DP83630SQE/NOPB [TI]

具有较小外形尺寸的 IEEE 1588 精密时间协议 (PTP) 以太网 PHY 收发器 | RHS | 48 | -40 to 85;
DP83630SQE/NOPB
型号: DP83630SQE/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有较小外形尺寸的 IEEE 1588 精密时间协议 (PTP) 以太网 PHY 收发器 | RHS | 48 | -40 to 85

以太网 驱动 电信 接口集成电路 电信电路 驱动器 网络接口
文件: 总135页 (文件大小:1447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
DP83630 Precision PHYTER™ - IEEE 1588 Precision Time Protocol Transceiver  
Check for Samples: DP83630  
1 Introduction  
1.1 Features  
123  
• IEEE 1588 V1 and V2 Supported  
• UDP/IPv4, UDP/IPv6, and Layer2 Ethernet  
Packets Supported  
• ESD Protection - 8 kV Human Body Model  
• 2.5 V and 3.3 V I/Os and MAC Interface  
• Auto-MDIX for 10/100 Mbps  
• IEEE 1588 Clock Synchronization  
• Selectable Frequency Synchronized Low Jitter  
Clock Output  
• Timestamp Resolution of 8 ns  
• Allows Sub 10 ns Synchronization to Master  
Reference  
• 12 IEEE 1588 GPIOs for Trigger or Capture  
• Deterministic, Low Transmit and Receive  
Latency  
• Auto-Crossover in Forced Modes of Operation  
• RMII Rev. 1.2 and MII MAC Interface  
• RMII Master Mode  
• 25 MHz MDC and MDIO Serial Management  
Interface  
• IEEE 802.3u 100BASE-FX Fiber Interface  
• IEEE 1149.1 JTAG  
• Programmable LED Support for Link, 10 /100  
Mb/s Mode, Duplex, Activity, and Collision  
Detect  
• Dynamic Link Quality Monitoring  
• TDR Based Cable Diagnostic and Cable Length  
Detection  
• 10/100 Mb/s Packet BIST (Built in Self Test)  
• Error-Free Operation up to 150 Meters CAT5  
Cable  
• Optional 100BASE-TX Fast Link-Loss Detection  
• Industrial Temperature Range  
• 48 Pin WQFN Package (7mm) x (7mm)  
1.2 Applications  
Telecom  
Basestation  
Pico/Femto Cells  
Factory Automation  
Ethernet/IP  
CIP Sync  
Test and Measurement  
LXI Standard  
Video Synchronization  
Real Time Networking  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PHYTER is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date. Products conform to  
specifications per the terms of the Texas Instruments standard warranty. Production  
processing does not necessarily include testing of all parameters.  
Copyright © 2010–2013, Texas Instruments Incorporated  
 
 
 
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
1.3 Description  
The DP83630 Precision PHYTER™ device delivers the highest level of precision clock synchronization for  
real time industrial connectivity based on the IEEE 1588 standard. The DP83630 has deterministic, low  
latency and allows choice of microcontroller with no hardware customization required. The integrated 1588  
functionality allows system designers the flexibility and precision of a close to the wire timestamp. The  
three key 1588 features supported by the device are:  
— Packet time stamps for clock synchronization  
— Integrated IEEE 1588 synchronized low jitter clock generation  
— Synchronized event triggering and time stamping through GPIO  
DP83630 offers innovative diagnostic features unique to Texas Instruments, including dynamic monitoring  
of link quality during standard operation for fault prediction. These advanced features allow the system  
designer to implement a fault prediction mechanism to detect and warn of deteriorating and changing link  
conditions. This single port fast Ethernet transceiver can support both copper and fiber media.  
2
Introduction  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
4.23 AC Specifications — 10BASE-T Normal Link Pulse  
Timing .............................................. 29  
4.24 AC Specifications — Auto-Negotiation Fast Link  
Pulse (FLP) Timing ................................. 29  
4.25 AC Specifications — 100BASE-TX Signal Detect  
Timing .............................................. 30  
4.26 AC Specifications — 100 Mb/s Internal Loopback  
Timing .............................................. 30  
4.27 AC Specifications — 10 Mb/s Internal Loopback  
Timing .............................................. 31  
4.28 AC Specifications — RMII Transmit Timing (Slave  
Mode) ............................................... 31  
4.29 AC Specifications — RMII Transmit Timing (Master  
Mode) ............................................... 32  
4.30 AC Specifications — RMII Receive Timing (Slave  
Mode) ............................................... 33  
4.31 AC Specifications — RMII Receive Timing (Master  
Mode) ............................................... 34  
4.32 AC Specifications — RX_CLK Timing (RMII Master  
Mode) ............................................... 34  
4.33 AC Specifications — CLK_OUT Timing (RMII Slave  
Mode) ............................................... 35  
4.34 AC Specifications — Single Clock MII (SCMII)  
Transmit Timing .................................... 35  
4.35 AC Specifications — Single Clock MII (SCMII)  
Receive Timing ..................................... 36  
4.36 AC Specifications — 100 Mb/s X1 to TX_CLK  
Timing .............................................. 36  
1
2
3
Introduction .............................................. 1  
1.1 Features ............................................. 1  
1.2 Applications .......................................... 1  
1.3 Description ........................................... 2  
Device Information ...................................... 5  
2.1 System Diagram ..................................... 5  
2.2 Block Diagram ....................................... 5  
2.3 Key IEEE 1588 Features ............................ 6  
Pin Descriptions ....................................... 10  
3.1 Pin Layout .......................................... 11  
3.2 PACKAGE PIN ASSIGNMENTS ................... 12  
3.3 SERIAL MANAGEMENT INTERFACE ............. 13  
3.4 MAC DATA INTERFACE ........................... 13  
3.5 CLOCK INTERFACE ............................... 14  
3.6 LED INTERFACE .................................. 15  
3.7  
IEEE 1588 EVENT/TRIGGER/CLOCK INTERFACE  
...................................................... 15  
3.8 JTAG INTERFACE ................................. 15  
3.9 RESET AND POWER DOWN ...................... 16  
3.10 STRAP OPTIONS .................................. 16  
3.11 10 Mb/s AND 100 Mb/s PMD INTERFACE ........ 18  
3.12 POWER SUPPLY PINS ............................ 18  
Electrical Specifications ............................. 19  
4.1 Absolute Maximum Ratings ........................ 19  
4.2 Recommended Operating Conditions .............. 19  
4.3 AC and DC Specifications .......................... 19  
4.4 DC Specifications .................................. 20  
4.5 AC Specifications — Power Up Timing ............ 21  
4.6 AC Specifications — Reset Timing ................. 22  
4
5
Configuration ........................................... 37  
5.1 MEDIA CONFIGURATION ......................... 37  
5.2 AUTO-NEGOTIATION .............................. 37  
5.3 AUTO-MDIX ........................................ 40  
5.4  
AUTO-CROSSOVER IN FORCED MODE ......... 40  
4.7  
4.8  
4.9  
AC Specifications — MII Serial Management Timing  
...................................................... 23  
AC Specifications — 100 Mb/s MII Transmit Timing  
...................................................... 23  
5.5 PHY ADDRESS .................................... 40  
5.6 LED INTERFACE ................................... 41  
5.7 HALF DUPLEX vs. FULL DUPLEX ................ 43  
5.8 INTERNAL LOOPBACK ............................ 44  
5.9 POWER DOWN/INTERRUPT ...................... 44  
5.10 ENERGY DETECT MODE ......................... 44  
5.11 LINK DIAGNOSTIC CAPABILITIES ................ 45  
5.12 BIST ................................................ 49  
MAC Interface .......................................... 50  
6.1 MII INTERFACE .................................... 50  
6.2 REDUCED MII INTERFACE ....................... 51  
6.3 SINGLE CLOCK MII MODE ........................ 52  
AC Specifications — 100 Mb/s MII Receive Timing 23  
4.10 AC Specifications — 100BASE-TX and 100BASE-  
FX MII Transmit Packet Latency Timing ........... 24  
4.11 AC Specifications — 100BASE-TX and 100BASE-  
FX MII Transmit Packet Deassertion Timing ....... 24  
4.12 AC Specifications — 100BASE-TX Transmit Timing  
(tR/F & Jitter) ........................................ 25  
4.13 AC Specifications — 100BASE-TX and 100BASE-  
FX MII Receive Packet Latency Timing ............ 25  
4.14 AC Specifications — 100BASE-TX and 100BASE-  
FX MII Receive Packet Deassertion Timing ....... 26  
6
6.4  
IEEE 802.3u MII SERIAL MANAGEMENT  
4.15 AC Specifications — 10 Mb/s MII Transmit Timing 26  
INTERFACE ........................................ 53  
4.16 AC Specifications — 10 Mb/s MII Receive Timing . 26  
4.17 AC Specifications — 10BASE-T MII Transmit  
Timing (Start of Packet) ............................ 27  
4.18 AC Specifications — 10BASE-T MII Transmit  
6.5 PHY CONTROL FRAMES ......................... 54  
6.6 PHY STATUS FRAMES ............................ 55  
Architecture ............................................. 56  
7.1 100BASE-TX TRANSMITTER ...................... 56  
7.2 100BASE-TX RECEIVER .......................... 59  
7.3 100BASE-FX OPERATION ......................... 63  
7.4 10BASE-T TRANSCEIVER MODULE .............. 64  
Reset Operation ........................................ 67  
8.1 HARDWARE RESET ............................... 67  
8.2 FULL SOFTWARE RESET ......................... 67  
7
8
Timing (End of Packet) ............................. 27  
4.19 AC Specifications — 10BASE-T MII Receive Timing  
(Start of Packet) .................................... 28  
4.20 AC Specifications — 10BASE-T MII Receive Timing  
(End of Packet) ..................................... 28  
4.21 AC Specifications — 10 Mb/s Heartbeat Timing ... 28  
4.22 AC Specifications — 10 Mb/s Jabber Timing ...... 29  
Copyright © 2010–2013, Texas Instruments Incorporated  
Contents  
3
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
8.3 SOFT RESET ...................................... 67  
8.4 PTP RESET ........................................ 67  
10.2 EXTENDED REGISTERS - PAGE 0 ............... 91  
10.3 TEST REGISTERS - PAGE 1 ..................... 102  
10.4 LINK DIAGNOSTICS REGISTERS - PAGE 2 .... 103  
9
Design Guidelines ..................................... 68  
9.1 TPI NETWORK CIRCUIT .......................... 68  
9.2 FIBER NETWORK CIRCUIT ....................... 69  
9.3 ESD PROTECTION ................................ 69  
9.4 CLOCK IN (X1) RECOMMENDATIONS ........... 69  
10.5 PTP 1588 BASE REGISTERS - PAGE 4 ......... 110  
10.6 PTP 1588 CONFIGURATION REGISTERS - PAGE  
5 ................................................... 118  
10.7 PTP 1588 CONFIGURATION REGISTERS - PAGE  
6 ................................................... 126  
10 Register Block ......................................... 72  
Revision History ........................................... 130  
10.1 REGISTER DEFINITION ........................... 79  
4
Contents  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
2 Device Information  
2.1 System Diagram  
IEEE 1588  
Triggered  
Events  
IEEE 1588  
Captured  
Events  
IEEE 1588 clocks, events, triggers  
10BASE-T  
100BASE-TX  
DP83630  
10/100 Mb/s  
Precision PHYTER  
M P U / C P U  
MII or RMII  
or  
Fiber  
100BASE-FX  
Transceiver  
Status  
LEDs  
Clock  
2.2 Block Diagram  
MII/RMII  
SERIAL  
MANAGEMENT  
MII/RMII INTERFACE  
TX_DATA  
TX_CLK  
RX_CLK  
RX_DATA  
MANAGEMENT REGISTERS  
10BASE -T  
&
100BASE-TX  
10BASE -T  
&
100BASE-TX  
AUTO-NEGOTIATION  
REGISTERS  
TRANSMIT BLOCK  
RECEIVE BLOCK  
CLOCK  
GENERATION  
IEEE 1588  
ADC  
DAC  
ANALOG SIGNAL  
PROCESSOR  
BOUNDARY  
SCAN  
LED  
DRIVERS  
AUTO-MDIX  
SYSTEM CLOCK  
REFERENCE  
JTAG  
TD+/-  
RD+/-  
GPIO  
LEDS  
Figure 2-1. DP83630 Functional Block Diagarm  
Copyright © 2010–2013, Texas Instruments Incorporated  
Device Information  
5
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
2.3 Key IEEE 1588 Features  
IEEE 1588 provides a time synchronization protocol, often referred to as the Precision Time Protocol  
(PTP), which synchronizes time across an Ethernet network. DP83630 supports IEEE 1588 Real Time  
Ethernet applications by providing hardware support for three time critical elements.  
IEEE 1588 synchronized clock generation  
Packet timestamps for clock synchronization  
Event triggering and timestamping through GPIO  
By combining the above capabilities, the DP83630 provides advanced and flexible support for IEEE 1588  
for use in a highly accurate IEEE 1588 system.  
The DP83630 provides features for controlling the clock operation in Slave mode. The clock value can be  
updated to match the Master clock in several ways. In addition, the clock can be programmed to adjust its  
frequency to compensate for drift.  
The DP83630 supports real time triggering activities and captures real time events to report to the  
microcontroller. Controlled devices can be connected to the DP83630 through the available GPIO.  
The IEEE 1588 features are briefly presented below. For a more detailed discussion on configuring  
the IEEE 1588 features, refer to the Software Development Guide for the DP83630.  
Real TIme Actions  
GPIO  
Microcontroller  
or Microprocessor  
Application Code  
Clock  
MDIO  
IEEE 1588 Clock  
IEEE 1588 Code  
IEEE 1588 Control  
OS  
MAC  
MII  
IEEE 1588  
Packet Detection  
and Processing  
PHY  
DP83630  
LAN  
Figure 2-2. DP83630 Example System Application  
6
Device Information  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
2.3.1 IEEE 1588 SYNCHRONIZED CLOCK  
The DP83630 provides several mechanisms for updating the IEEE 1588 clock based on the  
synchronization protocol required. These methods are listed below.  
Directly Read/Writable  
Adjustable by Add/Subtract  
Frequency Scalable  
Temporary Frequency Control  
The clock consists of the following fields: Seconds (32–bit field), Nanoseconds (30–bit field), and  
Fractional Nanoseconds (units of 2-32 ns).  
A direct set of the time value can be done by setting a new time value. A step adjustment value in  
nanoseconds may be added to the current value. Note that the adjustment value can be positive or  
negative.  
The clock can be programmed to operate at an adjusted frequency value by programming a rate  
adjustment value. The clock can also be programmed to perform a temporary adjusted frequency value by  
including a rate adjustment duration. The rate adjustment allows for correction on the order of 2-32 ns per  
reference clock cycle. The frequency adjustment will allow the clock to correct the offset over time,  
avoiding any potential side-effects caused by a step adjustment in the time value.  
The method used to update the clock value may depend on the difference in the values. For example, at  
the initial synchronization attempt, the clocks may be very far apart, and therefore require a step  
adjustment or a direct time set. Later, when clocks are very close in value, the temporary rate adjustment  
method may be the best option.  
The clock does not support negative time values. If negative time is required in the system, software will  
have to make conversions from the PHY clock time to actual time.  
The clock also does not support the upper 16-bits of the seconds field as defined by the specification  
(Version 2 specifies a 48-bit seconds field). If this value is required to be greater than 0, it will have to be  
handled by software. Since a rollover of the seconds field only occurs every 136 years, it should not be a  
significant burden to software.  
2.3.1.1 IEEE 1588 Clock Output  
The DP83630 provides for a synchronized clock signal for use by external devices. The output clock  
signal can be any frequency generated from 250 MHz divided by n, where n is an integer in the range of 2  
to 255. This provides nominal frequencies from 125 MHz down to 980.4 kHz. The clock output signal is  
controlled by the PTP_COC register. The output clock signal is generated using the rate information in the  
PTP_RATE registers and is therefore frequency accurate to the 1588 clock time of the device. In addition,  
if clock time adjustments are made using the Temporary Rate capabilities, then all time adjustments will  
be tracked by the output clock signal as well. Note that any step adjustment in the 1588 clock time will not  
be accurately represented on the 1588 clock output signal.  
2.3.1.2 IEEE 1588 Clock Input  
The IEEE 1588 PTP logic operates on a nominal 125 MHz reference clock generated by an internal Phase  
Generation Module (PGM). However, options are available to use a divided-down version of the PGM  
clock to reduce power consumption at the expense of precision, or to use an external reference clock of  
up to 125 MHz in the event the 1588 clock is tracked externally.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Device Information  
7
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
2.3.2 PACKET TIMESTAMPS  
2.3.2.1 IEEE 1588 Transmit Packet Parser and Timestamp  
The IEEE 1588 transmit parser monitors transmit packet data to detect IEEE 1588 Version 1 and Version  
2 Event messages. The transmit parser can detect PTP Event messages transported directly in Layer2  
Ethernet packets as well as in UDP/IPv4 and UDP/IPv6 packets. Upon detection of a PTP Event  
Message, the device will capture the transmit timestamp and provide it to software.  
Since software knows the order of packet transmission, only the timestamp is recorded (there is no need  
to record sequence number or other information). The device can buffer four timestamps.  
If enabled, an interrupt may be generated upon a Transmit Timestamp Ready.  
2.3.2.1.1 One-Step Operation  
In some cases, the transmitter can be set to operate in a One-Step mode. For Sync Messages, a One-  
Step device can automatically insert timestamp information in the outgoing packet. This eliminates the  
need for software to read the timestamp and send a follow up message.  
2.3.2.2 IEEE 1588 Receive Packet Parser and Timestamp  
The IEEE 1588 receive parser monitors receive packet data to detect IEEE 1588 Version 1 and Version 2  
Event messages. The receive parser can detect PTP Event messages transported directly in Ethernet  
packets as well as in UDP/IPv4 and UDP/IPv6 packets. Upon detection of a PTP Event message, the  
device will capture the receive timestamp and provide the timestamp value to software. In addition to the  
timestamp, the device will record the 16-bit SequenceId, the 4-bit messageType field, and generate a 12-  
bit hash value for octets 20-29 of the PTP event message. The device can buffer four timestamps.  
An interrupt will be generated, if enabled, upon a Receive Timestamp Ready.  
2.3.2.2.1 Receive Timestamp Insertion  
The DP83630 can deliver the timestamp to software by inserting the timestamp in the received packet.  
This allows for a simple method to deliver the packet to software without having to match the timestamp to  
the correct packet. This also eliminates the need to read the receive timestamp through the Serial  
Management Interface.  
2.3.2.3 NTP Packet Timestamp  
The DP83630 may be programmed to timestamp NTP packets instead of PTP packets. This operation is  
enabled by setting the NTP_TS_EN control in the PTP_TXCFG0 register. When configured for NTP  
timestamps, the DP83630 will timestamp packets with the NTP UDP port number rather than the PTP port  
number (note that the device cannot be configured to timestamp both PTP and NTP packets). One-Step  
operation is not supported for NTP timestamps, so transmit timestamps cannot be inserted directly into  
outgoing NTP packets. Timestamp insertion is available for receive timestamps but must use a single,  
fixed location.  
2.3.3 EVENT TRIGGERING AND TIMESTAMPING  
2.3.3.1 IEEE 1588 Event Triggering  
The DP83630 is capable of being programmed to generate a trigger signal on an output pin based on the  
IEEE 1588 time value. Each trigger can be programmed to generate a one-time rising or falling edge, a  
single pulse of programmable width, or a periodic signal.  
For each trigger, the microcontroller specifies the desired GPIO and time that the activity is to occur. The  
trigger is generated when the internal IEEE 1588 clock matches the desired activation time.  
8
Device Information  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
The device supports up to 8 trigger signals which can be output on any of the GPIO signal pins. Multiple  
triggers may be assigned to a single GPIO, allowing generation of more complex waveforms (i.e. a  
sequence of varying width pulses). The trigger signals are OR’ed together to form a combined signal.  
The triggers are configured through the PTP Trigger Configuration Registers. The trigger time and width  
settings are controlled through the PTP Control and Time Data registers.  
The DP83630 can be programmed to output a Pulse-Per-Second (PPS) signal using the trigger functions.  
2.3.3.2 IEEE 1588 Event Timestamping  
The DP83630 can be programmed to timestamp an event by monitoring an input signal. The event can be  
monitored for rising edge, falling edge, or either. The Event Timestamp Unit can monitor up to eight events  
which can be set to any of the GPIO signal pins. PTP event timestamps are stored in a queue which  
allows storage of up to eight timestamps.  
When an event timestamp is available, the device will set the EVENT_RDY bit in the PTP Status Register.  
The PTP Event Status Register (PTP_ESTS) provides detailed information on the next available event  
timestamp, including information on the event number, rise/fall direction, and indication of events missed  
due to overflow of the devices Event queue.  
Event timestamp values should be adjusted by 35 ns (3 times period of the IEEE 1588 reference clock  
frequency of 125 MHz + 11 ns) to compensate for input path and synchronization delays.  
The Event Timestamp Unit is configured through the PTP Event Configuration Register (PTP_EVNT).  
2.3.4 PTP INTERRUPTS  
The PTP module may interrupt the system using the PWRDOWN/INTN pin on the device, shared with  
other interrupts from the PHY. As an alternative, the device may be programmed to use a GPIO pin to  
generate PTP interrupts separate from other PHY interrupts.  
2.3.5 GPIO  
The DP83630 features 12 IEEE 1588 GPIO pins. These GPIO pins allow for event monitoring, triggering,  
interrupts, and a clock output. The LED pins comprise 3 of the 12 GPIO pins. If an LED pin is to be used  
as a GPIO, its LED function must be disabled prior to configuring the GPIO function.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Device Information  
9
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
3 Pin Descriptions  
The DP83630 pins are classified into the following interface categories (each interface is described in the  
sections that follow):  
Serial Management Interface  
MAC Data Interface  
Clock Interface  
LED Interface  
GPIO Interface  
JTAG Interface  
Reset and Power Down  
Strap Options  
10/100 Mb/s PMD Interface  
Power and Ground pins  
All DP83630 signal pins are I/O cells regardless of the particular use. The definitions below define the  
functionality of the I/O cells for each pin.  
Type: I  
Input  
Type: O  
Type: I/O  
Type: OD  
Type: PD  
Type: PU  
Type: S  
Output  
Input/Output  
Open Drain  
Internal Pulldown  
Internal Pullup  
Strapping Pin (All strap pins have weak internal pull-ups or pull-downs. If the default strap  
value is to be changed then an external 2.2 kresistor should be used. Please see Strap  
Options for details.)  
10  
Pin Descriptions  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
3.1 Pin Layout  
48 47 46 45 44 43 42 41 40 39 38 37  
TX_CLK  
TX_EN  
GPIO8  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
IO_CORE_VSS  
X1  
TXD_0  
3
TXD_1  
X2  
4
DP83630SQ  
TXD_2  
IO_VDD  
MDC  
5
TOP VIEW  
(not to scale)  
TXD_3  
6
PWRDOWN/INTN  
TCK  
48-pin LLP Package  
MDIO  
7
DAP = GND  
RESET_N  
LED_LINK  
LED_SPEED/FX_SD  
LED_ACT  
GPIO4  
8
TDO  
9
TMS  
10  
11  
12  
TRST#  
TDI  
13 14 15 16 17 18 19 20 21 22 23 24  
Figure 3-1. Top View  
Package Number RHS0048A  
Copyright © 2010–2013, Texas Instruments Incorporated  
Pin Descriptions  
11  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
3.2 PACKAGE PIN ASSIGNMENTS  
RHS0048A Pin #  
Pin Name  
RHS0048A Pin #  
Pin Name  
1
2
TX_CLK  
TX_EN  
TXD_0  
TXD_1  
TXD_2  
TXD_3  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
DAP  
LED_ACT  
LED_SPEED/FX_SD  
LED_LINK  
RESET_N  
MDIO  
3
4
5
6
MDC  
7
PWRDOWN/INTN  
TCK  
IO_VDD  
X2  
8
9
TDO  
X1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
TMS  
IO_CORE_VSS  
GPIO8  
TRST#  
TDI  
GPIO9  
RD-  
RX_CLK  
RX_DV  
RD+  
CD_VSS  
TD-  
CRS/CRS_DV  
RX_ER  
TD+  
COL  
ANAVSS  
ANA33VDD  
VREF  
RXD_3  
RXD_2  
RXD_1  
GPIO1  
GPIO2  
GPIO3  
CLK_OUT  
GPIO4  
RXD_0  
IO_VSS  
IO_VDD  
NC or GND(1)  
(1) Die Attach Pad (DAP) provides thermal dissipation. Connection to GND plane recommended.  
12  
Pin Descriptions  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
3.3 SERIAL MANAGEMENT INTERFACE  
Signal Name  
Pin Name  
Type  
Pin #  
Description  
MDC  
MDC  
I
31  
MANAGEMENT DATA CLOCK: Synchronous clock to the MDIO  
management data input/output serial interface which may be asynchronous  
to transmit and receive clocks. The maximum clock rate is 25 MHz with no  
minimum clock rate.  
MDIO  
MDIO  
I/O  
30  
MANAGEMENT DATA I/O: Bi-directional management instruction/data  
signal that may be sourced by the station management entity or the PHY.  
This pin requires a 1.5 kpullup resistor. Alternately, an internal pullup may  
be enabled by setting bit 3 in the CDCTRL1 register.  
3.4 MAC DATA INTERFACE  
Signal Name  
Pin Name  
Type  
Pin #  
Description  
TX_CLK  
TX_CLK  
O
1
MII TRANSMIT CLOCK: 25 MHz Transmit clock output in 100 Mb/s mode  
or 2.5 MHz in 10 Mb/s mode derived from the 25 MHz reference clock. The  
MAC should source TX_EN and TXD[3:0] using this clock.  
RMII MODE: Unused in RMII Slave mode. The device uses the X1  
reference clock input as the 50 MHz reference for both transmit and  
receive. For RMII Master mode, the device outputs the internally generated  
50 MHz reference clock on this pin.  
This pin provides an integrated 50 ohm signal termination, making external  
termination resistors unnecessary.  
TX_EN  
TX_EN  
I, PD  
2
MII TRANSMIT ENABLE: Active high input indicates the presence of valid  
data inputs on TXD[3:0].  
RMII TRANSMIT ENABLE: Active high input indicates the presence of valid  
data on TXD[1:0].  
TXD_0  
TXD_1  
TXD_2  
TXD_3  
TXD_0  
TXD_1  
TXD_2  
TXD_3  
I
I
I
3
4
5
6
MII TRANSMIT DATA: Transmit data MII input pins, TXD[3:0], that accept  
data synchronous to the TX_CLK (2.5 MHz in 10 Mb/s mode or 25 MHz in  
100 Mb/s mode).  
RMII TRANSMIT DATA: Transmit data RMII input pins, TXD[1:0], that  
accept data synchronous to the 50 MHz reference clock.  
I, PD  
RX_CLK  
RX_CLK  
O
38  
MII RECEIVE CLOCK: Provides the 25 MHz recovered receive clocks for  
100 Mb/s mode and 2.5 MHz for 10 Mb/s mode.  
RMII MODE: Unused in RMII Slave mode. The device uses the X1  
reference clock input as the 50 MHz reference for both transmit and  
receive. For RMII Master mode, the device outputs the internally generated  
50 MHz reference clock on this pin.  
This pin provides an integrated 50 ohm signal termination, making external  
termination resistors unnecessary.  
RX_DV  
RX_ER  
RX_DV  
RX_ER  
O, PD  
39  
41  
MII RECEIVE DATA VALID: Asserted high to indicate that valid data is  
present on the corresponding RXD[3:0].  
RMII RECEIVE DATA VALID: This signal provides the RMII Receive Data  
Valid indication independent of Carrier Sense.  
This pin provides an integrated 50 ohm signal termination, making external  
termination resistors unnecessary.  
S, O, PU  
MII RECEIVE ERROR: Asserted high synchronously to RX_CLK to indicate  
that an invalid symbol has been detected within a received packet in 100  
Mb/s mode.  
RMII RECEIVE ERROR: Asserted high synchronously to X1 whenever a  
media error is detected, and RX_DV is asserted in 100 Mb/s mode.  
This pin is not required to be used by a MAC in RMII mode, since the PHY  
is required to corrupt data on a receive error.  
This pin provides an integrated 50 ohm signal termination, making external  
termination resistors unnecessary.  
RXD_0  
RXD_1  
RXD_2  
RXD_3  
RXD_0  
RXD_1  
RXD_2  
RXD_3  
S, O, PD  
46  
45  
44  
43  
MII RECEIVE DATA: Nibble wide receive data signals driven synchronously  
to the RX_CLK (25 MHz for 100 Mb/s mode, 2.5 MHz for 10 Mb/s mode).  
RXD[3:0] signals contain valid data when RX_DV is asserted.  
RMII RECEIVE DATA: 2-bits receive data signals, RXD[1:0], driven  
synchronously to the 50 MHz reference clock.  
These pins provide integrated 50 ohm signal terminations, making external  
termination resistors unnecessary.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Pin Descriptions  
13  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Signal Name  
Pin Name  
Type  
Pin #  
Description  
CRS/CRS_DV  
CRS/CRS_DV  
S, O, PU  
40  
MII CARRIER SENSE: Asserted high to indicate the receive medium is  
non-idle.  
RMII CARRIER SENSE/RECEIVE DATA VALID: This signal combines the  
RMII Carrier and Receive Data Valid indications. For a detailed description  
of this signal, see the RMII Specification.  
This pin provides an integrated 50 ohm signal termination, making external  
termination resistors unnecessary.  
COL  
COL  
S, O, PU  
42  
MII COLLISION DETECT: Asserted high to indicate detection of a collision  
condition (simultaneous transmit and receive activity) in 10 Mb/s and 100  
Mb/s Half Duplex Modes.  
While in 10BASE-T Half Duplex mode with heartbeat enabled this pin is  
also asserted for a duration of approximately 1µs at the end of transmission  
to indicate heartbeat (SQE test).  
In Full Duplex Mode, for 10 Mb/s or 100 Mb/s operation, this signal is  
always logic 0. There is no heartbeat function during 10 Mb/s full duplex  
operation.  
RMII COLLISION DETECT: Per the RMII Specification, no COL signal is  
required. The MAC will recover CRS from the CRS_DV signal and use that  
along with its TX_EN signal to determine collision.  
This pin provides an integrated 50 ohm signal termination, making external  
termination resistors unnecessary.  
3.5 CLOCK INTERFACE  
Signal Name  
Pin Name  
Type  
Pin #  
Description  
X1  
X1  
I
34  
CRYSTAL/OSCILLATOR INPUT: This pin is the primary clock reference  
input for the DP83630 and must be connected to a 25 MHz 0.005% (±50  
ppm) clock source. The DP83630 supports either an external crystal  
resonator connected across pins X1 and X2 or an external CMOS-level  
oscillator source connected to pin X1 only.  
RMII REFERENCE CLOCK: For RMII Slave Mode, this pin must be  
connected to a 50 MHz 0.005% (±50 ppm) CMOS-level oscillator source. In  
RMII Master Mode, a 25 MHz reference is required, either from an external  
crystal resonator connected across pins X1 and X2 or from an external  
CMOS-level oscillator source connected to pin X1 only.  
X2  
X2  
O
33  
24  
CRYSTAL OUTPUT: This pin is the primary clock reference output to  
connect to an external 25 MHz crystal resonator device. This pin must be  
left unconnected if an external CMOS oscillator clock source is used.  
CLK_OUT  
CLK_OUT  
I/O, PD  
CLOCK OUTPUT: This pin provides a highly configurable system clock,  
which may have one of four sources:  
1. Relative to the internal PTP clock, with a default frequency of 25 MHz  
(default)  
2. 50 MHz RMII reference clock in RMII Master Mode  
3. 25 MHz Receive Clock (same as RX_CLK) in 100 Mb mode  
4. 25 MHz or 50 MHz pass-through of X1 reference clock  
CLOCK INPUT: This pin is used to input an external IEEE 1588 reference  
clock for use by the IEEE 1588 logic. The CLK_OUT_EN strap should be  
disabled in the system to prevent possible contention. The PTP_CLKSRC  
register must be configured prior to enabling the IEEE 1588 function in  
order to allow correct operation.  
14  
Pin Descriptions  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
3.6 LED INTERFACE  
The DP83630 supports three configurable LED pins. The LEDs support two operational modes which are  
selected by the LED mode strap and a third operational mode which is register configurable. The  
definitions for the LEDs for each mode are detailed below.  
Signal Name  
Pin Name  
Type  
Pin #  
Description  
LED_LINK  
LED_LINK  
S, O, PU  
28  
LINK LED: In Mode 1, this pin indicates the status of the LINK. The LED  
will be ON when Link is good.  
LINK/ACT LED: In Mode 2 and Mode 3, this pin indicates transmit and  
receive activity in addition to the status of the Link. The LED will be ON  
when Link is good. It will blink when the transmitter or receiver is active.  
LED_SPEED  
LED_ACT  
LED_SPEED/FX_S S, O, PU  
D
27  
26  
SPEED LED: The LED is ON when device is in 100 Mb/s and OFF when in  
10 Mb/s. Functionality of this LED is independent of mode selected.  
LED_ACT  
S, O, PU  
ACTIVITY LED: In Mode 1, this pin is the Activity LED which is ON when  
activity is present on either Transmit or Receive.  
COLLISION/DUPLEX LED: In Mode 2, this pin by default indicates  
Collision detection. In Mode 3, this LED output indicates Full-Duplex status.  
3.7 IEEE 1588 EVENT/TRIGGER/CLOCK INTERFACE  
Signal Name  
Pin Name  
Type  
Pin #  
Description  
GPIO1  
GPIO1  
I/O, PD  
21  
22  
23  
25  
General Purpose I/O: These pins may be used to signal or detect events.  
GPIO2  
GPIO3  
GPIO4  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
LED_ACT  
LED_SPEED/FX_S  
D
I/O, PU  
26  
27  
General Purpose I/O: These pins may be used to signal or detect events.  
Care should be taken when designing systems that use LEDs but use these  
pins as GPIOs. To disable the LED functions, refer to LED Direct Control  
Register (LEDCR).  
GPIO7  
LED_LINK  
28  
GPIO8  
GPIO9  
GPIO8  
GPIO9  
I/O, PD  
I/O, PU  
36  
37  
General Purpose I/O: These pins may be used to signal or detect events.  
GPIO10  
GPIO11  
TDO  
TDI  
9
12  
General Purpose I/O: These pins may be used to signal or detect events.  
Care should be taken when designing systems that use the JTAG interface  
but use these pins as GPIOs.  
GPIO12  
CLK_OUT  
I/O, PD  
24  
General Purpose I/O: This pin may be used to signal or detect events or  
may output a programmable clock signal synchronized to the internal IEEE  
1588 clock or may be used as an input for an externally generated IEEE  
1588 reference clock. If the system does not require the CLK_OUT signal,  
the CLK_OUT output should be disabled via the CLK_OUT_EN strap.  
3.8 JTAG INTERFACE  
Signal Name  
Pin Name  
Type  
Pin #  
Description  
TEST CLOCK  
TCK  
TCK  
I, PU  
8
This pin has a weak internal pullup.  
TEST OUTPUT  
TDO  
TMS  
TDO  
TMS  
O
9
I, PU  
10  
TEST MODE SELECT  
This pin has a weak internal pullup.  
TEST RESET: Active low test reset.  
This pin has a weak internal pullup.  
TEST DATA INPUT  
TRST#  
TDI  
TRST#  
TDI  
I, PU  
I, PU  
11  
12  
This pin has a weak internal pullup.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Pin Descriptions  
15  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
3.9 RESET AND POWER DOWN  
Signal Name  
Pin Name  
Type  
Pin #  
Description  
RESET_N  
RESET_N  
I, PU  
29  
RESET: Active Low input that initializes or re-initializes the DP83630.  
Asserting this pin low for at least 1 µs will force a reset process to occur.  
All internal registers will re-initialize to their default states as specified for  
each bit in the Register Block section. All strap options are re-initialized as  
well.  
PWRDOWN/INTN PWRDOWN/INTN  
I, PU  
7
The default function of this pin is POWER DOWN.  
POWER DOWN: Asserting this signal low enables the DP83630 Power  
Down mode of operation. In this mode, the DP83630 will power down and  
consume minimum power. Register access will be available through the  
Management Interface to configure and power up the device.  
INTERRUPT: This pin may be programmed as an interrupt output instead  
of a Powerdown input. In this mode, Interrupts will be asserted low using  
this pin. Register access is required for the pin to be used as an interrupt  
mechanism. See Interrupt Mechanisms for more details on the interrupt  
mechanisms.  
3.10 STRAP OPTIONS  
The DP83630 uses many of the functional pins as strap options to place the device into specific modes of  
operation. The values of these pins are sampled at power up or hard reset. During software resets, the  
strap options are internally reloaded from the values sampled at power up or hard reset. The strap option  
pin assignments are defined below. The functional pin name is indicated in parentheses.  
A 2.2 kresistor should be used for pull-down or pull-up to change the default strap option. If the default  
option is required, then there is no need for external pull-up or pull down resistors. Since these pins may  
have alternate functions after reset is deasserted, they should not be connected directly to VCC or GND.  
Signal Name  
Pin Name  
Type  
Pin #  
Description  
PHYAD0  
COL  
S, O, PU  
S, O, PD  
S, O, PD  
S, O, PD  
S, O, PD  
42  
43  
44  
45  
46  
PHY ADDRESS [4:0]: The DP83630 provides five PHY address pins,  
the state of which are latched into the PHYCTRL register at system  
Hardware-Reset.  
The DP83630 supports PHY Address strapping values 0 (<00000>)  
through 31 (<11111>).A PHY Address of 0 puts the part into the MII  
Isolate Mode. The MII isolate mode must be selected by strapping  
PHY Address 0; changing to Address 0 by register write will not put the  
PHY in the MII isolate mode.  
PHYAD1  
PHYAD2  
PHYAD3  
PHYAD4  
RXD_3  
RXD_2  
RXD_1  
RXD_0  
PHYAD[0] pin has weak internal pull-up resistor.  
PHYAD[4:1] pins have weak internal pull-down resistors.  
16  
Pin Descriptions  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Signal Name  
Pin Name  
LED_LINK  
LED_SPEED/FX_S  
Type  
Pin #  
Description  
AN_EN  
AN1  
S, O, PU  
S, O, PU  
28  
27  
AUTO-NEGOTIATION ENABLE: When high, this enables Auto-  
Negotiation with the capability set by AN0 and AN1 pins. When low, this  
puts the part into Forced Mode with the capability set by AN0 and AN1  
pins.  
D
AN0  
LED_ACT  
S, O, PU  
26  
AN0 / AN1: These input pins control the forced or advertised operating  
mode of the DP83630 according to the following table. The value on  
these pins is set by connecting the input pins to GND (0) or VCC (1)  
through 2.2 kresistors. These pins should NEVER be connected  
directly to GND or VCC  
.
The value set at this input is latched into the DP83630 at Hardware-  
Reset.  
The float/pull-down status of these pins are latched into the Basic Mode  
Control Register and the Auto_Negotiation Advertisement Register  
during Hardware-Reset.  
The default is 111 since these pins have internal pull-ups.  
FIBER MODE DUPLEX SELECTION: If Fiber mode is strapped using  
the FX_EN_Z pin (FX_EN_Z = 0), the AN0 strap value is used to select  
half or full duplex. AN_EN and AN1 are ignored in Fiber mode since it  
is 100 Mb only and does not support Auto-Negotiation. In Fiber mode,  
AN1 should not be connected to any system components except the  
fiber transceiver.  
FX_EN_ AN_EN  
Z
AN1  
AN0  
Forced Mode  
1
1
1
1
0
0
0
0
0
0
X
X
0
0
0
1
10BASE-T, Half-Duplex  
10BASE-T, Full-Duplex  
100BASE-TX, Half-Duplex  
100BASE-TX, Full-Duplex  
100BASE-FX, Half-Duplex  
100BASE-FX, Full-Duplex  
Advertised Mode  
1
0
1
1
X
0
X
1
FX_EN_ AN_EN  
Z
AN1  
AN0  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
10BASE-T, Half/Full-Duplex  
100BASE-TX, Half/Full-Duplex  
100BASE-TX, Full-Duplex  
10BASE-T, Half/Full-Duplex,  
100BASE-TX, Half/Full-Duplex  
CLK_OUT_EN  
FX_EN_Z  
GPIO1  
RX_ER  
S, I, PD  
21  
41  
CLK_OUT OUTPUT ENABLE: When high, enables clock output on the  
CLK_OUT pin at power-up.  
S, O, PU  
FX ENABLE: This strapping option enables 100Base-FX (Fiber) mode.  
This mode is disabled by default. An external pull-down will enable  
100Base-FX mode.  
LED_CFG  
MII_MODE  
CRS/CRS_DV  
RX_DV  
S, O, PU  
S, O, PD  
40  
39  
LED CONFIGURATION: This strapping option determines the mode of  
operation of the LED pins. Default is Mode 1. Mode 1 and Mode 2 can  
be controlled via the strap option. All modes are configurable via  
register access. See Table 5-3 for LED Mode Selection.  
MII MODE SELECT: This strapping option determines the operating  
mode of the MAC Data Interface. Default operation is MII Mode with a  
value of 0 due to the internal pulldown. Strapping MII_MODE high will  
cause the device to be in RMII mode of operation.  
MII_MODE  
MAC Interface Mode  
MII Mode  
0
1
RMII Mode  
PCF_EN  
GPIO2  
TXD_3  
S, I, PD  
S, I, PD  
22  
6
PHY CONTROL FRAME ENABLE: When high, allows the DP83630 to  
respond to PHY Control Frames.  
RMII_MAS  
RMII MASTER ENABLE: When MII_MODE is strapped high, this  
strapping option enables RMII Master mode, in which the DP83630  
uses a 25 MHz crystal connection on X1/X2 and generates the 50 MHz  
RMII reference clock. If strapped low when MII_MODE is strapped high,  
default RMII operation (RMII Slave) is enabled, in which the DP83630  
uses a 50 MHz oscillator input on X1 as the RMII reference clock. This  
strap option is ignored if the MII_MODE strap is low.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Pin Descriptions  
17  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
3.11 10 Mb/s AND 100 Mb/s PMD INTERFACE  
Signal Name  
Pin Name  
Type  
Pin #  
Description  
TD-  
TD+  
TD-  
TD+  
I/O  
16  
17  
Differential common driver transmit output (PMD Output Pair). These  
differential outputs are automatically configured to either 10BASE-T or  
100BASE-TX signaling.  
In Auto-MDIX mode of operation, this pair can be used as the Receive Input  
pair.  
In 100BASE-FX mode, this pair becomes the 100BASE-FX Transmit pair.  
These pins require 3.3V bias for operation.  
RD-  
RD+  
RD-  
RD+  
I/O  
13  
14  
Differential receive input (PMD Input Pair). These differential inputs are  
automatically configured to accept either 100BASE-TX or 10BASE-T  
signaling.  
In Auto-MDIX mode of operation, this pair can be used as the Transmit  
Output pair.  
In 100BASE-FX mode, this pair becomes the 100BASE-FX Receive pair.  
These pins require 3.3V bias for operation.  
FX_SD  
LED_SPEED/FX_S S, I/O, PU  
D
27  
FIBER MODE SIGNAL DETECT: This pin provides the Signal Detect input  
for 100BASE-FX mode.  
3.12 POWER SUPPLY PINS  
Signal Name  
Pin Name  
Type  
Pin #  
18  
Description  
Analog Ground  
ANAVSS  
ANAVSS  
Ground  
Supply  
Ground  
Ground  
Supply  
ANA33VDD  
CD_VSS  
ANA33VDD  
CD_VSS  
19  
Analog VDD Supply  
Analog Ground  
15  
IO_CORE_VSS  
IO_VDD  
IO_CORE_VSS  
IO_VDD  
35  
Digital Ground  
32  
48  
I/O VDD Supply  
IO_VSS  
VREF  
IO_VSS  
VREF  
Ground  
47  
20  
Digital Ground  
Bias Resistor Connection. A 4.87 k1% resistor should be connected from  
VREF to GND.  
DAP  
DAP  
No Connect or Connect to GND(1)  
(1) Die Attach Pad (DAP) provides thermal dissipation. Connection to GND plane recommended.  
18  
Pin Descriptions  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
4 Electrical Specifications  
4.1 Absolute Maximum Ratings(1)(2)(3)  
Supply Voltage (VCC  
DC Input Voltage (VIN  
DC Output Voltage (VOUT  
Storage Temperature (TSTG  
)
-0.5 V to 4.2 V  
-0.5V to VCC + 0.5V  
-0.5V to VCC + 0.5V  
-65°C to 150°C  
95 °C  
)
)
)
Maximum Case Temperature for TA = 85 °C  
Maximum Die Temperature (Tj)  
ESD Rating  
150 °C  
(RZAP = 1.5k, CZAP = 120 pF)  
8.0 kV  
(1) Absolute maximum ratings are those values beyond which the safety of the device cannot be ensured. They are not meant to imply that  
the device should be operated at these limits.  
(2) For soldering specifications: see product folder at www.ti.com and SNOA549c.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
4.2 Recommended Operating Conditions  
Analog Supply Voltage (VCC  
I/O Supply Voltage (VI/O  
Industrial Temperature (TI)  
)
3.3 Volts ± 0.3V  
3.3 Volts ± 10% or  
2.5 Volts ± 5%  
-40 to 85 °C  
)
Power Dissipation (PD) with VI/O = 3.3 V  
Power Dissipation (PD) with VI/O = 2.5 V  
290 mW  
260 mW  
4.3 AC and DC Specifications  
Thermal Characteristic  
Max  
TBD  
TBD  
Units  
°C / W  
°C / W  
Theta Junction to Case (Tjc)  
Theta Junction to Ambient (Tja) degrees Celsius/Watt - No Airflow @ 1.0 W  
Copyright © 2010–2013, Texas Instruments Incorporated  
Electrical Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
4.4 DC Specifications  
Symbol  
Pin Types  
Parameter  
Input High Voltage  
Conditions  
Min  
Type  
Max  
Units  
VIH  
VIL  
I
2.0  
V
I/O  
VI/O = 3.3 V  
0.8  
0.7  
V
V
I
Input Low Voltage  
I/O  
VI/O = 2.5 V  
IIH  
I
Input High Current  
Input Low Current  
Output Low Voltage  
Output High Voltage  
VIN = VI/O  
10  
10  
µA  
µA  
V
I/O  
IIL  
I
VIN = GND  
IOL = 4 mA  
IOH = -4 mA  
I/O  
VOL  
VOH  
IOZ  
O
I/O  
0.4  
O
I/O  
VI/O - 0.5  
V
O
I/O  
TRI-STATE Output Leakage Current VOUT = VI/O or GND  
-10  
10  
µA  
VTPTD_100  
VTPTDsym  
VTPTD_10  
VFXTD_100  
CIN1  
PMD Output Pair 100M Transmit Voltage  
PMD Output Pair 100M Transmit Voltage Symmetry  
PMD Output Pair 10M Transmit Voltage  
0.95  
1
1.05  
±2  
V
%
2.2  
0.3  
2.5  
0.5  
8
2.8  
V
PMD Output Pair FX 100M Transmit Voltage  
0.93  
V
I
CMOS Input Capacitance  
CMOS Output Capacitance  
pF  
COUT1  
O
8
pF  
SDTHon  
100BASE-TX Signal detect turn-on  
threshold  
mV diff  
pk-pk  
PMD Input Pair  
1000  
585  
SDTHoff  
mV diff  
pk-pk  
PMD Input Pair Signal detect turn-off threshold  
PMD Input Pair 10BASE-T Receive Threshold  
200  
300  
VTH  
mV  
Idd100  
VCC = 3.3 V,  
VI/O = 3.3 V,  
IOUT = 0 mA(1)  
88  
84  
mA  
Supply  
100BASE-TX (Full Duplex)  
VCC = 3.3 V,  
VI/O = 2.5 V,  
IOUT = 0 mA(1)  
mA  
mA  
Idd10  
VCC = 3.3 V,  
VI/O = 3.3 V,  
IOUT = 0 mA(1)  
105  
Supply  
Supply  
10BASE-T (Full Duplex)  
Power Down Mode  
VCC = 3.3 V,  
VI/O = 2.5 V,  
IOUT = 0 mA(1)  
103  
10  
mA  
mA  
Idd  
CLK_OUT disabled  
(1) For Idd measurements, outputs are not loaded  
20  
Electrical Specifications  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
4.5 AC Specifications — Power Up Timing  
Parameter  
Description  
Notes  
Min  
Typ  
Max  
Units  
T2.1.1  
Post Power Up Stabilization time  
prior to MDC preamble for register  
accesses(1)  
MDIO is pulled high for 32-bit serial  
management initialization.  
167  
ms  
T2.1.2  
T2.1.3  
Hardware Configuration Pins are  
described in the Pin Description  
section.  
Hardware Configuration Latch-in  
Time from power up(1)  
167  
ms  
ns  
Hardware Configuration pins  
transition to output drivers  
50  
(1) In RMII Slave Mode, the minimum Post Power up Stabilization and Hardware Configuration Latch-in times are 84 ms.  
Vcc  
X1 clock  
T2.1.1  
Hardware  
RESET_N  
32 CLOCKS  
MDC  
T2.1.2  
Latch-In of Hardware  
Configuration Pins  
T2.1.3  
Dual Function Pins  
Become Enabled As Outputs  
INPUT  
OUTPUT  
Copyright © 2010–2013, Texas Instruments Incorporated  
Electrical Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
4.6 AC Specifications — Reset Timing  
Parameter  
Description  
Notes  
Min  
Typ  
Max  
Units  
T2.2.1  
Post RESET Stabilization time prior to  
MDC preamble for register accesses  
MDIO is pulled high for 32-bit serial  
management initialization  
3
µs  
T2.2.2  
Hardware Configuration Latch-in Time Hardware Configuration Pins are  
from the Deassertion of RESET (either described in the Pin Description  
3
µs  
ns  
µs  
soft or hard)(1)  
section  
T2.2.3  
T2.2.4  
Hardware Configuration pins transition  
to output drivers  
50  
X1 Clock must be stable for at min.  
of 1 µs during RESET pulse low  
time.  
RESET pulse width  
1
(1) It is important to choose pull-up and/or pull-down resistors for each of the hardware configuration pins that provide fast RC time  
constants in order to latch-in the proper value prior to the pin transitioning to an output driver.  
Vcc  
X1 clock  
T2.2.1  
T2.2.4  
Hardware  
RESET_N  
32 CLOCKS  
MDC  
T2.2.2  
Latch-In of Hardware  
Configuration Pins  
T2.2.3  
Dual Function Pins  
Become Enabled As Outputs  
input  
output  
22  
Electrical Specifications  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
4.7 AC Specifications — MII Serial Management Timing  
Parameter  
T2.3.1  
Description  
Notes  
Min  
0
Typ  
Max  
Units  
ns  
MDC to MDIO (Output) Delay Time  
MDIO (Input) to MDC Setup Time  
MDIO (Input) to MDC Hold Time  
MDC Frequency  
20  
T2.3.2  
10  
10  
ns  
T2.3.3  
ns  
T2.3.4  
2.5  
25  
MHz  
MDC  
T2.3.4  
T2.3.1  
MDIO (output)  
MDC  
T2.3.2  
T2.3.3  
MDIO (input)  
Valid Data  
4.8 AC Specifications — 100 Mb/s MII Transmit Timing  
Parameter  
T2.4.1  
Description  
Notes  
Min  
Typ  
Max  
Units  
ns  
TX_CLK High/Low Time  
100 Mb/s Normal mode  
16  
10  
20  
24  
T2.4.2  
TXD[3:0], TX_EN Data Setup to TX_CLK 100 Mb/s Normal mode  
ns  
TXD[3:0], TX_EN Data Hold from  
100 Mb/s Normal mode  
TX_CLK  
T2.4.3  
0
ns  
T2.4.1  
T2.4.1  
TX_CL  
K
T2.4.2  
T2.4.3  
TXD[3:0  
]
Valid Data  
TX_EN  
4.9 AC Specifications — 100 Mb/s MII Receive Timing  
Parameter  
T2.5.1  
Description  
RX_CLK High/Low Time(1)  
Notes  
Min  
Typ  
20  
Max  
Units  
100 Mb/s Normal mode  
16  
24  
ns  
T2.5.2  
RX_CLK to RXD[3:0], RX_DV, RX_ER  
Delay  
100 Mb/s Normal mode  
10  
30  
ns  
(1) RX_CLK may be held low or high for a longer period of time during transition between reference and recovered clocks. Minimum high  
and low times will not be violated.  
T2.5.1  
T2.5.1  
RX_CLK  
T2.5.2  
RXD[3:0]  
RX_DV  
RX_ER  
Valid Data  
Copyright © 2010–2013, Texas Instruments Incorporated  
Electrical Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
4.10 AC Specifications — 100BASE-TX and 100BASE-FX MII Transmit Packet Latency  
Timing  
Parameter  
Description  
Notes  
Min  
Typ  
Max  
Units  
T2.6.1  
TX_CLK to PMD Output Pair  
Latency(1)(2)  
100BASE-TX and 100BASE-FX modes  
IEEE 1588 One-Step Operation enabled  
5
9
bits  
bits  
(1) For Normal mode, latency is determined by measuring the time from the first rising edge of TX_CLK occurring after the assertion of  
TX_EN to the first bit of the “J” code group as output from the PMD Output Pair. 1 bit time = 10 ns in 100 Mb/s mode.  
(2) Enabling PHY Control Frames will add latency equal to 8 bits times the PCF_BUF_SIZE setting. For example if PCF_BUF_SIZE is set  
to 15, then the additional delay will be 15*8 = 120 bits.  
TX_CLK  
TX_EN  
TXD[3:0]  
T2.6.1  
PMD Output  
IDLE  
(J/K)  
DATA  
Pair  
4.11 AC Specifications — 100BASE-TX and 100BASE-FX MII Transmit Packet Deassertion  
Timing  
Parameter  
Description  
Notes  
Min  
Typ  
Max  
Units  
T2.7.1  
TX_CLK to PMD Output Pair  
Deassertion(1)  
100BASE-TX and 100BASE-FX modes  
5
bits  
(1) Deassertion is determined by measuring the time from the first rising edge of TX_CLK occurring after the deassertion of TX_EN to the  
first bit of the “T” code group as output from the PMD Output Pair. 1 bit time = 10 ns in 100 Mb/s mode.  
TX_CLK  
TX_EN  
TXD[3:0]  
T2.7.1  
PMD Output  
IDLE  
(J/K)  
DATA  
Pair  
24  
Electrical Specifications  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
4.12 AC Specifications — 100BASE-TX Transmit Timing (tR/F & Jitter)  
Parameter  
Description  
100 Mb/s PMD Output Pair tR and tF  
100 Mb/s tR and tF Mismatch(2)  
Notes  
Min  
Typ  
Max  
5
Units  
ns  
(1)  
T2.8.1  
3
4
500  
1.4  
ps  
T2.8.2  
100 Mb/s PMD Output Pair Transmit Jitter  
ns  
(1) Rise and fall times taken at 10% and 90% of the +1 or -1 amplitude.  
(2) Normal Mismatch is the difference between the maximum and minimum of all rise and fall times.  
T2.8.1  
+1 rise  
90%  
10%  
PMD Output Pair  
10%  
+1 fall  
90%  
T2.8.1  
-1 fall  
-1 rise  
T2.8.1  
T2.8.1  
T2.8.2  
PMD Output Pair  
eye pattern  
T2.8.2  
4.13 AC Specifications — 100BASE-TX and 100BASE-FX MII Receive Packet Latency  
Timing  
Parameter  
Description  
Notes  
100BASE-TX mode  
100BASE-FX mode  
100BASE-TX mode  
100BASE-FX mode  
Min  
Typ  
20  
Max  
Units  
T2.9.1  
Carrier Sense ON Delay(1)(2)  
bits  
10  
T2.9.2  
24  
Receive Data Latency(3)(4)  
bits  
14  
(1) Carrier Sense On Delay is determined by measuring the time from the first bit of the “J” code group to the assertion of Carrier Sense.  
(2) 1 bit time = 10 ns in 100 Mb/s mode.  
(3) Enabling IEEE 1588 Receive Timestamp insertion will increase the Receive Data Latency by 40 bit times.  
(4) Enabling PHY Status Frames will introduce variability in Receive Data Latency due to insertion of PHY Status Frames into the receive  
datapath.  
PMD Input Pair  
CRS/CRS_DV  
IDLE  
(J/K)  
Data  
T2.9.1  
T2.9.2  
RXD[3:0]  
RX_DV  
RX_ER  
Copyright © 2010–2013, Texas Instruments Incorporated  
Electrical Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
4.14 AC Specifications — 100BASE-TX and 100BASE-FX MII Receive Packet Deassertion  
Timing  
Parameter  
Description  
Notes  
100BASE-TX mode  
100BASE-FX mode  
Min  
Typ  
24  
Max  
Units  
T2.10.1  
Carrier Sense OFF Delay(1)(2)  
bits  
14  
(1) Carrier Sense Off Delay is determined by measuring the time from the first bit of the “T” code group to the deassertion of Carrier Sense  
(2) 1 bit time = 10 ns in 100 Mb/s mode.  
PMD Input Pair  
CRS/CRS_DV  
DATA  
(T/R)  
IDLE  
T2.10.1  
4.15 AC Specifications — 10 Mb/s MII Transmit Timing  
Parameter  
T2.11.1  
Description  
Notes  
Min  
Typ  
Max  
Units  
TX_CLK High/Low Time  
10 Mb/s MII mode  
190  
200  
210  
ns  
T2.11.2  
TXD[3:0], TX_EN Data Setup to  
TX_CLK falling edge(1)  
10 Mb/s MII mode  
10 Mb/s MII mode  
25  
0
ns  
ns  
T2.11.3  
TXD[3:0], TX_EN Data Hold from  
TX_CLK rising edge  
(1) An attached Mac should drive the transmit signals using the positive edge of TX_CLK. As shown above, the MII signals are sampled on  
the falling edge of TX_CLK.  
T2.11.1  
T2.11.1  
TX_CLK  
T2.11.2  
T2.11.3  
TXD[3:0]  
TX_EN  
Valid Data  
4.16 AC Specifications — 10 Mb/s MII Receive Timing  
Parameter  
T2.12.1  
Description  
RX_CLK High/Low Time(1)  
Notes  
Min  
Typ  
Max  
Units  
160  
200  
240  
ns  
T2.12.2  
RXD[3:0], RX_DV transition delay from  
RX_CLK rising edge  
10 Mb/s MII mode  
10 Mb/s MII mode  
100  
100  
ns  
ns  
T2.12.3  
RX_CLK rising edge delay from  
RXD[3:0], RX_DV valid data  
(1) RX_CLK may be held low for a longer period of time during transition between reference and recovered clocks. Minimum high and low  
times will not be violated.  
T2.12.1  
T2.12.1  
RX_CLK  
T2.12.2  
T2.12.3  
RXD[3:0]  
RX_DV  
Valid Data  
26  
Electrical Specifications  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
4.17 AC Specifications — 10BASE-T MII Transmit Timing (Start of Packet)  
Parameter  
Description  
Notes  
Min  
Typ  
Max  
Units  
T2.13.1  
Transmit Output Delay from the Falling  
Edge of TX_CLK(1)  
10 Mb/s MII mode  
3.5  
bits  
(1) 1 bit time = 100 ns in 10 Mb/s.  
TX_CLK  
TX_EN  
TXD[3:0]  
PMD Output  
Pair  
T2.13.1  
4.18 AC Specifications — 10BASE-T MII Transmit Timing (End of Packet)  
Parameter  
T2.14.1  
Description  
Notes  
Min  
250  
250  
Typ  
300  
300  
Max  
Units  
End of Packet High Time (with '0' ending bit)  
End of Packet High Time (with '1' ending bit)  
ns  
ns  
T2.14.2  
TX_CLK  
TX_EN  
T2.14.1  
PMD Output  
Pair  
0
0
1
T2.14.2  
PMD Output  
Pair  
1
Copyright © 2010–2013, Texas Instruments Incorporated  
Electrical Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
4.19 AC Specifications — 10BASE-T MII Receive Timing (Start of Packet)  
Parameter  
Description  
Notes  
Min  
Typ  
Max  
Units  
T2.15.1  
Carrier Sense Turn On Delay  
(PMD Input Pair to CRS)  
630  
1000  
ns  
T2.15.2  
T2.15.3  
RX_DV Latency(1)  
Receive Data Latency(2)  
10  
8
bits  
bits  
Measurement shown from SFD  
(1) 10BASE-T RX_DV Latency is measured from first bit of preamble on the wire to the assertion of RX_DV  
(2) 1 bit time = 100 ns in 10 Mb/s mode.  
1st SFD bit decoded  
1
0
1
0
1
0
1
0
1
0
1
1
PMD  
Input Pair  
T2.15.1  
CRS/CRS_DV  
T2.15.2  
RX_DV  
T2.15.3  
0000  
Preamble  
SFD  
Data  
RXD[3:0]  
4.20 AC Specifications — 10BASE-T MII Receive Timing (End of Packet)  
Parameter  
Description  
Notes  
Min  
Typ  
Max  
1.0  
Units  
T2.16.1  
Carrier Sense Turn Off Delay  
µs  
1
0
1
IDLE  
PMD Input  
Pair  
RX_CLK  
T2.16.1  
CRS/CRS_DV  
4.21 AC Specifications — 10 Mb/s Heartbeat Timing  
Parameter  
T2.17.1  
Description  
CD Heartbeat Delay  
Notes  
All 10 Mb/s modes  
All 10 Mb/s modes  
Min  
Typ  
Max  
Units  
ns  
1200  
1000  
T2.17.2  
CD Heartbeat Duration  
ns  
TX_EN  
TX_CLK  
T2.17.1  
T2.17.2  
COL  
28  
Electrical Specifications  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
4.22 AC Specifications — 10 Mb/s Jabber Timing  
Parameter  
T2.18.1  
Description  
Jabber Activation Time  
Jabber Deactivation Time  
Notes  
Min  
Typ  
85  
Max  
Units  
ms  
T2.18.2  
500  
ms  
TX_EN  
T2.18.1  
T2.18.2  
PMD Output  
Pair  
COL  
4.23 AC Specifications — 10BASE-T Normal Link Pulse Timing  
Parameter  
T2.19.1  
Description  
Pulse Width  
Pulse Period  
Notes  
Min  
Typ(1)  
100  
Max  
Units  
ns  
T2.19.2  
16  
ms  
(1) These specifications represent transmit timings.  
T2.19.2  
T2.19.1  
Normal Link  
Pulse(s)  
4.24 AC Specifications — Auto-Negotiation Fast Link Pulse (FLP) Timing  
Parameter  
T2.20.1  
T2.20.2  
T2.20.3  
T2.20.4  
T2.20.5  
Description  
Notes  
Min  
Typ(1)  
100  
125  
62  
Max  
Units  
ns  
Clock, Data Pulse Width  
Clock Pulse to Clock Pulse Period  
Clock Pulse to Data Pulse Period  
Burst Width  
µs  
Data = 1  
µs  
2
ms  
ms  
FLP Burst to FLP Burst Period  
16  
(1) These specifications represent transmit timings.  
T.2.20.2  
T2.20.3  
T2.20.1  
T2.20.1  
Fast Link  
Pulse(s)  
clock  
pulse  
data  
pulse  
clock  
pulse  
T2.20.5  
T2.20.4  
PMD  
Output Pair  
FLP Burst  
FLP Burst  
Copyright © 2010–2013, Texas Instruments Incorporated  
Electrical Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
4.25 AC Specifications — 100BASE-TX Signal Detect Timing  
Parameter  
T2.21.1  
Description  
Notes  
Min  
Typ  
Max  
1
Units  
SD Internal Turn-on Time  
ms  
T2.21.2  
Default operation(1)  
Fast link-loss indication  
enabled(2)  
250  
1.3  
300  
µs  
µs  
SD Internal Turn-off Time  
(1) The signal amplitude on PMD Input Pair must be TP-PMD compliant.  
(2) Fast Link-loss detect is enabled by setting the SD_CNFG[8] register bit to a 1.  
PMD Input  
Pair  
T2.21.1  
T2.21.2  
SD+ internal  
4.26 AC Specifications — 100 Mb/s Internal Loopback Timing  
Parameter  
Description  
Notes  
Min  
Typ  
Max  
240  
Units  
T2.22.1  
TX_EN to RX_DV Loopback(1)(2) 100 Mb/s internal loopback mode  
ns  
(1) Due to the nature of the descrambler function, all 100BASE-TX Loopback modes will cause an initial “dead-time” of up to 550 µs during  
which time no data will be present at the receive MII outputs. The 100BASE-TX timing specified is based on device delays after the  
initial 550µs “dead-time”.  
(2) Measurement is made from the first rising edge of TX_CLK after assertion of TX_EN.  
TX_CLK  
TX_EN  
TXD[3:0]  
CRS/CRS_DV  
T2.22.1  
RX_CLK  
RX_DV  
RXD[3:0]  
30  
Electrical Specifications  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
4.27 AC Specifications — 10 Mb/s Internal Loopback Timing  
Parameter  
Description  
Notes  
Min  
Typ  
Max  
Units  
T2.23.1  
TX_EN to RX_DV Loopback(1)  
10 Mb/s internal loopback mode  
2
µs  
(1) Measurement is made from the first falling edge of TX_CLK after assertion of TX_EN.  
TX_CLK  
TX_EN  
TXD[3:0]  
CRS/CRS_DV  
T2.23.1  
RX_CLK  
RX_DV  
RXD[3:0]  
4.28 AC Specifications — RMII Transmit Timing (Slave Mode)  
Parameter  
T2.24.1  
T2.24.2  
T2.24.3  
T2.24.4  
Description  
Notes  
Min  
Typ  
Max  
Units  
ns  
X1 Clock Period  
50 MHz Reference Clock  
20  
TXD[1:0], TX_EN, Data Setup to X1 rising edge  
4
2
ns  
TXD[1:0], TX_EN, Data Hold from X1 rising edge  
X1 Clock to PMD Output Pair Latency (100 Mb)(1) 100BASE-TX or 100BASE-FX  
ns  
11  
bits  
(1) Latency measurement is made from the X1 rising edge to the first bit of symbol.  
T2.24.1  
X1  
T2.24.2  
T2.24.3  
TXD[1:0]  
TX_EN  
Valid data  
T2.24.4  
PMD Output  
Pair  
Symbol  
Copyright © 2010–2013, Texas Instruments Incorporated  
Electrical Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
4.29 AC Specifications — RMII Transmit Timing (Master Mode)  
Parameter  
T2.25.1  
Description  
Notes  
Min  
Typ  
Max  
Units  
RX_CLK, TX_CLK, CLK_OUT Period  
50 MHz Reference Clock  
20  
ns  
T2.25.2  
TXD[1:0], TX_EN Data Setup to RX_CLK,  
TX_CLK, CLK_OUT rising edge  
4
2
ns  
ns  
T2.25.3  
T2.25.4  
TXD[1:0], TX_EN Data Hold from RX_CLK,  
TX_CLK, CLK_OUT rising edge  
RX_CLK, TX_CLK, CLK_OUT to PMD Output Pair From RX_CLK rising edge to  
Latency(1)  
first bit of symbol  
11  
bits  
(1) Latency measurement is made from the RX_CLK rising edge to the first bit of symbol.  
T2.25.1  
RX_CLK  
TX_CLK  
CLK_OUT  
T2.25.2  
T2.25.3  
TXD[1:0]  
TX_EN  
Valid data  
T2.25.4  
PMD Output  
Pair  
Symbol  
32  
Electrical Specifications  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
4.30 AC Specifications — RMII Receive Timing (Slave Mode)  
Parameter  
T2.26.1  
Description  
X1 Clock Period  
Notes  
Min  
Typ  
Max  
Units  
50 MHz Reference Clock  
20  
ns  
T2.26.2  
RXD[1:0], CRS_DV, and RX_ER  
output delay from X1 rising  
edge(1)(2)  
2
14  
ns  
T2.26.3  
T2.26.4  
T2.26.5  
100BASE-TX mode  
100BASE-FX mode  
100BASE-TX mode  
100BASE-FX mode  
100BASE-TX mode  
100BASE-FX mode  
18.5  
9
bits  
CRS ON delay(3)  
CRS OFF delay(4)  
27  
17  
38  
27  
bits  
bits  
RXD[1:0] and RX_ER  
latency(5)(6)(7)  
(1) Per the RMII Specification, output delays assume a 25 pF load.  
(2) CRS_DV is asserted asynchronously in order to minimize latency of control signals through the PHY. CRS_DV may toggle  
synchronously at the end of the packet to indicate CRS de-assertion.  
(3) CRS ON delay is measured from the first bit of the JK symbol on the PMD Input Pair to initial assertion of CRS_DV.  
(4) CRS OFF delay is measured from the first bit of the TR symbol on the PMD Input Pair to initial de-assertion of CRS_DV.  
(5) Receive Latency is measured from the first bit of the symbol pair on the PMD Input Pair. Typical values are with the Elasticity Buffer set  
to the default value (01).  
(6) Enabling IEEE 1588 Receive Timestamp insertion will increase the Receive Data Latency by 40 bit times.  
(7) Enabling PHY Status Frames will introduce variability in Receive Data Latency due to insertion of PHY Status Frames into the receive  
datapath.  
PMD Input  
IDLE  
(J/K)  
Data  
(TR)  
Data  
Pair  
T2.26.4  
T2.26.5  
X1  
T2.26.1  
T2.26.3  
T2.26.2  
CRS/CRS_DV  
T2.26.2  
RXD[1:0]  
RX_ER  
Copyright © 2010–2013, Texas Instruments Incorporated  
Electrical Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
4.31 AC Specifications — RMII Receive Timing (Master Mode)  
Parameter  
Description  
Notes  
Min  
Typ  
Max  
Units  
T2.27.1  
RX_CLK, TX_CLK, CLK_OUT  
Clock Period  
50 MHz Reference Clock  
20  
ns  
T2.27.2  
RXD[1:0], CRS_DV, RX_DV and  
RX_ER output delay from  
RX_CLK, TX_CLK, CLK_OUT  
rising edge(1)(2)  
2
14  
ns  
T2.27.3  
T2.27.4  
T2.27.5  
100BASE-TX mode  
100BASE-FX mode  
100BASE-TX mode  
100BASE-FX mode  
100BASE-TX mode  
100BASE-FX mode  
18.5  
9
CRS ON delay(3)  
bits  
bits  
bits  
27  
17  
38  
27  
CRS OFF delay(4)  
RXD[1:0] and RX_ER latency(5)  
(1) Per the RMII Specification, output delays assume a 25 pF load.  
(2) CRS_DV is asserted asynchronously in order to minimize latency of control signals through the PHY. CRS_DV may toggle  
synchronously at the end of the packet to indicate CRS de-assertion.  
(3) CRS ON delay is measured from the first bit of the JK symbol on the PMD Input Pair to initial assertion of CRS_DV.  
(4) CRS OFF delay is measured from the first bit of the TR symbol on the PMD Input Pair to initial de-assertion of CRS_DV.  
(5) Receive Latency is measured from the first bit of the symbol pair on the PMD Input Pair. Typical values are with the Elasticity Buffer set  
to the default value (01).  
PMD Input  
IDLE  
(J/K)  
Data  
(TR)  
Data  
Pair  
T2.27.4  
T2.27.5  
T2.27.2  
RX_CLK  
TX_CLK  
CLK_OUT  
T2.27.1  
T2.27.2  
T2.27.2  
T2.27.3  
RX_DV  
CRS/CRS_DV  
T2.27.2  
RXD[1:0]  
RX_ER  
4.32 AC Specifications — RX_CLK Timing (RMII Master Mode)  
Parameter  
T2.28.1  
Description  
RX_CLK High Time  
Notes  
Min  
Typ  
12  
8
Max  
Units  
ns  
T2.28.2  
RX_CLK Low Time  
RX_CLK Period(1)  
ns  
T2.28.3  
20  
ns  
(1) The High Time and Low Time will add up to 20 ns.  
T2.28.3  
T2.28.1  
T2.28.2  
RX_CLK  
34  
Electrical Specifications  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
4.33 AC Specifications — CLK_OUT Timing (RMII Slave Mode)  
Parameter  
T2.29.1  
Description  
CLK_OUT High/Low Time  
CLK_OUT propagation delay  
Notes  
Min  
Typ  
Max  
Units  
ns  
10  
T2.29.2  
Relative to X1  
8
ns  
X1  
T2.29.2  
T2.29.1  
T2.29.1  
CLK_OUT  
4.34 AC Specifications — Single Clock MII (SCMII) Transmit Timing  
Parameter  
T2.30.1  
Description  
X1 Clock Period  
Notes  
25 MHz Reference Clock  
To X1 rising edge  
Min  
Typ  
Max  
Units  
ns  
40  
T2.30.2  
TXD[3:0], TX_EN Data Setup  
TXD[3:0], TX_EN Data Hold  
4
2
ns  
T2.30.3  
From X1 rising edge  
ns  
T2.30.4  
X1 Clock to PMD Output Pair  
Latency (100 Mb)(1)  
100BASE-TX or 100BASE-FX  
13  
bits  
(1) Latency measurement is made from the X1 rising edge to the first bit of symbol.  
T2.30.1  
X1  
T2.30.2  
T2.30.3  
TXD[3:0]  
TX_EN  
Valid data  
T2.30.4  
PMD Output  
Pair  
Symbol  
Copyright © 2010–2013, Texas Instruments Incorporated  
Electrical Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
4.35 AC Specifications — Single Clock MII (SCMII) Receive Timing  
Parameter  
T2.31.1  
Description  
Notes  
Min  
Typ  
Max  
Units  
X1 Clock Period  
25 MHz Reference Clock  
40  
ns  
T2.31.2  
RXD[3:0], RX_DV and RX_ER output  
delay(1)  
From X1 rising edge  
2
18  
ns  
T2.31.3  
T2.31.4  
T2.31.5  
100BASE-TX mode  
100BASE-FX mode  
100BASE-TX mode  
100BASE-FX mode  
100BASE-TX mode  
100BASE-FX mode  
19  
9
CRS ON delay(2)(3)  
bits  
26  
16  
56  
46  
CRS OFF delay(2)(4)  
bits  
bits  
RXD[3:0] and RX_ER latency(5)  
(1) Output delays assume a 25 pF load.  
(2) CRS is asserted and de-asserted asynchronously relative to the reference clock.  
(3) CRS ON delay is measured from the first bit of the JK symbol on the PMD Input Pair to assertion of CRS_DV.  
(4) CRS OFF delay is measured from the first bit of the TR symbol on the PMD Input Pair to de-assertion of CRS_DV.  
(5) Receive Latency is measured from the first bit of the symbol pair on the PMD Input Pair. Typical values are with the Elasticity Buffer set  
to the default value (01).  
PMD Input  
IDLE  
(J/K)  
Data  
(TR)  
Data  
Pair  
T2.31.4  
T2.31.5  
X1  
T2.31.1  
T2.31.3  
CRS/CSR_DV  
RX_DV  
T2.31.2  
T2.31.2  
RXD[3:0]  
RX_ER  
4.36 AC Specifications — 100 Mb/s X1 to TX_CLK Timing  
Parameter  
Description  
X1 to TX_CLK delay(1)  
Notes  
Min  
Typ  
Max  
Units  
T2.32.1  
100 Mb/s Normal mode  
0
5
ns  
(1) X1 to TX_CLK timing is provided to support devices that use X1 instead of TX_CLK as the reference for transmit MII data.  
X1  
T2.32.1  
TX_CLK  
36  
Electrical Specifications  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
5 Configuration  
This section includes information on the various configuration options available with the DP83630. The  
configuration options described below include:  
— Media Configuration  
— Auto-Negotiation  
— PHY Address and LEDs  
— Half Duplex vs. Full Duplex  
— Isolate mode  
— Loopback mode  
— BIST  
5.1 MEDIA CONFIGURATION  
The DP83630 supports both Twister Pair (100BASE-TX and 10BASE-T) and Fiber (100BASE-FX) media.  
The port may be configured for Twisted Pair (TP) or Fiber (FX) operation by strap option or by register  
access.  
At power-up/reset, the state of the RX_ER pin will select the media for the port. The default selection is  
twisted pair mode, while an external pull-down will select FX mode of operation. Strapping the port into FX  
mode also automatically sets the Far-End Fault Enable, bit 3 of PCSR (16h), the Scramble Bypass, bit 1  
of PCSR (16h) and the Descrambler Bypass, bit 0 of PCSR (16h). In addition, the media selection may be  
controlled by writing to bit 6, FX_EN, of PCSR (16h).  
5.2 AUTO-NEGOTIATION  
The Auto-Negotiation function provides a mechanism for exchanging configuration information between  
two ends of a link segment and automatically selecting the highest performance mode of operation  
supported by both devices. Fast Link Pulse (FLP) Bursts provide the signalling used to communicate  
Auto-Negotiation abilities between two devices at each end of a link segment. For further detail regarding  
Auto-Negotiation, refer to Clause 28 of the IEEE 802.3u specification. The DP83630 supports four  
different Ethernet protocols (10 Mb/s Half Duplex, 10 Mb/s Full Duplex, 100 Mb/s Half Duplex, and 100  
Mb/s Full Duplex), so the inclusion of Auto-Negotiation ensures that the highest performance protocol will  
be selected based on the advertised ability of the Link Partner. The Auto-Negotiation function within the  
DP83630 can be controlled either by internal register access or by the use of the AN_EN, AN1 and AN0  
pins.  
5.2.1 Auto-Negotiation Pin Control  
The state of AN_EN, AN0 and AN1 determines whether the DP83630 is forced into a specific mode or  
Auto-Negotiation will advertise a specific ability (or set of abilities) as given in Table 5-1. These pins allow  
configuration options to be selected without requiring internal register access.  
The state of AN_EN, AN0 and AN1, upon power-up/reset, determines the state of bits [8:5] of the ANAR  
register.  
The Auto-Negotiation function selected at power-up or reset can be changed at any time by writing to the  
Basic Mode Control Register (BMCR) at address 00h.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Configuration  
37  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Table 5-1. Auto-Negotiation Modes  
AN_EN  
AN1  
AN0  
Forced Mode  
0
0
0
0
1
10BASE-T, Half-Duplex  
10BASE-T, Full-Duplex  
100BASE-TX, Half-Duplex  
100BASE-TX, Full-Duplex  
0
0
1
0
0
1
1
AN_EN  
AN1  
0
AN0  
0
Advertised Mode  
1
1
1
10BASE-T, Half/Full-Duplex  
100BASE-TX, Half/Full-Duplex  
100BASE-TX Full-Duplex  
0
1
1
0
10BASE-T, Half/Full-Duplex  
100BASE-TX, Half/Full-Duplex  
1
1
1
5.2.2 Auto-Negotiation Register Control  
When Auto-Negotiation is enabled, the DP83630 transmits the abilities programmed into the Auto-  
Negotiation Advertisement register (ANAR) at address 04h via FLP Bursts. Any combination of 10 Mb/s,  
100 Mb/s, Half-Duplex, and Full Duplex modes may be selected.  
Auto-Negotiation Priority Resolution:  
1. 100BASE-TX Full Duplex (Highest Priority)  
2. 100BASE-TX Half Duplex  
3. 10BASE-T Full Duplex  
4. 10BASE-T Half Duplex (Lowest Priority)  
The Basic Mode Control Register (BMCR) at address 00h provides control for enabling, disabling, and  
restarting the Auto-Negotiation process. When Auto-Negotiation is disabled, the SPEED SELECTION bit  
in the BMCR controls switching between 10 Mb/s or 100 Mb/s operation, and the DUPLEX MODE bit  
controls switching between full duplex operation and half duplex operation. The SPEED SELECTION and  
DUPLEX MODE bits have no effect on the mode of operation when the Auto-Negotiation Enable bit is set.  
The Link Speed can be examined through the PHY Status Register (PHYSTS) at address 10h after a Link  
is achieved.  
The Basic Mode Status Register (BMSR) indicates the set of available abilities for technology types, Auto-  
Negotiation ability, and Extended Register Capability. These bits are permanently set to indicate the full  
functionality of the DP83630 (only the 100BASE-T4 bit is not set since the DP83630 does not support that  
function).  
The BMSR also provides status on:  
Whether or not Auto-Negotiation is complete  
Whether or not the Link Partner is advertising that a remote fault has occurred  
Whether or not valid link has been established  
Support for Management Frame Preamble suppression  
The Auto-Negotiation Advertisement Register (ANAR) indicates the Auto-Negotiation abilities to be  
advertised by the DP83630. All available abilities are transmitted by default, but any ability can be  
suppressed by writing to the ANAR. Updating the ANAR to suppress an ability is one way for a  
management agent to change (restrict) the technology that is used.  
The Auto-Negotiation Link Partner Ability Register (ANLPAR) at address 05h is used to receive the base  
link code word as well as all next page code words during the negotiation. Furthermore, the ANLPAR will  
be updated to either 0081h or 0021h for parallel detection to either 100 Mb/s or 10 Mb/s respectively.  
38  
Configuration  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
The Auto-Negotiation Expansion Register (ANER) indicates additional Auto-Negotiation status. The ANER  
provides status on:  
Whether or not a Parallel Detect Fault has occurred  
Whether or not the Link Partner supports the Next Page function  
Whether or not the DP83630 supports the Next Page function  
Whether or not the current page being exchanged by Auto-Negotiation has been received  
Whether or not the Link Partner supports Auto-Negotiation  
5.2.3 Auto-Negotiation Parallel Detection  
The DP83630 supports the Parallel Detection function as defined in the IEEE 802.3u specification. Parallel  
Detection requires both the 10 Mb/s and 100 Mb/s receivers to monitor the receive signal and report link  
status to the Auto-Negotiation function. Auto-Negotiation uses this information to configure the correct  
technology in the event that the Link Partner does not support Auto-Negotiation but is transmitting link  
signals that the 100BASE-TX or 10BASE-T PMAs recognize as valid link signals.  
If the DP83630 completes Auto-Negotiation as a result of Parallel Detection, bits 5 and 7 within the  
ANLPAR register will be set to reflect the mode of operation present in the Link Partner. Note that bits 4:0  
of the ANLPAR will also be set to 00001 based on a successful parallel detection to indicate a valid 802.3  
selector field. Software may determine that negotiation completed via Parallel Detection by reading a zero  
in the Link Partner Auto-Negotiation Able bit once the Auto-Negotiation Complete bit is set. If configured  
for parallel detect mode and any condition other than a single good link occurs then the parallel detect  
fault bit will be set.  
5.2.4 Auto-Negotiation Restart  
Once Auto-Negotiation has completed, it may be restarted at any time by setting bit 9 (Restart Auto-  
Negotiation) of the BMCR to one. If the mode configured by a successful Auto-Negotiation loses a valid  
link, then the Auto-Negotiation process will resume and attempt to determine the configuration for the link.  
This function ensures that a valid configuration is maintained if the cable becomes disconnected.  
A renegotiation request from any entity, such as a management agent, will cause the DP83630 to halt any  
transmit data and link pulse activity until the break_link_timer expires (~1500 ms). Consequently, the Link  
Partner will go into link fail and normal Auto-Negotiation resumes. The DP83630 will resume Auto-  
Negotiation after the break_link_timer has expired by issuing FLP (Fast Link Pulse) bursts.  
5.2.5 Enabling Auto-Negotiation via Software  
It is important to note that if the DP83630 has been initialized upon power-up as a non-auto-negotiating  
device (forced technology), and it is then required that Auto-Negotiation or re-Auto-Negotiation be initiated  
via software, bit 12 (Auto-Negotiation Enable) of the Basic Mode Control Register (BMCR) must first be  
cleared and then set for any Auto-Negotiation function to take effect.  
5.2.6 Auto-Negotiation Complete Time  
Parallel detection and Auto-Negotiation take approximately 2-3 seconds to complete. In addition, Auto-  
Negotiation with next page should take approximately 2-3 seconds to complete, depending on the number  
of next pages sent.  
Refer to Clause 28 of the IEEE 802.3u standard for a full description of the individual timers related to  
Auto-Negotiation.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Configuration  
39  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
5.3 AUTO-MDIX  
When enabled, this function utilizes Auto-Negotiation to determine the proper configuration for  
transmission and reception of data and subsequently selects the appropriate MDI pair for MDI/MDIX  
operation. The function uses a random seed to control switching of the crossover circuitry. This  
implementation complies with the corresponding IEEE 802.3 Auto-Negotiation and Crossover  
Specifications.  
Auto-MDIX is enabled by default and can be configured via PHYCR (19h) register, bits [15:14].  
Neither Auto-Negotiation nor Auto-MDIX is required to be enabled in forcing crossover of the MDI pairs.  
Forced crossover can be achieved through the FORCE_MDIX bit, bit 14 of PHYCR (19h) register.  
5.4 AUTO-CROSSOVER IN FORCED MODE  
When enabled, this function operates in a manner similar to Auto-MDIX. If no link activity is seen,  
switching of the crossover circuitry is based on a random seed. Valid link activity can be link pulses (Auto-  
Negotiation link pulse or 10M link pulses) or 100M signaling. Once valid link activity is seen, crossover will  
stop to allow the receive and link functions will proceed normally.  
Auto-crossover in forced mode allows for shorter link times because it does not require potentially lengthy  
Auto-Negotiation transactions prior to link establishment. Link establishment via Auto-crossover can be  
accomplished in full or half duplex configuration, but both sides of the link must be forced to the same  
duplex configuration.  
Auto-crossover in forced mode is disabled by default and must be configured via PCSR (16h) register, bit  
15.  
Forced crossover can be achieved while Auto-crossover is enabled through the FORCE_MDIX bit, bit 14  
of PHYCR (19h) register.  
NOTE: Auto-MDIX and Auto-crossover in forced mode are mutually exclusive and should not be enabled  
concurrently. Prior to enabling Auto-crossover in forced mode, Auto-Negotiation and Auto-MDIX should be  
disabled.  
5.5 PHY ADDRESS  
The five PHY address strapping pins are shared with the RXD[3:0] pins and COL pin as shown below.  
Table 5-2. PHY Address Mapping  
Pin #  
42  
PHYAD Function  
PHYAD0  
RXD Function  
COL  
43  
PHYAD1  
RXD_3  
44  
PHYAD2  
RXD_2  
45  
PHYAD3  
RXD_1  
46  
PHYAD4  
RXD_0  
The DP83630 can be set to respond to any of 32 possible PHY addresses via strap pins. The information  
is latched into the PHYCR register (address 19h, bits [4:0]) at device power-up and hardware reset. Each  
DP83630 or port sharing an MDIO bus in a system must have a unique physical address.  
The DP83630 supports PHY Address strapping values 0 (<00000>) through 31 (<11111>). Strapping  
PHY Address 0 puts the part into Isolate Mode. It should also be noted that selecting PHY Address 0  
via an MDIO write to PHYCR will not put the device in Isolate Mode. See Mill Isolate Mode for more  
information.  
For further detail relating to the latch-in timing requirements of the PHY Address pins, as well as the other  
hardware configuration pins, refer to the Reset summary in Reset Operation.  
40  
Configuration  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Since the PHYAD[0] pin has weak internal pull-up resistor and PHYAD[4:1] pins have weak internal pull-  
down resistors, the default setting for the PHY address is 00001 (01h).  
Refer to Figure 5-1 for an example of a PHYAD connection to external components. In this example, the  
PHYAD strapping results in address 00011 (03h).  
PHYAD4 = 0  
PHYAD3 = 0  
PHYAD2 = 0  
PHYAD1 = 1  
PHYAD0 = 1  
2.2 kW  
VCC  
Figure 5-1. PHYAD Strapping Example  
5.5.1 MII Isolate Mode  
It is recommended that the user have a basic understanding of Clause 22 of the 802.3u standard.  
The DP83630 can be put into MII Isolate Mode by writing a 1 to bit 10 of the BMCR register. Strapping the  
PHY Address to 0 will force the device into Isolate Mode when powered up. It should be noted that  
selecting Physical Address 0 via an MDIO write to PHYCR will not put the device in the MII isolate mode.  
When in the MII Isolate Mode, the DP83630 does not respond to packet data present at TXD[3:0] and  
TX_EN inputs and presents a high impedance on the TX_CLK, RX_CLK, RX_DV, RX_ER, RXD[3:0],  
COL, and CRS/CRS_DV outputs. When in Isolate Mode, the DP83630 will continue to respond to all serial  
management transactions over the MII.  
While in Isolate Mode, the PMD output pair will not transmit packet data but will continue to source  
100BASE-TX scrambled idles or 10BASE-T normal link pulses.  
The DP83630 can Auto-Negotiate or parallel detect to a specific technology depending on the receive  
signal at the PMD input pair. A valid link can be established for the receiver even when the DP83630 is in  
Isolate Mode.  
5.5.2 Broadcast Mode  
The DP83630 is also capable of accepting broadcast messages (register writes to PHY address 0x1F).  
Setting the BC_WRITE to 1, bit 11 of the PHY Control Register 2 (PHYCR2) at address 0x1C, will  
configure the device to accept broadcast messages independent of the local PHY Address value.  
5.6 LED INTERFACE  
The DP83630 supports three configurable Light Emitting Diode (LED) pins: LED_LINK,  
LED_SPEED/FX_SD, and LED_ACT.  
Several functions can be multiplexed onto the three LEDs using three different modes of operation. The  
LED operation mode can be selected by writing to the LED_CFG[1:0] register bits in the PHY Control  
Register (PHYCR) at address 19h, bits [6:5]. LED_CFG[1] is only controllable through register access and  
cannot be set by a strap pin.  
See Table 5-3 for LED Mode selection.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Configuration  
41  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Table 5-3. LED Mode Selection  
Mode  
LED_CFG[1]  
LED_CFG[0]  
LED_LINK  
ON for Good Link  
OFF for No Link  
ON for Good Link  
BLINK for Activity  
ON for Good Link  
BLINK for Activity  
LED_SPEED  
LED_ACT  
ON for Activity  
1
ON in 100 Mb/s  
OFF in 10 Mb/s  
ON in 100 Mb/s  
OFF in 10 Mb/s  
ON in 100 Mb/s  
OFF in 10 Mb/s  
don't care  
1
OFF for No Activity  
ON for Collision  
2
3
0
1
0
0
OFF for No Collision  
ON for Full Duplex  
OFF for Half Duplex  
The LED_LINK pin in Mode 1 indicates the link status of the port. In 100BASE-TX mode, link is  
established as a result of input receive amplitude compliant with the TP-PMD specifications which will  
result in internal generation of signal detect. A 10 Mb/s Link is established as a result of the reception of at  
least seven consecutive normal Link Pulses or the reception of a valid 10BASE-T packet. This will cause  
the assertion of LED_LINK. LED_LINK will deassert in accordance with the Link Loss Timer as specified  
in the IEEE 802.3 specification. In 100BASE-TX mode, an optional fast link loss detection may be enabled  
by setting the SD_TIME control in the SD_CNFG register. Enabling fast link loss detection will result in the  
LED_LINK deassertion within approximately 1.3 µs of loss of signal on the wire.  
The LED_LINK pin in Mode 1 will be OFF when no LINK is present.  
The LED_LINK pin in Mode 2 and Mode 3 will be ON to indicate Link is good and BLINK to indicate  
activity is present on activity. The BLINK frequency is defined in BLINK_FREQ, bits [7:6] of register  
LEDCR (18h).  
Activity is defined as configured in LEDACT_RX, bit 8 of register LEDCR (18h). If LEDACT_RX is 0,  
Activity is signaled for either transmit or receive. If LEDACT_RX is 1, Activity is only signaled for receive.  
The LED_SPEED/FX_SD pin indicates 10 or 100 Mb/s data rate of the port. The standard CMOS driver  
goes high when operating in 100 Mb/s operation. The functionality of this LED is independent of mode  
selected.  
The LED_ACT pin in Mode 1 indicates the presence of either transmit or receive activity. The LED will be  
ON for Activity and OFF for No Activity. In Mode 2, this pin indicates the Collision status of the port. The  
LED will be ON for Collision and OFF for No Collision.  
The LED_ACT pin in Mode 3 indicates Duplex status for 10 Mb/s or 100 Mb/s operation. The LED will be  
ON for Full Duplex and OFF for Half Duplex.  
In 10 Mb/s half duplex mode, the collision LED is based on the COL signal.  
Since these LED pins are also used as strap options, the polarity of the LED is dependent on whether the  
pin is pulled up or down.  
5.6.1 LEDs  
Since the Auto-Negotiation (AN) strap options share the LED output pins, the external components  
required for strapping and LED usage must be considered in order to avoid contention.  
Specifically, when the LED outputs are used to drive LEDs directly, the active state of each output driver is  
dependent on the logic level sampled by the corresponding AN input upon power-up/reset. For example, if  
a given AN input is resistively pulled low then the corresponding output will be configured as an active  
high driver. Conversely, if a given AN input is resistively pulled high, then the corresponding output will be  
configured as an active low driver.  
Refer to Figure 5-2 for an example of AN connections to external components. In this example, the AN  
strapping results in Auto-Negotiation disabled with 100 Full-Duplex forced.  
The adaptive nature of the LED outputs helps to simplify potential implementation issues of these dual  
purpose pins.  
42  
Configuration  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
AN_EN = 0  
AN1 = 1  
AN0 = 1  
165W  
165W  
165W  
VCC  
GND  
Figure 5-2. AN Strapping and LED Loading Example  
5.6.2 LED Direct Control  
The DP83630 provides another option to directly control any or all LED outputs through the LED Direct  
Control Register (LEDCR), address 18h. The register does not provide read access to LEDs.  
5.7 HALF DUPLEX vs. FULL DUPLEX  
The DP83630 supports both half and full duplex operation at both 10 Mb/s and 100 Mb/s speeds.  
Half-duplex relies on the CSMA/CD protocol to handle collisions and network access. In Half-Duplex  
mode, Carrier Sense (CRS) responds to both transmit and receive activity in order to maintain compliance  
with the IEEE 802.3 specification.  
Since the DP83630 is designed to support simultaneous transmit and receive activity it is capable of  
supporting full-duplex switched applications with a throughput of up to 200 Mb/s when operating in either  
100BASE-TX or 100BASE-FX. Because the CSMA/CD protocol does not apply to full-duplex operation,  
the DP83630 disables its own internal collision sensing and reporting functions and modifies the behavior  
of CRS such that it indicates only receive activity. This allows a full-duplex capable MAC to operate  
properly.  
All modes of operation (100BASE-TX, 100BASE-FX, 10BASE-T) can run either half-duplex or full-duplex.  
Additionally, other than CRS and collision reporting, all remaining MII signaling remains the same  
regardless of the selected duplex mode.  
It is important to understand that while Auto-Negotiation with the use of Fast Link Pulse code words can  
interpret and configure to full-duplex operation, parallel detection can not recognize the difference between  
full and half-duplex from a fixed 10 Mb/s or 100 Mb/s link partner over twisted pair. As specified in the  
802.3u specification, if a far-end link partner is configured to a forced full-duplex 100BASE-TX ability, the  
parallel detection state machine in the partner would be unable to detect the full-duplex capability of the  
far-end link partner. This link segment would negotiate to a half-duplex 100BASE-TX configuration (same  
scenario for 10 Mb/s).  
Auto-Negotiation is not supported in 100BASE-FX operation. Selection of Half or Full-duplex operation is  
controlled by bit 8 of the Basic Mode Control Register (BMCR), address 00h. If 100BASE-FX mode is  
strapped using the RX_ER pin, the AN0 strap value is used to set the value of bit 8 of the BMCR (00h)  
register. Note that the other Auto-Negotiation strap pins (AN_EN and AN1) are ignored in 100BASE-FX  
mode.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Configuration  
43  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
5.8 INTERNAL LOOPBACK  
The DP83630 includes a Loopback Test mode for facilitating system diagnostics. The Loopback mode is  
selected through bit 14 (Loopback) of the Basic Mode Control Register (BMCR). Writing 1 to this bit  
enables MII transmit data to be routed to the MII receive outputs. Loopback status may be checked in bit 3  
of the PHY Status Register (PHYSTS). While in Loopback mode the data will not be transmitted onto the  
media. To ensure that the desired operating mode is maintained, Auto-Negotiation should be disabled  
before selecting the Loopback mode.  
5.9 POWER DOWN/INTERRUPT  
The Power Down and Interrupt functions are multiplexed on pin 7 of the device. By default, this pin  
functions as a power down input and the interrupt function is disabled. Setting bit 0 (INT_OE) of MICR  
(11h) will configure the pin as an active low interrupt output.  
5.9.1 Power Down Control Mode  
The PWRDOWN/INTN pin can be asserted low to put the device in a Power Down mode. This is  
equivalent to setting bit 11 (POWER DOWN) in the Basic Mode Control Register, BMCR (00h). An  
external control signal can be used to drive the pin low, overcoming the weak internal pull-up resistor.  
Alternatively, the device can be configured to initialize into a Power Down state by use of an external pull-  
down resistor on the PWRDOWN/INTN pin. Since the device will still respond to management register  
accesses, setting the INT_OE bit in the MICR register will disable the PWRDOWN/INTN input, allowing  
the device to exit the Power Down state.  
5.9.2 Interrupt Mechanisms  
The interrupt function is controlled via register access. All interrupt sources are disabled by default. Setting  
bit 1 (INTEN) of MICR (11h) will enable interrupts to be output, dependent on the interrupt mask set in the  
lower byte of the MISR (12h). The PWRDOWN/INTN pin is asynchronously asserted low when an  
interrupt condition occurs. The source of the interrupt can be determined by reading the upper byte of the  
MISR. One or more bits in the MISR will be set, denoting all currently pending interrupts. Reading of the  
MISR clears ALL pending interrupts.  
Example: To generate an interrupt on a change of link status or on a change of energy detect power state,  
the steps would be:  
Write 0003h to MICR to set INTEN and INT_OE  
Write 0060h to MISR to set ED_INT_EN and LINK_INT_EN  
Monitor PWRDOWN/INTN pin  
When PWRDOWN/INTN pin asserts low, the user would read the MISR register to see if the ED_INT or  
LINK_INT bits are set, i.e. which source caused the interrupt. After reading the MISR, the interrupt bits  
should clear and the PWRDOWN/INTN pin will de-assert.  
5.10 ENERGY DETECT MODE  
When Energy Detect is enabled and there is no activity on the cable, the DP83630 will remain in a low  
power mode while monitoring the transmission line. Activity on the line will cause the DP83630 to go  
through a normal power up sequence. Regardless of cable activity, the DP83630 will occasionally wake  
up the transmitter to put ED pulses on the line, but will otherwise draw as little power as possible. Energy  
detect functionality is controlled via register Energy Detect Control (EDCR), address 1Dh.  
44  
Configuration  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
5.11 LINK DIAGNOSTIC CAPABILITIES  
The DP83630 contains several system diagnostic capabilities for evaluating link quality and detecting  
potential cabling faults in twisted pair cabling. Software configuration is available through the Link  
Diagnostics Registers - Page 2 which can be selected via Page Select Register (PAGESEL), address 13h.  
These capabilities include:  
— Linked Cable Status  
— Link Quality Monitor  
— TDR (Time Domain Reflectometry) Cable Diagnostics  
5.11.1 Linked Cable Status  
In an active connection with a valid link status, the following diagnostic capabilities are available:  
— Polarity reversal  
— Cable swap (MDI vs MDIX) detection  
— 100 Mb Cable Length Estimation  
— Frequency offset relative to link partner  
— Cable Signal Quality Estimation  
5.11.1.1 Polarity Reversal  
The DP83630 detects polarity reversal by detecting negative link pulses. The Polarity indication is  
available in bit 12 of the PHYSTS (10h) or bit 4 of the 10BTSCR (1Ah). Inverted polarity indicates the  
positive and negative conductors in the receive pair are swapped. Since polarity is corrected by the  
receiver, this does not necessarily indicate a functional problem in the cable.  
Since the polarity indication is dependent on link pulses from the link partner, polarity indication is only  
valid in 10 Mb modes of operation, or in 100 Mb Auto-Negotiated mode. Polarity indication is not available  
in 100 Mb forced mode of operation or in a parallel detected 100 Mb mode.  
5.11.1.2 Cable Swap Indication  
As part of Auto-Negotiation, the DP83630 has the ability (using Auto-MDIX) to automatically detect a cable  
with swapped MDI pairs and select the appropriate pairs for transmitting and receiving data. Normal  
operation is termed MDI, while crossed operation is MDIX. The MDIX status can be read from bit 14 of the  
PHYSTS (10h).  
5.11.1.3 100 Mb Cable Length Estimation  
The DP83630 provides a method of estimating cable length based on electrical characteristics of the 100  
Mb link. This essentially provides an effective cable length rather than a measurement of the physical  
cable length. The cable length estimation is only available in 100 Mb mode of operation with a valid link  
status. The cable length estimation is available at the Link Diagnostics Registers - Page 2, register 100  
Mb Length Detect (LEN100_DET), address 14h.  
5.11.1.4 Frequency Offset Relative to Link Partner  
As part of the 100 Mb clock recovery process, the DSP implementation provides a frequency control  
parameter. This value may be used to indicate the frequency offset of the device relative to the link  
partner. This operation is only available in 100 Mb operation with a valid link status. The frequency offset  
can be determined using the register 100 Mb Frequency Offset Indication (FREQ100), address 15h, of the  
Link Diagnostics Registers - Page 2.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Configuration  
45  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Two different versions of the Frequency Offset may be monitored through bits [7:0] of register FREQ100  
(15h). The first is the long-term Frequency Offset. The second is the current Frequency Control value,  
which includes short-term phase adjustments and can provide information on the amount of jitter in the  
system.  
5.11.1.5 Cable Signal Quality Estimation  
The cable signal quality estimator keeps a simple tracking of results of the DSP and can be used to  
generate an approximate Signal-to-Noise Ratio for the 100 Mb receiver. This information is available to  
software through the Link Diagnostics Registers - Page 2: Variance Control Register (VAR_CTRL),  
address 1Ah and Variance Data Register (VAR_DATA), address 1Bh.  
The variance computation times (VAR_TIMER) can be chosen from the set of {2, 4, 6, 8} ms. The 32-bit  
variance sum can be read by two consecutive reads of the VAR_DATA register. This sum can be used to  
compute an SNR estimate by software using the following equation:  
SNR = 10log10((37748736 * VAR_TIMER) / Variance)  
(1)  
5.11.2 Link Quality Monitor  
The Link Quality Monitor allows a method to generate an alarm when the DSP adaption strays from a  
programmable window. This could occur due to changes in the cable which could indicate a potential  
problem. Software can program thresholds for the following DSP parameters to be used to interrupt the  
system:  
— Digital Equalizer C1 Coefficient (DEQ C1)  
— Digital Adaptive Gain Control (DAGC)  
— Digital Base-Line Wander Control (DBLW)  
— Recovered Clock Long-Term Frequency Offset (FREQ)  
— Recovered Clock Frequency Control (FC)  
— Signal-to-Noise Ratio (SNR) Variance  
Software is expected to read initial adapted values and then program the thresholds based on an  
expected valid range. This mechanism takes advantage of the fact that the DSP adaptation should remain  
in a relatively small range once a valid link has been established.  
5.11.2.1 Link Quality Monitor Control and Status  
Control of the Link Quality Monitor is done through the Link Quality Monitor Register (LQMR), address  
1Dh and the Link Quality Data Register (LQDR), address 1Bh of the Link Diagnostics Registers - Page 2.  
The LQMR register includes a global enable to enable the Link Quality Monitor function. In addition, it  
provides warning status from both high and low thresholds for each of the monitored parameters except  
SNR Variance.. The LQMR2 register provides warning status for the high threshold of SNR Variance  
(upper 16 bits); there is no low threshold. Note that individual low or high parameter threshold  
comparisons can be disabled by setting to the minimum or maximum values.  
To allow the Link Quality Monitor to interrupt the system, the Interrupt must be enabled through the  
interrupt control registers, MICR (11h) and MISR (12h).  
The Link Quality Monitor may also be used to automatically reset the DSP and restart adaption. Separate  
enable bits in LQMR and LQMR2 allow for automatic reset based on each of the parameter values. If  
enabled, a violation of one of the thresholds will result in a restart of the DSP adaption. In addition if the  
PCSR:SD_OPTION register bit is set to 0, the violation will also result in a drop in Link Status.  
46  
Configuration  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
5.11.2.2 Checking Current Parameter Values  
Prior to setting Threshold values, it is recommended that software check current adapted values. The  
thresholds may then be set relative to the adapted values. The current adapted values can be read using  
the LQDR register by setting the SAMPLE_PARAM bit [13] of LQDR, address (1Eh).  
For example, to read the DBLW current value:  
1. Write 2400h to LQDR (1Eh) to set the SAMPLE_PARAM bit and set the LQ_PARAM_SEL[2:0] to 010.  
2. Read LQDR (1Eh). Current DBLW value is returned in the low 8 bits.  
5.11.2.3 Threshold Control  
The LQDR (1Eh) register also provides a method of programming high and low thresholds for each of the  
five parameters that can be monitored. The register implements an indirect read/write mechanism.  
Writes are accomplished by writing data, address, and a write strobe to the register. Reads are  
accomplished by writing the address to the register, and reading back the value of the selected threshold.  
Setting thresholds to the maximum or minimum values will disable the threshold comparison since values  
have to exceed the threshold to generate a warning condition.  
Warnings are not generated if the parameter is equal to the threshold. By default, all thresholds are  
disabled by setting to the minimum or maximum values. The Table 5-4 shows the five parameters and  
range of values:  
Table 5-4. Link Quality Monitor Parameter Ranges  
Parameter  
DEQ_C1  
Minimum Value  
Maximum Value  
+127  
Min (2-s comp)  
0x80  
Max (2-s comp)  
0x7F  
-128  
0
DAGC  
+255  
0x00  
0xFF  
DBLW  
-128  
-128  
-128  
0
+127  
0x80  
0x7F  
Frequency Offset  
Frequency Control  
SNR Variance  
+127  
0x80  
0x7F  
+127  
0x80  
0x7F  
+2304  
0x0000  
0x900  
Note that values are signed 2-s complement values except for DAGC and Variance which are always  
positive. The maximum SNR Variance is calculated by assuming the worst-case squared error (144) is  
accumulated every 8 ns for 8*220 ns (roughly 8 ms or exactly 1,048,576 clock cycles).  
For example, to set the DBLW Low threshold to -38:  
1. Write 14DAh to LQDR to set the Write_LQ_Thr bit, select the DBLW Low Threshold, and write data of  
-38 (0xDA).  
2. Write 8000 to LQMR to enable the Link Quality Monitor (if not already enabled).  
5.11.3 TDR Cable Diagnostics  
The DP83630 implements a Time Domain Reflectometry (TDR) method of cable length measurement and  
evaluation which can be used to evaluate a connected twisted pair cable. The TDR implementation  
involves sending a pulse out on either the Transmit or Receive conductor pair and observing the results  
on either pair. By observing the types and strength of reflections on each pair, software can determine the  
following:  
— Cable short  
— Cable open  
— Distance to fault  
— Identify which pair has a fault  
— Pair skew  
Copyright © 2010–2013, Texas Instruments Incorporated  
Configuration  
47  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
The TDR cable diagnostics works best in certain conditions. For example, an unterminated cable provides  
a good reflection for measuring cable length, while a cable with an ideal termination to an unpowered  
partner may provide no reflection at all.  
5.11.4 TDR Pulse Generator  
The TDR implementation can send two types of TDR pulses. The first option is to send 50 ns or 100 ns  
link pulses from the 10 Mb Common Driver. The second option is to send pulses from the 100 Mb  
Common Driver in 8 ns increments up to 56 ns in width. The 100 Mb pulses will alternate between positive  
and negative pulses. The shorter pulses provide better ability to measure short cable lengths, especially  
since they will limit overlap between the transmitted pulse and a reflected pulse. The longer pulses may  
provide better measurements of long cable lengths.  
In addition, if the pulse width is programmed to 0, no pulse will be sent, but the monitor circuit will still be  
activated. This allows sampling of background data to provide a baseline for analysis.  
5.11.5 TDR Pulse Monitor  
The TDR function monitors data from the Analog to Digital Converter (ADC) to detect both peak values  
and values above a programmable threshold. It can be programmed to detect maximum or minimum  
values. In addition, it records the time, in 8 ns intervals, at which the peak or threshold value first occurs.  
The TDR monitor implements a timer that starts when the pulse is transmitted. A window may be enabled  
to qualify incoming data to look for response only in a desired range. This is especially useful for  
eliminating the transmitted pulse, but also may be used to look for multiple reflections.  
5.11.6 TDR Control Interface  
The TDR Control Interface is implemented in the Link Diagnostics Registers - Page 2 through TDR  
Control (TDR_CTRL), address 16h and TDR Window (TDR_WIN), address 17h. The following basic  
controls are:  
TDR Enable: Enable bit 15 of TDR_CTRL (16h) to allow the TDR function. This bypasses normal  
operation and gives control of the CD10 and CD100 block to the TDR function.  
TDR Send Pulse: Enable bit 11 of TDR_CTRL (16h) to send the TDR pulse and starts the TDR  
Monitor  
The following transmit mode controls are available:  
Transmit Mode: Enables use of 10 Mb Link pulses from the 10 Mb Common Driver or data pulses  
from the 100 Mb Common Driver by enabling TDR_100 Mb, bit 14 of TDR_CRTL (16h).  
Transmit Pulse Width: Bits [10:8] of TDR_CTRL (16h) allows sending of 0 to 7 clock width pulses.  
Actual pulses are dependent on the transmit mode. If the pulse width is set to 0, then no pulse will be  
sent.  
Transmit Channel Select: The transmitter can send pulses down either the transmit pair or the  
receive pair by enabling bit 13 of TDR_CTRL (16h). Default value is to select the transmit pair.  
The following receive mode controls are available:  
Min/Max Mode Control: Bit 7 of TDR_CTRL (16h) controls the TDR Monitor operation. In default  
mode, the monitor will detect maximum (positive) values. In Min Mode, the monitor will detect minimum  
(negative) values.  
Receive Channel Select: The receiver can monitor either the transmit pair or the receive pair by  
enabling bit 12 of TDR_CTRL (16h). Default value is to select the transmit pair.  
Receive Window: The receiver can monitor receive data within a programmable window using the  
TDR Window Register (TDR_WIN), address 17h. The window is controlled by two register values: TDR  
Start Window, bits [15:8] of TDR_WIN (17h) and TDR Stop Window, bits [7:0] of TDR_WIN (17h). The  
TDR Start Window indicates the first clock to start sampling. The TDR Stop Window indicates the last  
clock to sample. By default, the full window is enabled, with Start set to 0 and Stop set to 255. The  
window range is in 8 ns clock increments, so the maximum window size is 2048 ns.  
48  
Configuration  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
5.11.7 TDR Results  
The results of a TDR peak and threshold measurement are available in the TDR Peak Measurement  
Register (TDR_PEAK), address 18h and TDR Threshold Measurement Register (TDR_THR), address  
19h. The threshold measurement may be a more accurate method of measuring the length of longer  
cables since it provides a better indication of the start of the received pulse, rather than the peak value.  
Software utilizing the TDR function should implement an algorithm to send TDR pulses and evaluate  
results. Multiple runs should be used to best qualify any received pulses as multiple reflections could exist.  
In addition, when monitoring the transmitting pair, the window feature should be used to disqualify the  
transmitted pulse. Multiple runs may also be used to average the values providing more accurate results.  
Actual distance measurements are dependent on the velocity of propagation of the cable. The delay value  
is typically on the order of 4.6 to 4.9 ns/m.  
5.12 BIST  
The DP83630 incorporates an internal Built-in Self Test (BIST) circuit to accommodate in-circuit testing or  
diagnostics. The BIST circuit can be utilized to test the integrity of the transmit and receive data paths.  
BIST testing can be performed with the part in the internal loopback mode or externally looped back using  
a loopback cable fixture. BIST testing can also be performed between two directly connected DP83630  
devices.  
The BIST is implemented with independent transmit and receive paths, with the transmit block generating  
a continuous stream of a pseudo random sequence. The user can select a 9 bit or 15 bit pseudo random  
sequence from the PSR_15 bit in the PHY Control Register (PHYCR). The received data is compared to  
the generated pseudo-random data by the BIST Linear Feedback Shift Register (LFSR) to determine the  
BIST pass/fail status.  
The pass/fail status of the BIST is stored in the BIST status bit in the PHYCR register. The status bit  
defaults to 0 (BIST fail) and will transition on a successful comparison. If an error (mis-compare) occurs,  
the status bit is latched and is cleared upon a subsequent write to the Start/Stop bit.  
For transmit VOD testing, the Packet BIST Continuous Mode can be used to allow continuous data  
transmission by setting the BIST_CONT_MODE, bit 5, of CDCTRL1 (1Bh).  
The number of BIST errors can be monitored through the BIST Error Count in the CDCTRL1 (1Bh), bits  
[15:8].  
Copyright © 2010–2013, Texas Instruments Incorporated  
Configuration  
49  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
6 MAC Interface  
The DP83630 supports several modes of operation using the MII interface pins. The options are defined in  
the following sections and include:  
— MII Mode  
— RMII Mode  
— Single Clock MII Mode (SCMII)  
In addition, the DP83630 supports the standard 802.3u MII Serial Management Interface.  
The modes of operation can be selected by strap options or register control. For RMII Slave mode, it is  
recommended to use the strap option since it requires a 50 MHz clock instead of the normal 25 MHz.  
In each of these modes, the IEEE 802.3 serial management interface is operational for device  
configuration and status. The serial management interface of the MII allows for the configuration and  
control of multiple PHY devices, gathering of status, error information, and the determination of the type  
and capabilities of the attached PHY(s).  
6.1 MII INTERFACE  
The DP83630 incorporates the Media Independent Interface (MII) as specified in Clause 22 of the IEEE  
802.3u standard. This interface may be used to connect PHY devices to a MAC in 10/100 Mb/s systems.  
This section describes the nibble wide MII data interface.  
The nibble wide MII data interface consists of a receive bus and a transmit bus each with control signals  
to facilitate data transfer between the PHY and the upper layer (MAC).  
6.1.1 Nibble-wide MII Data Interface  
Clause 22 of the IEEE 802.3u specification defines the Media Independent Interface. This interface  
includes a dedicated receive bus and a dedicated transmit bus. These two data buses, along with various  
control and status signals, allow for the simultaneous exchange of data between the DP83630 and the  
upper layer agent (MAC).  
The receive interface consists of a nibble wide data bus RXD[3:0], a receive error signal RX_ER, a receive  
data valid flag RX_DV, and a receive clock RX_CLK for synchronous transfer of the data. The receive  
clock operates at either 2.5 MHz to support 10 Mb/s operation modes or at 25 MHz to support 100 Mb/s  
operational modes.  
The transmit interface consists of a nibble wide data bus TXD[3:0], a transmit enable control signal  
TX_EN, and a transmit clock TX_CLK which runs at either 2.5 MHz or 25 MHz.  
Additionally, the MII includes the carrier sense signal CRS, as well as a collision detect signal COL. The  
CRS signal asserts to indicate the reception of data from the network or as a function of transmit data in  
Half Duplex mode. The COL signal asserts as an indication of a collision which can occur during half-  
duplex operation when both a transmit and receive operation occur simultaneously.  
6.1.2 Collision Detect  
For Half Duplex, a 10BASE-T or 100BASE-TX collision is detected when the receive and transmit  
channels are active simultaneously. Collisions are reported by the COL signal on the MII.  
If the DP83630 is transmitting in 10 Mb/s mode when a collision is detected, the collision is not reported  
until seven bits have been received while in the collision state. This prevents a collision being reported  
incorrectly due to noise on the network. The COL signal remains set for the duration of the collision.  
If a collision occurs during a receive operation, it is immediately reported by the COL signal.  
50  
MAC Interface  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
When heartbeat is enabled (only applicable to 10 Mb/s operation), approximately 1µs after the  
transmission of each packet, a Signal Quality Error (SQE) signal of approximately 10 bit times is  
generated (internally) to indicate successful transmission. SQE is reported as a pulse on the COL signal of  
the MII.  
Collision is not indicated during Full Duplex operation.  
6.1.3 Carrier Sense  
In 10 Mb/s operation, Carrier Sense (CRS) is asserted due to receive activity once valid data is detected  
via the Smart Squelch function. During 100 Mb/s operation CRS is asserted when a valid link (SD) and  
two non-contiguous zeros are detected on the line.  
For 10 or 100 Mb/s Half Duplex operation, CRS is asserted during either packet transmission or reception.  
For 10 or 100 Mb/s Full Duplex operation, CRS is asserted only due to receive activity.  
CRS is deasserted following an end of packet.  
6.2 REDUCED MII INTERFACE  
The DP83630 incorporates the Reduced Media Independent Interface (RMII) as specified in the RMII  
specification (rev 1.2) from the RMII Consortium. This interface may be used to connect PHY devices to a  
MAC in 10/100 Mb/s systems using a reduced number of pins. In this mode, data is transferred 2-bits at a  
time using the 50 MHz RMII_REF clock for both transmit and receive. The following pins are used in RMII  
mode:  
— TX_EN  
— TXD[1:0]  
— RX_ER (optional for MAC)  
— CRS/CRS_DV  
— RXD[1:0]  
— X1 (25 MHz in RMII Master mode, 50 MHz in RMII Slave mode)  
— RX_CLK, TX_CLK, CLK_OUT (50 MHz RMII reference clock in RMII Master mode only)  
In addition, the RMII mode supplies an RX_DV signal which allows for a simpler method of recovering  
receive data without having to separate RX_DV from the CRS_DV indication. This is especially useful for  
systems which do not require CRS, such as systems that only support full-duplex operation. This signal is  
also useful for diagnostic testing where it may be desirable to loop external Receive RMII data directly to  
the transmitter.  
The RX_ER output may be used by the MAC to detect error conditions. It is asserted for symbol errors  
received during a packet, False Carrier events, and also for FIFO underrun or overrun conditions. Since  
the PHY is required to corrupt receive data on an error, a MAC is not required to use RX_ER.  
Since the reference clock operates at 10 times the data rate for 10 Mb/s operation, transmit data is  
sampled every 10 clocks. Likewise, receive data will be generated every 10th clock so that an attached  
device can sample the data every 10 clocks.  
RMII Slave mode requires a 50 MHz oscillator to be connected to the device X1 pin. A 50 MHz crystal is  
not supported. RMII Master mode can use either a 25 MHz oscillator connected to X1 or a 25 MHz crystal  
connected to X1 and X2.  
To tolerate potential frequency differences between the 50 MHz reference clock and the recovered receive  
clock, the receive RMII function includes a programmable elasticity buffer. The elasticity buffer is  
programmable to minimize propagation delay based on expected packet size and clock accuracy. This  
allows for supporting a range of packet sizes including jumbo frames.  
Copyright © 2010–2013, Texas Instruments Incorporated  
MAC Interface  
51  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
The elasticity buffer will force Frame Check Sequence errors for packets which overrun or underrun the  
FIFO. Underrun and overrun conditions can be reported in the RMII and Bypass Register (RBR). Table 6-  
1 indicates how to program the elasticity buffer FIFO (in 4-bit increments) based on expected maximum  
packet size and clock accuracy. It assumes both clocks (RMII Reference clock and far-end Transmitter  
clock) have the same accuracy.  
Packet lengths can be scaled linearly based on accuracy (+/- 25 ppm would allow packets twice as large).  
If the threshold setting must support both 10 Mb and 100 Mb operation, the setting should be made to  
support both speeds.  
Table 6-1. Supported Packet Sizes at +/-50 ppm Frequency Accuracy  
Latency Tolerance  
100 Mb  
Recommended Packet Size at +/- 50 ppm  
Start Threshold RBR[1:0]  
10 Mb  
8 bits  
4 bits  
8 bits  
12 bits  
100 Mb  
10 Mb  
01 (default)  
2 bits  
6 bits  
2,400 bytes  
7,200 bytes  
12,000 bytes  
16,800 bytes  
9,600 bytes  
4,800 bytes  
9,600 bytes  
14,400 bytes  
10  
11  
00  
10 bits  
14 bits  
6.2.1 RMII Master Mode  
In RMII Master Mode, the DP83630 uses a 25 MHz crystal on X1/X2 and internally generates the 50 MHz  
RMII reference clock for use by the RMII logic. The 50 MHz clock is output on RX_CLK, TX_CLK, and  
CLK_OUT for use as the reference clock for an attached MAC. RX_CLK operates at 25 MHz during reset.  
6.2.2 RMII Slave Mode  
In RMII Slave Mode, the DP83630 takes a 50 MHz reference clock input on X1 from an external oscillator  
or another DP83630 in RMII Master Mode. The 50 MHz is internally divided down to 25 MHz for use as  
the reference clock for non-RMII logic. RX_CLK, TX_CLK, and CLK_OUT should not be used as the RMII  
reference clock in this mode but may be used for other system devices.  
6.3 SINGLE CLOCK MII MODE  
Single Clock MII (SCMII) Mode allows MII operation using a single 25 MHz reference clock. Normal MII  
Mode requires three clocks, a reference clock for physical layer functions, a transmit MII clock, and a  
receive MII clock. Similar to RMII mode, Single Clock MII mode requires only the reference clock. In  
addition to reducing the number of pins required, this mode allows the attached MAC device to use only  
the reference clock domain. AC Timing requirements for SCMII operation are similar to the RMII timing  
requirements.  
For 10 Mb operation, as in RMII mode, data is sampled and driven every 10 clocks since the reference  
clock is at 10 times the data rate.  
Separate control bits allow enabling the Transmit and Receive Single Clock modes separately, allowing  
just transmit or receive to operate in this mode. Control of Single Clock MII mode is through the RBR  
register.  
Single Clock MII mode incorporates the use of the RMII elasticity buffer, which is required to tolerate  
potential frequency differences between the 25 MHz reference clock and the recovered receive clock.  
Settings for the elasticity buffer for SCMII mode are detailed in Table 6-2.  
52  
MAC Interface  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
 
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Table 6-2. Supported SCMII Packet Sizes at +/-50 ppm Frequency Accuracy  
Latency Tolerance  
Recommended Packet Size at +/- 50 ppm  
Start Threshold RBR[1:0]  
100 Mb  
10 Mb  
8 bits  
8 bits  
8 bits  
8 bits  
100 Mb  
10 Mb  
01 (default)  
4 bits  
4 bits  
8 bits  
8 bits  
4,000 bytes  
4,000 bytes  
9,600 bytes  
9,600 bytes  
9,600 bytes  
9,600 bytes  
9,600 bytes  
9,600 bytes  
10  
11  
00  
6.4 IEEE 802.3u MII SERIAL MANAGEMENT INTERFACE  
6.4.1 Serial Management Register Access  
The serial management MII specification defines a set of thirty-two 16-bit status and control registers that  
are accessible through the management interface pins MDC and MDIO. The DP83630 implements all the  
required MII registers as well as several optional registers. These registers are fully described in Register  
Block. A description of the serial management access protocol follows.  
6.4.2 Serial Management Access Protocol  
The serial control interface consists of two pins, Management Data Clock (MDC) and Management Data  
Input/Output (MDIO). MDC has a maximum clock rate of 25 MHz and no minimum rate. The MDIO line is  
bi-directional and may be shared by up to 32 devices. The MDIO frame format is shown below in Table 6-  
3.  
Table 6-3. Typical MDIO Frame Format  
MII Management Serial Protocol  
Read Operation  
Write Operation  
<idle><start><opcode><device addr><reg addr><turnaround><data><idle>  
<idle><01><10><AAAAA><RRRRR><Z0><xxxx xxxx xxxx xxxx><idle>  
<idle><01><01><AAAAA><RRRRR><10><xxxx xxxx xxxx xxxx><idle>  
The MDIO pin requires a pull-up resistor (1.5 k) which, during IDLE and turnaround, will pull MDIO high.  
The DP83630 also includes an option to enable an internal pull-up on the MDIO pin, MDIO_PULL_EN bit  
in the CDCTRL1 register. In order to initialize the MDIO interface, the station management entity sends a  
sequence of 32 contiguous logic ones on MDIO to provide the DP83630 with a sequence that can be used  
to establish synchronization. This preamble may be generated either by driving MDIO high for 32  
consecutive MDC clock cycles, or by simply allowing the MDIO pull-up resistor to pull the MDIO pin high  
during which time 32 MDC clock cycles are provided. In addition 32 MDC clock cycles should be used to  
re-sync the device if an invalid Start, Opcode, or turnaround bit is detected.  
The DP83630 waits until it has received this preamble sequence before responding to any other  
transaction. Once the DP83630 serial management port has been initialized no further preamble  
sequencing is required until after a power-on/reset, invalid Start, invalid Opcode, or invalid turnaround (TA)  
bit has occurred.  
Copyright © 2010–2013, Texas Instruments Incorporated  
MAC Interface  
53  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
The Start code is indicated by a <01> pattern. This assures the MDIO line transitions from the default idle  
line state.  
Turnaround is defined as an idle bit time inserted between the Register Address field and the Data field.  
To avoid contention during a read transaction, no device shall actively drive the MDIO signal during the  
first bit of Turnaround. The addressed DP83630 drives the MDIO with a zero for the second bit of  
turnaround and follows this with the required data. Figure 6-1 shows the timing relationship between MDC  
and the MDIO as driven/received by the Station (STA) and the DP83630 (PHY) for a typical register read  
access.  
For write transactions, the station management entity writes data to the addressed DP83630 thus  
eliminating the requirement for MDIO Turnaround. The Turnaround time is filled by the management entity  
by inserting <10>. Figure 7-1 shows the timing relationship for a typical MII register write access.  
MDC  
z
z
z
MDIO  
(STA)  
z
MDIO  
(PHY)  
z
z
0
1
1
0
0
1
1
0
0
0
0
0
0
0
z
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0
0
Idle Start Opcode PHY Address  
(Read) (PHY AD = 0Ch)  
Register Address TA  
(00h = BCMR)  
Register Data  
Idle  
Figure 6-1. Typical MDC/MDIO Read Operation  
MDC  
z
z
MDIO  
(STA)  
z
z
0
0
1
0
1
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Idle Start Opcode  
PHY Address  
Register Address  
(00h = BCMR)  
TA  
Register Data  
Idle  
(Write) (PHY AD = 0Ch)  
Figure 6-2. Typical MDC/MDIO Write Operation  
6.4.3 Serial Management Preamble Suppression  
The DP83630 supports a Preamble Suppression mode as indicated by a one in bit 6 of the Basic Mode  
Status Register (BMSR, address 01h.) If the station management entity (i.e. MAC or other management  
controller) determines that all PHYs in the system support Preamble Suppression by returning a one in  
this bit, then the station management entity need not generate preamble for each management  
transaction.  
The DP83630 requires a single initialization sequence of 32 bits of preamble following hardware/software  
reset. This requirement is generally met by the mandatory pull-up resistor on MDIO in conjunction with a  
continuous MDC, or the management access made to determine whether Preamble Suppression is  
supported.  
While the DP83630 requires an initial preamble sequence of 32 bits for management initialization, it does  
not require a full 32-bit sequence between each subsequent transaction. A minimum of one idle bit  
between management transactions is required as specified in the IEEE 802.3u specification.  
6.5 PHY CONTROL FRAMES  
The DP83630 supports a packet-based control mechanism for use in situations where the Serial  
Management Interface is not available or does not provide enough throughput. Application software may  
build a packet, called a PHY Control Frame (PCF), to be passed to the PHY through the MAC Transmit  
Data interface. The PHY will intercept these packets and use them to assert writes to Management  
Registers as if they occurred via the Management Interface. Multiple register writes may be incorporated  
in a single frame.  
54  
MAC Interface  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
The PHY Control Frame may also be used to read a register location. The read value will be returned in a  
PHY Status Frame if that function is enabled. Only a single read may be outstanding at any time, so only  
one read should be included in a single PHY Control Frame.  
The PHY Control Frame block performs the following functions:  
Parse incoming transmit packets to detect PHY Control Frames  
Truncate PHY Control Frames to prevent complete frame from reaching the transmit physical medium  
Buffer up to 15 bytes of the Frame to be intercepted by the PHY with no portion reaching physical  
medium  
Detect commands in the PHY Control Frame and pass them to the register block  
Check CRC to detect error conditions  
Report CRC and invalid command errors to the system via register status and/or interrupt  
PHY Control Frames can be enabled through the PCF_Enable bit in the PHY Control Frames  
Configuration Register (PCFCR). PHY Control Frames can also be enabled by using the PCF_EN strap  
option. For a more detailed discussion on the use of PHY Control Frames, refer to the Software  
Development Guide for the DP83630.  
6.6 PHY STATUS FRAMES  
The DP83630 implements a packet-based status mechanism that allows the PHY to queue up events and  
pass them to the microcontroller through the receive data interface. The packet, called a PHY Status  
Frame, may be used to provide IEEE 1588 status for transmit packet timestamps, receive packet  
timestamps, event timestamps, and trigger conditions. In addition the device can generate status  
messages indicating packet buffering errors and to return data read using the PHY Control Frame register  
access mechanism.  
Each PHY Status Frame may include multiple status messages. The packet will be framed such that it will  
look like a IEEE 1588 frame to ensure that it will get to the IEEE 1588 software stack. The PHY will  
provide buffering of any incoming packet to allow the status packet to be passed to the MAC.  
Programmable inter-frame gap and preamble length allow the PHY to recover lost bandwidth in the case  
of heavy receive traffic.  
In a PHY Status Frame, status messages are not provided in a chronological order. Instead, they are  
provided in the following order of priority:  
1. PHY Control Frame Read Data  
2. Packet Buffer Error  
3. Transmit Timestamp  
4. Receive Timestamp  
5. Trigger Status  
6. Event Timestamp  
Each of the message types may be individually enabled, allowing options on which functions may be  
delivered in a PHY Status Frame.  
Timestamps that are delivered via PHY Status Frames will not be reflected in the corresponding status  
and timestamp registers nor will they generate an interrupt.  
The packet format may be configured to look like a Layer 2 Ethernet frame or a UDP/IPv4 frame.  
For a more detailed discussion on the use of PHY Status Frames, refer to the Software Development  
Guide for the DP83630.  
Copyright © 2010–2013, Texas Instruments Incorporated  
MAC Interface  
55  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
7 Architecture  
This section describes the operations within each transceiver module, 100BASE-TX and 10BASE-T. Each  
operation consists of several functional blocks and is described in the following:  
— 100BASE-TX Transmitter  
— 100BASE-TX Receiver  
— 100BASE-FX Operation  
— 10BASE-T Transceiver Module  
7.1 100BASE-TX TRANSMITTER  
The 100BASE-TX transmitter consists of several functional blocks which convert synchronous 4-bit nibble  
data, as provided by the MII, to a scrambled MLT-3 125 Mb/s serial data stream. Because the 100BASE-  
TX TP-PMD is integrated, the differential output pins, PMD Output Pair, can be directly routed to the  
magnetics.  
The block diagram in Figure 7-1 provides an overview of each functional block within the 100BASE-TX  
transmit section.  
The Transmitter section consists of the following functional blocks:  
— Code-Group Encoder and Injection block  
— Scrambler block (bypass option)  
— NRZ to NRZI Encoder block  
— Binary to MLT-3 Converter / Common Driver block  
The bypass option for the functional blocks within the 100BASE-TX transmitter provides flexibility for  
applications where data conversion is not always required. The DP83630 implements the 100BASE-TX  
transmit state machine diagram as specified in the IEEE 802.3u Standard, Clause 24.  
56  
Architecture  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
TXD[3:0]/  
TX_EN  
TX_CLK  
4B5B CODE-  
GROUP  
ENCODER and  
INJECTOR  
DIVIDE  
BY 5  
5B PARALLEL  
TO SERIAL  
125 MHz CLOCK  
SCRAMBLER  
MUX  
BP_SCR  
MLT[1:0]  
100BASE-TX  
LOOPBACK  
NRZ TO NRZI  
ENCODER  
BINARY  
TO MLT-3/  
COMMON  
DRIVER  
PMD OUTPUT PAIR  
Figure 7-1. 100BASE-TX Transmit Block Diagram  
Copyright © 2010–2013, Texas Instruments Incorporated  
Architecture  
57  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Table 7-1. 4B5B Code-Group Encoding/Decoding  
Name  
DATA CODES  
PCS 5B Code-Group  
MII 4B Nibble Code  
0
11110  
01001  
10100  
10101  
01010  
01011  
01110  
01111  
10010  
10011  
10110  
10111  
11010  
11011  
11100  
11101  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
IDLE AND CONTROL CODES  
H
00100  
11111  
11000  
10001  
01101  
00111  
HALT code-group - Error code  
I
Inter-Packet IDLE - 0000(1)  
First Start of Packet - 0101(1)  
Second Start of Packet - 0101(1)  
First End of Packet - 0000(1)  
Second End of Packet - 0000(1)  
J
K
T
R
INVALID CODES  
V
V
V
V
V
V
V
V
V
V
00000  
00001  
00010  
00011  
00101  
00110  
01000  
01100  
10000  
11001  
(1) Control code-groups I, J, K, T and R in data fields will be mapped as invalid codes, together with RX_ER asserted.  
58  
Architecture  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
7.1.1 Code-Group Encoding and Injection  
The code-group encoder converts 4-bit (4B) nibble data generated by the MAC into 5-bit (5B) code-groups  
for transmission. This conversion is required to allow control data to be combined with packet data code-  
groups. Refer to Table 7-1 for 4B to 5B code-group mapping details.  
The code-group encoder substitutes the first 8-bits of the MAC preamble with a J/K code-group pair  
(11000 10001) upon transmission. The code-group encoder continues to replace subsequent 4B preamble  
and data nibbles with corresponding 5B code-groups. At the end of the transmit packet, upon the  
deassertion of Transmit Enable signal from the MAC, the code-group encoder injects the T/R code-group  
pair (01101 00111) indicating the end of the frame.  
After the T/R code-group pair, the code-group encoder continuously injects IDLEs into the transmit data  
stream until the next transmit packet is detected (reassertion of Transmit Enable).  
7.1.2 Scrambler  
The scrambler is required to control the radiated emissions at the media connector and on the twisted pair  
cable (for 100BASE-TX applications). By scrambling the data, the total energy launched onto the cable is  
randomly distributed over a wide frequency range. Without the scrambler, energy levels at the PMD and  
on the cable could peak beyond FCC limitations at frequencies related to repeating 5B sequences (i.e.,  
continuous transmission of IDLEs).  
The scrambler is configured as a closed loop linear feedback shift register (LFSR) with an 11-bit  
polynomial. The output of the closed loop LFSR is X-ORd with the serial NRZ data from the code-group  
encoder. The result is a scrambled data stream with sufficient randomization to decrease radiated  
emissions at certain frequencies by as much as 20 dB. The DP83630 uses the PHY_ID (pins PHYAD  
[4:0]) to set a unique seed value.  
7.1.3 NRZ to NRZI Encoder  
After the transmit data stream has been serialized and scrambled, the data must be NRZI encoded in  
order to comply with the TP-PMD standard for 100BASE-TX transmission over Category-5 Unshielded  
twisted pair cable. There is no ability to bypass this block within the DP83630. The NRZI data is sent to  
the 100 Mb Driver. In addition, this module creates an encoded MLT value for use in 100 Mb Internal  
Loopback.  
7.1.4 Binary to MLT-3 Convertor  
The Binary to MLT-3 conversion is accomplished by converting the serial binary data stream output from  
the NRZI encoder into two binary data streams with alternately phased logic one events. These two binary  
streams are then fed to the twisted pair output driver which converts the voltage to current and alternately  
drives either side of the transmit transformer primary winding, resulting in a minimal current MLT-3 signal.  
The 100BASE-TX MLT-3 signal sourced by the PMD Output Pair common driver is slew rate controlled.  
This should be considered when selecting AC coupling magnetics to ensure TP-PMD Standard compliant  
transition times (3 ns < Tr < 5 ns).  
The 100BASE-TX transmit TP-PMD function within the DP83630 is capable of sourcing only MLT-3  
encoded data. Binary output from the PMD Output Pair is not possible in 100 Mb/s mode.  
7.2 100BASE-TX RECEIVER  
The 100BASE-TX receiver consists of several functional blocks which convert the scrambled MLT-3 125  
Mb/s serial data stream to synchronous 4-bit nibble data that is provided to the MII. Because the  
100BASE-TX TP-PMD is integrated, the differential input pins, RD±, can be directly routed from the AC  
coupling magnetics.  
See Figure 7-2 for a block diagram of the 100BASE-TX receive function. This provides an overview of  
each functional block within the 100BASE-TX receive section.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Architecture  
59  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
The Receive section consists of the following functional blocks:  
— Analog Front End  
— Input and BLW Compensation  
— Signal Detect  
— Digital Adaptive Equalization  
— MLT-3 to Binary Decoder  
— Clock Recovery Module  
— NRZI to NRZ Decoder  
— Serial to Parallel  
— Descrambler (bypass option)  
— Code Group Alignment  
— 4B/5B Decoder  
— Link Integrity Monitor  
— Bad SSD Detection  
7.2.1 Analog Front End  
In addition to the Digital Equalization and Gain Control, the DP83630 includes Analog Equalization and  
Gain Control in the Analog Front End. The Analog Equalization reduces the amount of Digital Equalization  
required in the DSP.  
7.2.2 Digital Signal Processor  
The Digital Signal Processor includes Base Line Wander Compensation and Adaptive Equalization with  
Gain Control.  
60  
Architecture  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
RD +/-  
AFE  
ANALOG ANALOG  
AGC EQUALIZER  
FCO  
ADC Data  
INPUT BLW  
COMPENSATION  
ANALOG  
ADAPTATION  
CONTROL  
CLOCK  
RECOVERY  
(LOOPFILTER)  
AUTOMATIC GAIN  
CONTROL  
DIGITAL  
ADAPTIVE  
EQUALIZATION  
MLT-3 TO BINARY  
DECODER  
SIGNAL DETECT  
CLOCK  
RECOVERY  
MODULE  
NRZI TO NRZ  
DECODER  
CLOCK  
DESCRAMBLER  
LINK INTEGRITY  
MONITOR  
BP_SCR  
MUX  
CODE GROUP  
ALIGNMENT  
RX_DATA VALID  
SSD DETECT  
SERIAL TO  
PARALLEL  
DIVIDE BY 5  
4B/5B DECODER  
RX_DV/CRS  
RX_CLK  
RXD[3:0] / RX_ER  
Figure 7-2. 100BASE-TX Receive Block Diagram  
7.2.2.1 Base Line Wander Compensation  
The DP83630 is completely ANSI TP-PMD compliant and includes Base Line Wander (BLW)  
compensation. The BLW compensation block can successfully recover the TP-PMD defined “killer”  
pattern.  
7.2.2.2 Digital Adaptive Equalization and Gain Control  
The DP83630 utilizes an extremely robust equalization scheme referred as ‘Digital Adaptive Equalization.’  
The Digital Equalizer removes ISI (inter symbol interference) from the receive data stream by continuously  
adapting to provide a filter with the inverse frequency response of the channel. Equalization is combined  
with an adaptive gain control stage. This enables the receive 'eye pattern' to be opened sufficiently to  
allow very reliable data recovery.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Architecture  
61  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
7.2.3 Signal Detect  
The signal detect function of the DP83630 is incorporated to meet the specifications mandated by the  
ANSI FDDI TP-PMD Standard as well as the IEEE 802.3 100BASE-TX Standard for both voltage  
thresholds and timing parameters.  
Note that the reception of normal 10BASE-T link pulses and fast link pulses per IEEE 802.3u Auto-  
Negotiation by the 100BASE-TX receiver do not cause the DP83630 to assert signal detect.  
7.2.4 MLT-3 to Binary Decoder  
The DP83630 decodes the MLT-3 information from the Digital Adaptive Equalizer block to binary NRZI  
data.  
7.2.5 Clock Recovery Module  
The Clock Recovery function is implemented as a Phase detector and Loop Filter which accepts data and  
error from the receive datapath to detect the phase of the recovered data. This phase information is fed  
into the loop filter to determine an 8-bit signed frequency control. The 8-bit signed frequency control is  
sent to the FCO in the Analog Front End to derive the receive clock. The extracted and synchronized  
clock and data are used as required by the synchronous receive operations as generally depicted in  
Figure 7-2.  
7.2.6 NRZI to NRZ Decoder  
In a typical application, the NRZI to NRZ decoder is required in order to present NRZ formatted data to the  
descrambler (or to the code-group alignment block if the descrambler is bypassed).  
7.2.7 Serial to Parallel  
The 100BASE-TX receiver includes a Serial to Parallel converter which supplies 5-bit wide data symbols  
to the PCS Rx state machine.  
7.2.8 Descrambler  
A serial descrambler is used to de-scramble the received NRZ data. The descrambler has to generate an  
identical data scrambling sequence (N) in order to recover the original unscrambled data (UD) from the  
scrambled data (SD) as represented in the equations:  
Synchronization of the descrambler to the original scrambling sequence (N) is achieved based on the  
knowledge that the incoming scrambled data stream consists of scrambled IDLE data. After the  
descrambler has recognized 12 consecutive IDLE code-groups, where an unscrambled IDLE code-group  
in 5B NRZ is equal to five consecutive ones (11111), it will synchronize to the receive data stream and  
generate unscrambled data in the form of unaligned 5B code-groups.  
In order to maintain synchronization, the descrambler must continuously monitor the validity of the  
unscrambled data that it generates. To ensure this, a line state monitor and a hold timer are used to  
constantly monitor the synchronization status. Upon synchronization of the descrambler, the hold timer  
starts a 722 µs countdown. Upon detection of sufficient IDLE code-groups (58 bit times) within the 722 µs  
period, the hold timer will reset and begin a new countdown. This monitoring operation will continue  
indefinitely given a properly operating network connection with good signal integrity. If the line state  
monitor does not recognize sufficient unscrambled IDLE code-groups within the 722 µs period, the entire  
descrambler will be forced out of the current state of synchronization and reset in order to re-acquire  
synchronization. The DP83604T also provides a bit (DESC_TIME, bit 7) in the PCSR register (0x16) that  
increases the descrambler timeout from 722 µs to 2 ms to allow reception of packets up to 9kB in size  
without losing descrambler lock.  
62  
Architecture  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
7.2.9 Code-Group Alignment  
The code-group alignment module operates on unaligned 5-bit data from the descrambler (or, if the  
descrambler is bypassed, directly from the NRZI/NRZ decoder) and converts it into 5B code-group data (5  
bits). Code-group alignment occurs after the J/K code-group pair is detected. Once the J/K code-group  
pair (11000 10001) is detected, subsequent data is aligned on a fixed boundary.  
7.2.10 4B/5B Decoder  
The code-group decoder functions as a look up table that translates incoming 5B code-groups into 4B  
nibbles. The code-group decoder first detects the J/K code-group pair preceded by IDLE code-groups and  
replaces the J/K with MAC preamble. Specifically, the J/K 10-bit code-group pair is replaced by the nibble  
pair (0101 0101). All subsequent 5B code-groups are converted to the corresponding 4B nibbles for the  
duration of the entire packet. This conversion ceases upon the detection of the T/R code-group pair  
denoting the End of Stream Delimiter (ESD) or with the reception of a minimum of two IDLE code-groups.  
7.2.11 100BASE-TX Link Integrity Monitor  
The 100BASE-TX link monitor ensures that a valid and stable link is established before enabling both the  
Transmit and Receive PCS layer.  
Signal detect must be valid for 395 µs to allow the link monitor to enter the 'Link Up' state and enable the  
transmit and receive functions.  
7.2.12 Bad SSD Detection  
A Bad Start of Stream Delimiter (Bad SSD) is any transition from consecutive idle code-groups to non-idle  
code-groups which is not prefixed by the code-group pair /J/K.  
If this condition is detected, the DP83630 will assert RX_ER and present RXD[3:0] = 1110 to the MII for  
the cycles that correspond to received 5B code-groups until at least two IDLE code-groups are detected.  
In addition, the False Carrier Sense Counter register (FCSCR) will be incremented by one.  
Once at least two IDLE code-groups are detected, RX_ER and CRS become de-asserted.  
7.3 100BASE-FX OPERATION  
The DP83630 provides IEEE 802.3 compliant 100BASE-FX operation. Configuration of FX mode is via  
strap option, or through the register interface.  
7.3.1 100BASE-FX Transmit  
In 100BASE-FX mode, the device Transmit pins connect to an industry standard Fiber Transceiver with  
PECL signaling through a capacitively coupled circuit.  
In FX mode, the device bypasses the Scrambler and the MLT3 encoder. This allows for the transmission  
of serialized 5B4B encoded NRZI data at 125 MHz.  
The only added functionality from 100BASE-TX is the support for Far-End Fault data generation.  
7.3.2 100BASE-FX Receive  
In 100BASE-FX mode, the device Receive pins connect to an industry standard Fiber Transceiver with  
PECL signaling through a capacitively coupled circuit.  
In FX mode, the device bypasses the MLT3 Decoder and the Descrambler. This allows for the reception of  
serialized 5B4B encoded NRZI data at 125 MHz.  
The only added functionality for 100BASE-FX from 100BASE-TX is the support of Far-End Fault detection.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Architecture  
63  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
7.3.3 Far-End Fault  
Since 100BASE-FX does not support Auto-Negotiation, a Far-End Fault facility is included which allows for  
detection of link failures.  
When no signal is being received as determined by the Signal Detect function, the device sends a Far-  
End Fault indication to the far-end peer. The Far-End Fault indication is comprised of 3 or more repeating  
cycles, each consisting of 84 one’s followed by 1 zero. The pattern is such that it will not satisfy the  
100BASE-X carrier sense mechanism, but is easily detected as the Fault indication. The pattern will be  
transparent to devices that do not support Far-End Fault.  
The Far-End Fault detection process continuously monitors the receive data stream for the Far-End Fault  
indication. When detected, the Link Monitor is forced to deassert Link status. This causes the device to  
transmit IDLE’s on its transmit path.  
7.4 10BASE-T TRANSCEIVER MODULE  
The 10BASE-T Transceiver Module is IEEE 802.3 compliant. It includes the receiver, transmitter, collision,  
heartbeat, loopback, jabber, and link integrity functions, as defined in the standard. An external filter is not  
required on the 10BASE-T interface since this is integrated inside the DP83630. This section focuses on  
the general 10BASE-T system level operation.  
7.4.1 Operational Modes  
The DP83630 has two basic 10BASE-T operational modes:  
— Half Duplex mode  
— Full Duplex mode  
Half Duplex Mode  
In Half Duplex mode the DP83630 functions as a standard IEEE 802.3 10BASE-T transceiver supporting  
the CSMA/CD protocol.  
Full Duplex Mode  
In Full Duplex mode the DP83630 is capable of simultaneously transmitting and receiving without  
asserting the collision signal. The DP83630's 10 Mb/s ENDEC is designed to encode and decode  
simultaneously.  
7.4.2 Smart Squelch  
The smart squelch is responsible for determining when valid data is present on the differential receive  
inputs. The DP83630 implements an intelligent receive squelch to ensure that impulse noise on the  
receive inputs will not be mistaken for a valid signal. Smart squelch operation is independent of the  
10BASE-T operational mode.  
The squelch circuitry employs a combination of amplitude and timing measurements (as specified in the  
IEEE 802.3 10BASE-T standard) to determine the validity of data on the twisted pair inputs (refer to  
Figure 7-3).  
The signal at the start of a packet is checked by the smart squelch and any pulses not exceeding the  
squelch level (either positive or negative, depending upon polarity) will be rejected. Once this first squelch  
level is overcome correctly, the opposite squelch level must then be exceeded within 150 ns. Finally the  
signal must again exceed the original squelch level within 150 ns to ensure that the input waveform will  
not be rejected. This checking procedure results in the loss of typically three preamble bits at the  
beginning of each packet.  
Only after all these conditions have been satisfied will a control signal be generated to indicate to the  
remainder of the circuitry that valid data is present. At this time, the smart squelch circuitry is reset.  
64  
Architecture  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Valid data is considered to be present until the squelch level has not been generated for a time longer  
than 150 ns, indicating the End of Packet. Once good data has been detected, the squelch levels are  
reduced to minimize the effect of noise causing premature End of Packet detection.  
The receive squelch threshold level can be lowered for use in longer cable or STP applications. This is  
achieved by configuring the SQUELCH bits (11:9) in the 10BTSCR register (0x1A).  
<150 ns  
<150 ns  
>150 ns  
VSQ+  
VSQ+(reduced)  
VSQ-(reduced)  
VSQ-  
start of packet  
end of packet  
Figure 7-3. 10BASE-T Twisted Pair Smart Squelch Operation  
7.4.3 Collision Detection and SQE  
When in Half Duplex, a 10BASE-T collision is detected when the receive and transmit channels are active  
simultaneously. Collisions are reported by the COL signal on the MII. Collisions are also reported when a  
jabber condition is detected.  
The COL signal remains set for the duration of the collision. If the ENDEC is receiving when a collision is  
detected it is reported immediately (through the COL pin).  
When heartbeat is enabled, approximately 1 µs after the transmission of each packet, a Signal Quality  
Error (SQE) signal of approximately 10-bit times is generated to indicate successful transmission. SQE is  
reported as a pulse on the COL signal of the MII.  
The SQE test is inhibited when the PHY is set in full duplex mode. SQE can also be inhibited by setting  
the HEARTBEAT_DIS bit (1) in the 10BTSCR register (0x1A).  
7.4.4 Carrier Sense  
Carrier Sense (CRS) may be asserted due to receive activity once valid data is detected via the squelch  
function.  
For 10 Mb/s Half Duplex operation, CRS is asserted during either packet transmission or reception.  
For 10 Mb/s Full Duplex operation, CRS is asserted only during receive activity.  
CRS is deasserted following an end of packet.  
7.4.5 Normal Link Pulse Detection/Generation  
The link pulse generator produces pulses as defined in the IEEE 802.3 10BASE-T standard. Each link  
pulse is nominally 100 ns in duration and transmitted every 16 ms in the absence of transmit data.  
Link pulses are used to check the integrity of the connection with the remote end. If valid link pulses are  
not received, the link detector disables the 10BASE-T twisted pair transmitter, receiver and collision  
detection functions.  
When the link integrity function is disabled (FORCE_LINK_10 of the 10BTSCR register), a good link is  
forced and the 10BASE-T transceiver will operate regardless of the presence of link pulses.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Architecture  
65  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
7.4.6 Jabber Function  
The jabber function monitors the DP83630's output and disables the transmitter if it attempts to transmit a  
packet of longer than legal size. A jabber timer monitors the transmitter and disables the transmission if  
the transmitter is active for approximately 85 ms.  
Once disabled by the Jabber function, the transmitter stays disabled for the entire time that the ENDEC  
module's internal transmit enable is asserted. This signal has to be de-asserted for approximately 500 ms  
(the “unjab” time) before the Jabber function re-enables the transmit outputs.  
The Jabber function is only relevant in 10BASE-T mode.  
7.4.7 Automatic Link Polarity Detection and Correction  
The DP83630's 10BASE-T transceiver module incorporates an automatic link polarity detection circuit.  
When three consecutive inverted link pulses are received, bad polarity is reported. The bad polarity  
condition is latched in the 10BTSCR register.  
The DP83630's 10BASE-T transceiver module corrects for this error internally and will continue to decode  
received data correctly. This eliminates the need to correct the wiring error immediately.  
A polarity reversal can be caused by a wiring error at either end of the cable, usually at the Main  
Distribution Frame (MDF) or patch panel in the wiring closet.  
7.4.8 Transmit and Receive Filtering  
External 10BASE-T filters are not required when using the DP83630, as the required signal conditioning is  
integrated into the device.  
Only isolation transformers and impedance matching resistors are required for the 10BASE-T transmit and  
receive interface. The internal transmit filtering ensures that all the harmonics in the transmit signal are  
attenuated by at least 30 dB.  
7.4.9 Transmitter  
The encoder begins operation when the Transmit Enable input (TX_EN) goes high and converts NRZ data  
to pre-emphasized Manchester data for the transceiver. For the duration of TX_EN, the serialized  
Transmit Data (TXD) is encoded for the transmit-driver pair (PMD Output Pair). TXD must be valid on the  
rising edge of Transmit Clock (TX_CLK). Transmission ends when TX_EN de-asserts. The last transition  
is always positive; it occurs at the center of the bit cell if the last bit is a one, or at the end of the bit cell if  
the last bit is a zero.  
7.4.10 Receiver  
The decoder consists of a differential receiver and a PLL to separate a Manchester encoded data stream  
into internal clock signals and data. The differential input must be externally terminated with a differential  
100 termination network to accommodate UTP cable.  
The decoder detects the end of a frame when no additional mid-bit transitions are detected. Within one  
and a half bit times after the last bit, carrier sense is de-asserted. Receive clock stays active for five more  
bit times after CRS goes low, to ensure the receive timings of the controller.  
66  
Architecture  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
8 Reset Operation  
The DP83630 includes an internal power-on reset (POR) function and does not need to be explicitly reset  
for normal operation after power up. If required during normal operation, the device can be reset by a  
hardware or software reset.  
8.1 HARDWARE RESET  
A hardware reset is accomplished by applying a low pulse (TTL level), with a duration of at least 1 µs, to  
the RESET_N pin. This will reset the device such that all registers will be reinitialized to default values and  
the hardware configuration values will be re-latched into the device (similar to the power-up/reset  
operation).  
8.2 FULL SOFTWARE RESET  
A full-chip software reset is accomplished by setting the RESET bit (bit 15) of the Basic Mode Control  
Register (BMCR). The period from the point in time when the reset bit is set to the point in time when  
software reset has concluded is approximately 1 µs.  
The software reset will reset the device such that all registers will be reset to default values and the  
hardware configuration values will be maintained. Software driver code must wait 3 µs following a software  
reset before allowing further serial MII operations with the DP83630.  
8.3 SOFT RESET  
A partial software reset can be initiated by setting the SOFT_RESET bit (bit 9) in the PHYCR2 Register.  
Setting this bit will reset all transmit and receive operations, but will not reset the register space. All  
register configurations will be preserved. Register space will remain available following a soft reset.  
8.4 PTP RESET  
The entire PTP function, including the IEEE 1588 clock, associated logic, and PTP register space (with  
two exceptions), can be reset via the PTP_RESET bit in the PTP_CTL register. The PTP_COC and  
PTP_CLKSRC registers are not reset in order to preserve the nominal operation of the clock output.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Reset Operation  
67  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
9 Design Guidelines  
9.1 TPI NETWORK CIRCUIT  
Figure 9-1 shows the recommended circuit for a 10/100 Mb/s twisted pair interface.  
Below is a partial list of recommended transformers. It is important that the user realize that variations with  
PCB and component characteristics requires that the application be tested to ensure that the circuit meets  
the requirements of the intended application.  
Pulse H1102  
Pulse H2019  
Vdd  
TPRDM  
Vdd  
COMMON MODE CHOKES  
49.9W  
MAY BE REQUIRED  
0.1 mF  
49.9W  
1:1  
TDRDP  
TPTDM  
RD-  
0.1 mF*  
0.1 mF*  
RD+  
TD-  
TD+  
Vdd  
RJ45  
49.9W  
49.9W  
T1  
1:1  
0.1 mF  
NOTE: CENTER TAP IS PULLED TO VDD  
*PLACE CAPACITORS CLOSE TO THE  
TRANSFORMER CENTER TAPS  
TPTDP  
All values are typical and are +/- 1%  
PLACE RESISTORS AND  
CAPACITORS CLOSE TO  
THE DEVICE  
Figure 9-1. 10/100 Mb/s Twisted Pair Interface  
68  
Design Guidelines  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
9.2 FIBER NETWORK CIRCUIT  
Figure 9-2 shows the recommended circuit for a 100 Mb/s fiber pair interface.  
Vdd  
50W  
50W 130W  
130W  
130W  
130W  
130W  
0.1 mF  
FXTDP  
FXTDM  
0.1 mF  
FXSD  
FXRDP  
FXRDM  
80W  
80W  
80W  
80W  
80W  
PLACE RESISTORS AND  
CAPACITORS CLOSE TO  
THE DEVICE  
PLACE RESISTORS  
CLOSE TO THE FIBER  
TRANSCEIVER  
All values are typical and are +/- 1%  
Figure 9-2. 100 Mb/s Fiber Pair Interface  
9.3 ESD PROTECTION  
Typically, ESD precautions are predominantly in effect when handling the devices or board before being  
installed in a system. In those cases, strict handling procedures need be implemented during the  
manufacturing process to greatly reduce the occurrences of catastrophic ESD events. After the system is  
assembled, internal components are less sensitive from ESD events.  
The network interface pins are more susceptible to ESD events.  
9.4 CLOCK IN (X1) RECOMMENDATIONS  
The DP83630 supports an external CMOS level oscillator source or a crystal resonator device.  
Oscillator  
If an external clock source is used, X1 should be tied to the clock source and X2 should be left floating.  
The CMOS 25 MHz oscillator specifications for MII Mode are listed in Table 9-1. For RMII Slave Mode, the  
CMOS 50 MHz oscillator specifications are listed in Table 9-2. For RMII Slave mode, it is not  
recommended that the system clock out, Pin 24, be used as the reference clock to the MAC without first  
verifying the interface timing. See SNLA076 for more details.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Design Guidelines  
69  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Crystal  
A 25 MHz, parallel, 20 pF load crystal resonator should be used if a crystal source is desired. Figure 9-3  
shows a typical connection for a crystal resonator circuit. The load capacitor values will vary with the  
crystal vendors; check with the vendor for the recommended loads.  
The oscillator circuit is designed to drive a parallel resonance AT cut crystal with a minimum drive level of  
100 µW and a maximum of 500 µW. If a crystal is specified for a lower drive level, a current limiting  
resistor should be placed in series between X2 and the crystal.  
As a starting point for evaluating an oscillator circuit, if the requirements for the crystal are not known, CL1  
and CL2 should be set at 33 pF, and R1 should be set at 0 .  
Specification for 25 MHz crystal are listed in Table 9-3.  
X1  
X2  
R1  
CL1  
CL2  
Figure 9-3. Crystal Oscillator Circuit  
70  
Design Guidelines  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Table 9-1. 25 MHz Oscillator Specification  
Parameter  
Min  
Typ  
Max  
Units  
MHz  
ppm  
Condition  
Frequency  
25  
Frequency Tolerance  
Frequency Stability  
Rise / Fall Time  
Jitter  
±50  
±50  
Operational Temperature  
1 year aging  
20% - 80%  
ppm  
6
nsec  
psec  
psec  
800(1)  
800(1)  
60%  
Short term  
Jitter  
Long term  
Symmetry  
40%  
Duty Cycle  
(1) This limit is provided as a guideline for component selection and not ensured by production testing. Refer to SNLA091, “PHYTER 100  
Base-TX Reference Clock Jitter Tolerance,” for details on jitter performance.  
Table 9-2. 50 MHz Oscillator Specification  
Parameter  
Frequency  
Min  
Typ  
Max  
Units  
MHz  
ppm  
ppm  
nsec  
psec  
psec  
Condition  
50  
Frequency Tolerance  
Frequency Stability  
Rise / Fall Time  
Jitter  
±50  
±50  
Operational Temperature  
Operational Temperature  
20% - 80%  
6
800(1)  
800(1)  
60%  
Short term  
Jitter  
Long term  
Symmetry  
40%  
Duty Cycle  
(1) This limit is provided as a guideline for component selection and not ensured by production testing. Refer to SNLA091, “PHYTER 100  
Base-TX Reference Clock Jitter Tolerance,” for details on jitter performance.  
Table 9-3. 25 MHz Crystal Specification  
Parameter  
Frequency  
Min  
Typ  
Max  
Units  
MHz  
ppm  
ppm  
pF  
Condition  
25  
Frequency Tolerance  
Frequency Stability  
Shunt Capacitance  
±50  
±50  
40  
Operational Temperature  
1 year aging  
25  
Range of CL1and CL2  
Copyright © 2010–2013, Texas Instruments Incorporated  
Design Guidelines  
71  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10 Register Block  
Table 10-1. Register Map  
Offset  
Access  
Tag  
Description  
Hex  
00h  
Decimal  
0
1
RW  
RO  
RO  
RO  
RW  
RW  
RW  
RW  
BMCR  
BMSR  
Basic Mode Control Register  
Basic Mode Status Register  
PHY Identifier Register #1  
01h  
02h  
2
PHYIDR1  
PHYIDR2  
ANAR  
03h  
3
PHY Identifier Register #2  
04h  
4
Auto-Negotiation Advertisement Register  
05h  
5
ANLPAR  
ANER  
Auto-Negotiation Link Partner Ability Register  
Auto-Negotiation Expansion Register  
Auto-Negotiation Next Page TX Register  
RESERVED  
06h  
6
07h  
7
ANNPTR  
RESERVED  
PHYSTS  
MICR  
08h-0Fh  
10h  
8-15  
16  
17  
18  
19  
RO  
RW  
RW  
RW  
PHY Status Register  
11h  
MII Interrupt Control Register  
MII Interrupt Status and Event Control Register  
Page Select Register  
12h  
MISR  
13h  
PAGESEL  
Extended Registers - Page 0  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
RO  
RO  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
FCSCR  
RECR  
False Carrier Sense Counter Register  
Receive Error Counter Register  
PCS Sub-Layer Configuration and Status Register  
RMII and Bypass Register  
PCSR  
RBR  
LEDCR  
PHYCR  
10BTSCR  
CDCTRL1  
PHYCR2  
EDCR  
LED Direct Control Register  
PHY Control Register  
10Base-T Status/Control Register  
CD Test Control Register and BIST Extensions Register  
PHY Control Register 2  
Energy Detect Control Register  
RESERVED  
RESERVED  
PCFCR  
RW  
RW  
PHY Control Frames Configuration Register  
Test Registers - Page 1  
14h - 1Dh  
1Eh  
20 - 29  
30  
RESERVED  
SD_CNFG  
RESERVED  
Signal Detect Configuration  
RESERVED  
1Fh  
31  
RESERVED  
Link Diagnostics Registers - Page 2  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
RO  
RW  
RW  
RW  
RO  
RO  
RW  
RO  
LEN100_DET  
100 Mb Length Detect Register  
100 Mb Frequency Offset Indication Register  
TDR Control Register  
FREQ100  
TDR_CTRL  
TDR_WIN  
TDR_PEAK  
TDR_THR  
VAR_CTRL  
VAR_DAT  
RESERVED  
LQMR  
TDR Window Register  
TDR Peak Measurement Register  
TDR Threshold Measurement Register  
Variance Control Register  
Variance Data Register  
RESERVED  
RW  
RW  
RW  
Link Quality Monitor Register  
Link Quality Data Register  
Link Quality Monitor Register 2  
LQDR  
LQMR2  
Reserved Registers - Page 3  
14h - 1Fh  
20 - 31  
RESERVED  
RESERVED  
PTP 1588 Base Registers - Page 4  
14h  
15h  
16h  
17h  
18h  
19h  
20  
21  
22  
23  
24  
25  
RW  
RW  
RW  
RW  
RW  
RW  
PTP_CTL  
PTP Control Register  
PTP_TDR  
PTP_STS  
PTP Time Data Register  
PTP Status Register  
PTP_TSTS  
PTP_RATEL  
PTP_RATEH  
PTP Trigger Status Register  
PTP Rate Low Register  
PTP Rate High Register  
72  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Table 10-1. Register Map (continued)  
Offset  
Access  
Tag  
Description  
Hex  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Decimal  
26  
RO  
RO  
RO  
RO  
RO  
RO  
PTP_RDCKSUM  
PTP_WRCKSUM  
PTP_TXTS  
PTP Page 4 Read Checksum  
PTP Page 4 Write Checksum  
27  
28  
PTP Transmit TimeStamp Register  
PTP Receive TimeStamp Register  
PTP Event Status Register  
29  
PTP_RXTS  
30  
PTP_ESTS  
31  
PTP_EDATA  
PTP Event Data Register  
PTP 1588 Configuration Registers - Page 5  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PTP_TRIG  
PTP_EVNT  
PTP Trigger Configuration Register  
PTP Event Configuration Register  
PTP_TXCFG0  
PTP_TXCFG1  
PSF_CFG0  
PTP Transmit Configuration Register 0  
PTP Transmit Configuration Register 1  
PHY Status Frames Configuration Register 0  
PTP Receive Configuration Register 0  
PTP Receive Configuration Register 1  
PTP Receive Configuration Register 2  
PTP Receive Configuration Register 3  
PTP Receive Configuration Register 4  
PTP Temporary Rate Duration Low Register  
PTP Temporary Rate Duration High Register  
PTP_RXCFG0  
PTP_RXCFG1  
PTP_RXCFG2  
PTP_RXCFG3  
PTP_RXCFG4  
PTP_TRDL  
PTP_TRDH  
PTP 1588 Configuration Registers - Page 6  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
PTP_COC  
PSF_CFG1  
PTP Clock Output Control Register  
PHY Status Frames Configuration Register 1  
PHY Status Frames Configuration Register 2  
PHY Status Frames Configuration Register 3  
PHY Status Frames Configuration Register 4  
PTP SFD Configuration Register  
PTP Interrupt Control Register  
PSF_CFG2  
PSF_CFG3  
PSF_CFG4  
PTP_SFDCFG  
PTP_INTCTL  
PTP_CLKSRC  
PTP_ETR  
PTP Clock Source Register  
PTP Ethernet Type Register  
PTP_OFF  
PTP Offset Register  
PTP_GPIOMON  
PTP_RXHASH  
PTP GPIO Monitor Register  
RW  
PTP Receive Hash Register  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
73  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Table 10-2. Register Table  
Register Name  
Addr  
Tag  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Basic Mode  
Control Register  
00h  
BMCR  
Reset  
Loopback  
Speed  
Selection  
Auto-Neg  
Enable  
Power  
Down  
Isolate  
Restart  
Auto-Neg  
Duplex  
Mode  
Collision  
Test  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Basic Mode Status 01h  
Register  
BMSR  
100Base- 100Base- 100Base- 10Base-T 10Base-T Reserved Reserved Reserved Unidirectio  
MF  
Auto-Neg  
Complete  
Remote  
Fault  
Auto-Neg  
Ability  
Link  
Jabber Detect Extended  
Capability  
T4  
TX FDX  
TX HDX  
nal Ability Preamble  
Suppress  
FDX  
HDX  
Status  
PHY Identifier  
Register #1  
02h  
03h  
PHYIDR1  
PHYIDR2  
OUI MSB OUI MSB OUI MSB OUI MSB OUI MSB  
OUI MSB OUI MSB OUI MSB OUI MSB OUI MSB  
OUI MSB  
OUI MSB  
OUI MSB  
OUI MSB  
OUI MSB  
OUI MSB  
PHY Identifier  
Register #2  
OUI LSB  
OUI LSB  
OUI LSB  
OUI LSB  
OUI LSB  
OUI LSB  
PAUSE  
VNDR_  
MDL  
T4  
VNDR_  
MDL  
VNDR_  
MDL  
TX  
VNDR_  
MDL  
VNDR_  
MDL  
10  
VNDR_  
MDL  
MDL_  
REV  
MDL_  
REV  
MDL_  
REV  
MDL_  
REV  
Auto-Negotiation  
Advertisement  
Register  
04h  
05h  
ANAR  
Next Page Reserved  
Ind  
Remote  
Fault  
Reserved ASM_DIR  
Reserved ASM_DIR  
TX_FD  
10_FD  
Protocol  
Selection  
Protocol  
Selection  
Protocol  
Selection  
Protocol  
Selection  
Protocol  
Selection  
Auto-Negotiation  
Link Partner Ability  
Register (Base  
Page)  
ANLPAR  
Next Page  
Ind  
ACK  
Remote  
Fault  
PAUSE  
Code  
T4  
TX_FD  
Code  
TX  
10_FD  
Code  
10  
Protocol  
Selection  
Protocol  
Selection  
Protocol  
Selection  
Protocol  
Selection  
Protocol  
Selection  
Auto-Negotiation  
Link Partner Ability  
Register Next  
Page  
05h  
ANLPARN Next Page  
P
ACK  
Message  
Page  
ACK2  
Toggle  
Code  
Code  
Code  
Code  
Code  
Code  
Code  
Code  
Ind  
Auto-Negotiation  
Expansion  
Register  
06h  
07h  
ANER  
ANNPTR  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
Reserved  
CODE  
PDF  
CODE  
LP_NP_  
ABLE  
NP_  
PAGE_  
RX  
LP_AN_  
ABLE  
ABLE  
Auto-Negotiation  
Next Page TX  
Register  
Next Page Reserved Message  
Ind Page  
ACK2  
TOG_TX  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
RESERVED  
08-0fh  
10h  
Reserved  
PHYSTS  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Link  
PHY Status  
Register  
Reserved MDIX  
mode  
Rx Err  
Latch  
Polarity  
Status  
False  
Carrier  
Sense  
Signal  
Detect  
Descrambl  
er Lock  
Page  
MII  
Interrupt  
Remote Jabber Detect Auto-Neg  
Fault  
Loopback  
Status  
Duplex  
Status  
Speed Status  
Receive  
Complete  
Status  
MII Interrupt  
Control Register  
11h  
MICR  
MISR  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
Reserved  
Reserved PTP_INT_SE  
L
TINT  
INTEN  
INT_OE  
MII Interrupt Status 12h  
and Misc. Control  
Register  
LQ_INT ED_INT  
LINK_INT SPD_INT DUP_INT ANC_INT FHF_INT RHF_INT LQ_INT_E ED_INT_E LINK_INT_EN SPED_INT DUP_INT_EN ANC_INT_ FHF_INT_EN RHF_INT_  
or  
or  
or  
or  
N
N
_EN  
EN  
or  
EN  
or  
PCF_INT_  
EN  
SPD_DUP PTP_INT  
_INT  
CTR_INT PCF_INT  
CTR_INT_EN  
Page Select  
Register  
13h  
14h  
Reserved  
FCSCR  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
Reserved  
FCSCNT  
Reserved  
FCSCNT  
Reserved  
FCSCNT  
Page_Sel Page_Sel Bit Page_Sel  
Bit  
Bit  
EXTENDED REGISTERS - PAGE 0  
False Carrier  
Sense Counter  
Register  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved FCSCNT  
FCSCNT  
FCSCNT  
FCSCNT  
FCSCNT  
Receive Error  
Counter Register  
15h  
16h  
RECR  
PCSR  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved RXERCNT RXERCNT RXERCNT RXERCNT RXERCNT RXERCNT RXERCNT RXERCNT  
PCS Sub-Layer  
Configuration and  
Status Register  
AUTO_CR Reserved Reserved Reserved FREE_CLK TQ_EN  
OSSOVER  
SD_FORC  
E_PMA  
SD_  
DESC_TIM  
E
FX_EN  
FORCE_  
100_OK  
Reserved  
FEFI_EN  
NRZI_  
SCRAM_  
BYPASS  
DE  
OPTION  
BYPASS  
SCRAM_B  
YPASS  
RMII and Bypass 17h  
Register  
RBR  
Reserved RMII_MAS DIS_TX_O RX_PORT RX_PORT TX_SOUR TX_SOUR PMD_LOO SCMII_RX SCMII_TX RMII_MODE RMII_REV RX_OVF_ST RX_UNF_S ELAST_BUF ELAST_BU  
TER PT CE CE 1_0 TS  
P
S
F
74  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
Register Name  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Table 10-2. Register Table (continued)  
Addr  
Tag  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LED Direct Control 18h  
Register  
LEDCR  
Reserved Reserved Reserved Reserved DIS_SPDL DIS_LNKL DIS_ACTL LEDACT_R BLINK_FR BLINK_FR DRV_SPDLE DRV_LNKL DRV_ACTLE SPDLED  
LNKLED  
ACTLED  
ED  
ED  
ED  
X
EQ  
EQ  
D
ED  
D
PHY Control  
Register  
19h  
PHYCR  
MDIX_EN FORCE_M PAUSE_R PAUSE_TX BIST_FE  
PSR_15  
BIST_  
BIST_STA BP_STRET  
LED_  
LED_  
PHY  
PHY  
ADDR  
PHY  
PHY  
PHY  
DIX  
X
RT CH  
STATUS  
CNFG[1]  
CNFG[0]  
ADDR  
ADDR  
ADDR  
ADDR  
10Base-T  
Status/Control  
Register  
1Ah  
10BTSCR  
Reserved Reserved Reserved Reserved SQUELCH SQUELCH SQUELCH LOOPBAC LP_DIS  
K_10_DIS  
FORCE_ FORCE_POL POLARITY AUTOPOL_DI 10BT_SCA HEARTBEAT JABBER_D  
COR LE_MSB _DIS IS  
S
LINK_10  
CD Test Control  
and BIST  
1Bh  
CDCTRL1 BIST_ERR BIST_ERR BIST_ERR BIST_ERR BIST_ERR BIST_ERR BIST_ERR BIST_ERR Reserved MII_CLOC BIST_CONT CDPATTE MDIO_PULL_ PATT_GAP CDPATTSEL CDPATTS  
OR_COUN OR_COUN OR_COUN OR_COUN OR_COUN OR_COUN OR_COUN OR_COUN  
K_EN  
N_10  
EN  
_10M  
EL  
Extensions  
Register  
T
T
T
T
T
T
T
T
PHY Control  
Register 2  
1Ch  
1Dh  
PHYCR2  
EDCR  
Reserved Reserved SYNC_EN CLK_OUT BC_WRITE PHYTER_ SOFT_RE Reserved Reserved Reserved  
ET_EN RXCLK COMP SET  
Reserved  
Reserved  
Reserved  
Reserved CLK_OUT_DI Reserved  
S
Energy Detect  
ED_EN  
ED_AUTO ED_AUTO ED_MAN ED_BURS ED_PWR_ ED_ERR_ ED_DATA_ ED_ERR_ ED_ERR_ ED_ERR_CO ED_ERR_ ED_DATA_C ED_DATA_ ED_DATA_C ED_DATA_  
Control Register  
_UP  
_DOWN  
T_DIS  
STATE  
MET  
MET  
COUNT  
COUNT  
UNT  
COUNT  
OUNT  
COUNT  
Reserved  
PCF_BUF  
OUNT  
COUNT  
Reserved  
PCF_EN  
RESERVED  
1Eh  
1Fh  
Reserved  
PCFCR  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
Reserved  
Reserved  
Reserved  
PCF_BUF  
Reserved  
PCF_BUF  
PHY Control  
Frames  
PCF_STS_ PCF_STS_ Reserved Reserved Reserved Reserved Reserved PCF_DA_S PCF_INT_ PCF_INT_ PCF_BC_DIS PCF_BUF  
ERR  
OK  
EL  
CTL  
CTL  
Configuration  
Register  
TEST REGISTERS - PAGE 1  
RESERVED  
14h-1Dh  
1Eh  
Reserved  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Signal Detect  
Configuration  
Register  
SD_CNFG Reserved Reserved Reserved Reserved Reserved Reserved Reserved SD_Time Reserved Reserved  
RESERVED  
1Fh  
14h  
Reserved  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LINK DIAGNOSTICS REGISTERS - PAGE 2  
100 Mb Length  
Detect Register  
LEN100_D Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved CABLE_LE CABLE_LE CABLE_LEN CABLE_LE CABLE_LEN CABLE_LE CABLE_LEN CABLE_LE  
ET  
N
N
N
N
N
100 Mb Frequency 15h  
Offset Indication  
Register  
FREQ100 SAMPLE_F Reserved Reserved Reserved Reserved Reserved Reserved  
REQ  
SEL_FC FREQ_OF FREQ_OF FREQ_OFFS FREQ_OF FREQ_OFFS FREQ_OF FREQ_OFFS FREQ_OF  
FSET FSET ET FSET ET FSET ET FSET  
TDR Control  
Register  
16h  
17h  
18h  
TDR_CTRL TDR_ENA TDR_100M TX_CHAN RX_CHAN SEND_TD TDR_WIDT TDR_WIDT TDR_WIDT TDR_MIN_ Reserved RX_THRESH RX_THRE RX_THRESH RX_THRE RX_THRESH RX_THRE  
BLE NEL NEL MODE OLD SHOLD OLD SHOLD OLD SHOLD  
b
R
H
H
H
TDR Window  
Register  
TDR_WIN TDR_STA TDR_STA TDR_STA TDR_STA TDR_STA TDR_STA TDR_STA TDR_STA TDR_STO TDR_STO TDR_STOP TDR_STO TDR_STOP TDR_STO TDR_STOP TDR_STO  
RT RT RT RT RT RT RT RT  
P
P
P
P
P
TDR Peak  
Measurement  
Register  
TDR_PEA  
K
Reserved Reserved TDR_PEA TDR_PEA TDR_PEA TDR_PEA TDR_PEA TDR_PEA TDR_PEA TDR_PEA TDR_PEAK_ TDR_PEA TDR_PEAK_ TDR_PEA TDR_PEAK_ TDR_PEA  
K
K
K
K
K
K
K_TIME  
K_TIME  
TIME  
K_TIME  
TIME  
K_TIME  
TIME  
K_TIME  
TDR Threshold  
Measurement  
Register  
19h  
TDR_THR Reserved Reserved Reserved Reserved Reserved Reserved Reserved TDR_THR_  
MET  
TDR-  
TDR-  
TDR-  
TDR-  
TDR-  
TDR-  
TDR-  
TDR-  
THR_TIME THR_TIME THR_TIME THR_TIME THR_TIME THR_TIME THR_TIME THR_TIME  
Variance Control  
Register  
1Ah  
1Bh  
VAR_CTRL VAR_RDY Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved LOAD_VAR_ LOAD_VA VAR_FREEZ VAR_TIME VAR_TIMER VAR_ENA  
HI  
R_LO  
E
R
BLE  
Variance Data  
Register  
VAR_DAT VAR_DAT VAR_DAT VAR_DAT VAR_DAT VAR_DAT VAR_DAT VAR_DAT VAR_DAT VAR_DAT VAR_DAT VAR_DATA  
VAR_DAT VAR_DATA VAR_DAT VAR_DATA  
VAR_DAT  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Reserved  
1Ch  
1Dh  
Reserved  
LQMR  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Link Quality  
LQM_ENA RESTART_ RESTART_ RESTART_ RESTART_ RESTART_ FC_HI_WA FC_LO_W FREQ_HI_ FREQ_LO_ DBLW_HI_W DBLW_LO DAGC_HI_W DAGC_LO C1_HI_WAR C1_LO_W  
Monitor Register  
BLE  
ON_FC  
ON_FREQ ON_DBLW ON_DAGC  
ON_C1  
RN  
ARN  
WARN  
WARN  
ARN  
_WARN  
ARN  
_WARN  
N
ARN  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
75  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Bit 0  
Table 10-2. Register Table (continued)  
Register Name  
Addr  
Tag  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Link Quality Data 1Eh  
Register  
LQDR  
Reserved Reserved SAMPLE_ WRITE_LQ LQ_PARA LQ_PARA LQ_PARA LQ_THR_S LQ_THR_D LQ_THR_D LQ_THR_DA LQ_THR_D LQ_THR_DA LQ_THR_D LQ_THR_DA LQ_THR_D  
PARAM  
_THR  
M_SEL  
M_SEL  
M_SEL  
EL  
ATA  
ATA  
TA  
ATA  
TA  
ATA  
TA  
ATA  
Link Quality  
Monitor Register 2  
1Fh  
LQMR2  
Reserved Reserved Reserved Reserved Reserved RESTART_ Reserved Reserved Reserved Reserved  
ON_VAR  
Reserved  
Reserved  
Reserved  
Reserved VAR_HI_WA Reserved  
RN  
RESERVED REGISTERS - PAGE 3  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
PTP 1588 BASE REGISTERS - PAGE 4  
RESERVED  
14h-1Fh  
Reserved  
PTP_CTL  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PTP Control  
Register  
14h  
15h  
16h  
Reserved Reserved Reserved TRIG_SEL TRIG_SEL TRIG_SEL TRIG_DIS TRIG_EN TRIG_REA TRIG_LOA PTP_RD_CL PTP_LOAD PTP_STEP_ PTP_ENAB PTP_DISABL PTP_RESE  
_CLK CLK LE  
D
D
K
E
T
PTP Time Data  
Register  
PTP_TDR TIME_DAT TIME_DAT TIME_DAT TIME_DAT TIME_DAT TIME_DAT TIME_DAT TIME_DAT TIME_DAT TIME_DAT TIME_DATA TIME_DAT TIME_DATA TIME_DAT TIME_DATA TIME_DAT  
A
A
A
A
A
A
A
A
A
A
A
A
A
PTP Status  
Register  
PTP_STS  
Reserved Reserved Reserved Reserved TXTS_RDY RXTS_RD TRIG_DON EVENT_R Reserved Reserved  
DY  
Reserved  
Reserved  
TXTS_IE  
RXTS_IE  
TRIG_IE  
EVENT_IE  
Y
E
PTP Trigger Status 17h  
Register  
PTP_TSTS TRIG7_ER TRIG7_AC TRIG6_ER TRIG6_AC TRIG5_ER TRIG5_AC TRIG4_ER TRIG4_AC TRIG3_ER TRIG3_AC TRIG2_ERR TRIG2_AC TRIG1_ERR TRIG1_AC TRIG0_ERR TRIG0_AC  
ROR TIVE ROR TIVE ROR TIVE ROR TIVE ROR TIVE OR TIVE OR TIVE OR TIVE  
PTP Rate Low  
Register  
18h  
PTP_RATE PTP_Rate_ PTP_Rate_ PTP_Rate_ PTP_Rate_ PTP_Rate_ PTP_Rate_ PTP_Rate_ PTP_Rate_ PTP_Rate_ PTP_Rate_ PTP_Rate_Lo PTP_Rate_ PTP_Rate_Lo PTP_Rate_ PTP_Rate_Lo PTP_Rate_  
Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo  
L
PTP Rate High  
Register  
19h  
PTP_RATE PTP_RATE PTP_TMP_ Reserved Reserved Reserved Reserved PTP_Rate_ PTP_Rate_ PTP_Rate_ PTP_Rate_ PTP_Rate_Hi PTP_Rate_ PTP_Rate_Hi PTP_Rate_ PTP_Rate_Hi PTP_Rate_  
_DIR RATE Hi Hi Hi Hi Hi Hi Hi  
H
PTP Page 4 Read 1Ah  
Checksum  
PTP_RDC RD_CKSU RD_CKSU RD_CKSU RD_CKSU RD_CKSU RD_CKSU RD_CKSU RD_CKSU RD_CKSU RD_CKSU RD_CKSUM RD_CKSU RD_CKSUM RD_CKSU RD_CKSUM RD_CKSU  
KSUM  
M
M
M
M
M
M
M
M
M
M
M
M
M
PTP Page 4 Write 1Bh  
Checksum  
PTP_WRC WR_CKSU WR_CKSU WR_CKSU WR_CKSU WR_CKSU WR_CKSU WR_CKSU WR_CKSU WR_CKSU WR_CKSU WR_CKSUM WR_CKSU WR_CKSUM WR_CKSU WR_CKSUM WR_CKSU  
KSUM  
M
M
M
M
M
M
M
M
M
M
M
M
M
PTP Transmit  
TimeStamp  
Register  
1Ch  
PTP_TXTS PTP_TX_T PTP_TX_T PTP_TX_T PTP_TX_T PTP_TX_T PTP_TX_T PTP_TX_T PTP_TX_T PTP_TX_T PTP_TX_T PTP_TX_TS PTP_TX_T PTP_TX_TS PTP_TX_T PTP_TX_TS PTP_TX_T  
S
S
S
S
S
S
S
S
S
S
S
S
S
PTP Receive  
TimeStamp  
Register  
1Dh  
PTP_RXTS PTP_RX_T PTP_RX_T PTP_RX_T PTP_RX_T PTP_RX_T PTP_RX_T PTP_RX_T PTP_RX_T PTP_RX_T PTP_RX_T PTP_RX_TS PTP_RX_T PTP_RX_TS PTP_RX_T PTP_RX_TS PTP_RX_T  
S
S
S
S
S
S
S
S
S
S
S
S
S
PTP Event Status 1Eh  
Register  
PTP_ESTS Reserved Reserved Reserved Reserved Reserved EVNTS_MI EVNTS_MI EVNTS_MI EVNT_TS_ EVNT_TS_ EVNT_RF  
EVNT_NU EVNT_NUM EVNT_NU MULT_EVNT EVENT_D  
SSED  
SSED  
SSED  
LEN  
LEN  
M
M
ET  
PTP Event Data  
Register Status  
1Fh  
PTP_EDAT E7_RISE  
A
E7_DET  
E6_RISE  
E6_DET  
E5_RISE  
E5_DET  
E4_RISE  
E4_DET  
E3_RISE  
E3_DET  
E2_RISE  
E2_DET  
E1_RISE  
E1_DET  
E0_RISE  
E0_DET  
PTP Event Data  
Register  
1Fh  
PTP_EDAT PTP_EVNT PTP_EVNT PTP_EVNT PTP_EVNT PTP_EVNT PTP_EVNT PTP_EVNT PTP_EVNT PTP_EVNT PTP_EVNT PTP_EVNT_T PTP_EVNT PTP_EVNT_T PTP_EVNT PTP_EVNT_T PTP_EVNT  
A
_TS  
_TS  
_TS  
_TS  
_TS  
_TS  
_TS  
_TS  
_TS  
_TS  
S
_TS  
S
_TS  
S
_TS  
Timestamp  
PTP 1588 CONFIGURATION REGISTERS - PAGE 5  
PTP Trigger  
Configuration  
Register  
14h  
15h  
16h  
17h  
PTP_TRIG TRIG_PUL TRIG_PER TRIG_IF_L TRIG_NOT TRIG_GPI TRIG_GPI TRIG_GPI TRIG_GPI TRIG_TOG Reserved  
Reserved  
Reserved  
Reserved TRIG_CSEL TRIG_CSE TRIG_CSEL TRIG_WR  
L
SE ATE IFY GLE  
O
O
O
O
PTP Event  
Configuration  
Register  
PTP_EVNT Reserved EVNT_RIS EVNT_FAL Reserved EVNT_GPI EVNT_GPI EVNT_GPI EVNT_GPI Reserved Reserved  
Reserved  
EVNT_SEL EVNT_SEL EVNT_SEL EVNT_WR  
E
L
O
O
O
O
PTP Transmit  
Configuration  
Register 0  
PTP_TXCF SYNC_1ST Reserved DR_INSER Reserved RESERVE CRC_1STE CHK_1STE IP1588_EN TX_L2_EN TX_IPV6_E TX_IPV4_EN TX_PTP_V TX_PTP_VE TX_PTP_V TX_PTP_VE TX_TS_EN  
G0 EP D_1 ER ER  
T
P
P
N
R
R
PTP Transmit  
Configuration  
Register 1  
PTP_TXCF BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_DA BYTE0_DA BYTE0_DAT BYTE0_DA BYTE0_DAT BYTE0_DA BYTE0_DAT BYTE0_DA  
G1 SK SK SK SK SK SK SK SK TA TA TA TA TA  
A
A
A
76  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
Register Name  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Table 10-2. Register Table (continued)  
Addr  
Tag  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PHY Status Frame 18h  
Configuration  
PSF_CFG0 Reserved Reserved Reserved MAC_SRC MAC_SRC MIN_PRE MIN_PRE MIN_PRE PSF_ENDI PSF_IPV4 PSF_PCF_R PSF_ERR_ PSF_TXTS_E PSF_RXTS PSF_TRIG_E PSF_EVNT  
_ADD _ADD AN EN _EN _EN  
D
N
N
Register 0  
PTP Receive  
Configuration  
Register 0  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
PTP_RXCF DOMAIN_E Reserved USER_IP_ USER_IP_ RX_SLAVE IP1588_EN IP1588_EN IP1588_EN RX_L2_EN RX_IPV6_ RX_IPV4_EN RX_PTP_V RX_PTP_VE RX_PTP_V RX_PTP_VE RX_TS_EN  
G0 SEL EN EN ER ER  
N
R
R
PTP Receive  
Configuration  
Register 1  
PTP_RXCF BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_MA BYTE0_DA BYTE0_DA BYTE0_DAT BYTE0_DA BYTE0_DAT BYTE0_DA BYTE0_DAT BYTE0_DA  
G1 SK SK SK SK SK SK SK SK TA TA TA TA TA  
A
A
A
PTP Receive  
Configuration  
Register 2  
PTP_RXCF IP_ADDR_ IP_ADDR_ IP_ADDR_ IP_ADDR_ IP_ADDR_ IP_ADDR_ IP_ADDR_ IP_ADDR_ IP_ADDR_ IP_ADDR_ IP_ADDR_DA IP_ADDR_ IP_ADDR_DA IP_ADDR_ IP_ADDR_DA IP_ADDR_  
G2 DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA TA DATA TA DATA TA DATA  
PTP Receive  
Configuration  
Register 3  
PTP_RXCF TS_MIN_IF TS_MIN_IF TS_MIN_IF TS_MIN_IF ACC_UDP ACC_CRC TS_APPEN TS_INSER PTP_DOM PTP_DOM PTP_DOMAI PTP_DOM PTP_DOMAI PTP_DOM PTP_DOMAI PTP_DOM  
G3 AIN AIN AIN AIN AIN  
G
G
G
G
D
T
N
N
N
PTP Receive  
Configuration  
Register 4  
PTP_RXCF IPV4_UDP TS_SEC_E TS_SEC_L TS_SEC_L RXTS_NS_ RXTS_NS_ RXTS_NS_ RXTS_NS_ RXTS_NS_ RXTS_NS_ RXTS_SEC_ RXTS_SE RXTS_SEC_ RXTS_SE RXTS_SEC_ RXTS_SE  
G4 _MOD EN EN OFF OFF OFF OFF OFF OFF OFF C_OFF OFF C_OFF OFF C_OFF  
N
PTP Temporary  
Rate Duration Low  
Register  
PTP_TRDL PTP_TR_D PTP_TR_D PTP_TR_D PTP_TR_D PTP_TR_D PTP_TR_D PTP_TR_D PTP_TR_D PTP_TR_D PTP_TR_D PTP_TR_DU PTP_TR_D PTP_TR_DU PTP_TR_D PTP_TR_DU PTP_TR_D  
URL URL URL URL URL URL URL URL URL URL RL URL RL URL RL URL  
PTP Temporary  
Rate Duration High  
Register  
PTP_TRD  
H
Reserved Reserved Reserved Reserved Reserved Reserved PTP_TR_D PTP_TR_D PTP_TR_D PTP_TR_D PTP_TR_DU PTP_TR_D PTP_TR_DU PTP_TR_D PTP_TR_DU PTP_TR_D  
URH URH URH URH RH URH RH URH RH URH  
PTP 1588 CONFIGURATION REGISTERS - PAGE 6  
PTP_COC PTP_CLKO PTP_CLKO PTP_CLKO Reserved Reserved Reserved Reserved Reserved PTP_CLKD PTP_CLKD PTP_CLKDIV PTP_CLKD PTP_CLKDIV PTP_CLKD PTP_CLKDIV PTP_CLKD  
PTP Clock Output 14h  
Control Register  
UT EN  
UT SEL  
UT  
SPEEDSE  
L
IV  
IV  
IV  
IV  
IV  
PHY Status Frame 15h  
Configuration  
PSF_CFG1 PTPRESE PTPRESE PTPRESE PTPRESE VERSIONP VERSIONP VERSIONP VERSIONP TRANSPO TRANSPO TRANSPORT TRANSPO MESSAGETY MESSAGE MESSAGETY MESSAGE  
RVED RVED RVED RVED TP TP TP TP RTSPECIFI RTSPECIFI SPECIFIC RTSPECIFI PE TYPE PE TYPE  
Register 1  
C
C
C
Status Frame  
Configuration  
Register 2  
16h  
17h  
18h  
19h  
1Ah  
PSF_CFG2 IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BYTE IP_SA_BY IP_SA_BYTE IP_SA_BY IP_SA_BYTE IP_SA_BY  
TE1 TE1 TE1 TE1 TE1 TE1 TE1 TE1 TE0 TE0 TE0 TE0 TE0  
0
0
0
Status Frame  
Configuration  
Register 3  
PSF_CFG3 IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BY IP_SA_BYTE IP_SA_BY IP_SA_BYTE IP_SA_BY IP_SA_BYTE IP_SA_BY  
TE3 TE3 TE3 TE3 TE3 TE3 TE3 TE3 TE2 TE2 TE2 TE2 TE2  
2
2
2
Status Frame  
Configuration  
Register 4  
PSF_CFG4 IP_CHKSU IP_CHKSU IP_CHKSU IP_CHKSU IP_CHKSU IP_CHKSU IP_CHKSU IP_CHKSU IP_CHKSU IP_CHKSU IP_CHKSUM IP_CHKSU IP_CHKSUM IP_CHKSU IP_CHKSUM IP_CHKSU  
M
M
M
M
M
M
M
M
M
M
M
M
M
PTP SFD  
Congiguration  
Register  
PTP_SFDC Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved TX_SFD_G TX_SFD_G TX_SFD_GPI TX_SFD_G RX_SFD_GPI RX_SFD_ RX_SFD_GPI RX_SFD_  
FG  
PIO  
PIO  
O
PIO  
O
GPIO  
O
GPIO  
PTP Interrupt  
Control Register  
PTP_INTC Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
TL  
Reserved  
Reserved PTP_INT_GP PTP_INT_ PTP_INT_GP PTP_INT_  
IO GPIO IO GPIO  
PTP Clock Source 1Bh  
Register  
PTP_CLKS CLK_SRC CLK_SRC Reserved Reserved Reserved Reserved Reserved Reserved Reserved CLK_SRC_ CLK_SRC_P CLK_SRC_ CLK_SRC_P CLK_SRC_ CLK_SRC_P CLK_SRC_  
RC PER ER PER ER PER ER PER  
PTP Ethernet Type 1Ch  
Register  
PTP_ETR PTP_ETYP PTP_ETYP PTP_ETYP PTP_ETYP PTP_ETYP PTP_ETYP PTP_ETYP PTP_ETYP PTP_ETYP PTP_ETYP PTP_ETYPE PTP_ETYP PTP_ETYPE PTP_ETYP PTP_ETYPE PTP_ETYP  
E
E
E
E
E
E
E
E
E
E
E
E
E
PTP Offset  
Register  
1Dh  
PTP_OFF  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved PTP_OFFS PTP_OFFS PTP_OFFSE PTP_OFFS PTP_OFFSE PTP_OFFS PTP_OFFSE PTP_OFFS  
ET  
ET  
T
ET  
T
ET  
T
ET  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
77  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Bit 0  
Table 10-2. Register Table (continued)  
Register Name  
Addr  
Tag  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
PTP GPIO Monitor 1Eh  
Register  
PTP_GPIO Reserved Reserved Reserved Reserved PTP_GPIO PTP_GPIO PTP_GPIO PTP_GPIO PTP_GPIO PTP_GPIO PTP_GPIO_I PTP_GPIO PTP_GPIO_I PTP_GPIO PTP_GPIO_I PTP_GPIO  
MON  
_IN  
_IN  
_IN  
_IN  
_IN  
_IN  
N
_IN  
N
_IN  
N
_IN  
PTP Receive Hash 1Fh  
Register  
PTP_RXH  
ASH  
Reserved Reserved Reserved RX_HASH PTP_RX_H PTP_RX_H PTP_RX_H PTP_RX_H PTP_RX_H PTP_RX_H PTP_RX_HA PTP_RX_H PTP_RX_HA PTP_RX_H PTP_RX_HA PTP_RX_H  
_EN ASH ASH ASH ASH ASH ASH SH ASH SH ASH SH ASH  
78  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.1 REGISTER DEFINITION  
In the register definitions under the ‘Default’ heading, the following definitions hold true:  
RW = Read Write access  
SC = Register sets on event occurrence and Self-Clears when event ends  
RW/SC = ReadWrite access/Self Clearing bit  
RO = Read Only access  
COR = Clear On Read  
RO/COR = Read Only, Clear On Read  
RO/P = Read Only, Permanently set to a default value  
LL = Latched Low and held until read, based upon the occurrence of the corresponding event  
LH = Latched High and held until read, based upon the occurrence of the corresponding event  
10.1.1 Basic Mode Control Register (BMCR)  
Table 10-3. Basic Mode Control Register (BMCR), address 0x00  
Bit  
Bit Name  
Default  
Description  
15  
RESET  
0, RW/SC  
Reset:  
1 = Initiate software Reset / Reset in Process.  
0 = Normal operation.  
This bit, which is self-clearing, returns a value of one until the reset process is complete.  
The configuration is re-strapped.  
14  
LOOPBACK  
0, RW  
Loopback:  
1 = Loopback enabled.  
0 = Normal operation.  
The loopback function enables MII transmit data to be routed to the MII receive data  
path.  
Setting this bit may cause the descrambler to lose synchronization and produce a 500  
µs “dead time” before any valid data will appear at the MII receive outputs.  
13  
12  
SPEED SELECTION  
Strap, RW  
Strap, RW  
Speed Select:  
When auto-negotiation is disabled writing to this bit allows the port speed to be selected.  
1 = 100 Mb/s.  
0 = 10 Mb/s.  
AUTO-NEGOTIATION  
ENABLE  
Auto-Negotiation Enable:  
Strap controls initial value at reset.  
If FX is enabled (FX_EN = 1), then this bit will be reset to 0.  
1 = Auto-Negotiation Enabled - bits 8 and 13 of this register are ignored when this bit is  
set.  
0 = Auto-Negotiation Disabled - bits 8 and 13 determine the port speed and duplex  
mode.  
11  
10  
POWER DOWN  
0, RW  
0, RW  
Power Down:  
1 = Power down.  
0 = Normal operation.  
Setting this bit powers down the PHY. Only the register block is enabled during a power  
down condition. This bit is ORd with the input from the PWRDOWN_INT pin. When the  
active low PWRDOWN_INT pin is asserted, this bit will be set.  
ISOLATE  
Isolate:  
1 = Isolates the Port from the MII with the exception of the serial management.  
0 = Normal operation.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
79  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Table 10-3. Basic Mode Control Register (BMCR), address 0x00 (continued)  
Bit  
Bit Name  
Default  
Description  
9
RESTART  
0, RW/SC  
Restart Auto-Negotiation:  
AUTO-NEGOTIATION  
1 = Restart Auto-Negotiation. Re-initiates the Auto-Negotiation process. If Auto-  
Negotiation is disabled (bit 12 = 0), this bit is ignored. This bit is self-clearing and will  
return a value of 1 until Auto-Negotiation is initiated, whereupon it will self-clear.  
Operation of the Auto-Negotiation process is not affected by the management entity  
clearing this bit.  
0 = Normal operation.  
8
7
DUPLEX MODE  
Strap, RW  
Duplex Mode:  
When auto-negotiation is disabled writing to this bit allows the port Duplex capability to  
be selected.  
1 = Full Duplex operation.  
0 = Half Duplex operation.  
Collision Test:  
COLLISION TEST  
0, RW  
1 = Collision test enabled.  
0 = Normal operation.  
When set, this bit will cause the COL signal to be asserted in response to the assertion  
of TX_EN within 512-bit times. The COL signal will be de-asserted within 4-bit times in  
response to the de-assertion of TX_EN.  
6
5
RESERVED  
0, RO  
0, RW  
RESERVED: Write ignored, read as 0.  
UNIDIRECTIONAL  
ENABLE  
Unidirectional Enable:  
1 = Allow 100 Mb transmit activity independent of link status.  
0 = Require link up for 100 Mb/s transmit activity.  
This bit has no effect in 10 Mb/s mode..  
4:0  
RESERVED  
0 0000, RO RESERVED: Write ignored, read as 0.  
10.1.2 Basic Mode Status Register (BMSR)  
Table 10-4. Basic Mode Status Register (BMSR), address 0x01  
Bit  
Bit Name  
Default  
Description  
15  
100BASE-T4  
0, RO/P  
100BASE-T4 Capable:  
0 = Device not able to perform 100BASE-T4 mode.  
100BASE-TX Full Duplex Capable:  
14  
13  
12  
11  
100BASE-TX  
FULL DUPLEX  
100BASE-TX  
HALF DUPLEX  
10BASE-T  
1, RO/P  
1, RO/P  
1, RO/P  
1, RO/P  
1 = Device able to perform 100BASE-TX in full duplex mode.  
100BASE-TX Half Duplex Capable:  
1 = Device able to perform 100BASE-TX in half duplex mode.  
10BASE-T Full Duplex Capable:  
FULL DUPLEX  
10BASE-T  
1 = Device able to perform 10BASE-T in full duplex mode.  
10BASE-T Half Duplex Capable:  
HALF DUPLEX  
RESERVED  
1 = Device able to perform 10BASE-T in half duplex mode.  
RESERVED: Write as 0, read as 0.  
10:8  
7
000, RO  
1, RO/P  
UNIDIRECTIONAL  
ABILITY  
Unidirectional Ability:  
1 = Device able to transmit in 100 Mb/s mode independent of link status.  
6
MF PREAMBLE  
SUPPRESSION  
1, RO/P  
Preamble Suppression Capable:  
1 = Device able to perform management transaction with preamble suppressed, 32-bits of  
preamble needed only once after reset, invalid opcode or invalid turnaround.  
0 = Normal management operation.  
Auto-Negotiation Complete:  
5
AUTO-NEGOTIATION  
COMPLETE  
0, RO  
1 = Auto-Negotiation process complete.  
0 = Auto-Negotiation process not complete.  
80  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Table 10-4. Basic Mode Status Register (BMSR), address 0x01 (continued)  
Bit  
Bit Name  
Default  
Description  
4
REMOTE FAULT  
0, RO/LH  
Remote Fault:  
1 = Remote Fault condition detected (cleared on read or by reset). Fault criteria: Far End  
Fault Indication or notification from Link Partner of Remote Fault.  
0 = No remote fault condition detected.  
Auto Negotiation Ability:  
3
2
AUTO-NEGOTIATION  
ABILITY  
1, RO/P  
1 = Device is able to perform Auto-Negotiation.  
0 = Device is not able to perform Auto-Negotiation.  
Link Status:  
LINK STATUS  
0, RO/LL  
1 = Valid link established (for either 10 or 100 Mb/s operation).  
0 = Link not established.  
The criteria for link validity is implementation specific. The occurrence of a link failure  
condition will causes the Link Status bit to clear. Once cleared, this bit may only be set by  
establishing a good link condition and a read via the management interface.  
1
0
JABBER DETECT  
0, RO/LH  
Jabber Detect: This bit only has meaning in 10 Mb/s mode.  
1 = Jabber condition detected.  
0 = No Jabber.  
This bit is implemented with a latching function, such that the occurrence of a jabber  
condition causes it to set until it is cleared by a read to this register by the management  
interface or by a reset.  
EXTENDED  
CAPABILITY  
1, RO/P  
Extended Capability:  
1 = Extended register capabilities.  
0 = Basic register set capabilities only.  
The PHY Identifier Registers #1 and #2 together form a unique identifier for the DP83630. The Identifier  
consists of a concatenation of the Organizationally Unique Identifier (OUI), the vendor's model number  
and the model revision number. A PHY may return a value of zero in each of the 32 bits of the PHY  
Identifier if desired. The PHY Identifier is intended to support network management. TI's IEEE assigned  
OUI is 080017h.  
10.1.3 PHY Identifier Register #1 (PHYIDR1)  
Table 10-5. PHY Identifier Register #1 (PHYIDR1), address 0x02  
Bit  
Bit Name  
Default  
Description  
15:0  
OUI_MSB  
0010 0000 0000 0000, OUI Most Significant Bits: Bits 3 to 18 of the OUI (080017h) are stored in bits 15  
RO/P  
to 0 of this register. The most significant two bits of the OUI are ignored (the IEEE  
standard refers to these as bits 1 and 2).  
10.1.4 PHY Identifier Register #2 (PHYIDR2)  
Table 10-6. PHY Identifier Register #2 (PHYIDR2), address 0x03  
Bit  
Bit Name  
Default  
Description  
15:10  
OUI_LSB  
0101 11, RO/P  
OUI Least Significant Bits:  
Bits 19 to 24 of the OUI (080017h) are mapped from bits 15 to 10 of this register  
respectively.  
9:4  
3:0  
VNDR_MDL  
MDL_REV  
00 1110, RO/P  
0001, RO/P  
Vendor Model Number:  
The six bits of vendor model number are mapped from bits 9 to 4 (most significant bit to  
bit 9).  
Model Revision Number:  
Four bits of the vendor model revision number are mapped from bits 3 to 0 (most  
significant bit to bit 3). This field will be incremented for all major device changes.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
81  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.1.5 Auto-Negotiation Advertisement Register (ANAR)  
This register contains the advertised abilities of this device as they will be transmitted to its link partner  
during Auto-Negotiation. Any writes to this register prior to completion of Auto-Negotiation (as indicated in  
the Basic Mode Status Register (address 01h) Auto-Negotiation Complete bit, BMSR[5]) should be  
followed by a renegotiation. This will ensure that the new values are properly used in the Auto-Negotiation.  
Table 10-7. Auto-Negotiation Advertisement Register (ANAR), address 0x04  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RW  
Next Page Indication:  
0 = Next Page Transfer not desired.  
1 = Next Page Transfer desired.  
14  
13  
RESERVED  
RF  
0, RO/P  
0, RW  
RESERVED by IEEE: Writes ignored, Read as 0.  
Remote Fault:  
1 = Advertises that this device has detected a Remote Fault.  
0 = No Remote Fault detected.  
12  
11  
RESERVED  
ASM_DIR  
0, RW  
0, RW  
RESERVED for Future IEEE use: Write as 0, Read as 0  
Asymmetric PAUSE Support for Full Duplex Links:  
The ASM_DIR bit indicates that asymmetric PAUSE is supported.  
Encoding and resolution of PAUSE bits is defined in IEEE 802.3 Annex 28B, Tables  
28B-2 and 28B-3, respectively. Pause resolution status is reported in PHYCR[13:12].  
1 = Advertise that the DTE (MAC) has implemented both the optional MAC control  
sublayer and the pause function as specified in clause 31 and annex 31B of 802.3u.  
0 = No MAC based full duplex flow control.  
10  
PAUSE  
0, RW  
PAUSE Support for Full Duplex Links:  
The PAUSE bit indicates that the device is capable of providing the symmetric PAUSE  
functions as defined in Annex 31B.  
Encoding and resolution of PAUSE bits is defined in IEEE 802.3 Annex 28B, Tables  
28B-2 and 28B-3, respectively. Pause resolution status is reported in PHYCR[13:12].  
1 = Advertise that the DTE (MAC) has implemented both the optional MAC control  
sublayer and the pause function as specified in clause 31 and annex 31B of 802.3u.  
0 = No MAC based full duplex flow control.  
100BASE-T4 Support:  
9
8
T4  
TX_FD  
TX  
0, RO/P  
Strap, RW  
Strap, RW  
Strap, RW  
Strap, RW  
0 0001, RW  
1 = 100BASE-T4 is supported by the local device.  
0 = 100BASE-T4 not supported.  
100BASE-TX Full Duplex Support:  
1 = 100BASE-TX Full Duplex is supported by the local device.  
0 = 100BASE-TX Full Duplex not supported.  
100BASE-TX Support:  
7
1 = 100BASE-TX is supported by the local device.  
0 = 100BASE-TX not supported.  
6
10_FD  
10  
10BASE-T Full Duplex Support:  
1 = 10BASE-T Full Duplex is supported by the local device.  
0 = 10BASE-T Full Duplex not supported.  
10BASE-T Support:  
5
1 = 10BASE-T is supported by the local device.  
0 = 10BASE-T not supported.  
4:0  
SELECTOR  
Protocol Selection Bits:  
These bits contain the binary encoded protocol selector supported by this port. <00001>  
indicates that this device supports IEEE 802.3u.  
82  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.1.6 Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page)  
This register contains the advertised abilities of the Link Partner as received during Auto-Negotiation. The  
content changes after the successful auto-negotiation if Next-pages are supported.  
Table 10-8. Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page), address 0x05  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RO  
Next Page Indication:  
0 = Link Partner does not desire Next Page Transfer.  
1 = Link Partner desires Next Page Transfer.  
Acknowledge:  
14  
13  
ACK  
RF  
0, RO  
0, RO  
1 = Link Partner acknowledges reception of the ability data word.  
0 = Not acknowledged.  
The Auto-Negotiation state machine will automatically control this bit based on the  
incoming FLP bursts.  
Remote Fault:  
1 = Remote Fault indicated by Link Partner.  
0 = No Remote Fault indicated by Link Partner.  
RESERVED for Future IEEE use: Write as 0, read as 0.  
ASYMMETRIC PAUSE:  
12  
11  
RESERVED  
ASM_DIR  
0, RO  
0, RO  
1 = Asymmetric pause is supported by the Link Partner.  
0 = Asymmetric pause is not supported by the Link Partner.  
PAUSE:  
10  
9
PAUSE  
T4  
0, RO  
0, RO  
1 = Pause function is supported by the Link Partner.  
0 = Pause function is not supported by the Link Partner.  
100BASE-T4 Support:  
1 = 100BASE-T4 is supported by the Link Partner.  
0 = 100BASE-T4 not supported by the Link Partner.  
100BASE-TX Full Duplex Support:  
8
TX_FD  
TX  
0, RO  
1 = 100BASE-TX Full Duplex is supported by the Link Partner.  
0 = 100BASE-TX Full Duplex not supported by the Link Partner.  
100BASE-TX Support:  
7
0, RO  
1 = 100BASE-TX is supported by the Link Partner.  
0 = 100BASE-TX not supported by the Link Partner.  
10BASE-T Full Duplex Support:  
6
10_FD  
10  
0, RO  
1 = 10BASE-T Full Duplex is supported by the Link Partner.  
0 = 10BASE-T Full Duplex not supported by the Link Partner.  
10BASE-T Support:  
5
0, RO  
1 = 10BASE-T is supported by the Link Partner.  
0 = 10BASE-T not supported by the Link Partner.  
Protocol Selection Bits:  
4:0  
SELECTOR  
0 0000, RO  
Link Partner's binary encoded protocol selector.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
Submit Documentation Feedback  
83  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.1.7 Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page)  
Table 10-9. Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page), address 0x05  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RO  
Next Page Indication:  
1 = Link Partner desires Next Page Transfer.  
0 = Link Partner does not desire Next Page Transfer.  
Acknowledge:  
14  
ACK  
0, RO  
1 = Link Partner acknowledges reception of the ability data word.  
0 = Not acknowledged.  
The Auto-Negotiation state machine will automatically control this bit based on the  
incoming FLP bursts. Software should not attempt to write to this bit.  
13  
12  
MP  
0, RO  
0, RO  
0, RO  
Message Page:  
1 = Message Page.  
0 = Unformatted Page.  
ACK2  
Acknowledge 2:  
1 = Link Partner does have the ability to comply to next page message.  
0 = Link Partner does not have the ability to comply to next page message.  
Toggle:  
11  
TOGGLE  
CODE  
1 = Previous value of the transmitted Link Code word equalled 0.  
0 = Previous value of the transmitted Link Code word equalled 1.  
10:0  
000 0000 0000, RO Code:  
This field represents the code field of the next page transmission. If the MP bit is set  
(bit 13 of this register), then the code shall be interpreted as a Message Page, as  
defined in IEEE 802.3u Annex 28C of Clause 28. Otherwise, the code shall be  
interpreted as an Unformatted Page, and the interpretation is application specific.  
10.1.8 Auto-Negotiate Expansion Register (ANER)  
This register contains additional Local Device and Link Partner status information.  
Table 10-10. Auto-Negotiate Expansion Register (ANER), address 0x06  
Bit  
15:5  
4
Bit Name  
RESERVED  
PDF  
Default  
Description  
0000 0000 000, RO RESERVED: Writes ignored, Read as 0.  
0, RO  
0, RO  
Parallel Detection Fault:  
1 = A fault has been detected via the Parallel Detection function.  
0 = A fault has not been detected.  
3
LP_NP_ABLE  
Link Partner Next Page Able:  
1 = Link Partner does support Next Page.  
0 = Link Partner does not support Next Page.  
Next Page Able:  
2
1
NP_ABLE  
PAGE_RX  
1, RO/P  
1 = Indicates local device is able to send additional Next Pages.  
Link Code Word Page Received:  
0, RO/COR  
1 = Link Code Word has been received, cleared on a read.  
0 = Link Code Word has not been received.  
Link Partner Auto-Negotiation Able:  
0
LP_AN_ABLE  
0, RO  
1 = Indicates that the Link Partner supports Auto-Negotiation.  
0 = Indicates that the Link Partner does not support Auto-Negotiation.  
84  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.1.9 Auto-Negotiation Next Page Transmit Register (ANNPTR)  
This register contains the next page information sent by this device to its Link Partner during Auto-  
Negotiation.  
Table 10-11. Auto-Negotiation Next Page Transmit Register (ANNPTR), address 0x07  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RW  
Next Page Indication:  
0 = No other Next Page Transfer desired.  
1 = Another Next Page desired.  
RESERVED: Writes ignored, read as 0.  
Message Page:  
14  
13  
RESERVED  
MP  
0, RO  
1, RW  
1 = Message Page.  
0 = Unformatted Page.  
12  
11  
ACK2  
0, RW  
0, RO  
Acknowledge2:  
1 = Will comply with message.  
0 = Cannot comply with message.  
Acknowledge2 is used by the next page function to indicate that Local Device has  
the ability to comply with the message received.  
TOG_TX  
Toggle:  
1 = Value of toggle bit in previously transmitted Link Code Word was 0.  
0 = Value of toggle bit in previously transmitted Link Code Word was 1.  
Toggle is used by the Arbitration function within Auto-Negotiation to ensure  
synchronization with the Link Partner during Next Page exchange. This bit shall  
always take the opposite value of the Toggle bit in the previously exchanged Link  
Code Word.  
10:0  
CODE  
000 0000 0001, RW  
Code:  
This field represents the code field of the next page transmission. If the MP bit is  
set (bit 13 of this register), then the code shall be interpreted as a "Message  
Page”, as defined in Annex 28C of IEEE 802.3u. Otherwise, the code shall be  
interpreted as an "Unformatted Page”, and the interpretation is application  
specific.  
The default value of the CODE represents a Null Page as defined in Annex 28C  
of IEEE 802.3u.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
85  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.1.10 PHY Status Register (PHYSTS)  
This register provides a single location within the register set for quick access to commonly accessed  
information.  
Table 10-12. PHY Status Register (PHYSTS), address 0x10  
Bit  
15  
14  
Bit Name  
RESERVED  
MDIX MODE  
Default  
0, RO  
0, RO  
Description  
RESERVED: Write ignored, read as 0.  
MDIX mode as reported by the Auto-Negotiation logic:  
This bit will be affected by the settings of the MDIX_EN and FORCE_MDIX bits  
in the PHYCR register. When MDIX is enabled, but not forced, this bit will  
update dynamically as the Auto-MDIX algorithm swaps between MDI and MDIX  
configurations.  
1 = MDI pairs swapped  
(Receive on TPTD pair, Transmit on TPRD pair)  
0 = MDI pairs normal  
(Receive on TPRD pair, Transmit on TPTD pair)  
Receive Error Latch:  
13  
12  
RECEIVE ERROR  
LATCH  
0, RO/LH  
This bit will be cleared upon a read of the RECR register.  
1 = Receive error event has occurred since last read of RXERCNT (address  
15h, Page 0).  
0 = No receive error event has occurred.  
POLARITY STATUS  
0, RO  
Polarity Status:  
This bit is a duplication of bit 4 in the 10BTSCR register. This bit will be cleared  
upon a read of the 10BTSCR register, but not upon a read of the PHYSTS  
register.  
1 = Inverted Polarity detected.  
0 = Correct Polarity detected.  
11 FALSE CARRIER SENSE  
LATCH  
0, RO/LH  
0, RO/LL  
False Carrier Sense Latch:  
This bit will be cleared upon a read of the FCSR register.  
1 = False Carrier event has occurred since last read of FCSCR (address 14h).  
0 = No False Carrier event has occurred.  
100Base-TX qualified Signal Detect from PMA:  
10  
SIGNAL DETECT  
This is the SD that goes into the link monitor. It is the AND of raw SD and  
descrambler lock, when address 16h, bit 8 (page 0) is set. When bit 8 of  
address 16h is cleared, it will be equivalent to the raw SD from the PMD.  
9
8
DESCRAMBLER LOCK  
PAGE RECEIVED  
0, RO/LL  
0, RO  
100Base-TX Descrambler Lock from PMD.  
Link Code Word Page Received:  
This is a duplicate of the Page Received bit in the ANER register, but this bit  
will not be cleared upon a read of the PHYSTS register.  
1 = A new Link Code Word Page has been received. Cleared on read of the  
ANER (address 06h, bit 1).  
0 = Link Code Word Page has not been received.  
7
6
MII INTERRUPT  
REMOTE FAULT  
0, RO  
0, RO  
MII Interrupt Pending:  
1 = Indicates that an internal interrupt is pending. Interrupt source can be  
determined by reading the MISR Register (12h). Reading the MISR will clear  
the Interrupt.  
0 = No interrupt pending.  
Remote Fault:  
1 = Remote Fault condition detected (cleared on read of BMSR (address 01h)  
register or by reset). Fault criteria: notification from Link Partner of Remote  
Fault via Auto-Negotiation.  
0 = No remote fault condition detected.  
86  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Table 10-12. PHY Status Register (PHYSTS), address 0x10 (continued)  
Bit  
Bit Name  
Default  
Description  
5
JABBER DETECT  
0, RO  
Jabber Detect: This bit only has meaning in 10 Mb/s mode.  
This bit is a duplicate of the Jabber Detect bit in the BMSR register, except that  
it is not cleared upon a read of the PHYSTS register.  
1 = Jabber condition detected.  
0 = No Jabber.  
4
3
2
AUTO-NEG COMPLETE  
LOOPBACK STATUS  
DUPLEX STATUS  
0, RO  
0, RO  
0, RO  
Auto-Negotiation Complete:  
1 = Auto-Negotiation complete.  
0 = Auto-Negotiation not complete.  
Loopback:  
1 = Loopback enabled.  
0 = Normal operation.  
Duplex:  
This bit indicates duplex status and is determined from Auto-Negotiation or  
Forced Modes.  
1 = Full duplex mode.  
0 = Half duplex mode.  
Note: This bit is only valid if Auto-Negotiation is enabled and complete and  
there is a valid link or if Auto-Negotiation is disabled and there is a valid link.  
1
SPEED STATUS  
0, RO  
Speed10:  
This bit indicates the status of the speed and is determined from Auto-  
Negotiation or Forced Modes.  
1 = 10 Mb/s mode.  
0 = 100 Mb/s mode.  
Note: This bit is only valid if Auto-Negotiation is enabled and complete and  
there is a valid link or if Auto-Negotiation is disabled and there is a valid link.  
0
LINK STATUS  
0, RO  
Link Status:  
This bit is a duplicate of the Link Status bit in the BMSR register, except that it  
will not be cleared upon a read of the PHYSTS register.  
1 = Valid link established (for either 10 or 100 Mb/s operation).  
0 = Link not established.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
87  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.1.11 MII Interrupt Control Register (MICR)  
This register implements the MII Interrupt PHY Specific Control register. Sources for interrupt generation  
include: Link Quality Monitor, Energy Detect State Change, Link State Change, Speed Status Change,  
Duplex Status Change, Auto-Negotiation Complete or any of the counters becoming half-full. The  
individual interrupt events must be enabled by setting bits in the MII Interrupt Status and Event Control  
Register (MISR).  
Table 10-13. MII Interrupt Control Register (MICR), address 0x11  
Bit  
15:4  
3
Bit Name  
RESERVED  
PTP_INT_SEL  
Default  
Description  
0000 0000 0000, RO RESERVED: Writes ignored, read as 0.  
0, RW  
0, RW  
PTP Interrupt Select:  
Maps PTP Interrupt to the MISR register in place of the Duplex Interrupt. The  
Duplex Interrupt will be combined with the Speed Interrupt.  
1 = Map PTP Interrupt to MISR[11] , Speed/Duplex Interrupt to MISR[12]  
0 = Map Duplex Interrupt to MISR[11], Speed Interrupt to MISR[12]  
2
TINT  
Test Interrupt:  
Forces the PHY to generate an interrupt to facilitate interrupt testing. Interrupts will  
continue to be generated as long as this bit remains set.  
1 = Generate an interrupt.  
0 = Do not generate interrupt.  
1
0
INTEN  
0, RW  
0, RW  
Interrupt Enable:  
Enable interrupt dependent on the event enables in the MISR register.  
1 = Enable event based interrupts.  
0 = Disable event based interrupts.  
Interrupt Output Enable:  
INT_OE  
Enable interrupt events to signal via the PWRDOWN/INTN pin by configuring the  
PWRDOWN/INTN pin as an output.  
1 = PWRDOWN/INTN is an Interrupt Output.  
0 = PWRDOWN/INTN is a Power Down Input.  
88  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.1.12 MII Interrupt Status and Event Control Register (MISR)  
This register contains event status and enables for the interrupt function. If an event has occurred since  
the last read of this register, the corresponding status bit will be set. If the corresponding enable bit in the  
register is set, an interrupt will be generated if the event occurs. The MICR register controls must also be  
set to allow interrupts. The status indications in this register will be set even if the interrupt is not enabled.  
Table 10-14. MII Interrupt Status and Event Control Register (MISR), address 0x12  
Bit  
Bit Name  
Default  
Description  
15  
LQ_INT  
0, RO/COR  
Link Quality Interrupt:  
1 = Link Quality interrupt is pending and is cleared by the current read.  
0 = No Link Quality interrupt pending.  
14  
13  
12  
ED_INT  
0, RO/COR  
0, RO/COR  
0, RO/COR  
Energy Detect Interrupt:  
1 = Energy detect interrupt is pending and is cleared by the current read.  
0 = No energy detect interrupt pending.  
LINK_INT  
Change of Link Status Interrupt:  
1 = Change of link status interrupt is pending and is cleared by the current read.  
0 = No change of link status interrupt pending.  
SPD_INT  
or  
SPD_DUP_INT  
Change of Speed Status Interrupt:  
Change of speed status interrupt. This function is selected if MICR[3] is set to 0.  
1 = Speed status change interrupt is pending and is cleared by the current read.  
0 = No speed status change interrupt pending.  
Change of Speed/Duplex Interrupt:  
Change of speed or duplex status interrupt. This function is selected if MICR[3] is  
set to 1.  
1 = Speed/duplex status change interrupt is pending and is cleared by the current  
read.  
0 = No speed/duplex status change interrupt pending.  
11  
DUP_INT  
or  
PTP_INT  
0, RO/COR  
Change of Duplex Status Interrupt:  
Change of duplex status interrupt. This function is selected if MICR[3] is set to 0.  
1 = Duplex status change interrupt is pending and is cleared by the current read.  
0 = No duplex status change interrupt pending.  
PTP Interrupt:  
PTP interrupt. This function is selected if MICR[3] is set to 1. PTP interrupt status  
should be read from the PTP_STS register. This interrupt will not be rearmed until  
the PTP_STS register indicates no further PTP status is available.  
1 = PTP interrupt is pending and is cleared by the current read.  
0 = No PTP interrupt pending.  
10  
9
ANC_INT  
0, RO/COR  
0, RO/COR  
Auto-Negotiation Complete Interrupt:  
1 = Auto-negotiation complete interrupt is pending and is cleared by the current  
read.  
0 = No Auto-negotiation complete interrupt pending.  
FHF_INT  
or  
False Carrier Counter Half-Full Interrupt:  
False carrier counter half-full interrupt. This function is selected if the PHYCR2[8:7]  
CTR_INT  
are both 0.  
1 = False carrier counter half-full interrupt is pending and is cleared by the current  
read.  
0 = No false carrier counter half-full interrupt pending.  
CTR Interrupt:  
False carrier or Receive Error counter half-full interrupt. This function is selected if  
either of PHYCR2[8:7] are set.  
1 = False carrier or receive error counter half-full interrupt is pending and is cleared  
by the current read.  
0 = No false carrier or receive error counter half-full interrupt pending.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
89  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Table 10-14. MII Interrupt Status and Event Control Register (MISR), address 0x12 (continued)  
Bit  
Bit Name  
Default  
Description  
8
RHF_INT  
or  
PCF_INT  
0, RO/COR  
Receive Error Counter half-full interrupt:  
Receive error counter half-full interrupt. This function is selected if the  
PHYCR2[8:7] are both 0.  
1 = Receive error counter half-full interrupt is pending and is cleared by the current  
read.  
0 = No receive error carrier counter half-full interrupt pending.  
PCF Interrupt:  
PHY Control Frame interrupt. This function is selected if either of PHYCR2[8:7] are  
set.  
1 = PHY Control Frame interrupt is pending and is cleared by the current read.  
0 = No PHY Control Frame interrupt pending.  
Enable Interrupt on Link Quality Monitor event.  
Enable Interrupt on energy detect event.  
7
6
5
4
3
LQ_INT_EN  
ED_INT_EN  
LINK_INT_EN  
SPD_INT_EN  
0, RW  
0, RW  
0, RW  
0, RW  
0, RW  
Enable Interrupt on change of link status.  
Enable Interrupt on change of speed status.  
DUP_INT_EN  
or  
Duplex Interrupt:  
Enable Interrupt on change of duplex status. This function is selected if MICR[3] is  
PTP_INT_EN  
set to 0.  
PTP Interrupt:  
PTP interrupt. This function is selected if MICR[3] is set to 1.  
2
1
ANC_INT_EN  
0, RW  
0, RW  
Enable Interrupt on auto-negotiation complete event.  
FHF_INT_EN  
or  
CTR_INT_EN  
FHF Interrupt:  
Enable Interrupt on False Carrier Counter Register halffull event. This function is  
selected if the PHYCR2[8:7] are both 0.  
CTR Interrupt:  
Enable interrupt on either Receive Error Counter Register half-full event or False  
Carrier Counter Register half-full event. This function is selected if either of  
PCFCR[7:6] are set.  
0
RHF_INT_EN  
or  
PCF_INT_EN  
0, RW  
RHF Interrupt:  
Enable Interrupt on Receive Error Counter Register halffull event. This function is  
selected if the PHYCR2[8:7] are both 0.  
PCF Interrupt:  
Enable Interrupt on a PHY Control Frame event. This function is selected if either  
of PCFCR[7:6] are set.  
10.1.13 Page Select Register (PAGESEL)  
This register is used to enable access to the Link Diagnostics Registers.  
Table 10-15. Page Select Register (PAGESEL), address 0x13  
Bit  
Bit Name  
Default  
Description  
RESERVED: Writes ignored, read as 0  
15:3  
RESERVED  
0000 0000 0000 0,  
RO  
2:0  
PAGE_SEL  
000, RW  
Page_Sel Bits:  
Selects between paged registers for address 14h to 1Fh.  
0 = Extended Registers Page 0  
1 = RESERVED  
2 = Link Diagnostics Registers Page 2  
3 = RESERVED  
4 = PTP 1588 Base Registers Page 4  
5 = PTP 1588 Config Registers Page 5  
6 = PTP 1588 Config Registers Page 6  
90  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.2 EXTENDED REGISTERS - PAGE 0  
10.2.1 False Carrier Sense Counter Register (FCSCR)  
This counter provides information required to implement the “False Carriers” attribute within the MAU  
managed object class of Clause 30 of the IEEE 802.3u specification.  
Table 10-16. False Carrier Sense Counter Register (FCSCR), address 0x14  
Bit  
15:8  
7:0  
Bit Name  
RESERVED  
FCSCNT[7:0]  
Default  
Description  
RESERVED: Writes ignored, read as 0  
0000 0000, RO  
0000 0000, RO/COR False Carrier Event Counter:  
This 8-bit counter increments on every false carrier event. This counter sticks when  
it reaches its maximum count (FFh).  
10.2.2 Receiver Error Counter Register (RECR)  
This counter provides information required to implement the “Symbol Error During Carrier” attribute within  
the PHY managed object class of Clause 30 of the IEEE 802.3u specification.  
Table 10-17. Receiver Error Counter Register (RECR), address 0x15  
Bit  
15:8  
7:0  
Bit Name  
RESERVED  
RXERCNT[7:0]  
Default  
Description  
RESERVED: Writes ignored, read as 0.  
0000 0000, RO  
0000 0000, RO/COR RX_ER Counter:  
When a valid carrier is present and there is at least one occurrence of an invalid  
data symbol, this 8-bit counter increments for each receive error detected. This  
event can increment only once per valid carrier event. If a collision is present, the  
attribute will not increment. The counter sticks when it reaches its maximum count.  
10.2.3 100 Mb/s PCS Configuration and Status Register (PCSR)  
This register contains control and status information for the 100BASE Physical Coding Sublayer.  
Table 10-18. 100 Mb/s PCS Configuration and Status Register (PCSR), address 0x16  
Bit  
Bit Name  
Default  
Description  
15  
AUTO_CROSSOV  
ER  
0, RW  
Auto-Crossover in Forced Mode:  
1 = Auto-Crossover in Forced Mode Enabled  
Allows the device to toggle between MDIX and MDI channels when forced to 10M or  
100M mode. This function is mutually exclusive with the Auto-Negotiation Enable bit,  
BMCR[12], and with the Auto-MDIX Enable bit, PHYCR[15]. These bits should not  
be set when enabling Auto-crossover.  
0 = Normal operation  
14:12  
11  
RESERVED  
FREE_CLK  
000, RW  
0, RW  
RESERVED: Must be 0.  
Receive Clock:  
1 = RX_CLK is free-running.  
0 = RX_CLK phase adjusted based on alignment.  
100 Mb/s True Quiet Mode Enable:  
1 = Transmit True Quiet Mode.  
0 = Normal Transmit Mode.  
Signal Detect Force PMA:  
1 = Forces Signal Detection in PMA.  
0 = Normal SD operation.  
10  
9
TQ_EN  
0, RW  
0, RW  
SD FORCE PMA  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
91  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Table 10-18. 100 Mb/s PCS Configuration and Status Register (PCSR), address 0x16 (continued)  
Bit  
Bit Name  
Default  
Description  
8
SD_OPTION  
1, RW  
Signal Detect Option:  
1 = Default operation. Link will be asserted following detection of valid signal level  
and Descrambler Lock. Link will be maintained as long as signal level is valid. A loss  
of Descrambler Lock will not cause Link Status to drop.  
0 = Modified signal detect algorithm. Link will be asserted following detection of valid  
signal level and Descrambler Lock. Link will be maintained as long as signal level is  
valid and Descrambler remains locked.  
7
6
DESC_TIME  
0, RW  
Descrambler Timeout:  
Increase the descrambler timeout. When set, this allows the device to receive larger  
packets (>9k bytes) without loss of synchronization.  
1 = 2 ms.  
0 = 722 µs (per ANSI X3.263: 1995 (TP-PMD) 7.2.3.3e).  
FX_EN  
Strap, RW  
FX Fiber Mode Enable:  
This bit is set when the FX_EN strap option is selected for the respective port.  
Write PHYCR2[9], SOFT_RESET, after enabling or disabling Fiber Mode via register  
access to ensure correct configuration.  
1 = Enables FX operation.  
0 = Disables FX operation.  
5
FORCE_100_OK  
0, RW  
Force 100 Mb/s Good Link:  
OR’ed with MAC_FORCE_LINK_100 signal.  
1 = Forces 100 Mb/s Good Link.  
0 = Normal 100 Mb/s operation.  
RESERVED: Writes ignored, read as 0.  
Far End Fault Indication Mode Enable:  
This bit is set when the FX_EN strap option is selected for the respective port.  
1 = FEFI Mode Enabled.  
4
3
RESERVED  
FEFI_EN  
0, RO  
Strap, RW  
0 = FEFI Mode Disabled.  
2
1
NRZI_BYPASS  
0, RW  
NRZI Bypass Enable:  
1 = NRZI Bypass Enabled.  
0 = NRZI Bypass Disabled.  
SCRAM  
Strap, RW  
Scrambler Bypass Enable:  
BYPASS  
This bit is set when the FX_EN strap option is selected. In the FX mode, the  
scrambler is bypassed.  
1 = Scrambler Bypass Enabled.  
0 = Scrambler Bypass Disabled.  
Descrambler Bypass Enable:  
0
DESCRAM  
BYPASS  
Strap, RW  
This bit is set when the FX_EN strap option is selected. In the FX mode, the  
descrambler is bypassed.  
1 = Descrambler Bypass Enabled.  
0 = Descrambler Bypass Disabled.  
92  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.2.4 RMII and Bypass Register (RBR)  
This register configures the RMII/MII Interface Mode of operation. This register controls selecting MII,  
RMII, or Single Clock MII mode for Receive or Transmit. In addition, several additional bits are included to  
allow datapath selection for Transmit and Receive in multiport applications.  
Table 10-19. RMII and Bypass Register (RBR), address 0x17  
Bit  
15  
14  
Bit Name  
RESERVED  
RMII_MASTER  
Default  
0, RW  
Description  
RESERVED: Must be 0.  
Strap, RW  
RMII Master Mode:  
Setting this bit allows the core to use a 25 MHz input reference clock and generate  
its own 50 MHz RMII reference clock. The generated RMII reference clock will also  
be used by the attached MAC.  
1 = RMII Master Mode (25 MHz input reference)  
0 = RMII Slave Mode (50 MHz input reference)  
Note: Due to clock muxing and divider operation, this bit should normally only be  
reconfigured via the strap option.  
13  
DIS_TX_OPT  
0, RW  
Disable RMII TX Latency Optimization:  
Normally the RMII Transmitter will minimize the transmit latency by realigning the  
transmit clock with the reference clock phase at the start of a packet transmission.  
Setting this bit will disable phase realignment and ensure that IDLE bits will always  
be sent in multiples of the symbol size. This will result in a larger uncertainty in  
RMII transmit latency.  
12:9  
8
RESERVED  
PMD_LOOP  
0000, RW  
0, RW  
RESERVED: Must be 0.  
PMD Loopback:  
0 = Normal Operation.  
1 = Remote (PMD) Loopback.  
Setting this bit will cause the device to Loopback data received from the Physical  
Layer. The loopback is done prior to the MII or RMII interface. Data received at the  
internal MII or RMII interface will be applied to the transmitter. This mode should  
only be used if RMII mode or Single Clock MII mode is enabled.  
7
6
SCMII_RX  
0, RW  
Single Clock RX MII Mode:  
0 = Standard MII mode.  
1 = Single Clock RX MII Mode.  
Setting this bit will cause the device to generate receive data (RX_DV, RX_ER,  
RXD[3:0]) synchronous to the X1 Reference clock. RX_CLK is not used in this  
mode. This mode uses the RMII elasticity buffer to tolerate variations in clock  
frequencies. This bit cannot be set if RMII_MODE is set to a 1.  
SCMII_TX  
0, RW  
Single Clock TX MII Mode:  
0 = Standard MII mode.  
1 = Single Clock TX MII Mode.  
Setting this bit will cause the device to sample transmit data (TX_EN, TXD[3:0])  
synchronous to the X1 Reference clock. TX_CLK is not used in this mode. This bit  
cannot be set if RMII_MODE is set to a 1.  
5
4
RMII_MODE  
Strap, RW  
0, RW  
Reduced MII Mode:  
0 = Standard MII Mode.  
1 = Reduced MII Mode.  
RMII_REV1_0  
Reduced MII Revision 1.0:  
This bit modifies how CRS_DV is generated.  
0 = (RMII revision 1.2) CRS_DV will toggle at the end of a packet to indicate  
deassertion of CRS.  
1 = (RMII revision 1.0) CRS_DV will remain asserted until final data is transferred.  
CRS_DV will not toggle at the end of a packet.  
3
RX_OVF_STS  
0, RO  
RX FIFO Over Flow Status:  
0 = Normal.  
1 = Overflow detected.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
93  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Table 10-19. RMII and Bypass Register (RBR), address 0x17 (continued)  
Bit  
Bit Name  
Default  
Description  
2
RX_UNF_STS  
0, RO  
RX FIFO Under Flow Status:  
0 = Normal.  
1 = Underflow detected.  
Receive Elasticity Buffer:  
1:0  
ELAST_BUF[1:0]  
01, RW  
This field controls the Receive Elasticity Buffer which allows for frequency variation  
tolerance between the 50 MHz RMII clock and the recovered data. See Reduced  
MII Interface for more information on Elasticity Buffer settings in RMII mode. See  
Section Single Clock MII Mode for more information on Elasticity Buffer settings in  
SCMII mode.  
10.2.5 LED Direct Control Register (LEDCR)  
This register provides the ability to directly control any or all LED outputs. It does not provide read access  
to LEDs. In addition, it provides control for the Activity source and blinking LED frequency.  
Table 10-20. LED Direct Control Register (LEDCR), address 0x18  
Bit  
15:12  
11  
Bit Name  
RESERVED  
DIS_SPDLED  
Default  
0000, RO  
0, RW  
Description  
RESERVED: Writes ignored, read as 0.  
1 = Disable LED_SPEED output  
0 = Enable LED_SPEED output  
10  
9
DIS_LNKLED  
DIS_ACTLED  
LEDACT_RX  
0, RW  
0, RW  
0, RW  
1 = Disable LED_LINK output  
0 = Enable LED_LINK output  
1 = Disable LED_ACT output  
0 = Enable LED_ACT output  
8
1 = Activity is only indicated for Receive traffic  
0 = Activity is indicated for Transmit or Receive traffic  
LED Blink Frequency:  
7:6  
BLINK_FREQ  
00, RW  
These bits control the blink frequency of the LED_LINK output when blinking on  
activity is enabled.  
0 = 6 Hz  
1 = 12 Hz  
2 = 24 Hz  
3 = 48 Hz  
5
4
3
DRV_SPDLED  
DRV_LNKLED  
DRV_ACTLED  
0, RW  
0, RW  
0, RW  
1 = Drive value of SPDLED bit onto LED_SPEED output  
0 = Normal operation  
1 = Drive value of LNKLED bit onto LED_LINK output  
0 = Normal operation  
1 = Drive value of ACTLED bit onto LED_ACT output  
0 = Normal operation  
2
1
0
SPDLED  
LNKLED  
ACTLED  
0, RW  
0, RW  
0, RW  
Value to force on LED_SPEED output  
Value to force on LED_LINK output  
Value to force on LED_ACT output  
94  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.2.6 PHY Control Register (PHYCR)  
This register provides control for PHY functions such as MDIX, BIST, LED configuration, and PHY  
address. It also provides Pause Negotiation status.  
Table 10-21. PHY Control Register (PHYCR), address 0x19  
Bit  
Bit Name  
Default  
Description  
15  
MDIX_EN  
1, RW  
Auto-MDIX Enable:  
1 = Enable Auto-neg Auto-MDIX capability.  
0 = Disable Auto-neg Auto-MDIX capability.  
Force MDIX:  
14  
13  
FORCE_MDIX  
PAUSE_RX  
0, RW  
0, RO  
1 = Force MDI pairs to cross.  
(Receive on TD pair, Transmit on RD pair)  
0 = Normal operation.  
Pause Receive Negotiated:  
Indicates that pause receive should be enabled in the MAC. Based on ANAR[11:10]  
and ANLPAR[11:10] settings.  
This function shall be enabled according to IEEE 802.3 Annex 28B Table 28B-3,  
“Pause Resolution”, only if the Auto-Negotiated Highest Common Denominator is a  
full duplex technology.  
12  
11  
PAUSE_TX  
BIST_FE  
0, RO  
Pause Transmit Negotiated:  
Indicates that pause transmit should be enabled in the MAC. Based on ANAR[11:10]  
and ANLPAR[11:10] settings.  
This function shall be enabled according to IEEE 802.3 Annex 28B Table 28B-3,  
Pause Resolution, only if the Auto-Negotiated Highest Common Denominator is a  
full duplex technology.  
0, RW/SC  
BIST Force Error:  
1 = Force BIST Error.  
0 = Normal operation.  
This bit forces a single error, and is self clearing.  
10  
9
PSR_15  
0, RW  
BIST Sequence select:  
1 = PSR15 selected.  
0 = PSR9 selected.  
BIST_STATUS  
0, LL/RO  
BIST Test Status:  
1 = BIST pass.  
0 = BIST fail. Latched, cleared when a BIST failure occurs or BIST is stopped.  
For a count number of BIST errors, see the BIST Error Count in the CDCTRL1  
Register.  
8
BIST_START  
0, RW  
BIST Start:  
Writes:  
1 = BIST start. Writing 1 to this bit enables transmission of BIST packets and  
enables the receive BIST engine to start looking for packet traffic.  
0 = BIST stop. Stop the BIST. Writing 0 to this bit also clears the BIST_STATUS bit.  
Reads:  
1 = BIST active. This bit reads 1 after the transmit BIST engine has been enabled  
and the receive BIST engine has detected packet traffic.  
0 = BIST inactive. This bit will read 0 if the BIST is disabled or if the BIST is enabled  
but no receive traffic has been detected.  
7
BP_STRETCH  
0, RW  
Bypass LED Stretching:  
This will bypass the LED stretching and the LEDs will reflect the internal value.  
1 = Bypass LED stretching.  
0 = Normal operation.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
95  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Table 10-21. PHY Control Register (PHYCR), address 0x19 (continued)  
Bit  
Bit Name  
Default  
Description  
6
5
LED_CNFG[1]  
LED_CNFG[0]  
0, RW  
Strap, RW  
LED Configuration  
LED_CNFG[1]  
LED_CNFG[0]  
Mode Description  
Don't care  
1
0
0
Mode 1  
Mode 2  
Mode 3  
0
1
In Mode 1, LEDs are configured as follows:  
LED_LINK = ON for Good Link, OFF for No Link  
LED_SPEED = ON in 100 Mb/s, OFF in 10 Mb/s  
LED_ACT = ON for Activity, OFF for No Activity  
In Mode 2, LEDs are configured as follows:  
LED_LINK = ON for Good Link, BLINK for Activity  
LED_SPEED = ON in 100 Mb/s, OFF in 10 Mb/s  
LED_ACT = ON for Collision, OFF for No Collision  
In Mode 3, LEDs are configured as follows:  
LED_LINK = ON for Good Link, BLINK for Activity  
LED_SPEED = ON in 100 Mb/s, OFF in 10 Mb/s  
LED_ACT = ON for Full Duplex, OFF for Half Duplex  
4:0  
PHYADDR[4:0]  
Strap, RW  
PHY Address: PHY address for port.  
Note: The local PHY address cannot be changed via a broadcast write - writing to  
PHY address 0x1F register 0x19 will not change the PHYADDR bits.  
96  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.2.7 10Base-T Status/Control Register (10BTSCR)  
This register is used for control and status for 10BASE-T device operation.  
Table 10-22. 10Base-T Status/Control Register (10BTSCR), address 0x1A  
Bit  
15  
Bit Name  
RESERVED  
RESERVED  
Default  
0, RO  
Description  
RESERVED: Writes ignored, read as 0.  
14:12  
000, RW  
RESERVED: Must be zero.  
Squelch Configuration:  
11:9  
8
SQUELCH  
100, RW  
0, RW  
Used to set the Squelch 'ON' threshold for the receiver.  
Default Squelch 'ON' is 330mV peak.  
10Base-T Loopback Disable:  
This bit is OR’ed with bit 14 (Loopback) in the BMCR.  
LOOPBACK_10_DIS  
1 = 10BT Loopback is disabled  
0 = 10BT Loopback is enabled  
Normal Link Pulse Disable:  
This bit is OR’ed with the MAC_FORCE_LINK_10 signal.  
7
LP_DIS  
0, RW  
1 = Transmission of NLPs is disabled.  
0 = Transmission of NLPs is enabled.  
Force 10 Mb Good Link:  
This bit is OR’ed with the MAC_FORCE_LINK_10 signal.  
6
5
FORCE_LINK_10  
FORCE_POL COR  
0, RW  
0, RW  
1 = Forced Good 10 Mb Link.  
0 = Normal Link Status.  
Force 10 Mb Polarity Correction:  
1 = Force inverted polarity  
0 = Normal polarity  
10 Mb Polarity Status:  
This bit is a duplication of bit 12 in the PHYSTS register. Both bits will be cleared  
upon a read of either register.  
4
POLARITY  
0, RO/LH  
1 = Inverted Polarity detected.  
0 = Correct Polarity detected.  
Auto Polarity Detection & Correction Disable:  
1 = Polarity Correction disabled  
0 = Polarity Correction enabled  
3
2
AUTOPOL_DIS  
0, RW  
1, RW  
10BT Scale Configuration Most Significant Bit  
Used in conjunction with bit 10 of SD_CNFG register to set the silence ’OFF’  
threshold for the receiver.  
10BT_SCALE - MSB  
Heartbeat Disable:  
This bit only has influence in half-duplex 10 Mb mode.  
1 = Heartbeat function disabled.  
0 = Heartbeat function enabled.  
1
0
HEARTBEAT_DIS  
JABBER_DIS  
0, RW  
0, RW  
When the device is operating at 100 Mb or configured for full duplex  
operation, this bit will be ignored - the heartbeat function is disabled.  
Jabber Disable:  
This bit is only applicable in 10BASE-T.  
1 = Jabber function disabled.  
0 = Jabber function enabled.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
Submit Documentation Feedback  
97  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.2.8 CD Test and BIST Extensions Register (CDCTRL1)  
This register controls test modes for the 10BASE-T Common Driver. In addition it contains extended  
control and status for the packet BIST function.  
Table 10-23. CD Test and BIST Extensions Register (CDCTRL1), address 0x1B  
Bit  
Bit Name  
Default  
Description  
15:8  
BIST_ERROR_COUNT  
0000 0000, RO  
BIST ERROR Counter:  
Counts number of errored data nibbles during Packet BIST. This value  
will reset when Packet BIST is restarted. The counter sticks when it  
reaches its maximum count of FFh.  
7
6
RESERVED  
0, RW  
0, RW  
RESERVED: Must be 0.  
MII_CLOCK_EN  
Enables MII Clocks TX_CLK and RX_CLK independent of MAC interface  
mode selected; for example, normally TX_CLK and RX_CLK are  
disabled in RMII Slave mode.  
1 = Enable TX_CLK and RX_CLK  
0 = Default operation  
5
BIST_CONT  
0, RW  
Packet BIST Continuous Mode:  
Allows continuous pseudorandom data transmission without any break in  
transmission. This can be used for transmit VOD testing. This is used in  
conjunction with the BIST controls in the PHYCR Register (19h). For 10  
Mb operation, jabber function must be disabled, bit 0 of the 10BTSCR  
(1Ah), JABBER_DIS = 1.  
4
3
CDPATTEN_10  
MDIO_PULL_EN  
0, RW  
0, RW  
CD Pattern Enable for 10 Mb:  
1 = Enabled.  
0 = Disabled.  
Enable Internal MDIO Pullup:  
1 = Internal MDIO pullup enabled  
0 = Internal MDIO pullup disabled  
This bit is only reset on hard reset. This bit should not be set in systems  
that share the management interfaces among several ASICs.  
2
PATT_GAP_10M  
CDPATTSEL[1:0]  
0, RW  
Defines gap between data or NLP test sequences:  
1 = 15 µs.  
0 = 10 µs.  
1:0  
00, RW  
CD Pattern Select[1:0]:  
If CDPATTEN_10 = 1:  
00 = Data, EOP0 sequence.  
01 = Data, EOP1 sequence.  
10 = NLPs.  
11 = Constant Manchester 1s (10 MHz sine wave) for harmonic distortion  
testing.  
98  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.2.9 PHY Control Register 2 (PHYCR2)  
This register provides additional general control.  
Table 10-24. PHY Control Register 2 (PHYCR2), address 0x1C  
Bit  
15:14  
13  
Bit Name  
RESERVED  
Default  
00, RO  
0, RW  
Description  
RESERVED: Writes ignored, read as 0.  
SYNC_ENET EN  
Synchronous Ethernet Enable:  
When this bit is 1 and the device is in 100 Mb/s mode, and the MAC  
interface is either MII or RMII Master, enables fully synchronous  
communication relative to the recovered receive clock. The transmitter is  
synchronized to the receiver.  
When this bit is 0 or the device settings do not match the above  
conditions, the transmitter is synchronous to the local reference clock.  
12  
CLK_OUT RXCLK  
0, RW  
Enable RX_CLK on CLK_OUT:  
When this bit is 1 and the device is in 100 Mb/s mode, the 25 MHz  
recovered receive clock (RX_CLK) is driven on CLK_OUT in addition to  
RX_CLK. When this bit is 0 or the device is in 10 Mb/s mode, CLK_OUT  
reflects the Reference clock.  
11  
10  
BC_WRITE  
0, RW  
0, RW  
Broadcast Write Enable:  
1 = Enables the Serial Management Interface to accept register writes to  
PHY Address of 0x1F independent of the local PHY Address value.  
0 = Normal operation  
PHYTER_COMP  
Phyter Compatibility Mode:  
1 = Enables Phyter (DP83848) Compatible pinout. Reorders the RX MII  
pins and Autonegotiation straps to match the DP83848. Also enables the  
CLK_OUT output.  
0 = Normal operation  
9
SOFT_RESET  
0, RW/SC  
Soft Reset:  
Resets the entire device minus the registers - all configuration is  
preserved.  
1 = Reset, self-clearing.  
8:2  
1
RESERVED  
0 0000 00, RO  
Strap, RW  
RESERVED: Writes ignored, read as 0.  
CLK_OUT_DIS  
Disable CLK_OUT Output:  
Disables the CLK_OUT output pin.  
0
RESERVED  
0, RW  
RESERVED: Must be zero.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
99  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.2.10 Energy Detect Control (EDCR)  
This register provides control and status for the Energy Detect function.  
Table 10-25. Energy Detect Control (EDCR), address 0x1D  
Bit  
Bit Name  
Default  
Description  
15  
ED_EN  
0, RW  
Energy Detect Enable:  
Allow Energy Detect Mode.  
14  
13  
12  
ED_AUTO_UP  
ED_AUTO_DOWN  
ED_MAN  
1, RW  
1, RW  
Energy Detect Automatic Power Up:  
Automatically begin power up sequence when Energy Detect Data  
Threshold value (EDCR[3:0]) is reached. Alternatively, the device could  
be powered up manually using the ED_MAN bit (ECDR[12]).  
Energy Detect Automatic Power Down:  
Automatically begin power down sequence when no energy is detected.  
Alternatively, the device could be powered down using the ED_MAN bit  
(EDCR[12]).  
0, RW/SC  
Energy Detect Manual Power Up/Down:  
Begin power up/down sequence when this bit is asserted. When set, the  
Energy Detect algorithm will initiate a change of Energy Detect state  
regardless of threshold (error or data) and timer values. In managed  
applications, this bit can be set after clearing the Energy Detect interrupt  
to control the timing of changing the power state.  
11  
10  
ED_BURST_DIS  
ED_PWR_STATE  
0, RW  
0, RO  
Energy Detect Burst Disable:  
Disable bursting of energy detect data pulses. By default, Energy Detect  
(ED) transmits a burst of 4 ED data pulses each time the CD is powered  
up. When bursting is disabled, only a single ED data pulse will be sent  
each time the CD is powered up.  
Energy Detect Power State:  
Indicates current Energy Detect Power state. When set, Energy Detect is  
in the powered up state. When cleared, Energy Detect is in the powered  
down state. This bit is invalid when Energy Detect is not enabled.  
9
8
ED_ERR_MET  
ED_DATA_MET  
ED_ERR_COUNT  
0, RO/COR  
0, RO/COR  
0001, RW  
Energy Detect Error Threshold Met:  
No action is automatically taken upon receipt of error events. This bit is  
informational only and would be cleared on a read.  
Energy Detect Data Threshold Met:  
The number of data events that occurred met or surpassed the Energy  
Detect Data Threshold. This bit is cleared on a read.  
7:4  
Energy Detect Error Threshold:  
Threshold to determine the number of energy detect error events that  
should cause the device to take action. Intended to allow averaging of  
noise that may be on the line. Counter will reset after approximately 2  
seconds without any energy detect data events.  
3:0  
ED_DATA_COUNT  
0001, RW  
Energy Detect Data Threshold:  
Threshold to determine the number of energy detect events that should  
cause the device to take actions. Intended to allow averaging of noise  
that may be on the line. Counter will reset after approximately 2 seconds  
without any energy detect data events.  
100  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.2.11 PHY Control Frames Configuration Register (PCFCR)  
This register provides configuration for the PHY Control Frame mechanism for register access.  
Table 10-26. PHY Control Frames Configuration Register (PCFCR), address 0x1F  
Bit  
Bit Name  
Default  
Description  
PHY Control Frame Error Detected:  
15  
PCF_STS_ERR  
0, RO/COR  
Indicates an error was detected in a PCF Frame since the last read of  
this register. This bit will be cleared on read.  
14  
PCF_STS_OK  
0, RO/COR  
PHY Control Frame OK:  
Indicates a PCF Frame has completed without error since the last read  
of this register. This bit will be cleared on read.  
13:9  
8
RESERVED  
00 000, RO  
0, RW  
Reserved: Writes ignored, read as 0  
PCF_DA_SEL  
Select MAC Destination Address for PHY Control Frames:  
0 : Use MAC Address [08 00 17 0B 6B 0F]  
1 : Use MAC Address [08 00 17 00 00 00]  
The device will also recognize packets with the above address with the  
Multicast bit set (i.e. 09 00 17 ...).  
7:6  
PCF_INT_CTL  
00, RW  
PHY Control Frame Interrupt Control:  
Setting either of these bits enables control and status of the PCF  
Interrupt through the MISR Register (taking the place of the RHF  
Interrupt).  
00 = PCF Interrupts Disabled  
x1 = Interrupt on PCF Frame OK  
1x = Interrupt on PCF Frame Error  
5
4:1  
0
PCF_BC_DIS  
PCF_BUF  
PCF_EN  
0, RW  
PHY Control Frame Broadcast Disable:  
By default, the device will accept broadcast PHY Control Frames which  
have a PHY Address field of 0x1F. If this bit is set to a 1, the PHY  
Control Frame must have a PHY Address field that exactly matches the  
device PHY Address.  
0 000, RW  
Strap, RW  
PHY Control Frame Buffer Size:  
Determines the buffer size for transmit to allow PHY Control Frame  
detection. All packets will be delayed as they pass through this buffer. If  
set to 0, packets will not be delayed and PHY Control frames will be  
truncated after the Destination Address field.  
PHY Control Frame Enable:  
Enables Register writes using PHY Control Frames.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
101  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.3 TEST REGISTERS - PAGE 1  
Page 1 Test Registers are accessible by setting bits [2:0] = 001 of PAGESEL (13h).  
10.3.1 Signal Detect Configuration (SD_CNFG), Page 1  
This register contains Signal Detect configuration control as well as some test controls to speed up Auto-  
neg testing.  
Table 10-27. Signal Detect Configuration (SD_CNFG), address 0x1E  
Bit  
15  
Bit Name  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Default  
1, RW  
Description  
RESERVED: Write as 1, read as 1.  
14:12  
11  
000, RW  
0, RO  
RESERVED: Write as 0, read as 0.  
RESERVED: Write ignored, read as 0.  
RESERVED: Write as 0, read as 0.  
10:9  
00, RW  
Signal Detect Time  
Setting this bit to a 1 enables a fast detection of loss of Signal  
Detect. This will result in a fast loss of Link indication. Approximate  
times to detect signal detect deassertion are:  
1 = 1 µs  
8
SD_TIME  
0, RW  
0 = 250 µs  
7:0  
RESERVED  
0000 0000, RW RESERVED: Write as 0, read as 0.  
102  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.4 LINK DIAGNOSTICS REGISTERS - PAGE 2  
Page 2 Link Diagnostics Registers are accessible by setting bits [2:0] = 010 of PAGESEL (13h).  
10.4.1 100 Mb Length Detect Register (LEN100_DET), Page 2  
This register contains linked cable length estimation in 100 Mb operation. The cable length is an  
estimation of the effective cable length based on the characteristics of the recovered signal. The cable  
length is valid only during 100 Mb operation with a valid Link status indication.  
Table 10-28. 100 Mb Length Detect Register (LEN100_DET), address 0x14  
Bit  
15:8  
7:0  
Bit Name  
RESERVED  
CABLE_LEN  
Default  
Description  
RESERVED: Writes ignored, read as 0.  
Cable Length Estimate:  
0000 0000, RO  
1111 1111, RO  
Indicates an estimate of effective cable length in meters. A value of FFh  
indicates cable length cannot be determined.  
10.4.2 100 Mb Frequency Offset Indication Register (FREQ100), Page 2  
This register returns an indication of clock frequency offset relative to the link partner. Two values can be  
read, the long term Frequency Offset, or a short term Frequency Control value. The Frequency Control  
value includes short term phase correction. The variance between the Frequency Control value and the  
Frequency Offset can be used as an indication of the amount of jitter in the system.  
Table 10-29. 100 Mb Frequency Offset Indication Register (FREQ100), address 0x15  
Bit  
Bit Name  
Default  
Description  
15  
SAMPLE_FREQ  
0, WO  
Sample Frequency Offset:  
If SEL_FC is set to a 0, then setting this bit to a 1 will poll the DSP for  
the long-term Frequency Offset value. The value will be available in  
the FREQ_OFFSET bits of this register.  
If SEL_FC is set to a 1, then setting this bit to a 1 will poll the DSP for  
the current Frequency Control value. The value will be available in the  
FREQ_OFFSET bits of this register.  
This register bit will always read back as 0.  
RESERVED: Writes ignored, read as 0.  
Select Frequency Control:  
14:9  
8
RESERVED  
SEL_FC  
000 000, RO  
0, RW  
Setting this bit to a 1 will select the current Frequency Control value  
instead of the Frequency Offset. This value contains Frequency Offset  
plus the short term phase correction and can be used to indicate  
amount of jitter in the system. The value will be available in the  
FREQ_OFFSET bits of this register.  
7:0  
FREQ_OFFSET  
0000 0000, RO  
Frequency Offset:  
Frequency offset value loaded from the DSP following assertion of the  
SAMPLE_FREQ control bit. The Frequency Offset or Frequency  
Control value is a twos-complement signed value in units of  
approximately 5.1562 ppm. The range is as follows:  
0x7F = +655 ppm  
0x00 = 0 ppm  
0x80 = -660 ppm  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
103  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.4.3 TDR Control Register (TDR_CTRL), Page 2  
This register contains control for the Time Domain Reflectometry (TDR) cable diagnostics. The TDR cable  
diagnostics sends pulses down the cable and captures reflection data to be used to estimate cable length  
and detect certain cabling faults.  
Table 10-30. TDR Control Register (TDR_CTRL), address 0x16  
Bit  
Bit Name  
Default  
Description  
15  
TDR_ENABLE  
0, RW  
TDR Enable:  
Enable TDR mode. This forces the powerup state to the correct operating  
condition for sending and receiving TDR pulses.  
14  
TDR_100Mb  
0, RW  
TDR 100Mb:  
Sets the TDR controller to use the 100 Mb Transmitter. This allows for  
sending pulse widths in multiples of 8ns. Pulses in 100 Mb mode will  
alternate between positive pulses and negative pulses.  
Default operation uses the 10 Mb Link Pulse generator. Pulses may  
include just the 50 ns pre-emphasis portion of the pulse or the 100 ns full  
link pulse (as controlled by setting TDR Width).  
13  
12  
TX_CHANNEL  
RX_CHANNEL  
0, RW  
0, RW  
Transmit Channel Select:  
Select transmit channel for sending pulses. The pulse can be sent on the  
Transmit or Receive pair.  
0 : Transmit channel  
1 : Receive channel  
Receive Channel Select:  
Select receive channel for detecting pulses. The pulse can be monitored  
on the Transmit or Receive pair.  
0 : Transmit channel  
1 : Receive channel  
Send TDR Pulse:  
11  
SEND_TDR  
TDR_WIDTH  
0, RW/SC  
000, RW  
Setting this bit will send a TDR pulse and enable the monitor circuit to  
capture the response. This bit will automatically clear when the capture is  
complete.  
10:8  
TDR Pulse Width:  
Pulse width in clocks for the transmitted pulse. In 100 Mb mode, pulses  
are in 8 ns increments. In 10 Mb mode, pulses are in 50 ns increments,  
but only 50 ns or 100 ns pulses can be sent. Sending a pulse of 0 width  
will not transmit a pulse, but allows for baseline testing.  
7
TDR_MIN_MODE  
0, RW  
Min/Max Mode control:  
This bit controls direction of the pulse to be detected. Default looks for a  
positive peak. Threshold and peak values will be interpreted appropriately  
based on this bit.  
0 : Max Mode, detect positive peak  
1 : Min Mode, detect negative peak  
RESERVED: Must be zero.  
RX Threshold:  
6
RESERVED  
0, RW  
5:0  
RX_THRESHOLD  
10 0000, RW  
This value provides a threshold for measurement to the start of a peak. If  
Min Mode is set to 0, data must be greater than this value to trigger a  
capture. If Min Mode is 1, data must be less than this value to trigger a  
capture. Data ranges from 0x00 to 0x3F, with 0x20 as the midpoint.  
Positive data is greater than 0x20, negative data is less than 0x20.  
104  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.4.4 TDR Window Register (TDR_WIN), Page 2  
This register contains sample window control for the Time Domain Reflectometry (TDR) cable diagnostics.  
The two values contained in this register specify the beginning and end times for the window to monitor  
the response to the transmitted pulse. Time values are in 8 ns increments. This provides a method to  
search for multiple responses and also to screen out the initial outgoing pulse.  
Table 10-31. TDR Window Register (TDR_WIN), address 0x17  
Bit  
Bit Name  
Default  
Description  
15:8  
TDR_START  
0000 0000, RW  
TDR Start Window:  
Specifies start time for monitoring TDR response.  
7:0  
TDR_STOP  
0000 0000, RW  
TDR Stop Window:  
Specifies stop time for monitoring TDR response. The Stop Window  
should be set to a value greater than or equal to the Start Window.  
10.4.5 TDR Peak Register (TDR_PEAK), Page 2  
This register contains the results of the TDR Peak Detection. Results are valid if the TDR_CTRL[11] is  
clear following sending the TDR pulse.  
Table 10-32. TDR Peak Register (TDR_PEAK), address 0x18  
Bit  
Bit Name  
RESERVED  
TDR_PEAK  
Default  
00, RO  
Description  
RESERVED: Writes ignored, read as 0.  
15:14  
13:8  
00 0000, RO  
TDR Peak Value:  
This register contains the peak value measured during the TDR sample  
window. If Min Mode control (TDR_CTRL[7]) is 0, this contains the  
maximum detected value. If Min Mode control is 1, this contains the  
minimum detected value.  
7:0  
TDR_PEAK_TIME  
0000 0000, RO  
TDR Peak Time:  
Specifies the time for the first occurrence of the peak value.  
10.4.6 TDR Threshold Register (TDR_THR), Page 2  
This register contains the results of the TDR Threshold Detection. Results are valid if the TDR_CTRL[11]  
is clear following sending the TDR pulse.  
Table 10-33. TDR Threshold Register (TDR_THR), address 0x19  
Bit  
15:9  
8
Bit Name  
RESERVED  
Default  
0000 000, RO  
0, RO  
Description  
RESERVED: Writes ignored, read as 0.  
TDR_THR_MET  
TDR Threshold Met:  
This bit indicates the TDR threshold was met during the sample window. A  
value of 0 indicates the threshold was not met.  
7:0  
TDR_THR_TIME  
0000 0000, RO  
TDR Threshold Time:  
Specifies the time for the first data that met the TDR threshold. This field is  
only valid if the threshold was met.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
105  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.4.7 Variance Control Register (VAR_CTRL), Page 2  
The Variance Control and Data Registers provide control and status for the Cable Signal Quality  
Estimation function. The Cable Signal Quality Estimation allows a simple method of determining an  
approximate Signal-to-Noise Ratio for the 100 Mb receiver. This register contains the programmable  
controls and status bits for the variance computation, which can be used to make a simple Signal-to-Noise  
Ratio estimation.  
Table 10-34. Variance Control Register (VAR_CTRL), address 0x1A  
Bit  
Bit Name  
Default  
Description  
15  
VAR_RDY  
0, RO  
Variance Data Ready Status:  
Indicates new data is available in the Variance data register. This bit will be  
automatically cleared after two consecutive reads of VAR_DATA.  
14:4  
3
RESERVED  
000 0000 0000, RO RESERVED: Writes ignored, read as 0.  
VAR_FREEZE  
0, RW  
Freeze Variance Registers:  
Freeze VAR_DATA register.  
This bit is ensures that VAR_DATA register is frozen for software reads. This bit is  
automatically cleared after two consecutive reads of VAR_DATA.  
2:1  
VAR_TIMER  
00, RW  
Variance Computation Timer (in ms):  
Selects the Variance computation timer period. After a new value is written,  
computation is automatically restarted. New variance register values are loaded  
after the timer elapses.  
Var_Timer = 0 => 2 ms timer (default)  
Var_Timer = 1 => 4 ms timer  
Var_Timer = 2 => 6 ms timer  
Var_Timer = 3 => 8 ms timer  
Time units are actually 217 cycles of an 8 ns clock, or 1.048576 ms.  
0
VAR_ENABLE  
0, RW  
Variance Enable:  
Enable Variance computation. Off by default.  
10.4.8 Variance Data Register (VAR_DATA), Page 2  
This register contains the 32-bit Variance Sum. The contents of the data are valid only when VAR_RDY is  
asserted in the VAR_CTRL register. Upon detection of VAR_RDY asserted, software should set the  
VAR_FREEZE bit in the VAR_CTRL register to prevent loading of a new value into the VAR_DATA  
register. Since the Variance Data value is 32-bits, two reads of this register are required to get the full  
value.  
Table 10-35. Variance Data Register (VAR_DATA), address 0x1B  
Bit  
Bit Name  
Default  
Description  
15:0  
VAR_DATA  
0000 0000 0000  
0000, RO  
Variance Data:  
Two reads are required to return the full 32-bit Variance Sum value. Following  
setting the VAR_FREEZE control, the first read of this register will return the low 16  
bits of the Variance data. A second read will return the high 16 bits of Variance data.  
106  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.4.9 Link Quality Monitor Register (LQMR), Page 2  
This register contains the controls for the Link Quality Monitor function. The Link Quality Monitor provides  
a mechanism for programming a set of thresholds for DSP parameters. If the thresholds are violated, an  
interrupt will be asserted if enabled in the MISR. Monitor control and status are available in this register,  
while the LQDR register controls read/write access to threshold values and current parameter values.  
Reading the LQMR register clears warning bits and re-arms the interrupt generation. In addition, this  
register provides a mechanims for allowing automatic reset of the 100 Mb link based on the Link Quality  
Monitor status.  
Table 10-36. Link Quality Monitor Register (LQMR), address 0x1D  
Bit  
Bit Name  
Default  
Description  
15  
LQM_ENABLE  
0, RW  
Link Quality Monitor Enable:  
Enables the Link Quality Monitor. The enable is qualified by having a valid 100 Mb  
link. In addition, the individual thresholds can be disabled by setting to the  
maximum or minimum values.  
14  
13  
12  
11  
10  
RESTART_ON_FC  
0, RW  
0, RW  
0, RW  
0, RW  
0, RW  
Restart on Frequency Control Warning:  
Allow automatic reset of DSP and restart of 100 Mb Adaption on detecting a  
Frequency Threshold violation. If the SD_Option bit, PCSR[8], is set to 0, the  
threshold violation will also result in a drop in Link status.  
RESTART_ON  
_FREQ  
Restart on Frequency Offset Warning:  
Allow automatic reset of DSP and restart of 100 Mb Adaption on detecting a  
Frequency Offset Threshold violation. If the SD_Option bit, PCSR[8], is set to 0, the  
threshold violation will also result in a drop in Link status.  
RESTART_ON  
_DBLW  
Restart on DBLW Warning:  
Allow automatic reset of DSP and restart of 100 Mb Adaption on detecting a DBLW  
Threshold violation. If the SD_Option bit, PCSR[8], is set to 0, the threshold  
violation will also result in a drop in Link status.  
RESTART_ON  
_DAGC  
Restart on DAGC Warning:  
Allow automatic reset of DSP and restart of 100 Mb Adaption on detecting a DAGC  
Threshold violation. If the SD_Option bit, PCSR[8], is set to 0, the threshold  
violation will also result in a drop in Link status.  
RESTART_ON_C1  
Restart on C1 Warning:  
Allow automatic reset of DSP and restart of 100 Mb Adaption on detecting a C1  
Threshold violation. If the SD_Option bit, PCSR[8], is set to 0, the threshold  
violation will also result in a drop in Link status.  
9
8
7
6
5
4
3
FC_HI_WARN  
FC_LO_WARN  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
Frequency Control High Warning:  
This bit indicates the Frequency Control High Threshold was exceeded. This  
register bit will be cleared on read.  
Frequency Control Low Warning:  
This bit indicates the Frequency Control Low Threshold was exceeded. This  
register bit will be cleared on read.  
FREQ_HI_WARN  
FREQ_LO_WARN  
DBLW_HI_WARN  
DBLW_LO_WARN  
DAGC_HI_WARN  
Frequency Offset High Warning:  
This bit indicates the Frequency Offset High Threshold was exceeded. This register  
bit will be cleared on read.  
Frequency Offset Low Warning:  
This bit indicates the Frequency Offset Low Threshold was exceeded. This register  
bit will be cleared on read.  
DBLW High Warning:  
This bit indicates the DBLW High Threshold was exceeded. This register bit will be  
cleared on read.  
DBLW Low Warning:  
This bit indicates the DBLW Low Threshold was exceeded. This register bit will be  
cleared on read.  
DAGC High Warning:  
This bit indicates the DAGC High Threshold was exceeded. This register bit will be  
cleared on read.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
107  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Table 10-36. Link Quality Monitor Register (LQMR), address 0x1D (continued)  
Bit  
Bit Name  
Default  
Description  
2
DAGC_LO_WARN  
0, RO/COR  
DAGC Low Warning:  
This bit indicates the DAGC Low Threshold was exceeded. This register bit will be  
cleared on read.  
1
0
C1_HI_WARN  
C1_LO_WARN  
0, RO/COR  
0, RO/COR  
C1 High Warning:  
This bit indicates the DEQ C1 High Threshold was exceeded. This register bit will  
be cleared on read.  
C1 Low Warning:  
This bit indicates the DEQ C1 Low Threshold was exceeded. This register bit will  
be cleared on read.  
10.4.10 Link Quality Data Register (LQDR), Page 2  
This register provides read/write control of thresholds for the 100 Mb Link Quality Monitor function. The  
register also provides a mechanism for reading current adapted parameter values. Threshold values may  
not be written if the device is powered-down.  
Table 10-37. Link Quality Data Register (LQDR), address 0x1E  
Bit  
15:14  
13  
Bit Name  
RESERVED  
Default  
00, RO  
0, RW  
Description  
RESERVED: Writes ignored, read as 0.  
SAMPLE_PARAM  
Sample DSP Parameter:  
Setting this bit to a 1 enables reading of current parameter values and initiates  
sampling of the parameter value. The parameter to be read is selected by the  
LQ_PARAM_SEL bits.  
12  
WRITE_LQ_THR  
LQ_PARAM_SEL  
0, RW  
Write Link Quality Threshold:  
Setting this bit will cause a write to the Threshold register selected by  
LQ_PARAM_SEL and LQ_THR_SEL. The data written is contained in  
LQ_THR_DATA. This bit will always read back as 0.  
11:9  
000, RW  
Link Quality Parameter Select:  
This 3-bit field selects the Link Quality Parameter. This field is used for sampling  
current parameter values as well as for reads/writes to Threshold values. The  
following encodings are available:  
000: DEQ_C1  
001: DAGC  
010: DBLW  
011: Frequency Offset  
100: Frequency Control  
101: Variance most significant bits 31:16  
108  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Table 10-37. Link Quality Data Register (LQDR), address 0x1E (continued)  
Bit  
Bit Name  
Default  
Description  
8
LQ_THR_SEL  
0, RW  
Link Quality Threshold Select:  
This bit selects the Link Quality Threshold to be read or written. A 0 selects the  
Low threshold, while a 1 selects the high threshold. When combined with the  
LQ_PARAM_SEL field, the following encodings are available {LQ_PARAM_SEL,  
LQ_THR_SEL}:  
000,0: DEQ_C1 Low  
000,1: DEQ_C1 High  
001,0: DAGC Low  
001,1: DAGC High  
010,0: DBLW Low  
010,1: DBLW High  
011,0: Frequency Offset Low  
011,1: Frequency Offset High  
100,0: Frequency Control Low  
100,1: Frequency Control High  
101,0: Variance High bits 7:0 (Variance bits 23:16)  
101,1: Variance High bits 15:8 (Variance bits 31:24)  
Link Quality Threshold Data:  
The operation of this field is dependent on the value of the SAMPLE_PARAM bit.  
If SAMPLE_PARAM = 0:  
7:0  
LQ_THR_DATA  
1000 0000, RW  
On a write, this value contains the data to be written to the selected Link Quality  
Threshold register.  
On a read, this value contains the current data in the selected Link Quality  
Threshold register.  
If SAMPLE_PARAM = 1:  
On a read, this value contains the sampled parameter value. This value will  
remain unchanged until a new read sequence is started.  
10.4.11 Link Quality Monitor Register 2 (LQMR2), Page 2  
This register contains additional controls for the Link Quality Monitor function. The Link Quality Monitor  
provides a mechanism for programming a set of thresholds for DSP parameters. If the thresholds are  
violated, an interrupt will be asserted if enabled in the MISR. Monitor control and status are available in  
this register, while the LQDR register controls read/write access to threshold values and current parameter  
values. Reading of LQMR2 register clears its warning bits but does NOT re-arm the interrupt generation;  
LQMR must be read to re-arm interrupt generation. In addition, this register provides a mechanism for  
allowing automatic reset of the 100 Mb link based on the Link Quality Monitor variance status.  
Table 10-38. Link Quality Monitor Register 2 (LQMR2), address 0x1F  
Bit  
Bit Name  
Default  
Description  
Reserved: Writes ignored, Read as 0  
15:1  
1
RESERVED  
0000 0, RO  
10  
RESTART_ON_VAR  
0, RW  
Restart on Variance Warning:  
Allow automatic reset of DSP and restart of 100 Mb Adaption on detecting a  
Frequency Offset Threshold violation. If the SD_Option bit, PCSR[8], is set to 0, the  
threshold violation will also result in a drop in Link status.  
9:2  
1
RESERVED  
00 0000 00, RO  
0, RO/COR  
Reserved: Writes ignored, Read as 0  
VAR_HI_WARN  
Variance High Warning:  
This bit indicates the Variance High Threshold was exceeded. This register bit will  
be cleared on read.  
0
RESERVED  
0, RO  
Reserved: Writes ignored, Read as 0  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
109  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.5 PTP 1588 BASE REGISTERS - PAGE 4  
Page 4 PTP 1588 Base Registers are accessible by setting bits [2:0] = 100 of PAGESEL (13h).  
10.5.1 PTP Control Register (PTP_CTL), Page 4  
This register provides basic control of the PTP 1588 operation.  
Table 10-39. PTP Control Register (PTP_CTL), address 0x14  
Bit  
Bit Name  
Default  
Description  
Reserved: Writes ignored, Read as 0  
15:1  
3
RESERVED  
000, RO  
12:1  
0
TRIG_SEL  
TRIG_DIS  
000, RW  
PTP Trigger Select:  
This field selects the Trigger for loading control information or for enabling the  
Trigger.  
9
0, RW/SC  
Disable PTP Trigger:  
Setting this bit will disable the selected Trigger. This bit does not indicate Disable  
status for Triggers. The PTP Trigger Status Register should be used to determine  
Trigger Status. This bit is self-clearing and will always read back as 0.  
Disabling a Trigger will not disconnect it from a GPIO pin. The Trigger value will still  
be driven to the GPIO if the Trigger is assigned to a GPIO.  
8
7
TRIG_EN  
0, RW/SC  
0, RW/SC  
Enable PTP Trigger:  
Setting this bit will enable the selected Trigger. This bit does not indicate Enable  
status for Triggers. The PTP Trigger Status Register should be used to determine  
Trigger Status. This bit is self-clearing and will always read back as 0.  
TRIG_READ  
Read PTP Trigger:  
Setting this bit will begin the Trigger Read process. The Trigger is selected based on  
the setting of the TRIG_SEL bits in this register. Upon setting this bit, subsequent  
reads of the PTP_TDR will return the Trigger Control values. Fields are read in the  
same order as written.  
6
TRIG_LOAD  
0, RW/SC  
Load PTP Trigger:  
Setting this bit will disable the selected Trigger and begin the Trigger load process.  
The Trigger is selected based on the setting of the TRIG_SEL bits in this register.  
Upon setting this bit, subsequent writes to the PTP_TDR will set the Trigger Control  
fields for the selected Trigger. The Trigger Load is completed once all fields have  
been written, or the TRIG_EN bit has been set in this register. This bit is self-  
clearing and will read back as 0 when the Trigger Load is completed either by  
writing all Trigger Control fields, or by setting the Trigger Enable.  
5
4
3
PTP_RD_CLK  
PTP_LOAD_CLK  
PTP_STEP_CLK  
0, RW/SC  
0, RW/SC  
0, RW/SC  
Read PTP Clock:  
Setting this bit will cause the device to sample the PTP Clock time value. The time  
value will be made available for reading through the PTP_TDR register. This bit is  
self-clearing and will always read back as 0.  
Load PTP Clock:  
Setting this bit will cause the device to load the PTP Clock time value from data  
previously written to the PTP_TDR register. This bit is self-clearing and will always  
read back as 0.  
Step PTP Clock:  
Setting this bit will cause the device to add a value to the PTP Clock. The value to  
be added is the value previously written to the PTP_TDR register. This bit is  
selfclearing and will always read back as 0.  
2
1
0
PTP_ENABLE  
PTP_DISABLE  
PTP_RESET  
0, RW  
0, RW/SC  
0, RW  
Enable PTP Clock:  
Setting this bit will enable the PTP Clock. Reading this bit will return the current  
enabled value. Writing a 0 to this bit will have no effect.  
Disable PTP Clock:  
Setting this bit will disable the PTP Clock. Writing a 0 to this bit will have no effect.  
This bit is self-clearing and will always read back as 0.  
Reset PTP Clock:  
Setting this bit will reset the PTP Clock and associated logic. In addition, the 1588  
registers will be reset, with the exception of the PTP_COC and PTP_CLKSRC  
registers. Unlike other bits in this register, this bit is not self-clearing and must be  
written to 0 to release the clock and logic from reset.  
110  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.5.2 PTP Time Data Register (PTP_TDR), Page 4  
This register provides a mechanism for reading and writing the 1588 Time and Trigger Control values. The  
function of this register is determined by controls in the PTP_CTL register.  
Table 10-40. PTP Time Data Register (PTP_TDR), address 0x15  
Bit  
Bit Name  
Default  
Description  
15:0  
TIME_DATA  
XXXX XXXX XXXX Time Data:  
XXXX, RO  
On Reads, successively returns 16-bit values of the Clock time or Trigger Control  
XXXX XXXX XXXX information as selected by controls in the PTP Control Register. Additional reads  
XXXX, WO  
beyond the avaliable fields will always return 0.  
On Writes, successively stores the 16-bit values of Clock time or Trigger Control  
Information as selected by controls in the PTP Control Register.  
10.5.3 PTP Status Register (PTP_STS), Page 4  
This register provides basic status and interrupt control for the PTP 1588 operation.  
Table 10-41. PTP Status Register (PTP_STS), address 0x16  
Bit  
Bit Name  
Default  
Description  
Reserved: Writes ignored, Read as 0  
15:1  
2
RESERVED  
0000, RO  
11  
10  
9
TXTS_RDY  
RXTS_RDY  
TRIG_DONE  
0, RO  
0, RO  
Transmit Timestamp Ready:  
A Transmit Timestamp is available for an outbound PTP Message. This bit will be  
cleared upon read of the Transmit Timestamp if no other timestamps are ready.  
Receive Timestamp Ready:  
A Receive Timestamp is available for an inbound PTP Message. This bit will be  
cleared upon read of the Receive Timestamp if no other timestamps are ready.  
0, RO/COR  
PTP Trigger Done:  
A PTP Trigger has occured. This bit will be cleared upon read. This bit will only be  
set if Trigger Notification is turned on for the Trigger through the Trigger  
Configuration Registers.  
8
EVENT_RDY  
0, RO  
PTP Event Timestamp Ready:  
A PTP Event Timestamp is available. This bit will be cleared upon read of the PTP  
Event Status Register if no other event timestamps are ready.  
7:4  
3
RESERVED  
TXTS_IE  
0000, RO  
0, RW  
Reserved: Writes ignored, Read as 0  
Transmit Timestamp Interrupt Enable:  
Enable Interrupt on Transmit Timestamp Ready.  
2
1
0
RXTS_IE  
TRIG_IE  
0, RW  
0, RW  
0, RW  
Receive Timestamp Interrupt Enable:  
Enable Interrupt on Receive Timestamp Ready.  
Trigger Interrupt Enable:  
Enable Interrupt on Trigger Completion.  
EVENT_IE  
Event Interrupt Enable:  
Enable Interrupt on Event Timestamp Ready.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
111  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.5.4 PTP Trigger Status Register (PTP_TSTS), Page 4  
This register provides status of the PTP 1588 Triggers. The bits in this register indicate the current status  
of each of the Trigger modules. The error bits will be set if the associated notification enable  
(TRIGN_NOTIFY) is set in the PTP Trigger Configuration Registers.  
Table 10-42. PTP Trigger Status Register (PTP_TSTS), address 0x17  
Bit  
Bit Name  
Default  
Description  
15  
TRIG7_ERROR  
0, RO/SC  
Trigger 7 Error:  
This bit indicates the Trigger was improperly programmed to trigger at a time prior to  
the current time. This bit will be cleared when the Trigger is disabled and/ or re-  
armed.  
14  
13  
TRIG7_ACTIVE  
TRIG6_ERROR  
0, RO/SC  
0, RO/SC  
Trigger 7 Active:  
This bit indicates the Trigger is enabled and has not completed.  
Trigger 6 Error:  
This bit indicates the Trigger was improperly programmed to trigger at a time prior to  
the current time. This bit will be cleared when the Trigger is disabled and/ or re-  
armed.  
12  
11  
TRIG6_ACTIVE  
TRIG5_ERROR  
0, RO/SC  
0, RO/SC  
Trigger 6 Active:  
This bit indicates the Trigger is enabled and has not completed.  
Trigger 5 Error:  
This bit indicates the Trigger was improperly programmed to trigger at a time prior to  
the current time. This bit will be cleared when the Trigger is disabled and/ or re-  
armed.  
10  
9
TRIG5_ACTIVE  
TRIG4_ERROR  
0, RO/SC  
0, RO/SC  
Trigger 5 Active:  
This bit indicates the Trigger is enabled and has not completed.  
Trigger 4 Error:  
This bit indicates the Trigger was improperly programmed to trigger at a time prior to  
the current time. This bit will be cleared when the Trigger is disabled and/ or re-  
armed.  
8
7
TRIG4_ACTIVE  
TRIG3_ERROR  
0, RO/SC  
0, RO/SC  
Trigger 4 Active:  
This bit indicates the Trigger is enabled and has not completed.  
Trigger 3 Error:  
This bit indicates the Trigger was improperly programmed to trigger at a time prior to  
the current time. This bit will be cleared when the Trigger is disabled and/ or re-  
armed.  
6
5
TRIG3_ACTIVE  
TRIG2_ERROR  
0, RO/SC  
0, RO/SC  
Trigger 3 Active:  
This bit indicates the Trigger is enabled and has not completed.  
Trigger 2 Error:  
This bit indicates the Trigger was improperly programmed to trigger at a time prior to  
the current time. This bit will be cleared when the Trigger is disabled and/ or re-  
armed.  
4
3
TRIG2_ACTIVE  
TRIG1_ERROR  
0, RO/SC  
0, RO/SC  
Trigger 2 Active:  
This bit indicates the Trigger is enabled and has not completed.  
Trigger 1 Error:  
This bit indicates the Trigger was improperly programmed to trigger at a time prior to  
the current time. This bit will be cleared when the Trigger is disabled and/ or re-  
armed.  
2
1
TRIG1_ACTIVE  
TRIG0_ERROR  
0, RO/SC  
0, RO/SC  
Trigger 1 Active:  
This bit indicates the Trigger is enabled and has not completed.  
Trigger 0 Error:  
This bit indicates the Trigger was improperly programmed to trigger at a time prior to  
the current time. This bit will be cleared when the Trigger is disabled and/ or re-  
armed.  
0
TRIG0_ACTIVE  
0, RO/SC  
Trigger 0 Active:  
This bit indicates the Trigger is enabled and has not completed.  
112  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.5.5 PTP Rate Low Register (PTP_RATEL), Page 4  
This register contains the low 16-bits of the PTP Rate control. The PTP Rate Control indicates a positive  
or negative adjustment to the reference clock period in units of 2-32 ns. On each reference clock cycle, the  
PTP Clock will be adjusted by adding REF_CLK_PERIOD +/- PTP_RATE. The PTP Rate should be  
written as PTP_RATEH, followed by PTP_RATEL. The rate will take effect on the write to the  
PTP_RATEL register.  
Table 10-43. PTP Rate Low Register (PTP_RATEL), address 0x18  
Bit  
Bit Name  
Default  
Description  
15:0  
PTP_RATE_LO  
0000 0000 0000  
0000, RW  
PTP Rate Low 16-bits:  
Writing to this register will set the low 16-bits of the Rate Control value. The Rate  
Control value is in units of 2-32 ns. Upon writing to this register, the full Rate Control  
value will be loaded to the device.  
10.5.6 PTP Rate High Register (PTP_RATEH), Page 4  
This register contains the upper bits of the PTP Rate control. In addition, it contains a direction control to  
indicate whether the device is operating faster or slower than the reference clock frequency. When setting  
the PTP Rate, this register should be written first, followed by a write to the PTP_RATEL register. The rate  
will take effect on the write to the PTP_RATEL register.  
Table 10-44. PTP Rate High Register (PTP_RATEH), address 0x19  
Bit  
Bit Name  
Default  
Description  
15  
PTP_RATE_DIR  
0, RW  
PTP Rate Direction:  
The setting of this bit controls whether the device will operate at a higher or lower  
frequency than the reference clock.  
0 : Higher Frequency. The PTP_RATE value will be added to the clock on every  
cycle.  
1 : Lower Frequency. The PTP_RATE value will be subtracted from the clock on  
every cycle.  
14  
PTP_TMP_RATE  
0, RW  
PTP Temporary Rate:  
Setting this bit will cause the rate to be applied to the clock for the duration set in the  
PTP Temporary Rate Duration Register (PTP_TRD).  
1 : Temporary Rate  
0 : Normal Rate  
13:10  
9:0  
RESERVED  
00 00, RO  
Reserved: Writes ignored, Read as 0  
PTP_RATE_HI  
00 0000 0000, RW PTP Rate High 10-bits:  
Writing to this register will set the high 10-bits of the Rate Control value. The Rate  
Control value is in units of 2-32 ns.  
10.5.7 PTP Read Checksum (PTP_RDCKSUM), Page 4  
This register keeps a running one’s complement checksum of 16-bit read data values for valid Page 4  
read accesses. Clear the checksum on a read to this register; read data from this register is not  
accumulated in the read checksum since the register is cleared on read. However, read data from the  
write checksum register is accumulated to allow cross checking. Checksums are not accumulated for PHY  
Control Frame register accesses, but are cleared on management or PHY Control Frame reads.  
Table 10-45. PTP Read Checksum (PTP_RDCKSUM), address 0x1A  
Bit  
Bit Name  
Default  
Description  
15:0  
RD_CKSUM  
XXXX XXXX XXXX PTP Page 4 Read Checksum.  
XXXX, RO/ COR  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
113  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.5.8 PTP Write Checksum (PTP_WRCKSUM), Page 4  
This register keeps a running one’s complement checksum of 16-bit write data values for Page 4 write  
accesses. Clear the checksum on a read. Write data to this register or the read checksum register ARE  
accumulated in the write checksum to allow cross checking. Read data from this register is accumulated in  
the read checksum to allow cross checking. Checksums are not accumulated for PHY Control Frame  
register accesses, but are cleared on management or PHY Control Frame reads.  
Table 10-46. PTP Write Checksum (PTP_WRCKSUM), address 0x1B  
Bit  
Bit Name  
Default  
Description  
15:0  
WR_CKSUM  
XXXX XXXX XXXX PTP Page 4 Write Checksum.  
XXXX, RO/ COR  
10.5.9 PTP Transmit Timestamp Register (PTP_TXTS), Page 4  
This register provides a mechanism for reading the Transmit Timestamp. The fields are read in the  
following order:  
Timestamp_ns [15:0]  
Overflow_cnt[1:0], Timestamp_ns[29:16]  
Timestamp_sec[15:0]  
Timestamp_sec[31:16]  
The Overflow_cnt value indicates if timestamps were dropped due to an overflow of the Transmit  
Timestamp queue. The overflow counter will stick at a value of three if additional timestamps were missed.  
Table 10-47. PTP Transmit Timestamp Register (PTP_TXTS), address 0x1C  
Bit  
Bit Name  
Default  
Description  
15:0  
PTP_TX_TS  
0000 0000 0000  
0000, RO  
PTP Transmit Timestamp:  
Reading this register will return the Transmit Timestamp in four 16-bit reads.  
10.5.10 PTP Receive Timestamp Register (PTP_RXTS), Page 4  
This register provides a mechanism for reading the Receive Timestamp and identification information. The  
fields are read in the following order:  
Timestamp_ns [15:0]  
Overflow_cnt[1:0], Timestamp_ns[29:16]  
Timestamp_sec[15:0]  
Timestamp_sec[31:16]  
sequenceId[15:0]  
messageType[3:0], source_hash[11:0]  
The Overflow_cnt value indicates if timestamps were dropped due to an overflow of the Transmit  
Timestamp queue. The overflow counter will stick at a value of three if additional timestamps were missed.  
Table 10-48. PTP Receive Timestamp Register (PTP_RXTS), address 0x1D  
Bit  
Bit Name  
Default  
Description  
15:0  
PTP_RX_TS  
0000 0000 0000  
0000, RO  
PTP Receive Timestamp:  
Reading this register will return the Receive Timestamp in four 16-bit reads.  
114  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.5.11 PTP Event Status Register (PTP_ESTS), Page 4  
This register provides Status for the Event Timestamp unit. Reading this register provides status for the  
next Event Timestamp contained in the Event Data Register. If this register is 0, no Event Timestamp is  
available in the Event Data Register. Reading this register will automatically move to the next Event in the  
queue.  
Table 10-49. PTP Event Status Register (PTP_ESTS), address 0x1E  
Bit  
Bit Name  
RESERVED  
Default  
Description  
Reserved: Writes ignored, Read as 0  
15:11  
10:8  
0000 0, RO  
000, RO/SC  
EVNTS_MISSED  
Event Missed:  
Indicates number of events have been missed prior to this timestamp for the  
EVNT_NUM indicated. This count value will stick at 7 if more than 7 events are  
missed.  
7:6  
EVNT_TS_LEN  
00, RO/SC  
Event Timestamp Length:  
Indicates length of the Timestamp field in 16-bit words minus 1. Although all fields  
are available, this indicates how many of the fields contain data different from the  
previous Event Timestamp. This allows software to avoid reading more significant  
fields if they have not changed since the previous timestamp. This field is valid for  
both single and multiple events. The following shows the number of least significant  
fields which have new data for each setting of TS_LENGTH:  
00 : One 16-bit field is new (Timestamp_ns[15:0])  
01 : Two 16-bit fields are new  
10 : Three 16-bit fields are new  
11 : All four 16-bit fields are new  
5
4:2  
1
EVNT_RF  
EVNT_NUM  
MULT_EVNT  
0, RO/SC  
000, RO/SC  
0, RO/SC  
Event Rise/Fall direction:  
Indicates whether the event is a rise or falling event. If the MULT_EVNT bit is set to  
1, this bit indicates the Rise/Fall direction for the event indicated by EVNT_NUM.  
0 = Falling edge detected  
1 = Rising edge detected  
Event Number:  
Indicates Event Timestamp Unit which detected an event. If the MULT_EVNT bit is  
set to 0, this indicates the lowest event number captured. If events have been  
missed prior to this timestamp, it indicates the lowest event number captured which  
had at least one missed event.  
Multiple Event Detect:  
Indicates multiple events were detected at the same time. If multiple events are  
detected, an extended event status field is available as the first data read from the  
Event Data Register.  
0 = Single event detected  
1 = Multiple events detected  
0
EVENT_DET  
0, RO/SC  
PTP Event Detected:  
Indicates an Event has been detected by one of the Event Timestamp Units.  
10.5.12 PTP Event Data Register (PTP_EDATA), Page 4  
This register provides a mechanism for reading the Event Timestamp and extended event status. If  
present, the extended event status is read prior to reading the Event Timestamp. Presence of the  
Extended Event Status field is indicated by the MULT_EVNT bit in the PTP Event Status Register. The  
timestamp consists of four 16-bit fields. This register contains a valid timestamp if the PTP_ESTS register  
indicates an Event Timestamp is available. Not all fields have to be read for each timestamp. For example,  
if the EVNT_TS_LEN indicates the seconds field has not changed from the previous event, software may  
skip that read. Reading the PTP_ESTS register will cause the device to move to the next available  
timestamp.  
The fields are read in the following order:  
Extended Event Status[15:0] (only available if PTP_ESTS indicates detection of multiple events)  
Timestamp_ns [15:0]  
Timestamp_ns[29:16] (upper 2 bits are always 0)  
Timestamp_sec[15:0]  
Timestamp_sec[31:16]  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
115  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
For Extended Event Status, the following definition is used for the PTP Event Data Register:  
Table 10-50. PTP Event Data Register (PTP_EDATA), address 0x1F  
Bit  
Bit Name  
Default  
Description  
Rise/Fall edge direction for Event 7:  
15  
E7_RISE  
0, RO/SC  
Indicates direction of Event 7  
0 = Fall  
1 = Rise  
14  
13  
E7_DET  
E6_RISE  
0, RO/SC  
0, RO/SC  
Event 7 detected:  
Indicates Event 7 detected a rising or falling edge at the time contained in the  
PTP_EDATA register timestamp.  
Rise/Fall edge direction for Event 6:  
Indicates direction of Event 6  
0 = Fall  
1 = Rise  
12  
11  
E6_DET  
E5_RISE  
0, RO/SC  
0, RO/SC  
Event 6 detected:  
Indicates Event 6 detected a rising or falling edge at the time contained in the  
PTP_EDATA register timestamp.  
Rise/Fall edge direction for Event 5:  
Indicates direction of Event 5  
0 = Fall  
1 = Rise  
10  
9
E5_DET  
E4_RISE  
0, RO/SC  
0, RO/SC  
Event 5 detected:  
Indicates Event 5 detected a rising or falling edge at the time contained in the  
PTP_EDATA register timestamp.  
Rise/Fall edge direction for Event 4:  
Indicates direction of Event 4  
0 = Fall  
1 = Rise  
8
7
E4_DET  
E3_RISE  
0, RO/SC  
0, RO/SC  
Event 4 detected:  
Indicates Event 4 detected a rising or falling edge at the time contained in the  
PTP_EDATA register timestamp.  
Rise/Fall edge direction for Event 3:  
Indicates direction of Event 3  
0 = Fall  
1 = Rise  
6
5
E3_DET  
E2_RISE  
0, RO/SC  
0, RO/SC  
Event 3 detected:  
Indicates Event 3 detected a rising or falling edge at the time contained in the  
PTP_EDATA register timestamp.  
Rise/Fall edge direction for Event 2:  
Indicates direction of Event 2  
0 = Fall  
1 = Rise  
4
3
E2_DET  
E1_RISE  
0, RO/SC  
0, RO/SC  
Event 2 detected:  
Indicates Event 2 detected a rising or falling edge at the time contained in the  
PTP_EDATA register timestamp.  
Rise/Fall edge direction for Event 1:  
Indicates direction of Event 1  
0 = Fall  
1 = Rise  
2
1
E1_DET  
E0_RISE  
0, RO/SC  
0, RO/SC  
Event 1 detected:  
Indicates Event 1 detected a rising or falling edge at the time contained in the  
PTP_EDATA register timestamp.  
Rise/Fall edge direction for Event 0:  
Indicates direction of Event 0  
0 = Fall  
1 = Rise  
0
E0_DET  
0, RO/SC  
Event 0 detected:  
Indicates Event 0 detected a rising or falling edge at the time contained in the  
PTP_EDATA register timestamp.  
116  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
For timestamp fields, the following definition is used for the PTP Event Data Register:  
Table 10-51. PTP Event Data Register (PTP_EDATA), address 0x1F  
Bit  
Bit Name  
Default  
Description  
15:0  
PTP_EVNT_TS  
XXXX XXXX XXXX PTP Event Timestamp:  
XXXX, RO  
Reading this register will return 16 bits of the Event Timestamp.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
117  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.6 PTP 1588 CONFIGURATION REGISTERS - PAGE 5  
Page 5 PTP 1588 Configuration Registers are accessible by setting bits [2:0] = 101 of PAGESEL (13h).  
10.6.1 PTP Trigger Configuration Register (PTP_TRIG), Page 5  
This register provides basic configuration for IEEE 1588 Triggers. To write configuration to a Trigger, set  
the TRIG_WR bit along with the TRIG_SEL and other control information. To read configuration from a  
Trigger, set the TRIG_SEL encoding to the Trigger desired, and set the TRIG_WR bit to 0. The  
subsequent read of the PTP_TRIG register will return the configuration information.  
Table 10-52. PTP Trigger Configuration Register (PTP_TRIG), address 0x14  
Bit  
Bit Name  
Default  
Description  
15  
TRIG_PULSE  
0, RW  
Trigger Pulse:  
Setting this bit will cause the Trigger to generate a Pulse rather than a single rising  
or falling edge.  
14  
13  
TRIG_PER  
0, RW  
0, RW  
Trigger Periodic:  
Setting this bit will cause the Trigger to generate a periodic signal. If this bit is 0, the  
Trigger will generate a single Pulse or Edge depending on the Trigger Control  
settings.  
TRIG_IF_LATE  
Trigger-if-late Control:  
Setting this bit will allow an immediate Trigger in the event the Trigger is  
programmed to a time value which is less than the current time. This provides a  
mechanism for generating an immediate trigger or to immediately begin generating a  
periodic signal. For a periodic signal, no notification be generated if this bit is set  
and a Late Trigger occurs.  
12  
TRIG_NOTIFY  
0, RW  
Trigger Notification Enable:  
Setting this bit will enable Trigger status to be reported on completion of a Trigger or  
on an error detection due to late trigger. If Trigger interrupts are enabled, the  
notification will also result in an interrupt being generated.  
11:8  
7
TRIG_GPIO  
0000, RW  
0, RW  
Trigger GPIO Connection:  
Setting this field to a non-zero value will connect the Trigger to the associated GPIO  
pin. Valid settings for this field are 1 thru 12.  
TRIG_TOGGLE  
Trigger Toggle Mode Enable:  
Setting this bit will put the trigger into toggle mode. In toggle mode, the initial value  
will be ignored and the trigger output will be toggled at the trigger time.  
6:4  
3:1  
RESERVED  
TRIG_CSEL  
000, RO  
000, RW  
Reserved: Writes ignored, Read as 0  
Trigger Configuration Select:  
This field selects the Trigger for configuration read or write.  
0
TRIG_WR  
0, RW/SC  
Trigger Configuration Write:  
Setting this bit will generate a Configuration Write to the selected Trigger. This bit  
will always read back as 0.  
118  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.6.2 PTP Event Configuration Register (PTP_EVNT), Page 5  
This register provides basic configuration for IEEE 1588 Events. To write configuration to an Event  
Timestamp Unit, set the EVNT_WR bit along with the EVNT_SEL and other control information. To read  
configuration from an Event Timestamp Unit, set the EVNT_SEL encoding to the Event desired, and set  
the EVNT_WR bit to 0. The subsequent read of the PTP_EVNT register will return the configuration  
information.  
Table 10-53. PTP Event Configuration Register (PTP_EVNT), address 0x15  
Bit  
15  
14  
Bit Name  
RESERVED  
EVNT_RISE  
Default  
0, RO  
Description  
Reserved: Writes ignored, Read as 0  
0, RW  
Event Rise Detect Enable:  
Enable Detection of Rising edge on Event input.  
13  
12  
EVNT_FALL  
0, RW  
0, RW  
Event Fall Detect Enable:  
Enable Detection of Falling edge on Event input.  
EVNT_SINGLE  
Single Event Capture: Setting this bit to a 1 will enable single event capture  
operation. The EVNT_RISE and EVNT_FALL enables will be cleared upon a valid  
event timestamp capture.  
11:8  
EVNT_GPIO  
0000, RW  
Event GPIO Connection:  
Setting this field to a non-zero value will connect the Event to the associated GPIO  
pin. Valid settings for this field are 1 thru 12.  
7:4  
3:1  
RESERVED  
EVNT_SEL  
0000, RO  
000, RW  
Reserved: Writes ignored, Read as 0  
Event Select:  
This field selects the Event Timestamp Unit for configuration read or write.  
0
EVNT_WR  
0, RW  
Event Configuration Write:  
Setting this bit will generate a Configuration Write to the selected Event Timestamp  
Unit.  
10.6.3 PTP Transmit Configuration Register 0 (PTP_TXCFG0), Page 5  
This register provides configuration for IEEE 1588 Transmit Timestamp operation.  
Table 10-54. PTP Transmit Configuration Register 0 (PTP_TXCFG0), address 0x16  
Bit  
Bit Name  
Default  
Description  
15  
SYNC_1STEP  
0, RW  
Sync Message One-Step Enable:  
Enable automatic insertion of timestamp into transmit Sync Messages. Device will  
automatically parse message and insert the timestamp in the correct location. UPD  
checksum and CRC fields will be regenerated.  
14  
13  
RESERVED  
DR_INSERT  
0, RO  
0, RW  
Reserved: Writes ignored, Read as 0  
Insert Delay_Req Timestamp in Delay_Resp:  
If this bit is set to a 1, the device insert the timestamp for transmitted Delay_Req  
messages into inbound Delay_Resp messages. The most recent timestamp will be  
used for any inbound Delay_Resp message. The receive timestamp insertion logic  
must be enabled through the PTP Receive Configuration Registers.  
12  
NTP_TS_EN  
0, RW  
Enable Timestamping of NTP Packets:  
If this bit is set to 0, the device will check the UDP protocol field for a PTP Event  
message (value 319). If this bit is set to 1, the device will check the UDP protocol  
field for an NTP message (value 123). This setting applies to the transmit and  
receive packet parsing engines.  
11  
10  
IGNORE_2STEP  
CRC_1STEP  
0, RW  
0, RW  
Ignore Two_Step flag for One-Step operation:  
If this bit is set to a 0, the device will not insert a timestamp if the Two_Step bit is set  
in the flags field of the PTP header. If this bit is set to 1, the device will insert a  
timestamp independent of the setting of the Two_Step flag.  
Disable checking of CRC for One-Step operation:  
If this bit is set to a 0, the device will force a CRC error for One-Step operation if the  
incoming frame has a CRC error. If this bit is set to a 1, the device will send the  
One- Step frame with a valid CRC, even if the incoming CRC is invalid.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
119  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Table 10-54. PTP Transmit Configuration Register 0 (PTP_TXCFG0), address 0x16 (continued)  
Bit  
Bit Name  
Default  
Description  
9
CHK_1STEP  
0, RW  
Enable UDP Checksum correction for One-Step Operation:  
Enables correction of the UDP checksum for messages which include insertion of  
the timestamp. The checksum is corrected by modifying the last two bytes of the  
UDP data. The last two bytes must be transmitted by the MAC as 0’s. This control  
must be set for proper IPv6/UDP One-Step operation. This control will have no  
effect for Layer2 Ethernet messages.  
8
IP1588_EN  
0, RW  
Enable IEEE 1588 defined IP address filter:  
Enable filtering of UDP/IP Event messages using the IANA assigned IP Destination  
addresses. If this bit is set to 1, packets with IP Destination addresses which do not  
match the IANA assigned addresses will not be timestamped. This field affects  
operation for both IPv4 and IPv6. If this field is set to 0, IP destination addresses will  
be ignored.  
7
6
TX_L2_EN  
TX_IPV6_EN  
TX_IPV4_EN  
TX_PTP_VER  
0, RW  
0, RW  
Layer2 Timestamp Enable:  
Enables detection of IEEE 802.3/Ethernet encapsulated PTP event messages.  
IPv6 Timestamp Enable:  
Enables detection of UDP/IPv6 encapsulated PTP event messages.  
5
0, RW  
IPv4 Timestamp Enable:  
Enables detection of UDP/IPv4 encapsulated PTP event messages.  
4:1  
0 000, RW  
PTP Version:  
Enable Timestamp capture for a specific version of the IEEE 1588 specification. This  
field may be programmed to any value between 1 and 15 and allows support for  
future versions of the IEEE 1588 specification. A value of 0 will disable version  
checking (not recommended).  
0
TX_TS_EN  
0, RW  
Transmit Timestamp Enable:  
Enable Timestamp capture for Transmit.  
10.6.4 PTP Transmit Configuration Register 1 (PTP_TXCFG1), Page 5  
This register provides data and mask fields to filter the first byte in a PTP Message. This function will be  
disabled if all the mask bits are set to 0.  
Table 10-55. PTP Transmit Configuration Register 1 (PTP_TXCFG1), address 0x17  
Bit  
Bit Name  
Default  
Description  
15:8  
BYTE0_MASK  
0000 0000, RW  
Byte0 Data:  
Bit mask to be used for matching Byte0 of the PTP Message. A one in any bit  
enables matching for the associated data bit. If no matching is required, all bits of  
the mask should be set to 0.  
7:0  
BYTE0_DATA  
0000 0000, RW  
Byte0 Mask:  
Data to be used for matching Byte0 of the PTP Message.  
120  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.6.5 PHY Status Frame Configuration Register 0 (PSF_CFG0), Page 5  
This register provides configuration for the PHY Status Frame function.  
Table 10-56. PHY Status Frame Configuration Register 0 (PSF_CFG0), address 0x18  
Bit  
Bit Name  
Default  
Description  
Reserved: Writes ignored, Read as 0  
15:1  
3
RESERVED  
000, RO  
12:1  
1
MAC_SRC_ADD  
0 0, RW  
PHY Status Frame Mac Source Address:  
Selects source address as follows:  
00 : Use Mac Address [08 00 17 0B 6B 0F]  
01 : Use Mac Address [08 00 17 00 00 00]  
10 : Use Mac Multicast Dest Address  
11 : Use Mac Address [00 00 00 00 00 00]  
10:8  
7
MIN_PRE  
PSF_ENDIAN  
PSF_IPV4  
000, RW  
0, RW  
PHY Status Frame Minimum Preamble:  
Determines the minimum preamble bytes required for sending packets on the MII  
interface. It is recommended that this be set to the smallest value the MAC will  
tolerate.  
PHY Status Frame Endian Control:  
For each 16-bit field in a Status Message, the data will normally be presented in  
network byte order (Most significant byte first). If this bit is set to a 1, the byte data  
fields will be reversed so that the least significant byte is first.  
6
0, RW  
PHY Status Frame IPv4 Enable:  
This bit controls the type of packet used for PHY Status Frames.  
0 = Layer2 Ethernet packets  
1 = IPv4 packets.  
5
4
PSF_PCF_RD  
PSF_ERR_EN  
0, RW  
0, RW  
PHY Control Frame Read PHY Status Frame Enable:  
Enable PHY Status Frame delivery of PHY Control Frame read data. Data read via  
a PHY Control Frame will be returned in a PHY Status Frame.  
PSF Error PHY Status Frame Enable:  
Enable PHY Status Frame delivery of PHY Status Frame Errors. This bit will not  
independently enable PHY Status Frame operation. One of the other enable bits  
must be set for PHY Status Frames to be generated.  
3
2
1
0
PSF_TXTS_EN  
PSF_RXTS_EN  
PSF_TRIG_EN  
PSF_EVNT_EN  
0, RW  
0, RW  
0, RW  
0, RW  
Transmit Timestamp PHY Status Frame Enable:  
Enable PHY Status Frame delivery of Transmit Timestamps.  
Receive Timestamp PHY Status Frame Enable:  
Enable PHY Status Frame delivery of Receive Timestamps.  
Trigger PHY Status Frame Enable:  
Enable PHY Status Frame delivery of Trigger Status.  
Event PHY Status Frame Enable:  
Enable PHY Status Frame delivery of Event Timestamps.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
121  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.6.6 PTP Receive Configuration Register 0 (PTP_RXCFG0), Page 5,  
This register provides configuration for IEEE 1588 Receive Timestamp operation.  
Table 10-57. PTP Receive Configuration Register 0 (PTP_RXCFG0), address 0x19  
Bit  
Bit Name  
Default  
Description  
15  
DOMAIN_EN  
0, RW  
Domain Match Enable:  
If set to 1, the Receive Timestamp unit will require the Domain field to match the  
value programmed in the PTP_DOMAIN field of the PTP_RXCFG3 register. If set to  
0, the Receive Timestamp will ignore the PTP_DOMAIN field.  
14  
13  
ALT_MAST_DIS  
USER_IP_SEL  
0, RW  
0, RW  
Alternate Master Timestamp Disable:  
Disables timestamp generation if the Alternate_Master flag is set:  
1 = Do not generate timestamp if Alternate_Master = 1  
0 = Ignore Alternate_Master flag  
IP Address data select:  
Selects portion of IP address accessible through the PTP_RXCFG2 register:  
0 = Most Significant Octets  
1 = Least Significant Octets  
12  
11  
USER_IP_EN  
RX_SLAVE  
0, RW  
0, RW  
Enable User-programmed IP address filter:  
Enable detection of UDP/IP Event messages using a programmable IP addresses.  
The IP Address is set using the PTP_RXCFG2 register.  
Receive Slave Only:  
By default, the Receive Timestamp Unit will provide Timestamps for event  
messages meeting other requirements. Setting this bit to a 1 will prevent Delay_Req  
messages from being Timestamped by requiring that the Control Field (offset 32 in  
the PTP message) be set to a value other than 1.  
10:8  
IP1588_EN  
000, RW  
Enable IEEE 1588 defined IP address filters:  
Enable detection of UDP/IP Event messages using the IANA assigned IP  
Destination addresses. This field affects operation for both IPv4 and IPv6. A  
Timestamp is captured for the PTP message if the IP destination address matches  
the following:  
IP1588_EN[0]: Dest IP address = 224.0.1.129  
IP1588_EN[1]: Dest IP address = 224.0.1.130-132  
IP1588_EN[2]: Dest IP address = 224.0.0.107  
7
6
RX_L2_EN  
RX_IPV6_EN  
RX_IPV4_EN  
RX_PTP_VER  
0, RW  
0, RW  
Layer2 Timestamp Enable:  
Enables detection of IEEE 802.3/Ethernet encapsulated PTP event messages.  
IPv6 Timestamp Enable:  
Enables detection of UDP/IPv6 encapsulated PTP event messages.  
5
0, RW  
IPv4 Timestamp Enable:  
Enables detection of UDP/IPv4 encapsulated PTP event messages.  
4:1  
0 000, RW  
PTP Version:  
Enable Timestamp capture for a specific version of the IEEE 1588 specification. This  
field may be programmed to any value between 1 and 15 and allows support for  
future versions of the IEEE 1588 specification. A value of 0 will disable version  
checking (not recommended).  
0
RX_TS_EN  
0, RW  
Receive Timestamp Enable:  
Enable Timestamp capture for Receive.  
122  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.6.7 PTP Receive Configuration Register 1 (PTP_RXCFG1), Page 5  
This register provides data and mask fields to filter the first byte in a PTP Message. This function will be  
disabled if all the mask bits are set to 0.  
Table 10-58. PTP Receive Configuration Register 1 (PTP_RXCFG1), address 0x1A  
Bit  
Bit Name  
Default  
Description  
15:8  
BYTE0_MASK  
0000 0000, RW  
Byte0 Data:  
Bit mask to be used for matching Byte0 of the Receive PTP Message. A one in any  
bit enables matching for the associated data bit. If no matching is required, all bits of  
the mask should be set to 0.  
7:0  
BYTE0_DATA  
0000 0000, RW  
Byte0 Mask:  
Data to be used for matching Byte0 of the Receive PTP Message.  
10.6.8 PTP Receive Configuration Register 2 (PTP_RXCFG2), Page 5  
This register provides for programming an IP address to be used for filtering packets to detect PTP Event  
Messages. Since the IPv4 address is 32-bits, to write an IP address, software must write two 16-bit  
values. The USER_IP_SEL bit in the PTP_RXCFG0 register selects which octects of the IP address are  
accessible through this register. For example, to write an IP address of 224.0.1.129, software should do  
the following:  
1. Set USER_IP_SEL bit in PTP_RXCFG0 register to 0  
2. Write 0xE000 (224.00) to PTP_RXCFG2  
3. Set USER_IP_SEL bit in the PTP_RXCFG0 register to 1  
4. Write 0x0181 (01.129) to PTP_RXCFG2  
Reading this registerwill return the IP address field selected by USER_IP_SEL.  
Table 10-59. PTP Receive Configuration Register 2 (PTP_RXCFG2), address 0x1B  
Bit  
Bit Name  
Default  
Description  
15:0  
IP_ADDR_DATA  
0000 0000 0000  
0000, RW  
Receive IP Address Data:  
16-bits of the IP Address field to be read or written. The USER_IP_SEL bit in the  
PTP_RXCFG0 Register selects the portion of the IP address is to be read or written.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
123  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.6.9 PTP Receive Configuration Register 3 (PTP_RXCFG3), Page 5  
This register provides extended configuration for IEEE 1588 Receive Timestamp operation.  
Table 10-60. PTP Receive Configuration Register 3 (PTP_RXCFG3), address 0x1C  
Bit  
Bit Name  
Default  
Description  
15:1  
2
TS_MIN_IFG  
1100, RW  
Minimum Inter-frame Gap:  
When a Timestamp is appended to a PTP Message, the length of the packet may  
get extended. This could reduce the Inter-frame Gap (IFG) between packets by as  
much as 8 byte times (640 ns at 100 Mb). This field sets a minimum on the IFG  
between packets in number of byte times. If the IFG is set larger than the actual  
IFG, preamble bytes of the subsequent packet will get dropped. This value should  
be set to the lowest possible value that the attached MAC can support.  
11  
10  
9
ACC_UDP  
ACC_CRC  
0, RW  
0, RW  
0, RW  
Record Timestamp if UDP Checksum Error:  
By default, Timestamps will be discarded for packets with UDP Checksum errors. If  
this bit is set, then the Timestamp will be made available in the normal manner.  
Record Timestamp if CRC Error:  
By default, Timestamps will be discarded for packets with CRC errors. If this bit is  
set, then the Timestamp will be made available in the normal manner.  
TS_APPEND  
Append Timestamp for L2:  
For Layer 2 encapsulated PTP messages, if this bit is set, always append the  
Timestamp to end of the PTP message rather than inserted in unused message  
fields. This bit will be ignored if TS_INSERT is 0.  
8
TS_INSERT  
0, RW  
Enable Timestamp Insertion:  
Enables Timestamp insertion into a packet containing a PTP Event Message. If this  
bit is set, the Timestamp will not be available through the PTP Receive Timestamp  
Register.  
7:0  
PTP_DOMAIN  
0000 0000, RW  
PTP Domain:  
Value of the PTP Message domainNumber field. If PTP_RXCFG0:DOMAIN_EN is  
set to 1, the Receive Timestamp unit will only capture a Timestamp if the  
domainNumber in the receive PTP message matches the value in this field. If the  
DOMAIN_EN bit is set to 0, the domainNumber field will be ignored.  
10.6.10 PTP Receive Configuration Register 4 (PTP_RXCFG4), Page 5  
This register provides extended configuration for IEEE 1588 Receive Timestamp operation.  
Table 10-61. PTP Receive Configuration Register 4 (PTP_RXCFG4), address 0x1D  
Bit  
Bit Name  
Default  
Description  
15  
IPV4_UDP_MOD  
0, RW  
Enable IPV4 UDP Modification:  
When timestamp insertion is enabled, this bit controls how UDP checksums are  
handled for IPV4 PTP event messages.  
If set to a 0, the device will clear the UDP checksum. If a UDP checksum error is  
detected the device will force a CRC error.  
If set to a 1, the device will not clear the UDP checksum. Instead it will generate a 2-  
byte value to correct the UDP checksum and append this immediately following the  
PTP message. If an incoming UDP checksum error is detected, the device will  
cause a UDP checksum error in the modified field. This function should only be used  
if the incoming packets contain two extra bytes of UDP data following the PTP  
message. This should not be enabled for systems using version 1 of the IEEE 1588  
specification.  
14  
TS_SEC_EN  
TS_SEC_LEN  
0, RW  
Enable Timestamp Seconds:  
Setting this bit to a 1 enables inserting a seconds field when Timestamp Insertion is  
enabled. If set to 0, only the nanoseconds portion of the Timestamp will be inserted  
in the packet. This bit will be ignored if TS_INSERT is 0.  
13:1  
2
00, RW  
Inserted Timestamp Seconds Length:  
This field indicates the length of the Seconds field to be inserted in the PTP  
message. This field will be ignored if TS_INSERT is 0 or if TS_SEC_EN is 0. The  
mapping is as follows:  
00 : Least Significant Byte only of Seconds field  
01 : Two Least Significant Bytes of Seconds field  
10 : Three Least Significant Bytes of Seconds field  
11 : All four Bytes of Seconds field  
124  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
Table 10-61. PTP Receive Configuration Register 4 (PTP_RXCFG4), address 0x1D (continued)  
Bit  
Bit Name  
Default  
Description  
11:6  
RXTS_NS_OFF  
0000 00, RW  
Receive Timestamp Nanoseconds offset:  
This field provides an offset to the Nanoseconds field when inserting a Timestamp  
into a received PTP message. If TS_APPEND is set to 1, the offset indicates an  
offset from the end of the PTP message. If TS_APPEND is set to 0, the offset  
indicates the byte offset from the beginning of the PTP message. This field will be  
ignored if TS_INSERT is 0.  
5:0  
RXTS_SEC_OFF  
00 0000, RW  
Receive Timestamp Seconds offset:  
This field provides an offset to the Seconds field when inserting a Timestamp into a  
received PTP message. If TS_APPEND is set to 1, the offset indicates an offset  
from the end of the inserted Nanoseconds field. If TS_APPEND is set to 0, the offset  
indicates the byte offset from the beginning of the PTP message. This field will be  
ignored if TS_INSERT is 0.  
10.6.11 PTP Temporary Rate Duration Low Register (PTP_TRDL), Page 5  
This register contains the low 16 bits of the duration in clock cycles to use the Temporary Rate as  
programmed in the PTP_RATEH and PTP_RATEL registers. Since the Temporary Rate takes affect upon  
writing the PTP_RATEL register, this register should be programmed before setting the Temporary Rate.  
This register does not need to be reprogrammed for each use of the Temporary Rate registers.  
Table 10-62. PTP Temporary Rate Duration Low Register (PTP_TRDL), address 0x1E  
Bit  
Bit Name  
Default  
Description  
15:0  
PTP_TR_DURL  
0000 0000 0000  
0000, RW  
PTP Temporary Rate Duration Low 16 bits:  
This register sets the duration for the Temporary Rate in number of clock cycles.  
The actual Time duration is dependent on the value of the Temporary Rate.  
10.6.12 PTP Temporary Rate Duration High Register (PTP_TRDH), Page 5  
This register contains the high 10 bits of the duration in clock cycles to use the Temporary Rate as  
programmed in the PTP_RATEH and PTP_RATEL registers. Since the Temporary Rate takes affect upon  
writing the PTP_RATEL register, this register should be programmed before setting the Temporary Rate.  
This register does not need to be reprogrammed for each use of the Temporary Rate registers.  
Table 10-63. PTP Temporary Rate Duration High Register (PTP_TRDH), address 0x1F  
Bit  
15:10  
9:0  
Bit Name  
RESERVED  
Default  
Description  
Reserved: Writes ignored, Read as 0  
0000 00, RO  
PTP_TR_DURH  
00 0000 0000, RW PTP Temporary Rate Duration High 10 bits:  
This register sets the duration for the Temporary Rate in number of clock cycles.  
The actual Time duration is dependent on the value of the Temporary Rate.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
Submit Documentation Feedback  
125  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.7 PTP 1588 CONFIGURATION REGISTERS - PAGE 6  
Page 6 PTP 1588 Configuration Registers are accessible by setting bits [2:0] = 110 of PAGESEL (13h).  
10.7.1 PTP Clock Output Control Register (PTP_COC), Page 6  
This register provides configuration for the PTP clock-synchronized output divide-by-N clock.  
Table 10-64. PTP Clock Output Control Register (PTP_COC), address 0x14  
Bit  
Bit Name  
Default  
Description  
15  
PTP_CLKOUT EN  
1, RW  
PTP Clock Output Enable:  
1 = Enable PTP divide-by-N clock output.  
0 = Disable PTP divide-by-N clock output.  
14  
PTP_CLKOUT SEL  
0, RW  
PTP Clock Output Source Select:  
1 = Select the Phase Generation Module (PGM) as the root clock for generating the  
divide-by-N output.  
0 = Select the Frequency-Controlled Oscillator (FCO) as the root clock for  
generating the divide-by-N output.  
For additional information related to the PTP clock output selection, refer to TI Lit  
Number SNLA099.  
13  
PTP_CLKOUT  
SPEEDSEL  
0, RW  
PTP Clock Output I/O Speed Select:  
1 = Enable faster rise/fall time for the divide-by-N clock output pin.  
0 = Enable normal rise/fall time for the divide-by-N clock output pin.  
12:8  
7:0  
RESERVED  
0 0000, RO  
Reserved: Writes ignored, Read as 0  
PTP_CLKDIV  
0000 1010, RW  
PTP Clock Divide-by Value:  
This field sets the divide-by value for the output clock. The output clock is divided  
from an internal 250 MHz clock. Valid values range from 2 to 255 (0x02 to 0xFF),  
giving a nominal output frequency range of 125 MHz down to 980.4 kHz. Divide-by  
values of 0 and 1 are not valid and will stop the output clock.  
10.7.2 PHY Status Frame Configuration Register 1 (PSF_CFG1), Page 6  
This register provides configuration for the PHY Status Frame function. Specifically, the 16-bit value in this  
register is used as the first 16-bits of the PTP Header data for the PHY Status Frame.  
Table 10-65. PHY Status Frame Configuration Register 1 (PSF_CFG1), address 0x15  
Bit  
Bit Name  
Default  
Description  
15:12  
PTPRESERVED  
0000, RW  
PTP v2 reserved field:  
This field contains the reserved 4-bit field (at offset 1) to be sent in status packets  
from the PHY to the local MAC using the MII receive data interface.  
11:8  
7:4  
VERSIONPTP  
0000, RW  
0000, RW  
0000, RW  
PTP v2 versionPTP field:  
This field contains the versionPTP field to be sent in status packets from the PHY to  
the local MAC using the MII receive data interface.  
TRANSPORT-  
SPECIFIC  
PTP v2 Header transportSpecific field:  
This field contains the MESSAGETYPE field to be sent in status packets from the  
PHY to the local MAC using the MII receive data interface.  
3:0  
MESSAGETYPE  
PTP v2 messageType field:  
This field contains the MESSAGETYPE field to be sent in status packets from the  
PHY to the local MAC using the MII receive data interface.  
126  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.7.3 PHY Status Frame Configuration Register 2 (PSF_CFG2), Page 6  
This register provides configuration for the PHY Status Frame function. Specifically, the 16-bit value in this  
register is used as the first 16-bits of the IP Source address for an IPv4 PHY Status Frame.  
Table 10-66. PHY Status Frame Configuration Register 2 (PSF_CFG2), address 0x16  
Bit  
Bit Name  
Default  
Description  
Second byte of IP source address:  
15:8  
IP_SA_BYTE1  
0000 0000, RW  
This field contains the second byte of the IP source address.  
7:0  
IP_SA_BYTE0  
0000 0000, RW  
First byte of IP source address:  
This field contains the most significant byte of the IP source address.  
10.7.4 PHY Status Frame Configuration Register 3 (PSF_CFG3), Page 6  
This register provides configuration for the PHY Status Frame function. Specifically, the 16-bit value in this  
register is used as the second 16-bits of the IP Source address for an IPv4 PHY Status Frame.  
Table 10-67. PHY Status Frame Configuration Register 3 (PSF_CFG3), address 0x17  
Bit  
Bit Name  
Default  
Description  
15:8  
IP_SA_BYTE3  
0000 0000, RW  
Fourth byte of IP source address:  
This field contains the fourth byte of the IP source address.  
7:0  
IP_SA_BYTE2  
0000 0000, RW  
Third byte of IP source address:  
This field contains the third byte of the IP source address.  
10.7.5 PHY Status Frame Configuration Register 4 (PSF_CFG4), Page 6  
This register provides configuration for the PHY Status Frame function. Specifically, the 16-bit value in this  
register is used to assist in computation of the IP checksum for an IPv4 PHY Status Frame.  
Table 10-68. PHY Status Frame Configuration Register 4 (PTP_PKTSTS4), address 0x18  
Bit  
Bit Name  
Default  
Description  
15:0  
IP_CHKSUM  
0000 0000 0000  
0000, RW  
IP Checksum:  
This field contains a precomputed value ones-complement addition of all fixed  
values in the IP Header. The device will add the Total Length and Identification  
values to generate the final checksum.  
10.7.6 PTP SFD Configuration Register (PTP_SFDCFG), Page 6  
This register provides configuration to enable outputting the RX and TX Start-of-Frame (SFD) signals on  
GPIO pins. Note that GPIO assignments are not exclusive.  
Table 10-69. PTP SFD Configuration Register (PTP_SFDCFG), address 0x19  
Bit  
15:8  
7:4  
Bit Name  
RESERVED  
TX_SFD_GPIO  
Default  
0000 0000, RO  
0000, RW  
Description  
Reserved: Writes ignored, Read as 0  
TX SFD GPIO Select:  
This field controls the GPIO output to which the TX SFD signal is assigned. Valid  
values are 0 (disabled) or 1-12.  
3:0  
RX_SFD_GPIO  
0000, RW  
RX SFD GPIO Select:  
This field controls the GPIO output to which the RX SFD signal is assigned. Valid  
values are 0 (disabled) or 1-12.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
Submit Documentation Feedback  
127  
Product Folder Links: DP83630  
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
10.7.7 PTP Interrupt Control Register (PTP_INTCTL), Page 6  
This register provides configuration for the IEEE 1588 interrupt function, allowing the PTP Interrupt to use  
any of the GPIO pins.  
Table 10-70. PTP Interrupt Control Register (PTP_INTCTL), address 0x1A  
Bit  
Bit Name  
Default  
Description  
Reserved: Writes ignored, Read as 0  
15:4  
RESERVED  
0000 0000 0000,  
RO  
3:0  
PTP_INT_GPIO  
0000, RW  
PTP Interrupt GPIO Select:  
To enable interrupts on a GPIO pin, this field should be set to the GPIO number.  
Setting this field to 0 will disable interrupts via the GPIO pins.  
10.7.8 PTP Clock Source Register (PTP_CLKSRC), Page 6  
This register provides configuration for the reference clock source driving the IEEE 1588 logic. The source  
clock period is also used by the 1588 clock nanoseconds adder to add the proper value every reference  
clock cycle.  
Table 10-71. PTP Clock Source Register (PTP_CLKSRC), address 0x1B  
Bit  
Bit Name  
Default  
Description  
15:1  
4
CLK_SRC  
00, RW  
PTP Clock Source Select:  
Selects among three possible sources for the PTP reference clock:  
00 : 125 MHz from internal PGM (default)  
01 : Divide-by-N from 125 MHz internal PGM  
1x : External reference clock  
13:7  
6:0  
RESERVED  
00 0000 0, RO  
000 0000, RW  
Reserved: Writes ignored, Read as 0  
CLK_SRC_PER  
PTP Clock Source Period:  
This field configures the PTP clock source period in nanoseconds. Values less than  
8 are invalid and cannot be written; attempting to write a value less than 8 will cause  
CLK_SRC_PER to be 8. When the clock source selection is the Divide-by-N from  
the internal PGM, bits 6:3 are used as the N value; bits 2:0 are ignored in this mode.  
10.7.9 PTP Ethernet Type Register (PTP_ETR), Page 6  
This register provides the Ethernet Type (Ethertype) field for PTP transport over Ethernet (Layer2).  
Table 10-72. PTP Ethernet Type Register (PTP_ETR), address 0x1C  
Bit  
Bit Name  
Default  
Description  
15:0  
PTP_ETYPE  
1111 0111 1000  
1000, RW  
PTP Ethernet Type:  
This field contains the Ethernet Type field used to detect PTP messages transported  
over Ethernet layer 2.  
10.7.10 PTP Offset Register (PTP_OFF), Page 6  
This register provides the byte offset to the PTP message in a Layer2 Ethernet frame.  
Table 10-73. PTP Offset Register (PTP_OFF), address 0x1D  
Bit  
15:8  
7:0  
Bit Name  
RESERVED  
PTP_OFFSET  
Default  
Description  
Reserved: Writes ignored, Read as 0  
0000 0000, RO  
0000 0000, RO  
PTP Offset:  
This field contains the offset in bytes to the PTP Message from the preceding  
header. For Layer2, this is the offset from the Ethernet Type Field. For UDP/IP, it is  
the offset from the end of the UDP Header.  
128  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
DP83630  
www.ti.com  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
10.7.11 PTP GPIO Monitor Register (PTP_GPIOMON), Page 6  
This register provides read-only access to the current values on GPIO inputs.  
Table 10-74. PTP GPIO Monitor Register (PTP_GPIOMON), address 0x1E  
Bit  
Bit Name  
RESERVED  
PTP_GPIO_IN  
Default  
Description  
Reserved: Writes ignored, Read as 0  
15:12  
11:0  
0000, RO  
0000 0000 0000,  
RO  
PTP GPIO Inputs:  
This field reflects the current values seen on the GPIO inputs. GPIOs 12 through 1  
are mapped to bits 11:0 in order.  
10.7.12 PTP Receive Hash Register (PTP_RXHASH), Page 6  
This register provides configuration for the source identity hash filter of the PTP receive packet parser. If  
enabled, the receive parse logic will deliver a receive timestamp only if the hash function on the ten octet  
sourcePortIdentity field correctly matches the programmed value. The source identity hash filter does not  
affect timestamp insertion.  
Table 10-75. PTP Receive Hash Register (PTP_RXHASH), address 0x1F  
Bit  
15:13  
12  
Bit Name  
RESERVED  
RX_HASH_EN  
Default  
000, RO  
0, RW  
Description  
Reserved: Writes ignored, Read as 0  
Receive Hash Enable:  
Enables filtering of PTP messages based on the hash function on the ten octet  
sourcePortIdentity field.  
11:0  
PTP_RX_HASH  
0000 0000 0000,  
RW  
Receive Hash:  
This field contains the expected source identity hash value for incoming PTP event  
messages.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Register Block  
129  
Submit Documentation Feedback  
Product Folder Links: DP83630  
 
DP83630  
SNLS335B OCTOBER 2010REVISED APRIL 2013  
www.ti.com  
Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (April 2013) to Revision B  
Page  
Changed layout of National Data Sheet to TI format ......................................................................... 129  
130  
Register Block  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: DP83630  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
DP83630SQ/NOPB  
DP83630SQE/NOPB  
DP83630SQX/NOPB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
WQFN  
WQFN  
WQFN  
RHS  
48  
48  
48  
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DP83630SQ  
ACTIVE  
ACTIVE  
RHS  
RHS  
250  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
DP83630SQ  
DP83630SQ  
2500  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DP83630SQ/NOPB  
DP83630SQE/NOPB  
DP83630SQX/NOPB  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000  
250  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DP83630SQ/NOPB  
DP83630SQE/NOPB  
DP83630SQX/NOPB  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000  
250  
367.0  
213.0  
367.0  
367.0  
191.0  
367.0  
38.0  
55.0  
38.0  
2500  
Pack Materials-Page 2  
MECHANICAL DATA  
RHS0048A  
SQA48A (Rev B)  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

DP83630SQX

DP83630 Precision PHYTER™ - IEEE 1588 Precision Time Protocol Transceiver
TI

DP83630SQX/NOPB

具有较小外形尺寸的 IEEE 1588 精密时间协议 (PTP) 以太网 PHY 收发器 | RHS | 48 | -40 to 85
TI

DP83640

Precision PHYTER - IEEE㈢ 1588 Precision Time Protocol Transceiver
NSC

DP83640

IEEE 1588 精密时间协议 (PTP) 以太网 PHY 收发器
TI

DP83640TVV

DP83640 Precision PHYTER - IEEE 1588 Precision Time Protocol Transceiver
TI

DP83640TVV/NOPB

DP83640 Precision PHYTER - IEEE 1588 Precision Time Protocol Transceiver
TI

DP83640TVVX

DP83640 Precision PHYTER - IEEE 1588 Precision Time Protocol Transceiver
TI

DP83640TVVX/NOPB

DP83640 Precision PHYTER - IEEE 1588 Precision Time Protocol Transceiver
TI

DP83640_08

Precision PHYTER - IEEE㈢ 1588 Precision Time Protocol Transceiver
NSC

DP83640_10

Synchronizing a DP83640 PTP Master to a GPS Receiver
NSC

DP83815

10/100 Mb/s Integrated PCI Ethernet Media Access Controller and Physical Layer (MacPhyter)
NSC

DP83815CVNG

1 CHANNEL(S), 100Mbps, LOCAL AREA NETWORK CONTROLLER, PQFP144, LQFP-144
TI