DAC9881SRGETG4 [TI]

适用于高精度应用的 18 位、单通道、低噪声电压输出 DAC | RGE | 24 | -40 to 105;
DAC9881SRGETG4
型号: DAC9881SRGETG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于高精度应用的 18 位、单通道、低噪声电压输出 DAC | RGE | 24 | -40 to 105

转换器 数模转换器
文件: 总38页 (文件大小:1433K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
18-Bit, Single-Channel, Low-Noise, Voltage-Output  
DIGITAL-TO-ANALOG CONVERTER  
1
FEATURES  
DESCRIPTION  
234  
18-Bit Monotonic Over Temperature Range  
Relative Accuracy: ±2LSB Max  
Low-Noise: 24nV/Hz  
The DAC9881 is an 18-bit, single-channel,  
voltage-output digital-to-analog converter (DAC). It  
features 18-bit monotonicity, excellent linearity, very  
low-noise, and fast settling time. The on-chip  
precision output amplifier allows rail-to-rail output  
swing to be achieved over the full supply range of  
2.7V to 5.5V.  
Fast Settling: 5µs  
On-Chip Output Buffer Amplifier with  
Rail-to-Rail Operation  
Single Power Supply: +2.7V to +5.5V  
DAC Loading Control  
The device supports a standard SPI serial interface  
capable of operating with input data clock frequencies  
up to 50MHz. The DAC9881 requires an external  
reference voltage to set the output range of the DAC  
channel. A programmable power-on reset circuit is  
also incorporated into the device to ensure that the  
DAC output powers up at zero-scale or midscale, and  
remains there until a valid write command.  
Selectable Power-On Reset to Zero-Scale or  
Midscale  
Power-Down Mode  
Unipolar Straight Binary or  
Twos Complement Input Mode  
Additionally, the DAC9881 has the capability to  
function in either unipolar straight binary or twos  
complement mode. The DAC9881 provides  
low-power operation. To further save energy,  
power-down mode can be achieved by accessing the  
PDN pin, thereby reducing the current consumption to  
25µA at 5V. Power consumption is 4mW at 5V,  
reducing to 125µW in power-down mode.  
Fast SPI™ Interface with Schmitt-Triggered  
Inputs: up to 50MHz, 1.8V/3V/5V Logic  
Small Package: QFN-24, 4mm × 4mm  
APPLICATIONS  
Automatic Test Equipment  
Precision Instrumentation  
Industrial Control  
The DAC9881 is available in a 4mm × 4mm QFN-24  
package with a specified temperature range of –40°C  
to +105°C.  
Data Acquisition Systems  
DGND  
IOVDD  
AGND  
AVDD  
VREFH-S VREFH-F  
DAC9881  
RST  
RSTSEL  
USB/BTC  
GAIN  
Power-On  
Reset  
Control  
Logic  
Resistor  
Network  
SDI  
CS  
PDN  
VOUT  
RFB  
SCLK  
Input  
Register  
DAC  
Latch  
DAC  
(1)  
RFB  
SDOSEL  
Serial Out  
Control  
NOTE: (1) RFB = 5kW for gain = 1,  
RFB = 10kW for gain = 2.  
SDO  
LDAC  
VREFL-S  
VREFL-F  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
4
SPI, QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008, Texas Instruments Incorporated  
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
RELATIVE  
ACCURACY  
(LSB)  
DIFFERENTIAL  
NONLINEARITY  
(LSB)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
PRODUCT  
DAC9881S  
DAC9881SB  
±3  
±2  
–1/+2  
±1  
QFN-24  
QFN-24  
RGE  
RGE  
–40°C to +105°C  
–40°C to +105°C  
DAC9881  
DAC9881B  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI  
website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
DAC9881  
–0.3 to 6  
UNIT  
V
AVDD to AGND  
IOVDD to DGND  
–0.3 to 6  
V
Digital input voltage to DGND  
VOUT to AGND  
–0.3 to IOVDD + 0.3  
–0.3 to AVDD + 0.3  
–40 to +105  
–65 to +150  
+150  
V
V
Operating temperature range  
Storage temperature range  
°C  
°C  
°C  
°C/W  
V
Maximum junction temperature (TJ max)  
Thermal impedance (θJA  
)
46  
Human body model (HBM)  
3000  
ESD ratings  
Charged device model (CDM)  
1000  
V
(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
ELECTRICAL CHARACTERISTICS: AVDD = 5V  
All specifications at TA = TMIN to TMAX, AVDD = +4.75V to +5.5V, IOVDD = +1.8V to +5.5V, VREFH = 5V, VREFL = 0V, and gain =  
1X mode, unless otherwise noted.  
DAC9881  
PARAMETER  
ACCURACY(1)  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured by line  
passing through  
codes 2048 and  
260096  
DAC9881S  
DAC9881SB  
DAC9881S  
DAC9881SB  
±2  
±1  
±3  
±2  
+2  
±1  
LSB  
LSB  
LSB  
LSB  
Integral linearity error  
Measured by line  
passing through  
codes 2048 and  
260096  
–1  
18  
±0.75  
±0.5  
Differential linearity error  
Monotonicity  
Bits  
LSB  
LSB  
TA = +25°C, code = 2048  
TMIN to TMAX, code = 2048  
Code = 2048  
±16  
±32  
Zero-scale error  
Zero-scale drift(2)  
Gain error  
±0.25  
±16  
±0.8 ppm/°C of FSR  
TA = +25°C, measured by line passing through codes 2048  
and 260096  
±32  
LSB  
Gain temperature drift(2)  
PSRR(2)  
Measured by line passing through codes 2048 and 260096  
VOUT = full-scale, AVDD = +5V ±10%  
±0.25  
±0.4  
32  
ppm/°C  
LSB/V  
ANALOG OUTPUT(2)  
Voltage output(3)  
0
AVDD  
V
ppm of FSR  
ppm of FSR  
mA  
Device operating for 500 hours at +25°C  
Device operating for 1000 hours at +25°C  
0.1  
0.2  
Output voltage drift vs time  
Output current(4)  
2.5  
Maximum load capacitance  
Short-circuit current  
200  
pF  
+31/–50  
mA  
REFERENCE INPUT(2)  
VREFH input voltage range  
VREFH input capacitance  
VREFH input impedance  
VREFL input voltage range  
VREFL input capacitance  
VREFL input impedance  
DYNAMIC PERFORMANCE(2)  
AVDD = +5.5V  
1.25  
–0.2  
5.0  
5
AVDD  
+0.2  
V
pF  
k  
V
4.5  
0
4.5  
5
pF  
kΩ  
To ±0.003% FS, RL = 10k, CL = 50pF, code 04000h to  
3C000h  
Settling time  
Slew rate  
5
µs  
From 10% to 90% of 0V to +5V  
VREFH = 5V, gain = 1X mode  
VREFH = 2.5V, gain = 1X mode  
2.5  
37  
18  
9
V/µs  
nV-s  
nV-s  
Code = 1FFFFh to  
Code change glitch  
VREFH = 1.25V, gain = 1X mode  
20000h to 1FFFFh  
nV-s  
VREFH = 2.5V, gain = 2X mode  
21  
10  
1
nV-s  
VREFH = 1.25V, gain = 2X mode  
nV-s  
Digital feedthrough  
CS = high, fSCLK = 1kHz  
nV-s  
Gain = 1  
24  
40  
2
30  
48  
nV/Hz  
nV/Hz  
µVPP  
f = 1kHz to 100kHz,  
full-scale output  
Output noise voltage density  
Output noise voltage  
Gain = 2  
f = 0.1Hz to 10Hz, full-scale output  
(1) DAC output range is 0V to +5V. 1LSB = 19µV.  
(2) Ensured by design. Not production tested.  
(3) The output from the VOUT pin = [(VREFH – VREFL)/262144] × CODE × Buffer GAIN + VREFL. The maximum range of VOUT is 0V to AVDD  
The full-scale of the output must be less than AVDD; otherwise, output saturation occurs.  
(4) Refer to Figure 26, Figure 27, and Figure 28 for details.  
.
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): DAC9881  
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 5V (continued)  
All specifications at TA = TMIN to TMAX, AVDD = +4.75V to +5.5V, IOVDD = +1.8V to +5.5V, VREFH = 5V, VREFL = 0V, and gain =  
1X mode, unless otherwise noted.  
DAC9881  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS(5)  
IOVDD = 4.5V to 5.5V  
IOVDD = 2.7V to 3.3V  
IOVDD = 1.7V to 2.0V  
IOVDD = 4.5V to 5.5V  
IOVDD = 2.7V to 3.3V  
IOVDD = 1.7V to 2.0V  
3.8  
2.1  
IOVDD + 0.3  
IOVDD + 0.3  
IOVDD + 0.3  
0.8  
V
V
High-level input voltage, VIH  
Low-level input voltage, VIL  
1.5  
V
–0.3  
–0.3  
–0.3  
V
0.6  
V
0.3  
V
Digital input current (IIN  
)
±1  
5
±10  
µA  
pF  
Digital input capacitance  
DIGITAL OUTPUT(5)  
IOVDD = 2.7V to 5.5V, IOH = –1mA  
IOVDD = 1.7V to 2.0V, IOH = –500µA  
IOVDD = 2.7V to 5.5V, IOL = 1mA  
IOVDD = 1.7 to 2.0V, IOL = 500µA  
IOVDD – 0.2  
IOVDD – 0.2  
V
V
V
V
High-level output voltage, VOH  
Low-level output voltage, VOL  
0.2  
0.2  
POWER SUPPLY  
AVDD  
+4.75  
+1.7  
+5.0  
+5.5  
AVDD  
1.5  
V
V
IOVDD  
AIDD  
VIH = IOVDD, VIL = DGND  
VIH = IOVDD, VIL = DGND  
PDN pin = IOVDD  
0.85  
1
mA  
µA  
µA  
mW  
IOIDD  
10  
AIDD power-down  
Power dissipation  
TEMPERATURE RANGE  
Specified performance  
25  
50  
AVDD = 5.0V  
4.3  
7.5  
–40  
+105  
°C  
(5) Ensured by design. Not production tested.  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
ELECTRICAL CHARACTERISTICS: AVDD = 2.7V  
All specifications at TA = TMIN to TMAX, AVDD = +2.7V to +3.3V, IOVDD = +1.8V to AVDD, VREFH = 2.5V, VREFL = 0V and gain =  
1X mode, unless otherwise noted.  
DAC9881  
PARAMETER  
ACCURACY(1)  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured by line  
passing through  
codes 2048 and  
262143  
DAC9881S  
DAC9881SB  
DAC9881S  
DAC9881SB  
±2.5  
±2  
±3.5  
±3  
LSB  
LSB  
LSB  
LSB  
Integral linearity error  
Measured by line  
passing through  
codes 2048 and  
262143  
±1  
±2  
Differential linearity error  
Zero-scale error  
±0.75  
±1.5  
TA = +25°C, code = 2048  
TMIN to TMAX, code = 2048  
Code = 2048  
±32  
±64  
LSB  
LSB  
Zero-scale drift(2)  
Gain error  
±0.5  
±32  
±1.6 ppm/°C of FSR  
TA = +25°C, measured by line passing through codes 2048  
and 262143  
±64  
LSB  
Gain temperature drift(2)  
PSRR(2)  
Measured by line passing through codes 2048 and 262143  
VOUT = full-scale, AVDD = +3V ±10%  
±0.5  
±0.8  
64  
ppm/°C  
LSB/V  
ANALOG OUTPUT(2)  
Voltage output(3)  
0
AVDD  
V
ppm of FSR  
ppm of FSR  
mA  
Device operating for 500 hours at +25°C  
Device operating for 1000 hours at +25°C  
0.2  
0.4  
Output voltage drift vs time  
Output current(4)  
2.5  
Maximum load capacitance  
200  
pF  
Short-circuit current  
+31/–50  
mA  
REFERENCE INPUT(2)  
VREFH input voltage range  
VREFH input capacitance  
VREFH input impedance  
VREFL input voltage range  
VREFL input capacitance  
VREFL input impedance  
DYNAMIC PERFORMANCE(2)  
AVDD = +3V  
1.25  
–0.2  
2.5  
5
AVDD  
+0.2  
V
pF  
kΩ  
V
4.5  
0
4.5  
5
pF  
kΩ  
To ±0.003% FS, RL = 10k, CL = 50pF, code 04000h to  
3C000h  
Settling time  
Slew rate  
5
µs  
From 10% to 90% of 0V to +2.5V  
2.5  
18  
9
V/µs  
nV-s  
VREFH = 2.5V, gain = 1X mode  
Code = 1FFFFh to  
Code change glitch  
VREFH = 1.25V, gain = 1X mode  
20000h to 1FFFFh  
nV-s  
VREFH = 1.25V, gain = 2X mode  
10  
1
nV-s  
Digital feedthrough  
CS = high, fSCLK = 1kHz  
nV-s  
Gain = 1  
24  
40  
2
30  
48  
nV/Hz  
nV/Hz  
µVPP  
f = 1kHz to 100kHz,  
full-scale output  
Output noise voltage density  
Output noise voltage  
Gain = 2  
f = 0.1Hz to 10Hz, full-scale output  
(1) DAC output range is 0V to +2.5V. 1LSB = 9.5µV.  
(2) Ensured by design. Not production tested.  
(3) The output from the VOUT pin = [(VREFH – VREFL)/262144] × CODE × Buffer GAIN + VREFL. The maximum range of VOUT is 0V to AVDD  
The full-scale of the output must be less than AVDD; otherwise, output saturation occurs.  
(4) Refer to Figure 55, Figure 56, and Figure 57 for details.  
.
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): DAC9881  
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 2.7V (continued)  
All specifications at TA = TMIN to TMAX, AVDD = +2.7V to +3.3V, IOVDD = +1.8V to AVDD, VREFH = 2.5V, VREFL = 0V and gain =  
1X mode, unless otherwise noted.  
DAC9881  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS(5)  
IOVDD = 2.7V to 3.3V  
IOVDD = 1.7V to 2.0V  
IOVDD = 2.7V to 3.3V  
IOVDD = 1.7V to 2.0V  
2.1  
1.5  
IOVDD + 0.3  
IOVDD + 0.3  
0.6  
V
V
High-level input voltage, VIH  
Low-level input voltage, VIL  
–0.3  
–0.3  
V
0.3  
V
Digital input current (IIN  
)
±1  
5
±10  
µA  
pF  
Digital input capacitance  
DIGITAL OUTPUT(5)  
IOVDD = 2.7V to 3.3V, IOH = –1mA  
IOVDD = 1.7V to 2.0V, IOH = –500µA  
IOVDD = 2.7V to 3.3V, IOL = 1mA  
IOVDD = 1.7 to 2.0V, IOL = 500µA  
IOVDD – 0.2  
IOVDD – 0.2  
V
V
V
V
High-level output voltage, VOH  
Low-level output voltage, VOL  
0.2  
0.2  
POWER SUPPLY  
AVDD  
+2.7  
+1.7  
+3.0  
+3.3  
AVDD  
1.2  
V
V
IOVDD  
AIDD  
VIH = IOVDD, VIL = DGND  
VIH = IOVDD, VIL = DGND  
PDN pin = IOVDD  
0.75  
1
mA  
µA  
µA  
mW  
IOIDD  
10  
AIDD power-down  
Power dissipation  
TEMPERATURE RANGE  
Specified performance  
25  
50  
AVDD = 3.0V  
2.3  
3.6  
–40  
+105  
°C  
(5) Ensured by design. Not production tested.  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
PIN CONFIGURATION  
RGE PACKAGE(1)  
QFN-24  
(TOP VIEW)  
1
2
3
4
5
6
18 PDN  
SCLK  
SDI  
17 RST  
16 USB/BTC  
15 GAIN  
14 RSTSEL  
13 NC  
LDAC  
AGND  
AVDD  
DAC9881  
(Thermal Pad)(1)  
VREFL-S  
(1) The thermal pad is internally connected to the substrate. This pad can be connected to the analog ground or left  
floating. Keep the thermal pad separate from the digital ground, if possible.  
TERMINAL FUNCTIONS  
TERMINAL  
NO.  
1
NAME  
SCLK  
SDI  
I/O  
DESCRIPTION  
I
I
SPI bus serial clock input  
SPI bus serial data input  
2
Load DAC latch control input (active low). When LDAC is low, the DAC latch is transparent, and the contents of the input  
register are transferred to the DAC latch. The DAC output changes to the corresponding level simultaneously when the  
DAC latch is updated. It is recommended to connect this pin to IOVDD through a pull-up resistor.  
3
LDAC  
I
4
5
AGND  
AVDD  
I
I
Analog ground  
Analog power supply  
6
VREFL-S  
VREFH-S  
VOUT  
I
Reference low input sense  
Reference high input sense  
Output of output buffer  
7
I
8
O
I
9
RFB  
Feedback resistor connected to the inverting input of the output buffer.  
Reference low input force  
Reference high input force  
Do not connect.  
10  
11  
12  
13  
VREFL-F  
VREFH-F  
NC  
I
I
NC  
Do not connect.  
Selects the value of the output from the VOUT pin after power-on or hardware reset. If RSTSEL = IOVDD, then register data  
= 20000h. If RSTSEL = DGND, then register data = 00000h.  
14  
15  
16  
17  
18  
RSTSEL  
GAIN  
I
I
I
I
I
Buffer gain setting. Gain = 1 when the pin is connected to DGND; Gain = 2 when the pin is connected to IOVDD  
.
Input data format selection. Input data are straight binary format when the pin is connected to IOVDD, and in twos  
complement format when the pin is connected to DGND.  
USB/BTC  
RST  
Reset input (active low). Logic low on this pin causes the device to perform a reset.  
Power-down input (active high). Logic high on this pin forces the device into power-down status. In power-down, the VOUT  
pin connects to AGND through a 10kresistor.  
PDN  
SPI bus chip select input (active low). Data bits are not clocked into the serial shift register unless CS is low. When CS is  
high, SDO is in a high-impedance state. It is recommended to connect this pin to IOVDD through a pull-up resistor.  
19  
20  
CS  
I
I
SPI serial data output selection. When SDOSEL is tied to IOVDD, the contents of the existing input register are shifted out  
from the SDO pin; this is Stand-Alone mode. When SDOSEL is tied to DGND, the contents in the SPI input shift register  
are shifted out from the SDO pin; this is Daisy-Chain mode for daisy-chained communication.  
SDOSEL  
21  
22  
23  
24  
AVDD  
DGND  
SDO  
I
I
Analog power supply. Must be connected to pin 5.  
Digital ground  
O
I
SPI bus serial data output. Refer to the Timing Diagrams for further detail.  
Interface power. Connect to +1.8V for 1.8V logic, +3V for 3V logic, and to +5V for 5V logic.  
IOVDD  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): DAC9881  
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
TIMING DIAGRAMS  
Case 1: Standalone operation without SDO, LDAC tied low.  
t1  
t2  
CS  
Input Register  
and DAC Latch  
Updated  
t3  
t4  
t5  
t6  
t7  
SCLK  
t8  
t9  
Bit 23 (N)  
Bit 22 (N)  
Bit 1 (N)  
Bit 0 (N)  
SDI  
Low  
LDAC  
Case 2: Standalone operation without SDO, LDAC active.  
t2  
t1  
CS  
Input Register  
Updated  
t3  
t4  
t5  
t6  
t7  
SCLK  
t8  
t9  
Bit 23 (N)  
Bit 22 (N)  
Bit 1 (N)  
Bit 0 (N)  
SDI  
t14  
t15  
High  
LDAC  
DAC Latch  
Updated  
Bit 23 = MSB  
Bit 0 = LSB  
= Don’t Care  
Figure 1. Timing Diagram for Standalone Operation without SDO  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
 
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
TIMING CHARACTERISTICS for Figure 1(1)(2)(3)  
At –40°C to +105°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
MAX  
40  
UNIT  
MHz  
MHz  
ns  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
fSCLK  
Maximum clock frequency  
50  
50  
30  
10  
8
t1  
Minumum CS high time  
ns  
ns  
Delay from CS falling edge to SCLK rising  
edge  
t2  
ns  
0
ns  
Delay from SCLK falling edge to CS falling  
edge  
t3  
0
ns  
10  
10  
15  
10  
25  
20  
10  
10  
8
ns  
t4  
SCLK low time  
SCLK high time  
SCLK cycle time  
ns  
ns  
t5  
ns  
ns  
t6  
ns  
ns  
Delay from SCLK rising edge to CS rising  
edge  
t7  
ns  
ns  
t8  
Input data setup time  
Input data hold time  
5
ns  
5
ns  
t9  
5
ns  
10  
5
ns  
Delay from CS rising edge to LDAC falling  
edge  
t14  
ns  
15  
10  
ns  
t15  
LDAC pulse width  
ns  
(1) All input signals are specified with tR = tF = 2ns (10% to 90% of IOVDD) and timed from a voltage level of IOVDD/2.  
(2) Ensured by design. Not production tested.  
(3) Sample tested during the initial release and after any redesign or process changes that may affect these parameters.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): DAC9881  
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
Case 1: Standalone operation with output from SDO, LDAC tied low.  
t1  
t2  
CS  
Input Register  
and DAC Latch  
Updated  
t3  
t4  
t5  
t6  
t7  
SCLK  
t8  
t9  
Bit 23 (N)  
Bit 22 (N)  
Bit 1 (N)  
Bit 0 (N)  
SDI  
t11  
t12  
t13  
Bit 23 (N - 1)  
from Input Reg.  
Bit 22 (N - 1)  
from Input Reg.  
Bit 1 (N - 1)  
from Input Reg.  
Bit 0 (N - 1)  
from Input Reg.  
High-Z  
High-Z  
SDO  
t10  
Low  
LDAC  
Case 2: Standalone operation with output from SDO, LDAC active.  
t2  
t1  
CS  
Input Register  
Updated  
t3  
t4  
t5  
t6  
t7  
SCLK  
t8  
t9  
Bit 23 (N)  
Bit 22 (N)  
Bit 1 (N)  
Bit 0 (N)  
SDI  
t11  
t12  
t13  
Bit 23 (N - 1)  
from Input Reg.  
Bit 22 (N - 1)  
from Input Reg.  
Bit 1 (N - 1)  
from Input Reg.  
Bit 0 (N - 1)  
from Input Reg.  
High-Z  
High-Z  
SDO  
t10  
t14  
t15  
High  
LDAC  
DAC Latch  
Updated  
Bit 23 = MSB  
Bit 0 = LSB  
= Don’t Care  
Figure 2. Timing Diagram for Standalone Operation with SDO  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
 
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
Case 1: Daisy Chain, LDAC tied low.  
t1  
t2  
CS  
Input Register  
and DAC Latch  
Updated  
t3  
t4  
t5  
t6  
t7  
SCLK  
t8  
t9  
Bit 23 (N)  
Bit 22 (N)  
Bit 0 (N)  
Bit 23 (N + 1)  
Bit 0 (N + 1)  
SDI  
t11  
t12  
Bit 23 (N)(1)  
t13  
Bit 0 (N)  
High-Z  
High-Z  
SDO  
t10  
Low  
LDAC  
Case 2: Daisy Chain, LDAC active.  
t1  
t2  
CS  
Input Register  
Updated  
t3  
t4  
t5  
t6  
t7  
SCLK  
t8  
t9  
Bit 23 (N)  
Bit 22 (N)  
Bit 0 (N)  
Bit 23 (N + 1)  
Bit 0 (N + 1)  
SDI  
t11  
t12  
t13  
Bit 23 (N)(1)  
Bit 0 (N)  
High-Z  
High-Z  
SDO  
t10  
t14  
t15  
High  
LDAC  
DAC Latch  
Updated  
Bit 23 = MSB  
Bit 0 = LSB  
= Don’t Care  
NOTE: (1) SDO data delayed from SDI by 24 clock cycles.  
Figure 3. Timing Diagram for Daisy Chain Mode, Two Cascaded Devices  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): DAC9881  
 
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
TIMING CHARACTERISTICS for Figure 2 and Figure 3(1)(2)(3)  
At –40°C to +105°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
MAX  
20  
UNIT  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
2.7 AVDD < 3.6V, 2.7 IOVDD AVDD  
3.6 AVDD 5.5V, 2.7 IOVDD AVDD  
fSCLK  
Maximum clock frequency  
25  
50  
30  
10  
8
t1  
Minumum CS high time  
Delay from CS falling edge to SCLK rising  
edge  
t2  
0
Delay from SCLK falling edge to CS falling  
edge  
t3  
0
25  
20  
25  
20  
50  
40  
10  
10  
5
t4  
SCLK low time  
SCLK high time  
SCLK cycle time  
t5  
t6  
Delay from SCLK rising edge to CS rising  
edge  
t7  
t8  
Input data setup time  
5
5
t9  
Input data hold time  
5
15  
10  
20  
15  
t10  
t11  
t12  
t13  
t14  
t15  
Delay from CS falling edge to SDO valid  
Delay from SCLK falling edge to SDO valid  
SDO data hold from SCLK rising edge  
Delay from CS rising edge to SDO high-Z  
t5  
t5  
8
5
10  
5
Delay from CS rising edge to LDAC falling  
edge  
15  
10  
LDAC pulse width  
(1) All input signals are specified with tR = tF = 2ns (10% to 90% of IOVDD) and timed from a voltage level of IOVDD/2.  
(2) Ensured by design. Not production tested.  
(3) Sample tested during the initial release and after any redesign or process changes that may affect these parameters.  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: AVDD = +5V  
At TA = +25°C, VREFH = +5.0V, VREFL = 0V, and Gain = 1X Mode, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
2.0  
1.5  
2.0  
1.5  
TA = +25°C  
TA = +25°C  
1.0  
1.0  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
0
0
0
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
0
0
0
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
Figure 4.  
Figure 5.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
2.0  
1.5  
2.0  
1.5  
TA = -40°C  
TA = -40°C  
1.0  
1.0  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
Figure 6.  
Figure 7.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARY ERROR  
vs DIGITAL INPUT CODE  
2.0  
1.5  
2.0  
1.5  
TA = +105°C  
TA = +105°C  
1.0  
1.0  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
Figure 8.  
Figure 9.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): DAC9881  
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = +5V (continued)  
At TA = +25°C, VREFH = +5.0V, VREFL = 0V, and Gain = 1X Mode, unless otherwise noted.  
LINEARITY ERROR  
vs TEMPERATURE  
DIFFERENTIAL LINEARITY ERROR  
vs TEMPERATURE  
2.0  
1.5  
2.0  
1.5  
INL Max  
1.0  
1.0  
DNL Max  
DNL Min  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
INL Min  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
120  
6.0  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
120  
6.0  
Temperature (°C)  
Temperature (°C)  
Figure 10.  
Figure 11.  
LINEARITY ERROR  
DIFFERENTIAL LINEARITY ERROR  
vs TEMPERATURE (GAIN = 2X MODE)  
vs TEMPERATURE (GAIN = 2X MODE)  
2.0  
1.5  
2.0  
1.5  
INL Max  
1.0  
1.0  
DNL Max  
DNL Min  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
INL Min  
VREFH = 2.5V  
VREFL = 0V  
VREFH = 2.5V  
VREFL = 0V  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Temperature (°C)  
Figure 12.  
Figure 13.  
LINEARITY ERROR  
vs SUPPLY VOLTAGE  
DIFFERENTIAL LINEARITY ERROR  
vs SUPPLY VOLTAGE  
2.0  
1.5  
2.0  
1.5  
INL Max  
INL Min  
1.0  
1.0  
DNL Max  
DNL Min  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
VREFH = 2.5V  
VREFL = 0V  
VREFH = 2.5V  
VREFL = 0V  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
Figure 14.  
Figure 15.  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: AVDD = +5V (continued)  
At TA = +25°C, VREFH = +5.0V, VREFL = 0V, and Gain = 1X Mode, unless otherwise noted.  
LINEARITY ERROR  
vs REFERENCE VOLTAGE  
DIFFERENTIAL LINEARITY ERROR  
vs REFERENCE VOLTAGE  
2.0  
1.5  
2.0  
1.5  
INL Max  
INL Min  
1.0  
1.0  
DNL Max  
DNL Min  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Reference Voltage (V)  
Reference Voltage (V)  
Figure 16.  
Figure 17.  
FULL-SCALE AND ZERO-SCALE ERROR  
vs TEMPERATURE  
FULL-SCALE AND ZERO-SCALE ERROR  
vs TEMPERATURE (GAIN = 2X MODE)  
1.0  
0.8  
1.0  
0.8  
VREFH = 2.5V  
VREFL = 0V  
0.6  
0.6  
0.4  
0.4  
Full-Scale Error  
Zero-Scale Error  
Full-Scale Error  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Zero-Scale Error  
-55 -35 -15  
5
25  
45  
65  
85  
105 125  
-55 -35 -15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
Temperature (°C)  
Figure 18.  
Figure 19.  
AVDD SUPPLY CURRENT  
vs DIGITAL INPUT CODE  
AVDD SUPPLY CURRENT  
vs DIGITAL INPUT CODE (GAIN = 2X MODE)  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
AVDD = 5.0V  
VREFH = 2.5V  
VREFL = 0V  
AVDD = 5.0V  
VREFH = 5.0V  
VREFL = 0V  
AVDD = 5.0V  
VREFH = 2.5V  
VREFL = 0V  
AVDD=2.7V  
VREFH=1.25V  
VREFL=0V  
AVDD = 2.7V  
VREFH = 2.7V  
VREFL = 0V  
AVDD = 2.7V  
VREFH = 2.5V  
VREFL = 0V  
0
65536  
131072  
196608  
262144  
0
65536  
131072  
196608  
262144  
Digital Input Code  
Digital Input Code  
Figure 20.  
Figure 21.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): DAC9881  
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = +5V (continued)  
At TA = +25°C, VREFH = +5.0V, VREFL = 0V, and Gain = 1X Mode, unless otherwise noted.  
AVDD SUPPLY CURRENT  
vs TEMPERATURE  
AVDD POWER-DOWN CURRENT  
vs TEMPERATURE  
1200  
1000  
800  
600  
400  
200  
0
50  
40  
30  
20  
10  
0
VREFH = 5.0V  
VREFH = 2.5V  
VREFL = 0V  
AVDD = 5.0V  
AVDD = 2.7V  
VREFL = 0V  
Gain = 1X Mode  
Gain = 2X Mode  
DAC Code Set to 3F000h  
-55 -35 -15  
5
25  
45  
65  
85  
105 125  
-55 -35 -15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
Temperature (°C)  
Figure 22.  
Figure 23.  
REFERENCE CURRENT  
vs DIGITAL INPUT CODE  
REFERENCE CURRENT  
vs DIGITAL INPUT CODE (GAIN = 2X MODE)  
1.5  
1.0  
1.5  
1.0  
VREFH = 2.5V  
VREFL = 0V  
VREFH Current  
VREFH Current  
0.5  
0.5  
0
0
VREFL Current  
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
VREFL Current  
0
65536  
131072  
196608  
262144  
0
65536  
131072  
196608  
262144  
Digital Input Code  
Digital Input Code  
Figure 24.  
Figure 25.  
OUTPUT VOLTAGE  
vs DRIVE CURRENT CAPABILITY  
(Operation Near AVDD Rail)  
OUTPUT VOLTAGE  
vs DRIVE CURRENT CAPABILITY  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.00  
DAC Loaded with 3FFFFh  
DAC Loaded with 3FFFFh  
4.95  
4.90  
4.85  
4.80  
4.75  
DAC Loaded with 3F800h  
DAC Loaded with 3F000h  
DAC Loaded with 3E000h  
DAC Loaded with 00000h  
0
3
6
9
12  
15  
0
1
2
3
4
5
I(SOURCE/SINK) (mA)  
ISOURCE (mA)  
Figure 26.  
Figure 27.  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: AVDD = +5V (continued)  
At TA = +25°C, VREFH = +5.0V, VREFL = 0V, and Gain = 1X Mode, unless otherwise noted.  
OUTPUT VOLTAGE  
vs DRIVE CURRENT CAPABILITY  
(Operation Near AGND Rail)  
IOVDD SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
200  
180  
160  
140  
120  
100  
80  
0.25  
0.20  
0.15  
0.10  
0.05  
0
IOVDD = 5V  
DAC Loaded with 02000h  
DAC Loaded with 01000h  
DAC Loaded with 00800h  
60  
40  
IOVDD = 2.7V  
20  
DAC Loaded with 00000h  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Logic Input Voltage (V)  
0
1
2
3
4
5
ISINK (mA)  
Figure 28.  
Figure 29.  
LARGE SIGNAL  
SETTLING TIME  
LARGE SIGNAL  
SETTLING TIME  
Large-Signal Output  
2V/div  
Small-Signal Error  
Large-  
Signal  
Output  
Small-Signal Error  
2V/div  
5V/div  
1mV/div  
1mV/div  
LDAC  
Signal  
LDAC  
Signal  
Code Change: 00000h to 3FFFFh  
Output Loaded with 10kW and  
50pF to AGND  
Code Change: 3FFFFh to 00000h  
Output Loaded with 10kW and  
50pF to AGND  
5V/div  
Time (2ms/div)  
Time (2ms/div)  
Figure 30.  
Figure 31.  
LARGE SIGNAL  
SETTLING TIME  
LARGE SIGNAL  
SETTLING TIME  
Large-Signal Output  
2V/div  
Large-Signal Output  
Small-Signal Error  
Small-Signal Error  
2V/div  
5V/div  
1mV/div  
1mV/div  
LDAC  
Signal  
LDAC  
Signal  
Code Change: 04000h to 3C000h  
Output Loaded with 10kW and  
50pF to AGND  
Code Change: 3C000h to 04000h  
Output Loaded with 10kW and  
50pF to AGND  
5V/div  
Time (2ms/div)  
Time (2ms/div)  
Figure 32.  
Figure 33.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): DAC9881  
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = +5V (continued)  
At TA = +25°C, VREFH = +5.0V, VREFL = 0V, and Gain = 1X Mode, unless otherwise noted.  
LARGE SIGNAL  
SETTLING TIME (GAIN = 2X MODE)  
LARGE SIGNAL  
SETTLING TIME (GAIN = 2X MODE)  
VREFH = 2.5V  
VREFH = 2.5V  
Large-Signal Output  
2V/div  
Small-Signal Error  
Large-  
Signal  
Output  
Small-Signal Error  
2V/div  
5V/div  
1mV/div  
1mV/div  
LDAC  
Signal  
LDAC  
Signal  
Code Change: 00000h to 3FFFFh  
Output Loaded with 10kW and  
50pF to AGND  
Code Change: 3FFFFh to 00000h  
Output Loaded with 10kW and  
50pF to AGND  
5V/div  
Time (2ms/div)  
Time (2ms/div)  
Figure 34.  
Figure 35.  
LARGE SIGNAL  
SETTLING TIME (GAIN = 2X MODE)  
LARGE SIGNAL  
SETTLING TIME (GAIN = 2X MODE)  
VREFH = 2.5V  
VREFH = 2.5V  
Large-Signal Output  
Small-Signal Error  
2V/div  
Large-Signal Output  
Small-Signal Error  
2V/div  
5V/div  
1mV/div  
1mV/div  
LDAC  
Signal  
LDAC  
Signal  
Code Change: 04000h to 3C000h  
Output Loaded with 10kW and  
50pF to AGND  
Code Change: 3C000h to 04000h  
Output Loaded with 10kW and  
50pF to AGND  
5V/div  
Time (2ms/div)  
Time (2ms/div)  
Figure 36.  
Figure 37.  
MAJOR CARRY GLITCH  
MAJOR CARRY GLITCH  
Code Change: 1FFFFh to 20000h  
Output Loaded with 10kW and  
50pF to AGND  
Gain = 1X Mode  
VREFH = +5V  
Gain = 1X Mode  
VREFH = +5V  
Integrated Glitch Energy (28nV-s)  
VOUT Signal  
VOUT Signal  
100mV/div  
100mV/div  
Integrated Glitch Energy (38nV-s)  
Code Change: 20000h to 1FFFFh  
Output Loaded with 10kW and  
50pF to AGND  
5V/div  
LDAC  
Signal  
5V/div  
LDAC  
Signal  
Time (2ms/div)  
Time (2ms/div)  
Figure 38.  
Figure 39.  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: AVDD = +5V (continued)  
At TA = +25°C, VREFH = +5.0V, VREFL = 0V, and Gain = 1X Mode, unless otherwise noted.  
MAJOR CARRY GLITCH  
MAJOR CARRY GLITCH  
Code Change: 1FFFFh to 20000h  
Gain = 1X Mode  
VREFH = +2.5V  
Gain = 1X Mode  
VREFH = +2.5V  
Output Loaded with 10kW and  
50pF to AGND  
Integrated Glitch Energy (15nV-s)  
VOUT Signal  
VOUT Signal  
100mV/div  
100mV/div  
Integrated Glitch Energy (17nV-s)  
Code Change: 20000h to 1FFFFh  
Output Loaded with 10kW and  
5V/div  
LDAC  
Signal  
5V/div  
LDAC  
Signal  
50pF to AGND  
Time (2ms/div)  
Time (2ms/div)  
Figure 40.  
Figure 41.  
OUTPUT NOISE DENSITY  
vs FREQUENCY  
LOW-FREQUENCY OUTPUT NOISE  
(0.1Hz to 10Hz)  
180  
160  
140  
120  
100  
80  
DAC Code Set to 20000h  
Output Unloaded  
60  
Gain = 2X Mode  
Gain = 1X Mode  
40  
20  
0
1
Time (1s/div)  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Figure 42.  
Figure 43.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): DAC9881  
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = +2.7V  
At TA = +25°C, VREFH = +2.5V, VREFL = 0V, and Gain = 1X Mode, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
3.0  
2.0  
2.0  
1.5  
TA = +25°C  
TA = +25°C  
1.0  
1.0  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-1.0  
-2.0  
-3.0  
0
0
0
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
0
0
0
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
Figure 44.  
Figure 45.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
3.0  
2.0  
2.0  
1.5  
TA = -40°C  
TA = -40°C  
1.0  
1.0  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-1.0  
-2.0  
-3.0  
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
Figure 46.  
Figure 47.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
3.0  
2.0  
2.0  
1.5  
TA = +105°C  
TA = +105°C  
1.0  
1.0  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-1.0  
-2.0  
-3.0  
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
Figure 48.  
Figure 49.  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: AVDD = +2.7V (continued)  
At TA = +25°C, VREFH = +2.5V, VREFL = 0V, and Gain = 1X Mode, unless otherwise noted.  
LINEARITY ERROR  
vs REFERENCE VOLTAGE  
DIFFERENTIAL LINEARITY ERROR  
vs REFERENCE VOLTAGE  
4.0  
3.0  
2.0  
1.5  
INL Max  
INL Min  
DNL Max  
2.0  
1.0  
1.0  
0.5  
0
0
DNL Min  
-1.0  
-2.0  
-3.0  
-4.0  
-0.5  
-1.0  
-1.5  
-2.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Reference Voltage (V)  
Reference Voltage (V)  
Figure 50.  
Figure 51.  
AVDD SUPPLY CURRENT  
vs TEMPERATURE  
REFERENCE CURRENT  
vs DIGITAL INPUT CODE  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1.00  
0.75  
0.50  
0.25  
0
VREFH = 2.5V  
VREFL = 0V  
VREF = 2.5V, Gain = 1X Mode  
VREF = 1.25V, Gain = 2X Mode  
VREFH Current  
VREFL Current  
-0.25  
-0.50  
-0.75  
-1.00  
DAC Code Set to 3FFFFh  
-55 -35 -15  
5
25  
45  
65  
85  
105 125  
0
65536  
131072  
196608  
262144  
Temperature (°C)  
Digital Input Code  
Figure 52.  
Figure 53.  
REFERENCE CURRENT  
vs DIGITAL INPUT CODE (GAIN = 2X MODE)  
OUTPUT VOLTAGE  
vs DRIVE CURRENT CAPABILITY  
1.00  
0.75  
0.50  
0.25  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DAC Loaded with 3FFFFh, VREFH = 2.7V  
VREFH = 1.25V  
VREFL = 0V  
DAC Loaded with 3FFFFh, VREFH = 2.5V  
VREFH Current  
VREFL Current  
-0.25  
-0.50  
-0.75  
-1.00  
DAC Loaded with 00000h  
0
65536  
131072  
196608  
262144  
0
3
6
9
12  
15  
Digital Input Code  
I(SOURCE/SINK) (mA)  
Figure 54.  
Figure 55.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): DAC9881  
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = +2.7V (continued)  
At TA = +25°C, VREFH = +2.5V, VREFL = 0V, and Gain = 1X Mode, unless otherwise noted.  
OUTPUT VOLTAGE  
vs DRIVE CURRENT CAPABILITY  
(Operation Near AVDD Rail)  
OUTPUT VOLTAGE  
vs DRIVE CURRENT CAPABILITY  
(Operation Near AGND Rail)  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
0.25  
0.20  
0.15  
0.10  
0.05  
0
DAC Loaded with 3FFFFh  
DAC Loaded  
with 01000h  
DAC Loaded  
with 3F800h  
DAC Loaded  
DAC Loaded  
with 3E000h  
DAC Loaded  
with 00800h  
with 02000h  
DAC Loaded  
with 3F000h  
DAC Loaded with 3FFFFh, VREFH = 2.5V  
VREFH = 2.7V, unless otherwise noted.  
DAC Loaded with 00000h  
0
1
2
3
4
5
0
1
2
3
4
5
ISOURCE (mA)  
ISINK (mA)  
Figure 56.  
Figure 57.  
LARGE SIGNAL  
SETTLING TIME  
LARGE SIGNAL  
SETTLING TIME  
Code Change: 3FFFFh to 00000h  
Output Loaded with 10kW and  
50pF to AGND  
Large-Signal Output  
1V/div  
Large-Signal Output  
Small-Signal Error  
Small-Signal Error  
1V/div  
5V/div  
1mV/div  
1mV/div  
Code Change: 00000h to 3FFFFh  
Output Loaded with 10kW and  
50pF to AGND  
LDAC  
Signal  
LDAC  
Signal  
5V/div  
Time (2ms/div)  
Time (2ms/div)  
Figure 58.  
Figure 59.  
LARGE SIGNAL  
SETTLING TIME  
LARGE SIGNAL  
SETTLING TIME  
Large-Signal Output  
1V/div  
Large-Signal Output  
Small-Signal Error  
1V/div  
5V/div  
1mV/div  
1mV/div  
Small-Signal Error  
Code Change: 04000h to 3C000h  
Output Loaded with 10kW and  
50pF to AGND  
Code Change: 3C000h to 04000h  
Output Loaded with 10kW and  
50pF to AGND  
LDAC  
Signal  
LDAC  
Signal  
5V/div  
Time (2ms/div)  
Time (2ms/div)  
Figure 60.  
Figure 61.  
22  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: AVDD = +2.7V (continued)  
At TA = +25°C, VREFH = +2.5V, VREFL = 0V, and Gain = 1X Mode, unless otherwise noted.  
MAJOR CARRY GLITCH  
MAJOR CARRY GLITCH  
Code Change: 1FFFFh to 20000h  
Gain = 1X Mode  
VREFH = +2.5V  
Gain = 1X Mode  
VREFH = +2.5V  
Output Loaded with 10kW and  
50pF to AGND  
Integrated Glitch Energy (17.5nV-s)  
VOUT Signal  
VOUT Signal  
100mV/div  
100mV/div  
Integrated Glitch Energy (16.5nV-s)  
Code Change: 20000h to 1FFFFh  
Output Loaded with 10kW and  
50pF to AGND  
5V/div  
LDAC  
Signal  
5V/div  
LDAC  
Signal  
Time (2ms/div)  
Time (2ms/div)  
Figure 62.  
Figure 63.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): DAC9881  
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
THEORY OF OPERATION  
GENERAL DESCRIPTION  
The DAC9881 is a single-channel, 18-bit, serial-input, voltage-output digital-to-analog converter (DAC). The  
architecture is an R-2R ladder configuration with the four MSBs segmented, followed by an operational amplifier  
that serves as a buffer, as shown in Figure 64. The on-chip output buffer allows rail-to-rail output swings while  
providing a low output impedance to drive loads. The DAC9881 operates from a single analog power supply that  
ranges from 2.7V to 5.5V, and typically consumes 850µA when operating with a 5V supply. Data are written to  
the device in a 24-bit word format, via an SPI serial interface. To enable compatibility with 1.8V, 3V, or 5V logic  
families, an IOVDD supply pin is provided. This pin allows the DAC9881 input and output logic to be powered  
from the same logic supply used to interface signals to and from the device. Internal voltage translators are  
included in the DAC9881 to interface digital signals to the device core. See Figure 65 for the basic configuration  
of the DAC9881.  
To ensure a known power-up state, the DAC9881 is designed with a power-on reset function. Upon power-up,  
the DAC9881 is reset to either zero-scale or midscale depending on the state of the RSTSEL pin. A harrdware  
reset can be performed by using the RST and RSTSEL pins.  
(1)  
RFB  
RFB  
R
VOUT  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
5kW  
VREFH  
5kW  
NOTE: (1) RFB = 5kW for gain = 1  
RFB = 10kW for gain = 2.  
VREFH-F  
VREFH-S  
VREFL-F  
VREFL-S  
Figure 64. DAC9881 Architecture  
24  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
 
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
+5V  
+
0.1mF  
1mF  
+
0.1mF  
1mF  
SCLK  
PDN  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
Clock  
SDI  
LDAC  
AGND  
AVDD  
RST  
Reset DAC Registers  
Serial Data In  
USB/BTC  
GAIN  
Load DAC Registers  
DAC9881  
RSTSEL  
NC  
(Thermal Pad)  
VREFL-S  
0V to +5.0V  
External Reference  
+5.0000V  
Figure 65. Basic Configuration  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): DAC9881  
 
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
ANALOG OUTPUT  
The DAC9881 offers a force and sense output configuration for the high open-loop gain output amplifier. This  
feature allows the loop around the output amplifier to be closed at the load (as shown in Figure 66), thus  
ensuring an accurate output voltage. The output buffer VOUT and RFB pins are provided so that the output op amp  
buffer feedback can be connected at the load. Without a driven load, the DAC9881 output typically swings to  
within 15mV of the AGND and AVDD supply rails. Because of the high accuracy of these DACs, system design  
problems such as grounding and wiring resistance become very important. A 18-bit converter with a 5V full-scale  
range has an LSB value of 19µV. The DAC9881 has a typical feedback resistor current of 0.5mA; thus, a series  
wiring resistance of only 100m(RW1) causes a voltage drop of 50µV. In terms of a system layout, the resistivity  
of a typical 1-ounce copper-clad printed circuit board (PCB) is 0.5mper square. For a 0.5mA current, a  
0.25mm wide printed circuit conductor 25mm long results in a voltage drop of 25µV. Note that the wiring  
resistance of RW2 is not critical as long as the feedback resistor (RFB) is connected at the driven load.  
+5V  
+
0.1mF  
1mF  
+
0.1mF  
1mF  
SCLK  
PDN  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
Clock  
SDI  
LDAC  
AGND  
AVDD  
RST  
Reset DAC Registers  
Serial Data In  
USB/BTC  
GAIN  
Load DAC Registers  
DAC9881  
RSTSEL  
NC  
(Thermal Pad)  
VREFL-S  
VOUT  
External Reference  
+5.0000V  
Figure 66. Analog Output Closed-Loop Configuration  
(RW1 and RW2 represent wiring resistance)  
26  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
 
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
REFERENCE INPUTS  
The reference high input, VREFH, can be set to any voltage in the range of 1.25V to AVDD. The reference low  
input, VREFL, can be set to any voltage in the range of –0.2V to +0.2V (to provide a small offset to the output of  
the DAC9881, if desired). The current into VREFH and out of VREFL depends on the DAC code, and can vary from  
approximately 0.5mA to 1mA in the gain = 1X mode of operation. The reference high and low inputs appear as  
variable loads to the external reference circuit. If the external references can source or sink the required current,  
and if low impedance connections are made to the VREFH and VREFL pins, external reference buffers are not  
required. Figure 65 shows a simple configuration of the DAC9881 using external references without force and  
sense reference buffers.  
Kelvin sense connections for the reference high and low are included on the DAC9881. When properly used with  
external reference buffer op amps, these reference Kelvin sense pins ensure that the driven reference high and  
low voltages remain stable versus varying reference load currents. Figure 67 shows an example of a reference  
force and sense configuration of the DAC9881 operating from a single analog reference voltage. Both the VREFL  
and VREFH reference voltages are set to levels of 100mV from the DAC9881 supply rails, and are derived from a  
+5V external reference. Figure 68 illustrates the effect of not using the reference force and sense buffers to drive  
the DAC9881 VREFL and VREFH pins. Figure 69 shows the improvement when using the reference buffers. A slight  
degradation in INL and DNL performance is seen without the use of the force and sense buffer configuration.  
SCLK  
1
SDI  
2
LDAC  
3
+5V  
AGND  
4
5
6
External Reference  
+5.0000V  
AVDD  
DAC9881  
OPA2350  
VREFL-S  
2200pF  
2kW  
50W  
+4.900V  
1000pF  
96kW  
+0.100V  
50W  
1000pF  
2kW  
2200pF  
NOTE: VREFL can be connected to AGND if VREFL is not biased.  
Figure 67. Buffered References (VREFH = +4.900V and VREFL = 100mV).  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
0
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
0
32768 65536 98304 131072 163840 196608 229376 262144  
Digital Input Code  
Figure 68. Linearity and Differential Linearity Error  
for Figure 65 without Reference Buffers  
Figure 69. Linearity and Differential Linearity Error  
for Figure 67 with Reference Buffers  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): DAC9881  
 
 
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
OUTPUT RANGE  
The maximum output range of the DAC9881 is VREFL to (VREFH – VREFL) × G, where G is the output buffer gain  
set by the GAIN pin. When the GAIN pin is connected to DGND, the output buffer gain = 1. When the GAIN pin  
is connected to IOVDD, the output buffer gain = 2. The output range must not be greater than AVDD; otherwise,  
output saturation occurs. The DAC9881 output transfer function is given in Equation 1:  
VREFH - VREFL  
VOUT  
=
´ CODE ´ Buffer Gain + VREFL  
262144  
(1)  
Where:  
CODE = 0 to 262143. This is the digital code loaded to the DAC.  
Buffer Gain = 1 or 2 (set by the GAIN pin).  
VREFH = reference high voltage applied to the device.  
VREFL = reference low voltage applied to the device.  
INPUT DATA FORMAT  
The USB/BTC pin defines the input data format. When this pin is connected to IOVDD, the input data format is  
straight binary, as shown in Table 1. When this pin is connected to DGND, the input data format is twos  
complement, as shown in Table 2.  
Table 1. Output vs Straight Binary Code  
USB CODE  
3FFFFh  
30000h  
5V RANGE  
+4.99998  
+3.75000  
+2.50000  
+1.25000  
0.00000  
DESCRIPTION  
+Full-Scale – 1LSB  
3/4-Scale  
20000h  
Midscale  
10000h  
1/4-Scale  
00000h  
Zero-Scale  
Table 2. Output vs Twos Complement Code  
BTC CODE  
1FFFFh  
10000h  
5V RANGE  
+4.99998  
+3.75000  
+2.50000  
+2.49998  
+1.25000  
0.00000  
DESCRIPTION  
+Full-Scale – 1LSB  
3/4-Scale  
00000h  
Midscale  
3FFFFh  
30000h  
Midscale – 1LSB  
1/4-Scale  
20000h  
Zero-Scale  
POWER DOWN  
The DAC9881 has a hardware power-down function. When the PDN pin is high, the device is in power-down  
mode. When the device is in power-down, the VOUT pin is connected to ground through an internal 10kresistor,  
but the contents of the input register and the DAC latch do not change and SPI communication remains active.  
When the PDN pin returns low, the device returns to normal operation.  
HARDWARE RESET  
When the RST pin is low, the device is in hardware reset mode, and the input register and DAC latch are set to  
the value defined by the RSTSEL pin. After RST goes high, the device is in normal operating mode, and the  
input register and DAC latch maintain the reset value until new data are written.  
28  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
 
 
 
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
POWER-ON RESET  
The DAC9881 has a power-on reset function. After power-on, the value of the input register, the DAC latch, and  
the output from the VOUT pin are set to the value defined by the RSTSEL pin.  
PROGRAM RESET VALUE  
After a power-on reset or a hardware reset, the output voltage from the VOUT pin and the values of the input  
register and DAC latch are determined by the status of the RSTSEL pin and the input data format, as shown in  
Table 3.  
Table 3. Reset Value  
RSTSEL PIN  
DGND  
USB/BTC PIN  
IOVDD  
INPUT FORMAT  
Straight Binary  
VOUT  
0
VALUE OF INPUT REGISTER AND DAC LATCH  
00000h  
20000h  
00000h  
20000h  
IOVDD  
IOVDD  
Straight Binary  
Midscale  
Midscale  
0
DGND  
DGND  
Twos Complement  
Twos Complement  
IOVDD  
DGND  
SERIAL INTERFACE  
The DAC9881 is controlled by a versatile three-wire serial interface that operates at clock rates of up to 50MHz  
and is compatible with SPI, QSPI™, MICROWIRE™, and DSP interface standards.  
Input Shift Register  
Data are loaded into the device as a 24-bit word under the control of the serial clock input, SCLK. The timing  
diagrams for this operation are shown in the Timing Diagram section.  
The CS input is a level-triggered input that acts as a frame synchronization signal and chip enable. Data can be  
transferred into the device only while CS is low. When CS is high, the SCLK and SDI signals are blocked out,  
and SDO is in high-Z status. To start the serial data transfer, CS should be taken low, observing the minimum  
delay from CS falling edge to SCLK rising edge, t2. After CS goes low, serial input data from SDI are clocked into  
the device input shift register on the rising edges of SCLK for 24 or more clock pulses. If a frame contains less  
than 24 bits of data, the frame is invalid. Invalid input data are not written into the input register and DAC,  
although the input register and DAC will continue to hold data from the preceding valid data cycle. If more than  
24 bits of data are transmitted in one frame, the last 24 bits are written into the shift register and DAC. CS may  
be taken high after the rising edge of the 24th SCLK pulse, observing the minimum SCLK rising edge to CS  
rising edge time, t7. The contents of the shift register are transferred into the input register on the rising edge of  
CS. When data have been transferred into the input register of the DAC, the corresponding DAC register and  
DAC output can be updated by taking the LDAC pin low. Table 4 shows the input shift register data word format.  
D17 is the MSB of the 18-bit DAC data.  
Table 4. Input Shift Register Data Word Format  
B17  
B0  
BIT  
B23 B22 B21 B20 B19 B18 (MSB) B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 (LSB)  
DATA X(1)  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
(1) X = don't care.  
Stand-Alone Mode  
When the SDOSEL pin is tied to IOVDD, the interface is in Stand-Alone mode. This mode provides serial  
readback for diagnostic purposes. The new input data (24 bits) are clocked into the device shift register and the  
existing data in the input register (24 bits) are shifted out from the SDO pin. If more than 24 SCLKs are clocked  
when CS is low, the contents of the input register are shifted out from the SDO pin, followed by zeroes; the last  
24 bits of input data remain in the shift register. If less than 24 SCLKs are clocked while CS is low, the data from  
the SDO pin are part of the data in the input register and must be ignored. Refer to Figure 2 for further details.  
Daisy-Chain Mode  
When the SDOSEL pin is tied to GND, the interface is in Daisy-Chain mode. For systems that contain several  
DACs, the SDO pin may be used to daisy-chain several devices together.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): DAC9881  
 
 
DAC9881  
SBAS438AMAY 2008REVISED AUGUST 2008 ......................................................................................................................................................... www.ti.com  
In Daisy-Chain mode, SCLK is continuously applied to the input shift register while CS is low. If more than 24  
clock pulses are applied, the data ripple out of the shift register and appear on the SDO line. These data are  
clocked out on the falling edge of SCLK and are valid on the rising edge. By connecting this line to the SDI input  
on the next DAC in the chain, a multi-DAC interface is constructed. 24 clock pulses are required for each DAC in  
the chain. Therefore, the total number of clock cycles must be equal to (24 x N), where N is the total number of  
devices in the chain. When the serial transfer to all devices is complete, CS should be taken high. This action  
prevents any further data from being clocked into the input shift register. The contents in the shift registers are  
transferred into the relevant input registers on the rising edge of the CS signal.  
A continuous SCLK source may be used if CS can be held low for the correct number of clock cycles.  
Alternatively, a burst clock containing the exact number of clock cycles can be used and CS can be taken high  
some time later. When the transfer to all input registers is complete, a common LDAC signal updates all DAC  
registers, and all analog outputs update simultaneously.  
DOUBLE-BUFFERED INTERFACE  
The DAC9881 has a double-buffered interface consisting of two register banks: the input register and the DAC  
latch. The input register is connected directly to the input shift register and the digital code is transferred to the  
input register upon completion of a valid write sequence. The DAC latch contains the digital code used by the  
resistor R-2R ladder. The contents of the DAC latch defines the output from the DAC.  
Access to the DAC latch is controlled by the LDAC pin. When LDAC is high, the DAC latch is latched and the  
input register can change state without affecting the contents of the DAC latch. When LDAC is low, however, the  
DAC latch becomes transparent and the contents of the input register is transferred to the DAC register.  
Load DAC Pin (LDAC)  
LDAC transfers data from the input register to the DAC latch (and, therefore, updates the DAC output). The  
contents of the DAC latch (and the output from DAC) can be changed in two ways, depending on the status of  
LDAC.  
Synchronous Mode  
When LDAC is tied low, the DAC latch updates as soon as new data are transferred into the input register after  
the rising edge of CS.  
Asynchronous Mode  
When LDAC is high, the DAC latch is latched. The DAC latch (and DAC output) is not updated at the same time  
that the input register is written to. When LDAC goes low, the DAC latch updates with the contents of the input  
register.  
1.8V TO 5V LOGIC INTERFACE  
All digital input and output pins are compatible with any logic supply voltage between 1.8V and 5V. Connect the  
interface logic supply voltage to the IOVDD pin. Although timing is specified down to 2.7V (see the Timing  
Characteristics), IOVDD can operate as low as 1.8V, but with degraded timing and temperature performance. For  
the lowest power consumption, logic VIH levels should be as close as possible to IOVDD, and logic VIL levels  
should be as close as possible to GND.  
POWER-SUPPLY SEQUENCE  
For the device to work properly, IOVDD must not come up before AVDD, and the reference voltage must come up  
after the AVDD supply. Additionally, because the DAC input shift register is not reset during a power-on reset or  
hardware reset, the CS pin must not be unintentionally asserted during power-up of the device. To avoid  
improper power-up, it is recommended that the CS and LDAC pins be connected to IOVDD through pull-up  
resistors. To ensure that the electrostatic discharge (ESD) protection circuitry of this device is not activated, all  
other digital pins must be held at ground potential until IOVDD is applied.  
30  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC9881  
DAC9881  
www.ti.com ......................................................................................................................................................... SBAS438AMAY 2008REVISED AUGUST 2008  
APPLICATION INFORMATION  
BIPOLAR OPERATION USING THE DAC9881  
The DAC9881 is designed for single-supply operation; however, a bipolar output is also possible using the circuit  
shown in Figure 70. This circuit gives a bipolar output voltage of VBIP. When GAIN = 1, VBIP can be calculated  
using Equation 2:  
R3 R3  
+
R2 R1  
CODE  
R3  
R1  
VBIP(CODE) = 1 +  
´
-
´ VREF  
262144  
(2)  
Where:  
VBIP(CODE) = bipolar output voltage versus CODE from the OPA211.  
CODE = 0 to 262143. This is the digital code loaded to the DAC.  
VREF = reference high voltage applied to the DAC9881.  
By first choosing a value for resistor R3, R1 and R2 can be determined by Equation 3 and Equation 4,  
respectively:  
VREF  
R1  
=
´ R3  
VBIP  
REF ´ R3  
BIP - VREF  
(3)  
(4)  
V
R2  
=
V
Where:  
VBIP= peak desired output voltage for bipolar output.  
VREF = reference high voltage applied to the DAC9881. NOTE: VBIP VREF  
.
R3 = OPA211 feedback resistor chosen by user.  
Note that R2 is not required in the circuit of Figure 70 for bipolar output voltage ranges equal to ±VREF  
.
Using the previous equations, and with VREF = 5V and R3 set to 10k, a ±8V output span can be achieved with  
R1 calculated to be 6.25kand R2 to be 16.67k.  
Similarly, a near ±15V rail-to-rail output can be achieved with R1 calculated to be 3.33kand R2 calculated to be  
5k.  
VREFL  
+15V  
VOUT  
DAC9881  
VBIP  
R2  
OPA211  
VREFH  
-15V  
R3  
R1  
VREF  
NOTE: Some pins omitted for clarity.  
Figure 70. Bipolar Operation Using the DAC9881  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): DAC9881  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Sep-2008  
PACKAGING INFORMATION  
Orderable Device  
DAC9881SBRGER  
DAC9881SBRGET  
DAC9881SRGER  
DAC9881SRGET  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
VQFN  
RGE  
24  
24  
24  
24  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Aug-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
DAC9881SBRGER  
DAC9881SBRGET  
DAC9881SRGER  
DAC9881SRGET  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
RGE  
24  
24  
24  
24  
3000  
250  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
1.5  
1.5  
1.5  
1.5  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Aug-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC9881SBRGER  
DAC9881SBRGET  
DAC9881SRGER  
DAC9881SRGET  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
RGE  
24  
24  
24  
24  
3000  
250  
340.5  
340.5  
340.5  
340.5  
333.0  
333.0  
333.0  
333.0  
20.6  
20.6  
20.6  
20.6  
3000  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

DAC9881_0808

18-Bit, Single-Channel, Low-Noise, Voltage-Output DIGITAL-TO-ANALOG CONVERTER
TI

DACEN

64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

DACHK

12-bit D/A Converter with Input Register
ICSI

DACHK

12-bit D/A Converter with Input Register
APITECH

DACHK-2

12-bit D/A Converter with Input Register
ICSI

DACHK-2

12-bit D/A Converter with Input Register
APITECH

DACHK-2B

12-bit D/A Converter with Input Register
ICSI

DACHK-2BCH

12-bit D/A Converter with Input Register
ICSI

DACHK-2E

12-Bit Digital-to-Analog Converter
ETC

DACHK-2H

12-bit D/A Converter with Input Register
ICSI

DACHK-2H

12-bit D/A Converter with Input Register
APITECH

DACHK-2H/B

12-Bit Digital-to-Analog Converter
ETC