DLP650LE [TI]

DLP® 0.65 WXGA DMD;
DLP650LE
型号: DLP650LE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® 0.65 WXGA DMD

文件: 总39页 (文件大小:1555K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP650LE  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
DLP650LE 0.65 WXGA 数字微镜器件  
1 特性  
3 说明  
0.65 英寸对角线微镜阵列  
TI DLP® DLP650LE 数字微镜器件 (DMD) 是一款数控  
微机电系统 (MEMS) 空间照明调制器 (SLM)可用于  
实现明亮、经济实惠的 WXGA 示解决方案。  
DLP650LE DMD 过与 DLPC4430 示控制器、  
DLPA100 电源和电机驱动器以及 DLPA200 DMD 微镜  
驱动器配合使用可提供实现高性能系统的能力是需  
16:10 纵横比、高亮度和系统简单性的显示应用的  
理想之选。  
– 具有超100 万个微镜WXGA (1280 × 800)  
阵列  
10.8µm 微镜间距  
±12° 微镜倾斜角相对于平面)  
– 设计用于角落照明  
2×LVDS 输入数据总线  
DLP650LE 芯片组包括:  
器件信息  
封装(1)  
DLP470TE DMD  
DLPC4430 控制器  
封装尺寸标称值)  
器件型号  
DLPA100 控制器电源管理和电机驱动IC  
DLPA200 DMD 电源管IC  
DLP650LE  
FYL (149)  
32.20mm × 22.30mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
智能照明  
企业投影仪  
教育投影仪  
DLP650LE 简化应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS095  
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
Table of Contents  
7.3 Feature Description...................................................20  
7.4 Device Functional Modes..........................................20  
7.5 Optical Interface and System Image Quality  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 8  
6.1 Absolute Maximum Ratings........................................ 8  
6.2 Storage Conditions..................................................... 9  
6.3 ESD Ratings............................................................... 9  
6.4 Recommended Operating Conditions.........................9  
6.5 Thermal Information..................................................12  
6.6 Electrical Characteristics...........................................12  
6.7 Capacitance at Recommended Operating  
Conditions................................................................... 12  
6.8 Timing Requirements................................................13  
6.9 Window Characteristics............................................ 16  
6.10 System Mounting Interface Loads.......................... 16  
6.11 Micromirror Array Physical Characteristics............. 17  
6.12 Micromirror Array Optical Characteristics............... 18  
6.13 Chipset Component Usage Specification............... 18  
7 Detailed Description......................................................19  
7.1 Overview...................................................................19  
7.2 Functional Block Diagram.........................................19  
Considerations............................................................ 20  
7.6 Micromirror Array Temperature Calculation.............. 21  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle....... 23  
8 Application and Implementation..................................26  
8.1 Application Information............................................. 26  
8.2 Typical Application.................................................... 26  
9 Power Supply Recommendations................................29  
9.1 DMD Power Supply Power-Up Procedure................29  
9.2 DMD Power Supply Power-Down Procedure........... 29  
10 Device and Documentation Support..........................31  
10.1 第三方产品免责声明................................................31  
10.2 Device Support....................................................... 31  
10.3 Documentation Support.......................................... 31  
10.4 接收文档更新通知................................................... 32  
10.5 支持资源..................................................................32  
10.6 Trademarks.............................................................32  
10.7 静电放电警告.......................................................... 32  
10.8 术语表..................................................................... 32  
11 Mechanical, Packaging, and Orderable  
Information.................................................................... 33  
4 Revision History  
Changes from Revision * (November 2017) to Revision A (February 2023)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................ 1  
• 更新了整个文档中的表格、图和交叉参考的编号格式将控制器更新DLPC4430 更新了芯片组元件的链接.....1  
• 将控制器更新DLPC4430................................................................................................................................1  
Updated controller to DLPC4430......................................................................................................................19  
Updated controller to DLPC4430......................................................................................................................20  
Added a table for legacy part numbers and listed the mechanical ICD............................................................26  
Updated controller to DLPC4430......................................................................................................................26  
Updated controller to DLPC4430......................................................................................................................27  
Updated controller to DLPC4430......................................................................................................................27  
Updated controller to DLPC4430, updated the links.........................................................................................31  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
5 Pin Configuration and Functions  
1
3
5
7
9
11 13 15 17 19  
12 14 16 18 20  
2
4
6
8
10  
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
5-1. FYL Package 149-Pin CLGA Bottom View  
5-1. Pin Functions  
PIN  
NET LENGTH  
SIGNAL  
TYPE(1)  
DESCRIPTION  
(mils)  
NAME  
DATA INPUTS  
NO.  
D_AN(1)  
D_AN(3)  
D_AN(5)  
D_AN(7)  
D_AN(9)  
D_AN(11)  
D_AN(13)  
D_AN(15)  
D_AP(1)  
D_AP(3)  
D_AP(5)  
D_AP(7)  
D_AP(9)  
D_AP(11)  
D_AP(13)  
D_AP(15)  
G20  
H19  
F18  
E18  
C20  
B18  
A20  
B19  
H20  
G19  
G18  
D18  
D20  
A18  
B20  
A19  
711.64  
711.60  
711.60  
711.60  
711.60  
711.60  
711.60  
711.58  
711.66  
711.61  
711.59  
711.60  
711.59  
711.58  
711.59  
711.59  
LVDS  
I
LVDS pair for Data Bus A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP650LE  
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
NET LENGTH  
(mils)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
K20  
J19  
D_BN(1)  
D_BN(3)  
D_BN(5)  
D_BN(7)  
D_BN(9)  
D_BN(11)  
D_BN(13)  
D_BN(15)  
D_BP(1)  
D_BP(3)  
D_BP(5)  
D_BP(7)  
D_BP(9)  
D_BP(11)  
D_BP(13)  
D_BP(15)  
DCLK_AN  
DCLK_AP  
DCLK_BN  
DCLK_BP  
711.61  
711.59  
711.59  
711.6  
L18  
M18  
P20  
R18  
T20  
R19  
J20  
711.6  
711.59  
711.59  
711.59  
711.61  
711.6  
LVDS  
I
LVDS pair for Data Bus B  
K19  
K18  
N18  
N20  
T18  
R20  
T19  
D19  
E19  
N19  
M19  
711.58  
711.58  
711.6  
711.61  
711.59  
711.6  
711.59  
711.59  
711.6  
I
I
LVDS pair for Data Clock A  
LVDS pair for Data Clock B  
711.61  
DATA CONTROL INPUTS  
SCTRL_AN  
F20  
E20  
L20  
M20  
711.62  
711.6  
I
I
LVDS pair for Serial Control (Sync) A  
LVDS pair for Serial Control (Sync) B  
SCTRL_AP  
SCTRL_BN  
711.59  
711.59  
SCTRL_BP  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP650LE  
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
NET LENGTH  
(mils)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
MICROMIRROR BIAS RESET INPUTS  
MBRST(0)  
C3  
D2  
D3  
E2  
G3  
E1  
G2  
G1  
N3  
M2  
M3  
L2  
507.20  
576.83  
545.78  
636.33  
618.42  
738.25  
718.82  
777.04  
543.29  
612.93  
580.97  
672.43  
653.61  
764.00  
764.37  
813.14  
MBRST(1)  
MBRST(2)  
MBRST(3)  
MBRST(4)  
MBRST(5)  
MBRST(6)  
Nonlogic compatible Micromirror Bias Reset  
signals. Connected directly to the array of  
pixel micromirrors. Used to hold or release  
the micromirrors. Bond Pads connect to an  
internal pulldown resistor.  
MBRST(7)  
I
MBRST(8)  
MBRST(9)  
MBRST(10)  
MBRST(11)  
MBRST(12)  
MBRST(13)  
MBRST(14)  
MBRST(15)  
SCP CONTROL  
J3  
L1  
J2  
J1  
Serial Communications Port Clock. Bond Pad  
connects to an internal pulldown circuit.  
SCPCLK  
SCPDI  
A8  
A5  
I
I
Serial Communications Port Data. Bond Pad  
connects to an internal pulldown circuit.  
Active low serial communications port  
enable. Bond pad connects to an internal  
pulldown circuit.  
SCPENZ  
B7  
A9  
I
SCPDO  
O
Serial communications port output  
OTHER SIGNALS  
EVCC  
A3  
A4  
P
I
Do not connect on the DLP system board.  
Data Bandwidth Mode Select. Bond Pad  
connects to an internal pulldown circuit.  
Refer to Table 4 for DLP system board  
connection information.  
MODE_A  
415.1  
Active Low Device Reset. Bond Pad  
connects to an internal pulldown circuit.  
PWRDNZ  
B9  
110.38  
I
POWER  
B11, B12,  
B13, B16,  
R12, R13,  
R16, R17  
Power supply for low voltage CMOS logic.  
Power supply for normal high voltage at  
micromirror address electrodes  
(2)  
(2)  
VCC  
P
A12, A14,  
A16, T12,  
T14, T16  
Power supply for low voltage CMOS LVDS  
interface  
VCCI  
P
P
Power supply for high voltage CMOS logic.  
Power supply for stepped high voltage at  
micromirror address electrodes  
C1, D1,  
M1, N1  
(2)  
VOFFSET  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP650LE  
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
NET LENGTH  
(mils)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
A6, A11,  
A13, A15,  
A17, B4,  
B5, B8,  
B14, B15,  
B17, C2,  
C18, C19,  
F1, F2,  
F19, H1,  
H2, H3,  
VSS (Ground)(3)  
P
Common Return for all power  
H18, J18,  
K1, K2,  
L19, N2,  
P18, P19,  
R4, R9,  
R14, R15,  
T7, T13,  
T15, T17  
RESERVED SIGNALS  
Connect to GND on the DLP system board.  
Bond Pad connects to an internal pulldown  
circuit.  
RESERVED_FC  
R7  
R8  
T8  
B6  
40.64  
94.37  
50.74  
I
I
I
I
Connect to GND on the DLP system board.  
Bond Pad connects to an internal pulldown  
circuit.  
RESERVED_FD  
RESERVED_PFE  
RESERVED_STM  
Connect to ground on the DLP system board.  
Bond Pad connects to an internal pulldown  
circuit.  
Connect to GND on the DLP system board.  
Bond Pad connects to an internal pulldown  
circuit.  
RESERVED_TP0  
RESERVED_TP1  
RESERVED_TP2  
RESERVED_BA  
RESERVED_BB  
RESERVED_RA1  
RESERVED_RB1  
RESERVED_TS  
RESERVED_A(0)  
RESERVED_A(1)  
RESERVED_A(2)  
RESERVED_A(3)  
RESERVED_M(0)  
RESERVED_M(1)  
RESERVED_S(0)  
RESERVED_S(1)  
RESERVED_IRQZ  
RESERVED_OEZ  
RESERVED_RSTZ  
RESERVED_STR  
RESERVED_STR  
R10  
T11  
R11  
T10  
A10  
T9  
93.3  
I
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
263.74  
281.47  
148.85  
105.28  
I
I
O
O
O
O
O
A7  
B10  
T2  
145.42  
T3  
NC  
Do not connect on the DLP system board.  
R3  
T4  
R2  
P1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
T1  
R1  
T6  
R5  
R6  
T5  
T5  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP650LE  
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
NET LENGTH  
(mils)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
E3, F3,  
K3, L3  
RESERVED_VB  
RESERVED_VR  
NC  
NC  
Do not connect on the DLP system board.  
Do not connect on the DLP system board.  
B2, B3,  
P2, P3  
(1) I = Input, O = Output, G = Ground, A = Analog, P = Power, NC = No Connect.  
(2) Power supply pins required for all DMD operating modes are VSS, VBIAS, VCC, VCCI, VOFFSET, and VRESET  
(3) VSS must be connected for proper DMD operation.  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP650LE  
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted).(1)  
MIN  
MAX  
UNIT  
SUPPLY VOLTAGES  
VCC  
Supply voltage for LVCMOS core logic(2)  
Supply voltage for LVDS Interface(2)  
Micromirror Electrode and HVCMOS voltage(2) (3)  
Input voltage for MBRST(15:0)(2)  
4
4
V
V
V
V
V
0.5  
0.5  
0.5  
28  
VCCI  
VOFFSET  
VMBRST  
|VCCI VCC  
9
28  
0.3  
Supply voltage delta (absolute value)(4)  
|
INPUT VOLTAGES  
Input voltage for all other input pins(2)  
VCC + 0.3  
700  
V
0.5  
|VID|  
Input differential voltage (absolute value)(5)  
mV  
CLOCKS  
ƒCLOCK  
Clock frequency for LVDS interface, DCLK_A  
Clock frequency for LVDS interface, DCLK_B  
400  
400  
MHz  
MHz  
ƒCLOCK  
ENVIRONMENTAL  
Temperature, operating(6)  
0
90  
90  
°C  
°C  
TARRAY and TWINDOW  
Temperature, nonoperating(6)  
40  
Absolute Temperature delta between any point on the window edge and the  
ceramic test point TP1(7)  
|TDELTA  
TDP  
|
30  
81  
°C  
°C  
Dew point temperature, operating and nonoperating (noncondensing)  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltages are referenced to common ground VSS. VBIAS, VCC, VCCI, VOFFSET, and VRESET power supplies are all required for all DMD  
operating modes.  
(3) VOFFSET supply transients must fall within specified voltages.  
(4) Exceeding the recommended allowable voltage difference between VCC and VCCI may result in excessive current draw.  
(5) The maximum LVDS input voltage rating applies when each input of a differential pair is at the same voltage potential.  
(6) The highest temperature of the active array (as calculated using 7.6) or of any point along the window edge as defined in 7-1.  
The locations of thermal test points TP2, TP3, TP4, and TP5 in 7-1 are intended to measure the highest window edge temperature.  
If a particular application causes another point on the window edge to be at a higher temperature, then that point should be used.  
(7) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-1. The window test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to result in the worst-case delta. If a particular  
application causes another point on the window edge to result in a larger delta temperature, then that point should be used.  
(8) VOFFSET supply transients must fall within specified voltages.  
(9) Excludes micromirror Bias Reset inputs MBRST(15:0).  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
 
 
 
 
 
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
6.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system.  
MIN  
MAX  
80  
UNIT  
°C  
TDMD  
DMD storage temperature  
40  
TDP-AVG  
TDP-ELR  
CTELR  
Average dew point temperature (non-condensing)(1)  
Elevated dew point temperature range (non-condensing)(2)  
Cumulative time in elevated dew point temperature range  
28  
°C  
28  
36  
°C  
24 Months  
(1) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(2) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
6.3 ESD Ratings  
VALUE  
±2000  
< 250  
UNIT  
All pins except MBRST(15:0)  
Pins MBRST(15:0)  
Electrostatic  
discharge  
Human-body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in  
this data sheet is achieved when operating the device within the limits defined by this table. No level of performance is  
implied when operating the device above or below these limits.  
MIN NOM  
MAX  
UNIT  
VOLTAGE SUPPLY  
VCC  
Supply voltage for LVCMOS core logic(1)  
Supply voltage for LVDS interface(1)  
3.0  
3.0  
3.3  
3.3  
8.5  
3.6  
3.6  
V
V
V
V
V
VCCI  
VOFFSET  
VMBRST  
|VCC VCCI  
Micromirror electrode and HVCMOS voltage(1) (2)  
Micromirror bias / reset voltage(1)  
8.25  
27  
8.75  
26.5  
0.3  
Supply voltage delta (absolute value)(3)  
0
|
LVCMOS INTERFACE  
VIH  
Input high voltage  
1.7  
2.5  
VCC + 0.3  
0.7  
V
V
VIL  
Input low voltage  
0.3  
IOH  
High level output current  
Low level output current  
PWRDNZ pulse width(4)  
mA  
mA  
ns  
20  
IOL  
15  
tPWRDNZ  
10  
SCP INTERFACE  
ƒSCPCLK  
SCP clock frequency(5)  
50  
0
500  
900  
kHz  
ns  
Propagation delay, clock to Q, from rising-edge of SCPCLK to valid  
SCPDO(6)  
tSCP_PD  
tSCP_DS  
tSCP_DH  
SCPDI clock setup time (before SCPCLK falling-edge)(6)  
SCPDI hold time (after SCPCLK falling-edge)(6)  
800  
900  
ns  
ns  
Time between falling-edge of SCPENZ and the rising-edge of  
SCPCLK.(5)  
tSCP_NEG_ENZ  
1
1
us  
us  
s
Time between falling-edge of SCPCLK and the rising-edge of  
SCPENZ  
SCP_POS_ENZ  
Time required for SCP output buffer to recover after SCPENZ  
(from tristate)  
tSCP_OUT_EN  
192/ƒDCLK  
tSCP_PW_ENZ  
tr  
SCPENZ inactive pulse width (high level)  
1
1/ƒscpclk  
Rise Time (20% to 80%). See (6)  
.
200  
ns  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP650LE  
 
 
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
6.4 Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in  
this data sheet is achieved when operating the device within the limits defined by this table. No level of performance is  
implied when operating the device above or below these limits.  
MIN NOM  
MAX  
UNIT  
tf  
Fall time (80% to 20%). See (6)  
.
200  
ns  
LVDS INTERFACE  
Clock frequency for LVDS interface (all channels), DCLK(7)  
Input differential voltage (absolute value)(8)  
Common mode voltage(8)  
320  
330  
600  
MHz  
mV  
mV  
mV  
ns  
ƒCLOCK  
|VID|  
100  
0
400  
VCM  
1200  
VLVDS  
LVDS voltage(8)  
2000  
10  
tLVDS_RSTZ  
Time required for LVDS receivers to recover from PWRDNZ  
Internal differential termination resistance  
Line differential impedance (PWB/trace)  
ZIN  
95  
85  
105  
95  
Ω
ZLINE  
90  
Ω
ENVIRONMENTAL  
Array temperature, long-term operational(9) (10) (11)  
Array temperature, short-term operational(10) (13)  
10  
0
40 to 70(12)  
°C  
°C  
°C  
TARRAY  
10  
90  
85  
Window temperature (all part numbers except *1280-6434B)(14) (15)  
Window temperature (part number 1280-6434B)(14)  
10  
10  
TWINDOW  
T|DELTA |  
Absolute temperature delta between any point on the window edge  
and the ceramic test point TP1(16)  
°C  
26  
TDP -AVG  
TDP-ELR  
CTELR  
ILLUV  
Average dew point average temperature (non-condensing)(17)  
Elevated dew point temperature range (non-condensing)(18)  
Cumulative time in elevated dew point temperature range  
Illumination Wavelengths < 395 nm(9)  
28  
36  
°C  
°C  
28  
24 Months  
2.00 mW/cm2  
Thermally limited  
mW/cm2  
0.68  
ILLVIS  
ILLIR  
Illumination Wavelengths between 395 nm and 800 nm  
Illumination Wavelengths > 800 nm  
10 mW/cm2  
(1) All voltages are referenced to common ground VSS. VBIAS, VCC, VCCI, VOFFSET, and VRESET power supplies are all required for proper  
DMD operation. VSS must also be connected.  
(2) VOFFSET supply transients must fall within specified max voltages.  
(3) To prevent excess current, the supply voltage delta |VCCI VCC| must be less than the specified limit. See 9, 9-1, and 9-2.  
(4) PWRDNZ input pin resets the SCP and disables the LVDS receivers. PWRDNZ input pin overrides SCPENZ input pin and tri-states  
the SCPDO output pin.  
(5) The SCP clock is a gated clock. Duty cycle must be 50% ± 10%. SCP parameter is related to the frequency of DCLK.  
(6) See 6-2.  
(7) See LVDS Timing Requirements in 6.8 and 6-6.  
(8) See 6-5 LVDS Waveform Requirements.  
(9) Simultaneous exposure of the DMD to the maximum 6.4 for temperature and UV illumination will reduce device lifetime.  
(10) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1) shown in 7-1 and the package thermal resistance using 7.6.  
(11) Long-term is defined as the usable life of the device.  
(12) Per 6-1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. See 7.7 for a definition of micromirror landed duty cycle.  
(13) Array temperatures beyond those specified as long-term are recommended for short-term conditions only (power-up). Short-term is  
defined as cumulative time over the usable life of the device and is less than 500 hours.  
(14) The locations of thermal test points TP2, TP3, TP4, and TP5 in 7-1 are intended to measure the highest window edge temperature.  
For most applications, the locations shown are representative of the highest window edge temperature. If a particular application  
causes additional points on the window edge to be at a higher temperature, test points should be added to those locations.  
(15) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including Pond of Micromirrors  
(POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily  
been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not  
been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM)  
will contribute to thermal limitations described in this document, and may negatively affect lifetime.  
(16) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-1. The window test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to result in the worst case delta temperature. If a  
particular application causes another point on the window edge to result in a larger delta temperature, that point should be used.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
(17) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range'.  
(18) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
80  
70  
60  
50  
40  
30  
0/100  
100/0  
5/95 10/90 15/85 20/80 25/75 30/70 35/65 40/60 45/55 50/50  
65/35  
95/5  
90/10  
85/15  
80/20  
75/25  
70/30  
60/40  
55/45  
50/50  
Micromirror Landed Duty Cycle  
6-1. Maximum Recommended Array TemperatureDerating Curve  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP650LE  
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
6.5 Thermal Information  
DLP650LE  
THERMAL METRIC  
FYL Package  
149 PINS  
0.50  
UNIT  
Thermal resistance, active area to test point 1 (TP1)(1)  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in the 6.4.  
The total heat load on the DMD is largely driven by the incident light absorbed by the active area, although other contributions include  
light energy absorbed by the window aperture and electrical power dissipation of the array.  
Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal  
load in this area can significantly degrade the reliability of the device.  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
VCC = 3 V, IOH = 20 mA  
VCC = 3.6 V, IOL = 15 mA  
VCC = 3.6 V  
MIN  
TYP  
MAX  
UNIT  
V
VOH  
VOL  
IOZ  
High-level output voltage  
Low-level output voltage  
High-impedance output current  
Low-level input current  
High-level input current (1)  
Supply current VCC (2)  
Supply current VCCI (2)  
Supply current VOFFSET (3)  
Supply input power total  
2.4  
0.4  
10  
V
µA  
µA  
µA  
mA  
mA  
mA  
mW  
IIL  
VCC = 3.6 V, VI = 0  
VCC = 3.6 V, VI = VCC  
VCC = 3.6 V  
60  
200  
479  
309  
25  
IIH  
ICC  
ICCI  
IOFFSET  
VCCI = 3.6 V  
VOFFSET = 8.75 V  
f = 1 MHz  
3060  
(1) Applies to LVCMOS pins only. Excludes LVDS pins and test pad pins.  
(2) To prevent excess current, the supply voltage delta |VCCI VCC| must be less than the specified limit in 6.4.  
(3) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than the specified limit in 6.4.  
6.7 Capacitance at Recommended Operating Conditions  
over operating free-air temperature range, ƒ= 1 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
10  
UNIT  
pF  
CI  
Input capacitance  
CO  
CIM  
Output capacitance  
10  
pF  
MBRST(15:0) input capacitance  
1280 × 800 array all inputs interconnected  
230  
290  
pF  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
 
 
 
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
6.8 Timing Requirements  
Over 6.4 (unless otherwise noted).  
PARAMETER DESCRIPTION  
SIGNAL  
MIN  
TYP  
MAX  
UNIT  
LVDS (1)  
tC  
Clock cycle duration for DCLK_A  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
3.03  
3.03  
1.36  
1.36  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
1.51  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tC  
Clock cycle duration for DCLK_B  
tW  
Pulse duration for DCLK_A  
1.52  
1.52  
tW  
Pulse duration for DCLK_B  
tSU  
tSU  
tSU  
tSU  
tH  
Setup time for D_A(15:0) before DCLK_A  
Setup time for D_A(15:0) before DCLK_B  
Setup time for SCTRL_A before DCLK_A  
Setup time for SCTRL_B before DCLK_B  
Hold time for D_A(15:0) after DCLK_A  
Hold time for D_B(15:0) after DCLK_B  
Setup time for SCTRL_A after DCLK_A  
Setup time for SCTRL_B after DCLK_B  
Channel B relative to Channel A(2) (3)  
tH  
tH  
tH  
tSKEW  
1.51  
(1) See 6-6 for timing requirements for LVDS.  
(2) Channel A (Bus A) includes the following LVDS pairs: DCLK_AN and DCLK_AP, SCTRL_AN and SCTRL_AP, D_AN(15:0) and  
D_AP(15:0).  
(3) Channel B (Bus B) includes the following LVDS pairs: DCLK_BN and DCLK_BP, SCTRL_BN and SCTRL_BP, D_BN(15:0) and  
D_BP(15:0).  
SCPCLK falling–edge capture for SCPDI.  
tSCP_NEG_ENZ  
tSCP_POS_ENZ  
SCPCLK rising–edge launch for SCPDO.  
50%  
50%  
SCPENZ  
tSCP_DS  
tSCP_DH  
50%  
50%  
DI  
SCPDI  
tC  
fSCPCLK = 1 / tC  
50%  
50%  
50%  
50%  
SCPCLK  
tSCP_PD  
50%  
DO  
SCPDO  
6-2. SCP Timing Requirements  
See 6.4 for fSCPCLK, tSCP_DS, tSCP_DH, and tSCP_PD specifications.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP650LE  
 
 
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
See 6.4 for tr and tf specifications and conditions.  
LVDS Interface  
SCP Interface  
1.0 * VCC  
1.0 * V  
ID  
V
CM  
0.0 * VCC  
0.0 * V  
ID  
tr  
tf  
tr  
tf  
Not to scale.  
Refer to the 6.8.  
Refer to 5 for list of LVDS pins and SCP pins.  
6-3. Rise Time and Fall Time  
Device pin  
output under test  
Tester channel  
CLOAD  
6-4. Test Load Circuit for Output Propagation Measurement  
For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account.  
System designers should use IBIS or other simulation tools to correlate the timing reference load to a system  
environment. See 6-4.  
Not to Scale  
V
|
|
VID max  
LVDS max = VCM max  
1/2 *  
+
tf  
VCM  
VID  
tr  
V
|
|
VID max  
LVDS min = VCM min  
1/2 *  
œ
6-5. LVDS Waveform Requirements  
See 6.4 for VCM, VID, and VLVDS specifications and conditions.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
t
c
Not to Scale  
t
t
w
w
DCLK_P  
DCLK_N  
50%  
t
h
t
h
t
t
t
su  
su  
D_P(0:?)  
D_N(0:?)  
50%  
t
h
t
h
t
su  
su  
SCTRL_P  
SCTRL_N  
50%  
t
t
skew  
c
t
t
w
w
DCLK_P  
DCLK_N  
50%  
t
h
t
h
t
t
t
t
su  
su  
D_P(0:?)  
D_N(0:?)  
50%  
t
h
t
h
su  
su  
SCTRL_P  
SCTRL_N  
50%  
6-6. Timing Requirements  
See 6.8 for timing requirements and LVDS pairs per channel (bus) defining D_P(0:x) and D_N(0:x).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP650LE  
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
6.9 Window Characteristics  
6-1. DMD Window Characteristics  
PARAMETER  
MIN  
NOM  
Corning Eagle  
XG  
Window material  
Window Refractive Index at 546.1 nm  
1.5119  
Window Transmittance, minimum within the wavelength range 420680 nm. Applies to all angles 0°30°  
97%  
97%  
AOI. (1) (2)  
Window Transmittance, average over the wavelength range 420680 nm. Applies to all angles 30°45°  
AOI. (1) (2)  
(1) Single-pass through both surfaces and glass  
(2) AOIAngle of incidence is the angle between an incident ray and the normal to a reflecting or refracting surface.  
6.10 System Mounting Interface Loads  
6-2. System Mounting Interface Loads  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
Condition 1:  
Thermal Interface area(1)  
Electrical Interface area(1)  
Condition 2:  
11.3  
11.3  
kg  
kg  
Thermal Interface area(1)  
Electrical Interface area(1)  
0
kg  
kg  
22.6  
(1) Uniformly distributed within area shown in 6-7  
Electrical Interface Area  
Thermal Interface Area  
6-7. System Mounting Interface Loads  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
 
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
6.11 Micromirror Array Physical Characteristics  
6-3. Micromirror Array Physical Characteristics  
PARAMETER DESCRIPTION  
VALUE  
1280  
800  
UNIT  
Number of active columns(1)  
Number of active rows(1)  
M
N
P
micromirrors  
Micromirror (pixel) pitch (1)  
10.8  
µm  
Micromirror active array width(1)  
Micromirror active array height(1)  
Micromirror active border size(2)  
Micromirror pitch × number of active columns  
Micromirror pitch × number of active rows  
Pond of Micromirror (POM)  
13.824  
8.640  
10  
mm  
mm  
micromirrors / side  
(1) See 6-8.  
(2) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the Pond Of  
Mirrors (POM). These micromirrors are structurally and/or electrically prevented from tilting toward the bright or onstate but still  
require an electrical bias to tilt toward off.”  
0
1
2
3
Active Micromirror Array  
N
M x N Micromirrors  
N œ 4  
N œ 3  
N œ 2  
N œ 1  
M
P
Pond Of Micromirrors (POM) omitted for clarity.  
Details omitted for clarity.  
Not to scale.  
P
P
P
6-8. Micromirror Array Physical Characteristics  
Refer to 6.11 table for M, N, and P specifications.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP650LE  
 
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
6.12 Micromirror Array Optical Characteristics  
6-4. Micromirror Array Optical Characteristics  
PARAMETER  
MIN  
NOM  
MAX  
13  
UNIT  
Mirror Tilt angle, variation device to device(1) (2) (3) (4)  
11  
12  
degrees  
Adjacent micromirrors  
0
Number of out-of-specification micromirrors(5)  
micromirrors  
Non-adjacent  
micromirrors  
10  
(1) Measured relative to the plane formed by the overall micromirror array  
(2) Variation can occur between any two individual micromirrors located on the same device or located on different devices.  
(3) Additional variation exists between the micromirror array and the package datums. See the package drawing.  
(4) See 6-9.  
(5) An out-of-specification micromirror is defined as a micromirror that is unable to transition between the two landed states.  
备注  
This number is specified under conditions described above and deviations from the specified  
conditions could result in decreased efficiency.  
Pond Of Micromirrors (POM) omitted for clarity.  
Illumination  
Details omitted for clarity. Not to scale.  
0
1
2
3
On-State  
Tilt Direction  
45|  
Off-State  
Tilt Direction  
N œ 4  
N œ 3  
N œ 2  
N œ 1  
6-9. Micromirror Landed Orientation and Tilt  
Refer to 6.11 table for M, N, and P specifications.  
6.13 Chipset Component Usage Specification  
Reliable function and operation of the DLP650LE DMD requires that it be used in conjunction with the other  
components of the applicable DLP chipset, including those components that contain or implement TI DMD  
control technology. TI DMD control technology consists of the TI technology and devices used for operating or  
controlling a DLP DMD.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
 
 
 
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
7 Detailed Description  
7.1 Overview  
The DMD is a 0.65 inch diagonal spatial light modulator which consists of an array of highly reflective aluminum  
micromirrors. The DMD is an electrical input, optical output micro-electrical-mechanical system (MEMS). The  
electrical interface is Low Voltage Differential Signaling (LVDS). The DMD consists of a two-dimensional array of  
1-bit CMOS memory cells. The array is organized in a grid of M memory cell columns by N memory cell rows.  
Refer to 7.2. The positive or negative deflection angle of the micromirrors can be individually controlled by  
changing the address voltage of underlying CMOS addressing circuitry and micromirror reset signals (MBRST).  
The DLP650LE DMD is part of the chipset comprising of the DLP650LE DMD, the DLPC4430 display controller,  
the DLPA100 power and motor driver and the DLPA200 micromirror driver. To ensure reliable operation, the  
DLP650LE DMD must always be used with the DLPC4430 display controller, the DLPA100 power and motor  
driver and the DLPA200 micromirror driver.  
7.2 Functional Block Diagram  
Channel A Interface  
Column Read and Write  
Control  
Control  
(0,0)  
Voltages  
Word Lines  
Voltage  
Generators  
Micromirror Array  
Row  
(M-1, N-1)  
Column Read and Write  
Channel B Interface  
Control  
Control  
Copyright © 2017, Texas Instruments Incorporated  
For pin details on Channels A, B refer to 5 and LVDS Interface section of 6.8.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP650LE  
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
7.3 Feature Description  
7.3.1 Power Interface  
The DMD requires 3 DC voltages: DMD_P3P3V, VOFFSET, and MBRST. DMD_P3P3V is created by the DLPA100  
power and motor driver and the DLPA200 DMD micromirror driver. Both the DLPA100 and DLPA200 create the  
main DMD voltages, as well as powering various peripherals (TMP411, I2C, and TI level translators).  
DMD_P3P3V provides the VCC voltage required by the DMD. VOFFSET (8.5V) and MBRST are made by the  
DLPA200 and are supplied to the DMD to control the micromirrors.  
7.3.2 Timing  
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. 6-4 shows an equivalent test load circuit for the output  
under test. Timing reference loads are not intended as a precise representation of any particular system  
environment or depiction of the actual load presented by a production test. System designers should use IBIS or  
other simulation tools to correlate the timing reference load to a system environment. The load capacitance  
value stated is only for characterization and measurement of AC timing signals. This load capacitance value  
does not indicate the maximum load the device is capable of driving.  
7.4 Device Functional Modes  
DMD functional modes are controlled by the DLPC4430 display controller. See the DLPC4430 display controller  
data sheet or contact a TI applications engineer.  
7.5 Optical Interface and System Image Quality Considerations  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
System optical performance and image quality strongly relate to optical system design parameter trade offs.  
Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
7.5.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area  
should be the same. This angle should not exceed the nominal device micromirror tilt angle unless appropriate  
apertures are added in the illumination and/or projection pupils to block out flat-state and stray light from the  
projection lens. The micromirror tilt angle defines DMD capability to separate the "ON" optical path from any  
other light path, including undesirable flat-state specular reflections from the DMD window, DMD border  
structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture  
exceeds the micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger  
than the illumination numerical aperture angle (and vice versa), contrast degradation, and objectionable artifacts  
in the displays border and/or active area could occur.  
7.5.2 Pupil Match  
TIs optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable  
artifacts in the displays border and/or active area, which may require additional system apertures to control,  
especially if the numerical aperture of the system exceeds the pixel tilt angle.  
7.5.3 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating  
conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window  
aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system  
should be designed to limit light flux incident anywhere on the window aperture from exceeding approximately  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
10% of the average flux level in the active area. Depending on the particular systems optical architecture,  
overfill light may have to be further reduced below the suggested 10% level in order to be acceptable.  
7.6 Micromirror Array Temperature Calculation  
Array  
TP2  
2X 12.0  
TP5  
TP4  
2X 16.7  
TP3  
Window Edge  
(4 surfaces)  
TP3 (TP2)  
TP1  
TP5  
TP4  
4.5  
16.1  
TP1  
7-1. DMD Thermal Test Points  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP650LE  
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from  
measurement points on the outside of the package, the package thermal resistance, the electrical power, and  
the illumination heat load. The relationship between array temperature and the reference ceramic temperature  
(thermal test TP1 in 7-1) is provided by the following equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
QARRAY = QELECTRICAL + QILLUMINATION  
QILLUMINATION = (CL2W × SL)  
)
(1)  
where  
TARRAY = computed array temperature (°C)  
TCERAMIC = measured ceramic temperature (°C) (TP1 location)  
RARRAY-TO-CERAMIC = thermal resistance of package (specified in 6.5) from array to ceramic TP1 (°C/Watt)  
QARRAY = Total DMD power (electrical + absorbed) on the array (Watts)  
QELECTRICAL = Nominal Electrical Power  
CL2W = Conversion constant for screen lumens to power on DMD (Watts/Lumen)  
SL = measured screen Lumens  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 1.5 Watts.  
Absorbed optical power from the illumination source is variable and depends on the operating state of the  
micromirrors and the intensity of the light source. Equations shown above are valid for a 1-chip DMD system with  
total projection efficiency through the projection lens from DMD to the screen of 87%.  
The conversion constant CL2W is based on the DMD micromirror array characteristics. It assumes a spectral  
efficiency of 300 lm/Watt for the projected light and illumination distribution of 83.7% on the DMD active array,  
and 16.3% on the DMD array border and window aperture.  
Sample Calculations:  
TCERAMIC = 55.0°C  
SL = 3000 lm  
QELECTRICAL = 1.5 W  
CL2W = 0.00274 W/lm  
QARRAY = 1.5 W + (0.00274 × 3000 lm) = 9.72 W  
TARRAY = 55.0°C + (9.72 W × 0.50°C/W) = 59.9°C  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP650LE  
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle  
7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the On state versus the amount of time the same  
micromirror is landed in the Off state.  
As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the On state 100% of the  
time (and in the Off state 0% of the time); whereas 0/100 would indicate that the pixel is in the Off state 100% of  
the time. Likewise, 50/50 indicates that the pixel is On 50% of the time and Off 50% of the time.  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (On or Off), the two numbers (percentages)  
always add to 100.  
7.7.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMDs micromirror array (also called the active array) to an asymmetric  
landed duty cycle for a prolonged period of time can reduce the DMDs usable life.  
Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed  
duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed  
duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly  
asymmetrical.  
7.7.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD Temperature and Landed Duty Cycle interact to affect the DMDs usable life, and this  
interaction can be exploited to reduce the impact that an asymmetrical Landed Duty Cycle has on the DMDs  
usable life. This is quantified in the de-rating curve shown in 6-1. The importance of this curve is that:  
All points along this curve represent the same usable life.  
All points above this curve represent lower usable life (and the further away from the curve, the lower the  
usable life).  
All points below this curve represent higher usable life (and the further away from the curve, the higher the  
usable life).  
In practice, this curve specifies the Maximum Operating DMD Temperature at a given long-term average Landed  
Duty Cycle.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP650LE  
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the Landed Duty Cycle of a given pixel follows from the image content being  
displayed by that pixel.  
For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel  
will experience a 100/0 Landed Duty Cycle during that time period. Likewise, when displaying pure-black, the  
pixel will experience a 0/100 Landed Duty Cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the Landed Duty Cycle tracks one-to-one with the gray scale value, as shown in 7-1.  
7-1. Grayscale Value and Landed Duty Cycle  
GRAYSCALE VALUE  
LANDED DUTY CYCLE  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
0/100  
10/90  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
80/20  
90/10  
100/0  
Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from  
0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color  
cycle time for each primary color, where color cycle timeis the total percentage of the frame time that a  
given primary must be displayed in order to achieve the desired white point.  
During a given period of time, the landed duty cycle of a given pixel can be calculated as follows:  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) +  
(Blue_Cycle_% × Blue_Scale_Value)  
Where  
Red_Cycle_%, Green_Cycle_%, and Blue_Cycle_%, represent the percentage of the frame time that Red,  
Green, and Blue are displayed (respectively) to achieve the desired white point. (1)  
For example, assume that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (in  
order to achieve the desired white point), then the Landed Duty Cycle for various combinations of red, green,  
and blue color intensities would be as shown in 7-2 and 7-3.  
7-2. Example Landed Duty Cycle for Full-Color, Color Percentage  
RED CYCLE  
GREEN CYCLE  
BLUE CYCLE  
50%  
20%  
30%  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
7-3. Example Landed Duty Cycle for Full-Color  
RED SCALE  
GREEN SCALE  
BLUE SCALE  
LANDED DUTY CYCLE  
0%  
0%  
0%  
0/100  
50/50  
20/80  
30/70  
6/94  
100%  
0%  
0%  
0%  
100%  
0%  
0%  
0%  
100%  
0%  
12%  
0%  
0%  
35%  
0%  
7/93  
0%  
0%  
60%  
0%  
18/82  
70/30  
50/50  
80/20  
13/87  
25/75  
24/76  
100/0  
100%  
0%  
100%  
100%  
0%  
100%  
100%  
0%  
100%  
12%  
0%  
35%  
35%  
60%  
60%  
100%  
12%  
100%  
0%  
100%  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP650LE  
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
Texas Instruments DLP® technology is a micro-electro-mechanical systems (MEMS) technology that modulates  
light using a digital micromirror device (DMD). The DMD is a spatial light modulator, which reflects incoming light  
from an illumination source to one of two directions, either towards the projection optics, or the collection optics.  
The large micromirror array size and ceramic package provides great thermal performance for bright display  
applications. Typical applications using the DLP650LE include smart lighting, education projectors, and business  
projectors. The following orderables have been replaced by the DLP650LE:  
Device Information  
PART NUMBER  
DLP650LET  
1280-6434B  
1280-6438B  
1280-6439B  
1280-643AB  
PACKAGE  
FYL (149)  
FYL (149)  
FYL (149)  
FYL (149)  
FYL (149)  
BODY SIZE (NOM)  
32.20 mm × 22.30 mm  
32.20 mm × 22.30 mm  
32.20 mm × 22.30 mm  
32.20 mm × 22.30 mm  
32.20 mm × 22.30 mm  
MECHANICAL ICD  
2512372  
2512372  
2512372  
2512372  
2512372  
8.2 Typical Application  
The DLP650LE DMD combined with a DLPC4430 digital controller, DLPA100 power management device, and  
DLPA200 micromirror driver provides WXGA resolution for bright, colorful display applications. A typical display  
system using the DLP650LE and additional system components is shown in 8-1.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
12V  
12V  
1.21V  
1.8V  
3.3V  
5V  
1.21V  
1.8V  
3.3V  
5V  
DLPA100  
Controller  
PMIC  
DLPA100  
Controller  
PMIC  
Flash  
(23) (16)  
CW Driver  
CW Driver  
ADDR  
DATA  
Wheel Motor #2  
CTRL  
Wheel Motor #1  
CTRL  
CW_INDEX1  
CW_INDEX1  
FE CTRL  
DATA  
3D L/R  
CTRL  
2xLVDS  
SCP CTRL  
DLPC4430  
Controller  
Front End Device  
DLP DMD  
1.8 V  
USB CTRL  
GPIO  
1.15V  
1.8V  
3.3V  
VBIAS  
VOFFSET  
VRESET  
CTRL  
3.3V  
DMD PMIC  
(Power Management IC)  
(3)  
I2C  
EEPROM  
TI DLP chipset  
Third party component  
8-1. Typical DLPC4430 Application (LED - top, LPCW - bottom)  
8.2.1 Design Requirements  
The DLP 0.65 WXGA chipset can be used to create a powerful projection system. This chipset includes the  
DLP650LE, DLPC4430, DLPA100, and the DLPA200. The DLP650LE is used as the core imaging device in the  
display system and contains a 0.65-inch array of micromirrors. The DLPC4430 controller is the digital interface  
between the DMD and the rest of the system. The controller drives the DMD by taking the converted source data  
from the front end receiver and transmitting it to the DMD over a high speed interface. The DLPA100 power  
management device provides voltage regulators for the controller and colorwheel motor control. The DLPA200  
provides the power and sequencing to drive the DLP650LE. To ensure reliable operation, the DLP650LE DMD  
must always be used with the DLPC4430 display controller, a DLPA100 PMIC driver, and a DLPA200 DMD  
micromirror driver.  
Other core components of the display system include an illumination source, an optical engine for the  
illumination and projection optics, other electrical and mechanical components, and software. The illumination  
source options include lamp, LED, laser, or laser phosphor. The type of illumination used and desired brightness  
will have a major effect on the overall system design and size.  
8.2.2 Detailed Design Procedure  
For help connecting the DLPC4430 display controller and the DLP650LE DMD, see the reference design  
schematic. For a complete DLP system, an optical module or light engine is required that contains the  
DLP650LE DMD, associated illumination sources, optical elements, and necessary mechanical components.  
The optical module is typically supplied by an optical OMM (optical module manufacturer) who specializes in  
designing optics for DLP projectors.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP650LE  
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
8.2.3 Application Curve  
8-2. Luminance vs Current  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLP650LE  
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
9 Power Supply Recommendations  
The following power supplies are all required to operate the DMD: VSS, VBIAS, VCC, VCCI, VOFFSET, and VRESET  
.
DMD power-up and power-down sequencing is strictly controlled by the DLP display controller.  
备注  
CAUTION: For reliable operation of the DMD, the following power supply sequencing requirements  
must be followed. Failure to adhere to any of the prescribed power-up and power-down requirements  
may affect device reliability. See 9-1 - DMD Power Supply Sequencing Requirements.  
VBIAS, VCC, VCCI, VOFFSET, and VRESET power supplies must be coordinated during power-up and  
power-down operations. Failure to meet any of the below requirements will result in a significant  
reduction in the DMDs reliability and lifetime. Common ground VSS must also be connected.  
9.1 DMD Power Supply Power-Up Procedure  
During power-up, VCC and VCCI must always start and settle before VOFFSET plus the first time delay period  
(tD1) specified in 9-2. VBIAS, and VRESET voltages are applied to the DMD.  
During power-up, it is a strict requirement that the voltage delta between VBIAS and VOFFSET must be within  
the specified limit shown in 6.4.  
During power-up, there is no requirement for the relative timing of VRESET with respect to VBIAS  
.
Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9-1.  
During power-up, LVCMOS input pins must not be driven high until after VCC and VCCI have settled at  
operating voltages listed in 6.4.  
9.2 DMD Power Supply Power-Down Procedure  
During power-down, VCC and VCCI must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to  
within the specified limit of ground. See 9-2.  
During power-down, it is a strict requirement that the voltage delta between VBIAS and VOFFSET must be within  
the specified limit shown in 6.4.  
During power-down, there is no requirement for the relative timing of VRESET with respect to VBIAS  
.
Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9-1.  
During power-down, LVCMOS input pins must be less than specified in 6.4.  
9-1. DMD Power Supply Transition Points  
TIME  
t1  
DESCRIPTION  
DLP controller software enables the DMD power supplies to turn on after RESET_OEZ is at logic high  
PG_OFFSET turns OFF after EN_OFFSET turns OFF per the tD2 specification in 9-2.  
DLP controller software initiates the global VBIAS command.  
t1  
t2  
After the DMD micromirror park sequence is complete, the DLP controller software initiates a hardware power-down that  
t3  
t4  
activates PWRDNZ and disables VBIAS, VRESET and VOFFSET  
.
Under power-loss conditions where emergency DMD micromirror park procedures are being enacted by the DLP controller  
hardware, EN_OFFSET may turn off after PG_OFFSET has turned off. The OEZ signal should go high prior to PG_OFFSET  
turning off to indicate the DMD micromirror has completed the emergency park procedures.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP650LE  
 
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
VCC and  
(2)  
VCCI  
VSS  
VSS  
ûV < Specification(3)  
VOFFSET  
(5)  
tD1  
VSS  
VSS  
VBIAS  
ûV < Specification(4)  
VRESET  
EN_OFFSET  
VSS  
VSS  
VSS  
VSS  
(5)  
tD2  
PG_OFFSET  
RESET_OEZ  
PWRDNZ  
and RESETZ  
t1  
t2  
t3 t4  
1. Not to scale. Some details omitted for clarity. See 6.4 for all specified limits and 5 table for pin  
descriptions.  
2. To prevent excess current, the supply voltage difference |VCCI VCC| must be less than the specified limit.  
3. To prevent excess current, the supply voltage difference |VBIAS VOFFSET| must be less than the specified  
limit.  
4. To prevent excess current, the supply voltage difference |VBIAS VRESET| must be less than the specified  
limit.  
5. See 9-2 for delay time descriptions.  
6. See 9-1 for transition time point descriptions.  
9-1. Power Supply Timing(1)  
9-2. Delay Times Requirements  
DELAY TIME  
tD1  
tD2  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
Delay time period from VOFFSET settled at recommended operating  
voltage to VBIAS and VRESET power up.  
1
2
ms  
Delay time period between PG_OFFSET hold time and when  
EN_OFFSET goes low  
100  
ns  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
10 Device and Documentation Support  
10.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.2 Device Support  
10.2.1 Device Nomenclature  
DLP650LE FYL  
Package Type  
Device Descriptor  
10-1. Part Number Description  
10.2.2 Device Markings  
The device marking will include both human-readable information and a 2-dimensional matrix code. The human-  
readable information is described in 10-2. The 2-dimensional matrix code is an alpha-numeric character string  
that contains the DMD part number, Part 1 of Serial Number, and Part 2 of Serial Number. The first character of  
the DMD Serial Number (part 1) is the manufacturing year. The second character of the DMD Serial Number  
(part 1) is the manufacturing month. The last character of the DMD Serial Number (part 2) is the bias voltage bin  
letter.  
Example: *1280-643AB GHXXXXX LLLLLLM  
TI Internal Numbering  
Part 2 of Serial Number  
(7 characters)  
Part 1 of Serial Number  
(7 characters)  
2-Dimension Matrix Code  
(Part Number and Serial Number)  
DMD Part Number  
10-2. DMD Marking Locations  
10.3 Documentation Support  
10.3.1 Related Documentation  
The following documents contain additional information related to the chipset components used with the  
DLP650LE:  
DLPC4430 Display Controller Data Sheet  
DLPA100 Power and Motor Driver Data Sheet  
DLPA200 Micromirror Driver Data Sheet  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLP650LE  
 
 
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
10.4 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.6 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
DLP® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.7 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLP650LE  
 
 
 
 
 
DLP650LE  
www.ti.com.cn  
ZHCSN34A NOVEMBER 2017 REVISED FEBRUARY 2023  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLP650LE  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP650LEFYL  
ACTIVE  
CLGA  
FYL  
149  
33  
RoHS & Green  
NI-AU  
N / A for Pkg Type  
0 to 70  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DLP650LEFYL

0.65-inch, WXGA DLP® digital micromirror device (DMD) | FYL | 149 | 0 to 70
TI

DLP650LNIR

DLP 0.65 NIR WXGA S450 DMD
TI

DLP650LNIRFYL

DLP 0.65 NIR WXGA S450 DMD | FYL | 149 | 0 to 70
TI

DLP650NE

0.65 英寸 1080p 2XLVDS DLP® 数字微镜器件 (DMD)
TI

DLP650NEFYE

0.65 英寸 1080p 2XLVDS DLP® 数字微镜器件 (DMD) | FYE | 350 | 0 to 70
TI

DLP650TE

0.65 英寸 4K UHD HSSI DLP® 数字微镜器件 (DMD)
TI

DLP650TEA0FYP

0.65-inch, 4K UHD, HSSI DLP® digital micromirror device (DMD) | FYP | 149 | 0 to 70
TI

DLP651NE

DLP® 产品 0.65 英寸 1080p HSSI 数字微镜器件 (DMD)
TI

DLP651NEA0FYP

0.65-inch, 1080p, HSSI DLP® digital micromirror device (DMD) | FYP | 149 | 0 to 70
TI

DLP660TE

0.66 英寸 4K UHD 2XLVDS DLP® 数字微镜器件 (DMD)
TI

DLP660TEAAFYG

0.66-inch, 4K UHD, 2XLVDS DLP® digital micromirror device (DMD) | FYG | 350 | 0 to 70
TI

DLP670RE

0.67 英寸 WUXGA DLP® 数字微镜器件 (DMD)
TI