DAC8805Q [TI]

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter;
DAC8805Q
型号: DAC8805Q
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter

文件: 总25页 (文件大小:798K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
DAC8805  
SBAS391ADECEMBER 2006REVISED MAY 2007  
14-Bit, Dual, Parallel Input, Multiplying  
Digital-to-Analog Converter  
FEATURES  
DESCRIPTION  
±0.5LSB DNL  
The DAC8805 dual, multiplying digital-to-analog  
converter (DAC) is designed to operate from a single  
2.7V to 5.5V supply.  
±0.5LSB INL  
Low Noise: 12nV/Hz  
The applied external reference input voltage VREF  
determines the full-scale output current. An internal  
Low Power: IDD = 1µA per channel at 2.7V  
2mA Full-Scale Current, with VREF = 10V  
Settling Time: 0.5µs  
feedback resistor (RFB  
)
provides temperature  
tracking for the full-scale output when combined with  
an external, current-to-voltage (I/V) precision  
amplifier.  
14-Bit Monotonic  
4-Quadrant Multiplying Reference Inputs  
Reference Bandwidth: 10MHz  
Reference Input: ±18V  
A RSTSEL pin allows system reset assertion (RS) to  
force all registers to zero code when RSTSEL = '0',  
or to mid-scale code when RSTSEL  
=
'1'.  
Reference Dynamics: –105 THD  
Midscale or Zero Scale Reset  
Analog Power Supply: +2.7V to +5.5V  
TSSOP-38 Package  
Additionally, an internal power-on reset forces all  
registers to zero or mid-scale code at power-up,  
depending on the state of the RSTSEL pin.  
A
parallel  
interface  
offers  
high-speed  
communications. The DAC8805 is packaged in a  
space-saving TSSOP-38 package and has an  
industry-standard pinout. The device is specified  
from –40°C to +125°C.  
Industry-Standard Pin Configuration  
Pin Compatible with the 16-Bit DAC8822  
Temperature Range: –40°C to +125°C  
For  
DAC8822.  
a 16-bit, pin-compatible version, see the  
APPLICATIONS  
Automatic Test Equipment  
Instrumentation  
Digitally Controlled Calibration  
Industrial Control PLCs  
DGND  
VDD  
R1A RCOM  
A
VREFA ROFS  
A
RFBA  
R1A  
R2A  
ROFSA  
RFBA  
D0  
Input A  
DAC A  
Parallel  
Bus  
D13  
DAC A  
DAC B  
IOUT  
A
Register  
Register  
WR  
A0  
Interface  
AGNDA  
A1  
Input B  
DAC B  
Register  
Register  
IOUTB  
RS  
LDAC  
Control  
Logic  
AGNDB  
R1B  
R2B  
ROFSB  
RFBB  
Power-On  
Reset  
RSTSEL  
R1B  
RCOMB  
VREFB ROFS  
B
RFBB  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2007, Texas Instruments Incorporated  
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
ORDERING INFORMATION(1)  
RELATIVE  
ACCURACY  
(LSB)  
DIFFERENTIAL  
NONLINEARITY  
(LSB)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE-LEAD  
(DESIGNATOR)  
PACKAGE  
MARKING  
PRODUCT  
TSSOP-38  
(DBT)  
DAC8805Q  
±1  
±1  
–40°C to +125°C  
DAC8805  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
DAC8805  
–0.3 to +7  
–0.3 to +VDD + 0.3  
–0.3 to +VDD + 0.3  
±25  
UNIT  
V
VDD to GND  
Digital input voltage to GND  
V (IOUT) to GND  
V
V
REF, ROFS, RFB, R1, RCOM to AGND, DGND  
Operating temperature range  
Storage temperature range  
Junction temperature range (TJ max)  
Power dissipation  
V
–40 to +125  
–65 to +150  
+150  
°C  
°C  
°C  
W
(TJ max – TA) / RθJA  
53  
Thermal impedance, RθJA  
°C/W  
V
Human Body Model (HBM)  
ESD rating  
4000  
Charged Device Model (CDM)  
500  
V
(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = –40°C to +125°C, VDD = +2.7V to +5.5V, IOUT = virtual GND, GND = 0V, and VREF = 10V, unless otherwise noted.  
DAC8805  
PARAMETER  
STATIC PERFORMANCE  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
14  
Bits  
LSB  
LSB  
nA  
Relative accuracy  
Differential nonlinearity  
Output leakage current  
Output leakage current  
INL  
±0.5  
±0.5  
±1  
±1  
DNL  
Data = 0000h, TA = +25°C  
10  
Data = 0000h, Full temperature range  
Unipolar, data = 3FFFh  
20  
nA  
±1  
±1  
±4  
mV  
Full-scale gain error  
Bipolar, data = 3FFFh  
±4  
mV  
Full-scale temperature coefficient  
Bipolar zero error  
±1  
±2  
ppm/°C  
mV  
TA = +25°C  
±1  
±3  
Full temperature range  
±1  
±3  
mV  
Power-supply rejection ratio  
OUTPUT CHARACTERISTICS(1)  
Output current  
PSRR VDD = 5V ±10%  
±0.1  
±0.5  
LSB/V  
2
mA  
pF  
Output capacitance  
Code dependent  
50  
REFERENCE INPUT  
Reference voltage range  
Input resistance (unipolar)  
Input capacitance  
VREF  
RREF  
–18  
4
18  
6
V
5
5
kΩ  
pF  
kΩ  
kΩ  
R1, R2  
4
8
5
6
Feedback and offset resistance  
LOGIC INPUTS AND OUTPUT(1)  
ROFS, RFB  
10  
12  
VIL VDD = +2.7V  
VIL VDD = +5V  
VIH VDD = +2.7V  
VIH VDD = +5V  
IIL  
0.6  
0.8  
V
V
Input low voltage  
Input high voltage  
2.1  
2.4  
V
V
Input leakage current  
Input capacitance  
0.001  
1
8
µA  
pF  
CIL  
POWER REQUIREMENTS  
Supply voltage  
VDD  
2.7  
5.5  
6
V
Supply current  
IDD Normal operation, logic inputs = 0V  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
3
3
1
µA  
µA  
µA  
VDD = +4.5V to +5.5V  
VDD = +2.7V to +3.6V  
AC CHARACTERISTICS(1)(2)  
6
3
To 0.1% of full-scale,  
Data = 0000h to 3FFFh to 0000h  
Output current settling time  
tS  
0.3  
µs  
To 0.006% of full-scale,  
Data = 0000h to 3FFFh to 0000h  
tS  
0.5  
10  
5
µs  
Reference multiplying BW  
DAC glitch impulse  
BW – 3dB VREF = 5VPP, Data = 3FFFh, 2-quadrant mode  
MHz  
nV–s  
VREF = 0V to 10V,  
Data = 1FFFh to 2000h to 1FFFh  
Data = 0000h, VREF = 100kHz, ±10VPP  
2-quadrant mode  
,
Feedthrough error  
Crosstalk error  
VOUT/VREF  
–70  
–100  
1
dB  
dB  
VOUTA/VREF  
B
Data = 0000h, VREFB = 100mVRMS, f = 100kHz  
LDAC = Logic low, VREF = –10V to + 10V  
Any code change  
Digital feedthrough  
nV–s  
Total harmonic distortion  
Output noise density  
THD VREF = 6VRMS, Data = 3FFFh, f = 1kHz  
eN f = 1kHz, BW = 1Hz, 2-quadrant mode  
–105  
12  
dB  
nV/Hz  
(1) Specified by design and characterization; not production tested.  
(2) All ac characteristic tests are performed in a closed-loop system using a THS4011 I-to-V converter amplifier.  
3
Submit Documentation Feedback  
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
PIN ASSIGNMENTS  
DBT PACKAGE  
TSSOP-38  
(TOP VIEW)  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
NC  
NC  
D0  
D1  
3
R
OFSA  
D2  
4
RFB  
A
D3  
5
R1A  
D4  
6
RCOM  
VREF  
IOUT  
A
A
A
D5  
7
D6  
8
D7  
9
AGNDA  
DGND  
D8  
DAC8805  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
VDD  
D9  
AGNDB  
IOUT  
VREF  
RCOM  
B
B
B
D10  
D11  
D12  
D13  
RS  
R1B  
RFB  
B
B
ROFS  
RSTSEL  
LDAC  
A1  
WR  
A0  
4
Submit Documentation Feedback  
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
PIN ASSIGNMENTS (continued)  
Table 1. TERMINAL FUNCTIONS  
PIN #  
NAME  
DESCRIPTION  
1, 2  
NC  
No connection  
Bipolar Offset Resistor A. Accepts up to ±18V.  
3
4
5
ROFS  
RFB  
A
In 2-quadrant mode, ROFSA ties to RFBA.  
In 4-quadrant mode, ROFSA ties to R1A and the external reference.  
A
Internal Matching Feedback Resistor A. Connects to the external op amp for I-V conversion.  
4-Quadrant Resistor.  
In 2-quadrant mode, R1A shorts to the VREFA pin.  
In 4-quadrant mode, R1A ties to ROFSA and the reference input.  
R1A  
Center Tap Point of the Two 4-Quadrant Resistors, R1A and R2A.  
In 2-quadrant mode, RCOMA shorts to the VREF pin.  
6
RCOMA  
In 4-quadrant mode, RCOMA ties to the inverting node of the reference amplifier.  
DAC A Reference Input in 2-Quadrant Mode, R2 Terminal in 4-Quadrant Mode.  
In 2-quadrant mode, VREFA is the reference input with constant input resistance versus code.  
In 4-quadrant mode, VREFA is driven by the external reference amplifier.  
7
8
VREFA  
DAC A Current Output. Connects to the inverting terminal of external precision I-V op amp for voltage  
output.  
IOUT  
A
9
AGNDA  
DGND  
DAC A Analog Ground.  
Digital Ground.  
10  
11  
AGNDB  
DAC B Analog Ground.  
DAC B Current Output. Connects to the inverting terminal of external precision I-V op amp for voltage  
output.  
12  
IOUTB  
DAC B Reference Input in 2-Quadrant Mode, R2 Terminal in 4-Quadrant Mode.  
In 2-quadrant mode, VREFB is the reference input with constant input resistance versus code.  
In 4-quadrant mode, VREFB is driven by the external reference amplifier.  
13  
VREF  
B
Center Tap Point of the Two 4-Quadrant Resistors, R1B and R2B.  
In 2-quadrant mode, RCOMB shorts to the VREF pin.  
14  
RCOMB  
In 4-quadrant mode, RCOMB ties to the inverting node of the reference amplifier.  
4-Quadrant Resistor.  
15  
16  
17  
R1B  
In 2-quadrant mode, R1B shorts to the VREFB pin.  
In 4-quadrant mode, R1B ties to ROFSB and the reference input.  
RFB  
B
Internal Matching Feedback Resistor B. Connects to external op amp for I-V conversion.  
Bipolar Offset Resistor B. Accepts up to ±18V.  
In 2-quadrant mode, ROFSB ties to RFBB.  
ROFS  
B
In 4-quadrant mode, ROFSB ties to R1B and the external reference.  
Write Control Digital Input In, Active Low. WR enables input registers.  
Signal level must be VDD + 0.3V.  
18  
WR  
19  
20  
A0  
A1  
Address 0. Signal level must be VDD + 0.3V.  
Address 1. Signal level must be VDD + 0.3V.  
Digital Input Load DAC Control. Signal level must be VDD + 0.3V. See the Function of Control Inputs  
table for details.  
21  
LDAC  
Power-On Reset State.  
RSTSEL = 0 corresponds to zero-scale reset.  
RSTSEL = 1 corresponds to mid-scale reset.  
The signal level must be VDD + 0.3V.  
22  
RSTSEL  
Reset. Active low resets both input and DAC registers.  
Resets to zero-scale if RSTSEL= 0, and to mid-scale if RSTSEL = 1.  
Signal level must be equal to or less than VDD + 0.3 V.  
23  
RS  
24-28, 30-38  
29  
D0-D13  
VDD  
Digital Input Data Bits D0 to D13. Signal level must be VDD +0.3V. D13 is MSB.  
Positive Power Supply Input. The specified range of operation is 2.7V to 5.5V.  
5
Submit Documentation Feedback  
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
TIMING AND FUNCTIONAL INFORMATION  
tWR  
WR  
A0/1  
tAS  
tAH  
DATA  
tDS  
tDH  
tLWD  
LDAC  
RS  
tLDAC  
tRST  
Figure 1. Timing Diagram  
TIMING CHARACTERISTICS  
All specifications at TA = –40°C to +125°C, IOUT = virtual GND, GND = 0V, and VREF = 10V, unless otherwise noted  
DAC8805  
PARAMETER  
Data to WR setup time  
CONDITIONS  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
MIN  
10  
10  
10  
10  
0
TYP  
MAX  
UNITS  
ns  
tDS  
ns  
ns  
A0/1 to WR setup time  
Data to WR hold time  
A0/1 to WR hold time  
WR pulse width  
tAS  
ns  
ns  
tDH  
0
ns  
0
ns  
tAH  
0
ns  
10  
10  
10  
10  
10  
10  
0
ns  
tWR  
ns  
ns  
LDAC pulse width  
RS pulse width  
tLDAC  
tRST  
tLWD  
ns  
ns  
ns  
ns  
WR to LDAC delay time  
0
ns  
6
Submit Documentation Feedback  
 
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
Table 2. Address Decoder Pins  
A1  
0
A0  
0
OUTPUT UPDATE  
DAC A  
0
1
None  
1
0
DAC A and DAC B  
DAC B  
1
1
Table 3. Function of Control Inputs  
CONTROL INPUTS  
RS  
WR  
LDAC  
REGISTER OPERATION  
Asynchronous operation. Reset the input and DAC register to '0' when the RSTSEL pin is tied to DGND, and to  
0
X
X
midscale when RSTSEL is tied to VDD  
.
1
1
1
0
1
0
0
1
1
Load the input register with all 14 data bits.  
Load the DAC register with the contents of the input register.  
The input and DAC register are transparent.  
LDAC and WR are tied together and programmed as a pulse. The 14 data bits are loaded into the input register on  
the falling edge of the pulse and then loaded into the DAC register on the rising edge of the pulse.  
1
1
1
0
No register operation.  
7
Submit Documentation Feedback  
 
 
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
TYPICAL CHARACTERISTICS: VDD = +5V  
Channel A  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
TA = +25°C  
TA = +25°C  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 2.  
Figure 3.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = -40°C  
TA = -40°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 4.  
Figure 5.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = +125°C  
TA = +125°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 6.  
Figure 7.  
8
Submit Documentation Feedback  
DAC8805  
www.ti.com  
Channel B  
1.0  
SBAS391ADECEMBER 2006REVISED MAY 2007  
TYPICAL CHARACTERISTICS: VDD = +5V (continued)  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
TA = +25°C  
TA = +25°C  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 8.  
Figure 9.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
T
A = -40°C  
T
A = -25°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 10.  
Figure 11.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
T
A = +125°C  
T
A = +125°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 12.  
Figure 13.  
9
Submit Documentation Feedback  
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
TYPICAL CHARACTERISTICS: VDD = +5V (continued)  
MIDSCALE DAC GLITCH  
MIDSCALE DAC GLITCH  
VREF = +10V  
VREF = +10V  
Code: 1FFFh to 2000h  
Code: 2000h to 1FFFh  
Time (0.2ms/div)  
Time (0.2ms/div)  
Figure 14.  
Figure 15.  
FULL-SCALE ERROR  
vs TEMPERATURE  
BIPOLAR-ZERO ERROR  
vs TEMPERATURE  
3
2
4
3
2
1
1
DAC A  
DAC B  
DAC A  
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
DAC B  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Temperature (°C)  
Figure 16.  
Figure 17.  
10  
Submit Documentation Feedback  
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
TYPICAL CHARACTERISTICS: VDD = +2.7V  
Channel A  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
T
T
T
A = +25°C  
T
T
T
A = +25°C  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 18.  
Figure 19.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
A = -40°C  
A = -40°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 20.  
Figure 21.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
A = +125°C  
A = +125°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 22.  
Figure 23.  
11  
Submit Documentation Feedback  
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
TYPICAL CHARACTERISTICS: VDD = +2.7V (continued)  
Channel B  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
T
T
T
A = +25°C  
T
T
T
A = +25°C  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 24.  
Figure 25.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
A = -40°C  
A = -40°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 26.  
Figure 27.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
A = +125°C  
A = +125°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Code  
Figure 28.  
Figure 29.  
12  
Submit Documentation Feedback  
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
TYPICAL CHARACTERISTICS: VDD = +2.7V (continued)  
DAC GLITCH  
DAC GLITCH  
VREF = +10V  
VREF = +10V  
Code: 1FFFh to 2000h  
Code: 2000h to 1FFFh  
Time (0.2ms/div)  
Time (0.2ms/div)  
Figure 30.  
Figure 31.  
FULL-SCALE ERROR  
vs TEMPERATURE  
BIPOLAR-ZERO ERROR  
vs TEMPERATURE  
3
2
4
3
2
1
1
DAC A  
0
DAC B  
DAC A  
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
DAC B  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Temperature (°C)  
Figure 32.  
Figure 33.  
13  
Submit Documentation Feedback  
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
TYPICAL CHARACTERISTICS: VDD = +2.7V and +5V  
SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
REFERENCE MULTIPLYING BANDWIDTH  
UNIPOLAR MODE  
180  
160  
140  
120  
100  
80  
6
0
0x3FFF  
0x2000  
0x1000  
0x0800  
0x0400  
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
0x0002  
0x0001  
-6  
-12  
-18  
-24  
-30  
-36  
-42  
-48  
-54  
-60  
-66  
-72  
-78  
-84  
-90  
-96  
-102  
-108  
-114  
VDD = +5.0V  
60  
40  
VDD = +2.7V  
20  
0x0000  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Logic Input Voltage (V)  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Bandwidth (Hz)  
Figure 34.  
Figure 35.  
REFERENCE MULTIPLYING BANDWIDTH  
BIPOLAR MODE  
REFERENCE MULTIPLYING BANDWIDTH  
BIPOLAR MODE  
6
0
6
0
0x3FFF  
0x0000  
0x1000  
0x1800  
0x1C00  
0x1E00  
0x1F00  
0x1F80  
0x1FC0  
0x1FE0  
0x1FF0  
0x1FF8  
0x1FFC  
0x1FFE  
0x1FFF  
0x2000  
-6  
0x3000  
0x2800  
0x2400  
0x2200  
0x2100  
0x2080  
0x2040  
0x2020  
0x2010  
0x2008  
0x2004  
0x2002  
0x2001  
0x2000  
-6  
-12  
-18  
-24  
-30  
-36  
-42  
-48  
-54  
-60  
-66  
-72  
-78  
-84  
-90  
-96  
-102  
-108  
-114  
-12  
-18  
-24  
-30  
-36  
-42  
-48  
-54  
-60  
-66  
-72  
-78  
-84  
-90  
-96  
-102  
-108  
-114  
DAC 0V output  
limited by bipolar  
zero error to  
DAC 0V output  
limited by bipolar  
zero error to  
-84dB typical  
(-76dB max).  
-84dB typical  
(-76dB max).  
Codes from Midscale  
to Positive Full-Scale  
Codes from Negative  
Full-Scale to Midscale  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Bandwidth (Hz)  
Bandwidth (Hz)  
Figure 36.  
Figure 37.  
SUPPLY CURRENT vs TEMPERATURE  
DAC SETTLING TIME  
6
5
4
3
2
1
0
VDD = 5.0V  
Unipolar Mode  
Voltage Output Settling  
VDD = 2.7V  
Trigger Pulse  
Time (0.5ms/div)  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Figure 38.  
Figure 39.  
14  
Submit Documentation Feedback  
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
THEORY OF OPERATION  
The DAC8805 is a multiplying, dual-channel, current output, 14-bit DAC. The architecture, illustrated in  
Figure 40, is an R-2R ladder configuration with the three MSBs segmented. Each 2R leg of the ladder is either  
switched to GND or to the IOUT terminal. The IOUT terminal of the DAC is held at a virtual GND potential by the  
use of an external I/V converter op amp. The R-2R ladder is connected to an external reference input (VREF) that  
determines the DAC full-scale output current. The R-2R ladder presents a code-independent load impedance to  
the external reference of 5kΩ ± 25%. The external reference voltage can vary in a range of –18V to +18V, thus  
providing bipolar IOUT current operation. By using an external I/V converter op amp and the RFB resistor in the  
DAC8805, an output voltage range of –VREF to +VREF can be generated.  
R
R
R
VREF  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
RFB  
IOUT  
GND  
Figure 40. Equivalent R-2R DAC Circuit  
The DAC output voltage is determined by VREF and the digital data (D) according to Equation 1:  
D
16384  
VOUTA/B = -VREF  
´
(1)  
Each DAC code determines the 2R-leg switch position to either GND or IOUT. The external I/V converter op amp  
noise gain will also change because the DAC output impedance (as seen looking into the IOUT terminal) changes  
versus code. Because of this change in noise gain, the external I/V converter op amp must have a sufficiently  
low offset voltage such that the amplifier offset is not modulated by the DAC IOUT terminal impedance change.  
External op amps with large offset voltages can produce INL errors in the transfer function of the DAC8805  
because of offset modulation versus DAC code. For best linearity performance of the DAC8805, an op amp  
(such as the OPA277) is recommended, as shown in Figure 41. This circuit allows VREF to swing from –10V to  
+10V.  
VDD  
U1  
VDD ROFS RFB  
+15V  
U2  
V+  
OPA277  
VREF  
IOUTA/B  
DAC8805  
VOUT  
V-  
GND  
-15V  
Figure 41. Voltage Output Configuration  
15  
Submit Documentation Feedback  
 
 
 
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
APPLICATION INFORMATION  
DIGITAL INTERFACE  
The parallel bus interface of the DAC8805 is comprised of a 14-bit data bus, D0—D13, address lines A0 and A1,  
and a WR control signal. Timing and control functionality are shown in Figure 1, and described in Table 2 and  
Table 3. The address lines must be set up and stable before the WR signal goes low, to prevent loading  
improper data to an undesired input register.  
Both channels of the DAC8805 can be simultaneously updated by control of the LDAC signal, as shown in  
Figure 1. Reset control (RS) and reset select control (RSTSEL) signals are provided to allow user reset ability to  
either zero scale or midscale codes of both the input and DAC registers.  
STABILITY CIRCUIT  
For a current-to-voltage (I/V) design, as shown in Figure 42, the DAC8805 current output (IOUT) and the  
connection with the inverting node of the op amp should be as short as possible and laid out according to  
correct printed circuit board (PCB) layout design. For each code change, there is an output step function. If the  
gain bandwidth product (GBP) of the op amp is limited and parasitic capacitance is excessive at the inverting  
node, then gain peaking is possible. Therefore, a compensation capacitor C1 (4pF to 20pF, typ) can be added to  
the design for circuit stability, as shown in Figure 42.  
VDD  
U1  
VDD ROFS RFB  
C1  
U2  
VREF  
VREF  
IOUTA/B  
DAC8805  
VOUT  
OPA277  
GND  
Figure 42. Gain Peaking Prevention Circuit with Compensation Capacitor  
16  
Submit Documentation Feedback  
 
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
APPLICATION INFORMATION (continued)  
BIPOLAR OUTPUT CIRCUIT  
The DAC8805, as a 4-quadrant multiplying DAC, can be used to generate a bipolar output. The polarity of the  
full-scale output (IOUT) is the inverse of the input reference voltage at VREF  
.
Using a dual op amp, such as the OPA2277, full 4-quadrant operation can be achieved with minimal  
components. Figure 43 demonstrates a ±10VOUT circuit with a fixed +10V reference. The output voltage is  
shown in Equation 2:  
D
8192  
+ ǒ  
Ǔ
VOUT  
*1   VREF  
(2)  
VREF  
U1  
OPA2277  
VDD  
DGND  
R1A  
RCOMA  
ROFSA  
R
FBA  
VREFA  
R1A  
R2A  
ROFSA  
RFB  
A
DAC8805  
C1  
D0  
IOUT  
A
U2  
OPA2277  
DAC A  
Parallel  
Bus  
Interface  
D13  
Input A  
Register  
DAC A  
Register  
VOUT  
WR  
A0  
AGNDA  
A1  
RS  
LDAC  
Control  
Logic  
RSTSEL  
Figure 43. Bipolar Output Circuit  
17  
Submit Documentation Feedback  
 
 
DAC8805  
www.ti.com  
SBAS391ADECEMBER 2006REVISED MAY 2007  
APPLICATION INFORMATION (continued)  
PROGRAMMABLE CURRENT SOURCE CIRCUIT  
The DAC8805 can be integrated into the circuit in Figure 44 to implement an improved Howland current pump  
for precise V/I conversions. Bidirectional current flow and high-voltage compliance are two features of the circuit.  
With a matched resistor network, the load current of the circuit is shown by Equation 3:  
(R2 + R3) / R1  
D
ILA/B =  
´ VREF ´  
16384  
R3  
(3)  
The value of R3 in the previous equation can be reduced to increase the output current drive of U3. U3 can drive  
±20mA in both directions with voltage compliance limited up to 15V by the U3 voltage supply. Elimination of the  
circuit compensation capacitor (C1) in the circuit is not suggested as a result of the change in the output  
impedance (ZO), according to Equation 4:  
(
)
R1ȀR3 R1)R2  
ZO +  
(
)
(
)
R1 R2Ȁ)R3Ȁ * R1Ȁ R2)R3  
(4)  
As shown in Equation 4, ZO with matched resistors is infinite and the circuit is optimum for use as a current  
source. However, if unmatched resistors are used, ZO is positive or negative with negative output impedance  
being a potential cause of oscillation. Therefore, by incorporating C1 into the circuit, possible oscillation problems  
are eliminated. The value of C1 can be determined for critical applications; for most applications, however, a  
value of several pF is suggested.  
R2´  
15kW  
C1  
10pF  
VDD  
R1´  
U3  
R3´  
150kW  
50W  
U1  
VOUT  
OPA2277  
C2  
VDD ROFS RFB  
10pF  
R3  
U2  
R1  
R2  
50W  
150kW  
15kW  
VREF  
VREF  
IOUTA/B  
DAC8805  
IL  
OPA2277  
LOAD  
GND  
Figure 44. Programmable Bidirectional Current Source Circuit  
CROSS-REFERENCE  
The DAC8805 has an industry-standard pinout. Table 4 provides the cross-reference information.  
Table 4. Cross-Reference  
SPECIFIED  
TEMPERATURE  
RANGE  
CROSS-  
REFERENCE  
PART  
INL  
DNL  
PACKAGE  
DESCRIPTION  
PACKAGE  
OPTION  
PRODUCT  
BIT  
(LSB)  
(LSB)  
DAC8805Q  
14  
1
1
–40°C to +125°C  
TSSOP-38  
DBT  
AD5557  
18  
Submit Documentation Feedback  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
PACKAGING INFORMATION  
Orderable Device  
DAC8805QDBT  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
DBT  
38  
38  
38  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DAC8805  
DAC8805QDBTG4  
DAC8805QDBTR  
ACTIVE  
ACTIVE  
DBT  
DBT  
50  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
DAC8805  
DAC8805  
2000  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC8805QDBTR  
TSSOP  
DBT  
38  
2000  
330.0  
16.4  
6.9  
10.2  
1.8  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP DBT 38  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
DAC8805QDBTR  
2000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2014, Texas Instruments Incorporated  

相关型号:

DAC8805QDBT

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
BB

DAC8805QDBT

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
TI

DAC8805QDBTG4

14-Bit, Dual Channel, Parallel Interface, Multiplying Digital-to-Analog Converter 38-TSSOP -40 to 125
TI

DAC8805QDBTR

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
BB

DAC8805QDBTR

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
TI

DAC8805QDBTRG4

14-Bit, Dual Channel, Parallel Interface, Multiplying Digital-to-Analog Converter 38-TSSOP -40 to 125
TI

DAC8805_14

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
TI

DAC8806

14-Bit, Parallel Input Multiplying Digital-to-Analog Converter
TI

DAC8806IDB

14-Bit, Parallel Input Multiplying Digital-to-Analog Converter
TI

DAC8806IDBG4

14-Bit, Parallel Input Multiplying Digital-to-Analog Converter
TI

DAC8806IDBR

14-Bit, Parallel Input Multiplying Digital-to-Analog Converter
TI

DAC8806IDBRG4

14-Bit, Parallel Input Multiplying Digital-to-Analog Converter
TI