DAC91001 [TI]

具有超低噪声、低干扰和出色 THD 的 18 位单调 DAC;
DAC91001
型号: DAC91001
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有超低噪声、低干扰和出色 THD 的 18 位单调 DAC

文件: 总52页 (文件大小:3244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
DACx1001 20 位、18 位和 16 位的低噪声、超低谐波失真、快速趋稳、高  
电压输出数模转换器 (DAC)  
1 特性  
3 说明  
1
20 位单调性:1-LSB DNL(最大值)  
20 DAC11001A18 DAC91001 16 位  
DAC81001 (DACx1001) 是高精度、低噪声、电压输  
出、单通道数模转换器 (DAC)DACx1001 根据设计  
具有单调性,可以在所有范围内提供低于 4LSB(最大  
值)的出色线性度。  
积分线性:4-LSB INL(最大值)  
低噪声:7nV/Hz  
独立于代码的低干扰:  
1nV-s  
出色的 THD1kHz fOUT 时为 -105 dB  
快速趋稳:1µs  
非缓冲电压输出可提供低噪声性能 (7nV/Hz) 和快速  
稳定时间 (1µs),因此这款器件非常适合低噪声、快速  
控制环路和波形生成 应用中的数字输入 D 类音频放大  
器。DACx1001 兼具增强型抗尖峰脉冲电路以及独立  
于代码的超低干扰 (1nV-s),可实现干净的波形斜升和  
超低总谐波失真 (THD)。  
灵活的输出范围:VREFPF VREFNF  
集成式精密反馈电阻器  
50MHz4 线 SPI 兼容接口  
读回  
菊花链  
DACx1001 器件包含上电复位电路,因此 DAC 能够使  
用寄存器中的已知值供电。使用外部基准,可以实现  
温度范围:-40°C +125°C  
封装:48 引脚 TQFP  
VREFPF VREFNF DAC 输出,包括非对称输出范  
2 应用  
围。  
实验室和现场仪表  
DACx1001 使用一个在高达 50MHz 的时钟频率下运行  
的通用 4 线串行接口。DACx1001 的额定工业工作温  
度范围为 -40°C +125°C。  
光谱仪  
模拟输出模块  
电池测试  
器件信息(1)  
半导体测试  
器件型号  
DAC11001  
封装  
封装尺寸(标称值)  
任意波形发生器 (AWG)  
MRI  
DAC91001(预发布) TQFP (48)  
DAC81001(预发布)  
7.00mm × 7.00mm  
X 射线系统  
专业音频放大器(机架式)  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
功能方框图  
高精度控制环路电路  
Gain/  
Attenuation  
IOVDD DVDD VCC  
AVDD  
REFPS  
REFPF  
THS4011  
C1  
Sensor  
Output  
+
VREFP  
ROFS  
RCM  
REFPS  
REFPF  
REFNS  
REFNF  
SCLK  
SDIN  
œ
œ
Linear  
Actuator  
Power  
Amplifier  
+
DACx1001  
THS4011  
Power On Reset  
C2  
THS4011  
œ
SYNC  
SDO  
RFB  
OUT  
+
VREFN  
Buffer  
Registers  
DAC  
Register  
DAC  
LDAC  
CLR  
Power  
Down Logic  
ALARM  
REFNF  
REFNS  
DGND  
VSS AGND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASEL0  
 
 
 
 
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 25  
8.5 Programming........................................................... 26  
8.6 Register Map........................................................... 28  
Application and Implementation ........................ 33  
9.1 Application Information............................................ 33  
9.2 Typical Application ................................................. 33  
9.3 System Examples .................................................. 38  
9.4 What to Do and What Not to Do ............................ 41  
9.5 Initialization Set Up ................................................ 41  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information Package................................... 6  
7.5 Electrical Characteristics........................................... 7  
9
10 Power Supply Recommendations ..................... 42  
10.1 Power-Supply Sequencing.................................... 44  
11 Layout................................................................... 45  
11.1 Layout Guidelines ................................................. 45  
11.2 Layout Example .................................................... 45  
12 器件和文档支持 ..................................................... 46  
12.1 器件支持................................................................ 46  
12.2 文档支持................................................................ 46  
12.3 相关链接................................................................ 46  
12.4 接收文档更新通知 ................................................. 46  
12.5 支持资源................................................................ 46  
12.6 ....................................................................... 46  
12.7 静电放电警告......................................................... 46  
12.8 Glossary................................................................ 46  
13 机械、封装和可订购信息....................................... 46  
7.6 Timing Requirements: Write, 4.5 V DVDD 5.5  
V............................................................................... 10  
7.7 Timing Requirements: Write, 2.7 V DVDD < 4.5  
V............................................................................... 11  
7.8 Timing Requirements: Read and Daisy-Chain  
Write, 4.5 V DVDD 5.5 V..................................... 12  
7.9 Timing Requirements: Read and Daisy-Chain Write,  
2.7 V DVDD < 4.5 V............................................... 13  
7.10 Typical Characteristics.......................................... 15  
Detailed Description ............................................ 22  
8.1 Overview ................................................................. 22  
8.2 Functional Block Diagram ....................................... 22  
8.3 Feature Description................................................. 22  
8
4 修订历史记录  
Changes from Original (October 2019) to Revision A  
Page  
已更改 将 DAC11001A 器件从预告信息(预发布)更改为生产数据(正在供货)” ........................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
5 Device Comparison Table  
DEVICE  
RESOLUTION  
20-bit  
DAC11001A  
DAC91001 (preview)  
DAC81001 (preview)  
18-bit  
16-bit  
6 Pin Configuration and Functions  
PFB Package  
48-Pin TQFP  
Top View  
NC  
AGND  
REFPF  
REFPS  
REFNF  
REFNS  
OUT  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
NC  
2
AGND  
SDO  
SYNC  
SDIN  
SCLK  
CLR  
3
4
5
6
7
AGND-OUT  
RFB  
8
NC  
9
IOVDD  
DVDD  
DGND  
NC  
ROFS  
10  
11  
12  
RCM  
NC  
Not to scale  
Copyright © 2019, Texas Instruments Incorporated  
3
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
2, 35, 38,  
40, 42, 43,  
46, 47  
Analog  
ground  
AGND  
Connect to 0 V.  
Analog  
ground  
AGND-OUT  
AGND-TnH  
8
Connect to 0 V. Measure DAC output voltage with respect to this node.  
Connect to 0 V. Integrated deglitcher clock ground..  
Analog  
ground  
14  
ALARM  
AVDD  
CLR  
19  
39, 41  
30  
Output  
Power  
Input  
Alarm output  
Positive low voltage analog power supply  
DAC registers clear pin, active low  
16, 17, 20,  
21, 22, 23,  
26  
Digital  
ground  
DGND  
Connect to 0 V.  
DVDD  
RFB  
27  
9
Power  
Input  
Digital power supply pin  
Integrated precision resistor feedback node  
Interface power supply pin  
IOVDD  
LDAC  
28  
18  
Power  
Input  
Load DAC pin, active low  
1, 12, 13,  
15, 24, 25,  
29, 36, 37,  
48  
NC  
No connection, leave floating  
OUT  
7
11  
5
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Unbuffered voltage output  
RCM  
Integrated precision resistor common-mode node  
External negative reference input. Connect to 0 V for unipolar DAC output.  
External negative reference sense node  
External positive reference input  
REFNF  
REFNS  
REFPF  
REFPS  
ROFS  
6
3
4
External positive reference sense node  
Integrated precision resistor offset node  
10  
Serial clock input of serial peripheral interface (SPI). Schmitt-trigger logic input.  
Data are transferred at rates of up to 50 MHz.  
SCLK  
31  
Input  
Serial data input. Schmitt-trigger logic input.  
Data are clocked into the input shift register on the falling edge of the serial clock input.  
SDIN  
SDO  
32  
34  
33  
Input  
Output  
Input  
Serial data output. Data are valid on the falling edge of SCLK.  
SPI bus chip select input (active low). Data bits are not clocked into the serial shift register unless  
SYNC is low. When SYNC is high, the SDO pin is in high-impedance status.  
SYNC  
VCC  
VSS  
45  
44  
Power  
Power  
Analog positive power supply  
Analog negative power supply  
4
Copyright © 2019, Texas Instruments Incorporated  
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
UNIT  
AVDD to AGND  
7
Positive supply voltage  
Negative supply voltage  
Positive reference voltage  
VCC to VSS  
–0.3  
40  
V
V
V
VCC to AGND  
–0.3  
40  
VSS to AGND  
–19  
0.3  
VREFPF to VREFNF  
VREFPF to VCC  
VREFPF to AGND  
VREFNF to AGND  
VREFNF to VSS  
–0.3  
40  
–0.3  
VCC + 0.3  
–0.3  
40  
–19  
0.3  
Negative reference voltage  
V
VSS – 0.3  
–0.3  
0.3  
7
Digital and IO power supply  
Digital input(s) to DGND  
DVDD, IOVDD to DGND  
V
V
DGND – 0.3  
VSS  
IOVDD + 0.3  
VCC  
to AGND (VSS = AGND)  
to VSS  
VOUT, VRFB, VRCM, VROFS  
V
0
VCC  
Alarm pin voltage, ALARM to DGND  
Digital output, SDO to DGND  
Current into any pin  
–0.3  
DVDD + 0.3  
DVDD + 0.3  
10  
V
V
–0.3  
–10  
mA  
°C  
°C  
TJ  
Junction temperature  
150  
Tstg  
Storage temperature  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
±1000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2019, Texas Instruments Incorporated  
5
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
5.5  
–3  
UNIT  
V
AVDD to AGND  
4.5  
VSS to AGND  
–18  
V
VCC to AGND  
8
33  
V
VCC to VSS  
11  
2.7  
36  
V
DVDD to DGND  
5.5  
5.5  
0.3  
V
IOVDD to DGND  
AGND to DGND  
VIH digital input high voltage  
VIL digital input low voltage  
VREFPF to AGND  
VREFNF to AGND  
VREFPF to VREFNF  
1.7  
V
–0.3  
V
0.7 × IOVDD  
V
0.3 × IOVDD  
V
3
–15  
3
15  
0
V
V
30  
V
TA  
Operating temperature  
–40  
125  
°C  
7.4 Thermal Information Package  
DAC11001A, DAC91001,  
DAC81001  
THERMAL METRIC(1)  
UNIT  
PFB (TQFP)  
48 PINS  
51.0  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
10.3  
16.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJB  
16.0  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2019, Texas Instruments Incorporated  
 
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
7.5 Electrical Characteristics  
at TA = –40°C to +125°C, VCC = +15 V, VSS = –15 V, AVDD = 5.5 V, DVDD = 3.3 V, IOVDD = 1.8 V, see note(1) for VREFPF and  
VREFNF, 20-bit orderable used, OUT pin buffered with unity gain OPA827, ROFS, RCM, RFB unconnected, and all typical  
specifications at TA = 25°C, (unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DAC11001A  
20  
18  
Resolution  
DAC91001  
DAC81001  
Bits  
16  
Relative accuracy(2)  
–4  
4
INL  
Relative accuracy(2)(3)(4)  
Relative accuracy(2)(4)  
Relative accuracy drift over time(2)  
Differential nonlinearity(2)(3)  
–2.6  
–2  
2.6  
2
LSB  
DACx1001A TA = 25°C  
TA = 25°C, 1000 hrs  
0.1  
LSB  
LSB  
DNL  
–1  
–4  
1
4
TA = 0°C to 70°C, code 0d into DAC,  
unipolar ranges only  
Zero code error(4)  
TA = –40°C to +125°C, code 0d into  
DAC, unipolar ranges only  
LSB  
–4  
4
TA = 25°C, unipolar ranges only  
±2  
TA = 0°C to 70°C, code 0d into DAC,  
unipolar ranges only  
±0.04  
ppm  
FSR/°C  
Zero code error temperature coefficient  
TA = –40°C to +125°C, code 0d into  
DAC, unipolar ranges only  
±0.04  
TA = 0°C to 70°C  
–8  
–8  
8
8
TA = 0°C to 70°C, VREFPF = 3 V,  
VREFNF = –10 V  
ppm of  
FSR  
Gain error(2)(4)  
TA = –40°C to +125°C  
TA = 25°C  
–10  
10  
±2  
TA = 0°C to 70°C  
±0.04  
TA = 0°C to 70°C, VREFPF = 3 V,  
VREFNF = –10 V  
ppm  
FSR/°C  
Gain error temperature coefficient  
±0.04  
±0.04  
TA = –40°C to +125°C  
TA = 0°C to 70°C, code 1048575d into  
DAC  
–8  
–6  
8
6
TA = 0°C to 70°C, code 1048575d into  
DAC, VREFPF = 3 V, VREFNF = –10 V  
Positive full-scale error(4)  
LSB  
TA = –40°C to +125°C, code 1048575d  
into DAC  
–10  
10  
TA = 25°C  
±2  
TA = 0°C to 70°C  
±0.04  
TA = 0°C to 70°C, VREFPF = 3 V,  
VREFNF = –10 V  
ppm  
FSR/°C  
Full-scale error temperature coefficient  
±0.04  
±0.04  
TA = –40°C to +125°C  
OUTPUT CHARACTERISTICS  
Headroom  
From VREFPF to VCC  
From VREFNF to VSS  
From ROFS to RCM  
From RCM to RFB  
3
3
V
V
Footroom  
5
5
DC impedance  
kΩ  
kΩ  
ZO  
DC output impedance  
2.5  
(1) Specified for the following pairs: VREFPF = 5 V and VREFNF = 0 V; VREFPF = 10 V and VREFNF = 0 V; VREFPF = +5 V and VREFNF = –5 V;  
VREFPF = +10 V and VREFNF = –10 V.  
(2) Calculated between code 0d to 1048575d.  
(3) With device temperature calibration mode enabled and used.  
(4) Specified by design, not production tested.  
Copyright © 2019, Texas Instruments Incorporated  
7
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = –40°C to +125°C, VCC = +15 V, VSS = –15 V, AVDD = 5.5 V, DVDD = 3.3 V, IOVDD = 1.8 V, see note(1) for VREFPF and  
VREFNF, 20-bit orderable used, OUT pin buffered with unity gain OPA827, ROFS, RCM, RFB unconnected, and all typical  
specifications at TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TA = 25°C, VCC = 15 V ± 20%,  
VSS = –15 V  
1.5  
Power supply rejection ratio (dc)  
µV/V  
TA = 25°C, VCC = 15 V,  
VSS = –15 V ± 20%  
1
VOLTAGE REFERENCE INPUT  
DAC at midscale, VREFPF = 10 V,  
VREFNF = 0 V  
Reference input impedance (REFPF)  
Reference input impedance (REFNF)  
5.5  
7
kΩ  
DAC at midscale, VREFPF = 10 V,  
VREFNF = 0 V  
DYNAMIC PERFORMANCE  
VREFPF = 10 V, VREFNF = 0 V,  
full-scale settling to 0.1%FSR  
1
2.5  
2.5  
50  
VREFPF = 10 V, VREFNF = 0 V,  
full-scale settling to ±1 LSB  
ts  
Output voltage settling time(5)  
µs  
VREFPF = 10 V, VREFNF = 0 V,  
1-mV step settling to ±1 LSB  
VREFPF = 10 V, VREFNF = 0 V, full-scale  
step, measured at OUT pin  
SR  
Slew rate  
V/µs  
V
Measured at unbuffered DAC voltage  
output, VREFPF = 10 V, VREFNF = 0 V  
Power-on glitch magnitude  
–0.2  
0.4  
3
0.1-Hz to 10-Hz, DAC at midscale,  
VREFPF = 10 V, VREFNF = 0 V  
µVpp  
µVrms  
Vn  
Output noise  
100-kHz bandwidth, DAC at midscale,  
VREFPF = 10 V, VREFNF = 0 V  
Measured at 1 kHz, 10 kHz, 100 kHz,  
DAC at mid scale, VREFPF = 10 V,  
VREFNF = 0 V  
Output noise density  
Spurious free dynamic range  
7
nV/Hz  
DAC update rate = 400 kHz, fOUT = 1  
kHz, VOUTPP = 0 V to 10 V  
–105  
–105  
–105  
–105  
95  
dB  
dB  
dB  
dB  
dB  
dB  
SFDR  
THD  
DAC update rate = 400 kHz, fOUT = 1  
kHz, VOUTPP = 3 V to –10 V  
DAC update rate = 400 kHz, fOUT = 1  
kHz, VOUTPP = 0 V to 10 V  
Total harmonic distortion  
DAC update rate = 400 kHz, fOUT = 1  
kHz, VOUTPP = 3 V to –10 V  
200-mV 50-Hz or 60-Hz sine wave  
superimposed on VSS, VCC = 15 V  
Power supply rejection ratio (ac)  
200-mV 50 Hz or 60 Hz sine wave  
superimposed on VCC, VSS = –15 V  
95  
±1 LSB change around mid code  
(including feedthrough), VREFPF = 10 V,  
VREFNF = 0 V, measured at output of  
buffer op amp  
Code change glitch impulse  
1
5
nV-s  
mV  
±1 LSB change around mid code  
(including feedthrough), VREFPF = 10 V,  
VREFNF = 0 V, measured at output of  
buffer op amp  
Code change glitch impulse magnitude  
VREFPF = 10 V ± 10%, VREFNF = 0 V,  
frequency = 100 Hz, DAC at zero scale  
Reference feedthrough  
Reference feedthrough  
–90  
–90  
dB  
dB  
VREFNF = –10 V ± 10%, VREFPF = 10 V,  
frequency = 100 Hz, DAC at full scale  
(5) Adaptive TnH mode. TnH action is disabled for large code steps. For small steps, TnH action happens with a hold time of 1.2µs.  
8
Copyright © 2019, Texas Instruments Incorporated  
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
Electrical Characteristics (continued)  
at TA = –40°C to +125°C, VCC = +15 V, VSS = –15 V, AVDD = 5.5 V, DVDD = 3.3 V, IOVDD = 1.8 V, see note(1) for VREFPF and  
VREFNF, 20-bit orderable used, OUT pin buffered with unity gain OPA827, ROFS, RCM, RFB unconnected, and all typical  
specifications at TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
At SCLK = 1 MHz, DAC output static at  
midscale, 10-V range  
Digital feedthrough  
1
nV-s  
DIGITAL INPUTS  
Hysteresis voltage  
Input current  
0.4  
±5  
10  
V
µA  
pF  
Pin capacitance  
Per pin  
DIGITAL OUTPUTS  
VOL  
Output low voltage  
sinking 200 µA  
0.4  
V
V
IOVDD  
VOH  
Output high voltage  
sourcing 200 µA  
0.5  
High impedance leakage  
±5  
10  
µA  
pF  
High impedance output capacitance  
POWER  
VREFPF = 10 V, VREFNF = 0 V, midscale  
code  
IAVDD  
Current flowing into AVDD  
Current flowing into VCC  
Current flowing into VSS  
Current flowing into DVDD  
Current flowing into IOVDD  
1.5  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VREFPF = 10 V, VREFNF = 0 V, midscale  
code  
IVCC  
VREFPF = 10 V, VREFNF = 0 V, midscale  
code  
IVSS  
7
VREFPF = 10 V, VREFNF = 0 V, midscale  
code  
IDVDD  
IIOVDD  
IREFPF  
IREFNF  
0.5  
0.1  
VREFPF = 10 V, VREFNF = 0 V, midscale  
code, all digital input pins static at IOVDD  
VREFPF = 10 V, VREFNF = 0 V, midscale  
code  
Reference input current (VREFPF  
)
5
5
VREFPF = 10 V, VREFNF = 0 V, midscale  
code  
Reference input current (VREFNF  
)
Copyright © 2019, Texas Instruments Incorporated  
9
 
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7.6 Timing Requirements: Write, 4.5 V DVDD 5.5 V  
all input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH) / 2,  
SDO loaded with 20 pF, and TA = –40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
33  
UNIT  
SCLK frequency, 1.7 V IOVDD < 2.7 V  
fSCLK  
MHz  
SCLK frequency, 2.7 V IOVDD 5.5 V  
50  
SCLK high time, 1.7 V IOVDD < 2.7 V  
15  
10  
15  
10  
13  
8
tSCLKHIGH  
tSCLKLOW  
tSDIS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK high time, 2.7 V IOVDD 5.5 V  
SCLK low time, 1.7 V IOVDD < 2.7 V  
SCLK low time, 2.7 V IOVDD 5.5 V  
SDI setup, 1.7 V IOVDD < 2.7 V  
SDI setup, 2.7 V IOVDD 5.5 V  
SDI hold, 1.7 V IOVDD < 2.7 V  
13  
8
tSDIH  
SDI hold, 2.7 V IOVDD 5.5 V  
SYNC falling edge to SCLK falling edge, 1.7 V IOVDD < 2.7 V  
SYNC falling edge to SCLK falling edge, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC rising edge, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC rising edge, 2.7 V IOVDD 5.5 V  
SYNC high time, 1.7 V IOVDD < 2.7 V  
23  
18  
15  
10  
55  
50  
10  
5
tCSS  
tCSH  
tCSHIGH  
SYNC high time, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC ignore, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC ignore, 2.7 V IOVDD 5.5 V  
tCSIGNORE  
Synchronous update: SYNC rising edge to LDAC falling edge, 1.7 V ≤  
IOVDD < 2.7 V  
50  
50  
tLDACSL  
ns  
Synchronous update: SYNC rising edge to LDAC falling edge, 2.7 V ≤  
IOVDD 5.5 V  
LDAC low time, 1.7 V IOVDD < 2.7 V  
LDAC low time, 2.7 V IOVDD 5.5 V  
CLR low time, 1.7 V IOVDD < 2.7 V  
CLR low time, 2.7 V IOVDD 5.5 V  
20  
20  
20  
20  
tLDACW  
ns  
ns  
tCLRW  
10  
Copyright © 2019, Texas Instruments Incorporated  
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
7.7 Timing Requirements: Write, 2.7 V DVDD < 4.5 V  
all input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH) / 2,  
SDO loaded with 20 pF, and TA = –40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
20  
UNIT  
SCLK frequency, 1.7 V IOVDD < 2.7 V  
fSCLK  
MHz  
SCLK frequency, 2.7 V IOVDD 5.5 V  
25  
SCLK high time, 1.7 V IOVDD < 2.7 V  
25  
20  
25  
20  
21  
16  
21  
16  
41  
36  
25  
20  
100  
100  
10  
5
tSCLKHIGH  
tSCLKLOW  
tSDIS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK high time, 2.7 V IOVDD 5.5 V  
SCLK low time, 1.7 V IOVDD < 2.7 V  
SCLK low time, 2.7 V IOVDD 5.5 V  
SDI setup, 1.7 V IOVDD < 2.7 V  
SDI setup, 2.7 V IOVDD 5.5 V  
SDI hold, 1.7 V IOVDD < 2.7 V  
tSDIH  
SDI hold, 2.7 V IOVDD 5.5 V  
SYNC falling edge to SCLK falling edge, 1.7 V IOVDD < 2.7 V  
SYNC falling edge to SCLK falling edge, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC rising edge, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC rising edge, 2.7 V IOVDD 5.5 V  
SYNC high time, 1.7 V IOVDD < 2.7 V  
tCSS  
tCSH  
tCSHIGH  
SYNC high time, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC ignore, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC ignore, 2.7 V IOVDD 5.5 V  
tCSIGNORE  
Synchronous update: SYNC rising edge to LDAC falling edge, 1.7 V ≤  
IOVDD < 2.7 V  
100  
100  
tLDACSL  
ns  
Synchronous update: SYNC rising edge to LDAC falling edge, 2.7 V ≤  
IOVDD 5.5 V  
LDAC low time, 1.7 V IOVDD < 2.7 V  
LDAC low time, 2.7 V IOVDD 5.5 V  
CLR low time, 1.7 V IOVDD < 2.7 V  
CLR low time, 2.7 V IOVDD 5.5 V  
40  
40  
40  
40  
tLDACW  
ns  
ns  
tCLRW  
Copyright © 2019, Texas Instruments Incorporated  
11  
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7.8 Timing Requirements: Read and Daisy-Chain Write, 4.5 V DVDD 5.5 V  
all input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH) / 2,  
SDO loaded with 20 pF, and TA = –40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
10  
20  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
MHz  
15  
30  
50  
25  
33  
16  
50  
25  
33  
16  
13  
8
tSCLKHIGH  
ns  
tSCLKLOW  
ns  
SDI setup, 1.7 V IOVDD < 2.7 V  
SDI setup, 2.7 V IOVDD 5.5 V  
SDI hold, 1.7 V IOVDD < 2.7 V  
SDI hold, 2.7 V IOVDD 5.5 V  
tSDIS  
ns  
ns  
ns  
ns  
ns  
ns  
13  
8
tSDIH  
SYNC falling edge to SCLK falling edge, 1.7 V IOVDD < 2.7 V  
SYNC falling edge to SCLK falling edge, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC rising edge, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC rising edge, 2.7 V IOVDD 5.5 V  
SYNC high time, 1.7 V IOVDD < 2.7 V  
30  
20  
15  
10  
55  
50  
10  
5
tCSS  
tCSH  
tCSHIGH  
SYNC high time, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC ignore, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC ignore, 2.7 V IOVDD 5.5 V  
tCSIGNORE  
Synchronous update: SYNC rising edge to LDAC falling edge, 1.7 V IOVDD  
2.7 V  
<
50  
50  
tLDACSL  
ns  
ns  
Synchronous update: SYNC rising edge to LDAC falling edge, 2.7 V IOVDD  
5.5 V  
LDAC low time, 1.7 V IOVDD < 2.7 V  
20  
20  
20  
20  
0
tLDACW  
LDAC low time, 2.7 V IOVDD 5.5 V  
CLR low time, 1.7 V IOVDD < 2.7 V  
tCLRW  
ns  
CLR low time, 2.7 V IOVDD 5.5 V  
SCLK rising edge to SDO valid data, 1.7 V IOVDD < 2.7 V, FSDO = 0  
SCLK rising edge to SDO valid data, 2.7 V IOVDD 5.5 V, FSDO = 0  
SCLK falling edge to SDO valid data, 1.7 V IOVDD < 2.7 V, FSDO = 1  
SCLK falling edge to SDO valid data, 2.7 V IOVDD 5.5 V, FSDO = 1  
SYNC rising edge to SDO HiZ, 1.7 V IOVDD < 2.7 V  
SYNC rising edge to SDO HiZ, 2.7 V IOVDD 5.5 V  
35  
0
25  
ns  
35  
tSDODLY  
0
0
25  
0
20  
ns  
20  
tSDOZ  
0
12  
Copyright © 2019, Texas Instruments Incorporated  
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
7.9 Timing Requirements: Read and Daisy-Chain Write, 2.7 V DVDD < 4.5 V  
all input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH) / 2,  
SDO loaded with 20 pF, and TA = –40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
1.7 V IOVDD < 2.7 V, FSDO = 0  
1.7 V IOVDD < 2.7 V, FSDO = 1  
2.7 V IOVDD 5.5 V, FSDO = 0  
2.7 V IOVDD 5.5 V, FSDO = 1  
8
16  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
MHz  
10  
20  
62  
31  
50  
25  
62  
31  
50  
25  
21  
16  
21  
16  
41  
36  
25  
20  
100  
100  
10  
5
tSCLKHIGH  
ns  
tSCLKLOW  
ns  
SDI setup, 1.7 V IOVDD < 2.7 V  
SDI setup, 2.7 V IOVDD 5.5 V  
SDI hold, 1.7 V IOVDD < 2.7 V  
SDI hold, 2.7 V IOVDD 5.5 V  
tSDIS  
ns  
ns  
ns  
ns  
ns  
ns  
tSDIH  
SYNC falling edge to SCLK falling edge, 1.7 V IOVDD < 2.7 V  
SYNC falling edge to SCLK falling edge, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC rising edge, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC rising edge, 2.7 V IOVDD 5.5 V  
SYNC high time, 1.7 V IOVDD < 2.7 V  
tCSS  
tCSH  
tCSHIGH  
SYNC high time, 2.7 V IOVDD 5.5 V  
SCLK falling edge to SYNC ignore, 1.7 V IOVDD < 2.7 V  
SCLK falling edge to SYNC ignore, 2.7 V IOVDD 5.5 V  
tCSIGNORE  
Synchronous update: SYNC rising edge to LDAC falling edge, 1.7 V IOVDD  
2.7 V  
<
100  
100  
tLDACSL  
ns  
ns  
Synchronous update: SYNC rising edge to LDAC falling edge, 2.7 V IOVDD  
5.5 V  
LDAC low time, 1.7 V IOVDD < 2.7 V  
40  
40  
40  
40  
0
tLDACW  
LDAC low time, 2.7 V IOVDD 5.5 V  
CLR low time, 1.7 V IOVDD < 2.7 V  
tCLRW  
ns  
CLR low time, 2.7 V IOVDD 5.5 V  
SCLK rising edge to SDO valid data, 1.7 V IOVDD < 2.7 V, FSDO = 0  
SCLK rising edge to SDO valid data, 2.7 V IOVDD 5.5 V, FSDO = 0  
SCLK rising edge to SDO valid data, 1.7 V IOVDD < 2.7 V, FSDO = 1  
SCLK rising edge to SDO valid data, 2.7 V IOVDD 5.5 V, FSDO = 1  
SYNC rising edge to SDO HiZ, 1.7 V IOVDD < 2.7 V  
SYNC rising edge to SDO HiZ, 2.7 V IOVDD 5.5 V  
40  
0
30  
ns  
40  
tSDODLY  
0
0
30  
0
20  
ns  
20  
tSDOZ  
0
版权 © 2019, Texas Instruments Incorporated  
13  
 
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
tCSS  
tCSH  
tCSHIGH  
SYNC  
SCLK  
tCSIGNORE  
tSCLKLOW  
tSCLKHIGH  
tSDIH  
Bit 31  
tSDIS  
SDIN  
Bit 1  
Bit 0  
LDAC1  
tCLRW  
tLDACSL tLDACW  
CLR  
1. Serial Interface Write Timing: Standalone Mode  
tCSHIGH  
tCSS  
tCSH  
SYNC  
SCLK  
tCSIGNOR  
E
tSCLKLOW  
tSCLKHIGH  
FIRST READ COMMAND  
Bit 22  
ANY COMMAND  
Bit 22  
SDIN  
Bit 31  
Bit 0  
Bit 31  
Bit 0  
tSDIH  
tSDIS  
DATA FROM FIRST  
READ COMMAND  
SDO  
Bit 31  
Bit 22  
Bit 0  
tSDODZ  
tSDODLY  
LDAC1  
tCLRW  
tLDACSL tLDACW  
CLR  
2. Serial Interface Read and Write Timing: Daisy-Chain Mode  
14  
版权 © 2019, Texas Instruments Incorporated  
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
7.10 Typical Characteristics  
at TA = 25°C, VCC = 15 V, VSS = –15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
output and reference amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled (unless otherwise noted)  
4
3
1
0.8  
0.6  
0.4  
0.2  
0
2
1
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1  
-2  
-3  
-4  
UP, 5 V  
UP, 10 V  
BP, 10 V  
UP, 10 V (gain = 2x)  
UP, 5 V  
UP, 10 V  
BP, 10 V  
UP, 10 V, [gain = 2x]  
0
262144  
524288  
Code  
786432  
1048575  
0
262144  
524288  
Code  
786432  
1048575  
3. . Integral Linearity Error vs Digital Input Code  
4. Differential Linearity Error vs Digital Input Code  
4
1
0.8  
3
2
1
0
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1  
-2  
-3  
-4  
INL max, UP, 5 V  
INL max, UP, 10 V  
INL max, BP, 10 V  
INL min, UP, 5 V  
INL min, UP, 10 V  
INL min, BP, 10 V  
INL max, UP, 10 V, [gain 2x]  
INL min, UP, 10 V, [gain 2x]  
DNL max, UP, 5 V  
DNL max, UP, 10 V  
DNL max, BP, 10 V  
DNL min, UP, 5 V  
DNL min, UP, 10 V  
DNL min, BP, 10 V  
DNL max, UP, 10 V [gain 2x]  
DNL min, UP, 10 V [gain 2x]  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature calibration enabled  
5. Integral Linearity Error vs Temperature  
6. Differential Linearity Error vs Temperature  
4
3
10  
8
6
2
4
1
2
0
0
-2  
-4  
-6  
-8  
-10  
-1  
-2  
-3  
-4  
UP, 5 V  
BP, 5 V  
UP, 10 V  
BP, 10 V  
UP, 5 V  
BP, 5 V  
UP, 10 V  
BP, 10 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature calibration enabled  
Temperature calibration enabled  
7. Zero Code Error vs Temperature  
8. Positive Full-Scale Error vs Temperature  
版权 © 2019, Texas Instruments Incorporated  
15  
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VCC = 15 V, VSS = –15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
output and reference amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled (unless otherwise noted)  
15  
12  
9
4
3
2
6
1
3
0
0
-3  
-6  
-9  
-12  
-15  
-1  
-2  
-3  
-4  
UP, 5 V  
BP, 5 V  
UP, 10 V  
BP, 10 V  
INL min, UP, 5 V  
INL max, UP, 5 V  
INL min, BP, ê5 V  
INL max, BP, ê5 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
Supply Voltage, VCC (V) = -VSS (V)  
Temperature calibration enabled  
9. Gain Error vs Temperature  
10. Integral Linearity Error vs Supply Voltage  
1
0.8  
0.6  
0.4  
0.2  
0
10  
8
6
4
2
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-2  
-4  
-6  
-8  
-10  
DNL min, UP, 5 V  
DNL max, UP, 5 V  
DNL min, BP, ê5 V  
DNL max, BP, ê5 V  
BP, ê5 V  
UP, 5 V  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
Supply Voltage, VCC (V) = -VSS (V)  
Supply Voltage, VCC (V) = -VSS (V)  
11. Differential Linearity Error vs Supply Voltage  
12. Zero Code Error vs Supply Voltage  
4
4
3.2  
2.4  
1.6  
0.8  
0
BP, 5 V  
UP, 5 V  
BP, 5 V  
UP, 5 V  
3.2  
2.4  
1.6  
0.8  
0
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-0.8  
-1.6  
-2.4  
-3.2  
-4  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
Supply Voltage, VCC (V) = -VSS (V)  
Supply Voltage, VCC (V) = -VSS (V)  
13. Positive Full-Scale Error vs Supply Voltage  
14. Gain Error vs Supply Voltage  
16  
版权 © 2019, Texas Instruments Incorporated  
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VCC = 15 V, VSS = –15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
output and reference amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled (unless otherwise noted)  
4
1
0.8  
0.6  
0.4  
0.2  
0
3
2
1
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1  
-2  
-3  
-4  
INL min  
INL max  
DNL min  
DNL max  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
Reference Voltage, VREFPF (V) = -VREFNF (V)  
Reference Voltage, VREFPF (V) = -VREFNF (V)  
15. Integral Linearity Error vs Reference Voltage  
16. Differential Linearity Error vs Reference Voltage  
4
0
3.2  
2.4  
1.6  
0.8  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-1.2  
-1.4  
-1.6  
-1.8  
-2  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
Reference Voltage, VREFPF (V) = -VREFNF (V)  
Reference Voltage, VREFPF (V) = -VREFNF (V)  
17. Zero Code Error vs Reference Voltage  
18. Gain Error vs Reference Voltage  
1.5  
1.2  
0.9  
0.6  
0.3  
0
20  
IDVDD  
IIOVDD  
16  
12  
8
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
4
0
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
0
262144  
524288  
Code  
786432  
1048576  
Reference Voltage, VREFPF (V) = -VREFNF (V)  
VREFPF = 10 V, VREFNF = 0 V  
20. Supply Current (DVDD and IOVDD  
)
19. Positive Full-Scale Error vs Reference Voltage  
vs Digital Input Code  
版权 © 2019, Texas Instruments Incorporated  
17  
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VCC = 15 V, VSS = –15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
output and reference amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled (unless otherwise noted)  
7
5
IREFPF  
IIREFNF  
5
3
3
1
1
IVCC  
IIVSS  
-1  
-3  
-5  
-7  
-1  
-3  
-5  
0
262144  
524288  
Code  
786432  
1048576  
0
262144  
524288  
Code  
786432  
1048576  
VREFPF = 10 V, VREFNF = 0 V  
VREFPF = 10 V, VREFNF = 0 V  
21. Supply Current (VCC and VSS  
)
22. Reference Current (VREFPF and VREFNF  
)
vs Digital Input Code  
vs Digital Input Code  
2
1.6  
1.2  
0.8  
0.4  
0
50  
40  
30  
20  
10  
0
IAVDD  
IDVDD)  
0
262144  
524288  
Code  
786432  
1048576  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VREFPF = 10 V, VREFNF = 0 V  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
23. Supply Current (AVDD) vs Digital Input Code  
24. Supply Current (DVDD) vs Temperature  
12  
8
8
6
IVCC  
IVSS  
IREFPF  
IREFNF  
4
4
2
0
0
-2  
-4  
-6  
-8  
-4  
-8  
-12  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
25. Supply Current (VCC and VSS  
)
26. Reference Current (VREFPF and VREFNF  
)
vs Temperature  
vs Temperature  
18  
版权 © 2019, Texas Instruments Incorporated  
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VCC = 15 V, VSS = –15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
output and reference amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled (unless otherwise noted)  
12  
2
1.8  
1.6  
1.4  
1.2  
1
IAVDD  
8
4
0
0.8  
0.6  
0.4  
0.2  
0
-4  
-8  
-12  
IVCC  
14  
IVSS  
14.5 15  
11  
11.5  
12  
12.5  
13  
13.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Supply Voltage, VCC (V) = -VSS (V)  
VREFPF = 5 V, VREFNF = 0 V, DAC at midcode  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
28. Supply Current (VCC and VSS) vs Supply Voltage  
27. Supply Current (AVDD) vs Temperature  
1000  
800  
600  
400  
200  
0
50  
IOVDD = 5 V  
IOVDD = 3 V  
IOVDD = 1.8 V  
40  
30  
20  
10  
0
0
0.5  
1
1.5  
2
Logic Voltage, VLOGIC (V)  
2.5  
3
3.5  
4
4.5  
5
0
0.2  
0.4  
0.6  
Logic Voltage, VLOGIC (V)  
0.8  
1
1.2  
1.4  
1.6  
1.8  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode  
29. Supply Current (IOVDD  
)
30. Supply Current (IOVDD = 1.8 V)  
vs Input Pin Logic Level  
vs Input Pin Logic Level  
0.005  
0.004  
0.003  
0.002  
0.001  
0
15  
10  
5
0.005  
0.004  
0.003  
0.002  
0.001  
0
15  
VOUT  
LDAC  
VOUT  
LDAC  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
-0.001  
-0.002  
-0.003  
-0.004  
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
DACV glitch (0.4 nV-s)  
DAC Glitch (0.75 nV-s)  
3E-6 4E-6  
-0.005  
0
1E-6  
2E-6  
Time (s)  
5E-6  
0
1E-6  
2E-6  
3E-6  
Time (s)  
4E-6  
5E-6  
VREFPF = 10 V, VREFNF = –10 V, DAC transition midcode – 1 to  
midcode  
VREFPF = 10 V, VREFNF = –10 V, DAC transition midcode to  
midcode – 1  
31. Glitch Impulse, Rising Edge, 1-LSB Step  
版权 © 2019, Texas Instruments Incorporated  
32. Glitch Impulse, Falling Edge, 1-LSB Step  
19  
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VCC = 15 V, VSS = –15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
output and reference amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled (unless otherwise noted)  
1.6  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
VOUT glitch, rise  
VOUT glitch, fall  
VOUT glitch, rise  
VOUT glitch, fall  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
Code  
Code  
VREFPF = 10 V, VREFNF = –10 V  
VREFPF = 10 V, VREFNF = 0 V  
33. Segment Glitch Impulse, 1-LSB Step  
34. Segment Glitch Impulse, 1-LSB Step  
1.6  
1.4  
1.2  
1
10.033  
10.028  
10.023  
10.018  
10.013  
10.008  
10.003  
9.998  
40  
30  
20  
10  
0
VOUT (zoomed)  
Settling band (+0.1%)  
Settling band (-0.1%)  
VOUT  
LDAC  
VOUT glitch, rise  
VOUT glitch, fall  
0.8  
0.6  
0.4  
0.2  
0
-10  
-20  
-30  
-40  
-50  
9.993  
9.988  
0
1E-6 2E-6 3E-6 4E-6 5E-6 6E-6 7E-6 8E-6 9E-6 1E-5  
Time(s)  
VREFPF = 10 V, VREFNF = 0 V  
Code  
VREFPF = 5 V, VREFNF = 0 V  
35. Segment Glitch Impulse, 1-LSB Step  
36. Full-Scale Settling Time, Rising Edge  
0.012  
0.01  
45  
42  
39  
36  
33  
30  
27  
24  
21  
18  
15  
12  
9
0.0025  
0.00245  
0.0024  
20  
VOUT (zoomed)  
Settling band (+0.1%)  
Settling band (-0.1%)  
VOUT  
LDAC  
0.008  
0.006  
0.004  
0.002  
0
-0.002  
-0.004  
-0.006  
-0.008  
-0.01  
-0.012  
-0.014  
-0.016  
-0.018  
-0.02  
10  
0
0.00235  
0.0023  
-10  
-20  
-30  
-40  
-50  
-60  
0.00225  
0.0022  
VOUT (zoomed)  
Settling band (+1 LSB)  
Settling band (-1 LSB)  
LDAC  
6
3
0
-3  
0.00215  
0.0021  
0
1E-6 2E-6 3E-6 4E-6 5E-6 6E-6 7E-6 8E-6 9E-6 1E-5  
Time(s)  
0
1E-6 2E-6 3E-6 4E-6 5E-6 6E-6 7E-6 8E-6 9E-6 1E-5  
Time(s)  
VREFPF = 10 V, VREFNF = 0 V  
VREFPF = 10 V, VREFNF = 0 V, DAC transitions 100 codes around  
midscale  
38. 100 Codes Settling Time, Rising Edge  
37. Full-Scale Settling Time, Falling Edge  
20  
版权 © 2019, Texas Instruments Incorporated  
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VCC = 15 V, VSS = –15 V, AVDD = 5 V, IOVDD = 1.8 V, gain resistors unconnected (gain = 1x), OPA827 used as  
output and reference amplifier, UP = unipolar, BP = bipolar, and temperature calibration disabled (unless otherwise noted)  
40  
0.0013  
0.00125  
0.0012  
0.00115  
0.0011  
0.00105  
0.001  
16  
8
0
0
-40  
-8  
-80  
-16  
-24  
-32  
-120  
-160  
-200  
VOUT (zoomed)  
Settling band (+1 LSB)  
Settling band (-1 LSB)  
LDAC  
0
1E-6 2E-6 3E-6 4E-6 5E-6 6E-6 7E-6 8E-6 9E-6 1E-5  
Time(s)  
100  
4100  
8100  
12100  
Frequency (Hz)  
16100  
20100  
24000  
VREFPF = 10 V, VREFNF = 0 V, DAC transitions 100 codes around  
midscale  
VREFPF = 10 V, VREFNF = 0 V, DAC output frequency = 1 kHz,  
DAC update rate = 400 kHz  
39. 100 Codes Settling Time, Falling Edge  
40. Total Harmonic Distortion (THD + N)  
vs Frequency  
10  
VOUT (0.1 mV/Div)  
Zero code  
Mid code  
Full code  
9.25  
8.5  
7.75  
7
6.25  
5.5  
4.75  
4
Time (1 s/Div)  
500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
50000 100000  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode, measured at DAC  
output pin  
VREFPF = 10 V, VREFNF = 0 V, measured at DAC output  
42. DAC Output Noise: 0.1 Hz to 10 Hz  
41. DAC Output Noise Spectral Density  
0.001  
10  
0.00075  
0.0005  
0.00025  
0
5
0
-5  
-10  
-15  
-20  
-0.00025  
-0.0005  
-0.00075  
-0.001  
-25  
-30  
VOUT  
SCLK  
0
5E-7  
1E-6  
Time (s)  
1.5E-6  
2E-6  
VREFPF = 10 V, VREFNF = 0 V, DAC at midcode, measured at DAC output pin  
43. Clock Feedthrough  
版权 © 2019, Texas Instruments Incorporated  
21  
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The 20-bit DAC11001A, 18-bit DAC91001, and 16-bit DAC81001 (DACx1001) are single-channel DACs. The  
unbuffered DAC output architecture is based on an R2R ladder that is designed to provide monotonicity over  
wide reference and temperature ranges (1-LSB DNL). This architecture provides a very low-noise (7 nV/Hz) and  
fast-settling (1 µs) output. The DACx1001 also implement a deglitch circuit that enables low, code-independent  
glitch at the DAC output. This is extremely useful for creating ultra low harmonic distortion waveform generation.  
The DACx1001 requires external reference voltages on REFPF and REFNF pins. The output of the DAC ranges  
from VREFNF to VREFPF. See the Recommended Operating Conditions for VREFPF and VREFNF voltage ranges.  
The DACx1001 also includes precision matched gain setting pins (ROFS, RCM, and RFB), Using these pins and  
an external op amp, the DAC output can be scaled. The DACx1001 incorporate a power-on-reset circuit that  
makes sure that the DAC output powers up at zero scale, and remains at zero scale until a valid DAC command  
is issued. The DACx1001 use a 4-wire serial interface that operates at clock rates of up to 50 MHz.  
8.2 Functional Block Diagram  
IOVDD DVDD VCC  
AVDD  
REFPS  
REFPF  
ROFS  
RCM  
SCLK  
SDIN  
Power On Reset  
SYNC  
SDO  
RFB  
OUT  
Buffer  
Registers  
DAC  
Register  
DAC  
LDAC  
CLR  
Power  
Down Logic  
ALARM  
REFNF  
REFNS  
DGND  
VSS AGND  
8.3 Feature Description  
8.3.1 Digital-to-Analog Converter Architecture  
The DACx1001 provide 20-bit monotonic outputs using an R2R ladder architecture. The DAC output ranges  
between VREFNF and VREFPF based on the 20-bit DAC data, as described in 公式 1:  
CODE  
VOUT = (VREFPF - VREFNF )ì  
+ VREFNF  
2N  
where  
CODE is the decimal equivalent of the DAC-DATA loaded to the DAC.  
N is the bits of resolution; 20 for DAC1101A, 18 for DAC91001, 16 for DAC81001.  
VREFPF, VREFNF is the reference voltage (positive and negative).  
(1)  
22  
版权 © 2019, Texas Instruments Incorporated  
 
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
Feature Description (接下页)  
8.3.2 External Reference  
The DACx1001 require external references (REFPF and REFNF) to operate. See the Recommended Operating  
Conditions for VREFPF and VREFNF voltage ranges.  
The DACx1001 also contain dedicated sense pins, REFPS for REFPF and REFNS for REFNF. The reference  
pins are unbuffered; therefore, use a reference driver circuit for these pins. Set the VREFVAL bits (address 02h)  
as per a reference span equal to (VREFPF – VREFNF). For example, the VREFVAL bits must be set to 0100 for  
VREFPF = 5 V and VREFNF = –5 V.  
44 shows an example reference drive circuit for DACx1001. 1 shows the op-amp options for the reference  
driver circuit.  
VREFP  
+
Voltage  
Reference  
REFPF  
œ
C1  
REFPS  
ROFS  
RCM  
DACx1001  
RFB  
C2  
REFNS  
REFNF  
œ
œ
œ
VOUT  
DAC-OUT  
+
+
+
VREFN  
44. Reference Drive Circuit  
1. Reference Op Amp Options  
SELECTION PARAMETERS  
Low voltage and current noise  
Low offset and drift  
OP AMPS  
OPA211, OPA827, OPA828  
OPA189  
8.3.3 Output Buffers  
The DACx1001 outputs are unbuffered. Use an external op amp to buffer the DAC output. The DAC output  
voltage ranges from VREFPF to VREFNF. Two gain-setting resistors are integrated in the DACx1001. These  
resistors are used to scale the DAC output, minimize the bias current mismatch of the external op amp, and  
generate a negative reference for the REFNF pin. See the Embedded Resistor Configurations section for more  
information. 2 shows the op amp options for the output drive circuit.  
2. Output Op Amp Options  
SELECTION PARAMETERS  
Low bias current  
OP AMPS  
OPA827, OPA828  
OPA211, OPA828  
OPA189  
Low noise  
Low offset and drift  
OPA827, OPA828, OPA1612,  
THS4011  
Fast settling and low THD  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
 
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.4 Internal Power-On Reset (POR)  
The DACx1001 incorporate two internal POR circuits for the DVDD, AVDD, IOVDD, VCC, and VSS supplies. The  
POR signals are ANDed together, so that all supplies must be at the minimal specified values for the device to  
not be in a reset condition. These POR circuits initialize internal registers, as well as set the analog outputs to a  
known state while the device supplies are ramping. All registers are reset to default values. The DACx1001  
power on with the DAC registers set to zero scale. The DAC can be powered down by writing 1 to PDN (bit 4,  
address 02h). Typically, the POR function can be ignored as long as the device supplies power up and maintain  
the specified minimum voltage levels. However, in the case of supply drop or brownout, the DACx1001 can have  
an internal POR reset event. 45 represents the internal POR threshold levels for the DVDD, AVDD, IOVDD, VCC  
,
and VSS supplies.  
Supply (V)  
Supply Max  
Specified supply  
voltage range  
No power-on reset  
Supply Min  
Operation Threshold  
Undefined  
POR Threshold  
Power-on reset  
0.00  
45. Relevant Voltage Levels for the POR Circuit  
For the DVDD supply, no internal POR occurs for nominal supply operation from 2.7 V (supply minimum) to 5.5 V  
(supply maximum). For a DVDD supply region between 2.5 V (undefined operation threshold) and 1.6 V (POR  
threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For a DVDD  
supply less than 1.6 V (POR threshold), the internal POR resets as long as the supply voltage is less than 1.6 V  
for approximately 1 ms.  
For the AVDD supply, no internal POR occurs for nominal supply operation from 4.5 V (supply minimum) to 5.5 V  
(supply maximum). For an AVDD supply region between 4.1 V (undefined operation threshold) and 3.3 V (POR  
threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For an AVDD  
supply less than 3.3 V (POR threshold), the internal POR resets as long as the supply voltage is less than 3.3 V  
for approximately 1 ms.  
For the VCC supply, no internal POR occurs for nominal supply operation from 8 V (supply minimum) to 36 V  
(supply maximum). For VCC supply voltages between 7.5 V (undefined operation threshold) to 6 V (POR  
threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For a VCC  
supply less than 6 V (POR threshold), the internal POR resets as long as the supply voltage is less than 6 V for  
approximately 1 ms.  
For the VSS supply, no internal POR occurs for nominal supply operation from –3 V (supply minimum) to –18 V  
(supply maximum). For VSS supply voltages between –2.7 V (undefined operation threshold) to –1.8 V (POR  
threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For a VSS  
supply greater than –1.8 V (POR threshold), the internal POR resets as long as the supply voltage is higher than  
–1.8 V for approximately 1 ms.  
24  
版权 © 2019, Texas Instruments Incorporated  
 
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
For the IOVDD supply, no internal POR occurs for nominal supply operation from 1.8 V (supply minimum) to 5.5 V  
(supply maximum). For IOVDD supply voltages between 1.5 V (undefined operation threshold) and 0.8 V (POR  
threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For an IOVDD  
supply less than 0.8 V (POR threshold), the internal POR resets as long as the supply voltage is less than 0.8 V  
for approximately 1 ms.  
In case the DVDD, AVDD, IOVDD, VCC, or VSS supply drops to a level where the internal POR signal is  
indeterminate, power cycle the device followed using a software reset.  
8.3.5 Temperature Drift and Calibration  
The DACx1001 includes a calibration circuit that significantly reduces the temperature drift on integrated and  
differential nonlinearities. By default, this feature is disabled. Enable the temperature calibration feature by writing  
1 to the EN_TMP_CAL bit (address 02h, B23). After the EN_TMP_CAL bit is set, issue a calibration cycle by  
writing 1 to RCLTMP (address 04h, B8). At this point, the device enters a calibration cycle. Do not issue any  
DAC update command during this period. The device has the capability to indicate the end of calibration using  
two methods:  
1. Read the status bit ALM (address 05h, B12) using SPI.  
2. Issue an alarm on the ALARM pin by setting logic 0. To enable this feature, write 1 to ENALMP bit (address  
02h, B12).  
After the calibration cycle completes, update the DAC code to observe the impact at the DAC output. If the  
environmental temperature changes after calibration, then recalibrate the device.  
8.3.6 DAC Output Deglitch Circuit  
The DACx1001 include a deglitch (track-and-hold) circuit at the output. This circuit is enabled by default. The  
deglitch circuit minimizes the code-to-code glitch at the DAC output at the expense of the DAC update rate. This  
circuit is disabled by writing 1 to DIS_TNH (bit 7, address 06h). Disable this circuit to enable faster update of the  
DAC output, but with higher code-to-code glitches.  
8.4 Device Functional Modes  
8.4.1 Fast-Settling Mode and THD  
The DACx1001 R2R ladder and deglitch circuit reduce the harmonic distortion for waveform generation  
applications. The fast settling bit (FSET, bit 10, address 02h) is set to 1 by default, so that the DAC is configured  
for enhanced THD performance. The FSET bit can be reset to 0 using an SPI write to enable fast-settling mode.  
In this mode, the DAC deglitcher circuit can be configured using TNH_MASK (bits 19:18, address 02h). These  
bits disable the deglitch circuit for code changes specified in 7. These bits are only writable when FSET = 0  
(fast settling enabled) and DIS_TNH = 0 (deglitch circuit enabled).  
8.4.2 DAC Update Rate Mode  
The DACx1001 maximum update rate can be configured up to 1 MHz by using UP_RATE (bits 6:4, address  
06h). These bits change the hold timing of the deglitch circuit. The bits are set to a 0.5-MHz DAC update rate by  
default for enhanced THD performance. Changing the maximum update rate of the DAC impacts THD  
performance.  
版权 © 2019, Texas Instruments Incorporated  
25  
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.5 Programming  
The DACx1001 family of devices is controlled through a flexible four-wire serial interface that is compatible with  
serial interfaces used on many microcontrollers and DSP controllers. The interface provides read and write  
access to all registers of the DACx1001 devices. Additionally, the interface can be configured to daisy-chain  
multiple devices for write operations.  
Each serial interface access cycle is exactly 32 bits long, as shown in 46. A frame is initiated by asserting  
SYNC pin low. The frame ends when the SYNC pin is deasserted high. The first bit is read/write bit B31. A write  
is performed when this bit is set to 0, and a read is performed when this bit is set to 1. The next 7 bits are  
address bits B30 to B24. The next 20 bits are data. For all writes, data are clocked on the falling edge of SCLK.  
As 47 shows, for read access and daisy-chain operation, the data are clocked out on the SDO terminal on the  
rising edge of SCLK.  
SYNC  
1
2
3
4
5
6
7
8
9
31 32  
SCLK  
SDIN  
Write Command  
D31 D30 D29 D28 D27 D26 D25 D24 D23  
‡‡‡  
D1 D0  
46. Serial Interface Write Bus Cycle: Standalone Mode  
SYNC  
SCLK  
1
2
3
4
5
6
7
8
9
31 32  
1
2
3
4
5
6
7
8
9
10  
31 32  
Read Command  
D31 D30 D29 D28 D27 D26 D25 D24 D23  
Any Command  
SDIN  
SDO  
‡‡‡  
‡‡‡  
‡‡‡  
D1 D0  
D31 D30 D29 D28 D27 D26 D25 D24 D23  
Read Data  
D1 D0  
D1 D0  
Z-state  
D22  
D31 D30 D29 D28 D27 D26 D25 D24 D23  
47. Serial Interface Read Bus Cycle  
8.5.1 Daisy-Chain Operation  
For systems that contain several DACx1001 devices, the SDO pin is used to daisy-chain the devices together.  
The daisy-chain feature is useful in reducing the number of serial interface lines. The first falling edge on the  
SYNC pin starts the operation cycle, as shown in 48. SCLK is continuously applied to the input shift register  
while the SYNC pin is kept low. The DAC is updated with the data on rising edge of SYNC pin.  
SYNC  
1
2
3
4
5
6
7
8
9
31 32 33  
63 64 65  
95 96 97  
127 128  
SCLK  
SDIN  
SDO  
Device A Command  
D31 D30 D29 D28 D27 D26 D25 D24  
D23 œ D0  
Device B Command  
Device C Command Device D Command  
Device A Command Device B Command Device C Command  
48. Serial Interface Daisy-Chain Write Cycle  
If more than 32 clock pulses are applied, the data ripple out of the shift register and appear on the SDO line.  
These data are clocked out on the rising edge of SCLK and are valid on the falling edge. By connecting the SDO  
output of the first device to the SDI input of the next device in the chain, a multiple-device interface is  
constructed. Each device in the system requires 32 clock pulses.  
26  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
Programming (接下页)  
As a result, the total number of clock cycles must be equal to 32 × N, where N is the total number of devices in  
the daisy-chain. When the serial transfer to all devices is complete the SYNC signal is taken high. This action  
transfers the data from the SPI shift registers to the internal register of each device in the daisy-chain and  
prevents any further data from being clocked into the input shift register. The DACx1001 implement a bit that  
enables higher speeds for clocking out data from the SDO pin. Enable this feature by setting FSDO (bit 13,  
address 02h) to 1. See Timing Requirements: Read and Daisy-Chain Write, 2.7 V DVDD < 4.5 V and for more  
information.  
8.5.2 CLR Pin Functionality and Software Clear  
The CLR pin is an asynchronous input pin to the DAC. When activated, this level-sensitive pin clears the DAC  
buffers and DAC latches to the DAC-CLEAR-DATA bits (address 03h). The device exits clear mode on the  
SYNC rising edge of the next valid write to the device. If the CLR pin receives a logic 0 during a write sequence  
during normal operation, the clear mode is activated and the buffer and DAC registers are immediately cleared.  
The DAC registers can also be cleared using the SCLR bit (address 04h, B5); the contents are cleared at the  
rising edge of SYNC.  
8.5.3 Output Update (Synchronous and Asynchronous)  
The DACx1004 devices offer both a software and hardware simultaneous update and control function. The DAC  
double-buffered architecture has been designed so that new data can be entered for the DAC without disturbing  
the analog output. Data updates can be performed either in synchronous or in asynchronous mode, depending  
on the status of LDAC-MODE bit (address 02h, B14).  
8.5.3.1 Synchronous Update  
In synchronous mode (LDACMODE = 1), the LDAC pin is used as an active-low signal for simultaneous DAC  
updates. Data buffers must be loaded with the desired data before an LDAC low pulse. After an LDAC low pulse,  
the DAC is updated with the last contents of the corresponding data buffers. If the content of a data buffer is not  
changed, the DAC output remains unchanged after the LDAC pin is pulsed low.  
8.5.3.2 Asynchronous Update  
In asynchronous mode (LDACMODE = 0), data are updated with the rising edge of the SYNC (when daisy-chain  
mode is enabled, DSDO = 0), or at the 32nd falling edge of SCLK (When daisy-chain mode is disabled, DSDO =  
1). For asynchronous updates, the LDAC pin is not required, and it must be connected to 0 V permanently.  
8.5.4 Software Reset Mode  
The DACx1001 implements a software reset feature. The software reset function uses the SRST bit (address  
04h, B6). When this bit is set to 1, the device resets to the default state.  
版权 © 2019, Texas Instruments Incorporated  
27  
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6 Register Map  
3. Register Map  
BIT  
REGISTER  
NAME  
31  
W
30-24  
00h  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3-0  
0h  
0h  
NOP  
NOP  
DAC-DATA  
R/W  
01h  
DAC-DATA (20 bits, 18 bits, or 16 bits, left-justified)  
EN_  
TMP_  
CAL  
LDAC  
MODE  
CONFIG1  
R/W  
R/W  
02h  
03h  
0h  
TNH_MASK  
0h  
FSDO  
ENALMP  
DSDO  
FSET  
VREFVAL  
0
PDN  
0h  
0h  
DAC-CLEAR-  
DATA  
DAC-CLEAR-DATA (8 bits left justified)  
000h  
000h  
TRIGGER  
STATUS  
CONFIG2  
R/W  
R
04h  
05h  
06h  
0000h  
RCLTMP  
0
SRST  
SCLR  
0
0h  
0h  
0h  
ALM  
00h  
DIS_TNH  
R/W  
0000h  
TNH_SETTING  
28  
版权 © 2019, Texas Instruments Incorporated  
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
4. Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.6.1 NOP Register (address = 00h) [reset = 0x000000h]  
49. NOP Register Format  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
Read/  
Write  
Address  
NOP  
W
W
W
15  
14  
13  
12  
11  
10  
9
8
7
6
NOP  
W
0h  
W
5. NOP Register Field Descriptions  
Bit  
31  
Field  
Write  
Type  
W
Reset  
N/A  
Description  
Write when set to 0  
00h  
30:24  
23:4  
3:0  
Address  
NOP  
0h  
W
N/A  
W
00000h  
N/A  
No operation - Write 00000h  
N/A  
W
8.6.2 DAC-DATA Register (address = 01h) [reset = 0x000000h]  
50. DAC-DATA Register Format  
31  
30  
14  
29  
13  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
Read/  
Write  
Address  
DAC-DATA (20-bit, 18-bit, or 16-bit, left justified)  
R/W  
15  
W
R/W  
12  
11  
10  
9
8
7
6
5
4
3
2
1
DAC-DATA (20-bit, 18-bit, or 16-bit, left justified)  
R/W  
0h  
W
6. DAC-DATA Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
W
Reset  
N/A  
N/A  
0h  
Description  
Read/Write  
Address  
Read when set to 1 or write when set to 0  
01h  
30:24  
23:4  
DAC-DATA[19:0]  
R/W  
Stores the 20-bit, 18-bit, or 16-bit data to be loaded to DAC in  
MSB aligned straight binary format.  
Data follows the format below:  
DAC1101A: { DAC-DATA[19:0] }  
DAC91001: { DAC-DATA[17:0], 0, 0 }  
DAC81001: { DAC-DATA[15:0], 0, 0, 0, 0}  
3:0  
0h  
W
N/A  
N/A  
版权 © 2019, Texas Instruments Incorporated  
29  
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.3 CONFIG1 Register (address = 02h) [reset = 004C80h for bits [23:0]]  
51. CONFIG1 Register Format  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
0h  
20  
19  
18  
17  
1
16  
0
Read/  
Write  
Address  
EN_  
TMP_  
CAL  
TNH_MASK  
0h  
W
R/W  
W
R/W  
7
W
R/W  
15  
0h  
14  
13  
12  
11  
10  
9
8
6
5
4
3
2
LDAC FSDO ENALMP DSDO FSET  
MODE  
VREFVAL  
0h  
PDN  
0h  
W
R/W  
W
R/W  
W
7. CONFIG1 Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
W
Reset  
N/A  
N/A  
0h  
Description  
Read/Write  
Address  
Read when set to 1 or write when set to 0  
02h  
30:24  
23  
EN_TMP_CAL  
R/W  
Enables and disables the temperature calibration feature  
0 : Temperature calibration feature disabled (default)  
1 : Temperature calibration feature enabled  
22:20  
19-18  
0h  
W
N/A  
0h  
N/A  
TNH_MASK  
R/W  
Mask track and hold (TNH) circuit. This bit is writable only when FSET = 0  
[fast-settling mode] and DIS_TNH = 0 [track-and-hold enabled]  
00: TNH masked for code jump > 2^14 (default)  
01: TNH masked for code jump > 2^15  
10: TNH masked for code jump > 2^13  
11: TNH masked for code jump > 2^12  
17:15  
14  
0h  
W
N/A  
1
N/A  
LDACMODE  
R/W  
Synchronous or asynchronous mode select bit  
0 : DAC output updated on SYNC rising edge  
1 : DAC updated on LDAC falling edge (default)  
13  
12  
11  
10  
9:6  
FSDO  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
1h  
1h  
2h  
Enable Fast SDO  
0 : Fast SDO disabled (Default)  
1 : Fast SDO enabled  
ENALMP  
DSDO  
Enable ALARM pin to be pulled low, end of temperature calibration cycle  
0 : No alarm on the ALARM pin  
1 : Indicates end of temperature calibration cycle. ALARM pin pulled low.  
Enable SDO (for readback and daisy-chain)  
1 : SDO enabled (default)  
0 : SDO disabled  
FSET  
Fast-settling vs enhanced THD mode  
0 : Fast settling  
1 : Enhanced THD (default)  
VREFVAL  
Reference span value bits  
0000: Invalid  
0001: Invalid  
0010: Reference span = 5 V ± 1.25 V (default)  
0011: Reference span = 7.5 V ± 1.25 V  
0100: Reference span = 10 V ± 1.25 V  
0101: Reference span = 12.5 V ± 1.25 V  
0110: Reference span = 15 V ± 1.25 V  
0111: Reference span = 17.5 V ± 1.25 V  
1000: Reference span = 20 V ± 1.25 V  
1001: Reference span = 22.5 V ± 1.25 V  
1010: Reference span = 25 V ± 1.25 V  
1011: Reference span = 27.5 V± 1.25 V  
1100: Reference span = 30 V ± 1.25 V  
5
4
0
W
N/A  
0h  
N/A  
PDN  
R/W  
Powers down and power up the DAC  
0 : DAC power up (default)  
1 : DAC power down  
3:0  
0000  
R/W  
N/A  
N/A  
30  
版权 © 2019, Texas Instruments Incorporated  
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
8.6.4 DAC-CLEAR-DATA Register (address = 03h) [reset = 000000h for bits [23:0]]  
52. DAC-CLEAR-DATA Register Format  
31  
30  
14  
29  
13  
28  
12  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
16  
0
Read/  
Write  
Address  
DAC-CLEAR-DATA (8 bits, left justified)  
R/W  
15  
W
R/W  
11  
10  
9
8
7
6
5
4
3
2
000h  
W
0h  
W
8. DAC-CLEAR-DATA Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
W
Reset  
N/A  
Description  
Read/Write  
Address  
Read when set to 1 or write when set to 0  
03h  
30:24  
23:16  
N/A  
DAC-CLEAR-DATA  
R/W  
00h  
Stores the 8-bit data to be loaded to DAC in left-justified,  
straight-binary format. DAC data registers updated with this  
value when CLR pin asserted low  
15:0  
000h  
W
N/A  
N/A  
8.6.5 TRIGGER Register (address = 04h) [reset = 000000h for bits [23:0]]  
53. TRIGGER Register Format  
31  
30  
14  
29  
13  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
3
18  
2
17  
1
16  
0
Read/  
Write  
Address  
00h  
W
R/W  
15  
W
12  
00h  
W
11  
10  
9
8
7
6
5
4
RCLTMP  
R/W  
0h  
W
SRST SCLR  
R/W R/W  
0h  
W
0h  
W
9. TRIGGER Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
W
Reset  
N/A  
N/A  
N/A  
0h  
Description  
Read/Write  
Address  
0000h  
Read when set to 1 or write when set to 0  
30:24  
23:9  
8
04h  
W
Unused  
RCLTMP  
R/W  
Trigger temperature recalibration DAC Codes  
0 : No temperature recalibration (default)  
1 : DAC codes recalibrated, ALARM pin is pulled low (if  
ENALMP = 1) and ALM bit (Address 05) is set 1 upon calibration  
completion. Subsequent DAC codes will use latest calibrated  
coefficients.  
7
6
0h  
W
N/A  
0h  
NA  
SRST  
R/W  
Software reset  
0 : No software reset (default)  
1 : Software reset initiated, device in default state  
5
SCLR  
R/W  
0h  
Software clear  
0 : No software clear (default)  
1 : Software clear initiated, DAC registers in clear mode, DAC  
code set by clear select register (address 03h). DAC output  
clears on 32nd SCLK falling (DSDO = 1) or SYNC rising edge  
(DSDO = 0)  
4
0h  
0h  
W
W
N/A  
N/A  
N/A  
N/A  
3:0  
版权 © 2019, Texas Instruments Incorporated  
31  
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.6 STATUS Register (address = 05h) [reset = 000000h for bits [23:0]]  
54. STATUS Register Format  
31  
30  
29  
13  
28  
27  
26  
25  
24  
23  
22  
21  
20  
4
19  
3
18  
2
17  
1
16  
0
Read/  
Write  
Address  
00h  
W
R
W
15  
14  
0h  
W
12  
ALM  
R
11  
10  
9
8
7
6
5
00h  
W
0h  
W
10. STATUS Register Field Descriptions  
Bit  
31  
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
0
Description  
Read/Write  
Address  
000h  
Read when set to 1 , read only  
30:24  
23:13  
12  
W
05h  
N/A  
W
ALM  
R
Alarm indicator bit, This bit is not masked by ENALMP bit  
0 :Temperature recalibration in progress  
1 : DAC codes recalibrated, ALARM pin is pulled low (if  
ENALMP = 1) Subsequent DAC codes will use latest calibrated  
coefficients. Reading back this register resets ALARM pin to 1  
status.  
11:4  
3:0  
00h  
0h  
W
W
N/A  
N/A  
N/A  
N/A  
8.6.7 CONFIG2 Register (address = 06h) [reset = 000040h for bits [23:0]]  
55. CONFIG2 Register Format  
31  
30  
14  
29  
13  
28  
12  
27  
26  
25  
24  
23  
22  
21  
20  
00h  
19  
3
18  
2
17  
1
16  
0
Read/  
Write  
Address  
R/W  
15  
W
W
11  
10  
9
8
7
6
5
4
00h  
DIS_TNH  
R/W  
UP_RATE  
R/W  
0h  
W
W
11. CONFIG2 Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
W
Reset  
N/A  
N/A  
N/A  
0h  
Description  
Read/Write  
Address  
0000h  
Read when set to 1 or write when set to 0  
30:24  
23:8  
7
06h  
N/A  
W
DIS_TNH  
R/W  
Disable track and hold:  
0 : Track and hold enabled (default)  
1 : Track and hold disabled  
6-4  
UP_RATE  
R/W  
4h  
DAC output max update rate:  
000: 1 MHz with 38-MHz SCLK  
001: 0.9 MHz with 34-MHz SCLK  
010: 0.8 MHz with 31-MHz SCLK  
011: 1.2 MHz with 45-MHz SCLK  
100: 0.5 MHz with 21-MHz SCLK, (default)  
101: 0.45 MHz with 18-MHz SCLK  
110: 0.4 MHz with 16-MHz SCLK  
111: 0.6 MHz with 24-MHz SCLK  
3:0  
0h  
W
N/A  
N/A  
32  
版权 © 2019, Texas Instruments Incorporated  
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DACx1001 family of DACs are targeted for high-precision applications where ultra-high dc accuracy, ultra-  
low noise, fast settling, or high total harmonic distortion (THD) is required. The DACx1001 provides 20-bit  
monotonic resolution. This device finds application in high-performance source measure unit (SMU), battery test  
equipment (BTE), arbitrary waveform generation (AWG), and closed-loop control applications such as  
microelectromechanical system (MEMS) actuators, linear actuators, precision motor control, lens autofocus  
control in precision microscopy, lens control in mass spectrometer, beam control in electron beam lithography,  
and so on.  
9.2 Typical Application  
9.2.1 Source Measure Unit (SMU)  
A source measure unit (SMU) is a common building block in memory and semiconductor test equipment and  
bench-top source measure units. A DAC is used in an SMU to force a desired voltage or a current to a device-  
under-test (DUT). 56 provides a simplified circuit diagram of the force-DAC in an SMU.  
RCABLE  
1 M  
INA188  
œ
1
R2  
R1  
SW  
GV  
DUT  
+
2
OPA828  
VREFP  
+
INA188  
RCABLE  
GI  
REFPS  
REFPF  
REFNS  
REFNF  
1 Mꢀ  
œ
C1  
œ
RSENSE  
+
DACx1001  
OPA828  
C2  
œ
+
VREFN  
OPA828  
56. Source Measure Unit  
9.2.1.1 Design Requirements  
Force voltage range: ±10 V  
Force current range: ±20 mA  
9.2.1.2 Detailed Design Procedure  
The DAC11001A is an excellent choice for this application to meet the 20-bit resolution requirement. Switch SW  
is used to toggle between force-voltage and force-current modes, as shown in 56. The OPA828 is a high-  
precision amplifier that provides a good balance between dc and ac performance, and can supply ±30-mA output  
current. The INA188 is a zero-drift instrumentation amplifier with gain selected with an external resistor. The  
external resistor is not shown in the drawing for simplicity. The gain resistor is not required for a gain of 1. 公式 2  
shows the calculation of the voltage gain when switch SW is in position 1.  
÷
R1  
1
AV  
=
x 1+  
GV  
R2 ◊  
«
(2)  
33  
版权 © 2019, Texas Instruments Incorporated  
 
 
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
Precision reference sources are available at 5 V or less. Use a ±5-V reference with a 2x gain configuration to get  
an output of ±10 V. The DAC output amplifier sets the gain at 2, assuming GV = 1, as shown in 公式 3. R1 and R2  
are 1-kΩ each. 公式 3 shows the calculation for the current gain when the switch is in the position 2.  
÷
R1  
1
AV  
=
x 1+  
RSENSExGI  
R2 ◊  
«
(3)  
In order to get ±20-mA output current range with R1 = R2, RSENSEx GI must be 500. Choose GI as 50 so that  
RSENSE can be 10-Ω. For a ±20mA output current, the voltage drop across RSENSE is ±200-mV. Choose a higher  
value for GI and a smaller resistance value for RSENSE in case the design requires a lower voltage headroom.  
There is no equation to select C1 and C2. The values of C1 and C2 depend on the stability criteria of the  
reference buffers when driving the reference inputs of DACx1001. The values are obtained through simulation.  
For the OPA828, use C1 = C2 = 100 pF. The 1-MΩ resistors in the circuit are used for making sure the amplifiers  
are not left in open loop.  
9.2.1.3 Application Curves  
Measured on BP-DAC11001EVM, external 10-V reference  
source  
Measured on BP-DAC11001EVM, external 10-V reference  
source  
57. INL at ±10-V Output  
58. DNL at ±10-V Output  
34  
版权 © 2019, Texas Instruments Incorporated  
 
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
Typical Application (接下页)  
9.2.2 Battery Test Equipment (BTE)  
Battery test equipment is used for lithium-ion battery formation, end-of-line testing, and diagnostics. For battery  
diagnostics, high-precision DACs, such as the DACx1001, are required to maintain a highly stable voltage over  
temperature and time.  
OPA189  
+
VREFP  
REFPS  
REFPF  
REFNS  
REFNF  
Battery  
Charge/  
Discharge  
Circuit  
œ
C1  
œ
VSET/  
ISET  
RSENSE  
+
DACx1001  
OPA189  
C2  
œ
+
OPA189  
59. Battery Test Equipment  
9.2.2.1 Design Requirements  
Output range: 0 V to 5 V  
System level temperature drift: ±2 ppm/°C  
9.2.2.2 Detailed Design Procedure  
To get unipolar output from DACx1001, connect the negative reference input to ground as shown in 59. The  
OPA189 is a zero-drift amplifier with ±0.02 ppm/°C. The DACx1001 has a temperature drift of offset error of  
±0.04 ppm/°C. The temperature drifts of the DAC and amplifier might be neglected when compared to the  
temperature drift of the reference source. The best reference sources offer temperature drifts of the order of  
±2.5 ppm/°C to ±3 ppm/°C. A temperature calibration is needed for the voltage reference to achieve the goal of  
±2 ppm/°C.  
9.2.2.3 Application Curves  
Measured on BP-DAC11001EVM, REF6250 onboard reference  
source (5 V)  
Measured on BP-DAC11001EVM, REF6250 onboard reference  
source (5 V)  
60. INL at 0-V to 5-V Output  
61. DNL at 0-V to 5-V Output  
版权 © 2019, Texas Instruments Incorporated  
35  
 
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
9.2.3 High-Precision Control Loop  
High-precision control loops are used in precision motion-control applications, such as linear actuator control,  
servo motor control, galvanometer control, and more. The key requirements for such applications is resolution,  
monotonicity, settling time, and code-to-code glitch. 62 provides a simplified circuit of a linear actuator control  
circuit, wherein the DACx1001 commands the set point and an analog loop controls the actuator.  
Gain/  
Attenuation  
THS4011  
C1  
Sensor  
Output  
+
VREFP  
REFPS  
REFPF  
REFNS  
REFNF  
œ
œ
Linear  
Actuator  
Power  
Amplifier  
+
DACx1001  
THS4011  
C2  
THS4011  
œ
+
VREFN  
62. High-Precision Control Loop  
9.2.3.1 Design Requirements  
DNL: ±1 LSB max at 20-bits  
Settling time: < 2 µs  
Code-to-code Glltch: < 2 nV-s  
9.2.3.2 Detailed Design Procedure  
The DACx1001 provides 20-bit monotonic resolution at < ±1 LSB DNL. The device provides < 2 µs setting time  
and < 2 nV-s code-to-code glitch for major carry transition. The reference and output buffer used for this design  
is the THS4011, a high-speed amplifier with a 90-ns settling time. For the best settling response, use C1 and C2  
between 10 pF to 50 pF.  
9.2.3.3 Application Curves  
Measured on BP-DAC11001EVM, REF6250 onboard reference  
source (5 V)  
Measured on BP-DAC11001EVM, REF6250 onboard reference  
source (5 V)  
63. INL at ±5-V Output  
64. DNL at ±5-V Output  
36  
版权 © 2019, Texas Instruments Incorporated  
 
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
Typical Application (接下页)  
9.2.4 Arbitrary Waveform Generation (AWG)  
Arbitrary waveform generation circuits are common in memory and semiconductor test equipment. These circuits  
are used to generate reference ac waveforms to test semiconductor devices. The key performance parameters  
of such circuits are THD, SNR, and the update rate. 65 shows the basic building block example of an AWG  
circuit using the DACx1001.  
Optional Gain  
OPA828  
C1  
R2  
R1  
+
VREFP  
REFPS  
REFPF  
REFNS  
REFNF  
œ
œ
VOUT  
+
DACx1001  
OPA1611  
C2  
OPA828  
œ
+
VREFN  
65. Arbitrary Waveform Generation  
9.2.4.1 Design Requirements  
THD at 1 kHz: > –105 dB  
Update rate: 100 kHz  
9.2.4.2 Detailed Design Procedure  
The DACx1001 provides a THD of –105 dB at 1 kHz. The device provides update rates of up to 1 MHz, with  
marginal degradation in THD at higher frequencies. The OPA828 provides the best balance between the voltage  
and current noise densities, and is therefore an excellent choice to use as reference buffers. The OPA1611 is a  
low-distortion amplifier for high-THD applications.  
9.2.4.3 Application Curves  
The test conditions for the THD values in the graph of 66 are a ±3-V reference input on the BP-  
DAC11001EVM, and an external 3x gain at the DAC output. The THD calculation considers 11 harmonics; the  
even harmonics are omitted. When two DACs are used in a differential output mode, the even harmonics are  
cancelled to a large extent. 66 shows an ideal scenario, when the even harmonics are completely cancelled  
out.  
66. THD vs Frequency  
版权 © 2019, Texas Instruments Incorporated  
37  
 
 
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
9.3 System Examples  
This section provides details on the digital interface and the embedded resistor configurations.  
9.3.1 Interfacing to a Processor  
The DACx1001 family of DACs works with a 4-wire SPI interface. The digital interface of the DACx1001 to a  
processor is shown in 67. The DACx1001 has an LDAC input option for synchronous output update. In ac-  
signal generation applications, the jitter in the LDAC signal contributes to signal-to-noise ratio (SNR). Therefore,  
the LDAC signal must be generated from a low-jitter timer in the processor. The CLR and ALARM pins are static  
signals, and therefore can be connected to general-purpose input-output (GPIO) pins on the processor. All  
active-low signals (SYNC, LDAC, CLR, and ALARM) must be pulled up to IOVDD using 10-kΩ resistors. ALARM  
is an output pin from the DAC, so the corresponding GPIO on the processor must be configured as an input.  
Either poll the GPIO, or configured the GPIO as an interrupt to detect any failure alarm from the DAC. When  
using a high SCLK frequency, use source termination resistors, as shown in Interfacing to a Processor. Typically,  
33-Ω resistors work on printed circuit boards (PCBs) with a 50-Ω trace impedance.  
IOVDD  
IOVDD  
RS  
RS  
SCLK  
MOSI  
MISO  
CS  
SCLK  
SDIN  
SDO  
RS  
RS  
RS  
Processor  
SYNC  
LDAC  
CLR  
DACx1001  
TIMER  
GPIO  
GPIO  
ALARM  
DGND  
DGND  
RPULLUP  
IOVDD  
67. Interfacing to a Processor  
9.3.2 Interfacing to a Low-Jitter LDAC Source  
When the processor is not able to provide a low-jitter source for the LDAC signal, an external low-jitter LDAC  
source can be used, as shown in 68. The processor can take the LDAC signal as an interrupt and trigger the  
SPI frame synchronously.  
IOVDD  
IOVDD  
RS  
RS  
SCLK  
MOSI  
MISO  
CS  
SCLK  
SDIN  
SDO  
RS  
RS  
Processor  
SYNC  
LDAC  
CLR  
DACx1001  
INT  
GPIO  
GPIO  
ALARM  
RPULLUP  
IOVDD  
DGND  
DGND  
RS  
RS  
Low-Jitter  
LDAC Source  
68. Interfacing to an External LDAC Source  
38  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
System Examples (接下页)  
9.3.3 Embedded Resistor Configurations  
The DACx1001 provides two embedded resistors with values is double the value of the output impedance of the  
R2R ladder. These resistors can be used in various configurations, as shown in the following subsections.  
9.3.3.1 Minimizing Bias Current Mismatch  
The bias current mismatch in the output amplifier can lead to offset error at the output. To minimize mismatch,  
the amplifier must have a matching resistor to that of the R2R output impedance on the feedback path. The  
feedback resistors are used in parallel for this purpose, as shown in 69. Some amplifiers may become  
unstable with a feedback resistor in the buffer configuration. Therefore, a compensation capacitor (CCOMP) might  
be needed, as shown. The typical value of this capacitor is in the range of 22 pF to 100 pF, depending on the  
amplifier.  
ROFS  
DACx1001  
2xROUT  
CCOMP  
RCM  
2xROUT  
RFB  
œ
ROUT  
VOUT  
DAC-OUT  
+
69. Minimizing Bias Current Mismatch  
9.3.3.2 2x Gain configuration  
The circuit of 69 can be configured for 2x gain by connecting one of the resistor ends to ground, as shown in  
70.  
ROFS  
DACx1001  
2xROUT  
CCOMP  
RCM  
2xROUT  
RFB  
œ
ROUT  
VOUT  
DAC-OUT  
+
70. 2x Gain Configuration  
版权 © 2019, Texas Instruments Incorporated  
39  
 
 
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
System Examples (接下页)  
9.3.3.3 Generating Negative Reference  
Generating a negative reference is a challenge because of the fact that the circuit needs an inverting amplifier  
involving resistors. The resistor mismatch and temperature drift can lead to inaccuracy. The embedded, matched  
resistors in DACx1001 can be used as shown in 71, the inverting amplifier configuration, to generate an  
accurate negative reference voltage.  
VREFP  
+
Voltage  
Reference  
REFPF  
œ
C1  
REFPS  
ROFS  
RCM  
DACx1001  
RFB  
C2  
REFNS  
REFNF  
œ
œ
œ
VOUT  
DAC-OUT  
+
+
+
VREFN  
71. Generating Negative Reference  
40  
版权 © 2019, Texas Instruments Incorporated  
 
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
9.4 What to Do and What Not to Do  
9.4.1 What to Do  
Follow recommended grounding, decoupling, and layout schemes for achieving best accuracy.  
Use a low-jitter LDAC source for best ac performance.  
Choose the appropriate amplifiers depending on the application requirements as explained in above sections.  
9.4.2 What Not to Do  
Do not apply the reference before the DAC power supplies are powered on.  
Do not use the reference source directly with the DAC reference inputs without using buffers. or else the  
accuracy drastically degrades.  
9.5 Initialization Set Up  
The following text shows the pseudocode to get started with the DACx1001:  
//SPI Settings  
//Mode: Mode-1 (CPOL: 0, CPHA: 1)  
//CS Type: Active Low, Per Packet  
//Frame length: 32  
//SYNTAX: WRITE <REGISTER (HEX ADDRESS>, <HEX DATA>  
//Select VREF, TnH mode (Good THD), LDAC mode and power-up the DAC  
WRITE CONFIG (0x02), 0x004C80  
//Write zero code to the DAC  
WRITE DACDATA (0x01), 0x000000  
//Write mid code to the DAC  
WRITE DACDATA (0x01), 0x7FFFF0  
//Write full code to the DAC  
WRITE DACDATA (0x01), 0xFFFFF0  
版权 © 2019, Texas Instruments Incorporated  
41  
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
To get the best performance out of the DACx1001, the power supply, grounding, and decoupling are very  
important. Use a PCB with a ground-plane reference, which helps in confining the digital return currents. A low  
mutual inductance path is created just beneath the high-frequency digital traces causing the return currents to  
follow the respective signal traces, thus minimizing crosstalk. On the other hand, dc signals spread over the  
ground plane without being confined below the signal trace. Therefore, in precision dc applications, limiting the  
common-impedance coupling is very difficult unless the ground planes are physically separated. 72 shows a  
method to divide the grounds so that there is no common-mode current flow between the grounds, while  
maintaining the same dc potential across all grounds. This circuit assumes that the REFGND and LOAD-GND  
are provided from isolated power sources, therefore, there is no common-mode current flow through the  
reference or the load.  
Analog  
Power  
Inputs  
+
+
IOVDD  
DGND  
Isolated Reference  
Power  
œ
œ
Isolated Load  
Power  
AGND  
+
+
œ
Load  
Circuit  
+
VREFP  
VOUT  
œ
REFPS  
REFPF  
REFNS  
REFNF  
œ
REFGND  
C1  
C2  
œ
Signal  
Input  
LOAD-GND  
Reference  
Generation  
Circuit  
+
DACx1001  
œ
+
VREFN  
LOAD-GND  
DGND  
AGND  
AGND-OUT  
REFGND  
REFGND  
Single-Point Short  
72. Power and Signal Grounding  
When the load circuit is powered from a source referenced to AGND, and the LOAD-GND is shorted to AGND at  
the far end, the AGND-OUT must no longer be shorted to AGND locally near the DAC. The local shorting creates  
a ground loop, otherwise. The resulting connection that avoids the ground loop is shown in 73.  
Analog  
Power  
Inputs  
+
+
IOVDD  
DGND  
Isolated Reference  
Power  
œ
œ
AGND Shared Between  
DAC and Load  
AGND  
+
+
œ
Load  
Circuit  
+
VREFP  
VOUT  
œ
REFPS  
REFPF  
REFNS  
REFNF  
œ
REFGND  
C1  
C2  
œ
Signal  
Input  
AGND  
Reference  
Generation  
Circuit  
+
DACx1001  
œ
+
VREFN  
AGND  
DGND  
AGND  
AGND-OUT  
REFGND  
LOAD-GND  
REFGND  
Single-Point Short  
Single-Point Short  
73. Grounding Scheme When AGND is Load Ground  
When the reference source is powered from a power source with AGND as the ground, there is a possibility of  
common-impedance coupling causing a code-dependent shift in the reference voltage. To avoid undesired  
coupling, drive REFGND using a buffer that maintains the reference ground potential equals to that of AGND-  
OUT, as shown in 74.  
42  
版权 © 2019, Texas Instruments Incorporated  
 
 
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
Analog  
Power  
Inputs  
+
+
IOVDD  
DGND  
AGND Shared Between  
DAC and Reference  
œ
œ
AGND Shared Between  
DAC and Load  
AGND  
+
+
œ
Load  
Circuit  
+
VREFP  
VOUT  
œ
REFPS  
REFPF  
REFNS  
REFNF  
œ
AGND  
C1  
C2  
œ
Signal  
Input  
AGND  
Reference  
Generation  
Circuit  
+
DACx1001  
œ
+
VREFN  
AGND  
DGND  
AGND  
AGND-OUT  
LOAD-GND  
Kelvin Connection  
Close to the Pin  
œ
Single-Point Short  
Single-Point Short  
+
REFGND  
74. Connecting the Reference Ground  
Channel-to-channel dc crosstalk is a major concern in multichannel applications, such as battery test equipment.  
While the DACx1001 is single-channel, the crosstalk problem can appear at a system level when using multiple  
DACx1001 devices. The problem becomes severe when the grounds of the loads are shorted together creating a  
possible ground loop. In such cases, avoid the local short between AGND and AGND-OUT. Use a single short  
between AGND and DGND for all the DACs. If the PCB layout allows for the digital signal and analog power  
supplies to be kept separate, DGND and AGND can be combined to a single ground plane. 75 shows an  
example circuit for minimizing dc crosstalk across DAC channels in a system.  
Analog  
Power  
Inputs  
+
+
IOVDD  
DGND  
œ
œ
AGND  
+
+
œ
Load  
Circuit  
+
VREFP1  
VOUT1  
œ
REFPS  
REFPF  
REFNS  
REFNF  
œ
AGND  
C1  
C2  
œ
Signal  
Input  
AGND  
Reference  
Generation  
Circuit  
+
DACx1001  
œ
ICROSSTALK = 0  
+
VREFN1  
AGND  
DGND  
AGND  
AGND-OUT1  
LOAD-GND1  
Kelvin Connection  
Close to the Pin  
œ
Single-Point Short  
+
REFGND1  
Single-Point Short  
Common to all DACs  
AGND Shared  
Across DACs,  
Analog  
Power  
Inputs  
+
+
References, And  
Loads  
IOVDD  
DGND  
AGND  
œ
œ
DGND Shared  
Across DACs  
DGND  
AGND  
+
+
œ
Load  
Circuit  
+
VREFP2  
VOUT2  
œ
REFPS  
REFPF  
REFNS  
REFNF  
œ
AGND  
C3  
C4  
œ
Signal  
Input  
AGND  
Reference  
Generation  
Circuit  
+
DACx1001  
œ
ICROSSTALK = 0  
+
VREFN2  
AGND  
DGND  
AGND  
AGND-OUT2  
LOAD-GND2  
Kelvin Connection  
Close to the Pin  
œ
Single-Point Short  
+
REFGND2  
75. Minimizing Multichannel DC Crosstalk  
版权 © 2019, Texas Instruments Incorporated  
43  
 
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Power-supply bypassing and decoupling is key to keep power supply noise, switching transients, and common-  
mode currents away from the DAC output. There are three main objective of power-supply bypassing:  
Filtering: Filter out noise and ripple from power supplies  
Bypassing: Supply switching or load transient currents locally by avoiding trace inductances  
Decoupling: Stop local transient currents from impacting other circuits  
To achieve these objectives, use the following 3-element scheme. Place a decoupling capacitor close to every  
power supply pin to provide the local current path for load and circuit switching transients. This capacitor must be  
referenced to the respective load ground for best load transient suppression. Use a 0.1-µF to 1-µF, X7R,  
multilayer ceramic capacitor (MLCC) for this purpose. For analog power supplies, a 10-Ω series resistor provides  
the best decoupling. For filtering the power supply noise and ripple, 10-µF capacitors work best when placed at  
the power entry point of the board. An example decoupling scheme is shown in 76.  
10  
10 F  
10  
10 F  
VSS  
VCC  
œ
1 F  
1 F  
+
15V  
+
15V  
œ
AGND  
AGND  
AGND  
AGND  
Ferrite  
bead  
10 ꢀ  
10 F  
AVDD  
DVDD  
0.1 F  
1 F  
+
5V  
œ
AGND  
AGND  
DGND  
Ferrite  
bead  
IOVDD  
0.1 F  
10 F  
+
3.3V  
œ
DGND  
DGND  
76. Power-Supply Decoupling  
10.1 Power-Supply Sequencing  
The DACx1001 do not require any power-supply sequence. However, the power supplies to the AVDD pin must  
be capable of providing 30-mA of current if VSS ramps before AVDD. This current is derived from the AVDD pin,  
and flows out of the VSS pin. This condition is transient, and the device stops consuming this current when the  
power supplies are ramped up. To avoid this condition, make sure to ramp AVDD before VSS  
.
44  
版权 © 2019, Texas Instruments Incorporated  
 
DAC11001A, DAC91001, DAC81001  
www.ti.com.cn  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
11 Layout  
11.1 Layout Guidelines  
PCB layout plays a significant role for achieving desired ac and dc performance from the DACx1001. The  
DACx1001 has a pinout that supports easy splitting of the noisy and quiet grounds. The digital signals are  
available on two adjacent sides of the device; whereas, the power and analog signals are available separate  
sides. 77 shows an example layout, where the different ground planes have been clearly demarcated. The  
figure also shows the best positions for the single-point shorts between the ground planes. For best power-  
supply bypassing, place the bypass capacitors close to the respective power pins as shown. Provide unbroken  
ground reference planes for the digital signal traces, especially for the SPI and LDAC signals.  
11.2 Layout Example  
POWER INPUT  
VCC  
VSS  
AVDD1  
AVDD2  
AGND  
REFRENCE  
INPUTS  
PLANE  
IOVDD  
AGND and  
DGND short  
DIGITAL  
SIGNALS  
AGND-OUT and  
AGND short  
DAC_OUT  
EMBEDDED  
DAC11001  
RESISTORS  
IOVDD  
DGND  
PLANE  
DVDD  
AGND-OUT  
PLANE  
IOVDD  
DIGITAL  
SIGNALS  
77. Layout Example  
版权 © 2019, Texas Instruments Incorporated  
45  
 
DAC11001A, DAC91001, DAC81001  
ZHCSKD4A OCTOBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
BP-DAC11001 评估模块  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)BP-DAC11001EVM 用户指南》  
德州仪器 (TI)《代码对代码干扰在精密 应用 中产生的影响》应用简介  
12.3 相关链接  
12 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具与软件,以及立即订购快速访问。  
12. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
DAC11001A  
DAC91001  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
46  
版权 © 2019, Texas Instruments Incorporated  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC11001APFBR  
DAC11001APFBT  
DAC81001PFBR  
DAC81001PFBT  
DAC91001PFBR  
DAC91001PFBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
PFB  
PFB  
PFB  
PFB  
PFB  
PFB  
48  
48  
48  
48  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
250 RoHS & Green  
NIPDAU-DCC  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DAC11001A  
NIPDAU-DCC  
NIPDAU-DCC  
NIPDAU-DCC  
NIPDAU-DCC  
NIPDAU-DCC  
DAC11001A  
DAC81001  
DAC81001  
DAC91001  
DAC91001  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Mar-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC11001APFBR  
DAC81001PFBR  
DAC91001PFBR  
TQFP  
TQFP  
TQFP  
PFB  
PFB  
PFB  
48  
48  
48  
1000  
1000  
1000  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
9.6  
9.6  
9.6  
9.6  
9.6  
9.6  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC11001APFBR  
DAC81001PFBR  
DAC91001PFBR  
TQFP  
TQFP  
TQFP  
PFB  
PFB  
PFB  
48  
48  
48  
1000  
1000  
1000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
MECHANICAL DATA  
MTQF019A – JANUARY 1995 – REVISED JANUARY 1998  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DAC91001PFBR

具有超低噪声、低干扰和出色 THD 的 18 位单调 DAC | PFB | 48 | -40 to 125
TI

DAC91001PFBT

具有超低噪声、低干扰和出色 THD 的 18 位单调 DAC | PFB | 48 | -40 to 125
TI

DAC9331-14

14-Bit Multiplying DAC
APITECH

DAC9331-14-1

14-Bit Digital-to-Analog Converter
ETC

DAC9331-14-2

14-Bit Multiplying DAC
APITECH

DAC9331-16

14, 15, and 16-Bit Linearity, Latched MDACs
APITECH

DAC9331-16-4

14, 15, and 16-Bit Linearity, Latched MDACs
APITECH

DAC9331-16-5

14, 15, and 16-Bit Linearity, Latched MDACs
APITECH

DAC9331-16-6

14, 15, and 16-Bit Linearity, Latched MDACs
APITECH

DAC9331-17

14, 15, and 16-Bit Linearity, Latched MDACs
APITECH

DAC9349-12

12-Bit Digital-to-Analog Converter
ETC

DAC9349-3D

12-Bit Digital-to-Analog Converter
ETC