DLP780NEA0FYU [TI]

0.78 英寸 1080p DLP® 数字微镜器件 (DMD) | FYU | 350 | 0 to 70;
DLP780NEA0FYU
型号: DLP780NEA0FYU
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.78 英寸 1080p DLP® 数字微镜器件 (DMD) | FYU | 350 | 0 to 70

文件: 总44页 (文件大小:1743K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP780NE  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
DLP780NE 0.78 1080P DMD  
1 特性  
3 说明  
0.78 英寸对角线微镜阵列  
DLP780NE 数字微镜器件 (DMD) 是一款数控微机电系  
(MEMS) 空间光调制器 (SLM)可用于实现高亮度  
Full HD 固态照明显示系统。TI DLP® 0.78-inch Full  
HD 芯片组由 DMDDLPC4430 display controller、  
DLPA300 微镜驱动器和 DLPA100 电源和电机驱动器  
组成。芯片组外形紧凑可为体型小巧并采用固态照明  
Full HD 显示提供完整的系统解决方案。  
Full HD (1920 × 1080) 显示分辨率  
9.0µm 微镜间距  
±14.5° 微镜倾斜度相对于平坦表面)  
– 角落照明  
2xLVDS 输入数据总线  
• 支持高120 Hz Full HD 分辨率  
DLPC4430 display controllerDLPA100 电源管理  
和电机驱动IC LED、激光荧光体RGB 激光  
提供支持  
为了帮助缩短设计周期DMD 生态系统包含现成的资  
其中包括量产就绪型光学模块光学模块制造商和  
设计公司。  
2 应用  
要了解有关如何使用 DMD 开始进行设计的更多信息,  
请访TI DLP 显示技术入页面。  
激光电视  
智能投影仪  
企业投影仪  
数字标牌  
器件信息  
器件型号(1)  
DLP780NE  
封装尺寸标称值)  
封装  
FYU (350)  
35.0 mm × 32.2 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
SCRTL_A  
2xLVDS Bus A Data Pairs  
16  
DCLK_A  
SCRTL_B  
2xLVDS Bus B Data Pairs  
16  
DCLK_B  
SPI  
DLPC4430  
Display Controller  
DLP780NE  
2xLVDS DMD  
DLPA300 Control  
DLPA300  
MBRST  
Micromirror  
Driver  
-16.5 V  
15  
12 V  
10 V  
VREG  
DMD POWER En  
I2C  
1.8 V  
VREG  
3.3 V  
Temperature  
TMP411  
2
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS188  
 
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
Table of Contents  
7.6 Micromirror Array Temperature Calculation.............. 23  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle....... 24  
8 Application and Implementation..................................28  
8.1 Application Information............................................. 28  
8.2 Typical Application.................................................... 28  
8.3 Temperature Sensor Diode.......................................31  
9 Power Supply Recommendations................................33  
9.1 DMD Power Supply Requirements........................... 33  
9.2 DMD Power Supply Power-Up Procedure................33  
9.3 DMD Power Supply Power-Down Procedure........... 33  
10 Layout...........................................................................35  
10.1 Layout Guidelines................................................... 35  
10.2 Layout Example...................................................... 35  
11 Device and Documentation Support..........................37  
11.1 第三方产品免责声明................................................37  
11.2 Device Support........................................................37  
11.3 Device Markings......................................................37  
11.4 Documentation Support.......................................... 38  
11.5 接收文档更新通知................................................... 38  
11.6 支持资源..................................................................38  
11.7 Trademarks............................................................. 38  
11.8 Electrostatic Discharge Caution..............................38  
11.9 术语表..................................................................... 38  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 8  
6.1 Absolute Maximum Ratings........................................ 8  
6.2 Storage Conditions..................................................... 8  
6.3 ESD Ratings............................................................... 8  
6.4 Recommended Operating Conditions.........................9  
6.5 Thermal Information..................................................11  
6.6 Electrical Characteristics...........................................11  
6.7 Timing Requirements................................................12  
6.8 System Mounting Interface Loads............................ 16  
6.9 Micromirror Array Physical Characteristics...............17  
6.10 Micromirror Array Optical Characteristics............... 18  
6.11 Window Characteristics...........................................19  
6.12 Chipset Component Usage Specification............... 19  
7 Detailed Description......................................................20  
7.1 Overview...................................................................20  
7.2 Functional Block Diagram.........................................21  
7.3 Feature Description...................................................21  
7.4 Device Functional Modes..........................................21  
7.5 Optical Interface and System Image Quality  
Considerations............................................................ 22  
Information.................................................................... 38  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (September 2021) to Revision A (September 2022)  
Page  
• 更正了器件信中的封装尺寸............................................................................................................................1  
Updated ILLVIS, added ILLBLU and ILLBLU1 in 6.4 ......................................................................................... 8  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
5 Pin Configuration and Functions  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
X
Y
Z
AA  
25 23 21 19 17 15 13 11  
26 24 22 20 18 16 14 12 10  
9
7
5
3
1
8
6
4
2
5-1. FYU Package (350-Pin) Bottom View  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP780NE  
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
5-1. Pin Functions  
PIN  
SIGNAL  
TYPE  
TYPE(1)  
PIN DESCRIPTION  
TERMINATION  
SIGNAL  
LVDS BUS C  
D_CN(0)  
D_CP(0)  
PGA_PAD  
B18  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
Differential 100 Ω  
B19  
H24  
G24  
L23  
K23  
C18  
C19  
A19  
A20  
E24  
D24  
K25  
J25  
D_CN(1)  
D_CP(1)  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
D_CN(2)  
D_CP(2)  
D_CN(3)  
D_CP(3)  
D_CN(4)  
D_CP(4)  
D_CN(5)  
D_CP(5)  
D_CN(6)  
D_CP(6)  
D_CN(7)  
D_CP(7)  
C26  
D26  
C21  
B21  
G25  
F25  
A24  
B24  
J26  
D_CN(8)  
D_CP(8)  
LVDS  
D_CN(9)  
D_CP(9)  
D_CN(10)  
D_CP(10)  
D_CN(11)  
D_CP(11)  
D_CN(12)  
D_CP(12)  
D_CN(13)  
D_CP(13)  
D_CN(14)  
D_CP(14)  
D_CN(15)  
D_CP(15)  
DCLK_CN  
DCLK_CP  
SCTRL_CN  
SCTRL_CP  
K26  
D25  
C25  
E23  
D23  
B23  
C23  
K24  
L24  
H23  
G23  
F26  
G26  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP780NE  
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
5-1. Pin Functions (continued)  
PIN  
SIGNAL  
TYPE  
TYPE(1)  
PIN DESCRIPTION  
TERMINATION  
SIGNAL  
LVDS BUS D  
D_DN(0)  
D_DP(0)  
PGA_PAD  
Z18  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
High-speed differential pair  
Differential 100 Ω  
Z19  
T24  
U24  
N23  
P23  
Y18  
Y19  
AA19  
AA20  
W24  
X24  
P25  
R25  
Y26  
X26  
Y21  
Z21  
U25  
V25  
AA24  
Z24  
R26  
P26  
X25  
Y25  
W23  
X23  
Z23  
Y23  
P24  
N24  
T23  
U23  
V26  
U26  
D_DN(1)  
D_DP(1)  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
D_DN(2)  
D_DP(2)  
D_DN(3)  
D_DP(3)  
D_DN(4)  
D_DP(4)  
D_DN(5)  
D_DP(5)  
D_DN(6)  
D_DP(6)  
D_DN(7)  
D_DP(7)  
D_DN(8)  
D_DP(8)  
LVDS  
D_DN(9)  
D_DP(9)  
D_DN(10)  
D_DP(10)  
D_DN(11)  
D_DP(11)  
D_DN(12)  
D_DP(12)  
D_DN(13)  
D_DP(13)  
D_DN(14)  
D_DP(14)  
D_DN(15)  
D_DP(15)  
DCLK_DN  
DCLK_DP  
SCTRL_DN  
SCTRL_DP  
SCP INTERFACE  
SCPCLK  
U2  
T3  
U4  
U3  
I
I
Serial Communications Port CLK  
Serial Communications Data In  
LVCMOS  
LVCMOS  
Internal pulldown  
Internal pulldown  
Internal pulldown  
Internal pulldown  
SCPDI  
SCPENZ  
I
Serial Communications Port Enable LVCMOS  
Serial Communications Port Output LVCMOS  
SCPDO  
O
OTHER SIGNALS  
DMD_PWRDNZ  
G4  
I
LVCMOS  
Internal pulldown  
ChipLevel ResetZ  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP780NE  
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
5-1. Pin Functions (continued)  
PIN  
SIGNAL  
TYPE  
TYPE(1)  
PIN DESCRIPTION  
TERMINATION  
SIGNAL  
PGA_PAD  
G1, H1, J1, J3,  
J4, K3, P3, R1,  
R3, R4, T1, U1,  
V3, D17, X17,  
K4, P4, F3, G2,  
H3, W18, G3,  
W6, W5, Y5,  
Y4, W15, X15,  
Z16, Z15, Y16,  
Y17, Z13, Z12,  
Y14, Y13,  
AA10, AA9,  
Z10, Y10, Z5,  
Z6, Z9, Z8, W3,  
X3, X6, Y6, X7,  
X8, Y8, Y7, X4,  
W4, Y3, Z3,  
N/C  
No Connect  
W11, W10, D4,  
E4, C3, B3,  
E15, D15, B16,  
B15, C16, C17,  
B13, B12, C14,  
C13, A10, A9,  
B10, C10, B5,  
B6, B9, B8, C4,  
C5, E5, E6, D7,  
D8, C8, C7, D3,  
E3, C6, D6,  
E11, E10, X16  
TEMP_N  
TEMP_P  
W16  
W17  
I/O  
I/O  
MICROMIRROR BIAS RESET INPUTS  
MBRST(0)  
MBRST(1)  
MBRST(2)  
MBRST(3)  
MBRST(4)  
MBRST(5)  
MBRST(6)  
MBRST(7)  
MBRST(8)  
MBRST(9)  
MBRST(10)  
MBRST(11)  
MBRST(12)  
MBRST(13)  
MBRST(14)  
E14  
D13  
E13  
C12  
E12  
C11  
D16  
C15  
W14  
X13  
W13  
Y12  
W12  
Y11  
Y15  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
Mirror actuation signal  
POWERS AND GROUNDS  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP780NE  
DLP780NE  
www.ti.com.cn  
SIGNAL  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
5-1. Pin Functions (continued)  
PIN  
SIGNAL  
TYPE  
TYPE(1)  
PIN DESCRIPTION  
TERMINATION  
PGA_PAD  
A5, A6, B2, C1,  
D10, D12, D19,  
D22, E8, E19,  
E20, E21, E22,  
F1, F2, J2, K1,  
L1, L25, M3,  
M4, M25, N1,  
N25, P1, R2,  
V1, V2, W8,  
W19, W20,  
VDD  
P
Low-voltage CMOS core supply  
W21, W22,  
X10, X12, X19,  
X22, Y1, Z1,  
Z2, AA2, AA5,  
AA6  
A7, A8, A11,  
A16, A17, A18,  
A21, A22, A23,  
AA7, AA8,  
AA11, AA16,  
AA17, AA18,  
AA21, AA22,  
AA23  
VDDI  
P
P
I/O supply  
A3, A4, A25,  
B26, L26, M26,  
N26, Z26, AA3,  
AA4, AA25  
VCC2  
Memory array stepped-up voltage  
B4, B7, B11,  
B14, B17, B20,  
B22, B25, C2,  
C9, C20, C22,  
C24, D1, D2,  
D5, D9, D11,  
D14, D18, D20,  
D21, E1, E2,  
E7, E9, E16,  
E17, E18, E25,  
E26, F4, F23,  
F24, H2, H4,  
H25, H26, J23,  
J24, K2, L2, L3,  
L4, M1, M2,  
VSS  
G
Global ground  
M23, M24, N2,  
N3, N4, P2,  
R23, R24, T2,  
T4, T25, T26,  
V4, V23, V24,  
W1, W2, W7,  
W9, W25, W26,  
X1, X2, X5, X9,  
X11, X14, X18,  
X20, X21, Y2,  
Y9, Y20, Y22,  
Y24, Z4, Z7,  
Z11, Z14, Z17,  
Z20, Z22, Z25  
(1) I = Input, O = Output, P = Power, G = Ground, NC = No Connect  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP780NE  
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not  
imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating  
Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
MIN  
MAX UNIT  
SUPPLY VOLTAGES  
VDD  
Supply voltage for LVCMOS core logic(1)  
Supply voltage for LVDS Interface(1)  
Micromirror Electrode and HVCMOS voltage(1) (2)  
Input voltage for MBRST pins(1)  
2.3  
2.3  
V
V
V
V
V
0.5  
0.5  
VDDI  
VCC2  
VMBRST  
|VDDI VDD  
11  
0.5  
22.5  
0.3  
17.5  
Supply voltage delta (absolute value)(3)  
|
INPUT VOLTAGES  
|VID|  
Input differential voltage for LVDS pins (absolute value)  
Input voltage for all other input pins(1)  
500  
mV  
V
V_LVCMOS  
VDDI + 0.3  
0.3  
ENVIRONMENTAL  
Temperature, operating(4)  
0
90  
90  
81  
°C  
°C  
°C  
TARRAY  
TDP  
Temperature, nonoperating(4)  
40  
Dew point temperature, operating and nonoperating (noncondensing)  
(1) All voltages are referenced to common ground VSS. VDD, VDDI, and VCC2 power supplies are all required for all DMD operating modes.  
(2) VCC2 supply transients must fall within specified voltages.  
(3) Exceeding the recommended allowable voltage difference between VDD and VDDI may result in excessive current draw.  
(4) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1), shown in Figure 7-1 using the 7.6.  
6.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system  
MIN  
MAX  
80  
UNIT  
°C  
TDMD  
DMD storage temperature  
40  
TDP-AVG  
TDP-ELR  
CTELR  
Average dew point temperature (noncondensing)(1)  
Elevated dew point temperature range (noncondensing)(2)  
Cumulative time in elevated dew point temperature range  
28  
°C  
28  
36  
°C  
24 months  
(1) This is the average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(2) Exposure to dew point temperatures in the elevated range during storage and operation must be limited to less than a total cumulative  
time of CTELR  
.
6.3 ESD Ratings  
SYMBOL  
PARAMETER  
DESCRIPTION  
VALUE  
±2000  
±500  
UNIT  
V
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
Electrostatic  
discharge  
V(ESD)  
V
Electrostatic  
discharge (MBRST  
PINS)  
V(ESD)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001  
±150  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in  
this data sheet is achieved when operating the device within the limits defined by this table. No level of performance is  
implied when operating the device above or below these limits.  
MIN NOM  
MAX  
UNIT  
VOLTAGE SUPPLY  
VDD  
Supply voltage for LVCMOS core logic(1)  
Supply voltage for LVDS Interface(1)  
1.65  
1.65  
9.5  
1.8  
1.8  
10  
1.95  
1.95  
10.5  
21.5  
0.3  
V
V
V
V
V
VDDI  
VCC2  
VMBRST  
Micromirror Electrode and HVCMOS voltage(1) (2)  
Micromirror Bias / Reset Voltage(1)  
17  
Supply voltage delta (absolute value)(3)  
0
|VDD VDDI  
LVCMOS  
VIH(DC)  
VIL(DC)  
VIH(AC)  
VIL(AC)  
IOH  
|
Input High Voltage  
0.7 × VDD  
0.3  
VDD + 0.3  
0.3 × VDD  
VDD + 0.3  
0.2 × VDD  
2
V
V
Input Low Voltage  
Input High Voltage  
0.8 × VDD  
0.3  
V
Input Low Voltage  
V
High-level Output Current  
Low-level Output Current  
PWRDNZ pulse width(4)  
mA  
mA  
ns  
IOL  
2  
tPWRDNZ  
10  
SCP INTERFACE  
FSCPCLK  
SCP clock frequency  
50  
500  
kHz  
SCPCLKDCDIN  
LVDS INTERFACE  
FCLOCK  
SCP Clk Input duty cycle  
40%  
60%  
Clock frequency for LVDS interface (all channels), DCLK(5)  
Input CLK Duty Cycle Distortion tolerance  
Input differential voltage (absolute value)(6)  
Common mode voltage(6)  
400  
56%  
440  
MHz  
DCDIN  
44%  
150  
|VID|  
300  
mV  
mV  
mV  
µs  
VCM  
1100 1200  
1300  
1520  
VLVDS  
LVDS voltage(6)  
880  
2
tLVDS_RSTZ  
ZIN  
Time required for LVDS receivers to recover from PWRDNZ  
Internal differential termination resistance  
Line differential impedance (PWB/trace)  
80  
90  
100  
100  
120  
110  
Ω
ZLINE  
Ω
ENVIRONMENTAL  
Array temperature, long-term operational(7) (8) (9)  
10  
0
40 to 70(10)  
°C  
°C  
°C  
°C  
TARRAY  
Array temperature, short-term operational, 500 hr max(8) (11)  
Average dew point average temperature (noncondensing)(12)  
Elevated dew point temperature range (non-condensing)(13)  
Cumulative time in elevated dew point temperature range  
Window aperture illumination overfill(14) (15)  
10  
28  
36  
TDP -AVG  
TDP-ELR  
CTELR  
28  
24 Months  
17 W/cm2  
QAP-ILL  
SOLID STATE ILLUMINATION  
ILLUV  
ILLBLU1  
ILLBLU  
ILLVIS  
ILLIR  
Illumination power at wavelengths < 410 nm(7)  
10 mW/cm2  
1
W/cm2  
Illumination power at wavelengths 410 nm and 440 nm(16)  
Illumination power at wavelengths 410 nm and 475 nm(16)  
Illumination power at wavelengths 410 nm and 800 nm(16)  
Ilumination power at wavelengths > 800 nm  
5.5 W/cm2  
18 W/cm2  
10 mW/cm2  
(1) All voltages are referenced to common ground VSS. VDD, VDDI, and VCC2 power supplies are all required for proper DMD operation.  
VSS must also be connected.  
(2) VCC2 supply transients must fall within specified max voltages.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP780NE  
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
(3) To prevent excess current, the supply voltage delta |VDDI VDD| must be less than the specified limit. See the DMD Power Supply  
Requirements.  
(4) PWRDNZ input pin resets the SCP and disables the LVDS receivers. The PWRDNZ input pin overrides the SCPENZ input pin and  
tristates the SCPDO output pin.  
(5) See LVDS clock timing requirements in Timing Requirements.  
(6) See Figure 6-5 for the LVDS waveform requirements.  
(7) Simultaneous exposure of the DMD to the maximum Recommend Operating Conditions for temperature and UV illumination reduces  
device lifetime.  
(8) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1), shown in Figure 7-1 using the Micromirror Array Temperature Calculation.  
(9) Long-term is defined as the usable life of the device.  
(10) Per Figure 6-1, the maximum operational array temperature is derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. See Micromirror Landed-on/Landed-off Duty Cycle for a definition of micromirror landed duty cycle.  
(11) Short-term is the total cumulative time over the useful life of the device.  
(12) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(13) Exposure to dew point temperatures in the elevated range during storage and operation is limited to less than a total cumulative time of  
CTELR  
.
(14) Applies to region defined in Figure 6-2  
(15) The active area of the DMD is surrounded by an aperture on the inside of the DMD window surface that masks structures of the DMD  
device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light illuminating the area  
outside the active array can scatter and create adverse effects to the performance of an end application using the DMD. Minimizing the  
light flux incident outside the active array is a design requirement of the illumination optical system. Depending on the particular optical  
architecture and assembly tolerances of the optical system, the amount of overfill light on the outside of the active array may  
cause system performance degradation.  
(16) The maximum allowable optical power incident on the DMD is limited by the maximum optical power density for each wavelength  
range specified and the micromirror array temperature (TARRAY).  
80  
70  
60  
50  
40  
30  
0/100  
100/0  
5/95 10/90 15/85 20/80 25/75 30/70 35/65 40/60 45/55 50/50  
65/35  
95/5  
90/10  
85/15  
80/20  
75/25  
70/30  
60/40  
55/45  
50/50  
Micromirror Landed Duty Cycle  
6-1. Maximum Recommended Array TemperatureDerating Curve  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
0.50 mm Critical area on window aperture  
Window  
Array  
12.105 mm  
Window  
Aperture  
18.613 Window Aperture  
Window  
6-2. Illumination Overfill Diagram - Critical Area  
6.5 Thermal Information  
DLP780NE  
FYU  
THERMAL METRIC  
UNIT  
350 PINS  
0.55  
Thermal resistance, active area to test point 1 (TP1)(1)  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the DMD within the temperature range specified in the Recommended operating conditions.  
The total heat load on the DMD is largely driven by the incident light absorbed by the active area, although other contributions include  
light energy absorbed by the window aperture and electrical power dissipation of the array.  
Minimizing the light energy falling outside the window clear aperture is a design requirement of the optical system because any  
additional thermal load in this area can significantly degrade the reliability of the device.  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Supply Information  
(1)  
IDD  
Supply current VDD  
Supply current VDDI  
Supply current VCC2  
800  
170  
40  
mA  
mA  
(1)  
IDDI  
ICC2  
PDD  
mA  
(1)  
Supply power VDD  
Supply power VDDI  
Supply power VCC2  
1560  
332  
420  
mW  
mW  
mW  
(1)  
(1)  
PDDI  
PCC2  
LVCMOS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP780NE  
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
6.6 Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
× VDD  
× VDD  
µA  
VOH  
High-level output voltage  
Low-level output voltage  
High impedance output current  
Low-level input current  
High-level input current(2)  
IOH = 2 mA  
0.8  
VOL  
IOL = 2 mA  
0.2  
10  
IOZ  
VDD = 1.95 V  
IIL  
VDD= 1.95 V, Vin = 0 V  
VDD = 1.95 V, Vin = VDD  
µA  
60  
IIH  
200  
µA  
Capacitances  
CI  
Input capacitance: LVDS pins  
Input capacitance(2)  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
20  
15  
pF  
pF  
pF  
pF  
CI  
CO  
CIM  
Output capacitance(2)  
15  
Input capacitance for MBRST[0:14] pins f = 75 kHz  
360  
410  
520  
(1) To prevent excess current, the supply voltage delta |VDDI VDD| must be less than the specified limit in Absolute Maximum Ratings.  
(2) Applies to LVCMOS pins only. Excludes LVDS pins and test pad pins  
6.7 Timing Requirements  
Over Recommended Operating Conditions (unless otherwise noted)  
PARAMETER DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
SCP  
SCPDI clock setup time (before SCPCLK  
tSCP_DS  
800  
900  
1
ns  
ns  
µs  
µs  
ns  
falling-edge)(1)  
SCPDI hold time (after SCPCLK falling-edge)  
tSCP_DH  
(1)  
Time between falling edge of SCPENZ and  
the rising edge of SCPCLK(1)  
tSCP_NEG_ENZ  
tSCP_POS_ENZ  
tSCP_OUT_EN  
Time between falling edge of SCPCLK and  
the rising edge of SCPENZ(1)  
1
Time required for SCP output buffer to  
recover after SCPENZ (from tri-state).(1)  
960  
tSCP_PW_ENZ  
SCPENZ inactive pulse width (high-level)  
Rise time (20% to 80%). See (2)  
Fall time (80% to 20%). See (2)  
1
1/Fscpclk  
ns  
tr  
200  
200  
tf  
ns  
LVDS  
tR_LVDS  
tF_LVDS  
Rise time (20% to 80%). See (3)  
Fall time (80% to 20%). See (3)  
500  
500  
ps  
ps  
Clock Cycle Duration for DCLK_C and  
DCLK_D(4)  
tC  
2.5  
1.19  
350  
ns  
ns  
ps  
ps  
ps  
ps  
ns  
tW  
Pulse Duration for DCLK_C/D(4)  
Setup Time for High-speed data(15:0) before  
DCLK(4)  
tSU_data  
tSU_sctrl  
tH_data  
tH_sctrl  
tSKEW_C2D  
Setup Time for SCTRL before DCLK(4)  
330  
Hold time for High-speed data(15:0) after  
DCLK(4)  
150  
Hold Time for SCTRL after DCLK(4)  
170  
Skew tolerance between Channel C and  
Channel D(5) (6) (7)  
1.25  
1.25  
(1) See Figure 6-3.  
(2) See Figure 6-4.  
(3) See Figure 6-6.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
 
 
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
(4) See Figure 6-7.  
(5) See Figure 6-8.  
(6) Channel C (Bus C) includes the following LVDS pairs: DCLK_C, SCTRL_C, and D_C.  
(7) Channel D (Bus D) includes the following LVDS pairs: DCLK_D, SCTRL_D, and D_D.  
tSCP_POS_ENZ  
tSCP_NEG_ENZ  
SCPCLK fallingœedge capture for SCPDI  
SCPCLK risingœedge launch for SCPDO  
SCPENZ  
50%  
tSCP_DS  
tSCP_DH  
50%  
SCPDI  
50%  
SCPCLK  
tSCP_PD  
50%  
SCPDO  
6-3. SCP Timing Parameters  
SCPCLK, SCPDI,  
SCPDO, SCPENZ  
100%  
80%  
20%  
0%  
tf  
tr  
Time  
6-4. SCP Rise and Fall Times  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP780NE  
 
 
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
VLVDS max  
VID  
VCM  
VLVDS min  
6-5. LVDS Waveform Parameters  
DCLK_CN, DCLK_CP, D_CN(0:15), D_CP(0:15), SCRTL_CN, SCTRL_CP,  
DCLK_DN, DCLK_DP, D_DN(0:15), D_DP(0:15), SCRTL_DN, SCTRL_DP  
100%  
80%  
20%  
0%  
tf  
tr  
Time  
6-6. LVDS Rise and Fall Times  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
tc  
tW  
tW  
DCLK_P  
50%  
DCLK_N  
tSU_data  
tH_data  
D_P(0:15)  
50%  
D_N(0:15)  
tSU_scrtl  
tH_scrtl  
SCRTL_P  
50%  
SCRTL_N  
6-7. LVDS Timing Parameters  
DCLK_CP  
50%  
DCLK_CN  
D_CP(0:15)  
50%  
D_CN(0:15)  
SCRTL_CP  
50%  
SCRTL_CN  
tSKEW_C2D  
DCLK_DP  
50%  
DCLK_DN  
D_DP(0:15)  
50%  
D_DN(0:15)  
SCRTL_DP  
50%  
SCRTL_DN  
6-8. LVDS Skew Parameters  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP780NE  
 
 
DLP780NE  
www.ti.com.cn  
UNIT  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
6.8 System Mounting Interface Loads  
PARAMETER  
MIN  
NOM  
MAX  
When loads are applied on both electrical and thermal interface areas  
Maximum load to be applied to the electrical interface area(1)  
Maximum load to be applied to the thermal interface area(1)  
When load is applied on the electrical interface area only  
Maximum load to be applied to the electrical interface area(1)  
Maximum load to be applied to the thermal interface area(1)  
111  
111  
N
N
222  
0
N
N
(1) The load must be uniformly applied in the corresponding areas shown in Figure 6-9.  
Electrical Interface Area  
Thermal Interface Area  
6-9. System Mounting Interface Loads  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
6.9 Micromirror Array Physical Characteristics  
PARAMETER DESCRIPTION  
VALUE  
1920  
1080  
9.0  
UNIT  
micromirrors  
micromirrors  
µm  
M
Number of active columns (1)  
N
Number of active rows (1)  
P
Micromirror (pixel) pitch(1)  
Micromirror active array width(1)  
Micromirror active array height(1)  
Micromirror active border (top and bottom)(2)  
Micromirror active border (right and left)(2)  
Micromirror pitch x number of active columns  
Micromirror pitch x number of active rows  
Pond of micromirror (POM)  
17.280  
9.720  
12  
mm  
mm  
micromirrors/side  
micromirrors/side  
Pond of micromirror (POM)  
12  
(1) See Figure 6-10.  
(2) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM.  
These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical  
bias to tilt toward OFF.  
Incident  
Illumination  
Light Path  
0
1
2
3
Active Micromirror Array  
N x P  
M x N Micromirrors  
N œ 4  
N œ 3  
N œ 2  
N œ 1  
Off-State  
Light Path  
M x P  
P
P
P
Pond Of Micromirrors (POM) omitted for clarity.  
Details omitted for clarity.  
Not to scale.  
P
6-10. Micromirror Array Physical Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP780NE  
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
6.10 Micromirror Array Optical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
14.5 15.5  
3
UNIT  
Micromirror tilt angle(2) (3) (4) (5)  
Micromirror crossover time(6)  
Micromirror switching time(7)  
Landed state(1)  
typical performance  
typical performance  
Gray 10 screen(12)  
Gray 10 screen(12)  
White screen(13)  
Any screen  
13.5  
degrees  
µs  
10  
µs  
Bright pixel(s) in active area(9)  
Bright pixel(s) in the POM(9) (11)  
Dark pixel(s) in the active area(10)  
Adjacent pixel(s)(14)  
0
1
4
0
0
Image  
micromirrors  
performance (8)  
Unstable pixel(s) in active area(15)  
Any screen  
(1) Measured relative to the plane formed by the overall micromirror array.  
(2) Additional variation exists between the micromirror array and the package datums.  
(3) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different  
devices.  
(4) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some  
system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field  
reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result  
in colorimetry variations, system efficiency variations or system contrast variations.  
(5) Refer to Figure 6-11.  
(6) The time required for a micromirror to nominally transition from one landed state to the opposite landed state.  
(7) The minimum time between successive transitions of a micromirror.  
(8) Conditions of Acceptance: all DMD image performance returns are evaluated using the following projected image test conditions:  
Test set degamma shall be linear.  
Test set brightness and contrast shall be set to nominal.  
The diagonal size of the projected image shall be a minimum of 60 inches.  
The projections screen shall be 1× gain.  
The projected image shall be inspected from an 8-foot minimum viewing distance.  
The image shall be in focus during all image performance tests.  
(9) Bright pixel definition: a single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels  
(10) Dark pixel definition: a single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels  
(11) POM definition: rectangular border of off-state mirrors surrounding the active area  
(12) Gray 10 screen definition: a full screen with RGB values set to R = 10/255, G = 10/255, B = 10/255  
(13) White screen definition: a full screen with RGB values set to R=255/255, G = 255/255, B = 255/255  
(14) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster.  
(15) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The  
unstable pixel appears to be flickering asynchronously with the image.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
Incident Light  
Direction  
Off-State Light  
Direction  
Landed Corner  
Rotation Axis  
A
Landed Corner  
Landed Corne
A
R
Landed Corner  
View A-A  
6-11. Micromirror Landed Orientation and Tilt  
6.11 Window Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
DESCRIPTION  
Window Material  
Window Refractive Index  
Corning EagleXG  
1.5119  
546.1 nm  
6.12 Chipset Component Usage Specification  
Reliable function and operation of the DLP780NE DMD requires that it be used in conjunction with the other  
components of the applicable DLP chipset, including those components that contain or implement TI DMD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP780NE  
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
control technology. TI DMD control technology consists of the TI technology and devices used for operating or  
controlling a DLP DMD.  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously.  
7 Detailed Description  
7.1 Overview  
The DMD is a 0.78-inch diagonal spatial light modulator which consists of an array of highly reflective aluminum  
micromirrors. The DMD is an electrical input, optical output micro-optical-electrical-mechanical system  
(MOEMS). The fast switching speed of the DMD micromirrors combined with advanced DLP image processing  
algorithms enables the micromirror array to display a full 1920 × 1080 pixel image at a 120 Hz frame rate. The  
electrical interface is a low voltage differential signaling (LVDS) interface. The DMD consists of a two-  
dimensional array of 1-bit CMOS memory cells. The array is organized in a grid of M memory cell columns by N  
memory cell rows. Refer to the 7.2. The positive or negative deflection angle of the micromirrors can be  
individually controlled by changing the address voltage of underlying CMOS addressing circuitry and micromirror  
reset signals (MBRST).  
The DLP 0.78-inch Full HD chipset is comprised of the DLP780NE DMD, DLPC4430 display controller, the  
DLPA300 micromirror driver and the DLPA100 power management and motor driver. To ensure reliable  
operation, the DLP780NE DMD must always be used with the DLP display controller and the power and motor  
driver specified in the chipset.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
7.2 Functional Block Diagram  
Channel C Interface  
Column Read and  
Write  
Control  
Control  
Bit Lines  
(0,0)  
Electrode  
Voltage  
Generators  
Word Lines  
Row  
Voltages  
Micromirror Array  
(M-1, N-1)  
Bit Lines  
Column Read and  
Write  
Control  
Control  
Channel D Interface  
7.3 Feature Description  
7.3.1 Power Interface  
The DMD requires two DC voltages: 1.8-V source for VDD and VDDI, and a 10-V supply for VCC2. In a typical  
configuration, 3.3 V is created by the DLPA100 power management and motor driver and is used on the DMD  
board to create the 1.8 V. The DLPA300 micromirror driver takes in the 12 V and creates the micromirror reset  
voltages.  
7.3.2 Timing  
The data sheet specifies timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be considered. Timing reference loads are not intended to be precise  
representations of any particular system environment or depiction of the actual load presented by a production  
test. TI recommends that system designers use IBIS or other simulation tools to correlate the timing reference  
load to a system environment. Use the specified load capacitance value for characterization and measurement  
of AC timing signals only. This load capacitance value does not indicate the maximum load the device is capable  
of driving.  
7.4 Device Functional Modes  
DMD functional modes are controlled by the DLPC4430 display controller. See the DLPC4430 display controller  
data sheet or contact a TI applications engineer.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP780NE  
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
7.5 Optical Interface and System Image Quality Considerations  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
Optimizing system optical performance and image quality strongly relate to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
7.5.1 Numerical Aperture and Stray Light Control  
TI recommends that the light cone angle defined by the numerical aperture of the illumination optics is the same  
as the light cone angle defined by the numerical aperture of the projection optics. This angle must not exceed  
the nominal device micromirror tilt angle unless appropriate apertures are added in the illumination and  
projection pupils to block out flat-state and stray light from the projection lens. The DLP780NE has a 14.5° tilt  
angle which corresponds to the f/2.0 numerical aperture. The micromirror tilt angle defines DMD capability to  
separate the "ON" optical path from any other light path, including undesirable flat-state specular reflections from  
the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens  
surfaces. If the numerical aperture exceeds the micromirror tilt angle, or if the projection numerical aperture  
angle is more than 2° larger than the illumination numerical aperture angle (and vice versa), contrast  
degradation and objectionable artifacts in the display border or active area are possible.  
7.5.2 Pupil Match  
TIs optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable  
artifacts in the display border and active area, which may require additional system apertures to control,  
especially if the numerical aperture of the system exceeds the pixel tilt angle.  
7.5.3 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating  
conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window  
aperture opening and other surface anomalies that may be visible on the screen. Design the illumination optical  
system to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the  
average flux level in the active area. Depending on the particular system optical architecture, overfill light may  
have to be further reduced below the suggested 10% level in order to be acceptable.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
7.6 Micromirror Array Temperature Calculation  
Array  
Window Edge  
TP1  
8.6  
17.5  
TP1  
7-1. DMD Thermal Test Point  
Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from a  
measurement point on the outside of the package, the package thermal resistance, the electrical power, and the  
illumination heat load. The relationship between array temperature and the reference ceramic temperature  
(thermal test TP1 in 7-1 ) is provided by the following equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
)
(1)  
(2)  
QARRAY = QELECTRICAL + QILLUMINATIOM  
where  
TARRAY = Computed array temperature (°C)  
TCERAMIC = Measured ceramic temperature (°C) (TP1 location)  
RARRAY-TO-CERAMIC = Thermal resistance of package specified in 6.5 from array to ceramic TP1 (°C/Watt)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP780NE  
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
QARRAY = Total DMD power on the array (W) (electrical + absorbed)  
QELECTRICAL = Nominal electrical power (W)  
QINCIDENT = Incident illumination optical power (W)  
QILLUMINATION = (DMD average thermal absorptivity × QINCIDENT) (W)  
DMD average thermal absorptivity = 0.55  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 1.0 W. The  
absorbed power from the illumination source is variable and depends on the operating state of the micromirrors  
and the intensity of the light source. The equations shown above are valid for a single chip or multichip DMD  
system. It assumes an illumination distribution of 83.7% on the active array, and 16.3% on the array border.  
The sample calculation for a typical projection application is as follows:  
QINCIDENT = 35 W (measured)  
TCERAMIC = 55.0°C (measured)  
(3)  
(4)  
QELECTRICAL = 1.0 W  
(5)  
QARRAY = 1.0 W + (0.55 × 35 W) = 20.25 W  
(6)  
(7)  
TARRAY = 55.0°C + (20.25 W × 0.55°C/W) = 66.1°C  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle  
7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the percentage of time that an  
individual micromirror is landed in the ON state versus the amount of time the same micromirror is landed in the  
OFF state.  
For example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the ON state 100% of the time  
(and in the OFF state 0% of the time); whereas 0/100 indicates that the pixel is in the OFF state 100% of the  
time. Likewise, 50/50 indicates that the pixel is ON for 50% of the time (and OFF for 50% of the time).  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
always add to 100.  
7.7.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMD micromirror array (also called the active array) to an asymmetric landed  
duty cycle for a prolonged period of time can reduce the DMD useful life.  
Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed  
duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed  
duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly  
asymmetrical.  
7.7.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD temperature and landed duty cycle interact to affect DMD useful life, and this interaction can  
be exploited to reduce the impact that an asymmetrical landed duty cycle has on the DMD useful life. This is  
quantified in the derating curve shown in 6-1.  
The importance of this curve is that:  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
All points along this curve represent the same useful life.  
All points above this curve represent lower useful life (and the further away from the curve, the lower the  
useful life).  
All points below this curve represent higher useful life (and the further away from the curve, the higher the  
useful life).  
In practice, this curve specifies the maximum operating DMD temperature for a given long-term average landed  
duty cycle.  
7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the landed duty cycle of a given pixel follows from the image content being  
displayed by that pixel.  
For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel  
operates under a 100/0 landed duty cycle during that time period. Likewise, when displaying pure-black, the  
pixel operates under a 0/100 landed duty cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the landed duty cycle tracks one-to-one with the gray scale value, as shown in 7-1.  
7-1. Grayscale Value and Landed Duty Cycle  
GRAYSCALE VALUE  
LANDED DUTY CYCLE  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
0/100  
10/90  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
80/20  
90/10  
100/0  
Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from  
0% to 100%) for each constituent primary color (red, green, and blue) for the given pixel as well as the color  
cycle time for each primary color, where color cycle timeis the total percentage of the frame time that a  
given primary must be displayed in order to achieve the desired white point.  
Use 方程8 to calculate the landed duty cycle of a given pixel during a given time period.  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value)  
(8)  
+
(Blue_Cycle_%  
×
Blue_Scale_Value)  
where  
Red_Cycle_% represents the percentage of the frame time that red is displayed to achieve the desired white  
point.  
Green_Cycle_% represents the percentage of the frame time that green is displayed to achieve the desired  
white point.  
Blue_Cycle_% represents the percentage of the frame time that blue is displayed to achieve the desired  
white point.  
For example, assume that the red, green, and blue color cycle times are 30%, 50%, and 20% respectively (to  
achieve the desired white point), then the landed duty cycle for various combinations of red, green, blue color  
intensities are shown in 7-2 and 7-3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP780NE  
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
7-2. Example Landed Duty Cycle for Full-Color,  
Color Percentage  
CYCLE PERCENTAGE  
GREEN  
RED  
BLUE  
30%  
50%  
20%  
7-3. Example Landed Duty Cycle for Full-Color  
SCALE VALUE  
GREEN  
0%  
LANDED DUTY  
CYCLE  
RED  
0%  
BLUE  
0%  
0/100  
30/70  
50/50  
20/80  
6/94  
100%  
0%  
0%  
0%  
100%  
0%  
0%  
0%  
100%  
0%  
0%  
12%  
0%  
0%  
35%  
0%  
7/93  
60%  
0%  
0%  
18/82  
70/30  
50/50  
80/20  
13/87  
25/75  
24/76  
100/0  
100%  
0%  
100%  
100%  
0%  
100%  
100%  
0%  
100%  
12%  
35%  
35%  
0%  
60%  
60%  
100%  
0%  
12%  
100%  
100%  
The last factor to account for in estimating the landed duty cycle is any applied image processing. Within the  
DLPC4430 display controller, the gamma function affects the landed duty cycle.  
Gamma is a power function of the form Output_Level = A × Input_LevelGamma, where A is a scaling factor that is  
typically set to 1.  
In the DLPC4430 display controller, gamma is applied to the incoming image data on a pixel-by-pixel basis. A  
typical gamma factor is 2.2, which transforms the incoming data as shown in 7-2.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gamma = 2.2  
0
10  
20  
30  
40  
50  
60  
Input Level (%)  
70  
80  
90 100  
D002  
7-2. Example of Gamma = 2.2  
From 7-2, if the gray scale value of a given input pixel is 40% (before gamma is applied), then gray scale  
value is 13% after gamma is applied. Therefore, it can be seen that since gamma has a direct impact displayed  
gray scale level of a pixel, it also has a direct impact on the landed duty cycle of a pixel.  
Consideration must also be given to any image processing that occurs before the DLPC4430 display controller.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP780NE  
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two  
directions, with the primary direction being into a projection or collection optic. Each application is derived  
primarily from the optical architecture of the system and the format of the data coming into the DLPC4430  
display controller. Typical applications using the DLP780NE DMD include laserTV, smart projectors, enterprise  
projectors and digital signage.  
DMD power-up and power-down sequencing is strictly controlled by the DLPC4430 display controller through the  
DLPA300. Refer to 9.2 for power-up and power-down specifications. To ensure reliable operation, the  
DLP780NE DMD must always be used with DLPC4430 display controller, a DLPA100 PMIC/Motor driver and a  
DLPA300 Micromirror Driver.  
8.2 Typical Application  
The DLP780NE DMD combined with DLPC4430 display controller and a power management device provides  
Full HD resolution for bright, colorful display applications. A typical display system using LED illumination  
combines the DLP780NE DMD, DLPC4430 display controller, DLPA300 micromirror driver and DLPA100 PMIC  
and motor driver. 8-1 shows a system block diagram for this configuration of the DLP 0.78-inch Full HD  
chipset and additional system components needed. See 8-2 for a block diagram showing the system  
components needed along with the laser phosphor of the DLP 0.78-inch Full HD chipset. The components  
include DLP780NE DMD, DLPC4430 display controller and DLPA100 PMIC and motor driver and a DLPA300  
micromirror driver.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
Flash  
PWM (3)  
LED_EN (3)  
LED  
Driver  
(22) (16)  
ADDR  
DATA  
1.1 V  
1.8 V  
3.3 V  
1.1 V  
12 V  
1.8V  
2.5V  
3.3V  
5V  
DLPA100  
(Controller  
Voltages)  
CNTRL (8)  
FE CTRL  
Front  
End IC  
Parallel  
Data (30)  
FIELD  
OSC  
TMP411  
(Temp  
Sensor)  
DMD TEMP (2)  
I2C (2)  
DLPC4430  
Controller  
IR Rx  
(2)  
2Port 2xLVDS (68)  
DMD Control (5)  
DLP780NE  
DMD  
3.3-V to 1.8-V  
Level Shifters  
SSCP(4)  
SSCP(4)  
3D L/R  
SSCP(4)  
MBRST (15)  
USB 1.0 (2)  
GPIO  
CNTRL (13)  
12 V  
-16.5 V  
DLPA300  
10 V  
VCC2  
1.2 V  
VDD/VDDI  
DLP Chipset Components  
8-1. Typical Full HD LED Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP780NE  
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
Flash  
Laser  
Driver  
CNTRL  
DLPA100  
(22) (16)  
ADDR  
DATA  
12 V  
(Motor  
1.1 V  
1.8 V  
3.3 V  
CNTRL (8)  
(4)  
Wheel Motor 2  
Wheel Motor 1  
Control)  
1.1 V  
12 V  
DLPA100  
(Controller  
Voltages and  
Motor  
1.8 V  
2.5 V  
3.3 V  
5 V  
FE CTRL  
CNTRL (8)  
Front  
End IC  
Parallel  
Data (30)  
CW Index 2  
CW Index 1  
Control)  
(4)  
FIELD  
OSC  
TMP411  
(Temp  
Sensor)  
DMD TEMP (2)  
I2C (2)  
DLPC4430  
Controller  
IR Rx  
(2)  
2Port 2xLVDS (68)  
DMD Control (5)  
3.3-V to 1.8-V  
Level Shifters  
SSCP(4)  
SSCP(4)  
DLP780NE  
DMD  
3D L/R  
USB 1.0 (2)  
GPIO  
SSCP(4)  
MBRST (15)  
CNTRL (13)  
DLPA300  
12 V  
-16.5 V  
10 V  
VCC2  
DLP Chipset Components  
1.2 V  
VDD/VDDI  
8-2. Typical Full HD Laser Phosphor Application  
8.2.1 Design Requirements  
Other core components of the display system include an illumination source, an optical engine for the  
illumination and projection optics, other electrical and mechanical components, and software. The type of  
illumination used and desired brightness has a major effect on the overall system design and size.  
The display system uses the DLP780NE DMD as the core imaging device and contains a 0.78-inch array of  
micromirrors. The DLPC4430 display controller is the digital interface between the DMD and the rest of the  
system, taking digital input from front end receiver and driving the DMD over a high-speed LVDS interface. The  
DLPA100 PMIC serves as a voltage regulator for the controller, and color filter wheel and phosphor wheel motor  
control. The DLPA300 provides the DMD reset control.  
8.2.2 Detailed Design Procedure  
For a complete DLP system, an optical module or light engine is required that contains the DLP780NE DMD,  
associated illumination sources, optical elements, and necessary mechanical components.  
To ensure reliable operation, the DMD must always be used with DLPC4430 display controller, the DLPA300  
micromirror driver and the DLPA100 PMIC and motor driver.  
8.2.3 Application Curves  
In a typical projector application, the luminous flux on the screen from the DMD depends on the optical design of  
the projector. The efficiency and total power of the illumination optical system and the projection optical system  
determines the overall light output of the projector. The DMD is inherently a linear spatial light modulator, so its  
efficiency just scales the light output. 8-3 describes the relationship of laser input optical power to light output  
for a laser-phosphor illumination system, where the phosphor is not at its thermal quenching limit.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
1
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
0.55  
0.5  
0.45  
0.4  
0.35  
0.3  
0.3  
0.35  
0.4  
0.45  
0.5  
0.55  
0.6  
0.65  
0.7  
Normalized Laser Power  
0.75  
0.8  
0.85  
0.9  
0.95  
1
norm  
8-3. Normalized Light Output vs. Normalized Laser Power for Laser Phosphor Illumination  
8.3 Temperature Sensor Diode  
The DMD features a built-in thermal diode that measures the temperature at one corner of the die outside the  
micromirror array. The thermal diode can be interfaced with the TMP411 temperature sensor as shown in 8-4.  
The software application contains functions to configure the TMP411 to read the DLP780NE DMD temperature  
sensor diode. This data can be leveraged by the customer to incorporate additional functionality in the overall  
system design such as adjusting illumination, fan speeds, etc. All communication between the TMP411 and the  
DLPC4430 display controller happens over the I2C interface. The TMP411 connects to the DMD via pins outlined  
in 5.  
Leave TEMP_N and TEMP_P pins unconnected (NC) if the temp sensor is not used.  
3.3V  
TMP411  
DLP780NE  
SCL  
SDA  
VCC  
D+  
R3  
R5  
TEMP_P  
ALERT  
THERM  
GND  
C1  
R4  
R6  
D-  
TEMP_N  
GND  
A. Details omitted for clarity.  
B. See the TMP411 datasheet for system board layout recommendation.  
C. See the TMP411 datasheet and the TI reference design for suggested component values for R1, R2, R3, R4, and C1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLP780NE  
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
D. R5 = 0 Ω. R6 = 0 Ω. Place 0-Ωresistors close to the DMD package pins.  
8-4. TMP411 Sample Schematic  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLP780NE  
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
9 Power Supply Recommendations  
9.1 DMD Power Supply Requirements  
The following power supplies are all required to operate the DMD: VDD, VDDI, and VCC2. VSS must also be  
connected. DMD power-up and power-down sequencing is strictly controlled by the DLPC4430 display  
controller.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing requirements must be  
followed. Failure to adhere to the prescribed power-up and power-down procedures may affect  
device reliability. VDD, VDDI and VCC2 power supplies have to be coordinated during power-up and  
power-down operations. VSS must also be connected. Failure to meet any of the below  
requirements results in a significant reduction in the reliability and lifetime of the DMD. Refer to 图  
9-1.  
9.2 DMD Power Supply Power-Up Procedure  
During power-up, VDD and VDDI must always start and settle before VCC2 is are applied to the DMD.  
Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the  
requirements listed in 6.1 and in 6.4.  
During power-up, LVCMOS input pins must not be driven high until after VDD and VDDI have settled at  
operating voltages listed in 6.4 table.  
9.3 DMD Power Supply Power-Down Procedure  
During power-down, VDD and VDDI must be supplied until after VCC2 is discharged to within the specified  
limit of ground. Refer to 6.4.  
Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the  
requirements listed in 6.1 and in 6.4.  
During power-down, LVCMOS input pins must be less than specified in 6.4.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLP780NE  
 
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
Note A  
VDD/VDDI  
VSS  
Note B  
Note H  
VCC2  
VSS  
Note F  
Note G  
VDD  
Note C  
TLVDS_RSTZ  
Note D  
PWRDNZ  
Option 1  
VSS  
TPWRDNZ  
VDD  
VSS  
PWRDNZ  
Option 2  
TLVDS_RSTZ  
VDD  
VSS  
LVCMOS  
Inputs  
LVDS Inputs  
VSS  
9-1. DMD Power Supply Sequencing Requirements  
A. See Pin Configuration and Functions for pin functions.  
B. VDD must be up and stable prior to VCC2 powering up.  
C. PWRDNZ has two turn on options. Option 1: PWRDNZ does not go high until VDD and VCC2 are up and stable, or Option 2: PWRDNZ  
must be pulsed low for a minimum of TPWRDNZ, or 10 ns after VDD and VCC2 are up and stable.  
D. There is a minimum of TLVDS_ARSTZ, or 2 μs, wait time from PWRDNZ going high for the LVDS receiver to recover.  
E. After the DMD micromirror park sequence is complete, the DLP controller software initiates a hardware power-down that activates the  
PWRDNZ and disables VCC2.  
F. Under power-loss conditions, where emergency DMD micromirror park procedures are being enacted by the DLP controller hardware,  
PWRDNZ goes low.  
G. VDD must remain high until after VCC2 goes low.  
H. To prevent excess current, the supply voltage delta |VDDI VDD| must be less than specified limit in 6.4.  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
10 Layout  
10.1 Layout Guidelines  
The DLP780NE DMD is part of a chipset that is controlled by the DLPC4430 display controller in conjunction  
with the DLP300 micromirror driver and the DLPA100 power and motor driver. These guidelines are targeted at  
designing a PCB board with the DLP780NE DMD. The DLP780NE DMD board is a high-speed multi-layer PCB,  
with primarily high-speed digital logic utilizing dual edge clock rates up to 400MHz for DMD LVDS signals. The  
remaining traces are comprised of low speed digital LVTTL signals. Solid planes are required for DMD_P1P8V  
and Ground. The target impedance for the PCB is 50 Ω ±10% with the LVDS traces being 100 Ω ±10%  
differential. TI recommends using an 8-layer stack-up as described in 10-1.  
10.2 Layout Example  
10-1. Typical example for matching LVDS signal lengths by serpentine sections  
10.2.1 Layers  
The layer stack-up and copper weight for each layer is shown in 10-1. Small sub-planes are allowed on signal  
routing layers to connect components to major sub-planes on top/bottom layers if necessary.  
10-1. Layer Stack-Up  
LAYER  
NO.  
LAYER NAME  
Side A - DMD only  
COPPER WT. (oz.)  
COMMENTS  
1
1.5  
1
DMD, escapes, low frequency signals, power sub-planes.  
Solid ground plane (net GND).  
2
Ground  
3
Signal  
0.5  
1
50 Ωand 100 Ωdifferential signals  
Solid ground plane (net GND)  
4
Ground  
5
VDD and VDDI  
Signal  
1
+1.8-V power plane  
6
0.5  
1
50 Ωand 100 Ωdifferential signals  
Solid ground plane (net GND).  
7
Ground  
8
Side B - All other Components  
1.5  
Discrete components, low frequency signals, power sub-planes  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLP780NE  
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
10.2.2 Impedance Requirements  
TI recommends that the board has matched impedance of 50 Ω ±10% for all signals. The exceptions are listed  
in 10-2.  
10-2. Special Impedance Requirements  
SIGNAL TYPE  
SIGNAL NAME  
IMPEDANCE ()  
DDCP(0:15), DDCN(0:15)  
DCLKC_P, DCLKC_N  
SCTRL_CP, SCTRL_CN  
DDDP(0:15), DDDN(0:15)  
DCLKD_P, DCLKD_N  
SCTRL_DP, SCTRL_DN  
100 ±10% differential across  
each pair  
C channel LVDS differential pairs  
100 ±10% differential across  
each pair  
D channel LVDS differential pairs  
10.2.3 Trace Width, Spacing  
Unless otherwise specified, TI recommends that all signals follow the 0.005/0.005design rule. Minimum  
trace clearance from the ground ring around the PWB has a 0.1minimum. An analysis of impedance and  
stack-up requirements determine the actual trace widths and clearances.  
10.2.3.1 Voltage Signals  
10-3. Special Trace Widths, Spacing Requirements  
MINIMUM TRACE WIDTH TO  
SIGNAL NAME  
GND  
LAYOUT REQUIREMENT  
Maximize trace width to connecting pin  
PINS (MIL)  
15  
15  
15  
15  
15  
3.3-V Supply Rail  
VDD, VDDI  
MBRST(0,14)  
VCC2  
Maximize trace width to connecting pin  
Maximize trace width to connecting pin  
Use 10 mil etch to connect all signals/voltages from DLPA300 to DLP780NE  
Create mini plane from Voltage regulator to DLP780NE  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
11 Device and Documentation Support  
11.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Device Support  
11.2.1 Device Nomenclature  
DLP780NE xc FYU  
Package Type  
TI Internal Numbering  
Device Descriptor  
11-1. Part Number Description  
11.3 Device Markings  
The device marking includes both human-readable information and a 2-dimensional matrix code. The human-  
readable information is described in 11-2. The 2-dimensional matrix code is an alpha-numeric string that  
contains the DMD part number, Part 1 and Part 2 of the serial number.  
Example:  
TI Internal Numbering  
2-Dimension Matrix Code  
DMD Part Number  
(Part Number and  
YYYYYYY  
Serial Number)  
DLP780NE xc FYU  
GHXXXXX LLLLLLM  
Part 1 of Serial Number  
(7 characters)  
Part 2 of Serial Number  
(7 characters)  
11-2. DMD Marking Locations  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DLP780NE  
 
 
 
 
 
DLP780NE  
www.ti.com.cn  
ZHCSP00A SEPTEMBER 2021 REVISED SEPTEMBER 2022  
11.4 Documentation Support  
11.4.1 Related Documentation  
For related documentation, see the following:  
DLPC4430 DLP Display Controller Data Sheet  
DLPA100 Power and Motor Driver Data Sheet  
DLPA300 DMD Micromirror Driver Data Sheet  
11.5 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.6 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.7 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
DLP® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.8 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.9 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DLP780NE  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP780NEA0FYU  
ACTIVE  
CPGA  
FYU  
350  
21  
RoHS & Green  
NI-AU  
N / A for Pkg Type  
0 to 70  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DLP780TE

0.78 英寸 4K UHD DLP® 数字微镜器件 (DMD)
TI

DLP780TEA0FYU

0.78 英寸 4K UHD DLP® 数字微镜器件 (DMD) | FYU | 350 | 0 to 70
TI

DLP800RE

0.80 英寸 WUXGA DLP® 数字微镜器件 (DMD)
TI

DLP800REA0FYV

0.80 英寸 WUXGA DLP® 数字微镜器件 (DMD) | FYV | 350 | 0 to 70
TI

DLP801RE

0.80-inch WUXGA ProAV DLP® digital micromirror device (DMD)
TI

DLP801REA0FYV

0.80-inch WUXGA ProAV DLP® digital micromirror device (DMD) | FYV | 350 | 0 to 70
TI

DLP801XE

0.80-inch 4K+ ProAV DLP® digital micromirror device (DMD)
TI

DLP801XEA0FYV

0.80-inch 4K+ ProAV DLP® digital micromirror device (DMD) | FYV | 350 | 0 to 70
TI

DLP9000

DLP® 0.90 WQXGA A 型 DMD
TI

DLP9000BFLS

DLP® 0.90 WQXGA A 型 DMD | FLS | 355 | 0 to 70
TI

DLP9000FLS

DLP&#174; 0.90 WQXGA Type A DMD 355-CLGA
TI

DLP9000X

DLP® 0.90 高速 WQXGA A 型 DMD
TI