C004  
AVDD = 24 V  
AVDD = 24 V  
7-22. IOUT INL vs Code (0 mA to 20 mA)  
RLOAD = 300 Ω  
RLOAD = 300 Ω  
7-21. IOUT INL vs Code (0 mA to 24 mA)  
0.016  
0.012  
0.008  
0.004  
0.000  
-0.004  
-0.008  
-0.012  
-0.016  
0.004  
0.002  
0.000  
-0.002  
-0.004  
-0.006  
-0.008  
Max INL  
4 mA to 20 mA Internal RSET  
4 mA to 20 mA Internal RSET, BOOST  
4 mA to 20 mA External RSET  
4 mA to 20 mA External RSET, BOOST  
Min INL  
0
8192 16384 24576 32768 40960 49152 57344 65536  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Code  
Temperature (oC)  
C001  
C002  
AVDD = 24 V  
AVDD = 10 V  
All IOUT ranges  
RLOAD = 300 Ω  
RLOAD = 300 Ω  
7-23. IOUT INL vs Code (4 mA to 20 mA)  
7-24. IOUT INL vs Temperature (Internal RSET)  
0.004  
0.002  
0.000  
-0.002  
-0.004  
-0.006  
-0.008  
0.015  
Max INL  
Max INL  
0.010  
0.005  
0.000  
-0.005  
Min INL  
-0.010  
-0.015  
Min INL  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
10  
14  
18  
22  
26  
30  
34  
38  
Temperature (oC)  
AVDD (V)  
C004  
C001  
AVDD = 10 V  
All IOUT ranges  
0-mA to 24-mA range  
7-26. IOUT INL vs Supply (Internal RSET  
RLOAD = 300 Ω  
RLOAD = 300 Ω  
7-25. IOUT INL vs Temperature (External RSET  
)
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DAC7750 DAC8750  
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
0.015  
1.0  
0.8  
0.010  
0.6  
Max INL  
0.4  
0.005  
0.2  
0.000  
-0.005  
-0.010  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Min INL  
-0.015  
10  
14  
18  
22  
26  
30  
34  
38  
0
8192 16384 24576 32768 40960 49152 57344 65536  
AVDD (V)  
Code  
C003  
C008  
0-mA to 24-mA range  
AVDD = 24 V  
0-mA to 24-mA range  
RLOAD = 300 Ω  
RLOAD = 300 Ω  
7-28. IOUT DNL vs Code (0 mA to 24 mA)  
7-27. IOUT INL vs Supply (External RSET  
)
1.0  
1.0  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
C005  
C002  
AVDD = 24 V  
RLOAD = 300 Ω  
7-29. IOUT DNL vs Code (0 mA to 20 mA)  
0-mA to 24-mA range  
AVDD = 24 V  
RLOAD = 300 Ω  
7-30. IOUT DNL vs Code (4 mA to 20 mA)  
4-mA to 24-mA range  
1.0  
1.0  
0.8  
0.6  
0.8  
0.6  
Max DNL  
Max DNL  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Min DNL  
Min DNL  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (oC)  
Temperature (oC)  
C010  
C011  
AVDD = 10 V  
All IOUT ranges  
AVDD = 10 V  
All IOUT ranges  
RLOAD = 300 Ω  
RLOAD = 300 Ω  
7-31. IOUT DNL vs Temperature (Internal RSET  
)
7-32. IOUT DNL vs Temperature (External RSET)  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
1.0  
0.8  
1.0  
0.8  
Max DNL  
Max DNL  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Min DNL  
34  
Min DNL  
10  
14  
18  
22  
26  
30  
38  
10  
14  
18  
22  
26  
30  
34  
38  
AVDD (V)  
AVDD (V)  
C008  
C007  
0-mA to 24-mA range  
0-mA to 24-mA range  
RLOAD = 300 Ω  
RLOAD = 300 Ω  
7-33. IOUT DNL vs Supply (Internal RSET  
)
7-34. IOUT DNL vs Supply (External RSET  
)
0.18  
0.12  
0.09  
0.06  
0.12  
0.06  
0.03  
0.00  
0.00  
0 mA to 20 mA Internal RSET  
0 mA to 24 mA Internal RSET  
4 mA to 20 mA Internal RSET  
0 mA to 20 mA External RSET  
0 mA to 24 mA External RSET  
4 mA to 20 mA External RSET  
0 mA to 20 mA Internal RSET  
0 mA to 24 mA Internal RSET  
4 mA to 20 mA Internal RSET  
0 mA to 20 mA External RSET  
0 mA to 24 mA External RSET  
4 mA to 20 mA External RSET  
-0.03  
-0.06  
-0.09  
-0.12  
-0.06  
-0.12  
-0.18  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (oC)  
Temperature (oC)  
C006  
C003  
AVDD = 10 V  
AVDD = 10 V  
RLOAD = 300 Ω  
RLOAD = 300 Ω  
7-35. IOUT Full-Scale Error vs Temperature  
7-36. IOUT Offset Error vs Temperature  
0.12  
44  
43  
42  
41  
40  
39  
38  
37  
36  
0 mA to 20 mA Internal RSET  
0 mA to 24 mA Internal RSET  
4 mA to 20 mA Internal RSET  
0 mA to 20 mA External RSET  
0 mA to 24 mA External RSET  
4 mA to 20 mA External RSET  
0.09  
0.06  
0.03  
0.00  
-0.03  
-0.06  
-0.09  
-0.12  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (oC)  
Temperature (oC)  
C007  
C001  
AVDD = 10 V  
33 units shown  
7-38. R3 Resistance vs Temperature  
RLOAD = 300 Ω  
7-37. IOUT Gain Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DAC7750 DAC8750  
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
30  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
25  
20  
15  
10  
5
0
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (oC)  
R3 Temperature Drift (ppm/ oC)  
C004  
C002  
AVDD = 36 V  
IOUT = 24 mA  
RLOAD = 300 Ω  
NOTE: Compliance voltage headroom is defined as the drop  
from the AVDD pin to the IOUT pin.  
7-39. R3 Resistance Temperature Drift Histogram  
7-40. Compliance Headroom Voltage vs Temperature  
30  
25  
20  
15  
10  
5
IOUT (4 mA/div)  
LATCH (5 V/div)  
0
Time (5 µs/div)  
0
1
2
3
4
5
6
Headroom Voltage (V)  
C005  
C001  
AVDD = 36 V  
DAC configured to deliver 24 mA  
AVDD = 24 V  
4-mA to 20-mA range  
RLOAD = 300 Ω  
From code: 0x0000  
To code: 0xFFFF  
RLOAD = 300 Ω  
NOTE: Compliance voltage headroom is defined as the drop  
from the AVDD pin to the IOUT pin.  
7-41. IOUT vs Compliance Headroom Voltage  
7-42. 4-mA to 20-mA Rising  
IOUT (4 mA/div)  
LATCH (5 V/div)  
Time (5 µs/div)  
Time (60 µs/div)  
C001  
C001  
AVDD = 24 V  
4-mA to 20-mA range  
From code: 0x0000 To code: 0xFFFF  
AVDD = 24 V  
RLOAD = 300 Ω  
RLOAD = 300 Ω  
7-43. 4-mA to 20-mA Falling  
7-44. IOUT Power-On Glitch  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
1.0  
8000h to 7FFFh  
7FFFh to 8000h  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
Time (2 µs/div)  
Time (2 µs/div)  
C002  
C001  
AVDD = 24 V  
7-45. IOUT Output Enable Glitch  
AVDD = 24 V  
RLOAD = 300 Ω  
RLOAD = 250 Ω  
7-46. IOUT Digital-to-Analog Glitch  
1200  
1000  
800  
600  
400  
200  
0
Time (4 s/div)  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C003  
C002  
AVDD = 24 V  
All IOUT ranges  
AVDD = 24 V  
0-mA to 20-mA range  
RLOAD = 300 Ω  
DAC = midscale  
7-48. IOUT Peak-to-Peak Noise vs Time (0.1 Hz to 10 Hz)  
7-47. IOUT Noise PSD vs Frequency  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
4
8
12  
16  
20  
24  
28  
32  
36  
10  
100  
1k  
10k  
100k  
1M  
IOUT Terminal Voltage (V)  
Frequency (Hz)  
C002  
C001  
AVDD = 36 V  
Output disabled  
AVDD = 24 V  
All IOUT ranges  
RLOAD = 250 Ω  
7-49. IOUT Hi-Z Leakage Current vs Voltage  
7-50. IOUT PSRR vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DAC7750 DAC8750  
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DAC8750 and DAC7750 are low-cost, precision, fully-integrated, 16-bit and 12-bit digital-to-analog  
converters (DACs) designed to meet the requirements of industrial process control applications. These devices  
can be programmed as a current output with a range of 4 mA to 20 mA, 0 mA to 20 mA, or 0 mA to 24 mA. The  
DAC8750 and DAC7750 include reliability features such as CRC error checking on the serial peripheral interface  
(SPI) frame, a watchdog timer, an open circuit, compliance voltage, and thermal alarm. In addition the output  
current can be monitored by accessing an internal precision resistor.  
These devices include a power-on-reset function to ensure powering up in a known state (both IOUT is disabled  
and in a high-impedance state). The CLR pin sets the current output to the low-end of the range if the output is  
enabled. Zero code error and gain error calibration registers can be programmed to digitally calibrate the device  
in the end system. The output slew rate is also programmable. These devices can AC couple an external HART  
signal on the current output and can operate with either a 10-V to 36-V supply.  
8.2 Functional Block Diagram  
DVDD  
DVDD-EN  
REFOUT  
REFIN  
HART-IN  
AVDD  
DACx750  
Internal  
Reference  
LATCH  
SCLK  
DIN  
DAC Input  
Register  
R3-SENSE  
Current Output Stage  
Thermal  
Alarm  
SDO  
BOOST  
IOUT  
Pre-  
Conditioning  
DAC  
User Calibration  
Gain/Offset  
Register  
Current  
Source  
ALARM  
ISET-R  
IGAIN  
IENABLE  
CLR  
Slew Rate  
Control  
Watchdog  
Timer  
GND  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 DAC Architecture  
The resistor-string section is simply a string of resistors, each with the same value, from REFIN to GND, as 图  
8-1 shows. This type of architecture makes sure the DAC is monotonic. The 16-bit (DAC8750) or 12-bit  
(DAC7750) binary digital code loaded to the DAC register determines at which node on the string the voltage is  
tapped off before it is fed into the voltage-to-current conversion stage. The current-output stage converts the  
voltage output from the string to current. When the output is disabled, it is in a high-impedance (Hi-Z) state. After  
power-on, the output is disabled.  
To Current Output  
8-1. DAC Structure: Resistor String  
8.3.2 Current Output Stage  
The current output stage consists of a preconditioner and a current source, as shown in 8-2. This stage  
provides a current output according to the DAC code. The output range can be programmed as 0 mA to 20 mA,  
0 mA to 24 mA, or 4 mA to 20 mA. Use an external transistor to reduce the power dissipation of the device. The  
maximum compliance voltage on IOUT equals (AVDD 2 V). In single power-supply mode, the maximum  
AVDD is 36 V, and the maximum compliance voltage is 34 V. After power on, the IOUT pin is in a Hi-Z state.  
AVDD  
R3-SENSE  
R2  
R3  
BOOST  
T2  
Þ
A2  
+
T1  
IOUT  
12-/16-BitBa_  
DACBa_  
+
A1  
Þ
RSET  
8-2. Current Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DAC7750 DAC8750  
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
For a 5-V reference, the output can be expressed as shown in 方程1 through 方程3.  
For a 0-mA to 20-mA output range, use 方程1.  
CODE  
IOUT = 20mA •  
2N  
(1)  
(2)  
(3)  
For a 0-mA to 24-mA output range, use 方程2.  
CODE  
IOUT = 24mA •  
2N  
For a 4-mA to 20-mA output range, use 方程3.  
CODE  
IOUT = 16mA •  
+ 4mA  
2N  
where  
CODE is the decimal equivalent of the code loaded to the DAC  
N is the bits of resolution; 16 for DAC8750, and 12 for DAC7750  
The current-output range is normally set according to the value of the RANGE bits in the Control Register (see  
8.4.1 for more details).  
8.3.3 Internal Reference  
The DACx750 includes an integrated 5-V reference with a buffered output (REFOUT) capable of driving up to  
5 mA (source or sink) with an initial accuracy of ±5 mV maximum and a temperature drift coefficient of 10  
ppm/°C maximum.  
8.3.4 Digital Power Supply  
An internally generated 4.6-V supply capable of driving up to 10 mA can be output on DVDD by leaving the  
DVDD-EN pin unconnected. This configuration simplifies the system power-supply design when an isolation  
barrier is required to generate the digital supply. The internally generated supply can be used to drive isolation  
components used for the digital data lines and other miscellaneous components, such as references and  
temperature sensors; see 9-3 for an example application.  
If an external supply is preferred, the DVDD pin (which can be driven up to 5.5 V in this case) can become an  
input by tying DVDD-EN to GND. See 7.5 for detailed specifications.  
8.3.5 DAC Clear  
The DAC has an asynchronous clear function through the CLR pin that is active-high and allows the current  
output to be cleared to zero-scale code. When the CLR signal returns to low, the output remains at the cleared  
value. The preclear value can be restored by pulsing the LATCH signal without clocking any data. A new value  
cannot be programmed until the CLR pin returns to low. To avoid glitches on the output, disable the output by  
writing a 0 to the OUTEN bit of the Control Register before changing the current range.  
8.3.6 Power-On Reset  
The DACx750 incorporates two internal POR circuits for the DVDD and AVDD supplies. The DVDD and AVDD  
POR signals are ANDed together so that both supplies must be at their minimal specified values for the device to  
not be in a reset condition. These POR circuits initialize internal logic and registers, as well as set the analog  
outputs to a known state while the device supplies are ramping. All registers are reset to their default values.  
Typically the POR function can be ignored, as long as the device supplies power-up and maintains the specified  
minimum voltage levels. However, in the case of a supply drop or brownout, the DACx750 can have an internal  
POR reset event or lose digital memory integrity. 8-3 represents the threshold levels for the internal POR for  
both the DVDD and AVDD supplies.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
Supply (V)  
Supply Max.  
Specified Supply  
Voltage Range  
No Power-On Reset  
Supply Min.  
Undefined Operation Threshold  
Undefined  
POR Threshold  
0.00  
Power-On Reset  
8-3. Relevant Voltage Levels for POR Circuit  
For the DVDD supply, no internal POR occurs for nominal supply operation from 2.7 V (supply min) to 5.5 V  
(supply max). For the DVDD supply region between 2.4 V (undefined operation threshold) and 0.8 V (POR  
threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For the  
DVDD supply below 0.8 V (POR threshold), the internal POR resets if the supply voltage remains less than 0.8 V  
for approximately 1 ms.  
For the AVDD supply, no internal POR occurs for nominal supply operation from 10 V (supply min) to 36 V  
(supply max). For AVDD supply voltages between 8 V (undefined operation threshold) and 1 V (POR threshold),  
the internal POR circuit may or may not provide a reset over all temperature conditions. For the AVDD supply  
below 1 V (POR threshold), the internal POR resets if the supply voltage remains less than 1 V for approximately  
1 ms. In case the DVDD or AVDD supply drops to a level where the internal POR signal is indeterminate, either  
power cycle the device, or toggle the LATCH pin and then perform a software reset. Both options initialize the  
internal circuitry to a known state and provide proper operation.  
8.3.7 Alarm Detection  
These devices also provide an alarm detection feature. When one or more of following events occur, the ALARM  
pin goes low:  
The current output load is in open circuit,  
The voltage at IOUT reaches a level where accuracy of the output current is compromised. This condition is  
detected by monitoring internal voltage levels of the IOUT circuitry and is typically below the specified  
compliance voltage headroom (defined as the voltage drop between the AVDD and IOUT pins) minimum of 2  
V,  
The die temperature exceeds 142°C,  
The SPI watchdog timer exceeds the timeout period (if enabled), or  
The SPI frame error CRC check encounters an error (if enabled).  
When the ALARM pins of multiple DACx750 devices are connected together to form a wired-AND function, the  
host processor must read the status register of each device to know all the fault conditions that are present. Note  
that the thermal alarm has hysteresis of approximately 18°C. After being set, the alarm only resets when the die  
temperature drops below 124°C.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DAC7750 DAC8750  
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3.8 Watchdog Timer  
This feature is useful to make sure that communication between the host processor and the DACx750 has not  
been lost. The feature can be enabled by setting the WDEN bit of the Configuration Register to 1. The watchdog  
timeout period can be set using the WDPD bits of the configuration register, as shown in 8-1. The timer period  
is based off an internal oscillator with a typical value of 8 MHz.  
8-1. Watchdog Timeout Period  
WDPD BITS  
WATCHDOG TIMEOUT PERIOD (Typical)  
00  
01  
10  
11  
10 ms  
51 ms  
102 ms  
204 ms  
If the watchdog timer is enabled, these devices must have an SPI frame with 0x95 as the write address byte  
written to the device within the programmed timeout period. Otherwise, the ALARM pin asserts low and the WD-  
FLT bit of the status register is set to 1. The ALARM pin can be asserted low for any of the different conditions  
explained in 8.3.7. To reset the WD-FLT bit to 0, use a software reset, disable the watchdog timer, or power  
down the device.  
8.3.9 Frame Error Checking  
In noisy environments, error checking can be used to check the integrity of SPI data communication between the  
DACx750 and the host processor. To enable this feature, set the CRCEN bit of the Configuration Register to 1.  
The frame error checking scheme is based on the CRC-8-ATM (HEC) polynomial x8 + x2 + x + 1 (that is,  
100000111). When error checking is enabled, the SPI frame width is 32 bits, as shown in 8-2. Start with the  
default 24-bit frame, enable frame error checking, and then switch to the 32-bit frame. The normal 24-bit SPI  
data are appended with an 8-bit CRC polynomial by the host processor before feeding to the device. For a  
register readback, the CRC polynomial is output on the SDO pins by the device as part of the 32-bit frame.  
8-2. SPI Frame with Frame Error Checking  
Enabled  
BIT 31:BIT 8  
BIT 7:BIT 0  
Normal SPI frame data  
8-bit CRC polynomial  
When in CRC mode, the DACx750 calculates CRC words every 32 clocks, unconditional of when the LATCH pin  
toggles. The DACx750 decodes the 32-bit input frame data to compute the CRC remainder. If no error exists in  
the frame, the CRC remainder is zero. When the remainder is non-zero (that is, the input frame has single- or  
multiple-bit errors), the ALARM pin asserts low and the CRC-FLT bit of the status register is set to 1. The  
ALARM pin can be asserted low for any of the different conditions explained in 8.3.7. To reset the CRC-FLT  
bit to 0, either issue software reset command of 0x96, disable the frame error checking, or power down the  
device. In the case of a CRC error, the specific SPI frame is blocked from writing to the device.  
If CRC mode is enabled on the first frame issued to the device after power up, issue a no operation, or NOOP,  
command to the device in order to reset the SPI clock and SPI frame alignment in the event that any transients  
on the SCLK line are interpreted as SCLK periods. A NOOP command can be issued to the device by simply  
toggling the LATCH pin without any SCLK periods.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3.10 User Calibration  
The device implements a user-calibration function (enabled by the CALEN bit in the Configuration Register) to  
trim system gain and zero errors. The DAC output is calibrated according to the value of the gain calibration and  
zero calibration registers. The range of gain adjustment is typically ±50% of full-scale with 1 LSB per step. The  
gain register must be programmed to 0x8000 to achieve the default gain of 1 because the power-on value of the  
register is 0x0000, equivalent to a gain of 0.5. The zero code adjustment is typically ±32,768 LSBs with 1 LSB  
per step. The input data format of the gain register is unsigned straight binary, and the input data format of the  
zero register is 2's complement. The gain and offset calibration is described by 方程4.  
User _GAIN + 215  
CODE _OUT = CODE •  
+ User _ ZERO  
216  
(4)  
where  
CODE is the decimal equivalent of the code loaded to the DAC data register at address 0x01  
N is the bits of resolution (16 for DAC8750 and 12 for DAC7750)  
User_ZERO is the signed 16-bit code in the zero register  
User_GAIN is the unsigned 16-bit code in the gain register  
CODE_OUT is the decimal equivalent of the code loaded to the DAC (limited between 0x0000 to 0xFFFF for  
DAC8750 and 0x000 to 0xFFF for DAC7750)  
This is a purely digital implementation and the output is still limited by the programmed value at both ends of the  
current output range (set by the RANGE bits, as described in 8.4.1). In addition, the correction only makes  
sense for endpoints inside of the true device end points. To correct more than just the actual device error (for  
example, a system offset), the valid range for the adjustment changes accordingly and must be taken into  
account.  
New calibration codes are only applied to subsequent writes to the DAC data register. Updating the calibration  
codes does not automatically update the DAC output. Additionally, before applying new DAC data, configure the  
calibration codes along with the slew rate control.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DAC7750 DAC8750  
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3.11 Programmable Slew Rate  
The slew rate control feature controls the rate at which the output current changes. With the slew rate control  
feature disabled, the output changes smoothly at a rate limited by the output drive circuitry and the attached  
load.  
To reduce the slew rate, enable the slew rate control feature through bit 4 of the Control Register. With this  
feature enabled, the output does not slew directly between the two values. Instead, the output steps digitally at a  
rate defined by bits [7:5] (SRSTEP) and bits [11:8] (SRCLK) of the Control Register. SRCLK defines the rate at  
which the digital slew updates, and SRSTEP defines the amount by which the output value changes at each  
update. If the DAC data register is read while the DAC output is still changing, the instantaneous value is read.  
8-3 lists the slew rate step-size options. 8-4 summarizes the slew rate update clock options.  
8-3. Slew Rate Step-Size (SRSTEP) Options  
STEP SIZE (LSB)  
SRSTEP  
000  
DAC7750  
DAC8750  
0.0625  
1
2
001  
0.125  
010  
0.25  
0.5  
1
4
011  
8
100  
16  
32  
64  
128  
101  
2
110  
4
111  
8
8-4. Slew Rate Update Clock (SRCLK) Options  
SRCLK  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
DAC UPDATE FREQUENCY (Hz)  
258,065  
200,000  
153,845  
131,145  
115,940  
69,565  
37,560  
25,805  
20,150  
16,030  
10,295  
8,280  
6,900  
5,530  
4,240  
3,300  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
The time required for the output to slew over a given range is expressed as 方程5.  
Output Change  
Step Size · Update Clock Frequency · LSB Size  
Slew Time =  
(5)  
where  
Slew Time is expressed in seconds  
Output Change is expressed in amps (A) for IOUT or volts (V) for VOUT  
When the slew rate control feature is enabled, all output changes happen at the programmed slew rate. This  
configuration results in a staircase formation at the output. If the CLR pin is asserted, the output slews to the  
zero-scale value at the programmed slew rate. Read bit 1 (SR-ON) of the Status Register to verify that the slew  
operation has completed. The update clock frequency for any given value is the same for all output ranges. The  
step size, however, varies across output ranges for a given value of step size because the LSB size is different  
for each output range. 8-4 shows an example of IOUT slewing at a rate set by the previously described  
parameters. In this example for the DAC8750 (LSB size of 305 nA for the 0-mA to 20-mA range), the settings  
correspond to an update clock frequency of 6.9 kHz and a step size of 128 LSB. As shown in the case with no  
capacitors on CAP1 or CAP2, the steps occur at the update clock frequency (6.9 kHz corresponds to a period  
close to 150 µs), and the size of each step is approximately 38 µA (128 × 305 nA). Calculate the slew time for a  
specific code change by using 方程5.  
no cap  
3 nF CAP1  
3 nF CAP2  
10 nF CAP1  
10 nF CAP2  
SRCLK=1100h  
SRSTEP = 111h  
0 mA to 20 mA range  
Time (150 µs/ div)  
C001  
8-4. IOUT vs Time With Digital Slew Rate Control  
Apply the desired programmable slew rate control setting before updating the DAC data register because  
updates to the DAC data register in tandem with updates to the slew rate control registers can create race  
conditions that may result in unexpected DAC data.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DAC7750 DAC8750  
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Setting Current-Output Ranges  
The current output range is set according to 8-5.  
8-5. RANGE Bits vs Output Range  
RANGE  
OUTPUT RANGE  
4 mA to 20 mA  
0 mA to 20 mA  
0 mA to 24 mA  
101  
110  
111  
Note that changing the RANGE bits at any time causes the DAC data register to be cleared.  
8.4.2 Current-Setting Resistor  
Resistor RSET (used to convert the DAC voltage to current) illustrated in 8-2 determines the stability of the  
output current over temperature. If desired, an external, low-drift, precision 15-kΩ resistor can be connected to  
the ISET-R pin and used instead of the internal RSET resistor.  
8.4.3 BOOST Configuration for IOUT  
8-5 illustrates an external NPN transistor used to reduce power dissipation on the die. Most of the load current  
flows through the NPN transistor with a small amount flowing through the on-chip PMOS transistor based on the  
gain of the NPN transistor. This configuration reduces the temperature induced drift on the die and internal  
reference and is an option for use cases at the extreme end of the supply, load current, and ambient temperature  
ranges.  
The inclusion of the bipolar junction transistor (BJT) adds an additional open loop gain to internal amplifier A2  
(see 8-2) and thus, can cause possible instability. Adding series emitter resistor R2 decreases the gain of the  
stage created by the BJT and internal R3 resistor (see 8-2) especially for cases where RLOAD is a short or a  
very small load, such as a multimeter. Recommended values for R1, R2, and C1 in this circuit are 1 kΩ, 30 Ω  
and 22 nF, respectively. An equivalent solution is to place R2 (with a recommended value of 3 kΩ instead of  
30 Ω) in series with the base of the transistor instead of the configuration provided in 8-5. Note that there is  
some gain error introduced by this configuration; see 7-14, 7-15 and 7-16. Use the internal transistor in  
most cases because the values in 7.5 are based on the configuration with the internal on-chip PMOS  
transistor.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
BOOST  
IOUT  
R2  
DACx750  
R1  
C1  
RLOAD  
GND  
Copyright © 2016, Texas Instruments Incorporated  
8-5. Boost Mode Configuration  
8.4.4 Filtering The Current Output  
The DACx750 provides access to internal nodes of the circuit; see 9-2. Place capacitors on these pins and  
AVDD to form a filter on the output current, reducing bandwidth and the slew rate of the output, especially useful  
for driving inductive loads. However, to achieve large reductions in slew rate, use the programmable slew rate to  
avoid having to use large capacitors. Even in that case, use the capacitors on CAP1 and CAP2 to smooth out  
the stairsteps caused by the digital code changes as shown in 8-6. However, note that power supply ripple  
also couples into the devices through these capacitors.  
25  
22  
19  
no cap  
16  
3 nF CAP1  
3 nF CAP2  
10 nF CAP1  
10 nF CAP2  
13  
10  
7
TA = 25ºC  
AVDD = 24 V  
RLOAD = 250  
4
1
Time (200 µs/div)  
C001  
8-6. IOUT vs Time for Different Cap Values on CAP1 and CAP2  
8.4.5 Output Current Monitoring  
Many applications, especially for functional safety, require monitoring to make sure that the output current stays  
close to the programmed value. To monitor the output current, place a sense resistor in series with the output  
and measure the voltage across the resistor. However, this resistor reduces the compliance voltage available for  
the load. The DACx750 provide access to an internal precision resistor (R3 in 8-2) through the R3-SENSE  
and BOOST pins to perform analog readback for monitoring the output current. Measure the voltage between  
the R3-SENSE and BOOST pins and divide by the value of the R3 resistor to determine the magnitude of the  
output current. The R3 resistor has a typical value of 40 Ω (see 7-38 for a plot of resistance vs temperature)  
with a temperature drift coefficient of 40 ppm/°C (see 7-39 for a histogram of R3 resistance temperature drift).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DAC7750 DAC8750  
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
The R3 resistor is tested to stay within the minimum (36 Ω) and maximum (44 Ω) resistance values shown in  
the R3 Resistor portion of 7.5. To remove the tolerance error, perform a simple calibration by programming a  
certain value of output current, measuring the voltage across R3-SENSE and BOOST, and calculating the exact  
value of R3.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.4.6 HART Interface  
For the DACx750, HART digital communication can be modulated onto the input signal by the methods shown in  
the following subsections. For more detail, see Implementing HART Communication with the DAC8760 Family.  
8.4.6.1 Implementing HART in 4-mA to 20-mA Mode  
This method is limited to the case where the RANGE bits of the Control Register are programmed to the 4-mA to  
20-mA range. Some applications require going beyond the 4-mA to 20-mA range. In those cases, see the  
methods described in the next subsection.  
The external HART signal (ac voltage; 500 mVPP, 1200 Hz, and 2200 Hz) can be capacitively coupled in through  
the HART-IN pin and transferred to a current that is superimposed on the 4-mA to 20-mA current output. The  
HART-IN pin has a typical input impedance of 35 kΩ that together with the input capacitor used to couple the  
external HART signal, forms a filter to attenuate frequencies beyond the HART band-pass region. In addition to  
this filter, an external passive filter is recommended to complete the filtering requirements of the HART  
specifications. 8-7 shows the output current versus time operation for a typical HART signal. 8-6 specifies  
the performance of the HART-IN pin.  
1200 Hz  
(mark)  
Phase  
Continuous  
2200 Hz  
(space)  
Bit  
Boundary  
6.5 mA  
6.0 mA  
5.5 mA  
Bit Cell Time = 833 ms  
Time  
DC current = 6 mA.  
8-7. Output Current vs Time  
8-6. HART-IN Pin Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
kΩ  
mA  
Input impedance  
Output current (peak-to-peak)  
HART signal ac-coupled into pin  
Input signal of 500 mV (peak-to-peak)  
35  
1
0.9  
1.1  
8.4.6.2 Implementing HART in All Current Output Modes  
The use of the HART-IN pin to implement HART modulation is limited to the case where the RANGE bits of the  
8.6.1.1 are set to the 4-mA to 20-mA range. If it is desirable to implement HART in all current-output modes,  
see 9.1.1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DAC7750 DAC8750  
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5 Programming  
8-11 describes the available commands and registers on the DACx750 devices. No operation, read operation,  
and watchdog timer refer to commands and are not explicit registers. For more information on these commands,  
see 8.5.1.3 and 8.3.8.  
8.5.1 Serial Peripheral Interface (SPI)  
The device is controlled over a versatile four-wire serial interface (SDI, SDO, SCLK, and LATCH) that operates  
at clock rates of up to 30 MHz and is compatible with SPI, QSPI, Microwire, and digital signal processing (DSP)  
standards. The SPI communication command consists of a write address byte and a data word for a total of 24  
bits. The timing for the digital interface is illustrated in 7-1 and 7-2.  
8.5.1.1 SPI Shift Register  
The default frame is 24 bits wide (see 8.3.9 for 32-bit frame mode) and begins with the rising edge of SCLK  
that clocks in the MSB. The subsequent bits are latched on successive rising edges of SCLK. The default 24-bit  
input frame consists of an 8-bit address byte followed by a 16-bit data word as shown in 8-7.  
8-7. Default SPI Frame  
BIT 23:BIT 16  
BIT 15:BIT 0  
Address byte  
Data word  
The host processor must issue 24 bits before it issues a rising edge on the LATCH pin. Input data bits are  
clocked in regardless of the LATCH pin and are unconditionally latched on the rising edge of LATCH. By default,  
the SPI shift register resets to 0x000000 at power on or after a reset.  
8.5.1.2 Write Operation  
A write operation is accomplished when the address byte is set according to 8-8. For more information on the  
DACx750 registers, see 8.6.  
8-8. Write Address Functions  
ADDRESS  
BYTE  
(HEX)  
FUNCTION  
00  
01  
02  
55  
56  
57  
58  
59  
95  
96  
No operation (NOP)  
Write DAC Data register  
Register read  
Write control register  
Write reset register  
Write configuration register  
Write DAC gain calibration register  
Write DAC zero calibration register  
Watchdog timer reset  
CRC error reset  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.1.3 Read Operation  
A read operation is accomplished when the address byte is 0x02. Follow the read operation with a no-operation  
(NOP) command to clock out an addressed register; see 7-2. To read from a register, the address byte and  
data word is as shown in 8-9. The read register value is output MSB first on SDO on successive falling edges  
of SCLK.  
8-9. Default SPI Frame for Register Read  
DATA WORD  
ADDRESS BYTE  
(HEX)  
BIT 15:BIT 6  
BIT 5:BIT 0  
Register read address (see 8-10)  
02  
X (don't care)  
8-10 shows the register read addresses available on the DACx750 devices.  
8-10. Register Read Address Functions  
READ ADDRESS(1)  
FUNCTION  
XX XX00  
Read status register  
XX XX01  
Read DAC data register  
XX XX10  
Read control register  
00 1011  
Read configuration register  
Read DAC gain calibration register  
Read DAC zero calibration register  
01 0011  
01 0111  
(1) X denotes don't care bits.  
8.5.1.4 Stand-Alone Operation  
SCLK can operate in either continuous or burst mode, as long as the LATCH rising edge occurs after the  
appropriate number of SCLK cycles. Providing more than or less than 24 SCLK cycles before the rising edge of  
LATCH results in incorrect data being programmed into the device registers, and incorrect data sent out on SDO.  
The rising edge of SCLK that clocks in the MSB of the 24-bit input frame marks the beginning of the write cycle,  
and data are written to the addressed registers on the rising edge of LATCH.  
8.5.1.5 Multiple Devices on the Bus  
Communication with the device is not directly gated by LATCH; therefore, do not connect multiple devices in  
parallel without gating SCLK. 8-8 shows two devices with SCLK gated for each device.  
CS1  
SCLK  
DIN  
LATCH1  
SCLK  
SDO  
DIN  
DOUT  
CS2  
Device 1  
Microcontroller  
LATCH2  
SCLK  
SDO  
DIN  
Device 2  
8-8. Multiple Devices on the Bus Using Gated SCLK  
The microcontroller uses two chip select lines, one for each LATCH pin. Each line is used to gate the SCLK for  
communication for each device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.6 Register Maps  
8-11 shows the available registers on the DACx750 devices. See 8.6.1 for descriptions of all DACx750  
registers.  
8-11. Command and Register Map  
READ AND  
WRITE  
DATA BITS (DB15:DB0)  
REGISTER OR  
COMMAND  
ACCESS  
15:14  
13  
12  
11  
10:9  
8
7
6
5
4
3
2
1
0
Control  
RW  
RW  
RW  
X
REXT  
OUTEN  
SRCLK  
SRSTEP  
SREN  
Reserved  
CRCEN  
RANGE  
Configuration  
DAC Data(2)  
No operation(3)  
Read Operation (3)  
Reset  
X(1)  
CALEN HARTEN  
WDEN  
WDPD  
D15:D0  
X
W
R
X
READ ADDRESS  
RESET  
T-FLT  
Status  
Reserved  
CRC-FLT  
WD-FLT  
I-FLT  
SR-ON  
DAC Gain Calibration  
RW  
RW  
G15:G0, unsigned  
Z15:Z0, signed  
(2)  
DAC Zero Calibration  
(2)  
Watchdog Timer  
Reset (3)  
X
X
CRC Fault Reset (3)  
(1) X denotes don't care bits.  
(2) DAC8750 (16-bit version) shown. DAC7750 (12-bit version) contents are located in DB15:DB4.  
For DAC7750, DB3:DB0 are don't care bits when writing and zeros when reading.  
(3) No operation, read operation, watchdog timer reset, and CRC fault reset are commands and not registers.  
8.6.1 DACx750 Register Descriptions  
8.6.1.1 Control Register  
The DACx750 control register is written to at address 0x55. 8-12 shows the description for the control register  
bits.  
8-12. Control Register  
DATA BIT(S)  
DB15:DB14  
DB13  
NAME  
Reserved  
REXT  
DEFAULT  
DESCRIPTION  
Reserved. Do not write any value other than zero to these bits.  
External current setting resistor enable.  
00  
0
Output enable.  
DB12  
OUTEN  
0
Bit = 1: Output is determined by RANGE bits.  
Bit = 0: Output is disabled. IOUT is Hi-Z.  
DB11:DB8  
DB7:DB5  
SRCLK[3:0]  
0000  
000  
Slew rate clock control. Ignored when bit SREN = 0.  
Slew rate step size control. Ignored when bit SREN = 0.  
SRSTEP[2:0]  
Slew Rate Enable.  
Bit = 1: Slew rate control is enabled, and the ramp speed of the output change is determined  
by SRCLK and SRSTEP.  
DB4  
SREN  
0
Bit = 0: Slew rate control is disabled. Bits SRCLK and SRSTEP are ignored. The output  
changes to the new level immediately.  
DB3  
Reserved  
0
Reserved. Must be set to 0.  
Output range bits.  
DB2:DB0  
RANGE[2:0]  
000  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
 
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.6.1.2 Configuration Register  
The DACx750 configuration register is written to at address 0x57. 8-13 summarizes the description for the  
configuration register bits.  
8-13. Configuration Register  
DATA BIT(S)  
NAME  
DEFAULT  
DESCRIPTION  
DB15:DB6  
Reserved  
00 0000 0000  
Reserved. Do not write any value other than zero to these bits.  
User calibration enable. When user calibration is enabled, the DAC data are  
adjusted according to the contents of the gain and zero calibration registers. See  
the 8.3.10 section.  
DB5  
DB4  
CALEN  
0
0
Enable interface through HART-IN pin (only valid for IOUT set to 4-mA to 20-mA  
range through RANGE bits).  
Bit = 1: HART signal is connected through internal resistor and modulates output  
current.  
HARTEN  
Bit = 0: HART interface is disabled.  
DB3  
DB2  
CRCEN  
WDEN  
0
0
Enable frame error checking.  
Watchdog timer enable.  
Watchdog timeout period.  
DB1:DB0  
WDPD[1:0]  
00  
8.6.1.3 DAC Registers  
The DAC registers consist of a DAC data register (8-14), a DAC gain calibration register (8-15), and a DAC  
zero calibration register (8-16). User calibration as described in 8.3.10 is a feature that allows for trimming  
the system gain and zero errors. 8-14 through 8-16 show the DAC8750, 16-bit version of these registers.  
The DAC7750 (12-bit version) register contents are located in DB15:DB4. For DAC7750, DB3:DB0 are don't  
care bits when writing and zeros when reading.  
8-14. DAC Data Register  
DATA BITS  
NAME  
DEFAULT  
DESCRIPTION  
DB15:DB0  
D15:D0  
0x0000  
DAC data register. Format is unsigned straight binary.  
8-15. DAC Gain Calibration Register  
DATA BITS  
NAME  
DEFAULT  
DESCRIPTION  
DB15:DB0  
G15:G0  
0x0000  
Gain calibration register for user calibration. Format is unsigned straight binary.  
8-16. DAC Zero Calibration Register  
DATA BITS  
NAME  
DEFAULT  
DESCRIPTION  
DB15:DB0  
Z15:Z0  
0x0000  
Zero calibration register for user calibration. Format is twos complement.  
8.6.1.4 Reset Register  
The DACx750 reset register is written to at address 0x56. 8-17 provides the description.  
8-17. Reset Register  
DATA BIT(S)  
NAME  
DEFAULT  
DESCRIPTION  
DB15:DB1  
Reserved  
000 0000 0000 0000 Reserved. Writing to these bits does not cause any change.  
Software reset bit. Writing 1 to the bit performs a software reset that resets all  
DB0  
RESET  
0
registers and the ALARM status to the respective power-on reset default value.  
After reset completes, the RESET bit clears itself.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.6.1.5 Status Register  
This read-only register consists of four ALARM status bits (CRC-FLT, WD-FLT, I-FLT, and T-FLT) and the SR-ON  
bit that shows the slew rate status, as shown in 8-18.  
8-18. Status Register  
DATA BIT(S)  
NAME  
DEFAULT  
DESCRIPTION  
DB15:DB5  
Reserved  
000 0000 0000  
Reserved. Reading these bits returns 0.  
Bit = 1 indicates CRC error on SPI frame.  
Bit = 0 indicates normal operation.  
DB4  
DB3  
CRC-FLT  
WD-FLT  
0
0
Bit = 1 indicates watchdog timer timeout.  
Bit = 0 indicates normal operation.  
Bit = 1 indicates an open circuit or a compliance voltage violation in IOUT  
loading.  
DB2  
I-FLT  
0
Bit = 0 indicates IOUT load is at normal condition.  
Bit = 1 when DAC code is slewing as determined by SRCLK and SRSTEP.  
Bit = 0 when DAC code is not slewing.  
DB1  
DB0  
SR-ON  
T-FLT  
0
0
Bit = 1 indicates die temperature is over 142°C.  
Bit = 0 indicates die temperature is not over 142°C.  
These devices continuously monitor the current output and die temperature. When an alarm occurs, the  
corresponding ALARM status bit is set (1). Whenever an ALARM status bit is set, it remains set until the event  
that caused it is resolved. The ALARM bit can only be cleared by performing a software reset, a power-on reset  
(by cycling power), or by having the error condition resolved. These bits are reasserted if the alarm condition  
continues to exist in the next monitoring cycle.  
The ALARM bit goes to 0 when the error condition is resolved.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
9.1.1 HART Implementation  
If desirable, the following subsections show two methods to implement HART, irrespective of the RANGE bit  
settings.  
9.1.1.1 Using the CAP2 Pin  
The first method to implement HART is to couple the signal through the CAP2 pin, as shown in 9-1.  
C1  
C2  
HART FSK Input  
CAP1  
CAP2  
AVDD  
R3-SENSE  
BOOST  
R2  
R3  
T2  
Þ
A2  
+
12.5 k  
T1  
IOUT  
12-/16-Bita__  
DAC__a  
+
A1  
Þ
RSET  
GND  
9-1. Implementing HART on IOUT Using the CAP2 Pin  
In 9-1, R3 is nominally 40 Ω, and R2 depends on the current output range (set by the RANGE bits), described  
as follows:  
4-mA to 20-mA range: R2 = 2.4 kΩ(typical)  
0-mA to 20-mA range: R2 = 3 kΩ(typical)  
0-mA to 24-mA range: R2 = 3.6 kΩ(typical)  
The purpose of the 12.5-kΩresistor is to create a filter when CAP1 and CAP2 are used.  
To insert the external HART signal on the CAP2 pin, an external ac-coupling capacitor is typically connected to  
CAP2. The high-pass filter 3-dB frequency is determined by the resistive impedance looking into  
CAP2 (R2 + 12.5 kΩ) and the coupling-capacitor value. The 3-dB frequency is 1 / (2 × π × [R2 + 12.5 kΩ] ×  
[Coupling Capacitor Value]).  
When the input HART frequency is greater than the 3-dB frequency, the ac signal is seen at the plus input of  
amplifier A2, and is therefore seen across the 40-Ω resistor. To generate a 1-mA signal on the output therefore  
requires a 40-mV peak-to-peak signal on CAP2. Most HART modems do not output a 40-mV signal; therefore, a  
capacitive divider is used in 9-1 to attenuate the FSK signal from the modem. In 9-1, the high-pass cutoff  
frequency is 1 / (2 × π × [R2+ 12.5 kΩ] × [C1 + C2]). There is one disadvantage to this approach: if the AVDD  
supply is not clean, any ripple on the supply could couple into the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9.1.1.2 Using the ISET-R Pin  
The second method to implement HART is to couple the HART signal through the ISET-R pin when IOUT is  
operated using an external RSET resistor. The FSK signal from the modem is ac-coupled into the pin through a  
series combination of Rin and Cin as shown in 9-2.  
HART-IN  
CAP2  
CAP1  
AVDD  
(ON Only in 4-mA  
to 20-mA Range)  
S1  
R3-SENSE  
BOOST  
R3  
HART  
Signal  
Conditioning  
R2  
R1  
A2  
+
T2  
IOUT  
DAC  
+
A1  
T1  
ISET-R  
Cin  
Rin  
HART SIGNAL  
RSET  
15 kΩ  
9-2. Implementing HART with the ISET-R pin  
The magnitude of the ac-current output is calculated with 方程6.  
(VHART × k) / Rin  
(6)  
where  
VHART is the amplitude of the HART FSK signal from the modem  
k is a constant that represents the gain transfer function from the ISET-R pin to the IOUT pin and depends on  
the selected current output range as follows:  
k = 60 for the 4-mA to 20-mA range  
k = 75 for the 0-mA to 20-mA range  
k = 90 for the 0-mA to 24-mA range  
The series input resistor and capacitor form a high-pass filter at the ISET-R pin. Select Cin to make sure that all  
signals in the HART extended-frequency band pass through unattenuated.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9.2 Typical Application  
Isolation  
Field  
Barrier  
Connections  
+24V  
+24V Field Supply Input  
+24V  
10 Ω  
Field GND  
100pF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
10k  
DVDD-EN  
DVDD  
AVDD  
VCC2  
VDD  
VCC1  
OUTC  
GPIO  
GPIO  
CS  
ALARM  
CLR  
INC  
INA  
OUTA  
ISO7631  
+24V  
INB  
OUTB  
LATCH  
GND1  
GND2  
Unidirectional  
TVS Diode Pair  
15  
Current Output  
0-20mA, 4-20mA, 0-24mA  
100nF  
IOUT  
Digital Controller  
DACX750  
0.1µF  
0.1µF  
VCC2  
INC  
VCC1  
OUTC  
SDO  
DIN  
MISO  
OUTA  
INA  
ISO7631  
MOSI  
SCLK  
SCLK  
OUTB  
INB  
GND2  
GND  
GND1  
HART-IN  
22nF  
GND  
REFIN  
REFOUT  
HART Signal  
FSK 1200-  
2200Hz  
0.1µF  
9-3. DACx750 in a Voltage and Current Output Driver for Factory Automation and Control, EMC and  
EMI Protected - DACx750 in an Analog Output (AO) Module  
9.2.1 Design Requirements  
Analog I/O modules are used by programmable logic controllers (PLCs) and distributed control systems (DCSs)  
to interface to sensors, actuators, and other field instruments. These modules must meet stringent electrical  
specifications for both performance as well as protection. These outputs are typically current loops based on the  
4-mA to 20-mA range. Common error budgets accommodate 0.1% full-scale range total unadjusted error  
(%FSR TUE) at room temperature. Designs which desire stronger accuracy over temperature frequently  
implement calibration. Often times the PLC back-plane provides access to a 12-V to 36-V analog supply, from  
which a majority of supply voltages are derived.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DAC7750 DAC8750  
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9-4 illustrates a common generic solution for realizing these desired voltage and current output spans.  
15V  
RA  
RB  
5V  
15V  
AVDD  
A2  
CS  
DIN  
+
15V  
A1  
Q2  
-15V  
Q1  
+
SCLK  
LDAC  
IOUT  
-15V  
GND VREFIN/VREFOUT  
RSET  
GND  
9-4. Generic Design for Typical PLC Current and Voltage Outputs  
The current output circuit is comprised of amplifiers A1 and A2, MOSFETs Q1 and Q1, and the three resistors  
RSET, RA, and RB. This two-stage current source enables the ground-referenced DAC output voltage to drive the  
high-side amplifier required for the current-source.  
The high-level of integration of the DACx750 family lends itself very well to the design of analog output modules,  
offering simplicity of design and reducing solution size. The DACx750 integrates all of the components shown in  
9-4 allowing a software configurable current output driver. 9-3 illustrates an example circuit design for such  
an application using the DACx750 for the current output driver.  
The design uses two triple channel isolators (ISO7631FC) to provide galvanic isolation for the digital lines to  
communicate to the main controller. Note that these isolators can be driven by the internally-generated supply  
(DVDD) from the DACx750 to save components and cost. The DACx750 supplies up to 10 mA that meets the  
supply requirements of the two isolators running at up to 10 Mbps. Note that additional cost savings are possible  
if noncritical digital signals such as CLR and ALARM are tied to GND or left unconnected. Finally, a protection  
scheme with transient voltage suppressors and other components is placed on all pins which connect to the  
field.  
The protection circuitry is designed to provide immunity to the IEC61000-4 test suite which includes system-level  
industrial transient tests. The protection circuit includes transient voltage suppressor (TVS) diodes, clamp-to-rail  
steering diodes, and pass elements in the form of resistors and ferrite beads. For more detail about selecting  
these components, see the Single-Channel Industrial Voltage and Current Output Driver, Isolated, EMC/EMI  
Tested Reference Design.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9.2.3 Application Curve  
The current output circuit was measured in 0-mA to 24-mA mode using an 8.5 digit digital multimeter to measure  
the output while driving a 300-load at 25°C. The measured results are illustrated in 9-5. The current output  
remains within the data sheet specified performance.  
The design was also exposed to IEC61000-4 electrostatic discharge, electrically fast transient, conducted  
immunity, and radiated immunity tests on both the current and voltage outputs. During each of these tests a 6.5  
digit digital multimeter, set in fast 5.5 digit acquisition mode, was used to monitor the output. Complete data sets  
for the voltage and current outputs during these tests are available in the Single-Channel Industrial Voltage and  
Current Output Driver, Isolated, EMC/EMI Tested Reference Design.  
0
-0.005  
-0.01  
-0.015  
-0.02  
-0.025  
-0.03  
-0.035  
-0.04  
-0.045  
0
16384  
32768  
DAC Input Code  
49152  
65536  
D002  
9-5. Current Output TUE vs Code  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DAC7750 DAC8750  
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
The DACx750 family operates within the specified single-supply range of 10 V to 36 V applied to the AVDD pin.  
The digital supply, DVDD, operates within the specified supply range of 2.7 V to 5.5 V or powered by the internal  
4.6-V LDO, as described in 8.3.4.  
Switching power supplies and DC/DC converters often have high-frequency glitches or spikes riding on the  
output voltage. In addition, digital components can create similar high-frequency spikes. This noise can be easily  
coupled into the DAC output voltage or current through various paths between the power connections and  
analog output. To further reduce noise, include bulk and local decoupling capacitors.  
CAUTION  
Do not ramp the supplies for the DACx750 faster than 1 V/ns or damage may result to the device. A  
10-Ωseries resistor from the analog supply to the device AVDD connection helps reduce the supply  
ramp.  
The DACx750 has internal power on reset (POR) circuitry for both the digital DVDD and analog AVDD supplies.  
This circuitry makes sure that the internal logic and power-on state of the DAC power up to the proper state  
independent of the supply sequence. The recommended power-supply sequence is to first have the analog  
AVDD supply come up, followed by the digital DVDD supply. DVDD can come up first as long as AVDD ramps to  
at least 5 V within 50 μs. If neither condition can be satisfied, issue a software reset command using the SPI  
bus after both AVDD and DVDD are stable.  
The current consumption on the AVDD pin and current ranges for the current output are listed in 7.5. The  
power supply must meet the requirements listed in 7.5.  
11 Layout  
11.1 Layout Guidelines  
To maximize the performance of the DACx750 in any application, good layout practices and proper circuit design  
must be followed. A few recommendations specific to the DACx750 are:  
As illustrated in 9-1, CAP2 is directly connected to the input of the final IOUT amplifier. Any noise or  
unwanted ac signal routed near the CAP1 and CAP2 pins could capacitively couple onto internal nodes and  
affect IOUT. Therefore, make sure to avoid routing any digital or HART signal traces over the CAP1 and  
CAP2 traces.  
Connect the thermal PAD to the lowest potential in the system.  
Make sure that AVDD has decoupling capacitors local to the respective pins.  
Place the reference capacitor close to the reference input pin.  
Avoid routing switching signals near the reference input.  
For designs that include protection circuits:  
Place diversion elements, such as TVS diodes or capacitors, close to off-board connectors to make sure  
that return current from high-energy transients does not cause damage to sensitive devices.  
Use large, wide traces to provide a low-impedance path to divert high-energy transients away from I/O  
pins.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
11.1.1 Thermal Considerations  
The DACx750 is designed for a maximum junction temperature of 150°C. In cases where the maximum AVDD is  
driving maximum current into ground, this junction temperature can be exceeded. Use 方程式 7 to determine the  
maximum junction temperature that can be reached.  
Power dissipation = (TJ max TA) / θJA  
(7)  
where  
TJ max = 150°C  
TA is the ambient temperature  
• θJA is the package-dependent, junction-to-ambient thermal resistance, found in 7.4.  
The power dissipation is calculated by multiplying all the supply voltages with the currents supplied, which are  
found in the Power Requirements subsection of 7.5.  
Consider an example: IOUT is enabled, supplying 24 mA into GND with a 25°C ambient temperature, AVDD of  
24 V, and DVDD is generated internally. From the 7.5, the max value of AIDD = 3 mA when IOUT is enabled  
and DAC code = 0x0000. Also, the max value of DIDD = 1 mA. Accordingly, the worst-case power dissipation is  
24 V × (24 mA + 3 mA + 1 mA) = 672 mW. Using the θJA value for the TSSOP package, we get TJ max = 25°C  
+ (32.3 × 0.672)°C = 46.7°C. At 85°C ambient temperature, the corresponding value of TJ max is 106.7°C. Using  
this type of analysis, the system designer can both specify and design for the equipment operating conditions.  
Note that for enhanced thermal performance, connect the thermal pad in both packages to a copper plane.  
11.2 Layout Example  
11-1 shows an example layout for the DACx750 device based on a similar layout for the DACx760 from  
TIPD153.  
GND  
AVDD  
DVDD  
Analog Supply  
Series Resistance  
Digital  
Supply  
Analog  
Supply  
Decoupling  
Decoupling  
External  
Boost Transistor  
(Optional)  
ALARM  
Pull-up  
Resistance  
CAP1 / CAP2  
Capacitance  
(Optional)  
Q1  
Digital I/O  
IOUT  
0
R3-SENSE  
Reference  
Capacitance  
External RSET  
(Optional)  
HART  
Input  
11-1. Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DAC7750 DAC8750  
 
 
 
DAC7750, DAC8750  
ZHCSC70D DECEMBER 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Single-Channel Industrial Voltage & Current Output Driver, Isolated, EMC/EMI Tested  
Reference Design  
Texas Instruments, Implementing HART™ Communication with the DAC8760 Family  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
HART® is a registered trademark of HART Communication Foundation.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DAC7750 DAC8750  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC7750IPWP  
DAC7750IPWPR  
DAC7750IRHAR  
DAC7750IRHAT  
DAC8750IPWP  
DAC8750IPWPR  
DAC8750IRHAR  
DAC8750IRHAT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
VQFN  
PWP  
PWP  
RHA  
RHA  
PWP  
PWP  
RHA  
RHA  
24  
24  
40  
40  
24  
24  
40  
40  
60  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DAC7750  
2000 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
DAC7750  
DAC7750  
DAC7750  
DAC8750  
DAC8750  
DAC8750  
DAC8750  
VQFN  
250  
60  
RoHS & Green  
RoHS & Green  
HTSSOP  
HTSSOP  
VQFN  
2000 RoHS & Green  
2500 RoHS & Green  
VQFN  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jul-2021  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC7750IPWPR  
DAC7750IRHAT  
DAC8750IPWPR  
HTSSOP PWP  
VQFN RHA  
HTSSOP PWP  
24  
40  
24  
2000  
250  
330.0  
180.0  
330.0  
16.4  
16.4  
16.4  
6.95  
6.3  
8.3  
6.3  
8.3  
1.6  
1.1  
1.6  
8.0  
12.0  
8.0  
16.0  
16.0  
16.0  
Q1  
Q2  
Q1  
2000  
6.95  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC7750IPWPR  
DAC7750IRHAT  
DAC8750IPWPR  
HTSSOP  
VQFN  
PWP  
RHA  
PWP  
24  
40  
24  
2000  
250  
350.0  
210.0  
350.0  
350.0  
185.0  
350.0  
43.0  
35.0  
43.0  
HTSSOP  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DAC7750IPWP  
DAC8750IPWP  
PWP  
PWP  
HTSSOP  
HTSSOP  
24  
24  
60  
60  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
GENERIC PACKAGE VIEW  
PWP 24  
4.4 x 7.6, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224742/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0024J  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
22X 0.65  
PLANE  
24  
1
2X  
7.9  
7.7  
7.15  
NOTE 3  
12  
B
13  
0.30  
24X  
4.5  
4.3  
0.19  
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 2.08 MAX  
NOTE 5  
4X 0.3 MAX  
13  
4X 0.1 MAX  
NOTE 5  
12  
0.25  
GAGE PLANE  
1.2 MAX  
5.26  
5.11  
25  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
24  
3.20  
3.05  
4225860/A 04/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0024J  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(3.2)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
24X (1.5)  
1
24  
24X (0.45)  
SEE DETAILS  
(R0.05) TYP  
(5.26)  
22X (0.65)  
SYMM  
25  
(7.8)  
NOTE 9  
(1.2) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
13  
12  
(1.2) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4225860/A 04/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0024J  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.2)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
24X (1.5)  
1
24  
24X (0.45)  
(R0.05) TYP  
22X (0.65)  
SYMM  
(5.26)  
25  
BASED ON  
0.125 THICK  
STENCIL  
12  
13  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.58 X 5.88  
3.20 X 5.26 (SHOWN)  
2.92 X 4.80  
0.125  
0.15  
0.175  
2.70 X 4.45  
4225860/A 04/2020  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DAC7750IPWPR

适用于 4mA 至 20mA 电流环路应用的 12 位、单通道、可编程电流输出 DAC | PWP | 24 | -40 to 125
TI

DAC7750IRHAR

适用于 4mA 至 20mA 电流环路应用的 12 位、单通道、可编程电流输出 DAC | RHA | 40 | -40 to 125
TI

DAC7750IRHAT

适用于 4mA 至 20mA 电流环路应用的 12 位、单通道、可编程电流输出 DAC | RHA | 40 | -40 to 125
TI

DAC7760

Single-Channel, 12- and 16-Bit Programmable Current Output and Voltage Output Digital-to-Analog Converter for 4-mA to 20-mA Current Loop Applications
TI

DAC7760IPWP

适用于 4mA 至 20mA 电流环路应用的 12 位、单通道、可编程电流/电压输出 DAC | PWP | 24 | -40 to 125
TI

DAC7760IPWPR

适用于 4mA 至 20mA 电流环路应用的 12 位、单通道、可编程电流/电压输出 DAC | PWP | 24 | -40 to 125
TI

DAC7760IRHAR

适用于 4mA 至 20mA 电流环路应用的 12 位、单通道、可编程电流/电压输出 DAC | RHA | 40 | -40 to 125
TI

DAC7760IRHAT

适用于 4mA 至 20mA 电流环路应用的 12 位、单通道、可编程电流/电压输出 DAC | RHA | 40 | -40 to 125
TI

DAC7800

Dual Monolithic CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTERS
BB

DAC7800

Dual Monolithic CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTERS
TI

DAC7800/DAC7801/DAC7802

DAC7800. DAC7801. DAC7802 - Dual Monolithic CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTERS
BB

DAC7800D

D/A Converter, 2 Func, Serial Input Loading, 0.4us Settling Time,
BB