DAC81416 [TI]

具有集成内部基准电压的 16 通道 16 位高电压输出 DAC;
DAC81416
型号: DAC81416
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成内部基准电压的 16 通道 16 位高电压输出 DAC

文件: 总59页 (文件大小:3240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
具有内部基准电压DACx1416 16 16 位、14 12 位  
高电压输DAC  
1 特性  
3 说明  
• 高性能  
DAC81416DAC71416 DAC61416 (DACx1416)  
是具有引脚兼容性16 位、14 位、12 位分辨率的 16  
通道缓冲高电压输出数模转换器 (DAC) 系列产品。  
DACx1416 包括一个低漂移 2.5V 内部电压基准因此  
在大多数应用中无需使用外部精密基准。这些器件具有  
单调性并能提±1LSB INL 的高线性度。  
16 位分辨率下具有单调性  
INL16 位分辨率下±1LSB最大值)  
TUEFSR 最大值±0.1%  
• 集2.5V 精密内部基准  
– 初始精度±2.5 mV最大值)  
– 低漂移5ppm/°C典型值)  
• 灵活的输出配置  
用户可自行选择输出配置包括满量程双极输出电压  
±20V±10V±5V ±2.5V以及满量程单极输出电  
40V20V10V 5V。而且每个 DAC 通道的  
满量程输出范围都是独立可编程的。集成的 DAC 输出  
缓冲器可实现高达 25 mA 的灌电流或拉电流从而减  
少了对额外的运算放大器的需求。每个通道对都可进行  
相应配置从而提供经过失调校准的差分输出。通过三  
个专用 A-B 切换引脚可以生成最多具有三种频率的  
抖动信号。  
– 输出范围±2.5V±5V±10V±20V  
0 5V0 10V0 20V0 40V  
– 差分输出模式  
• 高驱动能力±25mA相对于电源轨的摆幅1.5V  
• 三个专A-B 切换引脚可用于生成抖动信号  
• 模拟温度输出  
-4 mV/°C 的传感器增益  
50MHz SPI 兼容型串行接口  
DACx1416 包含的上电复位电路可在上电时将 DAC 输  
出端连接至接地端。输出端会保持该状态直至器件寄  
存器得到适当的运行配置。  
4 线制模式工作电压1.7V 5.5V  
– 菊花链运行方式  
CRC 误差校验  
DACx1416 之间的通信通过一个支持 1.7V 5.5V  
工作电压4 线制串行接口进行。  
• 温度范围40°C +125°C  
• 小封装  
6mm × 6mm40 VQFN  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
DAC81416  
2 应用  
数据中心内部互联长距离、水下)  
数据中心间互联地铁)  
光学模块  
DAC71416  
DAC61416  
VQFN (40)  
6.00mm × 6.00mm  
半导体测试  
实验室和现场仪表  
数据采(DAQ)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
REF  
REFCMP REFGND  
VIO  
VAA  
VDD  
VCC  
Internal  
Reference  
DAC  
Buffer  
DAC  
Register  
SCLK  
SDI  
Range Config  
SDO  
DAC  
BUF  
OUT0  
CS  
LDAC  
Channel 0  
Channel 1  
RESET  
OUT1  
CLR  
TOGGLE0  
TOGGLE1  
TOGGLE2  
Channel 15  
OUT15  
Power Down Logic  
Resistive Network  
ALMOUT  
Power On Reset  
Temperature Sensor  
TEMPOUT  
DACx1416  
GND  
VSS  
功能方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASEO0  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
Table of Contents  
8.5 Programming............................................................ 29  
8.6 Register Maps...........................................................32  
9 Application and Implementation..................................47  
9.1 Application Information............................................. 47  
9.2 Typical Application.................................................... 47  
10 Power Supply Recommendations..............................51  
11 Layout...........................................................................52  
11.1 Layout Guidelines................................................... 52  
11.2 Layout Example...................................................... 52  
12 Device and Documentation Support..........................53  
12.1 Device Support....................................................... 53  
12.2 Documentation Support.......................................... 53  
12.3 接收文档更新通知................................................... 53  
12.4 支持资源..................................................................53  
12.5 Trademarks.............................................................53  
12.6 Electrostatic Discharge Caution..............................53  
12.7 术语表..................................................................... 53  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................5  
7.4 Thermal Information ...................................................6  
7.5 Electrical Characteristics ............................................6  
7.6 Timing Requirements ............................................... 11  
7.7 Timing Diagrams.......................................................13  
7.8 Typical Characteristics..............................................14  
8 Detailed Description......................................................23  
8.1 Overview...................................................................23  
8.2 Functional Block Diagram.........................................23  
8.3 Feature Description...................................................24  
8.4 Device Functional Modes..........................................27  
Information.................................................................... 53  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (November 2018) to Revision B (June 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 为清晰起见更改了格式和小的编辑问题...........................................................................................................1  
Changes from Revision * (July 2018) to Revision A (November 2018)  
Page  
DAC81416 从“预告信息”更改为“量产数据”...........................................................................................1  
DAC71416 DAC61416 从“产品预发布”更改为“量产数据”................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
5 Device Comparison Table  
DEVICE  
RESOLUTION  
16-bit  
DAC81416  
DAC71416  
DAC61416  
14-bit  
12-bit  
6 Pin Configuration and Functions  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
VIO  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
OUT15  
OUT14  
OUT13  
OUT12  
OUT11  
OUT10  
OUT9  
2
3
4
5
6
Thermal Pad  
7
8
OUT8  
9
TEMPOUT  
ALMOUT  
GND  
10  
Not to scale  
6-1. RHA Package, 40-Pin VQFN, Top View  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
1
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
VIO  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Power  
Ground  
Channel 0 analog DAC output voltage.  
Channel 1 analog DAC output voltage.  
Channel 2 analog DAC output voltage.  
Channel 3 analog DAC output voltage.  
Channel 4 analog DAC output voltage.  
Channel 5 analog DAC output voltage.  
Channel 6 analog DAC output voltage.  
Channel 7 analog DAC output voltage.  
2
3
4
5
6
7
8
9
IO supply voltage. (1.7 V to 5.5 V). This pin sets the I/O operating voltage for the device.  
Ground reference point for all circuitry on the device.  
10, 36  
GND  
Serial interface data output. The SDO pin must be enabled before operation by setting the SDO-EN bit.  
Data are clocked out of the input shift register on either rising or falling edges of the SCLK pin as specified  
by the FSDO bit (rising edge by default).  
11  
SDO  
Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
12  
SCLK  
Input  
Input  
Serial interface clock.  
Serial interface data input. Data are clocked into the input shift register on each falling edge of the SCLK  
pin.  
13  
14  
SDI  
CS  
Active low serial data enable. This input is the frame synchronization signal for the serial data. When the  
signal goes low, it enables the serial interface input shift register.  
Input  
Input  
Toggle pin 0. Control signal for those DAC outputs configured for toggle operation to switch between the  
two DAC data registers associated with each DAC. A logic low updates the DAC output to the value set  
by Register A. A logic high updates the DAC output to the value set by Register B. Connect the  
TOGGLE0 pin to ground if unused.  
15  
16  
17  
TOGGLE0  
TOGGLE1  
TOGGLE2  
Toggle pin 1. Control signal for those DAC outputs configured for toggle operation to switch between the  
two DAC data registers associated with each DAC. A logic low updates the DAC output to the value set  
by Register A. A logic high updates the DAC output to the value set by Register B. Connect the  
TOGGLE1 pin to ground if unused.  
Input  
Input  
Toggle pin 2. Control signal for those DAC outputs configured for toggle operation to switch between the  
two DAC data registers associated with each DAC. A logic low updates the DAC output to the value set  
by Register A. A logic high updates the DAC output to the value set by Register B. Connect the  
TOGGLE2 pin to ground if unused.  
Active low synchronization signal. When the LDAC pin is low, the DAC outputs of those channels  
configured in synchronous mode are updated simultaneously. Connect to VIO if unused.  
18  
19  
20  
LDAC  
RESET  
CLR  
Input  
Input  
Input  
Active low reset input. Logic low on this pin causes the device to issue a power-on-reset event.  
Active low clear input. Logic low on this pin clears all DAC outputs to their clear code. Connect to VIO if  
unused.  
ALMOUT is an open drain alarm output. An external 10-kpull-up resistor to a voltage no higher than VIO  
is required.  
21  
ALMOUT  
Output  
22  
TEMPOUT  
OUT8  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Power  
Power  
Analog temperature monitor output.  
23  
Channel 8 analog DAC output voltage.  
Channel 9 analog DAC output voltage.  
Channel 10 analog DAC output voltage.  
Channel 11 analog DAC output voltage.  
Channel 12 analog DAC output voltage.  
Channel 13 analog DAC output voltage.  
Channel 14 analog DAC output voltage.  
Channel 15 analog DAC output voltage.  
Output positive analog power supply (9 V to 41.5 V).  
Output negative analog power supply (21.5 V to 0 V).  
24  
OUT9  
25  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
VCC  
26  
27  
28  
29  
30  
31, 40  
32, 39  
VSS  
Reference input to the device when operating with external reference. When using internal reference, this  
is the reference output voltage pin. Connect a 150-nF capacitor to ground.  
33  
34  
REF  
Input/Output  
Input/Output  
Reference compensation capacitor connection. Connect a 330-pF capacitor between REFCMP and  
REFGND.  
REFCMP  
35  
37  
38  
REFGND  
VAA  
Ground  
Power  
Power  
Ground reference point for the internal reference.  
Analog supply voltage (4.5 V to 5.5 V). This pin must be at the same potential as the VDD pin.  
Digital supply voltage (4.5 V to 5.5 V). This pin must be at the same potential as the VAA pin.  
VDD  
The thermal pad is located on the package underside. Connect the thermal pad to any internal PCB  
ground plane through multiple vias for good thermal performance.  
Thermal Pad  
Thermal Pad  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
22  
MAX  
UNIT  
V
VDD to GND  
VIO to GND  
VCC to GND  
6
6
V
44  
V
Supply voltage  
VSS to GND  
0.3  
V
REFGND to GND  
VDD to VAA  
0.9  
V
0.3  
0.3  
0.3  
VSS 0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
40  
0.3  
V
VCC to VSS  
44  
V
DAC outputs to GND  
TEMPOUT to GND  
REF and REFCMP to GND  
Digital inputs to GND  
SDO to GND  
VCC + 0.3  
VDD + 0.3  
VDD + 0.3  
VIO + 0.3  
VIO + 0.3  
6
V
V
V
Pin voltage  
V
V
ALARMOUT to GND  
Operating junction temperature  
Storage temperature  
V
TJ  
150  
°C  
°C  
Tstg  
150  
60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
1.7  
9
NOM  
MAX  
5.5  
5.5  
5.5  
41.5  
0
UNIT  
V
(1)  
(1)  
VAA  
VDD  
VIO  
Analog supply voltage  
Digital supply voltage  
V
IO supply voltage  
V
VCC  
VSS  
Output buffer positive supply voltage  
Output buffer negative supply voltage  
Output buffer supply voltage range  
Digital input voltage  
V
(2)  
V
21.5  
9
43  
V
VCC VSS  
0
VIO  
2.51  
0.6  
125  
V
VREFIN  
Reference input voltage to VREFGND  
REFGND pin voltage  
2.49  
0
2.5  
0
V
(3)  
VREFGND  
V
TA  
Operating ambient temperature  
°C  
40  
(1) VAA and VDD must be at the same potential.  
(2) VSS is only connected to GND when all DAC outputs are unipolar.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
 
 
 
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
(3) If VREFGND is not connected to GND, a buffered source must be used to drive it.  
7.4 Thermal Information  
DACx1416  
RHA (VQFN)  
40 PINS  
26.8  
THERMAL METRIC(1)  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
/W  
/W  
/W  
/W  
/W  
/W  
RΘJC(top)  
RΘJB  
14.1  
3.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJT  
3.4  
ΨJB  
RΘJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
all minimum/maximum specifications at TA = 40to +125and all typical specifications at TA = 25, VCC = 9 V to 41.5  
V, VSS = 21.5 V to 0 V, VDD = VAA = 4.5 V to 5.5 V, VREFIN = 2.5 V, VIO = 1.7 V to 5.5 V, DAC outputs unloaded, digital  
inputs at VIO or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
STATIC PERFORMANCE(1)  
DAC81416  
16  
14  
12  
Resolution  
DAC71416  
DAC61416  
Bits  
DAC81416, all ranges, except 0 V to 40  
V and ±2.5 V  
±0.5  
±1  
1
1  
2  
DAC81416, 0 V to 40 V and ±2.5-V  
ranges  
2
INL  
Integral nonlinearity  
LSB  
DAC71416, all ranges  
DAC61416, all ranges  
DAC81416, specified 16-bit monotonic  
DAC71416, specified 14-bit monotonic  
DAC61416, specified 12-bit monotonic  
All ranges, except ±2.5 V  
±2.5-V range  
±0.5  
±0.5  
1
1
1
1  
1  
±0.5  
1  
DNL  
TUE  
Differential nonlinearity  
Total unadjusted error  
±0.5  
1
1
LSB  
1  
±0.5  
1  
±0.01  
±0.02  
±0.015  
0.04  
0.1  
0.2  
0.1  
0.2  
0.03  
0
%FSR  
Unipolar offset error  
Unipolar zero-code error  
Bipolar zero error  
All unipolar ranges  
0.03 %FSR  
0.1 %FSR  
0.2 %FSR  
0.2 %FSR  
All unipolar ranges  
All bipolar ranges  
±0.02  
±0.075  
±0.02  
±0.02  
0.2  
0.2  
0.1  
0.2  
Full-scale error  
All ranges  
All ranges, except ±2.5 V  
±2.5-V range  
0.1  
%FSR  
0.2  
Gain error  
ppm of  
FSR/°C  
Unipolar offset error drift  
Bipolar zero error drift  
Gain error drift  
All unipolar ranges  
All bipolar ranges  
All ranges  
±2  
±2  
±2  
ppm of  
FSR/°C  
ppm of  
FSR/°C  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40to +125and all typical specifications at TA = 25, VCC = 9 V to 41.5  
V, VSS = 21.5 V to 0 V, VDD = VAA = 4.5 V to 5.5 V, VREFIN = 2.5 V, VIO = 1.7 V to 5.5 V, DAC outputs unloaded, digital  
inputs at VIO or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ppm of  
FSR  
Output voltage drift over time TA = 40°C, full-scale code, 1900 hours  
5
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40to +125and all typical specifications at TA = 25, VCC = 9 V to 41.5  
V, VSS = 21.5 V to 0 V, VDD = VAA = 4.5 V to 5.5 V, VREFIN = 2.5 V, VIO = 1.7 V to 5.5 V, DAC outputs unloaded, digital  
inputs at VIO or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DIFFERENTIAL MODE PERFORMANCE(1)  
All ranges  
±0.01  
±0.02  
±0.01  
0.1  
0.1  
0.2  
0.1  
TUE  
Total unadjusted error  
%FSR  
0.2  
±2.5-V range  
Common-mode error  
All bipolar ranges, midscale code  
0.1 %FSR  
OUTPUT CHARACTERISTICS  
To VSS and VCC  
(10 mA IOUT 10 mA)  
1
Output voltage headroom  
V
To VSS and VCC  
(15 mA IOUT 15 mA)  
1.5  
Full-scale output shorted to VSS  
Zero-scale output shorted to VCC  
40  
40  
Short-circuit current(2)  
mA  
Midscale code, 15 mA IOUT 15  
mA  
Load regulation  
70  
μV/mA  
Maximum capacitive load(3)  
RLOAD = open  
Midscale code  
Full-scale code  
0
1
nF  
0.05  
40  
DC output impedance  
Ω
DYNAMIC PERFORMANCE  
¼ to ¾ scale and ¾ to ¼ scale settling  
time to ±1 LSB, ±10-V range,  
RL = 5 kΩ, CL = 200 pF  
Output voltage settling time  
Slew rate  
12  
µs  
V/µs  
V
0-V to 5-V range  
1
4
All other output ranges  
Power-down to active DAC output,  
±20 V range, midscale code,  
RL = 5 kΩ, CL = 200 pF  
Power-on glitch magnitude  
0.3  
0.1 Hz to 10 Hz, midscale code,  
0-V to 5-V range  
Output noise  
15  
78  
µVpp  
Output noise density  
1 kHz, midscale code, 0-V to 5-V range  
nV/Hz  
Midscale code, frequency = 60 Hz,  
amplitude = 200 mVpp superimposed  
on VDD, VCC or VSS  
Power supply ac rejection  
ratio  
PSRR-AC  
PSRR-DC  
1
LSB/V  
LSB/V  
Midscale code, VDD = 5 V ± 5%,  
VCC = 20 V, VSS = 20 V  
1
1
1
4
Midscale code, VDD = 5 V,  
VCC = 20 V ± 5%, VSS = 20 V  
Power supply dc rejection  
ratio  
Midscale code, VDD = 5 V,  
VCC = 20 V, VSS = 20 V ± 5%  
1-LSB change around major carrier,  
0-V to 5-V range  
Code change glitch impulse  
nV-s  
nV-s  
0-V to 5-V range, measured channel at  
midscale, full-scale swing on all other  
channels  
Channel-to-channel ac  
crosstalk  
4
Channel-to-channel dc  
crosstalk  
0-V to 5-V range, measured channel at  
midscale, all other channels at full-scale  
0.25  
1
LSB  
nV-s  
0-V to 5-V range, midscale code,  
fSCLK = 1 MHz  
Digital feedthrough  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40to +125and all typical specifications at TA = 25, VCC = 9 V to 41.5  
V, VSS = 21.5 V to 0 V, VDD = VAA = 4.5 V to 5.5 V, VREFIN = 2.5 V, VIO = 1.7 V to 5.5 V, DAC outputs unloaded, digital  
inputs at VIO or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
EXTERNAL REFERENCE INPUT  
Reference input voltage  
VREFIN  
range  
To VREFGND  
2.49  
2.5  
2.51  
V
Reference input current  
Reference input impedance  
Reference input capacitance  
INTERNAL REFERENCE  
50  
50  
20  
µA  
kΩ  
pF  
Reference output voltage  
VREFOUT  
range  
TA = 25°C  
2.4975  
2.5025  
V
Reference output drift  
5
0.1  
12  
15 ppm/°C  
Reference output impedance  
Reference output noise  
Ω
0.1 Hz to 10 Hz  
µVpp  
Reference output noise  
density  
10 kHz, REFLOAD = 10 nF  
150  
nV/Hz  
Reference load current  
Reference load regulation  
Reference line regulation  
5
80  
20  
mA  
Source  
µV/mA  
µV/V  
Reference output drift over  
time  
TA = 25°C, 1900 hours  
250  
µV  
µV  
First cycle  
±700  
±50  
Reference thermal hysteresis  
Additional cycle  
DIGITAL INPUTS AND OUTPUTS  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
Input current  
0.7 × VIO  
V
0.3 × VIO  
V
µA  
pF  
V
±2  
2
Input pin capacitance  
High-level output voltage  
Low-level output voltage  
Output pin capacitance  
VOH  
VOL  
IOH = 0.2 mA  
IOL = 0.2 mA  
VIO 0.2  
0.4  
0.4  
V
5
5
pF  
ALARM OUTPUT  
Output pin capacitance  
Low-level output voltage  
TEMPERATURE OUTPUT  
pF  
V
VOL  
ILOAD = 0.2 mA  
VTEMPOUT,0C  
1.34  
V
Output voltage offset at 0℃  
Sensor gain  
mV/°C  
4  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40to +125and all typical specifications at TA = 25, VCC = 9 V to 41.5  
V, VSS = 21.5 V to 0 V, VDD = VAA = 4.5 V to 5.5 V, VREFIN = 2.5 V, VIO = 1.7 V to 5.5 V, DAC outputs unloaded, digital  
inputs at VIO or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER REQUIREMENTS  
Active mode, internal reference  
enabled, full-scale code, ±20 V output  
range, SPI static  
0.05  
0.5  
mA  
IDD  
IAA  
ICC  
VDD supply current  
VAA supply current  
VCC supply current  
Active mode, internal reference  
disabled, full-scale code, ±20 V output  
range, SPI static  
0.05  
0.05  
20  
0.5  
0.5  
30  
mA  
mA  
mA  
Power-down mode  
Active mode, internal reference  
enabled, full-scale code, ±20 V output  
range, SPI static  
Active mode, internal reference  
disabled, full-scale code, ±20 V output  
range, SPI static  
18  
2
28  
85  
25  
mA  
µA  
Power-down mode  
Active mode, internal reference  
enabled, full-scale code, ±20 V output  
range, SPI static  
10  
mA  
Active mode, internal reference  
disabled, full-scale code, ±20 V output  
range, SPI static  
10  
10  
25  
30  
mA  
µA  
Power-down mode  
Active mode, internal reference  
enabled, full-scale code, ±20 V output  
range, SPI static  
mA  
15  
10  
Active mode, internal reference  
disabled, full-scale code, ±20 V output  
range, SPI static  
ISS  
VSS supply current  
VIO supply current  
mA  
15  
30  
10  
Power-down mode  
µA  
µA  
10  
IIO  
SCLK and SDI toggling at 50 MHz  
350  
500  
(1) End point fit between codes. 16-bit: Code 256 to 65280, 14-bit: Code 128 to 16256, 12-bit: Code 32 to 4064.  
(2) Temporary overload condition protection. Junction temperature can be exceeded during current limit. Operation above the specified  
maximum junction temperature may impair device reliability.  
(3) Specified by design and characterization, not production tested.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.6 Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
SERIAL INTERFACE - WRITE OPERATION  
VIO = 1.7 V to 2.7 V  
25  
f(SCLK)  
Serial clock frequency  
SCLK high time  
SCLK low time  
SDI setup time  
SDI hold time  
MHz  
50  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
20  
10  
20  
10  
10  
5
tSCLKHIGH  
tSCLKLOW  
tSDIS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
10  
5
tSDIH  
30  
15  
10  
5
CS to SCLK falling edge  
setup time  
tCSS  
SCLK falling edge to CS  
rising edge  
tCSH  
50  
25  
2.4  
2.4  
4
tCSHIGH  
tDACWAIT  
tBCASTWAIT  
CS hight time  
Sequential DAC update wait  
time  
Broadcast DAC update wait  
time  
4
SERIAL INTERFACE - READ AND DAISY CHAIN OPERATION, FSDO = 0  
VIO = 1.7 V to 2.7 V  
15  
f(SCLK)  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
Serial clock frequency  
SCLK high time  
SCLK low time  
SDI setup time  
SDI hold time  
MHz  
20  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
33  
25  
33  
25  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
5
tSDIH  
30  
20  
8
CS to SCLK falling edge  
setup time  
tCSS  
SCLK falling edge to CS  
rising edge  
tCSH  
5
50  
25  
0
tCSHIGH  
tSDOZD  
tSDODLY  
CS high time  
20  
ns  
20  
SDO tri-state to driven  
SDO output delay  
0
0
35  
ns  
20  
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
MAX UNIT  
7.6 Timing Requirements (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
SERIAL INTERFACE - READ AND DAISY CHAIN OPERATION, FSDO = 1  
VIO = 1.7 V to 2.7 V  
25  
f(SCLK)  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
Serial clock frequency  
SCLK high time  
SCLK low time  
SDI setup time  
SDI hold time  
MHz  
35  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
20  
14  
20  
14  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
5
tSDIH  
30  
20  
8
CS to SCLK falling edge  
setup time  
tCSS  
SCLK falling edge to CS  
rising edge  
tCSH  
5
50  
25  
0
tCSHIGH  
tSDOZD  
tSDODLY  
CS high time  
20  
ns  
20  
SDO tri-state to driven  
SDO output delay  
0
0
35  
ns  
20  
0
DIGITAL LOGIC  
CS rising edge to LDAC or  
tLOGDLY  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
40  
20  
CLR falling edge delay time  
ns  
CS rising edge to LDAC or  
CLR falling edge delay time  
tLOGDLY  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
20  
10  
20  
10  
tLDAC  
LDAC low time  
CLR low time  
ns  
ns  
tCLR  
1
tRESET  
POR reset delay  
TOGGLE frequency  
ms  
1
100  
kHz  
100  
fTOGGLE  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.7 Timing Diagrams  
tCSHIGH  
tCSS  
tCSH  
CS  
SCLK  
SDI  
tSCLKLOW  
tSCLKHIGH  
Bit 23  
Bit 1  
Bit 0  
tSDIH  
tSDIS  
7-1. Serial Interface Write Timing Diagram  
tCSHIGH  
tCSS  
tCSH  
CS  
tSCLKLOW tSCLKHIGH  
SCLK  
FIRST READ COMMAND  
ANY COMMAND  
Bit 1  
SDI  
Bit 23  
Bit 22  
Bit 0  
Bit 23  
Bit 0  
tSDIS tSDIH  
SDO  
Bit 23  
Bit 1  
Bit 0  
FSDO = 0  
tSDODLY  
tSDODZ  
DATA FROM FIRST READ COMMAND  
SDO  
Bit 23  
Bit 1 Bit 0  
FSDO = 1  
tSDODLY  
DATA FROM FIRST READ COMMAND  
7-2. Serial Interface Read Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.8 Typical Characteristics  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V, unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range,  
bipolar ranges: VSS VMIN 1.5 V and VCC VMAX + 1.5 V for the DAC range, and DAC outputs unloaded (unless  
otherwise noted)  
1.0  
0.8  
1.0  
0.8  
2.5V  
5V  
10V  
20V  
0-5V  
0-10 V  
0-20 V  
0-40 V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
D002  
D001  
7-4. Integral Linearity Error vs Digital Input Code (Unipolar  
7-3. Integral Linearity Error vs Digital Input Code (Bipolar  
Outputs)  
Outputs)  
1.0  
1.0  
2.5V  
5V  
10V  
20V  
0-5V  
0-10 V  
0-20 V  
0-40 V  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
D003  
D004  
7-5. Differential Linearity Error vs Digital Input Code (Bipolar  
7-6. Differential Linearity Error vs Digital Input Code  
Outputs)  
(Unipolar Outputs)  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V, unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range,  
bipolar ranges: VSS VMIN 1.5 V and VCC VMAX + 1.5 V for the DAC range, and DAC outputs unloaded (unless  
otherwise noted)  
0.100  
0.075  
0.050  
0.025  
0.000  
-0.025  
-0.050  
-0.075  
-0.100  
0.100  
0.075  
0.050  
0.025  
0.000  
-0.025  
-0.050  
-0.075  
-0.100  
2.5V  
5V  
10V  
20V  
0-5V  
0-10 V  
0-20 V  
0-40 V  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
D005  
D006  
7-7. Total Unadjusted Error vs Digital Input Code (Bipolar  
7-8. Total Unadjusted Error vs Digital Input Code (Unipolar  
Outputs)  
Outputs)  
0.0500  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
-0.0125  
-0.0250  
2.5V  
5V  
10V  
20V  
0.0375  
0.0250  
0.0125  
0.0000  
-0.0125  
-0.0250  
-0.0375  
-0.0500  
-0.0375  
-0.0500  
0-5 V  
0-10 V  
0-20 V  
0-40 V  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
D007  
D008  
7-9. Common Mode Error vs Digital Input Code (Differential  
7-10. Common Mode Error vs Digital Input Code (Differential  
Bipolar Outputs)  
Unipolar Outputs)  
1.0  
1.0  
INL MAX  
INL MIN  
DNL MAX  
DNL MIN  
0.8  
0.8  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D009  
D010  
±20-V output range  
±20-V output range  
7-11. Integral Linearity Error vs Temperature  
7-12. Differential Linearity Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V, unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range,  
bipolar ranges: VSS VMIN 1.5 V and VCC VMAX + 1.5 V for the DAC range, and DAC outputs unloaded (unless  
otherwise noted)  
0.100  
0.075  
0.050  
0.025  
0.000  
-0.025  
-0.050  
-0.075  
-0.100  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
0-5 V  
2.5 V  
5 V  
10 V  
20 V  
0-5 V  
0-10 V  
0-20 V  
0-40 V  
0-10 V  
0-20 V  
0-40 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D011  
D012  
7-13. Total Unadjusted Error vs Temperature  
7-14. Unipolar Offset Error vs Temperature  
0.10  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
0-5 V  
2.5 V  
5 V  
10 V  
20 V  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0-10 V  
0-20 V  
0-40 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D014  
D013  
7-16. Bipolar Zero Error vs Temperature  
7-15. Unipolar Zero Code Error vs Temperature  
0.100  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
0.075  
0.050  
0.025  
0.000  
-0.025  
-0.050  
-0.075  
-0.100  
2.5 V  
5 V  
10 V  
20 V  
0-5 V  
2.5 V  
5 V  
10 V  
20 V  
0-5 V  
0-10 V  
0-20 V  
0-40 V  
0-10 V  
0-20 V  
0-40 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D015  
D016  
7-17. Gain Error vs Temperature  
7-18. Full-Scale Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V, unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range,  
bipolar ranges: VSS VMIN 1.5 V and VCC VMAX + 1.5 V for the DAC range, and DAC outputs unloaded (unless  
otherwise noted)  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
-0.0125  
-0.0250  
-0.0375  
-0.0500  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
-0.0125  
-0.0250  
-0.0375  
-0.0500  
2.5 V  
5 V  
10 V  
20 V  
0-5 V  
0-10 V  
0-20 V  
0-40 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D017  
D018  
7-19. Common Mode Error vs Temperature  
7-20. Common Mode Error vs Temperature  
(Differential Bipolar Outputs)  
(Differential Unipolar Outputs)  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
IDD  
IAA  
ICC  
ISS  
0
-5  
-10  
-15  
-20  
-25  
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
D019  
D020  
±20-V output range  
±20-V output range  
7-21. Supply Current (IDD, IAA) vs Digital Input Code  
7-22. Supply Current (ICC, ISS) vs Digital Input Code  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
IDD  
IAA  
ICC  
ISS  
-20  
-25  
0
1.7  
2.65  
3.6  
VIO (V)  
4.55  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D021  
D022  
±20-V output range  
7-23. Supply Current (IIO) vs Supply Voltage  
±20-V output range  
7-24. Supply Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V, unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range,  
bipolar ranges: VSS VMIN 1.5 V and VCC VMAX + 1.5 V for the DAC range, and DAC outputs unloaded (unless  
otherwise noted)  
90  
75  
60  
45  
30  
15  
0
40  
30  
IDD  
IAA  
ICC  
ISS  
20  
10  
0
-10  
-20  
-30  
-40  
-15  
-30  
Code 0x0000  
Code 0x8000  
Code 0xFFFF  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-50 -40 -30 -20 -10  
0
10  
Load Current (mA)  
20  
30  
40  
50  
D023  
D024  
±20-V output range  
7-25. Power-Down Current vs Temperature  
±20-V output range  
7-26. Source and Sink Capability  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
20 V  
10 V  
20 V  
10 V  
0
3
6
9
12  
Sourcing Current (mA)  
15  
18  
21  
24  
27  
30  
0
3
6
9
12  
Sinking Current (mA)  
15  
18  
21  
24  
27  
30  
D025  
D026  
Full-scale code  
7-27. VCC Headroom vs Sourcing Current  
Zero code  
7-28. VSS Footroom vs Sinking Current  
LDAC (5V/div)  
VOUT (5V/div)  
LDAC (5V/div)  
VOUT (5V/div)  
Time (5 msec/div)  
Time (5 msec/div)  
D027  
D028  
±20-V output range  
±20-V output range  
7-30. Full-Scale Settling Time, Falling Edge  
7-29. Full-Scale Settling Time, Rising Edge  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V, unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range,  
bipolar ranges: VSS VMIN 1.5 V and VCC VMAX + 1.5 V for the DAC range, and DAC outputs unloaded (unless  
otherwise noted)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
LDAC (5V/div)  
VOUT (5mV/div)  
-0.8  
-1.0  
Time (5 msec/div)  
Time (0.5msec/div)  
D029  
D030  
Power-down to active DAC mode  
±20-V output range  
7-31. DAC Output Enable Glitch  
0-V to 5-V output range  
7-32. Glitch Impulse, 1 LSB Step  
20  
15  
10  
5
20  
15  
10  
5
0
0
-5  
-5  
Time (25 msec/div)  
Time (25 msec/div)  
D031  
D032  
±20-V output range  
Toggle signal: 1 VPP  
±20-V output range  
Toggle signal: 1 VPP  
DC value: 3/4 full-scale  
DC change: midscale to 3/4 full-scale  
7-33. Toggle Output Change Response  
7-34. Toggle Enable Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V, unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range,  
bipolar ranges: VSS VMIN 1.5 V and VCC VMAX + 1.5 V for the DAC range, and DAC outputs unloaded (unless  
otherwise noted)  
VOUT  
VCC  
VOUT  
VCC  
VSS  
VDD = VAA = VIO  
VSS  
VDD = VAA = VIO  
Time (50 msec/div)  
Time (50 msec/div)  
D033  
D034  
7-35. Power-Up Response  
7-36. Power-Down Response  
CLR (5 V/div)  
VOUT (5 V/div)  
CLR (5 V/div)  
VOUT (5 V/div)  
Time (1 msec/div)  
Time (0.5 msec/div)  
D035  
D036  
±20-V output range  
Full-scale code to 0 V  
±20-V output range  
Toggle signal: 1 VPP  
DC value at 20 V  
7-37. Clear Command Response  
7-38. Clear Command Response in Toggle Mode  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V, unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range,  
bipolar ranges: VSS VMIN 1.5 V and VCC VMAX + 1.5 V for the DAC range, and DAC outputs unloaded (unless  
otherwise noted)  
1500  
1350  
1200  
1050  
900  
750  
600  
450  
300  
150  
0
100  
1000  
10000  
100000  
Time (1 sec/div)  
Frequency (Hz)  
D037  
D038  
0 to 5-V output range  
Midscale code  
0 to 5-V output range  
Midscale code  
7-39. DAC Output Noise Density vs Frequency  
7-40. DAC Output Noise  
2.505  
2.5005  
2.5004  
2.5003  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
2.4995  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
4.5 4.6 4.7 4.8 4.9  
5
VDD, VAA (V)  
5.1 5.2 5.3 5.4 5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D040  
D039  
7-42. Internal Reference Voltage vs Supply Voltage  
7-41. Internal Reference Voltage vs Temperature  
2.5005  
2.5004  
2.5003  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
2.4995  
1500  
1350  
1200  
1050  
900  
750  
600  
450  
300  
150  
0
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Hours  
100  
1000  
10000  
100000  
Frequency (Hz)  
D041  
D042  
7-43. Internal Reference Voltage vs Time  
7-44. Internal Reference Noise Density vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VDD = VAA = 5 V, VREFIN = 2.5 V, unipolar ranges: VSS = 0 V and VCC VMAX + 1.5 V for the DAC range,  
bipolar ranges: VSS VMIN 1.5 V and VCC VMAX + 1.5 V for the DAC range, and DAC outputs unloaded (unless  
otherwise noted)  
50%  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
0
Time (1 sec/div)  
0
1
2
3
4
5
6
7
8
9
10  
Temperature Drift (ppm/oC)  
D043  
D044  
7-45. Internal Reference Noise  
7-46. Internal Reference Temperature Drift Histogram  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DACx1416 are a pin-compatible family of 16-channel, buffered, high-voltage output digital-to-analog  
converters (DACs) with 16bit, 14bit, and 12bit resolution. The DACx1416 include a 2.5-V internal reference. A  
user-selectable output configuration enables full-scale bipolar output voltages of ±20 V, ±10 V, ±5 V or ±2.5 V,  
and full-scale unipolar output voltages of 40 V, 20 V, 10 V or 5 V. The full-scale output range for each DAC  
channel is independently programmable. In addition, each pair of DAC channels can be configured to provide a  
differential output. Three dedicated A-B toggle pins enable dither signal generation with up to three possible  
frequencies.  
The DACx1416 operate from five supply voltages: VDD, VAA, VCC, VSS and VIO.  
VDD and VAA are the digital and analog supplies for the DACs, internal reference and other low voltage  
components and must be set at the same potential.  
VCC and VSS are the positive and analog supplies for the DAC output amplifiers.  
VIO sets the logic levels for the digital inputs and outputs.  
Communication with the DACx1416 is performed through a 4-wire serial interface that supports stand-alone and  
daisy-chain operation. The optional frame-error checking provides added robustness to the DACx1416 serial  
interface.  
The DACx1416 incorporate a power-on-reset circuit that connects the DAC outputs to ground at power up. The  
outputs remain in this state until the device registers are properly configured for operation.  
8.2 Functional Block Diagram  
REF  
REFCMP REFGND  
VIO  
VAA  
VDD  
VCC  
Internal  
Reference  
DAC  
Buffer  
DAC  
Register  
SCLK  
SDI  
Range Config  
SDO  
DAC  
BUF  
OUT0  
CS  
LDAC  
Channel 0  
Channel 1  
RESET  
OUT1  
CLR  
TOGGLE0  
TOGGLE1  
TOGGLE2  
Channel 15  
OUT15  
Power Down Logic  
Resistive Network  
ALMOUT  
Power On Reset  
Temperature Sensor  
TEMPOUT  
DACx1416  
GND  
VSS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Digital-to-Analog Converter (DAC) Architecture  
Each output channel in the DACx1416 consists of an R-2R ladder architecture followed by an output buffer  
amplifier capable of rail-to-rail operation. The output amplifiers can drive 25 mA with 1.5-V headroom from either  
VCC or VSS while maintaining the specified TUE specification for the device. The full-scale output voltage for  
each channel can be individually configured to the following ranges:  
• –20 V to +20 V  
• –10 V to +10 V  
• –5 V to +5 V  
• –2.5 V to +2.5 V  
0 V to 40 V  
0 V to 20 V  
0 V to 10 V  
0 V to 5 V  
8-1 shows a block diagram of the DAC architecture.  
REF  
VCC  
2.5-V  
Reference  
DAC Range  
Select  
Register  
DAC Buffer  
Register  
(Toggle Reg B)  
DAC Active  
Serial Interface  
WRITE  
Asynchronous Mode  
Register  
Synchronous Mode  
(LDAC(A) Trigger)  
(Toggle Reg A)  
DAC  
Output  
VOUT  
DAC  
GND  
TOGGLE  
VSS  
A. The DAC trigger is generated by either by writing 1 to the LDAC bit or by the LDAC pin in synchronous mode. In asynchronous mode,  
the DAC latch is transparent.  
8-1. DACx1416 DAC Block Diagram  
8.3.1.1 DAC Transfer Function  
The input data are written to the individual DAC Data registers in straight binary format for all output ranges. The  
DAC transfer function is given by 方程1.  
CODE  
V
=
× FSR + V  
÷
OUT  
MIN  
n
«
2
(1)  
where:  
CODE is the decimal equivalent of the binary code that is loaded to the DAC register. CODE range is from 0  
to 2n 1.  
n is the DAC resolution in bits. Either 12 (DAC61416), 14 (DAC71416) or 16 (DAC81416).  
FSR is the DAC full-scale range. Equal to VMAX VMIN for the selected DAC output range.  
VMIN is the lowest voltage for the selected DAC output range.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.3.1.2 DAC Register Structure  
Data written to the DAC data registers is initially stored in the DAC buffer registers. Transfer of data from the  
DAC buffer registers to the active DAC registers can be configured to happen immediately (asynchronous mode)  
or initiated by a DAC trigger signal (synchronous mode). Once the DAC active registers are updated, the DAC  
outputs change to the new values.  
After a power-on or reset event, all DAC registers are set to zero code, the DAC output amplifiers are powered  
down, and the DAC outputs are clamped to ground.  
8.3.1.2.1 DAC Register Synchronous and Asynchronous Updates  
The update mode for each DAC channel is determined by the status of its corresponding SYNC-EN bit. In  
asynchronous mode, a write to the DAC data register results in an immediate update of the DAC active register  
and DAC output on a CS rising edge. In synchronous mode, writing to the DAC data register does not  
automatically update the DAC output. Instead the update occurs only after a trigger event. A DAC trigger signal  
is generated either through the LDAC bit or by the LDAC pin. The synchronous update mode enables  
simultaneous update of multiple DAC outputs. In both update modes a minimum wait time of 1 µs is required  
between DAC output updates.  
8.3.1.2.2 Broadcast DAC Register  
The DAC broadcast register enables a simultaneous update of multiple DAC outputs with the same value with a  
single register write. Broadcast operation is only possible when all DAC channels are in single-ended mode  
operation. If one or more outputs are configured in differential mode the broadcast command is ignored.  
Each DAC channel can be configured to update or remain unaffected by a broadcast command by setting the  
corresponding DAC-BRDCAST-EN bit. A register write to the BRDCAST-DATA register forces those DAC  
channels that have been configured for broadcast operation to update their DAC buffer registers to this value.  
The DAC outputs update to the broadcast value according to their synchronous mode configuration.  
8.3.1.2.3 Clear DAC Operation  
The DAC outputs are set in clear mode through the CLR pin. In clear mode each DAC data channel is set to the  
clear code associated with its configuration as shown in 8-1. A CLR pin logic low forces all DAC channels to  
clear the contents of their buffer and active registers to the clear code, and sets the analog outputs accordingly  
regardless of their synchronization setting.  
8-1. Clear DAC Value  
UNIPOLAR / BIPOLAR RANGE  
DIFFERENTIAL MODE  
CLEAR CODE  
Zero code  
Unipolar  
Unipolar  
Bipolar  
Bipolar  
No  
Yes  
No  
Midscale code  
Midscale code  
Midscale code  
Yes  
When a DAC is operating in toggle mode, a clear command sets both toggle registers to the clear value.  
8.3.2 Internal Reference  
The DAx1416 includes a precision 2.5-V bandgap reference with a typical temperature drift of 5 ppm/°C. The  
internal reference is externally available at the REF pin. An external buffer amplifier with a high impedance input  
is required to drive any external load.  
A minimum 150-nF capacitor is recommended between the reference output and GND for noise filtering. A  
compensation capacitor (330 pF, typical) should be connected between the REFCMP pin and REFGND.  
Operation from an external reference is also supported by powering down the internal reference. The external  
reference is applied to the REF pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.3.3 Device Reset Options  
8.3.3.1 Power-on-Reset (POR)  
The DACx1416 includes a power-on reset function. After the supplies have been established, a POR event is  
issued. The POR causes all registers to initialize to their default values and communication with the device is  
valid only after a 1-ms power-on-reset delay. After a POR event, the device is set in power-down mode where all  
DAC channels and internal reference are powered down and the DAC output pins are connected to ground  
through a 10-kΩinternal resistor.  
8.3.3.2 Hardware Reset  
A device hardware reset event is initiated by a minimum 500 ns logic low on the RESET pin. A hardware reset  
initiates a POR event.  
8.3.3.3 Software Reset  
A device software reset event is initiated by writing the reserved code 0x1010 to SOFT-RESET in the TRIGGER  
register. The software reset command is triggered on the CS rising edge of the instruction. A software reset  
initiates a POR event.  
8.3.4 Thermal Protection  
Because of the device DAC channel density and high drive capability, make sure that the effects of power  
dissipation on the device temperature are understood and that the device temperature does not exceed the  
maximum junction temperature.  
8.3.4.1 Analog Temperature Sensor: TEMPOUT Pin  
The DACx1416 includes an analog temperature monitor with an unbuffered output voltage that is inversely  
proportional to the device junction temperature. The TEMPOUT pin output voltage has a temperature slope of –  
4 mV/°C and a 1.34-V offset as described by 方程2.  
-4 mV  
V
=
× T + 1.34 V  
÷
TEMPOUT  
«
°C  
(2)  
where:  
T is the device junction temperature in °C.  
VTEMPOUT is the temperature monitor output voltage.  
8.3.4.2 Thermal Shutdown  
The DACx1416 incorporates a thermal shutdown that is triggered when the die temperature exceeds 140°C. A  
thermal shutdown sets the TEMP-ALM bit and causes all DAC outputs to power-down, however the internal  
reference remains powered on. The ALMOUT pin can be configured to monitor a thermal shutdown condition by  
setting the TEMPALM-EN bit. Once a thermal shutdown is triggered, the device stays in shutdown even after the  
device temperature lowers.  
The die temperature must fall below 140°C before the device can be returned to normal operation. To resume  
normal operation, the thermal alarm must be cleared through the ALM-RESET bit while the DAC channels are in  
power-down mode.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Toggle Mode  
Each DAC in the device can be independently configured to operate in toggle mode. A DAC channel in toggle  
mode incorporates two DAC registers (Register A and Register B) and can be set to switch repetitively between  
these two values. The DACx1416 toggle mode operation can be configured to introduce a dither signal to the  
DAC output, to generate a periodic signal or to implement ON/OFF signaling, among some examples.  
To update the toggle registers the following sequence should be followed:  
1. Set DAC channel in synchronous mode and disable toggle mode for that channel  
2. Write the desired Register A value to the DAC data register  
3. Issue a DAC trigger signal to load Register A  
4. Write the desired Register B value to the DAC data register  
5. Enable toggle mode to load Register B  
Once both registers are loaded with data, any of the three TOGGLE[2:0] pins can be used to switch those DACs  
configured for toggle operation back and forth between the contents of their two DAC specific registers by using  
an external clock or logic signal. A TOGGLE pin logic low updates the DAC output to the value set by Register A.  
A logic high updates the DAC output to the value set by Register B. The three TOGGLE[2:0] pins give the  
DACx1416 the option to operate with up to three toggle rates.  
Additionally, the device can be configured for software controlled toggle operation by setting the SOFTTOGGLE-  
EN bit. In this mode, any of the three AB-TOG[2:0] bits can be used as a toggle control signal. Setting the AB-  
TOG bit to 1 enables Register B and clearing it to 0 enables Register A.  
8.4.2 Differential Mode  
Each DAC pair in the device, can be independently configured to operate as a differential output pair. The  
differential output of a DACx-y pair is updated by writing to the DACx channel. For proper operation, the two  
DAC pairs must be configured to the same output range prior to enabling differential mode. 8-2 and 8-3  
show the ideal differential output voltages (VDIFF) and common mode voltages (VCM) for a DAC differential pair  
configured for ±20-V and 0 to 40-V operation, respectively.  
After being configured as a differential output, the DACx-y pair can be set for toggle operation by updating the  
DACx toggle registers as described in 8.4.1.  
Imbalances between the two differential signals result in common-mode and amplitude errors. The device  
incorporates an offset register that enables the user to introduce a voltage offset to the DACy channel of the  
DACx-y differential pair to compensate for a DC offset error between the two channels. The offset compensation  
gives approximately a ±0.2%FSR adjustment window. The differential DAC data register must be rewritten after  
an update to the offset register.  
40  
30  
40  
30  
20  
20  
10  
10  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
DACx  
DACy  
VCM  
VDIFF  
DACx  
DACy  
VCM  
VDIFF  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
D045  
D046  
8-2. Differential Bipolar Output (16-Bit):  
8-3. Differential Unipolar Output (16-Bit):  
±20-V Output Range  
0-V to 40-V Output Range  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.4.3 Power-Down Mode  
The DACx1416 DAC output amplifiers and internal reference power-down status can be individually configured  
and monitored though the PWDWN registers. Setting a DAC channel in power-down mode disables the output  
amplifier and clamps the output pin to ground through an internal 10-kΩresistor.  
The DAC data registers are not cleared when the DAC goes into power-down which makes it possible to return  
to the same output voltage upon return to normal operation. The DAC data registers can also be updated while  
in power-down mode.  
After a power-on or reset event all the DAC channels and the internal reference are in power-down mode. The  
entire device can be configured into power-down or active modes through the DEV-PWDWN bit.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.5 Programming  
The DACx1416 family of devices is controlled through a flexible four-wire serial interface that is compatible with  
SPI type interfaces used on many microcontrollers and DSP controllers. The interface provides access to the  
DACx1416 registers and can be configured to daisy-chain multiple devices for write operations. The DACx1416  
incorporates an optional error checking mode to validate SPI data communication integrity in noisy  
environments.  
8.5.1 Stand-Alone Operation  
A serial interface access cycle is initiated by asserting the CS pin low. The serial clock SCLK can be a  
continuous or gated clock. SDI data are clocked on SCLK falling edges. A regular serial interface access cycle is  
24 bits long with error checking disabled and 32 bits long with error checking enabled, thus the CS pin must stay  
low for at least 24 or 32 SCLK falling edges. The access cycle ends when the CS pin is de-asserted high. If the  
access cycle contains less than then minimum clock edges, the communication is ignored. If the access cycle  
contains more than the minimum clock edges, only the first 24 or 32 bits are used by the device. When CS is  
high, the SCLK and SDI signals are blocked and the SDO is in a Hi-Z state.  
In an error checking disabled access cycle (24-bits long) the first byte input to SDI is the instruction cycle which  
identifies the request as a read or write command and the 6-bit address to be accessed. The last 16 bits in the  
cycle form the data cycle.  
8-2. Serial Interface Access Cycle  
BIT  
23  
FIELD  
DESCRIPTION  
Identifies the communication as a read or write command to the address  
register. R/W = 0 sets a write operation. R/W = 1 sets a read operation.  
RW  
22  
x
Don't care bit.  
Register address. Specifies the register to be accessed during the read or  
write operation.  
21-16  
A[5:0]  
Data cycle bits. If a write command, the data cycle bits are the values to be  
written to the register with address A[5:0]. If a read command, the data cycle  
bits are don't care values.  
15-0  
DI[15:0]  
Read operations require that the SDO pin is first enabled by setting the SDO-EN bit. A read operation is initiated  
by issuing a read command access cycle. After the read command, a second access cycle must be issued to get  
the requested data. Data are clocked out on SDO pin either on the falling edge or rising edge of SCLK according  
to the FSDO bit.  
8-3. SDO Output Access Cycle  
BIT  
23  
FIELD  
DESCRIPTION  
RW  
Echo RW from previous access cycle.  
22  
x
Echo bit 22 from previous access cycle.  
21-16  
15-0  
A[5:0]  
DO[15:0]  
Echo address from previous access cycle.  
Readback data requested on previous access cycle.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.5.1.1 Streaming Mode Operation  
Since updating the sixteen channels data registers requires a large amount of data to be passed to the device,  
the device supports streaming mode. In streaming mode the DAC data registers can be written to the device  
without providing an instruction command for each data register. Streaming mode is enabled by setting the STR-  
EN bit. Once enabled the streaming operation is implemented by holding the CS active and continuing to shift  
new data into the device.  
The instruction cycle includes the starting address. The device starts writing to this address and automatically  
increments the address as long as CS is asserted. If the last DAC data register address has been reached and  
CS is still asserted, the data for this address is overwritten with the new data.  
/CS  
1
2
X
3
4
5
6
7
8
9
23  
24  
25  
39  
40  
41  
55  
56  
57  
71  
72  
SCLK  
SDI  
STREAM WRITE COMMAND  
A5 A4 A3 A2  
ADDRESS N  
ADDRESS N+1  
ADDRESS N+2  
ADDRESS N+3  
W
A1  
A0  
D15 œ D0  
D15 œ D0  
D15 œ D0  
D15 œ D0  
SDO  
8-4. Serial Interface Streaming Cycle  
8.5.2 Daisy-Chain Operation  
For systems that contain more than one DACx1416 devices, the SDO pin can be used to daisy-chain them  
together. The SDO pin must be enabled by setting the SDO-EN bit before initiating the daisy-chain operation.  
Daisy-chain operation is useful in reducing the number of serial interface lines.  
The first falling edge on the CS pin starts the operation cycle. If more than 24 SCLK pulses are applied while the  
CS pin is kept low, the data ripples out of the shift register and is clocked out on the SDO pin either on the falling  
edge or rising edge of SCLK according to the FSDO bit. By connecting the SDO output of the first device to the  
SDI input of the next device in the chain, a multiple-device interface is constructed. Each device in the system  
requires 24 clock pulses. As a result the total number of clock cycles must be equal to 24 × N, where N is the  
total number of DACx1416 devices in the daisy chain. When the serial transfer to all devices is complete the CS  
signal is taken high. This action transfers the data from the SPI shift registers to the internal registers of each  
device in the daisy chain and prevents any further data from being clocked into the input shift register. Daisy-  
chain operation is not supported while in streaming mode.  
C
B
A
DACx1416  
DACx1416  
DACx1416  
SDO  
SDO  
SDO  
SDI  
SDI  
SDI  
SCLK  
SCLK  
SCLK  
CS  
CS  
CS  
8-5. Daisy-Chain Layout  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.5.3 Frame Error Checking  
If the DACx1416 is used in a noisy environment, error checking can be used to check the integrity of SPI data  
communication between the device and the host processor. This feature is enabled by setting the CRC-EN bit.  
The error checking scheme is based on the CRC-8-ATM (HEC) polynomial x8 + x2 + x + 1 (that is, 100000111).  
When error checking is enabled, the serial interface access cycle width is 32 bits. The normal 24-bit SPI data is  
appended with an 8-bit CRC polynomial by the host processor before feeding it to the device. In all serial  
interface readback operations the CRC polynomial is output on the SDO pin as part of the 32-bit cycle.  
8-4. Error Checking Serial Interface Access Cycle  
BIT  
31  
FIELD  
DESCRIPTION  
Identifies the communication as a read or write command to the address  
register. R/W = 0 sets a write operation. R/W = 1 sets a read operation.  
RW  
30  
CRC-ERROR  
A[5:0]  
Reserved bit. Set to zero.  
Register address. Specifies the register to be accessed during the read or  
write operation.  
29-24  
Data cycle bits. If a write command, the data cycle bits are the values to be  
written to the register with address A[5:0]. If a read command, the data cycle  
bits are don't care values.  
23-8  
7-0  
DI[15:0]  
CRC  
8-bit CRC polynomial.  
The DACx1416 decodes the 32-bit access cycle to compute the CRC remainder on CS rising edges. If no error  
exists, the CRC remainder is zero and data are accepted by the device.  
A write operation failing the CRC check causes the data to be ignored by the device. After the write command, a  
second access cycle can be issued to determine the error checking results (CRC-ERROR bit) on the SDO pin.  
If there is a CRC error, the CRC-ALM bit of the status register is set to 1. The ALMOUT pin can be configured to  
monitor a CRC error by setting the CRCALM-EN bit.  
8-5. Write Operation Error Checking Cycle  
BIT  
31  
FIELD  
DESCRIPTION  
Echo RW from previous access cycle (RW = 0).  
Returns a 1 when a CRC error is detected, 0 otherwise.  
Echo address from previous access cycle.  
Echo data from previous access cycle.  
RW  
30  
CRC-ERROR  
A[5:0]  
29-24  
23-8  
7-0  
DO[15:0]  
CRC  
Calculated CRC value of bits 31:8.  
A read operation must be followed by a second access cycle to get the requested data on the SDO pin. The  
error check result (CRC-ERROR bit) from the read command is output on the SDO pin.  
As in the case of a write operation failing the CRC check, the CRC-ALM bit of the status register is set to 1 and  
the ALMOUT pin, if configured for CRC alerts, is set low.  
8-6. Read Operation Error Checking Cycle  
BIT  
31  
FIELD  
DESCRIPTION  
Echo RW from previous access cycle (RW = 1).  
Returns a 1 when a CRC error is detected, 0 otherwise.  
Echo address from previous access cycle.  
Readback data requested on previous access cycle.  
Calculated CRC value of bits 31:8.  
RW  
30  
CRC-ERROR  
A[5:0]  
29-24  
23-8  
7-0  
DO[15:0]  
CRC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6 Register Maps  
8-7 lists the memory-mapped registers for the device. All register offset addresses not listed in 8-7 should  
be considered as reserved locations and the register contents should not be modified.  
8-7. DACx1416 Registers  
Offset  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
Acronym  
NOP  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
NOP Register  
DEVICEID  
STATUS  
Device ID Register  
Status Register  
SPICONFIG  
GENCONFIG  
BRDCONFIG  
SYNCCONFIG  
TOGGCONFIG0  
TOGGCONFIG1  
DACPWDWN  
DACRANGE0  
DACRANGE1  
DACRANGE2  
DACRANGE3  
TRIGGER  
BRDCAST  
DAC0  
SPI Configuration Register  
General Configuration Register  
Broadcast Configuration Register  
Sync Configuration Register  
DAC[15:8] Toggle Configuration Register  
DAC[7:0] Toggle Configuration Register  
DAC Power-Down Register  
DAC[15:12] Range Register  
DAC[11:8] Range Register  
DAC[7:4] Range Register  
DAC[3:0] Range Register  
Trigger Register  
Broadcast Data Register  
DAC0 Data Register  
DAC1  
DAC1 Data Register  
DAC2  
DAC2 Data Register  
DAC3  
DAC3 Data Register  
DAC4  
DAC4 Data Register  
DAC5  
DAC5 Data Register  
DAC6  
DAC6 Data Register  
DAC7  
DAC7 Data Register  
DAC8  
DAC8 Data Register  
DAC9  
DAC9 Data Register  
DAC10  
DAC10 Data Register  
DAC11  
DAC11 Data Register  
DAC12  
DAC12 Data Register  
DAC13  
DAC13 Data Register  
DAC14  
DAC14 Data Register  
DAC15  
DAC15 Data Register  
OFFSET0  
OFFSET1  
OFFSET2  
OFFSET3  
DAC[14-15;12-13] Differential Offset Register  
DAC[10-11;8-9] Differential Offset Register  
DAC[6-7;4-5] Differential Offset Register  
DAC[2-3;0-1] Differential Offset Register  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
Complex bit access types are encoded to fit into small table cells. 8-8 shows the codes that are used for  
access types in this section.  
8-8. Access Type Codes  
Access Type  
Code  
R
Description  
Read Type  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
Register Array Variables  
When these variables are used in a register name,  
an offset, or an address, they refer to the value of a  
register array where the register is part of a group  
of repeating registers. The register groups form a  
hierarchical structure and the array is represented  
with a formula.  
i,j,k,l,m,n  
When this variable is used in a register name, an  
offset, or an address it refers to the value of a  
register array.  
y
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.1 NOP Register (Offset = 00h) [reset = 0000h]  
NOP is shown in 8-6 and described in 8-9.  
Return to Summary Table.  
8-6. NOP Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NOP  
W-0h  
8-9. NOP Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
NOP  
W
0h  
No operation. Write 0000h for proper no-operation command.  
8.6.2 DEVICEID Register (Offset = 01h) [reset = ----h]  
DEVICEID is shown in 8-7 and described in 8-10.  
Return to Summary Table.  
8-7. DEVICEID Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DEVICEID  
R----h  
4
3
DEVICEID  
R----h  
VERSIONID  
R-0h  
8-10. DEVICEID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Device ID  
DAC81416: 29Ch  
DAC71416: 28Ch  
DAC61416: 24Ch  
15-2  
1-0  
DEVICEID  
R
---h  
VERSIONID  
R
0h  
Version ID. Subject to change.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.3 STATUS Register (Offset = 02h) [reset = 0000h]  
STATUS is shown in 8-8 and described in 8-11.  
Return to Summary Table.  
8-8. STATUS Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
RESERVED  
R-0h  
5
4
3
2
1
0
RESERVED  
R-0h  
CRC-ALM  
R-0h  
DAC-BUSY  
R-0h  
TEMP-ALM  
R-0h  
8-11. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-3  
RESERVED  
CRC-ALM  
R
0h  
This bit is reserved.  
2
1
R
0h  
CRC-ALM = 1 indicates a CRC error.  
DAC-BUSY  
R
0h  
DAC-BUSY = 1 indicates DAC registers are not ready for updates.  
TEMP-ALM = 1 indicates die temperature is over +140°C. A thermal  
alarm event forces the DAC outputs to go into power-down mode.  
0
TEMP-ALM  
R
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.4 SPICONFIG Register (Offset = 03h) [reset = 0AA4h]  
SPICONFIG is shown in 8-9 and described in 8-12.  
Return to Summary Table.  
8-9. SPICONFIG Register  
15  
7
14  
6
13  
5
12  
11  
10  
9
CRCALM-EN  
R/W-1h  
1
8
RESERVED  
R-0h  
TEMPALM-EN DACBUSY-EN  
RESERVED  
R-0h  
R/W-1h  
3
R/W-0h  
2
4
0
RESERVED SOFTTOGGLE- DEV-PWDWN  
EN  
CRC-EN  
STR-EN  
SDO-EN  
FSDO  
RESERVED  
R-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R-0h  
8-12. SPICONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11  
RESERVED  
R
0h  
This bit is reserved.  
TEMPALM-EN  
R/W  
1h  
When set to 1 a thermal alarm triggers the ALMOUT pin.  
When set to 1 the ALMOUT pin is set between DAC output updates.  
Contrary to other alarm events, this alarm resets automatically.  
10  
DACBUSY-EN  
R/W  
0h  
9
8
7
6
CRCALM-EN  
RESERVED  
R/W  
R
1h  
0h  
1h  
0h  
When set to 1 a CRC error triggers the ALMOUT pin.  
This bit is reserved.  
RESERVED  
R
This bit is reserved.  
SOFTTOGGLE-EN  
R/W  
When set to 1 enables soft toggle operation.  
DEV-PWDWN = 1 sets the device in power-down mode  
DEV-PWDWN = 0 sets the device in active mode  
5
DEV-PWDWN  
R/W  
1h  
4
3
2
CRC-EN  
STR-EN  
SDO-EN  
R/W  
R/W  
R/W  
0h  
0h  
1h  
When set to 1 frame error checking is enabled.  
When set to 1 streaming mode operation is enabled.  
When set to 1 the SDO pin is operational.  
Fast SDO bit (half-cycle speedup). When 0, SDO updates during  
SCLK rising edges. When 1, SDO updates during SCLK falling  
edges.  
1
0
FSDO  
R/W  
R
0h  
0h  
RESERVED  
This bit is reserved.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.5 GENCONFIG Register (Offset = 04h) [reset = 7F00h]  
GENCONFIG is shown in 8-10 and described in 8-13.  
Return to Summary Table.  
8-10. GENCONFIG Register  
15  
RESERVED  
R-0h  
14  
REF-PWDWN  
R/W-1h  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-1h  
7
4
3
DAC-14-15-  
DIFF-EN  
DAC-12-13-  
DIFF-EN  
DAC-10-11-  
DIFF-EN  
DAC-8-9-DIFF- DAC-6-7-DIFF- DAC-4-5-DIFF- DAC-2-3-DIFF- DAC-0-1-DIFF-  
EN  
EN  
EN  
EN  
EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-13. GENCONFIG Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15  
R
0h  
This bit is reserved.  
REF-PWDWN = 1 powers down the internal reference  
REF-PWDWN = 0 activates the internal reference  
14  
REF-PWDWN  
RESERVED  
R/W  
R
1h  
1h  
13-8  
This bit is reserved.  
7
6
5
4
3
2
1
0
DAC-14-15-DIFF-EN  
DAC-12-13-DIFF-EN  
DAC-10-11-DIFF-EN  
DAC-8-9-DIFF-EN  
DAC-6-7-DIFF-EN  
DAC-4-5-DIFF-EN  
DAC-2-3-DIFF-EN  
DAC-0-1-DIFF-EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
When set to 1 the corresponding DAC pair is set to operate in  
differential mode. The DAC data registers must be rewritten after  
enabling or disabling differential operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.6 BRDCONFIG Register (Offset = 05h) [reset = FFFFh]  
BRDCONFIG is shown in 8-11 and described in 8-14.  
Return to Summary Table.  
8-11. BRDCONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
DAC15-  
DAC14-  
DAC13-  
DAC12-  
DAC11-  
DAC10-  
DAC9-  
DAC8-  
BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN  
R/W-1h  
7
R/W-1h  
6
R/W-1h  
5
R/W-1h  
4
R/W-1h  
3
R/W-1h  
2
R/W-1h  
1
R/W-1h  
0
DAC7-  
DAC6-  
DAC5-  
DAC4-  
DAC3-  
DAC2-  
DAC1-  
DAC0-  
BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
8-14. BRDCONFIG Register Field Descriptions  
Bit  
15  
14  
13  
12  
11  
10  
9
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
Description  
DAC15-BRDCAST-EN  
DAC14-BRDCAST-EN  
DAC13-BRDCAST-EN  
DAC12-BRDCAST-EN  
DAC11-BRDCAST-EN  
DAC10-BRDCAST-EN  
DAC9-BRDCAST-EN  
DAC8-BRDCAST-EN  
DAC7-BRDCAST-EN  
DAC6-BRDCAST-EN  
DAC5-BRDCAST-EN  
DAC4-BRDCAST-EN  
DAC3-BRDCAST-EN  
DAC2-BRDCAST-EN  
DAC1-BRDCAST-EN  
DAC0-BRDCAST-EN  
When set to 1 the corresponding DAC is set to update its output to  
the value set in the BRDCAST register. All DAC channels must be  
configured in single-ended mode for broadcast operation. If one or  
more outputs are configured in differential mode the broadcast mode  
is ignored.  
8
7
6
When cleared to 0 the corresponding DAC output remains unaffected  
by a BRDCAST command.  
5
4
3
2
1
0
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.7 SYNCCONFIG Register (Offset = 06h) [reset = 0000h]  
SYNCCONFIG is shown in 8-12 and described in 8-15.  
Return to Summary Table.  
8-12. SYNCCONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
DAC15-SYNC- DAC14-SYNC- DAC13-SYNC- DAC12-SYNC- DAC11-SYNC- DAC10-SYNC- DAC9-SYNC-  
DAC8-SYNC-  
EN  
EN  
R/W-0h  
7
EN  
R/W-0h  
6
EN  
R/W-0h  
5
EN  
R/W-0h  
4
EN  
R/W-0h  
3
EN  
R/W-0h  
2
EN  
R/W-0h  
1
R/W-0h  
0
DAC7-SYNC-  
EN  
DAC6-SYNC-  
EN  
DAC5-SYNC-  
EN  
DAC4-SYNC-  
EN  
DAC3-SYNC-  
EN  
DAC2-SYNC-  
EN  
DAC1-SYNC-  
EN  
DAC0-SYNC-  
EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-15. SYNCCONFIG Register Field Descriptions  
Bit  
15  
14  
13  
12  
11  
10  
9
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Description  
DAC15-SYNC-EN  
DAC14-SYNC-EN  
DAC13-SYNC-EN  
DAC12-SYNC-EN  
DAC11-SYNC-EN  
DAC10-SYNC-EN  
DAC9-SYNC-EN  
DAC8-SYNC-EN  
DAC7-SYNC-EN  
DAC6-SYNC-EN  
DAC5-SYNC-EN  
DAC4-SYNC-EN  
DAC3-SYNC-EN  
DAC2-SYNC-EN  
DAC1-SYNC-EN  
DAC0-SYNC-EN  
When set to 1 the corresponding DAC output is set to update in  
response to an LDAC trigger (synchronous mode).  
When cleared to 0 the corresponding DAC output is set to update  
immediately (asynchronous mode).  
8
7
6
5
4
3
2
1
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.8 TOGGCONFIG0 Register (Offset = 07h) [reset = 0000h]  
TOGGCONFIG0 is shown in 8-13 and described in 8-16.  
Return to Summary Table.  
8-13. TOGGCONFIG0 Register  
15  
14  
13  
12  
11  
10  
9
8
DAC15-AB-TOGG-EN  
R/W-0h  
DAC14-AB-TOGG-EN  
R/W-0h  
DAC13-AB-TOGG-EN  
R/W-0h  
DAC12-AB-TOGG-EN  
R/W-0h  
7
6
5
4
3
2
1
0
DAC11-AB-TOGG-EN  
R/W-0h  
DAC10-AB-TOGG-EN  
R/W-0h  
DAC9-AB-TOGG-EN  
R/W-0h  
DAC8-AB-TOGG-EN  
R/W-0h  
8-16. TOGGCONFIG0 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
15-14  
13-12  
11-10  
9-8  
DAC15-AB-TOGG-EN  
DAC14-AB-TOGG-EN  
DAC13-AB-TOGG-EN  
DAC12-AB-TOGG-EN  
DAC11-AB-TOGG-EN  
DAC10-AB-TOGG-EN  
DAC9-AB-TOGG-EN  
DAC8-AB-TOGG-EN  
0h  
0h  
Enables toggle mode operation and configures the toggle pin or soft  
toggle bit:  
0h  
0h  
00 = Toggle mode disabled  
01 = Toggle mode enabled: TOGGLE0  
10 = Toggle mode enabled: TOGGLE1  
11 = Toggle mode enabled: TOGGLE2  
7-6  
0h  
5-4  
0h  
3-2  
0h  
1-0  
0h  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.9 TOGGCONFIG1 Register (Offset = 08h) [reset = 0000h]  
TOGGCONFIG1 is shown in 8-14 and described in 8-17.  
Return to Summary Table.  
8-14. TOGGCONFIG1 Register  
15  
14  
13  
12  
11  
10  
9
8
DAC7-AB-TOGG-EN  
R/W-0h  
DAC6-AB-TOGG-EN  
R/W-0h  
DAC5-AB-TOGG-EN  
R/W-0h  
DAC4-AB-TOGG-EN  
R/W-0h  
7
6
5
4
3
2
1
0
DAC3-AB-TOGG-EN  
R/W-0h  
DAC2-AB-TOGG-EN  
R/W-0h  
DAC1-AB-TOGG-EN  
R/W-0h  
DAC0-AB-TOGG-EN  
R/W-0h  
8-17. TOGGCONFIG1 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
15-14  
13-12  
11-10  
9-8  
DAC7-AB-TOGG-EN  
DAC6-AB-TOGG-EN  
DAC5-AB-TOGG-EN  
DAC4-AB-TOGG-EN  
DAC3-AB-TOGG-EN  
DAC2-AB-TOGG-EN  
DAC1-AB-TOGG-EN  
DAC0-AB-TOGG-EN  
0h  
0h  
Enables toggle mode operation and configures the toggle pin or soft  
toggle bit:  
0h  
0h  
00 = Toggle mode disabled  
01 = Toggle mode enabled: TOGGLE0  
10 = Toggle mode enabled: TOGGLE1  
11 = Toggle mode enabled: TOGGLE2  
7-6  
0h  
5-4  
0h  
3-2  
0h  
1-0  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.10 DACPWDWN Register (Offset = 09h) [reset = FFFFh]  
DACPWDWN is shown in 8-15 and described in 8-18.  
Return to Summary Table.  
8-15. DACPWDWN Register  
15  
14  
13  
12  
11  
10  
9
8
DAC15-  
DAC14-  
DAC13-  
DAC12-  
DAC11-  
DAC10-  
DAC9-PWDWN DAC8-PWDWN  
PWDWN  
PWDWN  
PWDWN  
PWDWN  
PWDWN  
PWDWN  
R/W-1h  
7
R/W-1h  
6
R/W-1h  
5
R/W-1h  
4
R/W-1h  
3
R/W-1h  
2
R/W-1h  
1
R/W-1h  
0
DAC7-PWDWN DAC6-PWDWN DAC5-PWDWN DAC4-PWDWN DAC3-PWDWN DAC2-PWDWN DAC1-PWDWN DAC0-PWDWN  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
8-18. DACPWDWN Register Field Descriptions  
Bit  
15  
14  
13  
12  
11  
10  
9
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
Description  
DAC15-PWDWN  
DAC14-PWDWN  
DAC13-PWDWN  
DAC12-PWDWN  
DAC11-PWDWN  
DAC10-PWDWN  
DAC9-PWDWN  
DAC8-PWDWN  
DAC7-PWDWN  
DAC6-PWDWN  
DAC5-PWDWN  
DAC4-PWDWN  
DAC3-PWDWN  
DAC2-PWDWN  
DAC1-PWDWN  
DAC0-PWDWN  
8
When set to 1 the corresponding DAC is in power-down mode and  
its output is connected to GND through a 10-kΩinternal resistor.  
7
6
5
4
3
2
1
0
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.11 DACRANGEn Register (Offset = 0Ah - 0Dh) [reset = 0000h]  
DACRANGEn is shown in 8-16 and described in 8-19.  
Return to Summary Table.  
8-16. DACRANGEn Register  
15  
7
14  
13  
12  
11  
10  
9
8
0
DACa-RANGE[3:0]  
W-0h  
DACb-RANGE[3:0]  
W-0h  
6
5
4
3
2
1
DACc-RANGE[3:0]  
W-0h  
DACd-RANGE[3:0]  
W-0h  
8-19. DACRANGEn Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-8  
7-4  
DACa-RANGE[3:0]  
DACb-RANGE[3:0]  
DACc-RANGE[3:0]  
W
0h  
Sets the output range for the corresponding DAC.  
0000 = 0 to 5 V  
W
0h  
0001 = 0 to 10 V  
W
0h  
0010 = 0 to 20 V  
0100 = 0 to 40 V  
1001 = -5 V to +5 V  
1010 = -10 V to +10 V  
1100 = -20 V to +20 V  
1110 = -2.5 V to +2.5 V  
All others: invalid  
3-0  
DACd-RANGE[3:0]  
W
0h  
The two outputs of a differential DAC pair must be configured to the  
same output range prior to setting them up as a differential pair.  
a: 15, 11, 7 or 3; b: 14, 10, 6 or 2; c: 13, 9, 5 or 1; d: 12, 8, 4 or 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.12 TRIGGER Register (Offset = 0Eh) [reset = 0000h]  
TRIGGER is shown in 8-17 and described in 8-20.  
Return to Summary Table.  
8-17. TRIGGER Register  
15  
14  
13  
12  
RESERVED  
W-0h  
11  
10  
2
9
1
8
ALM-RESET  
W-0h  
7
6
5
4
3
0
AB-TOG2  
W-0h  
AB-TOG1  
W-0h  
AB-TOG0  
W-0h  
LDAC  
W-0h  
SOFT-RESET[3:0]  
W-0h  
8-20. TRIGGER Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-9  
RESERVED  
W
0h  
This bit is reserved  
Set this bit to 1 to clear an alarm event. Not applicable for a DAC-  
BUSY alarm event.  
8
7
ALM-RESET  
W
W
0h  
0h  
If soft toggle is enabled set, this bit controls the toggle between  
values for those DACs that have been set in toggle mode 2 in the  
TOGGCONFIG register. Set to 1 to update to Register B and clear to  
0 for Register A.  
AB-TOG2  
AB-TOG1  
AB-TOG0  
If soft toggle is enabled set, this bit controls the toggle between  
values for those DACs that have been set in toggle mode 1 in the  
TOGGCONFIG register. Set to 1 to updated to Register B and clear  
to 0 for Register A.  
6
5
W
W
0h  
0h  
If soft toggle is enabled set, this bit controls the toggle between  
values for those DACs that have been set in toggle mode 0 in the  
TOGGCONFIG register. Set to 1 to update to Register B and clear to  
0 for Register A.  
Set this bit to 1 to synchronously load those DACs who have been  
set in synchronous mode in the SYNCCONFIG register.  
4
LDAC  
W
W
0h  
0h  
When set to the reserved code 1010 resets the device to its default  
state.  
3-0  
SOFT-RESET[3:0]  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.13 BRDCAST Register (Offset = 0Fh) [reset = 0000h]  
BRDCAST is shown in 8-18 and described in 8-21.  
Return to Summary Table.  
8-18. BRDCAST Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BRDCAST-DATA[15:0]  
R/W-0h  
8-21. BRDCAST Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Writing to the BRDCAST register forces those DAC channels that  
have been set to broadcast in the BRDCONFIG register to update its  
data register data to the BRDCAST-DATA one.  
Data is MSB aligned in straight binary format and follows the format  
below:  
15-0  
BRDCAST-DATA[15:0]  
R/W  
0h  
DAC81416: { DATA[15:0] }  
DAC71416: { DATA[13:0], x, x }  
DAC61416: { DATA[11:0], x, x, x, x}  
x Don 't care bits  
8.6.14 DACn Register (Offset = 10h - 1Fh) [reset = 0000h]  
DACn is shown in 8-19 and described in 8-22.  
Return to Summary Table.  
8-19. DACn Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DACn-DATA[15:0]  
R/W-0h  
8-22. DACn Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Stores the 16-, 14- or 12-bit data to be loaded to DACn in MSB  
aligned straight binary format. In differential DAC mode data is  
loaded into the lowest-valued DAC in the DAC pair (in pair DACxy,  
data is loaded into DACx and writes to DACy are ignored).  
Data follows the format below:  
15-0  
DACn-DATA[15:0]  
R/W  
0h  
DAC81416: { DATA[15:0] }  
DAC71416: { DATA[13:0], x, x }  
DAC61416: { DATA[11:0], x, x, x, x}  
x Don 't care bits  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.6.15 OFFSETn Register (Offset = 20h - 23h) [reset = 0000h]  
OFFSETn is shown in 8-20 and described in 8-23.  
Return to Summary Table.  
8-20. OFFSETn Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
OFFSETab[7:0]  
R/W-0h  
4
3
OFFSETcd[7:0]  
R/W-0h  
8-23. OFFSETn Register Field Descriptions  
Bit  
15-8  
Field  
OFFSETab[7:0]  
Type  
Reset  
Description  
R/W  
0h  
Provides offset adjustment to DACy in the differential DACx-y pair in  
two 's complement format.  
Data follows the format below:  
DAC81416:  
Format: { OFFSET[7:0] }  
Range: -128 LSB to +127 LSB  
DAC71416:  
Format: { OFFSET[5:0], x, x }  
Range: -32 LSB to +31 LSB  
DAC61416:  
7-0  
OFFSETcd[7:0]  
R/W  
0h  
Format: { OFFSET[3:0], x, x, x, x}  
Range: -8 LSB to +7 LSB  
x Don 't care bits  
The differential DAC data register must be rewritten after updating  
the offset register.  
ab: 14-15, 10-11, 6-7 or 2-3; cd: 12-13, 8-9, 4-5 or 0-1  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
One of the primary applications of the DACx1416 family is Mach Zehnder Modulator (MZM) biasing, employed in  
Optical Line Cards and Optical Modules. With high-voltage, high-current and differential output features, the  
DACx1416 family can be used for biasing both LiNbO3 and InP type modulators. With the help of the toggle  
mode and multiple corresponding input pins, the required dither waveform for such applications can be  
generated without involving SPI programming. The small package size and integrated reference minimize the  
total footprint of such applications.  
9.2 Typical Application  
MZM  
PR  
Transmitted  
π/2  
MZM  
Signal  
LASER  
BS  
BC  
MZM  
MZM  
π/2  
IQ Modulator  
R1  
R2  
Bias+  
Bias-  
Dither - I  
TOGGLE0  
TOGGLE1  
OUT0  
OUT1  
C
DACx1416  
Dither - Q  
MZM: Mach-Zehnder Modulator  
BS: Beam Splitter  
PR: Polarization Rotator  
BC: Beam Combiner  
9-1. Biasing a Mach Zehnder Modulator  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
9.2.1 Design Requirements  
Designing biasing circuits that are made to match both types of MZM technologies (LiNbO3 and InP) requires  
high voltage and current ranges as shown in 9-1. The Optical Internetworking Forum (OIF) recommends four  
differential IQ bias and two differential phase bias inputs, as shown in 9-1. This differential signaling scheme  
helps in minimizing the crosstalk and noise between channels, which may otherwise result in a complicated bias  
control algorithm. While an ideal dither tone should be a sine wave, generating a sine wave can be cumbersome  
in a largely digital circuit domain. A square wave is relatively easier to generate through digital circuits, and can  
also be used, provided that the bandwidth of this dither signal is lower than the low cutoff frequency of the  
receiver (that is, 100 kHz or 1 MHz as per OIF). Passive RC filters with cutoff frequency lower than 100 kHz can  
be used at the DAC output for LiNbO3 modulators, which have very small bias current requirement. For InP  
modulators that are mainly used with optical modules, typically requiring a receiver low cutoff frequency of MHz,  
choose RC values so that the power dissipation across the resistors is small.  
For smooth detection of the dither signal at the MZM output, use two orthogonal dither frequency sources for the  
I and Q arms. The amplitude of the dither waveform is typically 0.5% to 2.5% of the dc bias voltage, which is  
mainly governed by the design implementation.  
9-1. Requirements of MZM Biasing Circuit  
PARAMETER  
VALUE  
DC range  
Up to ±18 V  
Dither amplitude  
Dither frequency  
Dither shape  
40 mV to 500 mV  
100 Hz to 100 kHz  
Sine or square  
Up to 25 mA (for InP MZM)  
2
Bias current  
Number of dither frequencies  
Output type  
Differential (6 pairs)  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9-1 provides the simplified circuit diagram for biasing a MZM for a Dither-type Bias Control circuit. As shown,  
this cicuit requires four differential input pairs for IQ biasing, and two differential input pairs for phase biasing. To  
bias a LiNbO3 MZM, the voltage can be as high as ±18 V, whereas the current requirement is of the order of few  
micro amperes. The low cutoff frequency of the receiver is typically 100 kHz, and hence, the bandwidth of the  
dither signals should be well below this frequency. Be aware that only the IQ bias inputs require the dither signal,  
and not the phase bias. The DACx1416 featuresa toggle mode wherein the outputs can be configured to provide  
a square wave imposed on a dc bias. This mode requires setting the HIGH and LOW codes for the square wave  
and the transition happens in sync with the selected toggle input pin. The pseudocode to achieve the dither  
output using the toggle function is provided below.  
//SYNTAX: WRITE <REGISTER NAME>,<DATA>  
//Power-on Device, Disable Soft-toggle  
WRITE SPICONFIG,0x0A84  
//Select Range for all 12 channels as ±10V  
WRITE DACRANGE2, 0xAAAA  
WRITE DACRANGE3, 0xAAAA  
WRITE DACRANGE4, 0xAAAA  
//Power-on DAC Channels 0 - 11  
WRITE DACPWDWN,0xF000  
//Write HIGH code to Register A of all IQ Bias Differential Pairs  
WRITE DAC0,0xXXXX  
WRITE DAC2,0xXXXX  
WRITE DAC4,0xXXXX  
WRITE DAC6,0xXXXX  
//Write Data to Phase Bias Channels  
WRITE DAC8,0xXXXX  
WRITE DAC10,0xXXXX  
//Enable Sync for All Differential Pairs  
WRITE SYNCCONFIG,0x0FFF  
//Enable Software LDAC  
WRITE TRIGGER,0x0002  
//Write LOW code to Register B of all IQ Bias Differential Pairs  
WRITE DAC_DATA0,0xXXXX  
WRITE DAC_DATA0,0xXXXX  
WRITE DAC_DATA0,0xXXXX  
WRITE DAC_DATA0,0xXXXX  
//Turn Toggle Mode ON for All IQ Differential Pairs  
//DAC11-10:Y/Phase Bias , DAC9-8:Y/I Bias - TOGG0, DAC7-6:Y/Q Bias - TOGG 1  
//DAC5-4:Y/Phase Bias , DAC3-2:Y/I Bias - TOGG0, DAC1-0:Y/Q Bias - TOGG 1  
WRITE TOGGCONFIG0,0x0005  
WRITE TOGGCONFIG1,0xA05A  
//Method to Modify the DC Value of Any IQ Differential Pair  
//Turn Off Toggle Mode for that Channel (e.g. DAC0-1)  
WRITE TOGGCONFIG1,0xA050  
//Turn Off Sync for the Channel  
WRITE SYNCCONFIG,0x0FFC  
//Write HIGH code to Register A of the Channel Pair  
WRITE DAC0,0xXXXX  
//Turn On Sync for the Channel Pair  
WRITE SYNCCONFIG,0x0FFF  
//Turn On Toggle for the Channel Pair  
WRITE TOGGCONFIG1,0xA05A  
The dither frequencies can be set at 1 kHz and 2 kHz so that a single-pole RC low-pass filter can provide  
sufficient attenuation at 100 kHz. For example, when R1 = R2 = 10 kΩ and C = 0.01 µF, an attenuation of  
approximately 40 dB is obtained at 100 kHz.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
9.2.3 Application Curves  
0.6  
0.4  
0.2  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-0.2  
-0.4  
-0.6  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Time (ms)  
1
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (kHz)  
dac8  
dac8  
Toggle frequency = 10 kHz  
Toggle frequency = 10 kHz, no filter at output  
9-2. Toggle AC Amplitude Transition  
9-3. Frequency Spectrum of Toggle Output  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
The DACx1416 require five power supply inputs: VIO, VDD, VAA, VCC and VSS. VDD and VAA should be at  
same level. Assuming VIO and VDD/VAA to be different, there are four separate power-supply sources required.  
Place a 0.1-µF ceramic capacitor close to each power-supply pin. Be aware that VCC and VSS have two pins  
each. In addition, a 4.7-µF or 10-µF bulk capacitor is recommended for each power supply; tantalum or  
aluminum types can be chosen for the bulk capacitors.  
There is no sequencing requirement for the power supplies. As the DAC output range is configurable, make sure  
that the power-supplies have enough headroom to achieve linearity at codes close to the power supply rails.  
When sourcing or sinking current from or to the DAC output, the heat dissipation must be considered. For  
example, a typical application of MZM bias with 25-mA load current from or to 12 channels with 2.5-V power-  
supply headroom can create a power dissipation across the DAC of (12 × 2.5 × 25 mA) = 0.75 W. The thermal  
design to dissipate the power in this example may involve inclusion of heat sinks in order to avoid thermal  
shutdown of the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The pin configuration of the DACx1416 has been designed in such a way that the analog, digital, and power pins  
are spatially separated from each other, which makes the PCB layout simple. An example layout is shown in 图  
11-1. As evident, every power supply pin has a 0.1-µF capacitor close to the pin. Make sure to lay out the analog  
and digital signals away from each other, or on different PCB layers. Make sure to provide an unbroken  
reference plane (either ground or VIO) for the digital signals. The higher frequency signals, such as SCLK and  
SDI, must have appropriate impedance termination in order to address signal integrity.  
11.2 Layout Example  
Power  
Supplies  
External  
Reference  
Analog  
Outputs  
Analog  
Outputs  
Digital IO  
11-1. Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
 
DAC81416, DAC71416, DAC61416  
ZHCSIG7B JULY 2018 REVISED JUNE 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
For development support, see the following: DAC81416 Evaluation Module  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, DAC81416EVM User's Guide  
Texas Instruments, DACx1416 Delivers Optimized Solution to Mach Zehnder Modulator Biasing application  
note  
Texas Instruments, Programmable Voltage Output With Sense Connections Circuit application note  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DAC81416 DAC71416 DAC61416  
 
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC61416RHAR  
DAC61416RHAT  
DAC71416RHAR  
DAC71416RHAT  
DAC81416RHAR  
DAC81416RHAT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
40  
40  
40  
40  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DAC61416  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
DAC61416  
DAC71416  
DAC71416  
DAC81416  
DAC81416  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jun-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jun-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC61416RHAR  
DAC61416RHAT  
DAC71416RHAR  
DAC71416RHAT  
DAC81416RHAR  
DAC81416RHAT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
40  
40  
40  
40  
40  
40  
2500  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
2500  
250  
2500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jun-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC61416RHAR  
DAC61416RHAT  
DAC71416RHAR  
DAC71416RHAT  
DAC81416RHAR  
DAC81416RHAT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
40  
40  
40  
40  
40  
40  
2500  
250  
367.0  
213.0  
367.0  
213.0  
367.0  
213.0  
367.0  
191.0  
367.0  
191.0  
367.0  
191.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
2500  
250  
2500  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DAC81416RHAR

具有集成内部基准电压的 16 通道 16 位高电压输出 DAC | RHA | 40 | -40 to 125
TI

DAC81416RHAT

具有集成内部基准电压的 16 通道 16 位高电压输出 DAC | RHA | 40 | -40 to 125
TI

DAC8143

12-Bit Serial Daisy-Chain CMOS D/A Converter
ADI

DAC8143AQ/883

IC SERIAL INPUT LOADING, 0.38 us SETTLING TIME, 12-BIT DAC, CDIP16, CERDIP-16, Digital to Analog Converter
ADI

DAC8143AQ/883C

DAC8143AQ/883C
ADI

DAC8143BIEQ

D/A Converter, 1 Func, CDIP16,
ADI

DAC8143BIFP

IC SERIAL INPUT LOADING, 12-BIT DAC, PDIP16, PLASTIC, DIP-16, Digital to Analog Converter
ADI

DAC8143EQ

12-Bit Serial Daisy-Chain CMOS D/A Converter
ADI

DAC8143FP

12-Bit Serial Daisy-Chain CMOS D/A Converter
ADI

DAC8143FPZ

12-Bit Current-Out, Daisy-Chained DAC
ADI

DAC8143FS

12-Bit Serial Daisy-Chain CMOS D/A Converter
ADI

DAC8143FS-REEL

IC SERIAL INPUT LOADING, 0.38 us SETTLING TIME, 12-BIT DAC, PDSO16, SOIC-16, Digital to Analog Converter
ADI