DLP3030AFYJQ1 [TI]

DLP® 汽车类 0.3 英寸数字微镜器件 (DMD) | FYJ | 149 | -40 to 105;
DLP3030AFYJQ1
型号: DLP3030AFYJQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® 汽车类 0.3 英寸数字微镜器件 (DMD) | FYJ | 149 | -40 to 105

文件: 总37页 (文件大小:870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
适用于汽车内部显示的 DLP3030-Q1 0.3 英寸 WVGA DMD  
1 特性  
3 说明  
1
通过汽车认证  
0.3 英寸对角线微镜阵列  
DLP3030-Q1 汽车 DMD 主要针对具有很大视野或增  
强现实功能(需要长焦距)的汽车抬头 显示 (HUD) 应  
用 。该芯片组能够与 LED 或激光器配合使用,以生成  
具有 125% 以上 NTSC 色域的深度饱和颜色并支持 24  
RGB 视频输入。此外,该芯片组可以凭借宽动态范  
围和快速开关功能(不随温度的变化而变化)实现高亮  
度(15,000cd/m2 典型值)HUD 系统。当用于 TI 参考  
设计中时,能够实现超过 5000:1 的极高动态范围,以  
满足汽车 HUD 系统针对明亮的白昼和黑暗的夜晚驾驶  
条件的工作范围要求。  
7.6µm 微镜间距  
±12° 微镜倾斜角(相对于平面)  
采用侧面照明以提高效率  
WVGA (864 × 480) 分辨率  
偏振无关型空间光调制器  
LED 或激光光源兼容  
可通过偏光眼镜看到图像  
低功耗:105mW(典型值)  
工作温度范围:-40°C 105°C  
具有 2.5°C/W 热效率的密封封装  
可实现系统内验证的 JTAG 边界扫描  
DLPC120-Q1 汽车 DMD 控制器兼容  
78MHz DDR DMD 接口  
器件信息(1)  
封装  
器件型号  
封装尺寸(标称值)  
DLP3030-Q1  
FYJ (149)  
22.30mm × 32.20mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
宽视场和增强现实平视显示 (HUD)  
高分辨率前照灯  
车内投影显示和照明  
DLP®DLP3030-Q1 系统框图  
Color & Dimming control  
Flash  
SPI  
I2C  
TMS320  
F28023  
Color  
Controller  
& Driver  
Host  
SPI  
DLPC120-Q1  
LEDs  
Illumination  
Control  
& Feedback  
Video  
Processing &  
DMD  
real-time  
optical  
feedback  
loop  
24-bit RGB  
& Syncs  
Formatting  
photo diode  
LED Enable  
Timing Control  
Data & Control  
DLP3030-Q1  
Reset  
.3" WLP(H) s450  
DVSP DMD  
Power Good  
I2C  
TMP411  
-Q1  
Data &  
Address  
DMD Power  
DDR-2 DRAM  
frame buffer  
TPS65100  
-Q1  
Power Enable  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: DLPS076  
 
 
 
 
 
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
目录  
7.4 Optical Performance ............................................... 27  
7.5 DMD Image Quality Specification ........................... 28  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ...................................... 7  
6.2 Storage Conditions.................................................... 7  
6.3 ESD Ratings.............................................................. 7  
6.4 Recommended Operating Conditions....................... 8  
6.5 Thermal Information................................................ 10  
6.6 Electrical Characteristics......................................... 10  
6.7 Timing Requirements.............................................. 12  
6.8 Switching Characteristics........................................ 16  
6.9 System Mounting Interface Loads .......................... 16  
6.10 Physical Characteristics of the Micromirror Array. 17  
6.11 Optical Characteristics of the Micromirror Array... 18  
6.12 Window Characteristics......................................... 19  
6.13 Chipset Component Usage Specification ............. 19  
Detailed Description ............................................ 20  
7.1 Overview ................................................................. 20  
7.2 Functional Block Diagram ....................................... 20  
7.3 Feature Description................................................. 20  
7.6 Definition of Micromirror Landed-On/Landed-Off Duty  
Cycle ........................................................................ 28  
8
9
Application and Implementation ........................ 29  
8.1 Application Information............................................ 29  
8.2 Typical Application .................................................. 29  
8.3 Application Mission Profile Consideration............... 30  
Power Supply Recommendations...................... 31  
9.1 Power Supply Sequencing Requirements .............. 31  
10 Layout................................................................... 33  
10.1 Layout Guidelines ................................................. 33  
10.2 Temperature Diode Pins....................................... 33  
10.3 Layout Example .................................................... 33  
11 器件和文档支持 ..................................................... 34  
11.1 器件支持................................................................ 34  
11.2 文档支持................................................................ 35  
11.3 接收文档更新通知 ................................................. 35  
11.4 社区资源................................................................ 35  
11.5 ....................................................................... 35  
11.6 静电放电警告......................................................... 35  
11.7 器件处理................................................................ 35  
11.8 Glossary................................................................ 35  
12 机械、封装和可订购信息....................................... 35  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (March 2018) to Revision B  
Page  
Added illumination overfill maximum allowable heat load specifications, table notes, and figure in Recommended  
Operating Conditions.............................................................................................................................................................. 9  
Added calculation for array width and height with respect to number of active columns and rows in the Physical  
Characteristics of the Micromirror Array table ...................................................................................................................... 17  
Deleted axis-of-rotation specification from Optical Characteristics of the Micromirror Array table, as it was deemed  
unnecessary for customer designs....................................................................................................................................... 18  
Deleted illumination overfill row and corresponding table note in the Window Characteristics table................................... 19  
Changed description of illumination overfill in the Illumination Overfill and Alignment section and added reference to  
Recommended Operating Conditions overfill specification .................................................................................................. 27  
已添加 器件处理 部分 ........................................................................................................................................................... 35  
Changes from Original (November 2017) to Revision A  
Page  
已更改 将器件状态从高级信息 更改为生产数据...................................................................................................................... 1  
已更改 将封装标识符从 CPGA 更改为 FYJ ............................................................................................................................ 1  
Added comment to ground VCCH and VSSH pins .................................................................................................................... 6  
Changed maximum DMD storage temperature from 105°C to 125°C in Storage Conditions table....................................... 7  
Changed IOFFSET from 2.16 mA to 2.93 mA in Electrical Characteristics table..................................................................... 10  
Changed IRESET from 1.5 mA to -2.00 mA in Electrical Characteristics table ....................................................................... 10  
Changed POFFSET from 13.2 mW to 25.64 mW in Electrical Characteristics table................................................................ 11  
Changed PBIAS from 37.3 mW to 37.95 mW in Electrical Characteristics table.................................................................... 11  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
Changed PRESET from 15.8 mW to 21.00 mW in Electrical Characteristics table................................................................. 11  
Changed PTOTAL from 236.6 mW to 254.77 mW in Electrical Characteristics table ............................................................ 11  
Added table note in Optical Parameters table...................................................................................................................... 18  
已更改 更改了器件标记 部分中的器件标记编号.................................................................................................................... 34  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
5 Pin Configuration and Functions  
FYJ Package  
149-Pin CPGA  
Bottom View  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
Pin Configurations and Functions  
PIN  
I/O  
DESCRIPTION  
TRACE, mm(1)  
NAME  
NO.  
F18  
F20  
G20  
G19  
H19  
G18  
J20  
DATA(0)  
DATA(1)  
DATA(2)  
DATA(3)  
DATA(4)  
DATA(5)  
DATA(6)  
DATA(7)  
DATA(8)  
DATA(9)  
DATA(10)  
DATA(11)  
DATA(12)  
DATA(13)  
DATA(14)  
DCLK  
Data bus. Synchronous to rising edge and falling edge  
of DCLK.  
H20  
J19  
8.059  
K18  
K19  
L20  
L18  
K20  
M18  
N18  
Data clock.  
LVCMOS input  
Parallel latch load enable. Synchronous to rising edge  
and falling edge of DCLK.  
LOADB  
M20  
N19  
M19  
A7  
10.939  
6.596  
Serial control (sync). Synchronous to rising edge and  
falling edge of DCLK.  
SCTRL  
Toggle rate control. Synchronous to rising edge and  
falling edge of DCLK.  
TRC  
8.617  
Reset control serial bus. Synchronous to rising edge of  
SAC_CLK.  
DAD_BUS  
RESET_OEZ  
RESET_STROBE  
SAC_BUS  
10.413  
13.37  
Active low. Output enable signal for internal reset  
driver circuitry.  
A5  
Rising edge on RESET_STROBE latches in the  
control signals.  
A10  
B9  
13.329  
12.586  
Stepped address control serial bus. Synchronous to  
rising edge of SAC_CLK.  
SAC_CLK  
TCK  
A8  
Stepped address control clock.  
JTAG clock.  
12.668  
10.489  
M2  
JTAG data input. Synchronous to rising edge of TCK.  
Bond pad connects to internal pull up resistor.  
TDI  
N3  
M3  
R5  
11.04  
JTAG data output. Synchronous to falling edge of  
TCK. Tri-state failsafe output buffer.  
TDO  
TMS  
LVCMOS output  
LVCMOS input  
10.067  
10.413  
JTAG mode select. Synchronous to rising edge of  
TCK. Bond pad connects to internal pull up resistor.  
TEMP_MINUS  
TEMP_PLUS  
T10  
T11  
N/A  
N/A  
Calibrated temperature diode used to assist accurate  
temperature measurements of DMD die.  
Analog Input  
A3, A18, A19,  
A20, B2, B10,  
B18, B19, B20,  
C1, C20, D18,  
D19, D20, E18,  
E19, E20, N20,  
P20, R18, R19,  
R20, T18, T19,  
T20  
No Connect (Unused)  
N/A  
N/A  
N/A  
(1) Propagation delay is 10.24 ps/mm for the DMD Series 450 ceramic package trace lengths.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
Pin Configurations and Functions (continued)  
PIN  
I/O  
DESCRIPTION  
TRACE, mm(1)  
NAME  
NO.  
Power supply for positive bias level of mirror reset  
signal.  
(2)  
VBIAS  
F3, K3, L3  
N/A  
A9, A12, A14,  
A16, B13, B16,  
R12, R13, R16,  
R17, T13, T14,  
T16  
Power supply for low voltage CMOS logic. Power  
supply for normal high voltage at mirror address  
electrodes. Power supply for offset level of mirror reset  
signal during power down.  
Power  
(2)  
VCC  
N/A  
P3, R3, T3, T4,  
T5, T6  
VCCH  
Connect to GND Reserved pin.  
Power supply for high voltage CMOS logic. Power  
N/A  
N/A  
supply for stepped high voltage at mirror address  
electrodes. Power supply for offset level of mirror reset  
signal.  
(2)  
VOFFSET  
D1, E1, M1, N1  
(2)  
VREF  
B11, B12  
Power supply for low voltage CMOS DDR interface.  
N/A  
N/A  
Power supply for negative reset level of mirror reset  
signal.  
(2)  
VRESET  
B3, C3, E3  
A6, A11, A13,  
A15, A17, B4,  
B5, B8, B14,  
B15, B17, C2,  
C18, C19, F1,  
F2, F19, H1,  
H2, H3, H18,  
J18, K1, K2,  
L19, N2, P18,  
P19, R4, R14,  
R15, T7, T9,  
T12, T15, T17  
Power  
(2)  
VSS  
Common return for all power.  
N/A  
N/A  
P1, P2, R1, R2,  
T1, T2  
VSSH  
Connect to GND Reserved pin.  
RESERVED_BIM  
RESERVED_DT  
T8  
R7  
E2  
G1  
G2  
G3  
J1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Connect to GND Bond pad connects to internal pull down resistor.  
RESERVED_RM  
RESERVED_R(0)  
RESERVED_R(1)  
RESERVED_R(2)  
RESERVED_R(3)  
RESERVED_R(4)  
RESERVED_R(5)  
RESERVED_R(6)  
RESERVED_R(7)  
RESERVED_PFE  
RESERVED_RA(0)  
RESERVED_RA(1)  
RESERVED_RA(2)  
RESERVED_RS(0)  
RESERVED_RS(1)  
RESERVED_SO  
RESERVED_TP(0)  
RESERVED_TP(1)  
RESERVED_TP(2)  
Bond pad connects to 250k pull down resistor.  
Manufacturing test.  
Do not connect  
J2  
J3  
L1  
L2  
R6  
B6  
D3  
B7  
A4  
D2  
R9  
R8  
R10  
R11  
Connect to GND Bond pad connects to internal pull down resistor.  
Do not connect  
Tri-state failsafe output buffer.  
Connect to GND Manufacturing test.  
(2) The following power supplies are required to operate the DMD: VBIAS, VCC, VOFFSET, VREF, VRESET, VSS  
.
6
Copyright © 2017–2019, Texas Instruments Incorporated  
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
See  
MIN  
MAX  
UNIT  
SUPPLY VOLTAGE  
VREF  
LVCMOS logic supply voltage(2)  
LVCMOS logic supply voltage(2)  
Mirror electrode and HVCMOS voltage(2)  
Mirror electrode voltage  
–0.5  
–0.5  
–0.5  
–0.5  
4
4
V
V
VCC  
VOFFSET  
VBIAS  
|VBIAS – VOFFSET  
VRESET  
8.75  
17  
V
V
|
Supply voltage delta(3)  
8.75  
0.5  
V
Mirror electrode voltage  
–11  
–0.5  
60  
V
(2)  
Input voltage: other Inputs  
fDCLK  
See  
VREF + 0.3  
80  
V
Clock frequency  
MHz  
µA  
ITEMP_DIODE  
Temperature diode current  
500  
ENVIRONMENTAL  
Operating DMD array temperature (TARRAY  
(monitored by TMP411-Q1 via DLPC120-Q1)  
)
See (4) and Active Array Temperature  
–40  
105  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Unless otherwise  
indicated, these are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond  
those indicated under Recommended Operating Conditions. Exposure to absolute maximum rated conditions for extended periods may  
affect device reliability.  
(2) All voltage values are with respect to GND (VSS). VBIAS, VCC, VOFFSET, VREF, VRESET, and VSS are required to operate the DMD.  
(3) To prevent excess current, the supply voltage delta |VBIAS – VOFFSET| must be less than or equal to 8.75 V.  
(4) Contact TI application engineering for more details about the DMD modeled use profile.  
6.2 Storage Conditions(1)  
Applicable for the DMD as a component or non-operating in a system.  
MIN  
MAX  
UNIT  
Tstg  
DMD storage temperature  
–40  
125  
°C  
(1) As a best practice, TI recommends storing the DMD in a temperature and humidity controlled environment.  
6.3 ESD Ratings(1)  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(2)  
±2000  
±500  
±750  
V(ESD) Electrostatic discharge  
All pins  
V
Charged-device model (CDM), per JESD22-C101(3)  
Corner pins  
(1) All CMOS devices require proper electrostatic discharge (ESD) handling procedures.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SUPPLY VOLTAGE RANGE  
VREF  
LVCMOS interface power supply voltage(1)  
LVCMOS logic power supply voltage(1)  
Mirror electrode and HVCMOS voltage(1)  
Mirror electrode voltage  
1.65  
2.25  
8.25  
15.5  
1.8  
2.5  
8.5  
16  
1.95  
2.75  
V
V
VCC  
VOFFSET  
VBIAS  
8.75  
V
16.5  
V
|VBIAS – VOFFSET  
VRESET  
VP VT+  
VN VT–  
VH VT  
IOH_TDO  
IOL_TDO  
|
Supply voltage delta(2)  
8.75  
V
Mirror electrode voltage  
–9.5  
0.4 × VREF  
0.3 × VREF  
0.1 × VREF  
–10  
–10.5  
V
Positive going threshold voltage  
0.7 × VREF  
0.6 × VREF  
0.4 × VREF  
–2  
V
Negative going threshold voltage  
V
Hysteresis voltage (Vp – Vn)  
V
High level output current @ Voh = 2.25 V, TDO, Vcc = 2.25 V  
Low level output current @ Vol = 0.4 V, TDO, Vcc = 2.25 V  
mA  
mA  
2
TEMPERATURE DIODE  
ITEMP_DIODE  
Max current source into temperature diode(3)  
120  
µA  
ENVIRONMENTAL  
2.0 mW/cm2  
10 mW/cm2  
(4)  
ILLUV  
Illumination, wavelength < 395 nm  
Illumination, wavelength > 800 nm  
0.68  
ILLIR  
Operating DMD array temperature (monitored by TMP411-Q1 via  
DLPC120-Q1)(5)(6)(7)  
TARRAY  
–40  
105  
°C  
(1) VBIAS, VCC, VOFFSET, VREF, VRESET, VSS are required to operate the DMD.  
(2) To prevent excess current, the supply voltage delta |VBIAS – VOFFSET| must be less than or equal to 8.75 V.  
(3) Temperature Diode is to allow accurate measurement of the DMD array temperature during operation.  
(4) The maximum operation conditions for operating temperature and illumination UV shall not be implemented simultaneously.  
(5) DMD active array temperature can be calculated as shown in Active Array Temperature section. Additionally, the DMD array  
temperature is monitored in the system using the TMP411-Q1 and DLPC120-Q1 as shown in the system block diagram.  
(6) For applications that are higher brightness (> 1000 lumens) or underfill the active array optically, the TMP411-Q1 and temperature  
sensing diode are not sufficient to determine maximum array temperature. Contact TI Applications Engineering for array temperature  
calculation methods for this application.  
(7) TI assumes a normal automotive operating profile without continuous operation at either minimum or maximum temperatures. Operating  
profile information for device duty cycle and temperature may be provided if requested.  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Illumination overfill maximum allowable heat load on left and bottom  
26 mW/mm2  
20 mW/mm2  
sides of the aperture, TARRAY < 75°C(9)  
(8)  
ILLOVERFILL  
Illumination overfill maximum allowable heat load on left and bottom  
sides of the aperture, TARRAY > 75°C(9)  
(8) See Illumination Overfill and Alignment section.  
(9) Heat load outside the aperture in the red areas shown in the figure below should not exceed the values listed in the table. These values  
assume a uniform distribution. For a non-uniform distribution, please contact TI Applications Engineering for additional information.  
Limited illumination area  
on window aperture  
Window  
Window  
Aperture  
Array  
Window  
0.50 mm  
0.50 mm  
Window  
Aperture  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
6.5 Thermal Information  
DLP3030-Q1  
FYJ (CPGA)  
149 PINS  
2.5  
THERMAL METRIC(1)  
UNIT  
Thermal resistance  
Active area to test point 1 (TP1)(1)(2)  
°C/W  
(1) The total heat load on the DMD is a combination of the incident light absorbed by the active area and electrical power dissipation of the  
array. See Active Array Temperature section. Optical systems should be designed to minimize the light energy falling outside the active  
array area since any additional thermal load in this area can significantly degrade the reliability of the device.  
(2) Thermal resistance assumes 16.3% optical overfill of the active array. Contact TI Applications Engineering for thermal resistance with an  
optically underfilled array.  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN  
TYP  
MAX  
UNIT  
VCC = 2.25 V  
VOH  
VOH2  
VOL  
High level output voltage  
1.7  
V
IOH = –8 mA  
VREF = 1.8 V  
IOH = –2 mA  
VCC = 2.75 V  
IOL = 8 mA  
High level output voltage(3)  
Low level output voltage  
Low level output voltage(3)  
1.44  
V
V
V
0.4  
VREF = 1.8 V  
IOL = 2 mA  
VOL2  
0.36  
VREF = 1.95 V  
VOL = 0 V  
–10  
–5  
IOZ  
Output high impedance current  
µA  
VREF = 1.95 V  
VOH = VREF  
VREF = 1.95 V  
VI = 0 V  
10  
6
IIL  
Low level input current(4)  
High level input current(4)  
Low level input current(5)  
High level input current(5)  
Low level input current(6)  
High level input current(6)  
µA  
µA  
µA  
µA  
µA  
µA  
VREF = 1.95 V  
VI = VREF  
IIH  
VREF = 1.95 V  
VI = 0 V  
IIL2  
IIH2  
IIL3  
IIH3  
–785  
–5  
VREF = 1.95 V  
VI = VREF  
6
VREF = 1.95 V  
VI = 0 V  
VREF = 1.95 V  
VI = VREF  
785  
CURRENT  
IREF  
Current at VREF = 1.95 V  
Current at VCC = 2.75 V  
Current at VOFFSET = 8.75 V  
Current at VBIAS = 16.5 V  
Current at VRESET = –10.5 V  
fDCLK = 80 MHz  
fDCLK = 80 MHz  
2.80  
59.90  
2.93  
mA  
mA  
mA  
mA  
mA  
Icc  
IOFFSET  
IBIAS  
2.30  
IRESET  
–2.00  
(1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.  
(2) All voltage values are with respect to the ground pins (VSS).  
(3) Specification is for LVCMOS JTAG output pin TDO.  
(4) Specification is for LVCMOS input pins, which do not have pull up or pull down resistors. See Pin Configuration and Functions section.  
(5) Specification is for LVCMOS input pins which do have pull up resistors (JTAG: TDI, TMS). See Pin Configuration and Functions section.  
(6) Specification is for LVCMOS input pins which do have pull down resistors. See Pin Configuration and Functions section.  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN  
TYP  
MAX  
UNIT  
POWER(7)  
PREF  
Power at VREF = 1.95 V  
fDCLK = 80 MHz  
fDCLK = 80 MHz  
5.46  
164.73  
25.64  
mW  
mW  
mW  
mW  
mW  
mW  
PCC  
Power at VCC = 2.75 V  
POFFSET  
PBIAS  
Power at VOFFSET = 8.75 V  
Power at VBIAS = 16.5 V  
Power at VRESET = –10.5 V  
Total power at nominal conditions  
37.95  
PRESET  
PTOTAL  
CAPACITANCE  
CIN  
21.00  
fDCLK = 80 MHz  
105  
254.77  
Input pin capacitance  
ƒ = 1 MHz  
ƒ = 1 MHz  
ƒ = 1 MHz  
20  
65  
20  
pF  
pF  
pF  
Analog pin capacitance (TEMP_PLUS  
and TEMP_MINUS pins)  
CA  
Co  
Output pin capacitance  
(7) The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, VRESET. All VSS connections are also  
required.  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
 
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
6.7 Timing Requirements  
Over Recommended Operating Conditions unless otherwise noted.  
MIN  
NOM  
MAX  
UNIT  
DMD MIRROR AND SRAM CONTROL LOGIC SIGNALS  
tSU  
tH  
tSU  
tH  
Setup time SAC_BUS low before SAC_CLK↑  
Hold time SAC_BUS low after SAC_CLK↑  
Setup time DAD_BUS high before SAC_CLK↑  
Hold time DAD_BUS after SAC_CLK↑  
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.0  
1.0  
tC  
Cycle time SAC_CLK  
12.5  
5.0  
16.67  
tW  
tR  
Pulse width 50% to 50% reference points: SAC_CLK high or low  
Rise time 20% to 80% reference points: SAC_CLK  
Fall time 80% to 20% reference points: SAC_CLK  
2.5  
2.5  
tF  
DMD DATA PATH AND LOGIC CONTROL SIGNALS  
tSU  
tH  
tSU  
tH  
tSU  
tH  
tSU  
tH  
tSU  
tH  
Setup time DATA(14:0) before DCLKor DCLK↓  
Hold time DATA(14:0) after DCLKor DCLK↓  
Setup time SCTRL before DCLKor DCLK↓  
Hold time SCTRL after DCLKor DCLK↓  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
3.5  
12.5  
5.0  
7.0  
7.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time TRC before DCLKor DCLK↓  
Hold time TRC after DCLKor DCLK↓  
Setup time LOADB low before DCLK↑  
Hold time LOADB low after DCLK↓  
Setup time RESET_STROBE high before DCLK↑  
Hold time RESET_STROBE after DCLK↑  
tC  
Cycle time DCLK  
16.67  
tW  
Pulse width 50% to 50% reference points: DCLK high or low  
Pulse width 50% to 50% reference points: LOADB low  
Pulse width 50% to 50% reference points: RESET_STROBE high  
Rise time 20% to 80% reference points: DCLK, DATA, SCTRL, TRC, LOADB  
Fall time 80% to 20% reference points: DCLK, DATA, SCTRL, TRC, LOADB  
tW(L)  
tW(H)  
tR  
2.5  
2.5  
tF  
JTAG BOUNDARY SCAN CONTROL LOGIC SIGNALS  
fTCK  
tC  
Clock frequency TCK  
10  
MHz  
ns  
Cycle time TCK  
100  
10  
5
tW  
tSU  
tH  
Pulse width 50% to 50% reference points: TCK high or low  
Setup time TDI valid before TCK↑  
ns  
ns  
Hold time TDI valid after TCK↑  
25  
5
ns  
tSU  
tH  
Setup time TMS valid before TCK↑  
Hold time TMS valid after TCK↑  
ns  
25  
ns  
tR  
Rise time 20% to 80% reference points: TCK, TDI, TMS  
Fall time 80% to 20% reference points: TCK, TDI, TMS  
2.5  
2.5  
ns  
tR  
ns  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
tC  
tW  
tW  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
SAC_CLK  
tH  
tSU  
50%  
50%  
SAC_BUS  
DAD_BUS  
tSU  
tH  
50%  
50%  
VREF  
80%  
20%  
Not To Scale.  
SAC_CLK  
VSS  
tR  
tF  
Figure 1. DMD Mirror and SRAM Control Logic Timing Requirements  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
tW  
tW  
tC  
DCLK  
50%  
50%  
50%  
50%  
50%  
tH  
tH  
tSU  
tSU  
DATA  
SCTRL  
TRC  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
tSU  
tH  
50%  
50%  
LOADB  
tW(L)  
Not To Scale  
tH  
tSU  
50%  
50%  
RESET_STROBE  
tW(H)  
VREF  
80%  
20%  
DCLK, DATA, SCTRL, TRC, LOADB  
VSS  
tR  
tF  
Figure 2. DMD Data Path and Control Logic Timing Requirements  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
tW  
tW  
tC  
50%  
50%  
50%  
50%  
TCK  
tH  
tSU  
TDI  
50%  
50%  
50%  
TMS  
TDO  
50%  
tPD  
50%  
VREF  
VSS  
80%  
TCK, TDI, TMS  
20%  
tR  
tF  
Figure 3. JTAG Boundary Scan Control Logic Timing Requirements  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
 
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
6.8 Switching Characteristics(1)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CL = 11 pF, from (Input) falling edge of  
TCK to (Output) TDO. See Figure 3.  
tPD  
Output propagation, clock to Q (see Figure 3)  
3
25  
ns  
(1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.  
Data Sheet Timing Reference Point  
Device Pin  
Tester Channel  
Output Under Test  
CL  
See Micromirror Array section for more information.  
Figure 4. Test Load Circuit for Output Propagation Measurement  
6.9 System Mounting Interface Loads  
PARAMETER  
MIN NOM  
MAX  
UNIT  
Condition 1:  
Uniformly distributed within the Thermal Interface Area shown in Figure 5  
Uniformly distributed within the Electrical Interface Area shown in Figure 5  
11.30  
11.34  
kg  
kg  
Condition 2:  
Uniformly distributed within the Thermal Interface Area shown in Figure 5  
Uniformly distributed within the Electrical Interface Area shown in Figure 5  
0
kg  
kg  
22.64  
Figure 5. System Interface Loads  
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
6.10 Physical Characteristics of the Micromirror Array  
PARAMETER  
VALUE  
684  
UNIT  
micromirrors  
micromirrors  
µm  
N Number of active columns  
M Number of active rows  
See Figure 6  
See Figure 6  
608  
ε
Micromirror (pixel) pitch – diagonal  
See Figure 7  
7.6  
P Micromirror (pixel) pitch – horizontal and vertical  
Micromirror active array width  
See Figure 7  
10.8  
6.5718  
3.699  
10  
µm  
P × M + P / 2; see Figure 6  
(P × N) / 2 + P / 2; see Figure 6  
Pond of micromirror (POM)(1)  
mm  
Micromirror active array height  
mm  
Micromirror active border  
micromirrors/side  
(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM.  
These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical  
bias to tilt toward OFF.  
(0,0)  
Illumination  
Border Mirrors (POM) are Omitted for Clarity  
Col 0  
Col 1  
Col 2  
Col 3  
Col 4  
Col 5  
Col 6  
Col 7  
Illumination  
On-State  
Off-State  
Tilt Direction  
Tilt Direction  
DMD Active Mirror Array  
Col 676  
Col 677  
Col 678  
Col 679  
Col 680  
Col 681  
Col 682  
Col 683  
6.5718 mm  
DMD Periphery  
Figure 6. Micromirror Array Physical Characteristics  
P (um)  
Figure 7. Mirror (Pixel) Pitch  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
 
 
 
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
6.11 Optical Characteristics of the Micromirror Array  
Table 1. Optical Parameters(1)  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
(2)  
α
β
Micromirror Tilt Angle, landed (on-state or off-state) (see  
and Figure 8)  
12  
°
°
Micromirror Tilt Angle Variation, device to device (see (2) and Figure 8)  
–1  
1
(3)  
DMD Efficiency, 420 nm – 680 nm (see  
)
66%  
(1) Optical parameters are characterized at 25°C.  
(2) Mirror Tilt: Limits on variability of mirror tilt are critical in the design of the accompanying optical system. Variations in tilt angle within a  
device may result in apparent non-uniformities, such as line pairing and image mottling, across the projected image especially at higher  
system F/#. Variations in the average tilt angle between devices may result in colorimetry, brightness, and system contrast variations.  
(3) DMD efficiency is measured photopically under the following conditions: 24° illumination angle, F/2.4 illumination and collection  
apertures, uniform source spectrum (halogen), uniform pupil illumination, the optical system is telecentric at the DMD, and the efficiency  
numbers are measured with 100% electronic mirror duty cycle and do not include system optical efficiency or overfill loss. Note that this  
number is measured under conditions described above and deviations from these specified conditions could result in a different  
efficiency value in a different optical sytem. The factors that can incluence the DMD efficiency related to system application include: light  
source spectral distribution and diffraction efficiency at those wavelengths (especially with discrete light sources such as LEDs or  
lasers), and illumination and collection apertures (F/#) and diffraction efficiency. The interaction of these system factors as well as the  
DMD efficiency factors that are not system dependent are described in detail in the DMD Optical Efficiency Application Note, which can  
be accessed by contacting TI Applications Engineering.  
e
t
h
a
t
St  
-
Pa  
f
f
t
h
O
g
i
L
. ±  
Å. ± ꢀ  
Silicon Substrate  
OnœState  
Micromirror  
OffœState  
Micromirror  
Figure 8. Micromirror Tilt Angle  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
6.12 Window Characteristics  
PARAMETER  
MIN  
NOM  
Corning Eagle XG  
1.5119  
MAX UNIT  
Window material designation  
Window refractive index  
Window aperture(1)  
at wavelength 546.1 nm  
(1)  
See  
(1) See the package mechanical ICD for details regarding the size and location of the window aperture.  
6.13 Chipset Component Usage Specification  
The DLP3030-Q1 DMD is a component of the DLP® chipset including the DLPC120-Q1 DMD controller. Reliable  
function and operation of the DMD requires that it be used in conjunction with DLPC120-Q1 controller.  
NOTE  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical  
system operating conditions exceeding limits described previously  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DLP3030-Q1 DMD has a resolution of 608 × 684 mirrors configured in a diamond format that results in an  
aspect ratio of 16:9, which combined with the DLPC120-Q1 image processing creates an effective resolution of  
864 × 480 square pixels. By configuring the pixels in a diamond format, the illumination input to the DMD enters  
from the side allowing for smaller mechanical packaging of the optical system. Additionally, side illumination can  
also enable increased optical efficiency compared to a corner illuminated square pixel design.  
7.2 Functional Block Diagram  
DLP303X-Q1  
DMD Data Path and Logic Control  
JTAG  
Controller  
(0,0)  
Illumination  
TEMP_PLUS  
Off-State  
Tilt Direction  
On-State  
Tilt Direction  
TEMP_MINUS  
0.3 WVGA 16:9 Aspect Ratio  
SRAM & Micromirror Array  
(607,683)  
DMD Mirror & SRAM Voltage Control  
RESERVE PINS  
(TI Internal Use)  
DMD Mirror & SRAM Control Logic  
7.3 Feature Description  
To ensure reliable operation, the DLP3030-Q1 DMD must be used with the DLPC120-Q1 DMD Display  
controller.  
20  
Copyright © 2017–2019, Texas Instruments Incorporated  
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
Feature Description (continued)  
7.3.1 Micromirror Array  
The DLP3030-Q1 DMD consists of a two-dimensional array of 1-bit CMOS memory cells that determine the state  
of the each of the 608 × 684 micromirrors in the array. Refer to Physical Characteristics of the Micromirror Array  
for a calculation of how the 608 × 684 micromirror array represents a 16:9 dimensional aspect ratio to the user.  
Each micromirror is either “ON” (tilted +12°) or “OFF” (tilted –12°). Combined with appropriate projection optical  
system the DMD can be used to create clear, colorful, and vivid digital images.  
7.3.2 Double Data Rate (DDR) Interface  
Each DMD micromirror and its associated SRAM memory cell is loaded with data from the DLPC120-Q1 via the  
DDR interface (DATA(14:0), DCLK, LOADB, SCRTL, and TRC). These signals are low voltage CMOS nominally  
operating at 1.8-V level to reduce power and switching noise. This high speed data input to the DMD allows for a  
maximum update rate of the entire micromirror array to be nearly 5 kHz, enabling the creation of seamless digital  
images using Pulse Width Modulation (PWM).  
7.3.3 Micromirror Switching Control  
Once data is loaded onto the DMD, the mirrors are caused to switch position (+12° or –12°) based on the timing  
signal sent to the DMD Mirror and SRAM control logic. The DMD mirrors will be switched from OFF to ON or ON  
to OFF, or stay in the same position based on control signals DAD_BUS, RESET_STROBE, SAC_BUS, and  
SAC_CLK, which are coordinated with the data loading by the DLPC120-Q1. In general, the DLPC120-Q1 loads  
the DMD SRAM memory cells over the DDR interface, and then commands to the micromirrors to switch  
position.  
At power down, the DMD Mirrors are commanded by the DLPC120-Q1 to move to a near flat (0°) position as  
shown in Power Supply Recommendations section. The flat state position of the DMD mirrors are referred to as  
the “Parked” state. To maintain long term DMD reliability, the DMD must be properly “Parked” prior to every  
power down of the DMD power supplies. Refer to the DLPC120-Q1 Programmer's Guide for information about  
properly parking the DMD.  
7.3.4 DMD Voltage Supplies  
The micromirrors switching requires unique voltage levels to control the mechanical switching. These voltages  
levels are nominally 16 V, 8.5 V, and –10 V (VBIAS, VOFFSET, and VRESET). The specification values for VBIAS  
,
VOFFSET, and VRESET are shown in Recommended Operating Conditions.  
7.3.5 Logic Reset  
Reset of the DMD is required and controlled by the DLPC120-Q1.  
7.3.6 Temperature Sensing Diode  
The DMD includes a temperature sensing diode designed to be used with the TMP411-Q1 temperature  
monitoring device. The DLPC120-Q1 monitors the DMD array temperature via the TMP411-Q1 and temperature  
sense diode. The DLPC120-Q1 operation of the DMD is based in part on the DMD array temperature, and  
therefore, this connection is essential to ensure reliable operation of the DMD.  
Figure 9 shows the typical connection between the DLPC120-Q1, TMP411-Q1, and the DLP3030-Q1 DMD. The  
signals to the temperature sense diode are sensitive to system noise, therefore, care should be taken in the  
routing and implementation of this circuit. See the TMP411-Q1 Data Sheet for detailed PCB layout  
recommendations.  
Copyright © 2017–2019, Texas Instruments Incorporated  
21  
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
Feature Description (continued)  
DLPC120-Q1  
DLP303X-Q1  
TEMP_PLUS  
TEMP_MINUS  
50 Ω  
50 Ω  
SCL  
SCA  
D +  
100 pF  
THERM1  
THERM2  
D œ  
TMP411-Q1  
Figure 9. Temperature Sense Diode Typical Circuit Configuration  
The DLPC120-Q1 automatically controls the DMD parking based on the temperature measured from the  
temperature sense diode; however, it is recommended that the host controller manage the parking via the proper  
methods described in the DLPC120-Q1 Programmer's Guide.  
7.3.6.1 Temperature Sense Diode Theory  
A temperature sensing diode is based on the fundamental current and temperature characteristics of a transistor.  
The diode is formed by connecting the transistor base to the collector. Two different known currents flow through  
the diode and the resulting diode voltage is measured in each case. The difference in their base-emitter voltages  
is proportional to the absolute temperature of the transistor.  
Refer to the TMP411-Q1 Data Sheet for detailed information about temperature diode theory and measurement.  
Figure 10 and Figure 11 illustrate the relationship between the current and voltage through the diode.  
IE1  
IE2  
+
VBE 1,2  
-
Figure 10. Temperature Measurement Theory  
22  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
Feature Description (continued)  
100uA  
10uA  
1uA  
Temperature (°C)  
Temperature (°C)  
Figure 11. Example of Delta VBE vs Temperature  
7.3.7 Active Array Temperature  
NOTE  
Calculation is not valid for a headlight application utilizing an optically underfilled active  
array. Contact TI Applications Engineering for array temperature calculation methods for  
headlight applications.  
Active array temperature can be computed analytically from measurement points on the outside of the package,  
the package thermal resistance, the electrical power, and the illumination heat load.  
Relationship between array temperature and the reference ceramic temperature (thermocouple location TP1 in  
Figure 12) is provided by the following equations.  
TARRAY = TCERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
QARRAY = QELECTRICAL+ QILLUMINATION  
)
(1)  
where  
TARRAY = computed DMD array temperature (°C)  
TCERAMIC = measured ceramic temperature (TP1 location in Figure 12) (°C)  
RARRAY-TO-CERAMIC = DMD package thermal resistance from array to TP1 (°C/watt) (see Thermal Information)  
QARRAY = total power, electrical plus absorbed, on the DMD array (watts)  
QELECTRICAL = nominal electrical power dissipation by the DMD (watts)  
QILLUMINATION = (CL2W × SL)  
CL2W = conversion constant for screen lumens to power on the DMD (watts/lumen)  
SL = measured screen lumens (lm)  
(2)  
Electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating  
frequencies.  
Absorbed power from the illumination source is variable and depends on the operating state of the mirrors and  
the intensity of the light source.  
Equations shown previous are valid for a 1-Chip DMD system with total projection efficiency from DMD to the  
screen of 87%.  
The constant CL2W is based on the DMD array characteristics. It assumes a spectral efficiency of 300  
lumens/watt for the projected light and illumination distribution of 83.7% on the active array, and 16.3% on the  
array border.  
Sample calculation:  
SL = 50 lm  
CL2W = 0.00293  
QELECTRICAL = 0.105 W  
Copyright © 2017–2019, Texas Instruments Incorporated  
23  
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
Feature Description (continued)  
RARRAY-TO-CERAMIC = 2.5°C/W  
TCERAMIC = 55°C  
QARRAY = 0.105 W + (0.00293 × 50 lm) = 0.252 W  
TARRAY = 55°C + (0.252 W × 2.5°C/W) = 55.6°C  
(3)  
(4)  
Array  
TP1  
4.5  
16.1  
TP1  
Figure 12. Thermocouple Locations  
7.3.8 DMD JTAG Interface  
The DMD uses 4 standard JTAG signals for sending and receiving boundary scan test data. TCK is the test clock  
used to drive an IEEE 1149.1 TAP state machine and logic. TMS directs the next state of the TAP state  
machine. TDI is the scan data input and TDO is the scan data output.  
The DMD does not support IEEE 1149.1 signals TRST (Test Logic Reset) and RTCK (Returned Test Clock).  
Boundary scan cells on the DMD are Observe-Only. To initiate the JTAG boundary scan operation on the DMD,  
a minimum of 6 TCK clock cycles are required after TMS is set to logic high.  
Refer to Figure 13 for a JTAG system board routing example. The DLPC120-Q1 can be enabled to perform an in  
system boundary scan test. See DLPC120-Q1 Programmer's Guide for information about this test.  
24  
Copyright © 2017–2019, Texas Instruments Incorporated  
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
Feature Description (continued)  
DLPC120-Q1  
DLP303X-Q1  
DMD_JTCK  
TCK  
TMS  
TDI  
DMD_JTMS  
DMD_JTDI  
DMD_JTDO  
TDO  
Figure 13. System Interface Connection to DLPC120-Q1  
The DMD Device ID can be read via the JTAG interface. The ID and 32-bit shift order is shown in Figure 14.  
MSB  
31  
Version (4 Bits)  
0000  
28 27  
Part Number (16 Bits)  
1011-1011-0001-1011  
12 11  
Manufacturer ID (11 Bits)  
0000-0010-111  
1 0  
LSB  
1
TDI  
TDO  
Figure 14. DMD Device ID and 32-bit Shift Order  
Refer to Figure 15 for a JTAG boundary scan block diagram for the DMD. These show the pins and the scan  
order that are observed during the JTAG boundary scan.  
(0,0)  
Illumination  
Not to Scale  
JTAG Boundary Scan Cells Omitted For Clarity  
SAC_BUS  
SAC_CLK  
DATA(0)  
DATA(1)  
DATA(2)  
DATA(3)  
DATA(4)  
DATA(5)  
DATA(6)  
DATA(7)  
DATA(8)  
DATA(9)  
DATA(10)  
DATA(11)  
DATA(12)  
DATA(13)  
DATA(14)  
DAD_BUS  
RESET_STROBE  
RESET_OEZ  
Illumination  
DMD Active Mirror Array  
DCLK  
LOADB  
SCTRL  
TRC  
Controller  
Decoder  
Registers  
TCK  
TMS  
TDI  
JTAG Boundary Scan Path  
TDO  
Figure 15. JTAG Boundary Scan Path  
Refer to Figure 16 for a functional block diagram of the JTAG control logic.  
Copyright © 2017–2019, Texas Instruments Incorporated  
25  
 
 
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
Feature Description (continued)  
Not to Scale.  
BSC = Boundary Scan Cell [Observe Only]  
TAP = Test Access Port  
Note 1: Signal Routing Omitted for Clarity.  
BSC  
BSC  
BSC  
BSC  
BSC  
BSC  
BSC  
.3 WVGA DDR  
S450 œA1 DMD  
BSC  
BSC  
Mirror Array & Core Logic  
Device ID Register  
Bypass Register  
Note 1  
Instruction Decoder  
Instruction Register  
TAP Controller  
TDI  
TCK  
TMS  
TDO  
Figure 16. JTAG Functional Block Diagram  
26  
Copyright © 2017–2019, Texas Instruments Incorporated  
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
7.4 Optical Performance  
Optimizing system optical performance and image quality strongly relates to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described below.  
7.4.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area  
should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate  
apertures are added in the illumination and/or projection pupils to block flat-state and stray light from passing  
through the projection lens. The mirror tilt angle defines DMD capability to separate the "On" optical path from  
any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border  
structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture  
exceeds the mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than  
the illumination numerical aperture angle, contrast ratio can be reduced and objectionable artifacts in the image  
border and/or active area could occur.  
7.4.2 Pupil Match  
TI’s optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within two degrees of the entrance pupil of the projection optics. Misalignment of pupils can create  
objectionable artifacts in the image border and/or active area, which may require additional system apertures to  
control, especially if the numerical aperture of the system exceeds the pixel tilt angle.  
7.4.3 Illumination Overfill and Alignment  
Overfill light illuminating the area outside the active array can create artifacts from the mechanical features and  
other surfaces that surround the active array. These artifacts may be visible in the projected image. The  
illumination optical system should be designed to minimize light flux incident outside the active array and on the  
window aperture. Depending on the particular system’s optical architecture and assembly tolerances, this amount  
of overfill light on the area outside of the active array may still cause artifacts to be visible. Illumination light and  
overfill can also induce undesirable thermal conditions on the DMD, especially if illumination light impinges  
directly on the DMD window aperture or near the edge of the DMD window. Refer to Recommended Operating  
Conditions for a specification on this maximum allowable heat load due to illumination overfill.  
NOTE  
TI ASSUMES NO RESPONSIBILITY FOR IMAGE QUALITY ARTIFACTS OR DMD  
FAILURES CAUSED BY OPTICAL SYSTEM OPERATING CONDITIONS EXCEEDING  
LIMITS DESCRIBED ABOVE.  
Copyright © 2017–2019, Texas Instruments Incorporated  
27  
 
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
7.5 DMD Image Quality Specification  
PARAMETER(1)  
Dark Blemishes(2)  
MIN  
NOM  
MAX  
UNIT  
4
Light Blemishes(3)  
4
Border Artifacts(4)  
Allowed  
Minor Blemishes(4)  
Allowed  
Bright Pixels(3)  
Dark Pixels(5)(6)  
Pixel Clusters (Dark)(6)  
0
4
0
0
0
(6)(5)  
Dark Pixels (Adjacent)  
Unstable Pixels(4)  
Optical Performance  
Ambient Lighting Conditions  
See Optical Performance  
(7)  
See  
(1) Blemish counts do not include reflections or shadows of the same artifact. Gray 10 linear gamma graphic is the darkest screen that can  
be used for IQ evaluation. Any artifact that is not specifically addressed in this table is acceptable unless mutually agreed to between  
DLP® Products and the customer. Viewing distance must be > 48 inches. Screen size should be similar to application image size. All  
values referenced are in linear gamma. Non-linear gamma curves may be running by default, and it should be ensured with a TI  
applications engineer that the equivalent linear gamma value as specified is used to judge artifacts.  
(2) Determined on Blue 60 linear gamma screen. Blemish cannot be darker than background.  
(3) Determined on Gray 10 linear gamma screen. Blemish cannot be lighter than background.  
(4) A Minor light blemish is any blemish that can be seen on a black screen but not a Gray 10 linear gamma screen. A Minor dark blemish  
is any blemish that can be seen on a white screen but not a Blue 60 linear gamma screen. Border artifacts, unstable pixels, and Active  
area shading are allowed unless visible on a screen brighter than Gray 10 linear gamma.  
(5) Dark pixels must be at least fifty (50) mirrors apart.  
(6) Determined on a White screen.  
(7) The parameters stated in DMD Image Quality Specification assume that the viewed images are set with a nominally adjusted brightness  
for ambient lighting condition. For example, if the ambient lighting conditions are very dark, such as night time conditions, then the  
image brightness level will be matched to nominal expected value as used in the end application. Similarly, if the ambient lighting  
conditions are very bright, such as day time viewing conditions, then the image brightness may be adjusted to the nominal brightness  
level as would be expected in the end application.  
7.6 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the ON state versus the amount of time the same  
micromirror is landed in the OFF state.  
As an example, assuming a fully-saturated white pixel, a landed duty cycle of 90/10 indicates that the referenced  
pixel is in the ON state 90% of the time (and in the OFF state 10% of the time), whereas 10/90 would indicate  
that the pixel is in the OFF state 90% of the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time  
and OFF 50% of the time.  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
always add to 100.  
28  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DLP3030-Q1 DMD was designed to be used in automotive applications such as head-up display (HUD) .  
The information shown in this section describes the HUD application based on the TI reference design. Contact  
TI application engineer for information on this design.  
8.2 Typical Application  
The DLP3030-Q1 DMD combined with the DLPC120-Q1 are the primary devices that make up the reference  
design for a HUD system as shown in the block diagram Figure 17.  
Color & Dimming control  
Flash  
SPI  
I2C  
TMS320  
F28023  
Color  
Controller  
& Driver  
Host  
SPI  
DLPC120-Q1  
LEDs  
Illumination  
Control  
& Feedback  
Video  
Processing &  
DMD  
real-time  
optical  
feedback  
loop  
24-bit RGB  
& Syncs  
Formatting  
photo diode  
LED Enable  
Timing Control  
Data & Control  
DLP3030-Q1  
Reset  
.3" WLP(H) s450  
DVSP DMD  
Power Good  
I2C  
TMP411  
-Q1  
Data &  
Address  
DMD Power  
DDR-2 DRAM  
frame buffer  
TPS65100  
-Q1  
Power Enable  
Copyright © 2017, Texas Instruments Incorporated  
Figure 17. HUD Reference Design Block Diagram  
The DLPC120-Q1 accepts input video over the parallel RGB data interface up to 8 bits per color from a Video  
Graphics processor. The DLPC120-Q1 then processes the video data (864 × 480 manhattan orientation) by  
scaling the image to match the DMD resolution (608 × 684 diamond pixel), applies de-gamma correction, bezel  
adjustment, and then formats the data into DMD bit plane information and stores the data into the DDR2 DRAM.  
The DMD bit planes are read from DDR2 DRAM, and are then displayed on the DMD using Pulse Width  
Modulation (PWM) timing. The DLPC120-Q1 synchronizes the DMD bit plane data with the RGB enable timing  
for the LED color controller and Driver circuit. Finally, the DMD accepts the bit plane formatted data from the  
DLPC120-Q1 and displays the data according to the timing controlled by the DLPC120-Q1.  
Copyright © 2017–2019, Texas Instruments Incorporated  
29  
 
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
Typical Application (continued)  
Due to the mechanical nature of the micromirrors, the latency of the DLP3030-Q1 and DLPC120-Q1 chipset is  
fixed across all temperature and operating conditions. The observed video latency is one frame, or 16.67 ms at  
an input frame rate of 60 Hz. However, please note that the use of the DLPC120-Q1 bezel adjustment feature, if  
enabled by the host controller, requires an additional frame of processing.  
The DLPC120-Q1 is configured at power up by data stored in the flash file which stores configuration data, DMD  
and sequence timing information, LED drive information, and other information related to the system functions.  
See the DLPC120-Q1 Programmer's Guide for information about the this flash configuration data.  
The HUD reference design from TI includes the TMS320F28023 Microcontroller (Piccolo) which is used to  
control the color point by adjusting the RGB flux levels, and drives each RGB LED. This circuit also manages the  
dimming function for the HUD system. The dimming level of a HUD system requires very large dynamic range of  
over 5000:1. For example, on a bright day, the HUD system may require a brightness level as high as 15,000  
cd/m2 and conversely at night time the minimum brightness level desired may only be 3 cd/m2.  
8.2.1 HUD Reference Design and LED Controller Reference Design  
The complete HUD reference design is available from TI, including electronics (Schematic) and PCB (Gerber)  
design, opto-mechanical design (CAD and Zemax models), sample software, and other system reference design  
documentation. Additionally, there are application notes describing the Piccolo LED driver and color control  
circuit. Contact TI application engineering for access to these application notes and design information.  
8.3 Application Mission Profile Consideration  
Each application is anticipated to have different mission profiles, or number of operating hours at different  
temperatures. To assist in evaluation, the Application Report Reliability Lifetime Estimates for the DLP3030-Q1  
DMD in Automotive Applications may be provided if requested.  
30  
Copyright © 2017–2019, Texas Instruments Incorporated  
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
9 Power Supply Recommendations  
9.1 Power Supply Sequencing Requirements  
VBIAS, VCC, VOFFSET, VREF, VRESET, VSS are required to operate the DMD.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing  
requirements must be followed. Failure to adhere to the prescribed power up and  
power down procedures may affect device reliability.  
The VCC, VREF, VOFFSET, VBIAS, and VRESET power supplies have to be coordinated  
during power up and power down operations. Failure to meet any of the below  
requirements will result in a significant reduction in the DMD’s reliability and  
lifetime. Refer to Figure 18. VSS must also be connected.  
DMD Power Supply Power Up Procedure:  
During power up, VCC and VREF must always start and settle before VOFFSET, VBIAS and VRESET voltages are  
applied to the DMD.  
During power up, VBIAS does not have to start after VOFFSET. However, it is a strict requirement that the delta  
between VBIAS and VOFFSET must be within ±8.75 V (refer to Note 1 for Figure 18).  
During power up, the DMD’s LVCMOS input pins shall not be driven high until after VCC and VREF have  
settled at operating voltage.  
During power up, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS.  
Power supply slew rates during power up are flexible, provided that the transient voltage levels follow the  
requirements listed above and in Recommended Operating Conditions and in Figure 18.  
DMD Power Supply Power Down Procedure  
VCC and VREF must be supplied until after VBIAS, VRESET and VOFFSET are discharged to within 4 V of ground.  
During power down it is not mandatory to stop driving VBIAS prior to VOFFSET, but it is a strict requirement that  
the delta between VBIAS and VOFFSET must be within ± 8.75 V (refer to Note 1 for Figure 18).  
During power down, the DMD’s LVCMOS input pins must be less than VREF + 0.3 V.  
During power down, there is no requirement for the relative timing of VRESET with respect to VOFFSET and  
VBIAS  
.
Power supply slew rates during power down are flexible, provided that the transient voltage levels follow the  
requirements listed above in Recommended Operating Conditions and in Figure 18.  
Copyright © 2017–2019, Texas Instruments Incorporated  
31  
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
Power Supply Sequencing Requirements (continued)  
9.1.1 Power Up and Power Down  
Power  
Off  
VBIAS, VOFFSET, and VRESET  
Disabled by DLPC120-Q1  
VCC / VREF  
Mirror Park Sequence  
RESET_OEZ  
VSS  
VCC / VREF  
VCC  
/
VREF  
VSS  
VSS  
VBIAS  
VBIAS  
ûV < 8.75 v  
Note 1  
ûV < 8.75 v  
Note 1  
VBIAS < 4 V  
VSS  
VSS  
VOFFSET  
VOFFSET  
VSS  
VSS  
VOFFSET < 4 V  
VSS  
VSS  
VRESET < 0.5 V  
VRESET  
VRESET > - 4 V  
VRESET  
VCC  
LVCMOS  
Inputs  
VSS  
VSS  
(1) ±8.75-V delta, V, shall be considered the max operating delta between VBIAS and VOFFSET. Customers may find that  
the most reliable way to ensure this is to power VOFFSET prior to VBIAS during power up and to remove VBIAS prior to  
VOFFSET during power down.  
Figure 18. Power Supply Sequencing Requirements (Power Up and Power Down)  
32  
Copyright © 2017–2019, Texas Instruments Incorporated  
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
10 Layout  
10.1 Layout Guidelines  
Refer to DLPC120-Q1 Data Sheet for specific PCB layout and routing guidelines. For specific DMD PCB  
guidelines, use the following:  
VCC should have at least one 2.2-µF and four 0.1-µF capacitors evenly distributed among the 13 VCC pins.  
A 0.1-µF, X7R rated capacitor should be placed near every pin for the VREF, VBIAS, VRSET, and VOFF  
.
10.2 Temperature Diode Pins  
The DMD has an internal diode (PN junction) that is intended to be used with an external TI TMP411-Q1  
temperature sensing IC. PCB traces from the DMD’s temperature diode pins to the TMP411-Q1 are sensitive to  
noise. See the TMP411-Q1 Data Sheet for specific routing recommendations.  
Avoid routing the temperature diodes signals near other traces to avoid coupling of noise onto these signals.  
10.3 Layout Example  
Contact TI Application Engineering for access to the complete TI reference design PCB layout.  
版权 © 2017–2019, Texas Instruments Incorporated  
33  
DLP3030-Q1  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
DLP3030 A FYJ Q1  
Automotive  
Package Type  
Temperature Range  
Device Descriptor  
19. 器件型号 说明  
11.1.2 器件标记  
下面显示了器件标记。该标记将包括可读信息和一个二维矩阵码。  
下面显示了可读信息。二维矩阵码是一个字母数字字符串,其中包含 DMD 部件号、序列号的第 1 部分和第 2  
部分。  
DMD 序列号(第 1 部分)的第一个字符为制造年份。DMD 序列号(第 1 部分)的第二个字符为制造月份。  
DMD 序列号(第 2 部分)的最后一个字符为偏置电压二进制字母。  
示例:*DLP3030AFYJQ1 GHXXXXX LLLLLLM  
Part 2 of Serial Number  
(7 characters)  
Part 1 of Serial Number  
(7 characters)  
2-Dimension Matrix Code  
(Part Number and Serial Number)  
DMD Part Number  
20. DMD 标记  
下面显示了 DLP3030-Q1 器件的三维建模描述。  
21. DLP3030-Q1的图像  
34  
版权 © 2017–2019, Texas Instruments Incorporated  
DLP3030-Q1  
www.ti.com.cn  
ZHCSHX4B NOVEMBER 2017REVISED JUNE 2019  
11.2 文档支持  
11.2.1 相关文档  
如需相关文档,请参阅:  
DLPC120-Q1 产品文件夹,以获取 DLPC120-Q1 数据表  
TMS320F2802x Piccolo™ 微控制器》  
《具有 N 因数和串联电阻校正的 TMP411-Q1 ±1°C 远程和本地温度传感器》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
DLP is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 器件处理  
DMD 是光学器件,故应注意避免损坏玻璃窗口。有关正确处理 DMD 的说明,请参阅DMD 处理应用手册》。  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
35  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP3030AFYJQ1  
ACTIVE  
CPGA  
FYJ  
149  
33  
RoHS & Green  
Call TI  
N / A for Pkg Type  
-40 to 105  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

DLP3034-Q1

DLP® 车用 0.3 英寸 405nm 数字微镜器件 (DMD)
TI

DLP3034AFYJQ1

DLP® 车用 0.3 英寸 405nm 数字微镜器件 (DMD) | FYJ | 149 | -40 to 105
TI

DLP31D

SMD/BLOCK Type EMI Suppression Filters
MURATA

DLP31DN131ML4

On-Board Type (DC) EMI Suppression Filters
MURATA

DLP31DN131ML4B

Common Mode Choke Coil Film Type (Array) DLP31D Series (1206 Size)
MURATA

DLP31DN131ML4L

Common Mode Choke Coil Film Type (Array) DLP31D Series (1206 Size)
MURATA

DLP31DN161SL4B

Data Line Filter, 4 Function(s), 10V, 0.1A, EIA STD PACKAGE SIZE 1206
MURATA

DLP31DN161SL4K

Data Line Filter, 4 Function(s), 10V, 0.1A
MURATA

DLP31DN161SL4L

SMD/BLOCK Type EMI Suppression Filters
MURATA

DLP31DN201ML4

On-Board Type (DC) EMI Suppression Filters
MURATA

DLP31DN201ML4B

Common Mode Choke Coil Film Type (Array) DLP31D Series (1206 Size)
MURATA

DLP31DN201ML4L

Common Mode Choke Coil Film Type (Array) DLP31D Series (1206 Size)
MURATA