DIX4192TPFBRQ1 [TI]

汽车类集成式数字音频接口接收器和变送器 | PFB | 48 | -40 to 105;
DIX4192TPFBRQ1
型号: DIX4192TPFBRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类集成式数字音频接口接收器和变送器 | PFB | 48 | -40 to 105

文件: 总69页 (文件大小:1243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
DIX4192-Q1 集成数字音频接口接收器和发送器  
1 特性  
四个通用数字输出  
通过控制寄存器实现多功能可编程性  
超长掉电支持  
可以单独禁用不使用的功能块  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 标准的下列结果:  
器件温度等级:  
1.8V 内核和 3.3V I/O 电源供电  
DIX4192I-Q13 级(–40°C +85°C)  
DIX4192T-Q12 级(–40°C +105°C)  
小型 TQFP-48 封装,兼容 SRC4382 SRC4392  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
2
2 应用  
汽车信息娱乐系统  
器件组件充电模式 (CDM) ESD 分类等级 C4B  
数字音频接口发送器 (DIT)  
3 说明  
PCM/编码数据转换为 S/PDIF 数据  
最高支持 216kHz 的采样率  
DIX4192-Q1 器件是一款高度集成的 CMOS 器件,适  
用于专业和广播数字音频系统。DIX4192-Q1 将数字音  
频接口接收器 (DIR) 和发送器 (DIT)、两个音频串行端  
口以及用于功能块数据和时钟互连的灵活分布逻辑完美  
结合。  
包含差分线路驱动器和  
CMOS 缓冲输出  
数字音频接口接收器 (DIR)  
S/PDIF 转换为立体声 PCM/编码数据  
锁相环 (PLL) 锁定范围包括介于 20kHz 到  
216kHz 之间的采样率  
DIR DIT 兼容 AES3S/PDIFIEC 60958 EIAJ  
CP-1201 接口标准。音频串行端口和 DIT 能够以高达  
216kHz 的采样率运行。DIR 锁定范围包括介于 20kHz  
216kHz 之间的采样率。  
四个差分输入线路接收器和一个输入多路复用器  
旁路多路复用器将线路驱动器输出路由至线路驱  
动器和缓冲区输出  
器件信息(1)  
自动检测非 PCM 音频流(DTS CD/LD IEC  
61937 格式)  
器件型号  
DIX4192-Q1  
封装  
TQFP (48)  
封装尺寸(标称值)  
7.00mm × 7.00mm  
音频 CD Q 通道子代码解码和数据缓冲  
(1) 要了解所有可用封装,请参阅数据表末尾的封装选项附录。  
低抖动恢复时钟输出  
用户可选的串行主机接口: SPI™I2C 16 位  
DIX4192-Q1 典型应用  
调光控制  
Head Unit  
Tuner  
提供片上寄存器和数据缓冲区的访问权限  
标记条件和错误条件的状态寄存器和中断生成  
通道状态和用户数据的块大小数据缓冲区  
S/PDIF TX  
I2S/PCM/TDM  
PCM1864-Q1  
Line/Mic Input ADC  
Jacinto Processor  
and DSP  
两个音频串行端口(端口 A B)  
I2S/PCM  
I2C  
用于外部信号处理器、数据转换器和逻辑的同步  
串行接口  
External Trunk Amplifier  
S/PDIF IN  
DIX4192-Q1  
S/PDIF RX  
S/PDIF OUT  
采样率高达 216kHz 的主/从模式操作  
支持左对齐、右对齐和飞利浦 I2S™数据格式  
Copyright © 2017, Texas Instruments Incorporated  
支持高达  
24 位的音频数据字长  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBFS041  
 
 
 
 
 
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
目录  
9.3 Feature Description................................................. 12  
9.4 Device Functional Modes........................................ 23  
9.5 Register Maps ........................................................ 26  
10 Application and Implementation........................ 51  
10.1 Application Information.......................................... 51  
10.2 Typical Application ................................................ 58  
11 Power Supply Recommendations ..................... 59  
12 Layout................................................................... 60  
12.1 Layout Guidelines ................................................. 60  
12.2 Layout Example .................................................... 60  
13 器件和文档支持 ..................................................... 61  
13.1 器件支持................................................................ 61  
13.2 文档支持................................................................ 61  
13.3 接收文档更新通知 ................................................. 61  
13.4 社区资源................................................................ 61  
13.5 ....................................................................... 62  
13.6 静电放电警告......................................................... 62  
13.7 Glossary................................................................ 62  
14 机械、封装和可订购信息....................................... 62  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
8.1 Absolute Maximum Ratings ...................................... 5  
8.2 ESD Ratings.............................................................. 6  
8.3 Recommended Operating Conditions....................... 6  
8.4 Thermal Information.................................................. 6  
8.5 Electrical Characteristics........................................... 6  
8.6 Timing Requirements................................................ 7  
8.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 11  
9.1 Overview ................................................................. 11  
9.2 Functional Block Diagram ....................................... 12  
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (July 2016) to Revision A  
Page  
已添加 新的 T DIX4192-Q1 到数据表 ................................................................................................................................ 1  
已更改 Q1 认证 特性 项目以便显示更多信息,并从最后一项移到第一项 .............................................................................. 1  
已更改 DIX4192IPFBR-Q1 特定器件名称为 DIX4192-Q1 一般器件名称,因为添加了新的 T 版器件;一般器件名称同  
时适用于 I 版和 T 版器........................................................................................................................................................ 1  
Added ambient temperature range for new T-version device to Absolute Maximum Ratings table ...................................... 5  
Added ambient operating temperature to Recommended Operating Conditions table.......................................................... 6  
Changed fMCLK max value From: 2.27 To: 27.7 ..................................................................................................................... 6  
2
版权 © 2016–2017, Texas Instruments Incorporated  
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
5 说明 (续)  
DIX4192-Q1 器件通过四线串行外设接口 (SPI) 端口或双线 I2C 总线接口存取的片上控制寄存器和数据缓冲器进行  
配置。通过状态寄存器,可以访问来自不同功能块的各种标记和错误位。该器件提供了开漏中断输出引脚,该引脚  
通过控制寄存器设置由灵活的中断报告和屏蔽选项提供支持。该器件还提供了主复位输入引脚,以供通过主机处理  
器或监测功能进行初始化。  
DIX4192-Q1 器件不仅需要一个 3.3V 电源来为部分 DIRDIT 以及线路驱动器和接收器功能供电,还需要一个  
1.8V 内核逻辑电源。单独的逻辑 I/O 电源支持在 1.65V 3.6V 范围内运行,且兼容通常位于数字信号处理器和可  
编程逻辑器件上的低电压逻辑接口。  
DIX4192-Q1 器件采用无铅的 TQFP-48 封装。  
6 Device Comparison Table  
PART NUMBER  
1.8-V I/O  
MULTI-CH PCM  
ADC  
PCM PORTS  
S/PDIF PORTS  
4 differential line in and 1  
differential line out  
DIX4192-Q1  
Yes  
No  
No  
2
Up to 12 single-ended in  
and up to 2 single-ended  
out  
Up to 3 in and up to 3  
out  
PCM9211  
DIX9211  
No  
No  
Yes  
Yes  
Yes  
No  
Up to 12 single-ended in  
and up to 2 single-ended  
out  
Up to 3 in and up to 3  
out  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
7 Pin Configuration and Functions  
PFB Package  
48-Pin TQFP  
Top View  
RX1+  
RX1œ  
RX2+  
RX2œ  
RX3+  
RX3œ  
RX4+  
RX4œ  
VCC  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
SYNC  
BLS  
2
3
AESOUT  
VDD33  
TX+  
4
5
6
TXœ  
7
DGND2  
GPO4  
GPO3  
GPO2  
GPO1  
MCLK  
8
9
AGND  
LOCK  
RXCKO  
10  
11  
12  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
AESOUT  
AGND  
34  
10  
37  
48  
44  
35  
20  
21  
22  
18  
19  
16  
30  
43  
26  
27  
28  
O
GND  
I/O  
I/O  
GND  
I/O  
I
DIT buffered AES3-encoded data  
DIR comparator and PLL power-supply ground  
Audio serial port A bit clock  
BCKA  
BCKB  
Audio serial port B bit clock  
BGND  
Substrate ground, connect to AGND (pin 10)  
DIT block start clock  
BLS  
Serial data clock for SPI mode or I2C mode  
CCLK/SCL  
CDIN/A1  
CDOUT/SDA  
CPM  
SPI port serial data input or programmable slave address for I2C mode  
SPI port serial data output (tri-state output) or serial data I/O for I2C mode  
Control port mode, 0 = SPI mode, 1 = I2C mode  
Chip select (active low) for SPI mode or programmable slave address for I2C mode  
Digital core ground  
I
I/O  
I
CS/A0  
I
DGND1  
DGND2  
DGND3  
GPO1  
GND  
GND  
GND  
O
DIR line receiver bias and DIT line driver digital ground  
Logic I/O ground  
General-purpose output 1  
GPO2  
O
General-purpose output 2  
GPO3  
O
General-purpose output 3  
(1) I = Input, O = Output, PWR = Power, GND = Ground  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
GPO4  
INT  
NO.  
29  
O
General-purpose output 4  
23  
O
Interrupt flag (open-drain, active low)  
DIR PLL lock flag (active low)  
Audio serial Port A left/right clock  
Audio serial Port B left/right clock  
Master clock  
LOCK  
LRCKA  
LRCKB  
MCLK  
NC  
11  
O
38  
I/O  
47  
I/O  
25  
I
14, 15, 41  
No internal signal connection, internally bonded to ESD pad  
Reset (active low)  
RST  
24  
1
I
RX1+  
RX1–  
RX2+  
RX2–  
RX3+  
RX3–  
RX4+  
RX4–  
RXCKI  
RXCKO  
SDINA  
SDINB  
SDOUTA  
SDOUTB  
SYNC  
TX+  
I
Line receiver 1, noninverting input  
Line receiver 1, inverting input  
2
I
3
I
Line receiver 2, noninverting input  
Line receiver 2, inverting input  
4
I
5
I
Line receiver 3, noninverting input  
Line receiver 3, inverting input  
6
I
7
I
Line receiver 4, noninverting input  
Line receiver 4, inverting input  
8
I
13  
12  
39  
46  
40  
45  
36  
32  
31  
9
I
O
DIR reference clock  
DIR recovered master clock (tri-state output)  
Audio serial Port A data input  
I
I
Audio serial Port B data input  
O
Audio serial Port A data output  
O
Audio serial Port B data output  
O
DIT internal sync clock  
O
DIT line driver noninverting output  
DIT line driver inverting output  
TX–  
O
VCC  
PWR  
PWR  
PWR  
PWR  
DIR comparator and PLL power supply, 3.3-V nominal  
Digital core supply, 1.8-V nominal  
DIR line receiver bias and DIT line driver supply, 3.3-V nominal  
Logic I/O supply, 1.65 V to 3.6 V  
VDD18  
VDD33  
VIO  
17  
33  
42  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VDD18  
2
4
4
4
VDD33  
Power supply  
VIO  
V
VCC  
RXCKI, CPM, CS, CCLK, CDIN, CDOUT, INT, RST,  
Digital input voltage: digital logic  
MCLK, BLS, SYNC, BCKA, BCKB, LRCKA, LRCKB,  
SDINA, SDINB  
–0.3  
(VIO + 0.3)  
V
Line receiver input voltage (per pin)  
RX1+, RX1–, RX2+, RX2–, RX3+, RX3–, RX4+, RX4–  
(VDD33 + 0.3)  
VPP  
mA  
Input current (all pins except power and ground)  
±10  
85  
DIX4192I-Q1  
DIX4192T-Q1  
–40  
–40  
–65  
Ambient operating temperature, TA  
Storage temperature, Tstg  
°C  
°C  
105  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (1, 12, 13,  
24, 25, 36, 37, and 48)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.65  
3
NOM  
1.8  
MAX  
1.95  
3.6  
UNIT  
VDD18  
VDD33  
VCC  
1.8-V power-supply voltage  
V
V
V
V
3.3-V power-supply voltage  
3.3  
DIR comparator and PLL power-supply voltage  
Logic I/O power-supply voltage  
3
3.3  
3.6  
VIO  
1.65  
–40  
–40  
3.3  
3.6  
DIX4192I-Q1  
DIX4192T-Q1  
85  
TA  
Ambient operating temperature  
°C  
105  
8.4 Thermal Information  
DIX4192-Q1  
PFB (TQFP)  
48 PINS  
62.0  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
12.8  
27.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.3  
ψJB  
27.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
all specifications are at TA = 25°C, VDD18 = 1.8 V, VDD33 = 3.3 V, VIO = 3.3 V, and VCC = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL I/O CHARACTERISTICS (ALL I/O PINS EXCEPT LINE RECEIVERS AND LINE DRIVER)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
0.7 × VIO  
0
VIO  
0.3 × VIO  
30  
V
V
IO = –4 mA, MUTE, SDINA, and SDINB pins  
IO = –4 mA, all other pins  
IO = 4 mA  
0.5  
0.5  
0.5  
IIH  
High-level input current  
μA  
10  
IIL  
Low-level input current  
High-level output voltage  
Low-level output voltage  
Input capacitance  
10  
μA  
V
VOH  
VOL  
CIN  
0.8 × VIO  
0
VIO  
0.2 × VIO  
V
3
pF  
LINE RECEIVER INPUTS (RX1+, RX1–, RX2+, RX2–, RX3+, RX3–, RX4+, RX4–)  
VTH  
VHY  
Differential input sensitivity  
Input hysteresis  
150  
200  
mV  
mV  
Voltage across a given differential input pair  
150  
5.4  
LINE DRIVER OUTPUTS (TX+, TX–)  
VTXO Differential output voltage  
MASTER CLOCK INPUT  
RL = 110 Ω across TX+ and TX–  
VPP  
fMCLK  
Master clock input (MCLK) frequency  
Master clock input (MCLK) duty cycle  
1
27.7  
55%  
MHz  
fMCLKD  
45%  
DIGITAL AUDIO INTERFACE RECEIVER (DIR)  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Electrical Characteristics (continued)  
all specifications are at TA = 25°C, VDD18 = 1.8 V, VDD33 = 3.3 V, VIO = 3.3 V, and VCC = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
20  
216  
PLL lock range  
kHz  
TA = 85°C or 105°C  
24  
216  
fRXCKI  
fRXCKID Reference clock input (RXCKI) duty cycle  
fRXCKO Recovered clock output (RXCKO) frequency  
Reference clock input (RXCKI) frequency  
3.5  
27.7  
55%  
27.7  
55%  
MHz  
45%  
3.5  
MHz  
fRXCKOD Recovered clock output (RXCKO) duty cycle  
45%  
Recovered clock output (RXCKO) intrinsic  
jitter  
Measured cycle-to-cycle  
Measured cycle-to-cycle  
250  
200  
ps RMS  
ps RMS  
DIGITAL AUDIO INTERFACE TRANSMITTER (DIT)  
Intrinsic output jitter  
POWER SUPPLIES  
All blocks powered down by default  
VDD18 = 1.8 V  
IDD18S  
10  
10  
Supply current: initial startup  
Supply current: quiescent  
IDD33S  
IIOS  
VDD33 = 3.3 V  
μA  
mA  
mA  
mA  
VIO = 3.3 V  
300  
10  
ICCS  
VCC = 3.3 V  
All blocks powered up with no clocks applied  
VDD18 = 1.8 V  
IDD18Q  
IDD33Q  
IIOQ  
2.3  
0.6  
0.3  
6.3  
VDD33 = 3.3 V  
VIO = 3.3 V  
ICCQ  
VCC = 3.3 V  
All blocks powered up, fS = 48 kHz  
VDD18 = 1.8 V  
IDD18D  
IDD33D  
IIOD(1)  
ICCD  
5.1  
14.1  
46  
Supply current: dynamic  
VDD33 = 3.3 V  
VIO = 3.3 V  
VCC = 3.3 V  
7.4  
All blocks powered up, fS = 192 kHz  
VDD18 = 1.8 V  
IDD18H  
IDD33H  
IIOH(1)  
ICCH  
6.7  
15  
Supply current: high sampling rate  
VDD33 = 3.3 V  
VIO = 3.3 V  
47  
VCC = 3.3 V  
7.5  
1
Total power dissipation: initial startup  
Total power dissipation: quiescent  
Total power dissipation: dynamic  
All blocks powered down by default  
All blocks powered up with no clocks applied  
All blocks powered up, fS = 48 kHz  
All blocks powered up, fS = 192 kHz  
mW  
mW  
mW  
mW  
28  
233  
242  
Total power dissipation: high sampling rate  
(1) The typical VIO supply current is measured using the DIX4192-Q1EVM evaluation module with loading from the DAIMB motherboard  
circuitry. VIO supply current is dependent upon the loading on the logic output pins.  
8.6 Timing Requirements  
MIN  
NOM  
MAX  
216  
UNIT  
AUDIO SERIAL PORTS (PORT A AND PORT B)  
fLRCK  
tLRCKD  
fBCK  
LRCK clock frequency  
0
kHz  
LRCK clock duty cycle  
50%  
BCK clock frequency  
0
10  
10  
10  
10  
13.824  
MHz  
ns  
tBCKH  
tBCKL  
tAIS  
BCK high pulse duration  
BCK low pulse duration  
ns  
Audio data Input (SDIN) set-up time  
Audio data input (SDIN) hold time  
Audio data output (SDOUT) delay  
ns  
tAISH  
tADD  
ns  
10  
ns  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
UNIT  
Timing Requirements (continued)  
MIN  
NOM  
MAX  
HOST INTERFACE: SPI MODE  
fCCLK  
tCSCR  
tCFCS  
tCDS  
Serial clock (CCLK) frequency  
CS falling to CCLK rising  
0
8
7
7
6
40  
MHz  
ns  
CCLK falling to CS rising  
ns  
CDIN data set-up time  
ns  
tCDH  
CDIN data hold time  
ns  
tCFDO  
tCSZ  
CCLK falling to CDOUT data valid  
CS rising to CDOUT high-impedance  
3
3
ns  
ns  
HOST INTERFACE: I2C STANDARD MODE(1)  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
pF  
V
tHDSTA  
tLOW  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
Hold time repeated START condition  
Low period of SCL clock  
4.7  
4
High period of SCL clock  
Set-up time repeated START condition  
Data hold time  
4.7  
0(2)  
250  
3.45(3)  
Data set-up time  
Rise time for both SDA and SDL  
Fall time for both SDA and SDL  
Set-up time for STOP condition  
Bus free time between START and STOP  
Capacitive load for each bus line  
Noise margin at low level (including hysteresis)  
Noise margin at high level (including hysteresis)  
1000  
300  
tF  
tSUSTO  
tBUF  
4
4.7  
CB  
400  
400  
VNL  
0.1 × VIO  
0.2 × VIO  
VNH  
V
HOST INTERFACE: I2C FAST MODE(1)  
fSCL  
SCL clock frequency  
0
0.6  
1.3  
0.6  
0.6  
0(2)  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
ns  
pF  
V
tHDSTA  
tLOW  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
Hold time repeated START condition  
Low period of SCL clock  
High period of SCL clock  
Set-up time repeated START condition  
Data hold time  
0.9(3)  
Data set-up time  
100(4)  
(5)  
Rise time for both SDA and SDL  
Fall time for both SDA and SDL  
Set-up time for STOP condition  
Bus free time between START and STOP  
Spike pulse duration suppressed by input filter  
Capacitive load for each bus Line  
Noise margin at low level (including hysteresis)  
Noise margin at high level (including hysteresis)  
20 + 0.2CB  
300  
300  
(5)  
tF  
20 + 0.2CB  
tSUSTO  
tBUF  
tSP  
0.6  
1.3  
0
50  
CB  
400  
VNL  
0.1 × VIO  
0.2 × VIO  
VNH  
V
(1) All values referred to the VIH minimum and VIL maximum levels listed in the Digital I/O Characteristics section of this table.  
(2) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH minimum input level) to bridge the  
undefined region of the falling edge of SCL.  
(3) The maximum tHDDAT has only to be met if the device does not stretch the Low period (tLOW) of the SCL signal.  
(4) A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement that tSUDAT be 250 ns (minimum)  
must then be met. For the DIX4192-Q1, this condition is automatically the case, because the device does not stretch the Low period of  
the SCL signal.  
(5) CB is defined as the total capacitance of one bus line in picofarads (pF). If mixed with High-Speed mode devices, faster fall times are  
allowed.  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
LRCK  
tBCKH  
BCK  
tAIS  
tBCKL  
SDIN  
tAIH  
tAOD  
SDOUT  
Figure 1. Audio Serial Port Timing  
tCFCS  
CS  
tCSCR  
tCDS  
CCLK  
CDIN  
tCDH  
Hi Z  
Hi Z  
tCSZ  
CDOUT  
tCFDO  
Figure 2. SPI Timing  
tF  
SDA  
tSUDAT  
tHDSTA  
tSP  
tR  
tBUF  
tLOW  
tR  
tF  
SCL  
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tHIGH  
S
R
P
S
S = Start Condition  
R = Repeated Start Condition  
P = Stop Condition  
Figure 3. I2C Standard and Fast Mode Timing  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
 
 
 
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
8.7 Typical Characteristics  
2
0
-10  
-20  
5
2
Input Jitter Amplitude  
-30  
1
-2  
-40  
Output Jitter Amplitude  
500m  
200m  
100m  
50m  
20m  
10m  
5m  
-4  
-50  
-60  
-6  
-70  
-8  
-80  
-10  
-12  
-14  
-16  
-18  
-20  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
THD+N  
2m  
1m  
100  
101  
102  
Jitter Frequency (Hz)  
103  
104  
105  
106  
20  
100  
1k  
10k  
100k  
Sinusoidal Jitter Frequency (Hz)  
Figure 5. DIR Jitter Tolerance Plot  
Figure 4. DIR Jitter Attenuation Characteristics  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
9 Detailed Description  
9.1 Overview  
The DIX4192-Q1 is an integrated digital audio interface receiver and transmitter (DIR and DIT). Two audio serial  
ports, Port A and Port B, support input and output interfacing to external data converters, signal processors, and  
logic devices. On-chip routing logic provides for flexible interconnection between the four functional blocks. The  
audio serial ports and DIT may be operated at sampling rates up to 216 kHz. The DIR is specified for a PLL lock  
range that includes sampling rates from 20 kHz to 216 kHz. All function blocks support audio data word lengths  
up to 24 bits.  
The DIX4192-Q1 requires an external host processor or logic for configuration control. The DIX4192-Q1 includes  
a user-selectable serial host interface, which operates as either a 4-wire serial peripheral interface (SPI) port or a  
2-wire Philips I2C bus interface. The SPI port operates at bit rates up to 40 MHz. The I2C bus interface may be  
operated in standard or fast modes, supporting operation at 100 kbps and 400 kbps, respectively. The SPI and  
I2C interfaces provide access to internal control and status registers, as well as the buffers used for the DIR and  
DIT channel status and user data.  
The digital interface receiver (DIR) includes four differential input line receiver circuits, suitable for balanced or  
unbalanced cable interfaces. Interfacing to optical receiver modules and CMOS logic devices is also supported.  
The outputs of the line receivers are connected to a 1-of-4 data selector, referred to as the receiver input  
multiplexer, which is used to select one of the four line receiver outputs for processing by the DIR core. The  
outputs of the line receivers are also connected to a second data selector, the bypass multiplexer, which may be  
used to route input data streams to the DIT CMOS output buffer and differential line driver functions. This  
configuration provides a bypass signal path for AES3-encoded input data streams.  
The DIR core decodes the selected input stream data and separates the audio, channel status, user, validity, and  
parity data. Channel status and user data is stored in block-sized buffers, which may be accessed through the  
SPI or I2C serial host interface, or routed directly to the general-purpose output pins (GPO1 through GPO4). The  
validity and parity bits are processed to determine error status. The DIR core recovers a low jitter master clock,  
which may be used to generate word and bit clocks using on-chip or external logic circuitry.  
The digital interface transmitter (DIT) encodes digital audio input data into an AES3-formatted output data  
stream. Two DIT outputs are provided, including a differential line driver and a CMOS output buffer. Both the line  
driver and buffer include 1-of-2 input data selectors, which are used to choose either the output of the DIT AES3  
encoder, or the output of the bypass multiplexer. The line driver output is suitable for balanced or unbalanced  
cable interfaces, while the CMOS output buffer supports interfacing to optical transmitter modules and external  
logic or line drivers. The DIT includes block-sized data buffers for both channel status and user data. These  
buffers are accessed through either the SPI or I2C host interface, or may be loaded directly from the DIR channel  
status and user data buffers.  
The DIX4192-Q1 includes four general-purpose digital outputs, or GPO pins. The GPO pins may be configured  
as simple logic outputs, which may be programmed to either a low or high state. Alternatively, the GPO pins may  
be connected to one of 13 internal logic nodes, allowing them to serve as functional, status, or interrupt outputs.  
The GPO pins provide added utility in applications where hardware access to selected internal logic signals may  
be necessary.  
Functional Block Diagram shows a simplified functional block diagram for the DIX4192-Q1. Additional details for  
each function block will be covered in respective sections of this data sheet.  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
9.2 Functional Block Diagram  
TI Device  
CPM  
SDINA  
CS or A0  
CCLK or SCL  
CDIN or A1  
CDOUT or SDA  
INT  
RST  
GPO1  
GPO2  
GPO3  
GPO4  
Host  
Interface  
(SPI or I2C)  
and  
SDOUTA  
LRCKA  
BCKA  
Audio Serial  
Port A  
General-  
Purpose  
Outputs  
SDINB  
SDOUTB  
LRCKB  
BCKB  
Audio Serial  
Port B  
Control and Status  
Registers  
RXCKO  
LOCK  
DIR C and U  
Data Buffers  
RX1+  
RX1-  
RX2+  
DIT C and U  
Data Buffers  
Digital  
Interface  
Receiver (DIR)  
RX2-  
RX3+  
MCLK  
Master  
Clock  
Distribution  
RXCKI  
From RXCKO  
RX3-  
RX4+  
RX4-  
TX+  
TX-  
Digital  
Interface  
Transmitter  
(DIT)  
AESOUT  
VDD18  
DGND1  
VDD33  
DGND2  
VIO  
BLS  
SYNC  
Power  
DGND3  
VCC  
AGND  
Internally Tied  
to Substrate  
BGND  
Copyright © 2017, Texas Instruments Incorporated  
9.3 Feature Description  
9.3.1 RESET Operation  
The DIX4192-Q1 includes an asynchronous active low reset input, RST (pin 24), which may be used to initialize  
the internal logic at any time. The reset sequence forces all registers and buffers to their default settings. The  
reset low pulse duration must be a minimum of 500 ns in length. The user must not attempt a write or read  
operation using either the SPI or I2C port for at least 500 μs after the rising edge of RST. See Figure 6 for the  
reset timing sequence of the DIX4192-Q1.  
In addition to reset input, the RESET bit in control register 0x01 may be used to force an internal reset, whereby  
all registers and buffers are forced to their default settings. Refer to Control Registers for details regarding the  
RESET bit function.  
Upon reset initialization, all functional blocks of the DIX4192-Q1 default to the power-down state, with the  
exception of the SPI or I2C host interface and the corresponding control registers. The user may then program  
the DIX4192-Q1 to the desired configuration, and release the desired function blocks from the power-down state  
using the corresponding bits in control register 0x01.  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Feature Description (continued)  
Write or Read  
via  
SPI or I2C  
1
RST  
0
500ns (min)  
500ms (min)  
Figure 6. Reset Sequence Timing  
9.3.2 Master and Reference Clocks  
The DIX4192-Q1 includes two clock inputs, MCLK (pin 25) and RXCKI (pin 13). The MCLK clock input is typically  
used as the master clock source for the audio serial ports and/or the DIT. The MCLK may also be used as the  
reference clock for the DIR. The RXCKI clock input is typically used for the DIR reference clock source, although  
it may also be used as the master or reference clock source for the audio serial ports.  
In addition to the MCLK and RXCKI clock sources, the DIR core recovers a master clock from the AES3-  
encoded input data stream. This clock is suitable for use as a master or system clock source in many  
applications. The recovered master clock output, RXCKO (pin 12), may be used as the master or reference clock  
source for the audio serial ports and the DIT, as well as external audio devices.  
The master clock frequency for the audio serial ports (Port A and Port B) depends on the Slave or Master mode  
configuration of the port. In Slave mode, the ports do not require a master clock because the left/right word and  
bit clocks are inputs, sourced from an external audio device serving as the serial bus timing master. In Master  
mode, the serial ports derive the left/right word and bit clock outputs from the selected master clock source,  
MCLK, RXCKI, or RXCKO. The left/right word clock rate is derived from the selected master clock source using  
one of four clock divider settings (divide by 128, 256, 384, or 512). Refer to Audio Serial Port Operation for  
additional details.  
The DIT always requires a master clock source, which may be either the MCLK input, or the DIR recovered clock  
output, RXCKO. Like the audio serial ports, the DIT output frame rate is derived from the selected master clock  
using one of four clock divider settings (divide-by-128, -256, -384, or -512). Refer to Digital Interface Transmitter  
(DIT) Operation for additional details.  
The DIR reference clock may be any frequency that meets the PLL1 set-up requirements, described in Control  
Registers. Typically, a common audio system clock rate, such as 11.2896 MHz, 12.288 MHz, 22.5792 MHz, or  
24.576 MHz, may be used for this clock.  
TI recommends that the clock sources for MCLK and RXCKI input be generated by low-jitter crystal oscillators for  
optimal performance. In general, phase-locked loop (PLL) clock synthesizers must be avoided, unless they are  
designed or specified for low clock jitter.  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Feature Description (continued)  
9.3.3 Audio Serial Port Operation  
The DIX4192-Q1 includes two audio serial ports, Port A and Port B. Both ports are 4-wire synchronous serial  
interfaces, supporting simultaneous input and output operation. Because each port has only one pair of left or  
right word and bit clocks, the input and output sampling rates are identical. A simplified block diagram is shown in  
Figure 7.  
The audio serial ports may be operated at sampling rates up to 216 kHz, and support audio data word lengths up  
to 24 bits. Philips I2S, Left-Justified, and Right-Justified serial data formats are supported. Refer to Figure 8.  
The left or right word clock (LRCKA or LRCKB) and the bit clock (BCKA or BCKB) may be configured for either  
Master or Slave mode operation. In Master mode, these clocks are outputs, derived from the selected master  
clock source using internal clock dividers. The master clock source may be 128, 256, 384, or 512 times the audio  
input/output sampling rate, with the clock divider being selected using control register bits for each port. In Slave  
mode the left or right word and bit clocks are inputs, and are sourced from an external audio device acting as the  
serial bus master.  
The LRCKA or LRCKB clocks operate at the input and output sampling rate, fS. The BCKA and BCKB clock rates  
are fixed at 64 times the left or right word clock rate in Master mode. For Slave mode, the minimum BCKA and  
BCKB clock rate is determined by the audio data word length multiplied by two, because there are two audio  
data channels per left or right word clock period. For example, if the audio data word length is 24 bits, the bit  
clock rate must be at least 48 times the left or right word clock rate, allowing one bit clock period for each data bit  
in the serial bit stream.  
Serial audio data is clocked into the port on the rising edge of the bit clock, while data is clocked out of the port  
on the falling edge of the bit clock. Refer to the Audio Serial Ports section of the Electrical Characteristics table  
for parametric information and Figure 1 for a timing diagram related to audio serial port operation.  
The audio serial ports are configured using control registers 0x03 through 0x06. Refer to Control Registers for  
descriptions of the control register bits.  
CLK[1:0]  
M/S  
DIV[1:0]  
MCLK  
RXCKI  
Master  
Master  
Clock  
Source  
Mode  
Clock  
Generation  
RXCKO  
SDINA (pin 39) or SDINB (pin 46)  
LRCKA (pin 38) or LRCKB (pin 47)  
BCKA (pin 37) or BCKB (pin 48)  
Audio Data  
Serial  
Input  
Internal Clocks  
Port A  
Serial  
Output  
Data  
Source  
Port B  
DIR  
SDOUTA (pin 40) or SDOUTB (pin 45)  
OUTS[1:0]  
MUTE  
FMT[1:0]  
Figure 7. Audio Serial Port Block Diagram  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Feature Description (continued)  
Channel 1 (Left Channel)  
Channel 2 (Right Channel)  
LRCKA  
LRCKB  
BCKA  
BCKB  
Audio  
Data  
MSB  
LSB  
MSB  
LSB  
(a) Left-Justified Data Format  
LRCKA  
LRCKB  
BCKA  
BCKB  
Audio  
Data  
MSB  
LSB  
MSB  
LSB  
(b) Right-Justified Data Format  
LRCKA  
LRCKB  
BCKA  
BCKB  
Audio  
Data  
MSB  
LSB  
MSB  
LSB  
(c) I2S Data Format  
1/fs  
Figure 8. Audio Data Formats  
9.3.4 Overview of the AES3 Digital Audio Interface Protocol  
This section introduces the basics of digital audio interface protocols pertaining to the transmitter (DIT) and  
receiver (DIR) blocks of the DIX4192-Q1. Emphasis is placed upon defining the basic terminology and  
characteristics associated with the AES3-2003 standard protocol, the principles of which may also be applied to  
a number of consumer-interface variations, including S/PDIF, IEC-60958, and EIAJ CP-1201. It is assumed that  
the reader is familiar with the AES3 and S/PDIF interface formats. Additional information is available from the  
sources listed in the 开发支持 section.  
The AES3-2003 standard defines a technique for two-channel linear PCM data transmission over 110-shielded  
twisted-pair cable. The AES-3id document extends the AES3 interface to applications employing 75-coaxial  
cable connections. In addition, consumer transmission variants, such as those defined by the S/PDIF, IEC  
60958, and CP-1201 standards, use the same encoding techniques but with different physical interfaces or  
transmission media. Channel status data definitions also vary between professional and consumer interface  
implementations.  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Feature Description (continued)  
For AES3 transmission, data is encoded into frames, with each frame containing two subframes of audio and  
status data, corresponding to audio Channels 1 and 2 (or Left and Right, respectively, for stereophonic audio).  
Figure 9 shows the AES3 frame and subframe formatting. Each subframe includes four bits for the preamble, up  
to 24 bits for audio and/or auxiliary data, one bit indicating data validity (V), one bit for channel status data (C),  
one bit for user data (U), and one bit for setting parity (P).  
The 4-bit preamble is used for synchronization and identification of blocks and subframes. The X and Y preamble  
codes are used to identify the start of the Channel 1 and Channel 2 subframes, as shown in Figure 9. However,  
the X preamble for the first subframe of every 192 frames is replaced by the Z preamble, which identifies the  
start of a new block of channel status and user data.  
Block Start  
Frame 191  
Frame 0  
Y
Frame 1  
Y
X
Channel 1  
Y
Channel 2  
Z
Channel 1  
Channel 2  
X
Channel 1  
Channel 2  
One Sub Frame  
Bits: 0  
3 4  
7 8  
27 28 29 30 31  
MSB  
Audio or  
Aux Data  
Preamble  
Audio Data  
V U C P  
Validity Bit  
User Data  
Channel Status Data  
Parity Bit  
Figure 9. AES3 Frame and Subframe Encoding  
One block is comprised of 192 frames of data. This format translates to 192 bits each for channel status and  
user data for each channel. The 192 bits are organized into 24 data bytes, which are defined by the AES3-2003  
and consumer standards documents. The AES18 standard defines recommended usage and formatting of the  
user data bits, while consumer applications may use the user data for other purposes. The DIX4192-Q1 also  
includes block-sized transmitter and receiver channel status and user data buffers, which have 24 bytes each for  
the channel status and user data assigned to audio Channels 1 and 2. Refer to Channel Status and User Data  
Buffer Maps for the organization of the buffered channel status and user data for the receiver and transmitter  
functions.  
The audio data for Channel 1 and Channel 2 may be up to 24 bits in length, and occupies bits 4 through 27 of  
the corresponding subframe. Bit 4 is the LSB while bit 27 is the MSB. If only 20 bits are required for audio data,  
then bits 8 through 27 are used for audio data, while bits 4 though 7 are used for auxiliary data bits.  
The validity (V) bit indicates whether or not the audio sample word being transmitted is suitable for digital-to-  
analog (D/A) conversion or further digital processing at the receiver end of the connection. If the validity bit is 0,  
then the audio sample is suitable for conversion or additional processing. If the validity bit is 1, then the audio  
sample is not suitable for conversion or additional processing.  
The parity (P) bit is set to either a 0 or 1, such that bits 4 through 31 carry an even number of ones and zeros for  
even parity. The DIT block in the DIX4192-Q1 automatically manages the parity bit, setting it to a 0 or 1 as  
required. The DIR block checks the parity of bits 4 though 31 and generates a parity error if odd parity is  
detected.  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Feature Description (continued)  
The binary non-return to zero (NRZ) formatted audio and status source data for bits 4 through 31 of each  
subframe are encoded using a Biphase Mark format for transmission. This format allows for clock recovery at the  
receiver end, as well as making the interface insensitive to the polarity of the balanced cable connections. The  
preambles at the start of each subframe are encoded to intentionally violate the Biphase Mark formatting, making  
their detection by the receiver reliable, as well as avoiding the possibility of audio and status data imitating the  
preambles. Figure 10 shows the Biphase Mark and preamble encoding.  
Although the AES3 standard originally defined transmission for sampling rates up to 48 kHz, the interface is  
capable of handling higher sampling rates, given that attention is paid to cable length and impedance matching.  
Equalization at the receiver may also be required, depending on the cable and matching factors. It is also  
possible to transmit and decode more than two channels of audio data using the AES3 or related consumer  
interfaces. Special encoding and compression algorithms are used to support multiple channels, including the  
Dolby® AC-3, DTS, MPEG-1/2, and other data reduced audio formats.  
Clock  
(2x Source Bit Rate)  
1
0
Source Data Coding  
(NRZ)  
Insert Preamble  
Code Below  
1
0
AES3 Channel Coding  
(Biphase Mark)  
Preamble Z (Block Start)  
Preceding state, from the Parity bit of the previous frame.  
Preamble Coding  
Preceding state:  
0
1
Preamble:  
Channel coding:  
11100010  
11100100  
Channel coding:  
00011101  
00011011  
Description:  
X
Y
Z
Channel 1 subframe  
Channel 2 subframe  
Channel 1 subframe and block start  
11101000  
00010111  
Figure 10. Biphase Mark Encoding  
9.3.5 Digital Interface Transmitter (DIT) Operation  
The DIT encodes a given two-channel or data-reduced audio input stream into an AES3-encoded output stream.  
In addition to the encoding function, the DIT includes differential line driver and CMOS-buffered output functions.  
The line driver is suitable for driving balanced or unbalanced line interfaces, while the CMOS-buffered output is  
designed to drive external logic or line drivers, as well as optical transmitter modules. Figure 11 shows the  
functional block diagram for the DIT.  
The input of the DIT receives the audio data for Channels 1 and 2 from one of three possible sources: Port A,  
Port B, or the DIR. By default Port A is selected as the source. The DIT also requires a master clock source,  
which may be provided by either the MCLK input (pin 25) or RXCKO (the DIR recovered master clock output). A  
master clock divider is used to select the frame rate for the AES3-encoded output data. The TXDIV[1:0] bits in  
control register 0x07 are used to select divide by 128, 256, 384, or 512 operation.  
Channel status and user data for Channels 1 and 2 are input to the AES3 encoder through the corresponding  
Transmitter Access (TA) data buffers. The TA data buffers are in turn loaded from the User Access (UA) buffers,  
which are programmed through the SPI or I2C host interface, or loaded from the DIR Receiver Access (RA) data  
buffers. The source of the channel status and user data is selected using the TXCUS[1:0] bits in control register  
0x09. When the DIR is selected as the input source, the channel status and user data output from the DIT is  
delayed by one block in relation to the audio data.  
The validity (V) bit may be programmed using one of two sources. The VALSEL bit in control register 0x09 is  
used to select the validity data source for the DIT block. The default source is the VALID bit in control register  
0x07, which is written through the SPI or I2C host interface. The validity bit may also be transferred from the  
AES3 decoder output of the DIR, where the V bit for the DIT subframes tracks the decoded DIR value frame by  
frame.  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
 
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Feature Description (continued)  
The Parity (P) bit will always be generated by the AES3 encoder internal parity generator logic, such that bits 4  
through 31 of the AES3-encoded subframe are even parity.  
The AES3 encoder output is connected to the output line driver and CMOS buffer source multiplexers. As shown  
in Figure 11, the source multiplexers allow the line driver or buffer to be driven by the AES3-encoded data from  
the DIT, or by the bypass multiplexer, which is associated with the outputs of the four differential input line  
receivers preceding the DIR core. The bypass multiplexer allows for one of the four line receiver outputs to be  
routed to the line driver or buffer output, thereby providing a bypass mode of operation. Both the line driver and  
CMOS output buffer include output disables, set by the TXOFF and AESOFF bits in control register 0x08. When  
the outputs are disabled, they are forced to a low logic state.  
The AES3 encoder includes an output mute function that sets all bits for both the Channel 1 and 2 audio and  
auxiliary data to zero. The preamble, V, U, and C bits are unaffected, while the P bit is recalculated. The mute  
function is controlled using the TXMUTE bit in control register 0x08.  
TXDIV[1:0]  
TXCLK  
Master  
Clock  
Source  
MCLK  
AESMUX  
AESOFF  
RXCKO  
AESOUT  
(pin 34)  
TXIS[1:0]  
Port A  
Port B  
DIR  
LDMUX  
TXOFF  
Data  
Source  
TX+ (pin 32)  
AES3  
Encoder  
User Access  
(UA) Buffers  
Transmitter Access  
(TA) Buffers  
TX- (pin 31)  
From Receiver  
Access (RA) Buffer  
To/From SPI or I2C  
Host Interface  
From  
Bypass  
Channel  
Status  
Channel  
Status  
Multiplexer  
Output  
From Receiver  
Access (RA) Buffer  
To/From SPI or I2C  
Host Interface  
BLS (pin 35)  
SYNC (pin 36)  
User  
Data  
User  
Data  
TXCUS[1:0] TXBTD  
TXMUTE  
BLSM  
Figure 11. Digital Interface Transmitter (DIT) Functional Block Diagram  
The AES3 encoder includes a block start input/output pin, BLS (pin 35). The BLS pin may be programmed as an  
input or output. The input/output state of the BLS pin is programmed using the BLSM bit in control register 0x07.  
By default, the BLS pin is configured as an input.  
As an input, the BLS pin may be used to force a block start condition, whereby the start of a new block of  
channel status and user data is initiated by generating a Z preamble for the next frame of data. The BLS input  
must be synchronized with the DIT internal SYNC clock. This clock is output on SYNC (pin 36). The SYNC clock  
rising edge is aligned with the start of each frame for the AES3-encoded data output by the DIT. Figure 12 shows  
the format required for an external block start signal, as well as indicating the format when the BLS pin is  
configured as an output. When the BLS pin is an output, the DIT generates the block start signal based upon the  
internal SYNC clock.  
For details regarding DIT control and status registers, as well as channel status and user data buffers, refer to  
Control Registers and Channel Status and User Data Buffer Maps.  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Feature Description (continued)  
Block Start  
(Frame 0 starts here)  
SYNC  
BLS  
(input)  
BLS  
(output)  
Figure 12. DIT Block Start Timing  
9.3.6 Digital Interface Receiver (DIR) Operation  
The DIR performs AES3 decoding and clock recovery and provides the differential line receiver functions. The  
lock range of the DIR includes frame and sampling rates from 20 kHz to 216 kHz. Figure 13 shows the functional  
block diagram for the DIR.  
Four differential line receivers are used for signal conditioning the encoded input data streams. The receivers can  
be externally configured for either balanced or unbalanced cable interfaces, as well as interfacing with CMOS  
logic level inputs from optical receivers or external logic circuitry. See Figure 14 for a simplified schematic for the  
line receiver. External connections are discussed in Receiver Input Interfacing.  
To SPI or I2C Host Interface  
Reference  
Clock  
Source  
MCLK  
RXCKI  
Channel  
Status  
User  
Data  
User Access  
(UA) Buffers  
PLL1  
To  
DIT  
To  
DIT  
RXCLK  
RX1+ (pin 1)  
RXMUX[1:0]  
Channel  
Status  
User  
Data  
AES3  
Decoder  
RX1- (pin 2)  
Receiver  
Access  
(RA) Buffers  
RX2+ (pin 3)  
RX2- (pin 4)  
RX3+ (pin 5)  
RX3- (pin 6)  
Pulse  
Generator  
Data Stream  
De-Mux  
Error and  
Status Outputs  
RX4+ (pin 7)  
RX4- (pin 8)  
To DIT Buffer  
and Line Driver  
BYPMUX[1:0]  
PLL2  
128fS  
256fS  
512fS  
Ch.1  
(Left) (Right)  
Audio Audio  
Ch.2  
LOCK  
(pin 11)  
Clock  
Receiver  
Sync  
Generator  
RXCKO  
(pin 12)  
Divider  
Divide by  
1, 2, 4, or 8  
RXCKOF[1:0]  
RCV_SYNC  
RXCKO  
Figure 13. Digital Interface Receiver (DIR) Functional Block Diagram  
Copyright © 2016–2017, Texas Instruments Incorporated  
19  
 
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Feature Description (continued)  
VDD33  
24 k  
24 kꢀ  
3 kꢀ  
RX+  
+
To Receiver Input  
3 kꢀ  
RXœ  
and Bypass Multiplexers  
œ
24 kꢀ  
24 kꢀ  
DGND2  
Figure 14. Differential Line Receiver Circuit  
The outputs of the four line receivers are connected to two 1-of-4 data selectors: the receiver input multiplexer  
and the bypass multiplexer. The input multiplexer selects one of the four line receiver outputs as the source for  
the AES3-encoded data stream to be processed by the DIR core. The bypass multiplexer is used to route a line  
receiver output to either the DIT line driver or CMOS-buffered outputs, thereby bypassing all other internal  
circuitry. The bypass function is useful for simple signal distribution and routing applications.  
The DIR requires a reference clock, supplied by an external source applied at either the RXCKI (pin 13) or MCLK  
(pin 25) clock inputs. PLL1 multiplies the reference clock to a higher rate, which is used as the oversampling  
clock for the AES3 decoder. The decoder samples the AES3-encoded input stream in order to extract all of the  
audio and status data. The decoded data stream is sent on to a de-multiplexer, where audio and status data are  
separated for further processing and buffering. The pulse generator circuitry samples the encoded input data  
stream and generates a clock that is 16 times the frame/sampling rate (or fS). The 16 fS clock is then processed  
by PLL2, which further multiplies the clock rate and provides low-pass filtering for jitter attenuation. The available  
PLL2 output clock rates include 512 fS, 256 fS, and 128 fS. The maximum available PLL2 output clock rate for a  
given input sampling rate is estimated by internal logic and made available for readback through status register  
0x13.  
The output of PLL2 may be divided by a factor of two, four, or eight, or simply passed through to the recovered  
master clock output, RXCKO (pin 12). The RXCKO clock may also be routed internally to other function blocks,  
where it may be further divided to create left/right word and bit clocks. The RXCKO output may be disabled and  
forced to a high-impedance state by means of a control register bit, allowing other tri-state buffered clocks to be  
tied to the same external circuit node, if required. By default, the RXCKO output (pin 12) is disabled and forced  
to a high-impedance state.  
Figure 15 shows the frequency response of PLL2. Jitter attenuation starts at approximately 50 kHz. Peaking is  
nominally 1 dB, which is within the 2 dB maximum allowed by the AES3 standard. The receiver jitter tolerance  
plot for the DIR is shown in Figure 16, along with the required AES3 jitter tolerance template. The DIR jitter  
tolerance satisfies the AES3 requirements, as well as the requirements set forth by the IEC60958-3 specification.  
Figure 16 was captured using a full-scale 24-bit, two-channel, AES3-encoded input stream with a 48kHz frame  
rate.  
The decoded audio data, along with the internally-generated sync clocks, may be routed to other function blocks,  
including Port A, Port B, and the DIT. The decoded channel status and user data are buffered in the  
corresponding Receiver Access (RA) data buffers, then transferred to the corresponding User Access (UA) data  
buffers, where it may be read back through either the SPI or I2C serial host interface. The contents of the RA  
buffers may also be transferred to the DIT UA data buffers; this transfer is shown in Figure 11. The channel  
status and user data bits may also be output serially through the general-purpose output pins, GPO[4:1].  
Figure 17 shows the output format for the GPO pins when used for this purpose, along with the DIR block start  
(BLS) and frame synchronization (SYNC) clocks. The rising edges of the DIR SYNC clock output are aligned with  
the start of each frame for the received AES3 data.  
20  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Feature Description (continued)  
The DIR includes a dedicated, active low AES3 decoder and PLL2 lock output, named LOCK (pin 11). The lock  
output is active only when both the AES3 decoder and PLL2 indicate a lock condition. Additional DIR status flags  
may be output at the general-purpose output (GPO) pins, or accessed through the status registers through the  
SPI or I2C host interface. Refer to General-Purpose Digital Outputs and Control Registers for additional  
information regarding the DIR status functions.  
2
0
-10  
-20  
5
2
Input Jitter Amplitude  
-30  
-2  
1
-40  
Output Jitter Amplitude  
-4  
500m  
200m  
100m  
50m  
20m  
10m  
5m  
-50  
-60  
-6  
-70  
-8  
-80  
-10  
-12  
-14  
-16  
-18  
-20  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
THD+N  
2m  
1m  
100  
101  
102  
103  
104  
105  
106  
20  
100  
1k  
10k  
100k  
Jitter Frequency (Hz)  
Sinusoidal Jitter Frequency (Hz)  
Figure 15. DIR Jitter Attenuation Characteristics  
Figure 16. DIR Jitter Tolerance Plot  
Block Start  
(Frame 0 Starts Here)  
BLS  
(output)  
SYNC  
(output)  
C or U data  
(output)  
Ch. 1 Ch. 2 Ch. 1 Ch. 2 Ch. 1 Ch. 2 Ch. 1 Ch. 2  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
¼
Figure 17. DIR Channel Status and User Data Serial Output Format Through the GPO Pins  
Copyright © 2016–2017, Texas Instruments Incorporated  
21  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Feature Description (continued)  
9.3.7 General-Purpose Digital Outputs  
The DIX4192-Q1 includes four general-purpose digital outputs, GPO1 through GPO4 (pins 26 through 29,  
respectively). A GPO pin may be programmed to a static high or low state. Alternatively, a GPO pin may be  
connected to one of 13 internal logic nodes, allowing the GPO pin to inherit the function of the selected signal.  
Control registers 0x1B through 0x1E are used to select the function of the GPO pins. For details regarding GPO  
output configuration, refer to Control Registers. Table 1 summarizes the available output options for the GPO  
pins.  
Table 1. General-Purpose Output Pin Configurations  
GPOn3  
GPOn2  
GPOn1  
GPOn0  
GPOn FUNCTION  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
GPOn is forced low (default)  
GPOn is forced high  
Reserved  
DIT interrupt flag; active low  
DIR interrupt flag; active low  
DIR 50/15-μs emphasis flag; active low  
DIR non-audio data flag; active high  
DIR non-valid data flag; active high  
DIR channel status data serial output  
DIR user data serial output  
DIR block start clock output  
DIR COPY bit output  
(0 = copyright asserted, 1 = copyright not asserted)  
1
0
1
1
DIR L (or origination) bit output  
(0 = 1st generation or higher, 1 = original)  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
DIR Parity error flag; active high  
DIR internal sync clock output; may be used as the data clock for the channel  
status and user data serial outputs.  
DIT internal sync clock  
9.3.8 Interrupt Output  
The DIX4192-Q1 includes multiple internal status bits, many of which may be set to trigger an interrupt signal.  
The interrupt signal is output at INT (pin 23), which is an active low, open-drain output. The INT pin requires a  
pullup resistor to the VIO supply rail. The value of the pullup is not critical, but a 10-kdevice must be sufficient  
for most applications. Figure 18 shows the interrupt output pin connection. The open-drain output allows interrupt  
pins from multiple DIX4192-Q1 devices to be connected in a wired OR configuration.  
DIX4192-Q1  
MCU, DSP,  
or Logic  
VIO  
Interrupt  
Logic  
10 kΩ  
INT 23  
Interrupt  
Input  
To the INT outputs for  
additional DIX4192-Q1 devices  
Copyright © 2017, Texas Instruments Incorporated  
Figure 18. Interrupt Output Pin Connections  
22  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
9.4 Device Functional Modes  
9.4.1 Host Interface Operation: Serial Peripheral Interface (SPI) Mode  
The DIX4192-Q1 supports a 4-wire SPI port when the CPM input (pin 18) is forced low or tied to ground. The SPI  
port supports high-speed serial data transfers up to 40 Mbps. Register and data buffer write and read operations  
are supported.  
The CS input (pin 19) serves as the active low chip select for the SPI port. The CS input must be forced low in  
order to write or read registers and data buffers. When CS is forced high, the data at the CDIN input (pin 21) is  
ignored, and the CDOUT output (pin 22) is forced to a high-impedance state. The CDIN input serves as the serial  
data input for the port; the CDOUT output serves as the serial data output.  
The CCLK input (pin 20) serves as the serial data clock for both the input and output data. Data is latched at the  
CDIN input on the rising edge of CCLK, while data is clocked out of the CDOUT output on the falling edge of  
CCLK.  
Figure 19 shows the SPI port protocol. Byte 0 is referred to as the command byte, where the most significant bit  
(or MSB) is the read/write bit. For the R/W bit, a 0 indicates a write operation, while a 1 indicates a read  
operation. The remaining seven bits of the command byte are used for the register address targeted by the write  
or read operation. Byte 1 is a don’t care byte, and may be set to all zeroes. This byte is included in order to  
retain protocol compatibility with earlier Texas Instruments digital audio interface and sample rate converter  
products, including the DIT4096, DIT4192, the SRC418x series devices, and the SRC419x series devices.  
The SPI port supports write and read operations for multiple sequential register addresses through the  
implementation of an auto-increment mode. As shown in Figure 19, the auto-increment mode is invoked by  
simply holding the CS input low for multiple data bytes. The register address is automatically incremented after  
each data byte transferred, starting with the address specified by the command byte.  
Refer to the SPI section of the Electrical Characteristics table and Figure 2 for specifications and a timing  
diagram that highlight the key parameters for SPI operation.  
Set CS = 1 here to write/read one register location.  
Hold CS = 0 to enable auto-increment mode.  
CS  
Header  
Register Data  
Byte N  
Byte 0  
Hi Z  
Byte 1  
Hi Z  
Byte 2  
Byte 3  
CDIN  
Register Data  
Data for A[6:0] Data for A[6:0]+1  
Data for A[2:0]+N  
CDOUT  
CCLK  
Byte Definition  
MSB  
LSB  
R/W A6 A5 A4 A3 A2 A1 A0  
Byte 0:  
Register Address  
Set to 0 for Write; Set to 1 for Read.  
Byte 1: Don’t Care  
Byte 2 through Byte N: Register Data  
Figure 19. Serial Peripheral Interface (SPI) Protocol for the DIX4192-Q1  
Copyright © 2016–2017, Texas Instruments Incorporated  
23  
 
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
9.4.2 Host Interface Operation: PHILIPS I2C Mode  
The DIX4192-Q1 supports a 2-wire Philips I2C bus interface when CPM (pin 18) is forced high or pulled up to the  
VIO supply rail. The DIX4192-Q1 functions as a Slave-only device on the bus. Standard and Fast modes of  
operation are supported. Standard mode supports data rates up to 100 kbps, while Fast mode supports data  
rates up to 400 kbps. Fast mode is downward compatible with Standard mode, and these modes are sometimes  
referred to as Fast/Standard, or F/S mode. The I2C Bus Specification (Version 2.1, January 2000), available from  
Philips Semiconductor, provides the details for the bus protocol and implementation. It is assumed that the  
reader is familiar with this specification. Refer to the I2C Standard and Fast Modes section of the Electrical  
Characteristics table and Figure 3 for specifications and a timing diagram that highlight the key parameters for  
I2C interface operation.  
When the I2C mode is invoked, pin 20 becomes SCL (which serves as the bus clock) and pin 22 becomes SDA  
(which carries the bi-directional serial data for the bus). Pins 19 and 21 become A0 and A1, respectively, and  
function as the hardware configurable portion of the 7-bit slave address.  
The DIX4192-Q1 uses a 7-bit Slave address; see Figure 20(a). Bits A2 through A6 are fixed and bits A0 and A1  
are hardware programmable using pins 19 and 21, respectively. The programmable bits allow for up to four  
DIX4192-Q1 devices to be connected to the same bus. The slave address is followed by the Register Address  
Byte, which points to a specific register or data buffer location in the DIX4192-Q1 register map. The register  
address byte is comprised of seven bits for the address, and one bit for enabling or disabling auto-increment  
operation; see Figure 20(b). Auto-increment mode allows multiple sequential register locations to be written to or  
read back in a single operation, and is especially useful for block write and read operations.  
Figure 21 shows the protocol for Standard and Fast mode Write operations. When writing a single register  
address, or multiple non-sequential register addresses, the single register write operation of Figure 21(a) may be  
used one or more times. When writing multiple sequential register addresses, the auto-increment mode of  
Figure 21(b) improves efficiency. The register address is automatically incremented by one for each successive  
byte of data transferred.  
Figure 22 shows the protocol for Standard and Fast mode Read operations. The current address read operation  
of Figure 22(a) assumes the value of the register address from the previously executed write or read operation,  
and is useful for polling a register address for status changes. Figure 22(b) and Figure 22(c) show read  
operations for one or more random register addresses, with or without auto-increment mode enabled.  
First Byte After the START/RESTART Condition  
Slave Address  
MSB  
A6  
1
LSB  
A5  
1
A4  
1
A3  
0
A2 A1  
A1  
A0  
A0 R/W  
0
Set by Pin 19  
Set by Pin 21  
(a) TI-Device Slave Address  
MSB  
LSB  
A0  
INC A6  
A5  
A4  
A3  
A2  
A1  
Auto-Increment  
0 = Disabled  
1 = Enabled  
(b) Register Address Byte  
Copyright © 2017, Texas Instruments Incorporated  
Figure 20. DIX4192-Q1 Slave Address and Register Address Byte Definitions  
24  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Device Functional Modes (continued)  
Byte 1  
Slave Address  
with R/W = 0  
Byte 2  
Register Address Byte  
with INC = 0  
Byte 3  
Register  
Data  
S
A
A
A P  
(a) Writing a Single Register  
Byte 1  
Slave Address  
with R/W = 0  
Byte 2  
Register Address Byte  
with INC = 1  
Byte 4  
Register Data  
for Address + 1  
Byte N  
Register Data  
for Address + N  
Byte 3  
Register Data  
S
A
A
A
A
A P  
(b) Writing Multiple Sequential Registers Using Auto-Increment Operation  
Legend  
S = START Condition  
A = Acknowledge  
P = STOP Condition  
Transfer from Master to Slave  
Transfer from Slave to Master  
Figure 21. Fast and Standard Mode Write Operations  
Byte 1  
Slave Address  
with R/W = 1  
Byte 2  
Register Data  
S
A
A P  
(a) Current Address Read, Assumes the Register Address of the Previous  
Byte 1  
Slave Address  
with R/W = 0  
Byte 2  
Register Address Byte  
with INC = 0  
Byte 3  
Slave Address  
with R/W = 1  
Byte 4  
Register Data  
A
A P  
S
A
A R  
(b) Random Read Operation, Auto-Increment Disabled  
Byte 1  
Slave Address  
with R/W = 0  
Byte 2  
Register Address Byte  
with INC = 1  
Byte 3  
Slave Address  
with R/W = 1  
Byte N  
Register Data  
for Address + N  
Byte 4  
Register Data  
S
A
A R  
A
A
A P  
(c) Random Read Operation, Auto-Increment Enabled  
Legend  
S = START Condition  
A = Acknowledge  
Transfer from Master to Slave  
Transfer from Slave to Master  
A = Not Acknowledge  
R = Repeated START  
P = STOP Condition  
Figure 22. Fast and Standard Mode Read Operations  
Copyright © 2016–2017, Texas Instruments Incorporated  
25  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
9.5 Register Maps  
9.5.1 Register and Data Buffer Organization  
The DIX4192-Q1 organizes the on-chip registers and data buffers into four pages. The currently active page is  
chosen by programming the Page Selection Register to the desired page number. The Page Selection Register  
is available on every register page at address 0x7F, allowing easy movement between pages. Table 2 indicates  
the page selection corresponding to the Page Selection Register value.  
Table 2. Register Page Selection  
Page Selection Register Value (Hex)  
Selected Register Page  
00  
01  
02  
03  
Page 0, control and status registers  
Page 1, DIR channel status and user data buffers  
Page 2, DIT channel status and user data buffers  
Page 3, reserved  
Register Page 0 contains the control registers used to configure the various function blocks within the DIX4192-  
Q1. In addition, status registers are provided for flag and error conditions, with many of the status bits capable of  
generating an interrupt signal when enabled. See Table 3 for the control and status register map.  
Register Page 1 contains the digital interface receiver (or DIR) channel status and user data buffers. These  
buffers correspond to the data contained in the C and U bits of the previously received block of the AES3-  
encoded data stream. The contents of these buffers may be read through the SPI or I2C serial host interface and  
processed as required by the host system. See Table 35 for the DIR channel status buffer map, and Table 36 for  
the DIR user data buffer map.  
Register Page 2 contains the digital interface transmitter (or DIT) channel status and user data buffers. These  
buffers correspond to the data contained in the C and U bits of the transmitted AES3-encoded data stream. The  
contents of these buffers may be written through the SPI or I2C serial host interface to configure the C and U bits  
of the transmitted AES3 data stream. The buffers may also be read for verification by the host system. See  
Table 37 for the DIT channel status buffer map, and Table 38 for the DIT user data buffer map.  
Register Page 3 is reserved for factory test and verification purposes, and cannot be accessed without an unlock  
code. The unlock code remains private; the test modes disable normal operation of the device, and are not  
useful in customer applications.  
26  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
9.5.2 Control Registers  
See Table 3 for the control and status register map of the DIX4192-Q1. Register addresses 0x00 and 0x2D  
through 0x7E are reserved for factory or future use. All register addresses are expressed as hexadecimal  
numbers. The following pages provide detailed descriptions for each control and status register.  
Table 3. Control and Status Register Map (Register Page 0)  
ADDRESS  
(Hex)  
D7  
(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
REGISTER GROUP  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
7F  
RESET  
0
PDALL  
PDPA  
PDPB  
0
PDTX  
TX  
PDRX  
RX  
0
0
Power-down and reset  
Global interrupt status  
Port A control  
0
0
0
0
0
AMUTE  
AOUTS1  
AOUTS0  
AM/S  
ACLK1  
BM/S  
BCLK1  
TXIS0  
TXBTD  
0
AFMT2  
ACLK0  
BFMT2  
BCLK0  
BLSM  
AESOFF  
VALSEL  
0
AFMT1  
ADIV1  
BFMT1  
BDIV1  
VALID  
TXMUTE  
TXCUS1  
TSLIP  
MTSLIP  
TBTIM1  
RXMUX1  
RXCKOD0  
J3  
AFMT0  
ADIV0  
BFMT0  
BDIV0  
BSSL  
TXOFF  
TXCUS0  
TBTI  
0
0
0
0
Port A control  
0
BMUTE  
BOUTS1  
BOUTS0  
Port B control  
0
0
0
0
Port B control  
TXCLK  
TXDIV1  
TXDIV0  
TXIS1  
Transmitter control  
BYPMUX1  
BYPMUX0  
AESMUX  
LDMUX  
Transmitter control  
0
0
0
0
Transmitter control  
0
0
0
0
0
DIT status  
0
0
0
0
0
0
MTBTI  
TBTIM0  
RXMUX  
RXCKOE  
J2  
DIT interrupt mask  
0
0
0
0
TSLIPM1  
RXCLK  
RXAMLL  
J5  
TSLIPM0  
0
DIT interrupt mode  
0
0
0
RXBTD  
Receiver control  
0
0
0
LOL  
RXCKOD1  
J4  
Receiver control  
P3  
P2  
P1  
P0  
Receiver PLL configuration  
Receiver PLL configuration  
Receiver PLL configuration  
Non-PCM audio detection  
Receiver status  
J1  
J0  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
DTS CD/LD  
RXCKR1  
QCRC  
0
IEC61937  
RXCKR0  
RBTI  
0
CSCRC  
0
0
PARITY  
0
0
0
0
0
VBIT  
BPERR  
QCHG  
0
UNLOCK  
0
Receiver status  
0
MVBIT  
0
0
OSLIP  
MRBTI  
MOSLIP  
RBTIM0  
BPERRM0  
OSLIPM0  
GPO10  
GPO20  
GPO30  
GPO40  
Q7  
Receiver status  
MCSCRC  
0
MPARITY  
0
MBPERR  
MQCHG  
0
MUNLOCK  
0
MQCRC  
0
Receiver interrupt mask  
Receiver interrupt mask  
Receiver interrupt mode  
Receiver interrupt mode  
Receiver interrupt mode  
General-purpose out (GPO1)  
General-purpose out (GPO2)  
General-purpose out (GPO3)  
General-purpose out (GPO4)  
Audio CD Q-channel sub-code  
Audio CD Q-channel sub-code  
Audio CD Q-channel sub-code  
Audio CD Q-channel sub-code  
Audio CD Q-channel sub-code  
Audio CD Q-channel sub-code  
Audio CD Q-channel sub-code  
Audio CD Q-channel sub-code  
Audio CD Q-channel sub-code  
Audio CD Q-channel sub-code  
PC burst preamble, high byte  
PC burst preamble, low byte  
PD burst preamble, high byte  
PD burst preamble, low byte  
Page selection  
0
UNLOCKM0  
PARITYM0  
0
QCHGM1  
CSCRCM1  
0
QCHGM0  
CSCRCM0  
0
UNLOCKM1  
PARITYM1  
0
QCRCM1  
VBITM1  
0
QCRCM0  
VBITM0  
0
RBTIM1  
BPERRM1  
OSLIPM1  
GPO11  
GPO21  
GPO31  
GPO41  
Q6  
0
0
0
0
GPO13  
GPO23  
GPO33  
GPO43  
Q4  
GPO12  
GPO22  
GPO32  
GPO42  
Q5  
0
0
0
0
0
0
0
0
0
0
0
0
Q0  
Q1  
Q2  
Q3  
Q8  
Q9  
Q10  
Q18  
Q26  
Q34  
Q42  
Q50  
Q58  
Q66  
Q74  
PC13  
PC05  
PD13  
PD05  
0
Q11  
Q19  
Q27  
Q35  
Q43  
Q51  
Q59  
Q67  
Q75  
PC12  
PC04  
PD12  
PD04  
0
Q12  
Q13  
Q14  
Q15  
Q16  
Q24  
Q32  
Q40  
Q48  
Q56  
Q64  
Q72  
PC15  
PC07  
PD15  
PD07  
0
Q17  
Q25  
Q33  
Q41  
Q49  
Q57  
Q65  
Q73  
PC14  
PC06  
PD14  
PD06  
0
Q20  
Q21  
Q22  
Q23  
Q28  
Q29  
Q30  
Q31  
Q36  
Q37  
Q38  
Q39  
Q44  
Q45  
Q46  
Q47  
Q52  
Q53  
Q54  
Q55  
Q60  
Q61  
Q62  
Q63  
Q68  
Q69  
Q70  
Q71  
Q76  
Q77  
Q78  
Q79  
PC11  
PC03  
PD11  
PD03  
0
PC10  
PC02  
PD10  
PD02  
0
PC09  
PC08  
PC01  
PC00  
PD09  
PD08  
PD01  
PD00  
PAGE1  
PAGE0  
Copyright © 2016–2017, Texas Instruments Incorporated  
27  
 
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Figure 23. Register 01: Power-Down and Reset  
7 (MSB)  
RESET  
6
0
5
4
3
2
1
0 (LSB)  
0
PDALL  
PDPA  
PDPB  
PDTX  
PDRX  
Table 4. Register 01: Power-Down and Reset Field Descriptions  
PDRX  
Power-Down for the Receiver Function Block  
This bit is used to power-down the DIR and associated functions. All receiver outputs are forced low.  
PDRX  
Receiver Power-Down Mode  
0
1
Enabled (default)  
Disabled; the Receiver function block will operate normally based upon the applicable control register settings.  
PDTX  
Power-Down for the Transmitter Function Block  
This bit is used to power-down the DIT and associated functions. All transmitter outputs are forced low.  
PDTX  
Transmitter Power-Down Mode  
0
1
Enabled (default)  
Disabled; the Transmitter function block will operate normally based upon the applicable control register settings.  
PDPB  
PDPA  
PDALL  
RESET  
Power-Down for Serial Port B  
This bit is used to power-down the audio serial I/O Port B. All port outputs are forced low.  
PDPB  
Port B Power-Down Mode  
0
1
Enabled (default)  
Disabled; Port B will operate normally based upon the applicable control register settings.  
Power-Down for Serial Port A  
This bit is used to power-down the audio serial I/O Port A. All port outputs are forced low.  
PDPA  
Port A Power-Down Mode  
0
1
Enabled (default)  
Disabled; Port A will operate normally based upon the applicable control register settings.  
Power-Down for All Functions  
This bit is used to power-down all function blocks except the host interface port and the control and status registers.  
PDALL  
All Function Power-Down Mode  
0
1
Enabled (default)  
Disabled; all function blocks will operate normally based upon the applicable control register settings.  
Software Reset  
This bit is used to force a reset initialization sequence, and is equivalent to forcing an external reset through the RST input (pin 24).  
RESET  
Reset Function  
0
1
Disabled (default)  
Enabled; all control registers will be reset to the default state.  
Figure 24. Register 02: Global Interrupt Status (Read-Only)  
7 (MSB)  
6
0
5
0
4
0
3
0
2
1
0 (LSB)  
0
0
TX  
RX  
Table 5. Register 02: Global Interrupt Status (Read-Only) Field Descriptions  
RX  
TX  
Receiver Function Block Interrupt Status (Active High)  
When set to 1, this bit indicates an active interrupt from the DIR function block. This bit is active high. The user must then read status  
registers 0x14 and 0x15 in order to determine which of the sources has generated an interrupt.  
Transmitter Function Block Interrupt Status (Active High)  
When set to 1, this bit indicates an active interrupt from the DIT function block. This bit is active high. The user must then read status  
register 0x0A in order to determine which of the sources has generated an interrupt.  
28  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Figure 25. Register 03: Port A Control Register 1  
7 (MSB)  
0
6
5
4
3
2
1
0 (LSB)  
AFMT0  
AMUTE  
AOUTS1  
AOUTS0  
AM/S  
AFMT2  
AFMT1  
Table 6. Register 03: Port A Control Register 1 Field Descriptions  
AFMT[2:0]  
Port A Audio Data Format  
These bits are used to set the audio input and output data format for Port A. Refer to Audio Serial Port Operation for illustrations of the  
supported data formats. Refer to the Audio Serial Ports section of the Electrical Characteristics table and Figure 1 for an applicable timing  
diagram and parameters.  
AFMT2  
AFMT1  
AFMT0  
Audio Data Format  
24-Bit Left-Justified (default)  
24-Bit Philips I2S  
Unused  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Unused  
16-Bit Right-Justified  
18-Bit Right-Justified  
20-Bit Right-Justified  
24-Bit Right-Justified  
AM/S  
Port A Slave and Master Mode  
This bit is used to set the audio clock mode for Port A to either Slave or Master.  
AM/S  
Slave/Master Mode  
0
1
Slave mode; the LRCK and BCK clocks are inputs generated by an external digital audio source. (default)  
Master mode; the LRCK and BCK clocks are outputs, derived from the Port A master clock source.  
AOUTS[1:0]  
Port A Output Data Source  
These bits are used to select the output data source for Port A. The data is output at SDOUTA (pin 40).  
AOUTS1  
AOUTS0  
Output Data Source  
0
0
1
0
1
Port A input, for data loop back. (default)  
0
Port B input  
DIR  
1
1
Reserved  
AMUTE  
Port A Output Mute  
This bit is used to mute the Port A audio data output.  
AMUTE  
Output Mute  
0
1
Disabled; SDOUTA is driven by the output data source. (default)  
Enabled; SDOUTA is forced low.  
Figure 26. Register 04: Port A Control Register 2  
7 (MSB)  
0
6
0
5
0
4
0
3
2
1
0 (LSB)  
ADIV0  
ACLK1  
ACLK0  
ADIV1  
Table 7. Register 04: Port A Control Register 2 Field Descriptions  
ADIV[1:0]  
Port A Master Clock Divider  
These bits are used to set the master clock divider for generating the LRCKA clock for Port A when configured for Master mode operation.  
BCKA is always set to 64 times the LRCKA clock rate in Master mode.  
ADIV1  
ADIV0  
Master Mode Clock Divider  
Divide-by-128 (default)  
Divide-by-256  
0
0
1
0
1
0
1
Divide-by-384  
1
Divide-by-512  
ACLK[1:0]  
Port A Master Clock Source  
These bits are used to set the master clock source for Port A when configured for Master mode operation.  
ACLK1  
ACLK0  
Master Clock Source  
MCLK (default)  
RXCKI  
0
0
0
1
Copyright © 2016–2017, Texas Instruments Incorporated  
29  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Table 7. Register 04: Port A Control Register 2 Field Descriptions (continued)  
1
1
0
1
RXCKO  
Reserved  
Figure 27. Register 05: Port B Control Register 1  
7 (MSB)  
0
6
5
4
3
2
1
0 (LSB)  
BFMT0  
BMUTE  
BOUTS1  
BOUTS0  
BM/S  
BFMT2  
BFMT1  
Table 8. Register 05: Port B Control Register 1 Field Descriptions  
BFMT[2:0]  
Port B Audio Data Format  
These bits are used to set the audio input and output data format for Port B. Refer to Audio Serial Port Operation for illustrations of the  
supported data formats. Refer to the Audio Serial Ports section of the Electrical Characteristics table and Figure 1 for an applicable timing  
diagram and parameters.  
BFMT2  
BFMT1  
BFMT0  
Audio Data Format  
24-Bit Left-Justified (default)  
24-Bit Philips I2S  
Unused  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Unused  
16-Bit Right-Justified  
18-Bit Right-Justified  
20-Bit Right-Justified  
24-Bit Right-Justified  
BM/S  
Port B Slave and Master Mode  
This bit is used to set the audio clock mode for Port B to either Slave or Master.  
BM/S  
Slave and Master Mode  
0
1
Slave mode; the LRCK and BCK clocks are generated by an external source. (default)  
Master mode; the LRCK and BCK clocks are derived from the Port A master clock source.  
BOUTS[1:0]  
Port B Output Source  
These bits are used to select the output data source for Port B. The data is output at SDOUTB (pin 45).  
BOUTS1  
BOUTS0  
Output Data Source  
0
0
1
0
1
Port B input, for data loop back. (default)  
0
Port A input  
DIR  
1
1
Reserved  
BMUTE  
Port B Output Mute  
This bit is used to mute the Port B audio data output.  
BMUTE  
Output Mute  
0
1
Disabled; SDOUTB is driven by the output data source. (default)  
Enabled; SDOUTB is forced low.  
30  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Figure 28. Register 06: Port B Control Register 2  
7 (MSB)  
0
6
0
5
0
4
0
3
2
1
0 (LSB)  
BDIV0  
BCLK1  
BCLK0  
BDIV1  
Table 9. Register 06: Port B Control Register 2 Field Descriptions  
BDIV[1:0]  
Port B Master Mode Clock Divider  
These bits are used to set the master clock divider for generating the LRCKB clock for Port B when configured for Master mode operation.  
BCKB is always set to 64 times the LRCKB clock rate in Master mode.  
BDIV1  
BDIV0  
Master Mode Clock Divider  
Divide-by-128 (default)  
Divide-by-256  
0
0
1
0
1
0
1
Divide-by-384  
1
Divide-by-512  
BCLK[1:0]  
Port B Master Clock Source  
These bits are used to set the master clock source for Port B when configured for Master mode operation.  
BCLK1  
BCLK0  
Master Clock Source  
MCLK (default)  
RXCKI  
0
0
1
1
0
1
0
1
RXCKO  
Reserved  
Figure 29. Register 07: Transmitter Control Register 1  
7 (MSB)  
TXCLK  
6
5
4
3
2
1
0 (LSB)  
BSSL  
TXDIV1  
TXDIV0  
TXIS1  
TXIS0  
BLSM  
VALID  
Table 10. Register 07: Transmitter Control Register 1 Field Descriptions  
BSSL  
Block Start or Asynchronous Data Slip Interrupt Trigger Selection  
This bit is used to select the trigger source for the Transmitter TSLIP status and interrupt bit.  
BSSL  
TSLIP Interrupt Trigger Source  
Data slip condition (default)  
Block start condition  
0
1
VALID  
Validity (V) Data Bit  
This bit may be used to set the validity (or V) data bit in the AES3-encoded output. Refer to the VALSEL bit in control register 0x09 for V-  
bit source selection.  
VALID  
Transmitted Validity (V) Bit Data  
Indicates that the transmitted audio data is suitable for conversion to an analog signal or for further digital  
processing. (default)  
0
Indicates that the transmitted audio data is not suitable for conversion to an analog signal or for further  
digital processing.  
1
BLSM  
Transmitter Block Start Input and Output Mode  
This bit is used to select the input and output mode for the DIT block start pin, BLS (pin 35).  
BLSM  
BLS Pin Mode  
Input (default)  
Output  
0
1
TXIS[1:0]  
Transmitter Input Data Source  
These bits are used to select the audio data source for the DIT function block.  
TXIS1  
TXIS0  
Output Word Length  
Port A (default)  
Port B  
0
0
1
1
0
1
0
1
DIR  
Reserved  
Copyright © 2016–2017, Texas Instruments Incorporated  
31  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Table 10. Register 07: Transmitter Control Register 1 Field Descriptions (continued)  
TXDIV[1:0]  
Transmitter Master Clock Divider  
These bits are used to select the Transmitter master clock divider, which determines the output frame rate.  
TXDIV1  
TXDIV0  
Clock Divider  
0
0
1
0
1
Divide the master clock by 128. (default)  
Divide the master clock by 256.  
Divide the master clock by 384.  
Divide the master clock by 512.  
0
1
1
TXCLK  
Transmitter Master Clock Source  
This bit is used to select the master clock source for the Transmitter block.  
TXCLK  
Transmitter Master Clock Source  
0
1
MCLK input (default)  
RXCKO; the recovered master clock from the DIR function block.  
Figure 30. Register 08: Transmitter Control Register 2  
7 (MSB)  
BYPMUX1  
6
5
4
3
2
1
0 (LSB)  
TXOFF  
BYPMUX0  
AESMUX  
LDMUX  
TXBTD  
AESOFF  
TXMUTE  
Table 11. Register 08: Transmitter Control Register 2 Field Descriptions  
TXOFF  
Transmitter Line Driver Output Enable  
This bit is used to enable or disable the TX+ (pin 32) and TX– (pin 31) line driver outputs.  
TXOFF  
Transmitter Line Driver  
0
Enabled; the line driver outputs function normally. (default)  
Disabled; the line driver outputs are forced low.  
1
TXMUTE  
AESOFF  
TXBTD  
Transmitter Audio Data Mute  
This bit is used to set the 24 bits of audio and auxiliary data to all zeros for both Channels 1 and 2.  
TXMUTE  
Transmitter Audio Data Mute  
0
Disabled (default)  
1
Enabled; the audio data for both channels 1 and 2 are set to all zeros.  
AESOUT Output Enable  
This bit is used to enable or disable the AESOUT (pin 34) buffered AES3-encoded CMOS logic level output.  
AESOFF  
AESOUT Output  
0
1
Enabled; the AESOUT pin functions normally. (default)  
Disabled; the AESOUT pin is forced low.  
Transmitter C and U Data Buffer Transfer Disable  
This bit is used to enable and disable buffer transfers between the DIT User Access (UA) and DIT Transmitter Access (TA) buffers for both  
channel status (C) and user (U) data.  
Buffer transfers may be disabled, allowing the user to write new C and U data to the UA buffers through the SPI or I2C serial host  
interface. Once updated, UA-to-TA buffer transfers may then be re-enabled, allowing the TA buffer to be updated and the new C and U  
data to be transmitted at the start of the next block.  
TXBTD  
User Access (UA) to Transmitter Access (TA) Buffer Transfers  
Enabled (default)  
0
1
Disabled; allows the user to update DIT C and U data buffers.  
Note: The TXCUS0 and TXCUS1 bits in control register 0x09 must be set to a non-zero value in order for DIT UA buffer updates to occur.  
Transmitter Line Driver Input Source Selection  
LDMUX  
This bit is used to select the input source for the DIT differential line driver outputs.  
LDMUX  
Line Driver Input Source  
0
1
DIT AES3 encoder output (default)  
Bypass multiplexer output  
AESMUX  
AESOUT CMOS Buffer Input Source Selection  
This bit is used to select the input source for the AESOUT CMOS logic level output.  
AESMUX  
AESOUT Buffer Input Source  
DIT AES3 encoder output (default)  
Bypass multiplexer output  
0
1
32  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Table 11. Register 08: Transmitter Control Register 2 Field Descriptions (continued)  
BYPMUX[1:0]  
Bypass Multiplexer Source Selection  
These bits select the line receiver output to be used as the bypass multiplexer data source.  
BYPMUX1  
BYPMUX0  
Line Receiver Output Selection  
0
0
1
1
0
1
0
1
RX1 (default)  
RX2  
RX3  
RX4  
Figure 31. Register 09: Transmitter Control Register 3  
7 (MSB)  
0
6
0
5
0
4
0
3
0
2
1
0 (LSB)  
VALSEL  
TXCUS1  
TXCUS0  
Table 12. Register 09: Transmitter Control Register 3 Field Descriptions  
TXCUS[1:0]  
Transmitter Channel Status and User Data Source  
These bits select the source of the channel status (or C) data and user (or U) data which is used to load the DIT User Access (UA) buffers.  
TXCUS1  
TXCUS0  
DIT UA Buffer Source  
0
0
1
0
1
0
The buffers will not be updated. (default)  
The buffers are updated through the SPI or I2C host interface.  
The buffers are updated through the DIR RA buffers.  
The first 10 bytes of the buffers are updated through the SPI or I2C host, while the  
remainder of the buffers are updated through the DIR RA buffers.  
1
1
VALSEL  
Transmitter Validity Bit Source  
This bit is used to select the source for the validity (or V) bit in the AES3-encoded output data stream.  
VALSEL  
Validity (or V) Bit Source Selection  
0
1
The VALID bit in control register 0x07.  
The V bit is transferred from the DIR block with zero latency.  
Figure 32. Register 0A: DIT Status (Read-Only)  
7 (MSB)  
0
6
5
0
4
0
3
0
2
0
1
0 (LSB)  
TBTI  
0
TSLIP  
Table 13. Register 0A: DIT Status (Read-Only) Field Descriptions  
TBTI  
Transmitter Buffer Transfer Status, Active High  
When DIT User Access (UA) to Transmitter Access (TA) buffer transfers are enabled (the TXBTD bit in control register 0x08 is set to  
0), and the TBTI interrupt is unmasked (the MTBTI bit in control register 0x0B is set to 1), the TBTI bit will be set to 1 when the UA-to-  
TA buffer transfer has completed. This configuration also causes the INT output (pin 23) to be driven low and the TX bit in status  
register 0x02 to be set to 1, indicating that an interrupt has occurred.  
TSLIP  
Transmitter Source Data Slip Status, Active High  
The TSLIP bit will be set to 1 when either an asynchronous data slip or block start condition is detected, and the TSLIP interrupt is  
unmasked (the MTSLIP bit in control register 0x0B is set to 1). The BSSL bit in control register 0x07 is used to set the source for this  
interrupt.  
The TSLIP bit being forced to 1 will also cause the INT output (pin 23) to be driven low and the TX bit in status register 0x02 to be set  
to 1, indicating that an interrupt has occurred.  
Figure 33. Register 0B: DIT Interrupt Mask Register  
7 (MSB)  
0
6
0
5
0
4
0
3
0
2
0
1
0 (LSB)  
MTBTI  
MTSLIP  
Table 14. Register 0B: DIT Interrupt Mask Register Field Descriptions  
MBTI  
Transmitter Buffer Transfer Interrupt Mask  
MTBI  
BTI Interrupt Mask  
0
1
BTI interrupt is masked. (default)  
BTI interrupt is enabled.  
Copyright © 2016–2017, Texas Instruments Incorporated  
33  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Table 14. Register 0B: DIT Interrupt Mask Register Field Descriptions (continued)  
MTSLIP  
Transmitter TSLIP Interrupt Mask  
MTSLIP  
TSLIP Interrupt Mask  
0
1
TSLIP interrupt is masked. (default)  
TSLIP interrupt is enabled.  
Figure 34. Register 0C: DIT Interrupt Mode Register  
7 (MSB)  
6
0
5
0
4
0
3
2
1
0 (LSB)  
TBTIM0  
0
TSLIPM1  
TSLIPM0  
TBTIM1  
Table 15. Register 0C: DIT Interrupt Mode Register Field Descriptions  
TBTIM[1:0]  
Transmitter Buffer Transfer Interrupt Mode  
These bits are used to select the active trigger state for the BTI interrupt.  
TBTIM1  
TBTIM0  
Interrupt Active State  
Rising edge active (default)  
Falling edge active  
Level active  
0
0
1
1
0
1
0
1
Reserved  
TSLIPM[1:0]  
Transmitter Data Source Slip Interrupt Mode  
These bits are used to select the active trigger state for the TSLIP interrupt.  
TSLIPM1  
TSLIPM0  
Interrupt Active State  
Rising edge active (default)  
Falling edge active  
Level active  
0
0
1
1
0
1
0
1
Reserved  
Figure 35. Register 0D: Receiver Control Register 1  
7 (MSB)  
0
6
0
5
0
4
3
2
0
1
0 (LSB)  
RXBTD  
RXCLK  
RXMUX1  
RXMUX0  
Table 16. Register 0D: Receiver Control Register 1 Field Descriptions  
Receiver Input Source Selection  
RXMUX[1:0]  
These bits are used to select the output of the line receiver to be used as the input data source for the DIR core.  
RXMUX1  
RXMUX0  
Input Selection  
RX1 (default)  
RX2  
0
0
1
0
1
0
1
RX3  
1
RX4  
RXCLK  
RXBTD  
Receiver Reference Clock Source  
This bit is used to select the reference clock source for PLL1 in the DIR core.  
RXCLK  
Receiver Reference Clock  
RXCKI (default)  
MCLK  
0
1
Receiver C and U Data Buffer Transfer Disable  
This bit is used to enable and disable buffer transfers between the Receiver Access (RA) and User Access (UA) buffers for both channel  
status (C) and user (U) data.  
Buffer transfers are typically disabled to allow the customer to read C and U data from the DIR UA buffer through the SPI or I2C serial host  
interface. Once read, the RA-to-UA buffer transfer can be re-enabled to allow the RA buffer to update the contents of the UA buffer in real  
time.  
RXBTD  
Receiver Access (RA) to User Access (UA) Buffer Transfers  
Enabled (default)  
0
1
Disabled; the user may read C and U data from the DIR UA buffers.  
34  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Figure 36. Register 0E: Receiver Control Register 2  
7 (MSB)  
0
6
0
5
0
4
3
2
1
0 (LSB)  
LOL  
RXAMLL  
RXCKOD1  
RXCKOD0  
RXCKOE  
Table 17. Register 0E: Receiver Control Register 2 Field Descriptions  
RXCKOE  
RXCKOE Output Enable  
This bit is used to enable or disable the recovered clock output, RXCKO (pin 12). When disabled, the output is set to a high-impedance  
state.  
RXCKOE  
RXCKO Output State  
0
Disabled; the RXCKO output is set to high-impedance. (default)  
Enabled; the recovered master clock is available at RXCKO.  
1
RXCKOD[1:0]  
RXCKO Output Clock Divider  
These bits are used to set the clock divider at the output of PLL2. The output of the divider is the RXCKO clock, available internally or at  
the RXCKO output (pin 12).  
RXCKOD1  
RXCKOD0  
RXCKO Output Divider  
0
0
1
1
0
1
0
1
Passthrough; no division is performed. (default)  
Divide the PLL2 clock output by 2.  
Divide the PLL2 clock output by 4.  
Divide the PLL2 clock output by 8.  
RXAMLL  
Receiver Automatic Mute for Loss of Lock  
This bit is used to set the automatic mute function for the DIR block when a loss of lock is indicated by both the AES3 decoder and PLL2.  
RXAMLL  
Receiver Auto-Mute Function  
0
1
Disabled (default)  
Enabled; audio data output from the DIR block is forced low for a loss of lock condition.  
LOL  
Receiver Loss of Lock Mode for the Recovered Clock (output from PLL2)  
This bit is used to set the mode of operation for PLL2 when a loss of lock condition occurs.  
LOL  
Receiver PLL2 Operation  
0
1
The PLL2 output clock is stopped for a loss of lock condition. (default)  
The PLL2 output clock free runs when a loss of lock condition occurs.  
Figure 37. Register 0F: Receiver PLL1 Configuration Register 1  
7 (MSB)  
P3  
6
5
4
3
2
1
0 (LSB)  
J2  
P2  
P1  
P0  
J5  
J4  
J3  
Figure 38. Register 10: Receiver PLL1 Configuration Register 2  
7 (MSB)  
J1  
6
5
4
3
2
1
0 (LSB)  
D8  
J0  
D13  
D12  
D11  
D10  
D9  
Copyright © 2016–2017, Texas Instruments Incorporated  
35  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Figure 39. Register 11: Receiver PLL1 Configuration Register 3  
7 (MSB)  
D7  
6
5
4
3
2
1
0 (LSB)  
D0  
D6  
D5  
D4  
D3  
D2  
D1  
Table 18. Register 11: Receiver PLL1 Configuration Register 3 Field Descriptions  
Registers 0x0F through 0x11 are used to program PLL1 in the DIR core. PLL1 multiplies the DIR reference clock source to an oversampling rate which is  
adequate for AES3 decoder operation. PLL1 is programmed using the following relationship:  
(CLOCK × K) / P = 98.304 MHz  
where:  
CLOCK = frequency of the DIR reference clock source.  
K = J.D, where the integer part J = 1 to 63, and the fractional part D = 0 to 9999.  
P = the pre-divider value, which may be set to any 4-bit value that meets the conditions stated below.  
The following conditions must be met for the values of P, J, and D:  
If D = 0, 2 MHz (CLOCK / P) 20 MHz and 4 J 55.  
then:  
If D 0, 10 MHz (CLOCK / P) 20 MHz and 4 J 11.  
then:  
Referring to registers 0x0F through 0x11:  
P is programmed using bits P[3:0].  
J is programmed using bits J[5:0].  
D is programmed using bits D[13:0].  
Table 19 shows values for P, J, and D for common  
DIR reference clock rates.  
Table 19. PLL1 Register Values for Common Reference Clock Rates  
REFERENCE CLOCK RATE (MHz)  
P
1
1
1
1
2
2
2
J
12  
8
D
0
ERROR (%)  
0.0000  
0.0002  
0.0000  
0.0000  
0.0002  
0.0000  
0.0003  
8.1920  
11.2896  
12.2880  
16.3840  
22.5792  
24.5760  
27.0000  
7075  
0
8
6
0
8
7075  
0
8
7
2818  
Figure 40. Register 12: Non-PCM Audio Detection Status Register (Read-Only)  
7 (MSB)  
0
6
0
5
0
4
0
3
0
2
0
1
0 (LSB)  
DTS CD/LD  
IEC61937  
Table 20. Register 12: Non-PCM Audio Detection Status Register (Read-Only) Field Descriptions  
IEC61937  
This bit is used to indicate the detection of an IEC 61937 data reduced audio format (includes Dolby AC-3, DTS, etc.) for DVD playback  
or general transmission purposes.  
IEC61937  
Status  
0
Data is not an IEC61937 format.  
Data is an IEC61937 format. Refer to the PC and PD preamble registers (addresses 0x29  
through 0x2C) for data type and burst length.  
1
DTS CD/LD  
This bit is used to indicate the detection of a DTS encoded audio compact disc (CD) or Laserdisc (LD) playback.  
DTS CD/LD  
Status  
0
1
The CD/LD is not DTS-encoded.  
DTS CD/LD playback detected.  
36  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Figure 41. Register 13: Receiver Status Register 1 (Read-Only)  
7 (MSB)  
0
6
0
5
0
4
0
3
0
2
0
1
0 (LSB)  
RXCKR1  
RXCKR0  
Table 21. Register 13: Receiver Status Register 1 (Read-Only) Field Descriptions  
RXCKR[1:0]  
Maximum Available Recovered Clock Rate  
These two bits indicate the maximum available RXCKO clock rate based upon the DIR detection circuitry, which determines the frame rate  
of the incoming AES3-encoded bit stream. Based upon the estimated frame rate, a maximum rate for the recovered clock output (RXCKO)  
is determined and output from PLL2, as well as being loaded into the RXCKR0 and RXCKR1 status bits.  
The status of the RXCKR0 and RXCKR1 bits may be used to determine the programmed value for the PLL2 output clock divider, set by the  
RXCKOD0 and RXCKOD1 bits in control register 0x0E.  
RXCKR1  
RXCKR0  
Maximum Available RXCKO Rate  
0
0
1
1
0
1
0
1
Clock rate not determined.  
128fS  
256fS  
512fS  
Figure 42. Register 14: Receiver Status Register 2 (Read-Only)  
7 (MSB)  
CSCRC  
6
5
4
3
2
1
0 (LSB)  
RBTI  
PARITY  
VBIT  
BPERR  
QCHG  
UNLOCK  
QCRC  
Note: Status bits must be unmasked in control register 0x16 in order for the status interrupts to be generated.  
Table 22. Register 14: Receiver Status Register 2 (Read-Only) Field Descriptions  
CSCRC  
PARITY  
VBIT  
Channel Status CRC Status  
CSCRC  
CRC Status  
No error  
0
1
CRC error detected  
Parity Status  
PARITY  
Parity Status  
No error  
0
1
Parity error detected  
Validity Bit Status  
VBIT  
Validity Bit  
0
Valid audio data indicated  
Non-valid data indicated  
1
BPERR  
QCHG  
Biphase Encoding Error Status  
BPERR  
Biphase Encoding Status  
No error  
0
1
Biphase encoding error detected  
Q-Channel Sub-Code Data Change Status  
QCHG  
Q-Channel Data Status  
0
No change in Q-channel sub-code data.  
Q-channel data has changed. May be used to trigger a read of the Q-channel sub-code data,  
registers 0x1F through 0x28.  
1
UNLOCK  
QCRC  
RBTI  
DIR Unlock Error Status  
UNLOCK  
DIR Lock Status  
0
No error; the DIR AES3 decoder and PLL2 are locked.  
DIR lock error; the AES3 decoder and PLL2 are unlocked.  
1
Q-Channel Sub-Code CRC Status  
QCRC  
Q-Channel CRC Status  
No error  
0
1
Q-channel sub-code data CRC error detected.  
Receiver Buffer Transfer Interrupt Status  
RBTI  
DIR RA Buffer-to-UA Buffer Transfer Status  
Copyright © 2016–2017, Texas Instruments Incorporated  
37  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Table 22. Register 14: Receiver Status Register 2 (Read-Only) Field Descriptions (continued)  
0
1
Buffer transfer incomplete, or no Buffer transfer interrupt indicated  
Buffer transfer completed  
Figure 43. Register 15: Receiver Status Register 3 (Read-Only)  
7 (MSB)  
0
6
0
5
0
4
0
3
0
2
0
1
0
0 (LSB)  
OSLIP  
Note: Status bits must be unmasked in control register 0x17 in order for the status interrupts to be generated.  
Table 23. Register 15: Receiver Status Register 3 (Read-Only) Field Descriptions  
OSLIP  
Receiver Output Data Slip Error Status  
OSLIP  
Receiver OSLIP Error Status  
No error  
0
1
DIR output data Slip or Repeat error detected  
An OSLIP interrupt is possible when the DIR output is used as the source for either the Port A or Port B audio serial port and the port is configured to operate in  
slave mode. Figure 44 shows the timing associated with the OSLIP interrupt.  
When only one audio serial port (Port A or Port B) is sourced by the DIR output, then the OSLIP status bit and interrupt applies to that port. If both Port A and  
Port B are sourced by the DIR output, then the OSLIP status bit and interrupt applies to Port A only.  
AES3 Bit Stream  
Y
X
Y
X
DIR SYNC  
R
L
L
L
R
R
R
L
L
L
R
R
LRCK, Left- or Right-  
Justified Formats (input)  
LRCK, I2S Format (input)  
±5%  
±5%  
Data Slip or Repeat may occur when the LRCK edges indicated are within the ±5% window.  
Figure 44. DIR Output Slip and Repeat (OSLIP) Behavior  
38  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Figure 45. Register 16: Receiver Interrupt Mask Register 1  
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
MRBTI  
MCSCRC  
MPARITY  
MVBIT  
MBPERR  
MQCHG  
MUNLOCK  
MQCRC  
Table 24. Register 16: Receiver Interrupt Mask Register 1 Field Descriptions  
MCSCRC  
MPARITY  
MVBIT  
Channel Status CRC Error Interrupt Mask  
MCSCRC  
CRC Interrupt  
Masked (default)  
Enabled  
0
1
Parity Error Interrupt Mask  
MPARITY  
Parity Error Interrupt  
Masked (default)  
Enabled  
0
1
Validity Error Interrupt Mask  
MVBIT  
Validity Error Interrupt  
Masked (default)  
Enabled  
0
1
MBPERR  
MQCHG  
MUNLOCK  
MQCRC  
MRBTI  
Biphase Encoding Error Interrupt Mask  
MBPERR  
Biphase Error Interrupt  
Masked (default)  
Enabled  
0
1
Q-Channel Sub-Code Data Change Interrupt Mask  
MQCHG  
Q-Channel Data Change Interrupt  
0
Masked (default)  
Enabled  
1
DIR Unlock Error Interrupt Mask  
MUNLOCK  
DIR Unlock Interrupt  
Masked (default)  
Enabled  
0
1
Q-Channel Sub-Code CRC Error Interrupt Mask  
MQCRC  
Q-Channel CRC Error Interrupt  
0
Masked (default)  
Enabled  
1
Receiver Buffer Transfer Interrupt Mask  
MRBTI  
Receiver Buffer Transfer Interrupt  
Masked (default)  
0
1
Enabled  
Figure 46. Register 17: Receiver Interrupt Mask Register 2  
7 (MSB)  
0
6
0
5
0
4
0
3
0
2
0
1
0
0 (LSB)  
MOSLIP  
Table 25. Register 17: Receiver Interrupt Mask Register 2 Field Descriptions  
MOSLIP  
Receiver Output Data Slip Error Mask  
MOSLIP  
Receiver OSLIP Error Interrupt  
Masked (default)  
0
1
Enabled  
Copyright © 2016–2017, Texas Instruments Incorporated  
39  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Figure 47. Register 18: Receiver Interrupt Mode Register 1  
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
RBTIM0  
QCHGM1  
QCHGM0  
UNLOCKM1  
UNLOCKM0  
QCRCM1  
QCRCM0  
RBTIM1  
Table 26. Register 18: Receiver Interrupt Mode Register 1 Field Descriptions  
QCHGM[1:0]  
UNLOCKM[1:0]  
QCRCM[1:0]  
RBTIM[1:0]  
Q-Channel Sub-Code Data Change Interrupt Mode  
QCHGM1  
QCHGM0  
Interrupt Active State  
Rising edge active (default)  
Falling edge active  
Level active  
0
0
1
0
1
0
1
1
Reserved  
DIR Unlock Error Interrupt Mode  
UNLOCKM1  
UNLOCKM0  
Interrupt Active State  
Rising edge active (default)  
Falling edge active  
Level active  
0
0
1
1
0
1
0
1
Reserved  
Q-Channel Sub-Code CRC Error Interrupt Mode  
QCRCM1  
QCRCM0  
Interrupt Active State  
Rising edge active (default)  
Falling edge active  
Level active  
0
0
1
1
0
1
0
1
Reserved  
Receive Buffer Transfer Interrupt Mode  
RBTIM1  
RBTIM0  
Interrupt Active State  
Rising edge active (default)  
Falling edge active  
Level active  
0
0
1
1
0
1
0
1
Reserved  
40  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Figure 48. Register 19: Receiver Interrupt Mode Register 2  
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
CSCRCM1  
CSCRCM0  
PARITYM1  
PARITYM0  
VBITM1  
VBITM0  
BPERRM1  
BPERRM0  
Table 27. Register 19: Receiver Interrupt Mode Register 2 Field Descriptions  
CSCRCM[1:0]  
PARITYM[1:0]  
VBITM[1:0]  
Channel Status CRC Error Interrupt Mode  
CSCRCM1  
CSCRCM0  
Interrupt Active State  
Rising edge active (default)  
Falling edge active  
Level active  
0
0
1
0
1
0
1
1
Reserved  
Parity Error Interrupt Mode  
PARITYM1  
PARITYM0  
Interrupt Active State  
Rising edge active (default)  
Falling edge active  
Level active  
0
0
1
0
1
0
1
1
Reserved  
Validity Error Interrupt Mode  
VBITM1  
VBITM0  
Interrupt Active State  
Rising edge active (default)  
Falling edge active  
Level active  
0
0
1
1
0
1
0
1
Reserved  
BPERRM[1:0]  
Biphase Encoding Error Interrupt Mode  
BPERRM1  
BPERRM0  
Interrupt Active State  
Rising edge active (default)  
Falling edge active  
Level active  
0
0
1
1
0
1
0
1
Reserved  
Figure 49. Register 1A: Receiver Interrupt Mode Register 3  
7 (MSB)  
0
6
0
5
0
4
0
3
0
2
0
1
0 (LSB)  
OSLIPM1  
OSLIPM0  
Table 28. Register 1A: Receiver Interrupt Mode Register 3 Field Descriptions  
OSLIPM[1:0]  
Receiver Output Data Slip Error Interrupt Mode  
OSLIPM1  
OSLIPM0  
Interrupt Active State  
Rising edge active (default)  
Falling edge active  
Level active  
0
0
1
1
0
1
0
1
Reserved  
Copyright © 2016–2017, Texas Instruments Incorporated  
41  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Figure 50. Register 1B: General-Purpose Output 1 (GPO1) Control Register  
7 (MSB)  
0
6
0
5
0
4
0
3
2
1
0 (LSB)  
GPO10  
GPO13  
GPO12  
GPO11  
Table 29. Register 1B: General-Purpose Output 1 (GPO1) Control Register Field Descriptions  
GPO[13:10]  
General-Purpose Output 1 (GPO1) Configuration  
These bits are used to set the state or data source for the general-purpose digital output pin GPO1.  
GPO13  
GPO12  
GPO11  
GPO10  
GPO1 Function  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
GPO1 is forced low (default)  
GPO1 is forced high  
Reserved  
Transmitter interrupt, active low  
Receiver interrupt, active low  
Receiver 50/15-μs pre-emphasis, active low  
Receiver non-audio data, active high  
Receiver non-valid data, active high  
Receiver channel status bit  
Receiver user data bit  
Receiver block start clock  
Receiver COPY bit  
(0 = copyright asserted, 1 = copyright not asserted)  
1
1
0
1
1
0
1
0
Receiver L-bit  
(0 = first generation or higher, 1 = original)  
1
1
1
1
1
1
0
1
1
1
0
1
Receiver parity error, active high  
Receiver internal sync clock  
Transmitter internal sync clock  
Figure 51. Register 1C: General-Purpose Output 2 (GPO2) Control Register  
7 (MSB)  
0
6
0
5
0
4
0
3
2
1
0 (LSB)  
GPO20  
GPO23  
GPO22  
GPO21  
Table 30. Register 1C: General-Purpose Output 2 (GPO2) Control Register Field Descriptions  
GPO[23:20]  
General-Purpose Output 2 (GPO2) Configuration  
These bits are used to set the state or data source for the general-purpose digital output pin GPO2.  
GPO23  
GPO22  
GPO21  
GPO20  
GPO2 Function  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
GPO2 is forced low (default)  
GPO2 is forced high  
Reserved  
Transmitter interrupt, active low  
Receiver interrupt, active low  
Receiver 50/15-μs pre-emphasis, active low  
Receiver non-audio data, active high  
Receiver non-valid data, active high  
Receiver channel status bit  
Receiver user data bit  
Receiver block start clock  
Receiver COPY bit  
(0 = copyright asserted, 1 = copyright not asserted)  
1
1
0
1
1
0
1
0
Receiver L-bit  
(0 = first generation or higher, 1 = original)  
1
1
1
1
1
1
0
1
1
1
0
1
Receiver parity error, active high  
Receiver internal sync clock  
Transmitter internal sync clock  
42  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Figure 52. Register 1D: General-Purpose Output 3 (GPO3) Control Register  
7 (MSB)  
0
6
0
5
0
4
0
3
2
1
0 (LSB)  
GPO30  
GPO33  
GPO32  
GPO31  
Table 31. Register 1D: General-Purpose Output 3 (GPO3) Control Register Field Descriptions  
GPO[33:30]  
General-Purpose Output 3 (GPO3) Configuration  
These bits are used to set the state or data source for the general-purpose digital output pin GPO3.  
GPO33  
GPO32  
GPO31  
GPO30  
GPO3 Function  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
GPO3 is forced low (default)  
GPO3 is forced high  
Reserved  
Transmitter interrupt, active low  
Receiver interrupt, active low  
Receiver 50/15-μs pre-emphasis, active low  
Receiver non-audio data, active high  
Receiver non-valid data, active high  
Receiver channel status bit  
Receiver user data bit  
Receiver block start clock  
Receiver COPY bit  
(0 = copyright asserted, 1 = copyright not asserted)  
1
1
0
1
1
0
1
0
Receiver L-bit  
(0 = first generation or higher, 1 = original)  
1
1
1
1
1
1
0
1
1
1
0
1
Receiver parity error, active high  
Receiver internal sync clock  
Transmitter internal sync clock  
Figure 53. Register 1E: General-Purpose Output 4 (GPO4) Control Register  
7 (MSB)  
0
6
0
5
0
4
0
3
2
1
0 (LSB)  
GPO40  
GPO43  
GPO42  
GPO41  
Table 32. Register 1E: General-Purpose Output 4 (GPO4) Control Register Field Descriptions  
GPO[43:40]  
General-Purpose Output 4 (GPO4) Configuration  
These bits are used to set the state or data source for the general-purpose digital output pin GPO4.  
GPO43  
GPO42  
GPO41  
GPO40  
GPO4 Function  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
GPO4 is forced low (default)  
GPO4 is forced high  
Reserved  
Transmitter interrupt, active low  
Receiver interrupt, active low  
Receiver 50/15-μs pre-emphasis, active low  
Receiver non-audio data, active high  
Receiver non-valid data, active high  
Receiver channel status bit  
Receiver user data bit  
Receiver block start clock  
Receiver COPY bit  
(0 = copyright asserted, 1 = copyright not asserted)  
1
1
0
1
1
0
1
0
Receiver L-bit  
(0 = first generation or higher, 1 = original)  
1
1
1
1
1
1
0
1
1
1
0
1
Receiver parity error, active high  
Receiver internal sync clock  
Transmitter internal sync clock  
Copyright © 2016–2017, Texas Instruments Incorporated  
43  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
9.5.2.1 Registers 1F through 28: Q-Channel Sub-Code Data Registers  
Registers 0x1F through 0x28 comprise the Q-channel sub-code buffer, which may be accessed for audio CD  
playback. The Q-channel data provides information regarding the playback status for the current disc. The buffer  
data is decoded by the DIR block.  
Figure 54. Register 1F: Q-Channel Sub-Code Data Register 1 (Read-Only), Bits[7:0], Control and Address  
7 (MSB)  
Q0  
6
5
4
3
2
1
0 (LSB)  
Q7  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Figure 55. Register 20: Q-Channel Sub-Code Data Register 2 (Read-Only), Bits[15:8], Track  
7 (MSB)  
Q8  
6
5
4
3
2
1
0 (LSB)  
Q15  
Q9  
Q10  
Q11  
Q12  
Q13  
Q14  
Figure 56. Register 21: Q-Channel Sub-Code Data Register 3 (Read-Only), Bits[23:16], Index  
7 (MSB)  
Q16  
6
5
4
3
2
1
0 (LSB)  
Q23  
Q17  
Q18  
Q19  
Q20  
Q21  
Q22  
Figure 57. Register 22: Q-Channel Sub-Code Data Register 4 (Read-Only), Bits[31:24], Minutes  
7 (MSB)  
Q24  
6
5
4
3
2
1
0 (LSB)  
Q31  
Q25  
Q26  
Q27  
Q28  
Q29  
Q30  
Figure 58. Register 23: : Q-Channel Sub-Code Data Register 5 (Read-Only), Bits[39:32], Seconds  
7 (MSB)  
Q32  
6
5
4
3
2
1
0 (LSB)  
Q39  
Q33  
Q34  
Q35  
Q36  
Q37  
Q38  
Figure 59. Register 24: : Q-Channel Sub-Code Data Register 6 (Read-Only), Bits[47:40], Frame  
7 (MSB)  
Q40  
6
5
4
3
2
1
0 (LSB)  
Q47  
Q41  
Q42  
Q43  
Q44  
Q45  
Q46  
Figure 60. Register 25: Q-Channel Sub-Code Data Register 7 (Read-Only), Bits[55:48], Zero  
7 (MSB)  
Q48  
6
5
4
3
2
1
0 (LSB)  
Q55  
Q49  
Q50  
Q51  
Q52  
Q53  
Q54  
Figure 61. Register 26: Q-Channel Sub-Code Data Register 8 (Read-Only), Bits[63:56], AMIN  
7 (MSB)  
Q56  
6
5
4
3
2
1
0 (LSB)  
Q63  
Q57  
Q58  
Q59  
Q60  
Q61  
Q62  
Figure 62. Register 27: Q-Channel Sub-Code Data Register 9 (Read-Only), Bits[71:64], ASEC  
7 (MSB)  
Q64  
6
5
4
3
2
1
0 (LSB)  
Q71  
Q65  
Q66  
Q67  
Q68  
Q69  
Q70  
Figure 63. Register 28: Q-Channel Sub-Code Data Register 10 (Read-Only), Bits[79:72], AFRAME  
7 (MSB)  
Q72  
6
5
4
3
2
1
0 (LSB)  
Q79  
Q73  
Q74  
Q75  
Q76  
Q77  
Q78  
44  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
9.5.2.2 Registers 29 through 2C: IEC61937 PC/PD Burst Preamble  
The PC and PD burst preambles are part of the IEC61937 standard for transmission of data reduced, non-PCM  
audio over a standard two-channel interface (IEC60958). Examples of data-reduced formats include Dolby AC-3,  
DTS, various flavors of MPEG audio (including AAC), and Sony ATRAC. The PA and PB preambles provide  
synchronization data, and are fixed values of 0xF872 and 0x4E1F, respectively. The PC preamble indicates the  
type of data being carried by the interface and the PD preamble indicates the length of the burst, given as  
number of bits.  
Registers 0x29 through 0x2C contain the PC and PD preambles as decoded by the DIR block.  
Figure 64. Register 29: Burst Preamble PC High-Byte Status Register (Read-Only)  
7 (MSB)  
PC15  
6
5
4
3
2
1
0 (LSB)  
PC08  
PC14  
PC13  
PC12  
PC11  
PC10  
PC09  
Figure 65. Register 2A: Burst Preamble PC Low-Byte Status Register (Read-Only)  
7 (MSB)  
PC07  
6
5
4
3
2
1
0 (LSB)  
PC00  
PC06  
PC05  
PC04  
PC03  
PC02  
PC01  
Table 33. Register 2A: Burst Preamble PC Low-Byte Status Register (Read-Only) Field Descriptions  
PC[4:0], Hex  
Data Type  
00  
Null  
01  
Dolby AC-3  
02  
Reserved  
03  
Pause  
04  
MPEG-1 layer 1  
05  
MPEG-1 layer 2 or 3, or MPEG-2 without extension  
06  
MPEG-2 Data with extension  
MPEG-2 AAC ADTS  
MPEG-2 layer 1 low sample rate  
MPEG-2 layer 2 or 3 low sample rate  
Reserved  
07  
08  
09  
0A  
0B  
DTS type 1  
0C  
DTS type 2  
0D  
DTS type 3  
0E  
ATRAC  
0F  
10-1F  
ATRAC2/3  
Reserved  
Bits PC[6:5] are both set to 0.  
Bit PC[7] is an Error Flag, where: 0 = A valid burst-payload; 1 = Burst-payload may contain errors.  
Bits PC[12:8] are data-type dependent.  
Bits PC[15:13] indicate the stream number, which is set to 0.  
Figure 66. Register 2B: Burst Preamble PD High-Byte Status Register (Read-Only)  
7 (MSB)  
PD15  
6
5
4
3
2
1
0 (LSB)  
PD08  
PD14  
PD13  
PD12  
PD11  
PD10  
PD09  
Figure 67. Register 2C: Burst Preamble PD Low-Byte Status Register (Read-Only)  
7 (MSB)  
PD07  
6
5
4
3
2
1
0 (LSB)  
PD00  
PD06  
PD05  
PD04  
PD03  
PD02  
PD01  
Copyright © 2016–2017, Texas Instruments Incorporated  
45  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Figure 68. Register 7F: Page Selection Register  
7 (MSB)  
0
6
0
5
0
4
0
3
0
2
0
1
0 (LSB)  
PAGE0  
PAGE1  
Table 34. Register 7F: Page Selection Register Field Descriptions  
PAGE[1:0]  
Page Selection  
These bits are used to select one of three register pages for write and/or read access through the SPI or I2C serial host interface. The  
Page Selection Register is present on every register page at address 0x7F, allowing movement between pages as necessary.  
PAGE1  
PAGE0  
Register/Buffer Page Selection  
0
0
1
1
0
1
0
1
Page 0, control and status registers (default)  
Page 1, DIR channel status and user data buffers  
Page 2, DIT channel status and user data buffers  
Page 3, reserved  
9.5.3 Channel Status and User Data Buffer Maps  
Table 35 through Table 38 show the buffer maps for the DIR and DIT channel status and user data buffers.  
For Table 35, the channel status byte definitions are dependent on the transmission mode, either Professional or  
Consumer. Bit 0 of Byte 0 defines the transmission mode, 0 for Consumer mode, and 1 for Professional mode.  
This is applicable for Table 35 and Table 36.  
For Table 37, the channel status byte definitions are dependent on the transmission mode, either Professional or  
Consumer. Bit 0 of Byte 0 defines the transmission mode, 0 for Consumer mode, and 1 for Professional mode. In  
Professional mode, Byte 23 for each channel is reserved for CRC data, which is automatically calculated and  
encoded by the DIT. There is no requirement to program Byte 23 for either channel in Professional mode.  
46  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Table 35. DIR Channel Status Data Buffer Map (Register Page 1)  
ADDRESS  
(Hex)  
CHANNEL  
BYTE  
BIT 0 (MSB)  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
0
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
0
0
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
2
1
3
1
4
2
5
2
6
3
7
3
8
4
9
4
A
5
B
5
C
6
D
6
E
7
F
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
8
8
9
9
10  
10  
11  
11  
12  
12  
13  
13  
14  
14  
15  
15  
16  
16  
17  
17  
18  
18  
19  
19  
20  
20  
21  
21  
22  
22  
23  
23  
Copyright © 2016–2017, Texas Instruments Incorporated  
47  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Table 36. DIR User Data Buffer Map (Register Page 1)  
ADDRESS  
(Hex)  
CHANNEL  
BYTE  
0
BIT 0 (MSB)  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
BIT 1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
BIT 2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
BIT 3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
BIT 4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
BIT 5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
BIT 6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
BIT 7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
10  
11  
11  
12  
12  
13  
13  
14  
14  
15  
15  
16  
16  
17  
17  
18  
18  
19  
19  
20  
20  
21  
21  
22  
22  
23  
23  
48  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Table 37. DIT Channel Status Data Buffer Map (Register Page 2)  
ADDRESS  
(Hex)  
CHANNEL  
BYTE  
0
BIT 0 (MSB)  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
BIT 1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
BIT 2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
BIT 3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
BIT 4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
BIT 5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
BIT 6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
BIT 7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
0
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
0
2
1
3
1
4
2
5
2
6
3
7
3
8
4
9
4
A
5
B
5
C
6
D
6
E
7
F
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
8
8
9
9
10  
10  
11  
11  
12  
12  
13  
13  
14  
14  
15  
15  
16  
16  
17  
17  
18  
18  
19  
19  
20  
20  
21  
21  
22  
22  
23  
23  
Copyright © 2016–2017, Texas Instruments Incorporated  
49  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Table 38. DIT User Data Buffer Map (Register Page 2)  
ADDRESS  
(Hex)  
CHANNEL  
BYTE  
0
BIT 0 (MSB)  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
BIT 1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
BIT 2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
BIT 3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
BIT 4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
BIT 5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
BIT 6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
BIT 7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
10  
11  
11  
12  
12  
13  
13  
14  
14  
15  
15  
16  
16  
17  
17  
18  
18  
19  
19  
20  
20  
21  
21  
22  
22  
23  
23  
50  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
Typical application diagrams and power-supply connections are presented in this section to aid the customer in  
hardware designs employing the DIX4192-Q1 device.  
Figure 69 shows typical application connections for the DIX4192-Q1 using an SPI host interface. The SPI host  
will typically be a microcontroller, digital signal processor, or programmable logic device. In addition to providing  
the SPI bus master, the host may be used to process interrupt and flag outputs from the DIX4192-Q1. The audio  
serial ports are connected to external digital audio devices, which may include data converters, digital signal  
processors, digital audio interface receivers or transmitters, or other logic devices. The DIR inputs and DIT  
outputs are connected to line, optical, or logic interfaces (see Receiver Input Interfacing and Transmitter Output  
Interfacing). Master and DIR reference clock sources are also shown.  
Figure 70 shows typical application connections for the DIX4192-Q1 using an I2C bus interface. The I2C bus  
master will typically be a microcontroller, digital signal processor, or programmable logic device. In addition to  
providing the I2C bus master, the host may be used to process interrupt and flag outputs from the DIX4192-Q1.  
Pullup resistors are connected from SCL (pin 20) and SDA (pin 22) to the VIO supply rail. These resistors are  
required for the open drain outputs of the I2C interface. All other connections to the DIX4192-Q1 are the same as  
the SPI host case discussed previously.  
Figure 71 shows the recommended power-supply connections and bypassing for the DIX4192-Q1. In this case, it  
is assumed that the VIO, VDD33, and VCC supplies are powered from the same 3.3-V power source. The  
VDD18 core supply is powered from a separate supply, or derived from the 3.3-V supply using a linear voltage  
regulator, as shown with the optional regulator circuitry of Figure 71.  
The 0.1-μF bypass capacitors are surface-mount X7R ceramic, and must be located as close to the device as  
possible. These capacitors must be connected directly between the supply and corresponding ground pins of the  
DIX4192-Q1. The ground pin is then connected directly to the ground plane of the printed circuit board (PCB).  
The larger value capacitors, shown connected in parallel to the 0.1-μF capacitors, are recommended. At a  
minimum, there must at least be footprints on the PCB for installation of these larger capacitors, so that  
experiments can be run with and without the capacitors installed, in order to determine the effect on the  
measured performance of the DIX4192-Q1. The larger value capacitors can be surface-mount X7R multilayer  
ceramic or tantalum chip.  
The substrate ground, BGND (pin 44), must be connected by a PCB trace to AGND (pin 10). The AGND pin is  
then connected directly to the ground plane. This connection helps to reduce noise in the DIR section of the  
device, aiding the overall jitter and noise tolerance for the receiver.  
A series resistor is shown between the 3.3-V supply and VCC (pin 9) connection. This resistor combines with the  
bypass capacitors to create a simple RC filter to remove higher frequency components from the VCC supply. The  
series resistor must be a metal film type for best filtering characteristics. As a substitute for the resistor, a ferrite  
bead can be used, although it may have to be physically large in order to contribute to the filtering.  
Copyright © 2016–2017, Texas Instruments Incorporated  
51  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Application Information (continued)  
TI Device  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
BCKA  
LRCKA  
SDINA  
SDOUTA  
NC  
VIO  
DGND3  
BGND  
SDOUTB  
SDINB  
LRCKB  
BCKB  
SYNC  
BLS  
AESOUT  
VDD33  
TX+  
Audio  
I/O  
Device  
To Host or External Logic  
To Digital Outputs  
(Line, Optical, Logic)  
TX-  
DGND2  
GPO4  
GPO3  
GPO2  
GPO1  
MCLK  
Audio  
I/O  
Device  
To Host or External Logic  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
RX1+  
RX1-  
RX2+  
RX2-  
RX3+  
RX3-  
RX4+  
RX4-  
VCC  
RST  
INT  
SDA  
A1  
SCL  
From Digital Inputs  
(Line, Optical, Logic)  
SPI  
Host  
A0  
CPM  
VDD18  
DGND1  
NC  
NC  
RXCKI  
Controller  
10  
11  
12  
AGND  
LOCK  
RXCKO  
DIR Recovered Clock  
Master  
Clock  
10 kW  
VIO  
DIR  
Ref Clock  
Copyright © 2017, Texas Instruments Incorporated  
Figure 69. Typical Application Diagram Using SPI Host Interface  
(See Figure 71 for Power-Supply Connections)  
TI Device  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
BCKA  
SYNC  
BLS  
AESOUT  
VDD33  
TX+  
Audio  
I/O  
Device  
To Host or External Logic  
LRCKA  
SDINA  
SDOUTA  
NC  
To Digital Outputs  
(Line, Optical, Logic)  
VIO  
TX-  
DGND3  
BGND  
SDOUTB  
SDINB  
LRCKB  
BCKB  
DGND2  
GPO4  
GPO3  
GPO2  
GPO1  
MCLK  
Audio  
I/O  
Device  
To Host or External Logic  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
RX1+  
RX1-  
RX2+  
RX2-  
RX3+  
RX3-  
RX4+  
RX4-  
VCC  
RST  
INT  
SDA  
A1  
SCL  
From Digital Inputs  
(Line, Optical, Logic)  
I2C  
Host  
A0  
CPM  
VDD18  
DGND1  
NC  
NC  
RXCKI  
Controller  
Tie  
LO or HI  
10  
11  
12  
AGND  
LOCK  
RXCKO  
DIR Recovered Clock  
Master  
Clock  
10 kΩ  
2.7 kΩ  
VIO  
DIR  
Ref Clock  
Copyright © 2017, Texas Instruments Incorporated  
Figure 70. Typical Application Diagram Using I2C Host Interface  
(See Figure 71 for Power-Supply Connections)  
52  
Copyright © 2016–2017, Texas Instruments Incorporated  
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Application Information (continued)  
3.3 V  
10 µF  
+
R may be set from 2 Ω to 10 Ω,  
or replaced by a ferrite bead.  
44  
0.1 µF  
R
43  
42  
TI Device  
9
33  
30  
+
+
0.1 µF  
10 µF  
10 µF  
0.1 µF  
10  
Connect pin 44 to pin 10.  
Pin 10 is then connected to  
the ground plane.  
3.3 V  
TPS79318DBVR  
16  
17  
0.1 µF  
1
3
5
4
C may be set to 10 µF,  
or not installed when using  
the optional regulator circuit.  
IN  
EN  
OUT  
NR  
GND  
2
C
+
0.01 µF  
0.1 µF  
2.2 µF  
1.8 V  
Copyright © 2017, Texas Instruments Incorporated  
Optional Regulator Circuit  
Figure 71. Recommended Power-Supply Connections  
10.1.1 Digital Audio Transformer Vendors  
Transformers are shown in this data sheet for both receiver and transmitter balanced and unbalanced line  
interface implementations. For the Texas Instruments Pro Audio evaluation modules, transformers from Scientific  
Conversion are used. In addition to Scientific Conversion, there are other vendors that offer transformer products  
for digital audio interface applications. Please refer to the following manufacturer websites for details regarding  
their products and services. Other transformer vendors may also be available by searching catalog and/or  
Internet resources.  
Scientific Conversion: http://scientificonversion.com  
Schott Corporation: http://schottcorp.com  
Pulse Engineering: http://pulseeng.com  
10.1.2 Receiver Input Interfacing  
This section details the recommended interfaces for the DIX4192-Q1 line receiver inputs. Balanced and  
unbalanced line interfaces, in addition to optical receiver and external logic interfacing, are discussed.  
For professional digital audio interfaces, 110-balanced line interfaces are either required or preferred.  
Transformer coupling is commonly employed to provide isolation and to improve common-mode noise rejection.  
Figure 72 shows the recommended transformer-coupled balanced line receiver interface for the DIX4192-Q1.  
The transformer is specified for a 1:1 turn ratio, and must exhibit low inter-winding capacitance for best  
performance. Due to the DC bias on the line receiver inputs, 0.1-μF capacitors are used for AC-coupling the  
transformer to the line receiver inputs. On the line side of the transformer, an optional 0.1-μF capacitor is shown  
for cases where a DC bias may be applied at the transmitter side of the connection. The coupling capacitors  
must be surface-mount ceramic chip type with an X7R or C0G dielectric.  
Copyright © 2016–2017, Texas Instruments Incorporated  
53  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Application Information (continued)  
C(1)  
0.1mF  
1:1  
To RX+  
3
2
Digital Input  
110W Balanced  
1
110W  
To RX-  
XLR  
0.1mF  
(1) Insert a 0.1mF capacitor when blocking common-mode DC voltage.  
Figure 72. Transformer-Coupled Balanced Input Interface  
Unbalanced 75-coaxial cable interfaces are commonly employed in consumer and broadcast audio  
applications. Designs with and without transformer line coupling may be used. Figure 73(a) shows the  
recommended 75-transformer-coupled line interface, which shares many similarities to the balanced design  
shown in Figure 72. Once again, the transformer provides isolation and improved noise rejection. Figure 73(b)  
shows the transformer-free interface, which is commonly used for S/PDIF consumer connections.  
C(1)  
0.1mF  
1:1  
To RX+  
Digital Input  
75W Unbalanced  
(RCA or BNC Connector)  
75W  
To RX-  
0.1mF  
(a) Transformer-Coupled Unbalanced Line Interface  
0.1mF  
To RX+  
Digital Input  
75W Unbalanced  
(RCA or BNC Connector)  
75W  
To RX-  
0.1mF  
(b) Unbalanced Line Interface Without Transformer  
(1) Insert a 0.1mF capacitor when blocking common-mode DC components.  
Figure 73. Unbalanced Line Input Interfaces  
Optical interfaces using all-plastic fiber are commonly employed for consumer audio equipment where  
interconnections are less than 10 m in length. Optical receiver modules used for a digital audio interface operate  
from either a single 3.3-V or 5-V supply and have a TTL–, CMOS-, or low-voltage CMOS-compatible logic output.  
Interfacing to 3.3-V optical receivers is straightforward when the optical receiver supply is powered from the  
DIX4192-Q1 VDD33 power source, as shown in Figure 74. For the 5-V optical receivers, the output high logic  
level may exceed the DIX4192-Q1 line receiver absolute maximum input voltage. A level translator is required,  
placed between the optical receiver output and the DIX4192-Q1 line receiver input. Figure 75 shows the  
recommended input circuit when interfacing a 5-V optical receiver to the DIX4192-Q1 line receiver inputs. The  
Texas Instruments SN74LVC1G125 single buffer IC is operated from the same 3.3-V supply used for DIX4192-  
Q1 VDD33 supply. This buffer includes a 5-V tolerant digital input, and provides the logic level translation  
required for the interface.  
VDD33  
All-Plastic  
(5 or 10 meters maximum)  
Optical  
Receiver(1)  
To RX+  
To RX-  
0.1mF  
(1) Toshiba TORX141 or equivalent.  
Figure 74. Interfacing to a 3.3-V Optical Receiver Module  
54  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Application Information (continued)  
SN74LVC1G125  
or Equivalent  
+5V  
VDD33  
5
2
4
All-Plastic  
(5 or 10 meters maximum)  
Optical  
Receiver(1)  
To RX+  
To RX-  
1
3
0.1mF  
(1) Toshiba TORX173, TORX176, TORX179, or equivalent.  
Figure 75. Interfacing to a 5-V Optical Receiver Module  
The DIX4192-Q1 line receivers may also be driven directly from external logic or line receiver devices with TTL  
or CMOS outputs. If the logic driving the line receiver is operated from 3.3 V, then logic level translation will not  
be required. However, if the external logic is operated from a power-supply voltage that exceeds the maximum  
VDD33 supply voltage of the DIX4192-Q1, or operates from a supply voltage lower than 3.3 V, then level  
translation is required. Figure 76 shows the recommended logic level translation methods, using buffers and level  
translators available from Texas Instruments.  
SN74LVC1G125  
or Equivalent  
VDD33  
5
2
4
From +5V Logic  
(TTL or CMOS)  
To RX+  
To RX-  
1
3
0.1mF  
SN74AVC1T45  
or Equivalent  
+1.8V or +2.5V  
VDD33  
1
5
6
3
4
From +1.8V or +2.5V  
CMOS Logic  
To RX+  
To RX-  
2
0.1mF  
Figure 76. CMOS and TTL Input Logic Interface  
10.1.3 Transmitter Output Interfacing  
This section details the recommended interfaces for the DIX4192-Q1 transmitter line driver and CMOS-buffered  
outputs. Balanced and unbalanced line interfaces, in addition to optical transmitter and external logic interfacing,  
will be discussed.  
For professional digital audio interfaces, 110-balanced line interfaces are either required or preferred.  
Transformer coupling is commonly employed to provide isolation and to improve common-mode noise  
performance. Figure 77 shows the recommended transformer-coupled balanced line driver interface for the  
DIX4192-Q1. The transformer is specified for a 1:1 turn ratio, and must exhibit low inter-winding capacitance for  
best performance. To eliminate residual DC bias, a 0.1-μF capacitor is used for AC-coupling the transformer to  
the line driver outputs. The coupling capacitor must be a surface-mount ceramic chip type with an X7R or C0G  
dielectric.  
Copyright © 2016–2017, Texas Instruments Incorporated  
55  
 
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
Application Information (continued)  
1:1  
110W  
TX+  
3
2
Digital Output  
110W Balanced  
1
TX-  
XLR  
0.1mF  
Figure 77. Transformer-Coupled Balanced Output Interface  
Unbalanced 75-coaxial cable interfaces are commonly employed in consumer and broadcast audio  
applications. Designs with and without transformer line coupling may be used. Figure 78(a) shows the  
recommended 75-transformer-coupled line driver interface, which shares many similarities to the balanced  
design shown in Figure 77. Figure 78(b) shows the transformer-free line driver interface, which is commonly used  
for S/PDIF consumer connections.  
1:1  
0.1mF  
R1  
TX+  
Digital Output  
75W Unbalanced  
(RCA or BNC connector)  
R2  
(a) Transformer-Coupled Unbalanced Output  
0.1mF  
R1  
TX+  
Digital Output  
75W Unbalanced  
(RCA or BNC connector)  
R2  
(b) Unbalanced Output Without Transformer  
R1 and R2 are selected to achieve the desired output voltage level while maintaining the required 75W transmitter output impedance.  
The TX+ output impedance is negligible.  
Figure 78. Unbalanced Line Output Interfaces  
Optical interfaces using all-plastic fiber are commonly employed for consumer audio equipment where  
interconnections are less than 10 m in length. Most optical transmitter modules used for a digital audio interface  
operate from a single 3.3-V or 5-V supply and have a TTL-compatible logic input. The CMOS-buffered transmitter  
output of the DIX4192-Q1, AESOUT (pin 34), is capable of driving the optical transmitter with VIO supply  
voltages down to 3 V. If the VIO supply voltage is less than 3 V, then level translation logic is required to drive  
the optical transmitter input. A good choice for this application is the Texas Instruments SN74AVC1T45 single  
bus transceiver. This device features two power-supply rails, one for the input side and one for the output side.  
For this application, the input side supply is powered from the VIO supply, while the output side is powered from  
a 3.3-V supply. This configuration will boost the logic high level to a voltage suitable for driving the TTL-  
compatible input configuration. Figure 79 shows the recommended optical transmitter interface circuits.  
56  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
Application Information (continued)  
Optical  
All-Plastic Fiber  
(5 or 10 meters maximum)  
Transmitter(1)  
AESOUT  
VIO  
+3.3V  
6
1
5
If VIO < +3.0V.  
3
4
2
SN74AVC1T45  
or Equivalent  
(1) Toshiba TOTX141, TOTX173, TOTX176, TOTX179, or equivalent.  
Figure 79. Interfacing to an Optical Transmitter Module  
The AESOUT output may also be used to drive external logic or line driver devices directly. Figure 80 shows the  
recommended logic interface techniques, including connections with and without level translation. Figure 81  
shows an external line driver interface using the Texas Instruments SN75ALS191 dual differential line driver. If  
the VIO supply of the DIX4192-Q1 is set from 3 V to 3.3 V, no logic level translation will be required between the  
AESOUT output and the line driver input. If the VIO supply voltage is below this range, then the optional logic  
level translation logic of Figure 81 will be required. The SN75ALS191 dual line driver is especially useful in  
applications where simultaneous 75-and 110-line interfaces are required.  
Direct to external logic  
operating from the VIO supply.  
+5V  
AESOUT  
5
2
4
To +5V Logic  
(VIO supply = +3.0V to +3.3V)  
3
1
SN74AHCT1G125  
or Equivalent  
Figure 80. CMOS or TTL Output Logic Interface  
+5V  
SN75ALS191  
1
8
2
3
To Balanced or Unbalanced  
Line Interface  
AESOUT  
7
VIO  
1
+3.3V  
6
6
5
5
If VIO < +3.0V.  
To Balanced or Unbalanced  
Line Interface  
3
4
2
SN74AVC1T45  
or Equivalent  
1
Figure 81. External Line Driver Interface  
Copyright © 2016–2017, Texas Instruments Incorporated  
57  
 
 
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
10.2 Typical Application  
PCM x1  
x4  
x1  
IN  
S/PDIF  
DSP  
GPO/INT  
I2C  
DIX4192-Q1  
OUT  
S/PDIF  
PCM x1  
PCM5242  
TPA6120A2  
Copyright © 2017, Texas Instruments Incorporated  
Figure 82. DIX4192-Q1 Typical Application  
10.2.1 Design Requirements  
For this design example, use the parameters listed in Table 39.  
Table 39. Design Parameters  
DESIGN PARAMETER  
Audio input  
EXAMPLE VALUE  
PCM x2, differential S and PDIF x4  
PCM x2, S and PDIF x4  
Host 12C  
Audio output  
Control  
RXCKI or MCLK  
24.576 MHz  
10.2.2 Detailed Design Procedure  
10.2.2.1 Differential Line Inputs and Output  
The DIX4192-Q1 has a total of 4 differential Line inputs and one Differential Line output. The 4 inputs are MUXed  
to one port for decoding and the audio data is sent to the internal bus of the device. The differential line output  
can choose from either the AES3 encoder or directly from one of the RX inputs. The AES3 encoder can encode  
either of the serial ports or the DIR itself. User data and channel status data can be updated in registers.  
10.2.2.2 Serial Ports  
The DIX4192-Q1 has two serial ports which each support both input and output of PCM data. This allows a  
device to receive data from one of the serial ports and then return audio to the DIX4192-Q1 to be routed to  
another output of the DIX4192-Q1. For example in this application the DSP can receive audio from the DIX4192-  
Q1 that was input to the DIX4192-Q1 over S/PDIF, then after processing the DSP can send audio back the  
DIX4192-Q1 over the same serial port. This processed audio can then be sent back out the S/PDIF transmit port  
of the DIX4192-Q1 or to the PCM5242 DAC on the other serial port.  
58  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
10.2.3 Application Curves  
2
0
-10  
-20  
5
2
Input Jitter Amplitude  
-30  
-2  
1
-40  
Output Jitter Amplitude  
-4  
500m  
200m  
100m  
50m  
20m  
10m  
5m  
-50  
-60  
-6  
-70  
-8  
-80  
-10  
-12  
-14  
-16  
-18  
-20  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
THD+N  
2m  
1m  
100  
101  
102  
103  
104  
105  
106  
20  
100  
1k  
10k  
100k  
Jitter Frequency (Hz)  
Sinusoidal Jitter Frequency (Hz)  
Figure 83. DIR Jitter Attenuation Characteristics  
Figure 84. DIR Jitter Tolerance Plot  
11 Power Supply Recommendations  
The DIX4192-Q1 requires a 1.8-V and 3.3-V nominal supply rails. At least one 3.3-V supply is required for VCC,  
VDD33. VIO can operate at 1.8 V or at 3.3 V. VDD18 requires a 1.8-V nominal supply rail. The decoupling  
capacitors for the power supplies must be placed close to the device terminals.  
Copyright © 2016–2017, Texas Instruments Incorporated  
59  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
TI recommends to use one ground plane for the DIX4192-Q1. While using one ground plane, it is best to ensure  
that analog and digital circuitry be sufficiently partitioned on the PCB so that analog and digital return currents do  
not cross.  
Decoupling capacitors must be placed as close to power pins as possible (VCC, VDD33, VDD18, VIO).  
Further guidelines can be found in Layout Example.  
12.2 Layout Example  
It is recommended to place a top layer ground pour for shielding around PCM9211 and  
connect to lower main PCB ground plane by multiple vias  
Series resistors between  
50 and 100 Ω  
on PCM ports can reduce  
reflections if necessary  
Port A PCM  
Port B PCM  
Input and Output  
Input and Output  
VIO  
10 µF  
0.1 F  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
3
4
5
6
7
8
9
36  
35  
34  
33  
RX1+  
SYNC  
BLS  
RX1œ  
RX2+  
AESOUT  
VDD33  
RX2œ  
3.3 V  
10 F  
Differential  
Line Inputs  
0.1 F  
32  
RX3+  
TX+  
RX3œ  
31  
30  
29  
28  
27  
26  
25  
TXœ  
DIX4192-Q1  
RX4+  
RX4œ  
VCC  
DGND2  
GPO4  
3.3 V  
GPO to  
Host  
GPO3  
GPO2  
0.1 F  
10 F  
10 AGND  
11 LOCK  
GPO1  
MCLK  
RXCKO  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
INT pin must be pulled up to VIO  
through 10-kΩ resistor  
0.1 F  
10 F  
10 kΩ  
VIO  
Control Interface  
1.8 V  
Copyright © 2017, Texas Instruments Incorporated  
Pad to top layer ground pour  
Top Layer Ground Pour and PowerPad  
Top Layer Signal Traces  
Figure 85. DIX4192-Q1 Board Layout  
60  
版权 © 2016–2017, Texas Instruments Incorporated  
 
DIX4192-Q1  
www.ti.com.cn  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
13 器件和文档支持  
13.1 器件支持  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.1.2 开发支持  
相关开发支持请参阅以下文档:  
AES 网站:http://www.aes.org  
IEC 网站:http://www.iec.ch  
ANSI 网站:http://www.ansi.org  
日本电子与信息技术工业协会 (JEITA) 网站:http://www.jeita.or.jp/english  
飞利浦网站:http://www.philips.com  
Scientificonversion 网站:http://www.scientificonversion.com  
Schott Magnetics 网站:http://www.schottcorp.com/  
Pulse Electronics 网站:http://www.pulseelectronics.com/  
13.2 文档支持  
13.2.1 相关文档  
相关文档如下:  
DIT4096 96kHz 数字音频发送器 (SBOS225)  
DIT4192 192kHz 数字音频发送器 (SBOS229)  
SRC4184 4 通道异步采样率转换器 (SBFS026)  
SRC419x 192kHz 立体声异步采样率转换器 (SBFS022)  
具有三态输出的 SN74LVC1G125 单路总线缓冲器闸 (SCES223)  
具有可配置电压转换和三态输出的 SN74AVC1T45 单比特双电源总线收发器 (SCES530)  
SN75ALS191 双路差动线路驱动器 (SLLS032)  
13.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
13.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
版权 © 2016–2017, Texas Instruments Incorporated  
61  
DIX4192-Q1  
ZHCSFA7A JULY 2016REVISED APRIL 2017  
www.ti.com.cn  
13.5 商标  
E2E is a trademark of Texas Instruments.  
Dolby is a registered trademark of Dolby Laboratories, Inc.  
SPI is a trademark of Motorola.  
I2S is a trademark of NXP Semiconductors.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
62  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DIX4192IPFBRQ1  
DIX4192TPFBRQ1  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
PFB  
PFB  
48  
48  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
DIX4192I  
DIX4192T  
NIPDAU  
-40 to 105  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DIX4192IPFBRQ1  
DIX4192TPFBRQ1  
TQFP  
TQFP  
PFB  
PFB  
48  
48  
1000  
1000  
330.0  
330.0  
16.4  
16.4  
9.6  
9.6  
9.6  
9.6  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DIX4192IPFBRQ1  
DIX4192TPFBRQ1  
TQFP  
TQFP  
PFB  
PFB  
48  
48  
1000  
1000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
MECHANICAL DATA  
MTQF019A – JANUARY 1995 – REVISED JANUARY 1998  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DIX9211

216-kHz Digital Audio Interface Transceiver (DIX)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

DIX9211PT

216-kHz Digital Audio Interface Transceiver (DIX)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

DIX9211PTR

216-kHz Digital Audio Interface Transceiver (DIX)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

DJ-003-S.5-2

Circular DIN Connector, 3 Contact(s), Female, Board Mount, Solder Terminal, Locking, Receptacle

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADAM-TECH

DJ-005

CIRCULAR DIN JACKS RIGHT ANGLE PCB MOUNT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADAM-TECH

DJ-005-.5

CIRCULAR DIN JACKS RIGHT ANGLE PCB MOUNT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADAM-TECH

DJ-005-S

CIRCULAR DIN JACKS RIGHT ANGLE PCB MOUNT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADAM-TECH

DJ-005-S-PG

Circular DIN Connector, 5 Contact(s), Female, Board Mount, Solder Terminal, Locking, Receptacle

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADAM-TECH

DJ-005-S.5

CIRCULAR DIN JACKS RIGHT ANGLE PCB MOUNT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADAM-TECH

DJ-005-S5

CIRCULAR DIN JACKS RIGHT ANGLE PCB MOUNT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADAM-TECH

DJ-006-.5

Circular DIN Connector, 6 Contact(s), Female, Board Mount, Solder Terminal, Jack

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADAM-TECH

DJ-007-.5-3H

Circular DIN Connector, 7 Contact(s), Board Mount, Solder Terminal, Locking, Jack

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADAM-TECH