DP83849CVSX/NOPB [TI]

具有商业级温度范围的双端口 10/100Mbps 以太网 PHY 收发器 | PFC | 80 | 0 to 70;
DP83849CVSX/NOPB
型号: DP83849CVSX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有商业级温度范围的双端口 10/100Mbps 以太网 PHY 收发器 | PFC | 80 | 0 to 70

以太网 局域网(LAN)标准 以太网:16GBASE-T 电信 功率因数校正 电信集成电路
文件: 总100页 (文件大小:952K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DP83849C  
DP83849C PHYTER DUAL Commercial Temperature Dual Port 10/100 Mb/s Ethernet  
Physical Layer Transceiver  
Literature Number: SNOSAX0D  
May 2008  
DP83849C PHYTER® DUAL Commercial Temperature  
Dual Port 10/100 Mb/s Ethernet Physical Layer Transceiver  
Features  
General Description  
Low-power 3.3V, 0.18µm CMOS technology  
Low power consumption <600mW Typical  
3.3V MAC Interface  
The number of applications requiring Ethernet Con-  
nectivity continues to expand. Along with this  
increased market demand is a change in application  
requirements. Where single channel Ethernet used to  
be sufficient, many applications such as wireless  
remote base stations and industrial networking now  
require DUAL Port functionality for redundancy or sys-  
tem management.  
The DP83849C is a highly reliable, feature rich device  
perfectly suited for commercial or industrial applica-  
tions enabling Ethernet on the factory floor. The  
DP83849C features two fully independent 10/100 ports  
for multi-port applications.  
The DP83849C provides optimum flexibility in MPU  
selection by supporting both MII and RMII interfaces.  
In addition this device includes a powerful new diag-  
nostics tool to ensure initial network operation and  
maintenance. In addition to the TDR scheme, com-  
monly used for detecting faults during installation,  
NATIONAL’s innovative cable diagnostics provides for  
real time continuous monitoring of the link quality. This  
allows the system designer to implement a fault pre-  
diction mechanism to detect and warn of changing or  
deteriorating link conditions.  
Auto-MDIX for 10/100 Mb/s  
Energy Detection Mode  
Dynamic Integrity Utility  
Dynamic Link Quality Monitoring  
TDR based Cable Diagnostic and Cable Length Detection  
Optimized Latency for Real Time Ethernet Operation  
Reference Clock out  
RMII Rev. 1.2 Interface (configurable)  
SNI Interface (configurable)  
MII Serial Management Interface (MDC and MDIO)  
IEEE 802.3u MII  
IEEE 802.3u Auto-Negotiation and Parallel Detection  
IEEE 802.3u ENDEC, 10BASE-T transceivers and filters  
IEEE 802.3u PCS, 100BASE-TX transceivers and filters  
Integrated ANSI X3.263 compliant TP-PMD physical sub-layer  
with adaptive equalization and Baseline Wander compensation  
Programmable LED support for Link, 10 /100 Mb/s Mode, Activ-  
ity, Duplex and Collision Detect  
Single register access for complete PHY status  
10/100 Mb/s packet BIST (Built in Self Test)  
80-pin TQFP package (12mm x 12mm)  
With the DP83849C, National Semiconductor contin-  
ues to build on its Ethernet expertise and leadership  
position by providing a powerful combination of fea-  
tures and flexibility, easing Ethernet implementation for  
the system designer.  
Applications  
Medical Instrumentation  
Factory Automation  
Motor & Motion Control  
Wireless Remote Base Station  
General Embedded Applications  
System Diagram  
10BASE-T  
or  
Port B  
MII/RMII/SNI  
100BASE-TX  
DP83849C  
MPU/CPU  
10BASE-T  
or  
Port A  
MII/RMII/SNI  
100BASE-TX  
25 MHz  
Clock  
Source  
Status  
LEDs  
Typical Application  
PHYTER is a registered trademark of National Semiconductor Corporation  
© 2008 National Semiconductor Corporation  
www.national.com  
1
MII MANAGEMENT  
INTERFACE  
PORT A  
PORT B  
MII/RMII/SNI  
MII/RMII/SNI  
TX  
RX  
TX  
RX  
MDC  
MDIO  
MANAGEMENT  
INTERFACE  
10/100 PHY CORE  
PORT B  
10/100 PHY CORE  
PORT A  
LED  
LED  
DRIVERS  
DRIVERS  
LEDS  
LEDS  
TPTD±  
TPRD±  
TPTD±  
TPRD±  
Figure 1. DP83849C Functional Block Diagram  
www.national.com  
2
Table of Contents  
1.0 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.1 Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.2 MAC Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.3 Clock Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.4 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.5 Reset and Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
1.6 Strap Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
1.7 10 Mb/s and 100 Mb/s PMD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
1.8 Special Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
1.9 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
1.10 Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.1 Auto-Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.1.1 Auto-Negotiation Pin Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.1.2 Auto-Negotiation Register Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.1.3 Auto-Negotiation Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.1.4 Auto-Negotiation Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.1.5 Enabling Auto-Negotiation via Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.1.6 Auto-Negotiation Complete Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.2 Auto-MDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.3 PHY Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.3.1 MII Isolate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.4 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.4.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.4.2 LED Direct Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.5 Half Duplex vs. Full Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.6 Internal Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.7 BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.0 MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.1 MII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.1.1 Nibble-wide MII Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.1.2 Collision Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.1.3 Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.2 Reduced MII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.3 10 Mb Serial Network Interface (SNI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.4 802.3u MII Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.4.1 Serial Management Register Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.4.2 Serial Management Access Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.4.3 Serial Management Preamble Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.4.4 Simultaneous Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.0 Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.1 100BASE-TX TRANSMITTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.1.1 Code-group Encoding and Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.1.2 Scrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.1.3 NRZ to NRZI Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.1.4 Binary to MLT-3 Convertor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.2 100BASE-TX RECEIVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.2.1 Analog Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.2.2 Digital Signal Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.2.2.1 Digital Adaptive Equalization and Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.2.2.2 Base Line Wander Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.2.3 Signal Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.2.4 MLT-3 to NRZI Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.2.5 NRZI to NRZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.2.6 Serial to Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3
www.national.com  
4.2.7 Descrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.2.8 Code-group Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.2.9 4B/5B Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.2.10 100BASE-TX Link Integrity Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.2.11 Bad SSD Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.3 10BASE-T TRANSCEIVER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
4.3.1 Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.3.2 Smart Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.3.3 Collision Detection and SQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.3.4 Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.3.5 Normal Link Pulse Detection/Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.3.6 Jabber Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.3.7 Automatic Link Polarity Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.3.8 Transmit and Receive Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.3.9 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.3.10 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.0 Design Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.1 TPI Network Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
5.2 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5.3 Clock In (X1) Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5.4 Power Feedback Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.5 Power Down/Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
5.5.1 Power Down Control Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.5.2 Interrupt Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.6 Energy Detect Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
5.7 Link Diagnostic Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
5.7.1 Linked Cable Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.7.1.1 Polarity Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.7.1.2 Cable Swap Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.7.1.3 100MB Cable Length Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.7.1.4 Frequency Offset Relative to Link Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.7.1.5 Cable Signal Quality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.7.2 Link Quality Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.7.2.1 Link Quality Monitor Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.7.2.2 Checking Current Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.7.2.3 Threshold Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.7.3 TDR Cable Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5.7.3.1 TDR Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5.7.3.2 TDR Pulse Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5.7.3.3 TDR Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5.7.3.4 TDR Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
6.0 Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.1 Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
6.2 Full Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
6.3 Soft Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
7.0 Register Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
7.1 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
7.1.1 Basic Mode Control Register (BMCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
7.1.2 Basic Mode Status Register (BMSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
7.1.3 PHY Identifier Register #1 (PHYIDR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
7.1.4 PHY Identifier Register #2 (PHYIDR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
7.1.5 Auto-Negotiation Advertisement Register (ANAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
7.1.6 Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page) . . . . . . . . . . . . . . . . 53  
7.1.7 Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page) . . . . . . . . . . . . . . . . . 54  
7.1.8 Auto-Negotiate Expansion Register (ANER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
7.1.9 Auto-Negotiation Next Page Transmit Register (ANNPTR) . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
7.1.10 PHY Status Register (PHYSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
7.1.11 MII Interrupt Control Register (MICR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
7.1.12 MII Interrupt Status and Misc. Control Register (MISR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
7.1.13 Page Select Register (PAGESEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
www.national.com  
4
7.2 Extended Registers - Page 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
7.2.1 False Carrier Sense Counter Register (FCSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.2.2 Receiver Error Counter Register (RECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.2.3 100 Mb/s PCS Configuration and Status Register (PCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.2.4 RMII and Bypass Register (RBR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.2.5 LED Direct Control Register (LEDCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
7.2.6 PHY Control Register (PHYCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
7.2.7 10 Base-T Status/Control Register (10BTSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
7.2.8 CD Test and BIST Extensions Register (CDCTRL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
7.2.9 Phy Control Register 2 (PHYCR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
7.2.10 Energy Detect Control (EDCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
7.3 Link Diagnostics Registers - Page 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
7.3.1 100Mb Length Detect Register (LEN100_DET), Page 2, address 14h . . . . . . . . . . . . . . . . . 70  
7.3.2 100Mb Frequency Offset Indication Register (FREQ100), Page 2, address 15h . . . . . . . . . 70  
7.3.3 TDR Control Register (TDR_CTRL), Page 2, address 16h . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
7.3.4 TDR Window Register (TDR_WIN), Page 2, address 17h . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
7.3.5 TDR Peak Register (TDR_PEAK), Page 2, address 18h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
7.3.6 TDR Threshold Register (TDR_THR), Page 2, address 19h . . . . . . . . . . . . . . . . . . . . . . . . . 72  
7.3.7 Variance Control Register (VAR_CTRL), Page 2, address 1Ah . . . . . . . . . . . . . . . . . . . . . . 73  
7.3.8 Variance Data Register (VAR_DATA), Page 2, address 1Bh . . . . . . . . . . . . . . . . . . . . . . . . 73  
7.3.9 Link Quality Monitor Register (LQMR), Page 2, address 1Dh . . . . . . . . . . . . . . . . . . . . . . . . 74  
7.3.10 Link Quality Data Register (LQDR), Page 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
8.0 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
8.1 DC Specs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
8.2 AC Specs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
8.2.1 Power Up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
8.2.2 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
8.2.3 MII Serial Management Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
8.2.4 100 Mb/s MII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
8.2.5 100 Mb/s MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
8.2.6 100BASE-TX MII Transmit Packet Latency Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
8.2.7 100BASE-TX MII Transmit Packet Deassertion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
8.2.8 100BASE-TX Transmit Timing (tR/F & Jitter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
8.2.9 100BASE-TX MII Receive Packet Latency Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
8.2.10 100BASE-TX MII Receive Packet Deassertion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
8.2.11 10 Mb/s MII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
8.2.12 10 Mb/s MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
8.2.13 10 Mb/s Serial Mode Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
8.2.14 10 Mb/s Serial Mode Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
8.2.15 10BASE-T Transmit Timing (Start of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
8.2.16 10BASE-T Transmit Timing (End of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
8.2.17 10BASE-T Receive Timing (Start of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
8.2.18 10BASE-T Receive Timing (End of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
8.2.19 10 Mb/s Heartbeat Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
8.2.20 10 Mb/s Jabber Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
8.2.21 10BASE-T Normal Link Pulse Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
8.2.22 Auto-Negotiation Fast Link Pulse (FLP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
8.2.23 100BASE-TX Signal Detect Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
8.2.24 100 Mb/s Internal Loopback Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
8.2.25 10 Mb/s Internal Loopback Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
8.2.26 RMII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
8.2.27 RMII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
8.2.28 Isolation Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
8.2.29 CLK2MAC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
8.2.30 100 Mb/s X1 to TX_CLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
9.0 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
5
www.national.com  
List of Figures  
Figure 1. DP83849C Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Figure 2. PHYAD Strapping Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Figure 3. AN Strapping and LED Loading Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Figure 4. Typical MDC/MDIO Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Figure 5. Typical MDC/MDIO Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Figure 6. 100BASE-TX Transmit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Figure 7. 100BASE-TX Receive Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Figure 9. EIA/TIA Attenuation vs. Frequency for 0, 50, 100, 130 & 150 meters of CAT 5 cable . . . . . . . . . . .30  
Figure 10. 100BASE-TX BLW Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Figure 11. 10BASE-T Twisted Pair Smart Squelch Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Figure 12. 10/100 Mb/s Twisted Pair Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Figure 13. Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Figure 14. Power Feeback Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
www.national.com  
6
List of Tables  
Table 1. Auto-Negotiation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Table 2. PHY Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Table 3. LED Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Table 4. Supported packet sizes at +/-50ppm frequency accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Table 5. Typical MDIO Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Table 13. 4B5B Code-Group Encoding/Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Table 14. 25 MHz Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Table 15. 50 MHz Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Table 16. 25 MHz Crystal Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Table 17. Link Quality Monitor Parameter Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Table 18. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Table 19. Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Table 20. Basic Mode Control Register (BMCR), address 00h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Table 21. Basic Mode Status Register (BMSR), address 01h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Table 22. PHY Identifier Register #1 (PHYIDR1), address 02h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Table 23. PHY Identifier Register #2 (PHYIDR2), address 03h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Table 24. Negotiation Advertisement Register (ANAR), address 04h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Table 25. Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page), address 05h . . . . . . . . .53  
Table 26. Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page), address 05h . . . . . . . . . .54  
Table 27. Auto-Negotiate Expansion Register (ANER), address 06h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Table 28. Auto-Negotiation Next Page Transmit Register (ANNPTR), address 07h . . . . . . . . . . . . . . . . . . . .56  
Table 29. PHY Status Register (PHYSTS), address 10h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Table 30. MII Interrupt Control Register (MICR), address 11h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Table 31. MII Interrupt Status and Misc. Control Register (MISR), address 12h . . . . . . . . . . . . . . . . . . . . . . .59  
Table 32. Page Select Register (PAGESEL), address 13h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Table 33. False Carrier Sense Counter Register (FCSCR), address 14h . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Table 34. Receiver Error Counter Register (RECR), address 15h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Table 35. 100 Mb/s PCS Configuration and Status Register (PCSR), address 16h . . . . . . . . . . . . . . . . . . . . .61  
Table 36. RMII and Bypass Register (RBR), addresses 17h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Table 37. LED Direct Control Register (LEDCR), address 18h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Table 38. PHY Control Register (PHYCR), address 19h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Table 39. 10Base-T Status/Control Register (10BTSCR), address 1Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Table 40. CD Test and BIST Extensions Register (CDCTRL1), address 1Bh . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Table 41. Phy Control Register 2 (PHYCR2), address 1Ch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Table 42. Energy Detect Control (EDCR), address 1Dh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Table 43. 100Mb Length Detect Register (LEN100_DET), address 14h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Table 44. 100Mb Frequency Offset Indication Register (FREQ100), address 15h . . . . . . . . . . . . . . . . . . . . . .70  
Table 45. TDR Control Register (TDR_CTRL), address 16h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Table 46. TDR Window Register (TDR_WIN), address 17h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Table 47. TDR Peak Register (TDR_PEAK), address 18h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Table 48. TDR Threshold Register (TDR_THR), address 19h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Table 49. Variance Control Register (VAR_CTRL), address 1Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Table 50. Variance Data Register (VAR_DATA), address 1Bh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Table 51. Link Quality Monitor Register (LQMR), address 1Dh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Table 52. Link Quality Data Register (LQDR), address 1Eh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
7
www.national.com  
Pin Layout  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
CRS_B/CRS_DV_B/LED_CFG_B  
RX_DV_B/MII_MODE_B  
RX_CLK_B  
IOGND3  
ANAGND4  
TPRDM_B  
TPRDP_B  
CDGND2  
IOVDD3  
TPTDM_B  
TPTDP_B  
PFBIN3  
MDIO  
MDC  
CLK2MAC  
ANAGND3  
RBIAS  
X2  
DP83849CVS  
X1  
PFBOUT  
RESET_N  
ANA33VDD  
ANAGND2  
PFBIN2  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
IOGND4  
TPTDP_A  
TPTDM_A  
CDGND1  
TPRDP_A  
TPRDM_A  
ANAGND1  
LED_ACT/LED_COL/AN_EN_A  
IOVDD4  
RX_CLK_A  
RX_DV_A/MII_MODE_A  
o
Top View  
NS Package Number VHB80A  
www.national.com  
8
1.0 Pin Descriptions  
The DP83849C pins are classified into the following inter- All DP83849C signal pins are I/O cells regardless of the  
face categories (each interface is described in the sections particular use. The definitions below define the functionality  
that follow):  
of the I/O cells for each pin.  
— Serial Management Interface  
— MAC Data Interface  
— Clock Interface  
Type: I  
Input  
Type: O  
Type: I/O  
Type OD  
Output  
Input/Output  
Open Drain  
— LED Interface  
— Reset and Power Down  
— Strap Options  
Type: PD,PU Internal Pulldown/Pullup  
Type: S Strapping Pin (All strap pins have weak in-  
ternal pull-ups or pull-downs. If the default  
strap value is to be changed then an exter-  
nal 2.2 kresistor should be used. Please  
see Section 1.6 for details.)  
— 10/100 Mb/s PMD Interface  
— Special Connect Pins  
— Power and Ground pins  
Note: Strapping pin option. Please see Section 1.6 for strap  
definitions.  
1.1 Serial Management Interface  
Signal Name  
MDC  
Type  
Pin #  
Description  
I
67  
MANAGEMENT DATA CLOCK: Synchronous clock to the MDIO  
management data input/output serial interface which may be asyn-  
chronous to transmit and receive clocks. The maximum clock rate is  
25 MHz with no minimum clock rate.  
MDIO  
I/O  
66  
MANAGEMENT DATA I/O: Bi-directional management instruc-  
tion/data signal that may be sourced by the station management entity  
or the PHY. This pin requires a 1.5 kpullup resistor.  
1.2 MAC Data Interface  
Signal Name  
TX_CLK_A  
Type  
Pin #  
12  
Description  
O
MII TRANSMIT CLOCK: 25 MHz Transmit clock output in 100 Mb/s  
mode or 2.5 MHz in 10 Mb/s mode derived from the 25 MHz reference  
clock.  
TX_CLK_B  
50  
Unused in RMII mode. The device uses the X1 reference clock input  
as the 50 MHz reference for both transmit and receive.  
SNI TRANSMIT CLOCK: 10 MHz Transmit clock output in 10 Mb SNI  
mode. The MAC should source TX_EN and TXD_0 using this clock.  
TX_EN_A  
TX_EN_B  
I
I
13  
49  
MII TRANSMIT ENABLE: Active high input indicates the presence of  
valid data inputs on TXD[3:0].  
RMII TRANSMIT ENABLE: Active high input indicates the presence  
of valid data on TXD[1:0].  
SNI TRANSMIT ENABLE: Active high input indicates the presence of  
valid data on TXD_0.  
TXD[3:0]_A  
TXD[3:0]_B  
17,16,15,14 MII TRANSMIT DATA: Transmit data MII input pins, TXD[3:0], that  
accept data synchronous to the TX_CLK (2.5 MHz in 10 Mb/s mode  
or 25 MHz in 100 Mb/s mode).  
45,46,47,48  
RMII TRANSMIT DATA: Transmit data RMII input pins, TXD[1:0],  
that accept data synchronous to the 50 MHz reference clock.  
SNI TRANSMIT DATA: Transmit data SNI input pin, TXD_0, that ac-  
cept data synchronous to the TX_CLK (10 MHz in 10 Mb/s SNI mode).  
9
www.national.com  
Signal Name  
RX_CLK_A  
Type  
Pin #  
79  
Description  
O
MII RECEIVE CLOCK: Provides the 25 MHz recovered receive  
clocks for 100 Mb/s mode and 2.5 MHz for 10 Mb/s mode.  
RX_CLK_B  
63  
Unused in RMII mode. The device uses the X1 reference clock input  
as the 50 MHz reference for both transmit and receive.  
SNI RECEIVE CLOCK: Provides the 10 MHz recovered receive  
clocks for 10 Mb/s SNI mode.  
RX_DV_A  
RX_DV_B  
O
O
80  
62  
MII RECEIVE DATA VALID: Asserted high to indicate that valid data  
is present on the corresponding RXD[3:0].  
RMII RECEIVE DATA VALID: Asserted high to indicate that valid  
data is present on the corresponding RXD[1:0]. This signal is not re-  
quired in RMII mode, since CRS_DV includes the RX_DV signal, but  
is provided to allow simpler recovery of the Receive data.  
This pin is not used in SNI mode.  
RX_ER_A  
RX_ER_B  
2
MII RECEIVE ERROR: Asserted high synchronously to RX_CLK to  
indicate that an invalid symbol has been detected within a received  
packet in 100 Mb/s mode.  
60  
RMII RECEIVE ERROR: Asserted high synchronously to X1 whenev-  
er an invalid symbol is detected, and CRS_DV is asserted in 100 Mb/s  
mode. This pin is also asserted on detection of a False Carrier event.  
This pin is not required to be used by a MAC in RMII mode, since the  
Phy is required to corrupt data on a receive error.  
This pin is not used in SNI mode.  
RXD[3:0]_A  
RXD[3:0]_B  
O
9,8,5,4  
MII RECEIVE DATA: Nibble wide receive data signals driven syn-  
chronously to the RX_CLK, 25 MHz for 100 Mb/s mode, 2.5 MHz for  
10 Mb/s mode). RXD[3:0] signals contain valid data when RX_DV is  
asserted.  
53,56,57,58  
RMII RECEIVE DATA: 2-bits receive data signals, RXD[1:0], driven  
synchronously to the X1 clock, 50 MHz.  
SNI RECEIVE DATA: Receive data signal, RXD_0, driven synchro-  
nously to the RX_CLK. RXD_0 contains valid data when CRS is as-  
serted. RXD[3:1] are not used in this mode.  
CRS_A/CRS_DV_A  
CRS_B/CRS_DV_B  
O
O
1
MII CARRIER SENSE: Asserted high to indicate the receive medium  
is non-idle.  
61  
RMII CARRIER SENSE/RECEIVE DATA VALID: This signal com-  
bines the RMII Carrier and Receive Data Valid indications. For a de-  
tailed description of this signal, see the RMII Specification.  
SNI CARRIER SENSE: Asserted high to indicate the receive medium  
is non-idle. It is used to frame valid receive data on the RXD_0 signal.  
COL_A  
COL_B  
3
MII COLLISION DETECT: Asserted high to indicate detection of a  
collision condition (simultaneous transmit and receive activity) in 10  
Mb/s and 100 Mb/s Half Duplex Modes.  
59  
While in 10BASE-T Half Duplex mode with heartbeat enabled this pin  
is also asserted for a duration of approximately 1µs at the end of  
transmission to indicate heartbeat (SQE test).  
In Full Duplex Mode, for 10 Mb/s or 100 Mb/s operation, this signal is  
always logic 0. There is no heartbeat function during 10 Mb/s full du-  
plex operation.  
RMII COLLISION DETECT: Per the RMII Specification, no COL sig-  
nal is required. The MAC will recover CRS from the CRS_DV signal  
and use that along with its TX_EN signal to determine collision.  
SNI COLLISION DETECT: Asserted high to indicate detection of a  
collision condition (simultaneous transmit and receive activity) in 10  
Mb/s SNI mode.  
www.national.com  
10  
1.3 Clock Interface  
Signal Name  
Type  
Pin #  
Description  
X1  
I
70  
CRYSTAL/OSCILLATOR INPUT: This pin is the primary clock  
reference input for the DP83849C and must be connected to a 25  
MHz 0.005% (+50 ppm) clock source. The DP83849C supports  
either an external crystal resonator connected across pins X1 and  
X2, or an external CMOS-level oscillator source connected to pin  
X1 only.  
RMII REFERENCE CLOCK: This pin is the primary clock refer-  
ence input for the RMII mode and must be connected to a 50 MHz  
0.005% (+50 ppm) CMOS-level oscillator source.  
X2  
O
O
69  
68  
CRYSTAL OUTPUT: This pin is the primary clock reference out-  
put to connect to an external 25 MHz crystal resonator device.  
This pin must be left unconnected if an external CMOS oscillator  
clock source is used.  
CLK2MAC  
CLOCK TO MAC:  
In MII mode, this pin provides a 25 MHz clock output to the sys-  
tem.  
In RMII mode, this pin provides a 50 MHz clock output to the sys-  
tem.  
This allows other devices to use the reference clock from the  
DP83849C without requiring additional clock sources.  
If the system does not require the CLK2MAC signal, the  
CLK2MAC output should be disabled via the CLK2MAC disable  
strap.  
1.4 LED Interface  
is register configurable. The definitions for the LEDs for  
each mode are detailed below. Since the LEDs are also  
used as strap options, the polarity of the LED output is  
dependent on whether the pin is pulled up or down.  
The DP83849C supports three configurable LED pins. The  
LEDs support two operational modes which are selected  
by the LED mode strap and a third operational mode which  
Signal Name  
LED_LINK_A  
Type  
Pin #  
19  
Description  
I/O  
LINK LED: In Mode 1, this pin indicates the status of the LINK.  
The LED will be ON when Link is good.  
LED_LINK_B  
43  
LINK/ACT LED: In Mode 2 and Mode 3, this pin indicates transmit  
and receive activity in addition to the status of the Link. The LED  
will be ON when Link is good. It will blink when the transmitter or  
receiver is active.  
LED_SPEED_A  
LED_SPEED_B  
I/O  
I/O  
20  
42  
SPEED LED: The LED is ON when device is in 100 Mb/s and OFF  
when in 10 Mb/s. Functionality of this LED is independent of mode  
selected.  
LED_ACT/LED_COL_A  
LED_ACT/LED_COL_B  
21  
41  
ACTIVITY LED: In Mode 1, this pin is the Activity LED which is  
ON when activity is present on either Transmit or Receive.  
COLLISION/DUPLEX LED: In Mode 2, this pin by default indi-  
cates Collision detection. For Mode 3, this LED output may be  
programmed to indicate Full-duplex status instead of Collision.  
11  
www.national.com  
1.5 Reset and Power Down  
Signal Name  
Type  
Pin #  
Description  
RESET_N  
I, PU  
71  
RESET: Active Low input that initializes or re-initializes the  
DP83849C. Asserting this pin low for at least 1 µs will force a reset  
process to occur. All internal registers will re-initialize to their de-  
fault states as specified for each bit in the Register Block section.  
All strap options are re-initialized as well.  
PWRDOWN_INT_A  
PWRDOWN_INT_B  
I, PU  
18  
44  
The default function of this pin is POWER DOWN.  
POWER DOWN: The pin is an active low input in this mode and  
should be asserted low to put the device in a Power Down mode.  
INTERRUPT: The pin is an open drain output in this mode and will  
be asserted low when an interrupt condition occurs. Although the  
pin has a weak internal pull-up, some applications may require an  
external pull-up resister. Register access is required for the pin to  
be used as an interrupt mechanism. See Section 5.5.2 Interrupt  
Mechanism for more details on the interrupt mechanisms.  
1.6 Strap Options  
A 2.2 kresistor should be used for pull-down or pull-up to  
change the default strap option. If the default option is  
required, then there is no need for external pull-up or pull  
down resistors. Since these pins may have alternate func-  
tions after reset is deasserted, they should not be con-  
nected directly to VCC or GND.  
The DP83849C uses many of the functional pins as strap  
options. The values of these pins are sampled during reset  
and used to strap the device into specific modes of opera-  
tion. The strap option pin assignments are defined below.  
The functional pin name is indicated in parentheses.  
Signal Name  
PHYAD1 (RXD0_A)  
PHYAD2 (RXD1_A)  
PHYAD3 (RXD0_B)  
PHYAD4 (RXD1_B)  
Type  
Pin #  
4
Description  
S, O, PD  
S, O, PD  
S, O, PD  
S, O, PD  
PHY ADDRESS [4:1]: The DP83849C provides four PHY ad-  
dress pins, the state of which are latched into the PHYCTRL reg-  
ister at system Hardware-Reset. Phy Address[0] selects between  
ports A and B.  
5
58  
57  
The DP83849C supports PHY Address strapping for Port A even  
values 0 (<0000_0>) through 30 (<1111_0>). Port B will be  
strapped to odd values 1 (<0000_1>) through 31 (<1111_1>).  
PHYAD[4:1] pins have weak internal pull-down resistors.  
www.national.com  
12  
Signal Name  
AN_EN  
(LED_ACT/LED_COL_A)  
AN1_A (LED_SPEED_A)  
AN0_A (LED_LINK_A)  
Type  
Pin #  
21  
Description  
S, O, PU  
Auto-Negotiation Enable: When high, this enables Auto-Negoti-  
ation with the capability set by AN0 and AN1 pins. When low, this  
puts the part into Forced Mode with the capability set by AN0 and  
AN1 pins.  
20  
19  
AN0 / AN1: These input pins control the forced or advertised op-  
erating mode of the DP83849C according to the following table.  
The value on these pins is set by connecting the input pins to  
GND (0) or VCC (1) through 2.2 kresistors. These pins should  
41  
42  
43  
AN_EN  
(LED_ACT/LED_COL_B)  
NEVER be connected directly to GND or VCC.  
AN1_B (LED_SPEED_B)  
AN0_B (LED_LINK_B)  
The value set at this input is latched into the DP83849C at Hard-  
ware-Reset.  
The float/pull-down status of these pins are latched into the Basic  
Mode Control Register and the Auto_Negotiation Advertisement  
Register during Hardware-Reset.  
The default is 111 since these pins have internal pull-ups.  
AN_EN AN1 AN0  
Forced Mode  
0
0
0
0
0
0
1
1
0
1
0
1
10BASE-T, Half-Duplex  
10BASE-T, Full-Duplex  
100BASE-TX, Half-Duplex  
100BASE-TX, Full-Duplex  
Advertised Mode  
AN_EN AN1 AN0  
1
1
1
0
0
1
0
1
0
10BASE-T, Half/Full-Duplex  
100BASE-TX, Half/Full-Duplex  
10BASE-T Half-Duplex  
100BASE-TX, Half-Duplex  
10BASE-T, Half/Full-Duplex  
100BASE-TX,Half/Full-Duplex  
1
1
1
MII_MODE_A (RX_DV_A)  
SNI_MODE_A (TXD3_A)  
MII_MODE_B (RX_DV_B)  
SNI_MODE_B (TXD3_B)  
S, O, PD  
80  
17  
62  
45  
MII MODE SELECT: This strapping option pair determines the  
operating mode of the MAC Data Interface. Default operation  
(No pull-ups) will enable normal MII Mode of operation. Strapping  
MII_MODE high will cause the device to be in RMII or SNI modes  
of operation, determined by the status of the SNI_MODE strap.  
Since the pins include internal pull-downs, the default values are  
0. Both MAC Data Interfaces must have their RMII Mode settings  
the same, i.e. both in RMII mode or both not in RMII mode.  
The following table details the configurations:  
MII_MODE SNI_MODE  
MAC Interface  
Mode  
0
1
1
X
0
1
MII Mode  
RMII Mode  
10 Mb SNI Mode  
13  
www.national.com  
Signal Name  
LED_CFG_A  
(CRS_A/CRS_DV_A)  
Type  
Pin #  
Description  
S, O, PU  
1
LED CONFIGURATION: This strapping option determines the  
mode of operation of the LED pins. Default is Mode 1. Mode 1 and  
Mode 2 can be controlled via the strap option. All modes are con-  
figurable via register access.  
LED_CFG_B  
(CRS_B/CRS_DV_B)  
61  
See Table 3 on page 20 for LED Mode Selection.  
MDIX_EN_A (RX_ER_A)  
MDIX_EN_B (RX_ER_B)  
S, O, PU  
S, O, PD  
2
MDIX ENABLE: Default is to enable MDIX. This strapping option  
disables Auto-MDIX. An external pull-down will disable Auto-  
MDIX mode.  
60  
ED_EN_A (RXD3_A)  
ED_EN_B (RXD3_B)  
9
Energy Detect ENABLE: Default is to disable Energy Detect  
mode. This strapping option enables Energy Detect mode for the  
port. In Energy Detect mode, the device will initially be in a low-  
power state until detecting activity on the wire. An external pull-up  
will enable Energy Detect mode.  
53  
CLK2MAC_DIS (RXD2_A)  
S, O, PD  
8
Clock to MAC Disable: This strapping option disables (floats) the  
CLK2MAC pin. Default is to enable CLK2MAC output. An external  
pullup will disable (float) the CLK2MAC pin. If the system does not  
require the CLK2MAC signal, the CLK2MAC output should be dis-  
abled via this strap option.  
1.7 10 Mb/s and 100 Mb/s PMD Interface  
Signal Name  
TPTDM_A  
Type  
Pin #  
26  
Description  
I/O  
10BASE-T or 100BASE-TX Transmit Data  
TPTDP_A  
TPTDM_B  
TPTDP_B  
27  
In 10BASE-T or 100BASE-TX: Differential common driver trans-  
mit output (PMD Output Pair). These differential outputs are auto-  
matically configured to either 10BASE-T or 100BASE-TX  
signaling.  
36  
35  
In Auto-MDIX mode of operation, this pair can be used as the Re-  
ceive Input pair.  
These pins require 3.3V bias for operation.  
TPRDM_A  
TPRDP_A  
TPRDM_B  
TPRDP_B  
I/O  
23  
24  
39  
38  
10BASE-T or 100BASE-TX Receive Data  
In 10BASE-T or 100BASE-TX: Differential receive input (PMD In-  
put Pair). These differential inputs are automatically configured to  
accept either 100BASE-TX or 10BASE-T signaling.  
In Auto-MDIX mode of operation, this pair can be used as the  
Transmit Output pair.  
These pins require 3.3V bias for operation.  
www.national.com  
14  
1.8 Special Connections  
Signal Name  
Type  
Pin #  
Description  
RBIAS  
I
32  
Bias Resistor Connection: A 4.87 kΩ 1% resistor should be con-  
nected from RBIAS to GND.  
PFBOUT  
O
I
31  
Power Feedback Output: Parallel caps, 10µ F and 0.1µF, should  
be placed close to the PFBOUT. Connect this pin to PFBIN1 (pin  
13), PFBIN2 (pin 27), PFBIN3 (pin35), PFBIN4 (pin 49). See  
Section 5.4 for proper placement pin.  
PFBIN1  
PFBIN2  
PFBIN3  
PFBIN4  
7
Power Feedback Input: These pins are fed with power from  
PFBOUT pin. A small capacitor of 0.1µF should be connected  
close to each pin.  
28  
34  
54  
Note: Do not supply power to these pins other than from  
PFBOUT.  
RESERVED  
I/O  
72, 73, 74, RESERVED: These pins must be left unconnected.  
75, 76  
1.9 Power Supply Pins  
Signal Name  
Pin #  
11,51,65,78  
Description  
IOVDD1, IOVDD2, IOVDD3,  
IOVDD4  
I/O 3.3V Supply  
I/O Ground  
IOGND1, IOGND2,  
IOGND3, IOGND4  
10,52,64,77  
COREGND1, COREGND2  
CDGND1, CDGND2  
ANA33VDD  
6,55  
25,37  
Core Ground  
CD Ground  
30  
Analog 3.3V Supply  
Analog Ground  
ANAGND1, ANAGND2,  
ANAGND3, ANAGND4  
22,29,33,40  
15  
www.national.com  
1.10 Package Pin Assignments  
VHB80A Pin Pin Name  
#
VHB80A Pin Pin Name  
#
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
LED_LINK_B/AN0_B  
PWRDOWN_INT_B  
TXD3_B/SNI_MODE_B  
TXD2_B  
1
CRS_A/CRS_DV_A/LED_CFG_A  
2
RX_ER_A/MDIX_EN_A  
COL_A  
3
TXD1_B  
4
RXD0_A/PHYAD1  
RXD1_A/PHYAD2  
COREGND1  
PFBIN1  
TXD0_B  
5
TX_EN_B  
6
TX_CLK_B  
7
IOVDD2  
8
RXD2_A/CLK2MAC_DIS  
RXD3_A/ED_EN_A  
IOGND1  
IOGND2  
9
RXD3_B/ED_EN_B  
PFBIN4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
IOVDD1  
COREGND2  
RXD2_B  
TX_CLK_A  
TX_EN_A  
RXD1_B/PHYAD4  
RXD0_B/PHYAD3  
COL_B  
TXD0_A  
TXD1_A  
TXD2_A  
RX_ER_B/MDIX_EN_B  
CRS_B/CRS_DV_B/LED_CFG_B  
RX_DV_B/MII_MODE_B  
RX_CLK_B  
IOGND3  
TXD3_A/SNI_MODE_A  
PWRDOWN_INT_A  
LED_LINK_A/AN0_A  
LED_SPEED_A/AN1_A  
LED_ACT/LED_COL/AN_EN_A  
ANAGND1  
IOVDD3  
MDIO  
TPRDM_A  
MDC  
TPRDP_A  
CLK2MAC  
CDGND1  
X2  
TPTDM_A  
X1  
TPTDP_A  
RESET_N  
PFBIN2  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
IOGND4  
ANAGND2  
ANA33VDD  
PFBOUT  
RBIAS  
ANAGND3  
PFBIN3  
IOVDD4  
TPTDP_B  
RX_CLK_A  
RX_DV_A/MII_MODE_A  
TPTDM_B  
CDGND2  
TPRDP_B  
TPRDM_B  
ANAGND4  
LED_ACT/LED_COL/AN_EN_B  
LED_SPEED_B/AN1_B  
www.national.com  
16  
2.0 Configuration  
This section includes information on the various configura-  
tion options available with the DP83849C. The configura-  
tion options described below include:  
Table 1. Auto-Negotiation Modes  
AN_EN AN1  
AN0  
Forced Mode  
0
0
0
0
0
0
1
1
0
1
10BASE-T, Half-Duplex  
10BASE-T, Full-Duplex  
100BASE-TX, Half-Duplex  
100BASE-TX, Full-Duplex  
Advertised Mo0e  
— Auto-Negotiation  
— PHY Address and LEDs  
— Half Duplex vs. Full Duplex  
— Isolate mode  
0
1
— Loopback mode  
— BIST  
AN_EN AN1  
AN0  
0
1
1
1
0
0
1
10BASE-T, Half/Full-Duplex  
100BASE-TX, Half/Full-Duplex  
10BASE-T Half-Duplex  
1
2.1 Auto-Negotiation  
0
The Auto-Negotiation function provides a mechanism for  
exchanging configuration information between two ends of  
a link segment and automatically selecting the highest per-  
formance mode of operation supported by both devices.  
Fast Link Pulse (FLP) Bursts provide the signalling used to  
communicate Auto-Negotiation abilities between two  
devices at each end of a link segment. For further detail  
regarding Auto-Negotiation, refer to Clause 28 of the IEEE  
802.3u specification. The DP83849C supports four differ-  
ent Ethernet protocols (10 Mb/s Half Duplex, 10 Mb/s Full  
Duplex, 100 Mb/s Half Duplex, and 100 Mb/s Full Duplex),  
so the inclusion of Auto-Negotiation ensures that the high-  
est performance protocol will be selected based on the  
advertised ability of the Link Partner. The Auto-Negotiation  
function within the DP83849C can be controlled either by  
internal register access or by the use of the AN_EN, AN1  
and AN0 pins.  
100BASE-TX, Half-Duplex  
10BASE-T, Half/Full-Duplex  
100BASE-TX, Half/Full-Duplex  
1
1
1
2.1.2 Auto-Negotiation Register Control  
When Auto-Negotiation is enabled, the DP83849C trans-  
mits the abilities programmed into the Auto-Negotiation  
Advertisement register (ANAR) at address 04h via FLP  
Bursts. Any combination of 10 Mb/s, 100 Mb/s, Half-  
Duplex, and Full Duplex modes may be selected.  
Auto-Negotiation Priority Resolution:  
— (1) 100BASE-TX Full Duplex (Highest Priority)  
— (2) 100BASE-TX Half Duplex  
— (3) 10BASE-T Full Duplex  
2.1.1 Auto-Negotiation Pin Control  
— (4) 10BASE-T Half Duplex (Lowest Priority)  
The Basic Mode Control Register (BMCR) at address 00h  
provides control for enabling, disabling, and restarting the  
Auto-Negotiation process. When Auto-Negotiation is dis-  
abled, the Speed Selection bit in the BMCR controls  
switching between 10 Mb/s or 100 Mb/s operation, and the  
Duplex Mode bit controls switching between full duplex  
operation and half duplex operation. The Speed Selection  
and Duplex Mode bits have no effect on the mode of oper-  
The state of AN_EN, AN0 and AN1 determines whether the  
DP83849C is forced into a specific mode or Auto-Negotia-  
tion will advertise a specific ability (or set of abilities) as  
given in Table 1. These pins allow configuration options to  
be selected without requiring internal register access.  
The state of AN_EN, AN0 and AN1, upon power-up/reset,  
determines the state of bits [8:5] of the ANAR register.  
The Auto-Negotiation function selected at power-up or ation when the Auto-Negotiation Enable bit is set.  
reset can be changed at any time by writing to the Basic  
Mode Control Register (BMCR) at address 00h.  
The Link Speed can be examined through the PHY Status  
Register (PHYSTS) at address 10h after a Link is  
achieved.  
The Basic Mode Status Register (BMSR) indicates the set  
of available abilities for technology types, Auto-Negotiation  
ability, and Extended Register Capability. These bits are  
permanently set to indicate the full functionality of the  
DP83849C (only the 100BASE-T4 bit is not set since the  
DP83849C does not support that function).  
The BMSR also provides status on:  
— Whether or not Auto-Negotiation is complete  
— Whether or not the Link Partner is advertising that a re-  
mote fault has occurred  
— Whether or not valid link has been established  
— Support for Management Frame Preamble suppression  
The Auto-Negotiation Advertisement Register (ANAR) indi-  
cates the Auto-Negotiation abilities to be advertised by the  
DP83849C. All available abilities are transmitted by  
default, but any ability can be suppressed by writing to the  
17  
www.national.com  
 
ANAR. Updating the ANAR to suppress an ability is one 2.1.5 Enabling Auto-Negotiation via Software  
way for a management agent to change (restrict) the tech-  
It is important to note that if the DP83849C has been initial-  
nology that is used.  
ized upon power-up as a non-auto-negotiating device  
The Auto-Negotiation Link Partner Ability Register  
(ANLPAR) at address 05h is used to receive the base link  
code word as well as all next page code words during the  
negotiation. Furthermore, the ANLPAR will be updated to  
either 0081h or 0021h for parallel detection to either 100  
Mb/s or 10 Mb/s respectively.  
(forced technology), and it is then required that Auto-Nego-  
tiation or re-Auto-Negotiation be initiated via software,  
bit 12 (Auto-Negotiation Enable) of the Basic Mode Control  
Register (BMCR) must first be cleared and then set for any  
Auto-Negotiation function to take effect.  
The Auto-Negotiation Expansion Register (ANER) indi-  
cates additional Auto-Negotiation status. The ANER pro-  
vides status on:  
2.1.6 Auto-Negotiation Complete Time  
Parallel detection and Auto-Negotiation take approximately  
2-3 seconds to complete. In addition, Auto-Negotiation with  
— Whether or not a Parallel Detect Fault has occurred  
— Whether or not the Link Partner supports the Next Page next page should take approximately 2-3 seconds to com-  
function  
plete, depending on the number of next pages sent.  
— Whether or not the DP83849C supports the Next Page  
function  
Refer to Clause 28 of the IEEE 802.3u standard for a full  
description of the individual timers related to Auto-Negotia-  
tion.  
— Whether or not the current page being exchanged by  
Auto-Negotiation has been received  
— Whether or not the Link Partner supports Auto-Negotia-  
tion  
2.2 Auto-MDIX  
When enabled, this function utilizes Auto-Negotiation to  
determine the proper configuration for transmission and  
reception of data and subsequently selects the appropriate  
MDI pair for MDI/MDIX operation. The function uses a ran-  
dom seed to control switching of the crossover circuitry.  
This implementation complies with the corresponding IEEE  
802.3 Auto-Negotiation and Crossover Specifications.  
2.1.3 Auto-Negotiation Parallel Detection  
The DP83849C supports the Parallel Detection function as  
defined in the IEEE 802.3u specification. Parallel Detection  
requires both the 10 Mb/s and 100 Mb/s receivers to moni-  
tor the receive signal and report link status to the Auto-  
Negotiation function. Auto-Negotiation uses this informa-  
tion to configure the correct technology in the event that the  
Link Partner does not support Auto-Negotiation but is  
transmitting link signals that the 100BASE-TX or 10BASE-  
T PMAs recognize as valid link signals.  
Auto-MDIX is enabled by default and can be configured via  
strap or via PHYCR (19h) register, bits [15:14].  
Neither Auto-Negotiation nor Auto-MDIX is required to be  
enabled in forcing crossover of the MDI pairs. Forced  
crossover can be achieved through the FORCE_MDIX bit,  
bit 14 of PHYCR (19h) register.  
If the DP83849C completes Auto-Negotiation as a result of  
Parallel Detection, bits 5 and 7 within the ANLPAR register  
will be set to reflect the mode of operation present in the  
Link Partner. Note that bits 4:0 of the ANLPAR will also be  
set to 00001 based on a successful parallel detection to  
indicate a valid 802.3 selector field. Software may deter-  
mine that negotiation completed via Parallel Detection by  
reading a zero in the Link Partner Auto-Negotiation Able bit  
once the Auto-Negotiation Complete bit is set. If configured  
for parallel detect mode and any condition other than a sin-  
gle good link occurs then the parallel detect fault bit will be  
set.  
Note: Auto-MDIX will not work in a forced mode of opera-  
tion.  
2.3 PHY Address  
The 4 PHY address inputs pins are shown below.  
Table 2. PHY Address Mapping  
Pin #  
4
PHYAD Function  
PHYAD1  
RXD Function  
RXD0_A  
2.1.4 Auto-Negotiation Restart  
5
PHYAD2  
RXD1_A  
Once Auto-Negotiation has completed, it may be restarted  
at any time by setting bit 9 (Restart Auto-Negotiation) of the  
BMCR to one. If the mode configured by a successful Auto-  
Negotiation loses a valid link, then the Auto-Negotiation  
process will resume and attempt to determine the configu-  
ration for the link. This function ensures that a valid config-  
uration is maintained if the cable becomes disconnected.  
58  
57  
PHYAD3  
RXD0_B  
PHYAD4  
RXD1_B  
The DP83849C provides four address strap pins for deter-  
mining the PHY addresses for ports A and B of the device.  
The 4 address strap pins provide the upper four bits of the  
PHY address. The lowest bit of the PHY address is depen-  
dent on the port. Port A has a value of 0 for the PHY  
address bit 0 while port B has a value of 1. The PHY  
address strap input pins are shown in Table 2.  
A renegotiation request from any entity, such as a manage-  
ment agent, will cause the DP83849C to halt any transmit  
data and link pulse activity until the break_link_timer  
expires (~1500 ms). Consequently, the Link Partner will go  
into link fail and normal Auto-Negotiation resumes. The  
DP83849C will resume Auto-Negotiation after the  
break_link_timer has expired by issuing FLP (Fast Link  
Pulse) bursts.  
The PHY address strap information is latched into the  
PHYCR register (address 19h, bits [4:0]) at device power-  
up and hardware reset. The PHY Address pins are shared  
with the RXD pins. Each DP83849C or port sharing an  
www.national.com  
18  
 
MDIO bus in a system must have a unique physical 2.3.1 MII Isolate Mode  
address.  
The DP83849C can be put into MII Isolate mode by writing  
The DP83849C supports PHY Address strapping of Port A  
to even values 0 (<0000_0>) through 30 (<1111_0>). Port  
B is strapped to odd values 1 (<0000_1>) through 31  
(<1111_1>). Note that Port B address is always 1 greater  
than Port A address.  
to bit 10 of the BMCR register.  
When in the MII isolate mode, the DP83849C does not  
respond to packet data present at TXD[3:0], TX_EN inputs  
and presents a high impedance on the TX_CLK, RX_CLK,  
RX_DV, RX_ER, RXD[3:0], COL, and CRS outputs. When  
in Isolate mode, the DP83849C will continue to respond to  
all management transactions.  
For further detail relating to the latch-in timing requirements  
of the PHY Address pins, as well as the other hardware  
configuration pins, refer to the Reset summary in  
Section 6.0.  
While in Isolate mode, the PMD output pair will not transmit  
packet data but will continue to source 100BASE-TX  
scrambled idles or 10BASE-T normal link pulses.  
Refer to Figure 2 for an example of a PHYAD connection to  
external components. In this example, the PHYAD strap-  
ping results in address 00010 (02h) for Port A and address  
00011 (03h) for Port B.  
The DP83849C can Auto-Negotiate or parallel detect to a  
specific technology depending on the receive signal at the  
PMD input pair. A valid link can be established for the  
receiver even when the DP83849C is in Isolate mode.  
PHYAD3 = 0 PHYAD2 = 0 PHYAD1 = 1  
PHYAD4= 0  
VCC  
Figure 2. PHYAD Strapping Example  
19  
www.national.com  
 
register bits in the PHY Control Register (PHYCR) at  
address 19h, bits [6:5]. In addition, LED_CFG[0] for each  
port can be set by a strap option on the CRS_A and  
CRS_B pins. LED_CFG[1] is only controllable through reg-  
2.4 LED Interface  
The DP83849C supports three configurable Light Emitting  
Diode (LED) pins for each port.  
Several functions can be multiplexed onto the three LEDs ister access and cannot be set by as strap pin.  
using three different modes of operation. The LED opera-  
tion mode can be selected by writing to the LED_CFG[1:0]  
See Table 3 for LED Mode selection.  
Table 3. LED Mode Select  
Mode  
LED_CFG[1]  
LED_CFG[0]  
LED_LINK  
ON for Good Link  
OFF for No Link  
ON for Good Link  
BLINK for Activity  
ON for Good Link  
BLINK for Activity  
LED_SPEED  
ON in 100 Mb/s  
OFF in 10 Mb/s  
ON in 100 Mb/s  
OFF in 10 Mb/s  
ON in 100 Mb/s  
OFF in 10 Mb/s  
LED_ACT/LED_COL  
ON for Activity  
1
don’t care  
1
OFF for No Activity  
ON for Collision  
2
3
0
1
0
0
OFF for No Collision  
ON for Full Duplex  
OFF for Half Duplex  
The LED_LINK pin in Mode 1 indicates the link status of The LED_ACT/LED_COL pin in Mode 3 indicates Duplex  
the port. In 100BASE-T mode, link is established as a status for 10 Mb/s or 100 Mb/s operation. The LED will be  
result of input receive amplitude compliant with the TP- ON for Full Duplex and OFF for Half Duplex.  
PMD specifications which will result in internal generation  
In 10 Mb/s half duplex mode, the collision LED is based on  
of signal detect. A 10 Mb/s Link is established as a result of  
the COL signal.  
the reception of at least seven consecutive normal Link  
Since these LED pins are also used as strap options, the  
polarity of the LED is dependent on whether the pin is  
pulled up or down.  
Pulses or the reception of a valid 10BASE-T packet. This  
will cause the assertion of LED_LINK. LED_LINK will deas-  
sert in accordance with the Link Loss Timer as specified in  
the IEEE 802.3 specification.  
The LED_LINK pin in Mode 1 will be OFF when no LINK is  
present.  
2.4.1 LEDs  
Since the Auto-Negotiation (AN) strap options share the  
LED output pins, the external components required for  
strapping and LED usage must be considered in order to  
avoid contention.  
The LED_LINK pin in Mode 2 and Mode 3 will be ON to  
indicate Link is good and BLINK to indicate activity is  
present on activity. The BLINK frequency is defined in  
BLINK_FREQ, bits [7:6] of register LEDCR (18h).  
Specifically, when the LED outputs are used to drive LEDs  
directly, the active state of each output driver is dependent  
on the logic level sampled by the corresponding AN input  
upon power-up/reset. For example, if a given AN input is  
resistively pulled low then the corresponding output will be  
configured as an active high driver. Conversely, if a given  
AN input is resistively pulled high, then the corresponding  
output will be configured as an active low driver.  
Activity is defined as configured in LEDACT_RX, bit 8 of  
register LEDCR (18h). If LEDACT_RX is 0, Activity is sig-  
naled for either transmit or receive. If LEDACT_RX is 1,  
Activity is only signaled for receive.  
The LED_SPEED pin indicates 10 or 100 Mb/s data rate of  
the port. The LED is ON when operating in 100Mb/s mode  
and OFF when operating in 10Mb/s mode. The functional-  
ity of this LED is independent of mode selected.  
Refer to Figure 3 for an example of AN connections to  
external components at port A. In this example, the AN  
strapping results in Auto-Negotiation disabled with 100  
Full-Duplex forced.  
The LED_ACT/LED_COL pin in Mode 1 indicates the pres-  
ence of either transmit or receive activity. The LED will be  
ON for Activity and OFF for No Activity. In Mode 2, this pin  
indicates the Collision status of the port. The LED will be  
ON for Collision and OFF for No Collision.  
The adaptive nature of the LED outputs helps to simplify  
potential implementation issues of these dual purpose pins.  
www.national.com  
20  
 
 
All modes of operation (100BASE-TX, 10BASE-T) can run  
either half-duplex or full-duplex. Additionally, other than  
CRS and Collision reporting, all remaining MII signaling  
remains the same regardless of the selected duplex mode.  
It is important to understand that while Auto-Negotiation  
with the use of Fast Link Pulse code words can interpret  
and configure to full-duplex operation, parallel detection  
can not recognize the difference between full and half-  
duplex from a fixed 10 Mb/s or 100 Mb/s link partner over  
twisted pair. As specified in the 802.3u specification, if a  
far-end link partner is configured to a forced full duplex  
100BASE-TX ability, the parallel detection state machine in  
the partner would be unable to detect the full duplex capa-  
bility of the far-end link partner. This link segment would  
negotiate to a half duplex 100BASE-TX configuration  
(same scenario for 10Mb/s).  
AN1_A = 1  
AN0_A = 1  
AN_EN_A  
= 0  
2.6 Internal Loopback  
The DP83849C includes a Loopback Test mode for facili-  
tating system diagnostics. The Loopback mode is selected  
through bit 14 (Loopback) of the Basic Mode Control Reg-  
ister (BMCR). Writing 1 to this bit enables MII transmit data  
to be routed to the MII receive outputs. Loopback status  
may be checked in bit 3 of the PHY Status Register  
(PHYSTS). While in Loopback mode the data will not be  
transmitted onto the media. To ensure that the desired  
operating mode is maintained, Auto-Negotiation should be  
disabled before selecting the Loopback mode.  
VCC  
GND  
Figure 3. AN Strapping and LED Loading Example  
2.4.2 LED Direct Control  
2.7 BIST  
The DP83849C incorporates an internal Built-in Self Test  
(BIST) circuit to accommodate in-circuit testing or diagnos-  
tics. The BIST circuit can be utilized to test the integrity of  
the transmit and receive data paths. BIST testing can be  
performed with the part in the internal loopback mode or  
externally looped back using a loopback cable fixture.  
The DP83849C provides another option to directly control  
any or all LED outputs through the LED Direct Control Reg-  
ister (LEDCR), address 18h. The register does not provide  
read access to LEDs.  
The BIST is implemented with independent transmit and  
receive paths, with the transmit block generating a continu-  
ous stream of a pseudo random sequence. The user can  
select a 9 bit or 15 bit pseudo random sequence from the  
PSR_15 bit in the PHY Control Register (PHYCR). The  
received data is compared to the generated pseudo-ran-  
dom data by the BIST Linear Feedback Shift Register  
(LFSR) to determine the BIST pass/fail status.  
2.5 Half Duplex vs. Full Duplex  
The DP83849C supports both half and full duplex opera-  
tion at both 10 Mb/s and 100 Mb/s speeds.  
Half-duplex relies on the CSMA/CD protocol to handle colli-  
sions and network access. In Half-Duplex mode, CRS  
responds to both transmit and receive activity in order to  
maintain compliance with the IEEE 802.3 specification.  
The pass/fail status of the BIST is stored in the BIST status  
bit in the PHYCR register. The status bit defaults to 0 (BIST  
fail) and will transition on a successful comparison. If an  
error (mis-compare) occurs, the status bit is latched and is  
cleared upon a subsequent write to the Start/Stop bit.  
Since the DP83849C is designed to support simultaneous  
transmit and receive activity it is capable of supporting full-  
duplex switched applications with a throughput of up to 200  
Mb/s per port when operating in 100BASE-TX. Because  
the CSMA/CD protocol does not apply to full-duplex opera-  
tion, the DP83849C disables its own internal collision sens-  
ing and reporting functions and modifies the behavior of  
Carrier Sense (CRS) such that it indicates only receive  
activity. This allows a full-duplex capable MAC to operate  
properly.  
For transmit VOD testing, the Packet BIST Continuous  
Mode can be used to allow continuous data transmission,  
setting BIST_CONT_MODE, bit 5, of CDCTRL1 (1Bh).  
The number of BIST errors can be monitored through the  
BIST Error Count in the CDCTRL1 (1Bh), bits [15:8].  
21  
www.national.com  
transmit clock TX_CLK which runs at either 2.5 MHz or 25  
MHz.  
3.0 MAC Interface  
The DP83849C supports several modes of operation using  
the MII interface pins. The options are defined in the follow-  
ing sections and include:  
Additionally, the MII includes the carrier sense signal CRS,  
as well as a collision detect signal COL. The CRS signal  
asserts to indicate the reception of data from the network  
or as a function of transmit data in Half Duplex mode. The  
COL signal asserts as an indication of a collision which can  
occur during half-duplex operation when both a transmit  
and receive operation occur simultaneously.  
— MII Mode  
— RMII Mode  
— 10 Mb Serial Network Interface (SNI)  
The modes of operation can be selected by strap options  
or register control. For RMII mode, it is required to use the  
strap option, since it requires a 50 MHz clock instead of the  
normal 25 MHz.  
3.1.2 Collision Detect  
For Half Duplex, a 10BASE-T or 100BASE-TX collision is  
detected when the receive and transmit channels are  
active simultaneously. Collisions are reported by the COL  
signal on the MII.  
In each of these modes, the IEEE 802.3 serial manage-  
ment interface is operational for device configuration and  
status. The serial management interface of the MII allows  
for the configuration and control of multiple PHY devices,  
gathering of status, error information, and the determina-  
tion of the type and capabilities of the attached PHY(s).  
If the DP83849C is transmitting in 10 Mb/s mode when a  
collision is detected, the collision is not reported until seven  
bits have been received while in the collision state. This  
prevents a collision being reported incorrectly due to noise  
on the network. The COL signal remains set for the dura-  
tion of the collision.  
3.1 MII Interface  
The DP83849C incorporates the Media Independent Inter-  
face (MII) as specified in Clause 22 of the IEEE 802.3u  
standard. This interface may be used to connect PHY  
devices to a MAC in 10/100 Mb/s systems. This section  
describes the nibble wide MII data interface.  
If a collision occurs during a receive operation, it is immedi-  
ately reported by the COL signal.  
When heartbeat is enabled (only applicable to 10 Mb/s  
operation), approximately 1µs after the transmission of  
each packet, a Signal Quality Error (SQE) signal of approx-  
imately 10 bit times is generated (internally) to indicate  
successful transmission. SQE is reported as a pulse on the  
COL signal of the MII.  
The nibble wide MII data interface consists of a receive bus  
and a transmit bus each with control signals to facilitate  
data transfer between the PHY and the upper layer (MAC).  
3.1.1 Nibble-wide MII Data Interface  
3.1.3 Carrier Sense  
Clause 22 of the IEEE 802.3u specification defines the  
Media Independent Interface. This interface includes a  
dedicated receive bus and a dedicated transmit bus. These  
two data buses, along with various control and status sig-  
nals, allow for the simultaneous exchange of data between  
the DP83849C and the upper layer agent (MAC).  
Carrier Sense (CRS) is asserted due to receive activity,  
once valid data is detected via the squelch function during  
10 Mb/s operation. During 100 Mb/s operation CRS is  
asserted when a valid link (SD) and two non-contiguous  
zeros are detected on the line.  
For 10 or 100 Mb/s Half Duplex operation, CRS is asserted  
during either packet transmission or reception.  
The receive interface consists of a nibble wide data bus  
RXD[3:0], a receive error signal RX_ER, a receive data  
valid flag RX_DV, and a receive clock RX_CLK for syn-  
chronous transfer of the data. The receive clock operates  
at either 2.5 MHz to support 10 Mb/s operation modes or at  
25 MHz to support 100 Mb/s operational modes.  
For 10 or 100 Mb/s Full Duplex operation, CRS is asserted  
only due to receive activity.  
CRS is deasserted following an end of packet.  
The transmit interface consists of a nibble wide data bus  
TXD[3:0], a transmit enable control signal TX_EN, and a  
www.national.com  
22  
RMII mode disabled. Either channel may be in 10Mb or  
100Mb mode in RMII or non-RMII mode.  
3.2 Reduced MII Interface  
The DP83849C incorporates the Reduced Media Indepen-  
dent Interface (RMII) as specified in the RMII specification  
(rev1.2) from the RMII Consortium. This interface may be  
used to connect PHY devices to a MAC in 10/100 Mb/s  
systems using a reduced number of pins. In this mode,  
data is transferred 2-bits at a time using the 50 MHz  
RMII_REF clock for both transmit and receive. The follow-  
ing pins are used in RMII mode:  
Since the reference clock operates at 10 times the data  
rate for 10 Mb/s operation, transmit data is sampled every  
10 clocks. Likewise, receive data will be generated every  
10th clock so that an attached device can sample the data  
every 10 clocks.  
RMII mode requires a 50 MHz oscillator be connected to  
the device X1 pin. A 50 MHz crystal is not supported.  
— TX_EN  
To tolerate potential frequency differences between the 50  
MHz reference clock and the recovered receive clock, the  
receive RMII function includes a programmable elasticity  
buffer. The elasticity buffer is programmable to minimize  
propagation delay based on expected packet size and  
clock accuracy. This allows for supporting a range of  
packet sizes including jumbo frames.  
— TXD[1:0]  
— RX_ER (optional for Mac)  
— CRS_DV  
— RXD[1:0]  
— X1 (RMII Reference clock is 50 MHz)  
The elasticity buffer will force Frame Check Sequence  
errors for packets which overrun or underrun the FIFO.  
Underrun and Overrun conditions can be reported in the  
RMII and Bypass Register (RBR). The following table indi-  
cates how to program the elasticity buffer fifo (in 4-bit incre-  
ments) based on expected max packet size and clock  
accuracy. It assumes both clocks (RMII Reference clock  
and far-end Transmitter clock) have the same accuracy.  
In addition, the RMII mode supplies an RX_DV signal  
which allows for a simpler method of recovering receive  
data without having to separate RX_DV from the CRS_DV  
indication. This is especially useful for diagnostic testing  
where it may be desirable to externally loop Receive MII  
data directly to the transmitter.  
The RX_ER output may be used by the MAC to detect  
error conditions. It is asserted for symbol errors received  
during a packet, False Carrier events, and also for FIFO  
underrun or overrun conditions. Since the Phy is required  
to corrupt receive data on an error, a MAC is not required  
to use RX_ER.  
Packet lengths can be scaled linearly based on accuracy  
(+/- 25ppm would allows packets twice as large). If the  
threshold setting must support both 10Mb and 100Mb  
operation, the setting should be made to support both  
speeds.  
It is important to note that since both digital channels in the  
DP83849C share the X1/RMII_REF input, both channels  
must have RMII mode enabled or both channels must have  
Table 4. Supported packet sizes at +/-50ppm frequency accuracy  
Start Threshold  
RBR[1:0]  
Latency Tolerance  
Recommended Packet Size  
at +/- 50ppm  
100Mb  
10Mb  
8 bits  
4 bits  
8 bits  
12 bits  
100Mb  
10Mb  
01 (default)  
2 bits  
6 bits  
2,400 bytes  
7,200 bytes  
12,000 bytes  
16,800 bytes  
9,600 bytes  
4,800 bytes  
9,600 bytes  
14,400 bytes  
10  
11  
00  
10 bits  
14 bits  
23  
www.national.com  
 
 
management entity sends a sequence of 32 contiguous  
logic ones on MDIO to provide the DP83849C with a  
sequence that can be used to establish synchronization.  
This preamble may be generated either by driving MDIO  
high for 32 consecutive MDC clock cycles, or by simply  
allowing the MDIO pull-up resistor to pull the MDIO pin high  
during which time 32 MDC clock cycles are provided. In  
addition 32 MDC clock cycles should be used to re-sync  
the device if an invalid start, opcode, or turnaround bit is  
detected.  
3.3 10 Mb Serial Network Interface (SNI)  
The DP83849C incorporates a 10 Mb Serial Network Inter-  
face (SNI) which allows a simple serial data interface for 10  
Mb only devices. This is also referred to as a 7-wire inter-  
face. While there is no defined standard for this interface, it  
is based on early 10 Mb physical layer devices. Data is  
clocked serially at 10 MHz using separate transmit and  
receive paths. The following pins are used in SNI mode:  
— TX_CLK  
— TX_EN  
— TXD[0]  
— RX_CLK  
— RXD[0]  
— CRS  
The DP83849C waits until it has received this preamble  
sequence before responding to any other transaction.  
Once the DP83849C serial management port has been ini-  
tialized no further preamble sequencing is required until  
after a power-on/reset, invalid Start, invalid Opcode, or  
invalid turnaround bit has occurred.  
— COL  
The Start code is indicated by a <01> pattern. This assures  
the MDIO line transitions from the default idle line state.  
Turnaround is defined as an idle bit time inserted between  
the Register Address field and the Data field. To avoid con-  
tention during a read transaction, no device shall actively  
drive the MDIO signal during the first bit of Turnaround.  
The addressed DP83849C drives the MDIO with a zero for  
the second bit of turnaround and follows this with the  
required data. Figure 4 shows the timing relationship  
between MDC and the MDIO as driven/received by the Sta-  
tion (STA) and the DP83849C (PHY) for a typical register  
read access.  
3.4 802.3u MII Serial Management Interface  
3.4.1 Serial Management Register Access  
The serial management MII specification defines a set of  
thirty-two 16-bit status and control registers that are acces-  
sible through the management interface pins MDC and  
MDIO. The DP83849C implements all the required MII reg-  
isters as well as several optional registers. These registers  
are fully described in Section 7.0. A description of the serial  
management access protocol follows.  
For write transactions, the station management entity  
writes data to the addressed DP83849C thus eliminating  
the requirement for MDIO Turnaround. The Turnaround  
time is filled by the management entity by inserting <10>.  
Figure 5 shows the timing relationship for a typical MII reg-  
ister write access.  
3.4.2 Serial Management Access Protocol  
The serial control interface consists of two pins, Manage-  
ment Data Clock (MDC) and Management Data Input/Out-  
put (MDIO). MDC has a maximum clock rate of 25 MHz  
and no minimum rate. The MDIO line is bi-directional and  
may be shared by up to 32 devices. The MDIO frame for-  
mat is shown below in Table 5.  
In addition, the MDIO pin requires a pull-up resistor (1.5  
k) which, during IDLE and turnaround, will pull MDIO  
high. In order to initialize the MDIO interface, the station  
www.national.com  
24  
Table 5. Typical MDIO Frame Format  
MII Management  
Serial Protocol  
<idle><start><op code><device addr><reg addr><turnaround><data><idle>  
Read Operation  
Write Operation  
<idle><01><10><AAAAA><RRRRR><Z0><xxxx xxxx xxxx xxxx><idle>  
<idle><01><01><AAAAA><RRRRR><10><xxxx xxxx xxxx xxxx><idle>  
MDC  
Z
MDIO  
(STA)  
Z
Z
Z
MDIO  
(PHY)  
Z
Z
Z
0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0  
Opcode  
(Read)  
Register Address  
(00h = BMCR)  
PHY Address  
Register Data  
Idle  
TA  
Idle  
Start  
(PHYAD = 0Ch)  
Figure 4. Typical MDC/MDIO Read Operation  
MDC  
Z
Z
MDIO  
(STA)  
Z
Z
0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
PHY Address  
Register Address  
(00h = BMCR)  
Opcode  
(Write)  
Register Data  
Idle  
Idle  
Start  
TA  
(PHYAD = 0Ch)  
Figure 5. Typical MDC/MDIO Write Operation  
3.4.3 Serial Management Preamble Suppression  
While the DP83849C requires an initial preamble  
sequence of 32 bits for management initialization, it does  
not require a full 32-bit sequence between each subse-  
quent transaction. A minimum of one idle bit between man-  
agement transactions is required as specified in the IEEE  
802.3u specification.  
The DP83849C supports a Preamble Suppression mode  
as indicated by a one in bit 6 of the Basic Mode Status  
Register (BMSR, address 01h.) If the station management  
entity (i.e. MAC or other management controller) deter-  
mines that all PHYs in the system support Preamble Sup-  
pression by returning a one in this bit, then the station  
management entity need not generate preamble for each  
management transaction.  
3.4.4 Simultaneous Register Write  
The DP83849C incorporates a mode which allows simulta-  
neous write access to both Port A and B register blocks at  
the same time. This mode is selected by setting bit 15 of  
RMII and Bypass Register (RBR, address 17h) in Port A.  
The DP83849C requires a single initialization sequence of  
32 bits of preamble following hardware/software reset. This  
requirement is generally met by the mandatory pull-up  
resistor on MDIO in conjunction with a continuous MDC, or  
the management access made to determine whether Pre-  
amble Suppression is supported.  
As long as this bit remains set, subsequent writes to Port A  
will write to registers in both ports. Register reads are unaf-  
fected. Each port must still be read individually.  
25  
www.national.com  
 
The block diagram in Figure 6. provides an overview of  
each functional block within the 100BASE-TX transmit sec-  
tion.  
4.0 Architecture  
This section describes the operations within each trans-  
ceiver module, 100BASE-TX and 10BASE-T. Each opera-  
tion consists of several functional blocks and described in  
the following:  
The Transmitter section consists of the following functional  
blocks:  
— Code-group Encoder and Injection block  
— Scrambler block (bypass option)  
— 100BASE-TX Transmitter  
— 100BASE-TX Receiver  
— NRZ to NRZI encoder block  
— 10BASE-T Transceiver Module  
— Binary to MLT-3 converter / Common Driver  
The bypass option for the functional blocks within the  
100BASE-TX transmitter provides flexibility for applications  
where data conversion is not always required. The  
DP83849C implements the 100BASE-TX transmit state  
machine diagram as specified in the IEEE 802.3u Stan-  
dard, Clause 24.  
4.1 100BASE-TX TRANSMITTER  
The 100BASE-TX transmitter consists of several functional  
blocks which convert synchronous 4-bit nibble data, as pro-  
vided by the MII, to a scrambled MLT-3 125 Mb/s serial  
data stream. Because the 100BASE-TX TP-PMD is inte-  
grated, the differential output pins, PMD Output Pair, can  
be directly routed to the magnetics.  
TX_CLK  
TXD[3:0] /  
TX_EN  
DIVIDE  
BY 5  
4B5B CODE-  
GROUP  
ENCODER &  
5B PARALLEL  
TO SERIAL  
125MHZ CLOCK  
SCRAMBLER  
MUX  
BP_SCR  
MLT[1:0]  
100BASE-TX  
LOOPBACK  
NRZ TO NRZI  
ENCODER  
BINARY  
TO MLT-3 /  
COMMON  
DRIVER  
PMD OUTPUT PAIR  
Figure 6. 100BASE-TX Transmit Block Diagram  
www.national.com  
26  
 
Table 13. 4B5B Code-Group Encoding/Decoding  
DATA CODES  
0
11110  
01001  
10100  
10101  
01010  
01011  
01110  
01111  
10010  
10011  
10110  
10111  
11010  
11011  
11100  
11101  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
IDLE AND CONTROL CODES  
H
00100  
11111  
11000  
10001  
01101  
00111  
HALT code-group - Error code  
I
Inter-Packet IDLE - 0000 (Note 1)  
First Start of Packet - 0101 (Note 1)  
Second Start of Packet - 0101 (Note 1)  
First End of Packet - 0000 (Note 1)  
Second End of Packet - 0000 (Note 1)  
J
K
T
R
INVALID CODES  
V
V
V
V
V
V
V
V
00000  
00001  
00010  
00011  
00101  
00110  
01000  
01100  
Note: Control code-groups I, J, K, T and R in data fields will be mapped as invalid codes, together with RX_ER as-  
serted.  
27  
www.national.com  
 
4.1.1 Code-group Encoding and Injection  
transmit transformer primary winding, resulting in a MLT-3  
signal.  
The code-group encoder converts 4-bit (4B) nibble data  
generated by the MAC into 5-bit (5B) code-groups for  
transmission. This conversion is required to allow control  
data to be combined with packet data code-groups. Refer  
to Table 13 for 4B to 5B code-group mapping details.  
The 100BASE-TX MLT-3 signal sourced by the PMD Out-  
put Pair common driver is slew rate controlled. This should  
be considered when selecting AC coupling magnetics to  
ensure TP-PMD Standard compliant transition times (3 ns  
< Tr < 5 ns).  
The code-group encoder substitutes the first 8-bits of the  
MAC preamble with a J/K code-group pair (11000 10001)  
upon transmission. The code-group encoder continues to  
replace subsequent 4B preamble and data nibbles with  
corresponding 5B code-groups. At the end of the transmit  
packet, upon the deassertion of Transmit Enable signal  
from the MAC, the code-group encoder injects the T/R  
code-group pair (01101 00111) indicating the end of the  
frame.  
The 100BASE-TX transmit TP-PMD function within the  
DP83849C is capable of sourcing only MLT-3 encoded  
data. Binary output from the PMD Output Pair is not possi-  
ble in 100 Mb/s mode.  
4.2 100BASE-TX RECEIVER  
The 100BASE-TX receiver consists of several functional  
blocks which convert the scrambled MLT-3 125 Mb/s serial  
data stream to synchronous 4-bit nibble data that is pro-  
vided to the MII. Because the 100BASE-TX TP-PMD is  
integrated, the differential input pins, RD±, can be directly  
routed from the AC coupling magnetics.  
After the T/R code-group pair, the code-group encoder  
continuously injects IDLEs into the transmit data stream  
until the next transmit packet is detected (reassertion of  
Transmit Enable).  
See Figure 7 for a block diagram of the 100BASE-TX  
receive function. This provides an overview of each func-  
tional block within the 100BASE-TX receive section.  
4.1.2 Scrambler  
The scrambler is required to control the radiated emissions  
at the media connector and on the twisted pair cable (for  
100BASE-TX applications). By scrambling the data, the  
total energy launched onto the cable is randomly distrib-  
uted over a wide frequency range. Without the scrambler,  
The Receive section consists of the following functional  
blocks:  
— Analog Front End  
energy levels at the PMD and on the cable could peak — Digital Signal Processor  
beyond FCC limitations at frequencies related to repeating  
5B sequences (i.e., continuous transmission of IDLEs).  
— MLT-3 to Binary Decoder  
The scrambler is configured as a closed loop linear feed-  
— Signal Detect  
— NRZI to NRZ Decoder  
back shift register (LFSR) with an 11-bit polynomial. The  
— Serial to Parallel  
— Descrambler  
output of the closed loop LFSR is X-ORd with the serial  
NRZ data from the code-group encoder. The result is a  
scrambled data stream with sufficient randomization to  
decrease radiated emissions at certain frequencies by as  
much as 20 dB. The DP83849C uses the PHY_ID (pins  
PHYAD [4:1]) to set a unique seed value.  
— Code Group Alignment  
— 4B/5B Decoder  
— Link Integrity Monitor  
— Bad SSD Detection  
4.1.3 NRZ to NRZI Encoder  
4.2.1 Analog Front End  
After the transmit data stream has been serialized and  
scrambled, the data must be NRZI encoded in order to  
comply with the TP-PMD standard for 100BASE-TX trans-  
mission over Category-5 Unshielded twisted pair cable.  
In addition to the Digital Equalization and Gain Control, the  
DP83849C includes Analog Equalization and Gain Control  
in the Analog Front End. The Analog Equalization reduces  
the amount of Digital Equalization required in the DSP.  
4.1.4 Binary to MLT-3 Convertor  
4.2.2 Digital Signal Processor  
The Binary to MLT-3 conversion is accomplished by con-  
verting the serial binary data stream output from the NRZI  
encoder into two binary data streams with alternately  
phased logic one events. These two binary streams are  
then fed to the twisted pair output driver which converts the  
voltage to current and alternately drives either side of the  
The Digital Signal Processor includes Adaptive Equaliza-  
tion with Gain Control and Base Line Wander Compensa-  
tion.  
www.national.com  
28  
RX_DV/CRS  
RX_CLK  
RXD[3:0] / RX_ER  
4B/5B DECODER  
SERIAL TO  
PARALLEL  
CODE GROUP  
ALIGNMENT  
LINK  
INTEGRITY  
MONITOR  
RX_DATA VALID  
SSD DETECT  
DESCRAMBLER  
NRZI TO NRZ  
DECODER  
MLT-3 TO BINARY  
DECODER  
SIGNAL  
DETECT  
DIGITAL  
SIGNAL  
PROCESSOR  
ANALOG  
FRONT  
END  
RD +/−  
Figure 7. 100BASE-TX Receive Block Diagram  
29  
www.national.com  
4.2.2.1 Digital Adaptive Equalization and Gain Control  
tive to ensure proper conditioning of the received signal  
independent of the cable length.  
When transmitting data at high speeds over copper twisted  
pair cable, frequency dependent attenuation becomes a  
concern. In high-speed twisted pair signalling, the fre-  
quency content of the transmitted signal can vary greatly  
during normal operation based primarily on the random-  
ness of the scrambled data stream. This variation in signal  
attenuation caused by frequency variations must be com-  
pensated to ensure the integrity of the transmission.  
The DP83849C utilizes an extremely robust equalization  
scheme referred as ‘Digital Adaptive Equalization.’  
The Digital Equalizer removes ISI (inter symbol interfer-  
ence) from the receive data stream by continuously adapt-  
ing to provide a filter with the inverse frequency response  
of the channel. Equalization is combined with an adaptive  
gain control stage. This enables the receive 'eye pattern' to  
be opened sufficiently to allow very reliable data recovery.  
In order to ensure quality transmission when employing  
MLT-3 encoding, the compensation must be able to adapt  
to various cable lengths and cable types depending on the  
installed environment. The selection of long cable lengths  
for a given implementation, requires significant compensa-  
tion which will over-compensate for shorter, less attenuat-  
ing lengths. Conversely, the selection of short or  
intermediate cable lengths requiring less compensation will  
cause serious under-compensation for longer length  
cables. The compensation or equalization must be adap-  
The curves given in Figure 9 illustrate attenuation at certain  
frequencies for given cable lengths. This is derived from  
the worst case frequency vs. attenuation figures as speci-  
fied in the EIA/TIA Bulletin TSB-36. These curves indicate  
the significant variations in signal attenuation that must be  
compensated for by the receive adaptive equalization cir-  
cuit.  
Figure 9. EIA/TIA Attenuation vs. Frequency for 0, 50,  
100, 130 & 150 meters of CAT 5 cable  
www.national.com  
30  
 
4.2.2.2 Base Line Wander Compensation  
Figure 10. 100BASE-TX BLW Event  
The DP83849C is completely ANSI TP-PMD compliant and PMD Standard as well as the IEEE 802.3 100BASE-TX  
includes Base Line Wander (BLW) compensation. The Standard for both voltage thresholds and timing parame-  
BLW compensation block can successfully recover the TP- ters.  
PMD defined “killer” pattern.  
Note that the reception of normal 10BASE-T link pulses  
BLW can generally be defined as the change in the aver- and fast link pulses per IEEE 802.3u Auto-Negotiation by  
age DC content, relatively short period over time, of an AC the 100BASE-TX receiver do not cause the DP83849C to  
coupled digital transmission over a given transmission assert signal detect.  
medium. (i.e., copper wire).  
BLW results from the interaction between the low fre-  
quency components of a transmitted bit stream and the fre- 4.2.4 MLT-3 to NRZI Decoder  
quency response of the AC coupling component(s) within  
The DP83849C decodes the MLT-3 information from the  
the transmission system. If the low frequency content of  
Digital Adaptive Equalizer block to binary NRZI data.  
the digital bit stream goes below the low frequency pole of  
the AC coupling transformers then the droop characteris-  
tics of the transformers will dominate resulting in potentially  
serious BLW.  
4.2.5 NRZI to NRZ  
The digital oscilloscope plot provided in Figure 10 illus-  
trates the severity of the BLW event that can theoretically  
be generated during 100BASE-TX packet transmission.  
This event consists of approximately 800 mV of DC offset  
for a period of 120 µs. Left uncompensated, events such as  
this can cause packet loss.  
In a typical application, the NRZI to NRZ decoder is  
required in order to present NRZ formatted data to the  
descrambler.  
4.2.6 Serial to Parallel  
The 100BASE-TX receiver includes a Serial to Parallel  
converter which supplies 5-bit wide data symbols to the  
PCS Rx state machine.  
4.2.3 Signal Detect  
The signal detect function of the DP83849C is incorporated  
to meet the specifications mandated by the ANSI FDDI TP-  
31  
www.national.com  
 
4.2.7 Descrambler  
Signal detect must be valid for 395us to allow the link mon-  
itor to enter the 'Link Up' state, and enable the transmit and  
receive functions.  
A serial descrambler is used to de-scramble the received  
NRZ data. The descrambler has to generate an identical  
data scrambling sequence (N) in order to recover the origi-  
nal unscrambled data (UD) from the scrambled data (SD)  
as represented in the equations:  
4.2.11 Bad SSD Detection  
A Bad Start of Stream Delimiter (Bad SSD) is any transition  
from consecutive idle code-groups to non-idle code-groups  
which is not prefixed by the code-group pair /J/K.  
SD= (UD N)  
UD= (SD N)  
Synchronization of the descrambler to the original scram-  
bling sequence (N) is achieved based on the knowledge  
that the incoming scrambled data stream consists of  
scrambled IDLE data. After the descrambler has recog-  
nized 12 consecutive IDLE code-groups, where an  
unscrambled IDLE code-group in 5B NRZ is equal to five  
consecutive ones (11111), it will synchronize to the receive  
data stream and generate unscrambled data in the form of  
unaligned 5B code-groups.  
If this condition is detected, the DP83849C will assert  
RX_ER and present RXD[3:0] = 1110 to the MII for the  
cycles that correspond to received 5B code-groups until at  
least two IDLE code groups are detected. In addition, the  
False Carrier Sense Counter register (FCSCR) will be  
incremented by one.  
Once at least two IDLE code groups are detected, RX_ER  
and CRS become de-asserted.  
In order to maintain synchronization, the descrambler must  
continuously monitor the validity of the unscrambled data  
that it generates. To ensure this, a line state monitor and a  
hold timer are used to constantly monitor the synchroniza-  
tion status. Upon synchronization of the descrambler the  
hold timer starts a 722 µs countdown. Upon detection of  
sufficient IDLE code-groups (58 bit times) within the 722 µs  
period, the hold timer will reset and begin a new count-  
down. This monitoring operation will continue indefinitely  
given a properly operating network connection with good  
signal integrity. If the line state monitor does not recognize  
sufficient unscrambled IDLE code-groups within the 722 µs  
period, the entire descrambler will be forced out of the cur-  
rent state of synchronization and reset in order to re-  
acquire synchronization.  
4.3 10BASE-T TRANSCEIVER MODULE  
The 10BASE-T Transceiver Module is IEEE 802.3 compli-  
ant. It includes the receiver, transmitter, collision, heart-  
beat, loopback, jabber, and link integrity functions, as  
defined in the standard. An external filter is not required on  
the 10BASE-T interface since this is integrated inside the  
DP83849C. This section focuses on the general 10BASE-T  
system level operation.  
4.3.1 Operational Modes  
The DP83849C has two basic 10BASE-T operational  
modes:  
— Half Duplex mode  
— Full Duplex mode  
4.2.8 Code-group Alignment  
The code-group alignment module operates on unaligned  
5-bit data from the descrambler (or, if the descrambler is  
bypassed, directly from the NRZI/NRZ decoder) and con-  
verts it into 5B code-group data (5 bits). Code-group align-  
ment occurs after the J/K code-group pair is detected.  
Once the J/K code-group pair (11000 10001) is detected,  
subsequent data is aligned on a fixed boundary.  
Half Duplex Mode  
In Half Duplex mode the DP83849C functions as a stan-  
dard IEEE 802.3 10BASE-T transceiver supporting the  
CSMA/CD protocol.  
Full Duplex Mode  
4.2.9 4B/5B Decoder  
In Full Duplex mode the DP83849C is capable of simulta-  
neously transmitting and receiving without asserting the  
collision signal. The DP83849C's 10 Mb/s ENDEC is  
designed to encode and decode simultaneously.  
The code-group decoder functions as a look up table that  
translates incoming 5B code-groups into 4B nibbles. The  
code-group decoder first detects the J/K code-group pair  
preceded by IDLE code-groups and replaces the J/K with  
MAC preamble. Specifically, the J/K 10-bit code-group pair  
is replaced by the nibble pair (0101 0101). All subsequent  
5B code-groups are converted to the corresponding 4B  
nibbles for the duration of the entire packet. This conver-  
sion ceases upon the detection of the T/R code-group pair  
denoting the End of Stream Delimiter (ESD) or with the  
reception of a minimum of two IDLE code-groups.  
4.3.2 Smart Squelch  
The smart squelch is responsible for determining when  
valid data is present on the differential receive inputs. The  
DP83849C implements an intelligent receive squelch to  
ensure that impulse noise on the receive inputs will not be  
mistaken for a valid signal. Smart squelch operation is  
independent of the 10BASE-T operational mode.  
The squelch circuitry employs a combination of amplitude  
and timing measurements (as specified in the IEEE 802.3  
10BSE-T standard) to determine the validity of data on the  
twisted pair inputs (refer to Figure 11).  
4.2.10 100BASE-TX Link Integrity Monitor  
The 100 Base TX Link monitor ensures that a valid and sta-  
ble link is established before enabling both the Transmit  
and Receive PCS layer.  
www.national.com  
32  
The signal at the start of a packet is checked by the smart Only after all these conditions have been satisfied will a  
squelch and any pulses not exceeding the squelch level control signal be generated to indicate to the remainder of  
(either positive or negative, depending upon polarity) will the circuitry that valid data is present. At this time, the  
be rejected. Once this first squelch level is overcome cor- smart squelch circuitry is reset.  
rectly, the opposite squelch level must then be exceeded  
Valid data is considered to be present until the squelch  
within 150 ns. Finally the signal must again exceed the  
level has not been generated for a time longer than 150 ns,  
original squelch level within 150 ns to ensure that the input  
indicating the End of Packet. Once good data has been  
waveform will not be rejected. This checking procedure  
detected, the squelch levels are reduced to minimize the  
results in the loss of typically three preamble bits at the  
effect of noise causing premature End of Packet detection.  
beginning of each packet.  
<150 ns  
>150 ns  
<150 ns  
V
SQ+  
V
SQ+(reduced)  
V
SQ-(reduced)  
V
SQ-  
end of packet  
start of packet  
Figure 11. 10BASE-T Twisted Pair Smart Squelch Operation  
33  
www.national.com  
4.3.3 Collision Detection and SQE  
Once disabled by the Jabber function, the transmitter stays  
disabled for the entire time that the ENDEC module's inter-  
nal transmit enable is asserted. This signal has to be de-  
asserted for approximately 500 ms (the “unjab” time)  
before the Jabber function re-enables the transmit outputs.  
When in Half Duplex, a 10BASE-T collision is detected  
when the receive and transmit channels are active simulta-  
neously. Collisions are reported by the COL signal on the  
MII. Collisions are also reported when a jabber condition is  
detected.  
The Jabber function is only relevant in 10BASE-T mode.  
The COL signal remains set for the duration of the collision.  
If the PHY is receiving when a collision is detected it is  
reported immediately (through the COL pin).  
4.3.7 Automatic Link Polarity Detection and Correction  
The DP83849C's 10BASE-T transceiver module incorpo-  
rates an automatic link polarity detection circuit. When  
three consecutive inverted link pulses are received, bad  
polarity is reported.  
When heartbeat is enabled, approximately 1 µs after the  
transmission of each packet, a Signal Quality Error (SQE)  
signal of approximately 10-bit times is generated to indi-  
cate successful transmission. SQE is reported as a pulse A polarity reversal can be caused by a wiring error at either  
on the COL signal of the MII.  
end of the cable, usually at the Main Distribution Frame  
(MDF) or patch panel in the wiring closet.  
The SQE test is inhibited when the PHY is set in full duplex  
mode. SQE can also be inhibited by setting the The bad polarity condition is latched in the 10BTSCR regis-  
HEARTBEAT_DIS bit in the 10BTSCR register.  
ter. The DP83849C's 10BASE-T transceiver module cor-  
rects for this error internally and will continue to decode  
received data correctly. This eliminates the need to correct  
the wiring error immediately.  
4.3.4 Carrier Sense  
Carrier Sense (CRS) may be asserted due to receive activ-  
ity once valid data is detected via the squelch function.  
4.3.8 Transmit and Receive Filtering  
For 10 Mb/s Half Duplex operation, CRS is asserted during  
either packet transmission or reception.  
External 10BASE-T filters are not required when using the  
DP83849C, as the required signal conditioning is inte-  
grated into the device.  
For 10 Mb/s Full Duplex operation, CRS is asserted only  
during receive activity.  
Only isolation transformers and impedance matching resis-  
tors are required for the 10BASE-T transmit and receive  
interface. The internal transmit filtering ensures that all the  
harmonics in the transmit signal are attenuated by at least  
30 dB.  
CRS is deasserted following an end of packet.  
4.3.5 Normal Link Pulse Detection/Generation  
The link pulse generator produces pulses as defined in the  
IEEE 802.3 10BASE-T standard. Each link pulse is nomi-  
nally 100 ns in duration and transmitted every 16 ms in the  
absence of transmit data.  
4.3.9 Transmitter  
The encoder begins operation when the Transmit Enable  
input (TX_EN) goes high and converts NRZ data to pre-  
emphasized Manchester data for the transceiver. For the  
duration of TX_EN, the serialized Transmit Data (TXD) is  
encoded for the transmit-driver pair (PMD Output Pair).  
TXD must be valid on the rising edge of Transmit Clock  
(TX_CLK). Transmission ends when TX_EN deasserts.  
The last transition is always positive; it occurs at the center  
of the bit cell if the last bit is a one, or at the end of the bit  
cell if the last bit is a zero.  
Link pulses are used to check the integrity of the connec-  
tion with the remote end. If valid link pulses are not  
received, the link detector disables the 10BASE-T twisted  
pair transmitter, receiver and collision detection functions.  
When  
the  
link  
integrity  
function  
is  
disabled  
(FORCE_LINK_10 of the 10BTSCR register), a good link is  
forced and the 10BASE-T transceiver will operate regard-  
less of the presence of link pulses.  
4.3.6 Jabber Function  
4.3.10 Receiver  
The jabber function monitors the DP83849C's output and  
disables the transmitter if it attempts to transmit a packet of  
longer than legal size. A jabber timer monitors the transmit-  
ter and disables the transmission if the transmitter is active  
for approximately 85 ms.  
The decoder detects the end of a frame when no additional  
mid-bit transitions are detected. Within one and a half bit  
times after the last bit, carrier sense is de-asserted.  
Receive clock stays active for five more bit times after CRS  
goes low, to guarantee the receive timings of the controller.  
www.national.com  
34  
5.0 Design Guidelines  
Below is a partial list of recommended transformers. It is  
important that the user realize that variations with PCB and  
component characteristics requires that the application be  
tested to ensure that the circuit meets the requirements of  
the intended application.  
5.1 TPI Network Circuit  
Figure 12 shows the recommended circuit for a 10/100  
Mb/s twisted pair interface.  
Pulse H1102  
Pulse H2019  
Belfuse S558-5999-U7  
Halo TG110-S050N2RL  
Vdd  
TPRDM  
Vdd  
COMMON MODE CHOKES  
MAY BE REQUIRED.  
49.9Ω  
0.1µF  
1:1  
49.9  
TDRDP  
TPTDM  
RD-  
0.1µF*  
RD+  
TD-  
TD+  
0.1µF*  
Vdd  
RJ45  
T1  
49.9Ω  
1:1  
0.1µF  
NOTE: CENTER TAP IS PULLED TO VDD  
49.9  
*PLACE CAPACITORS CLOSE TO THE  
TRANSFORMER CENTER TAPS  
TPTDP  
All values are typical and are +/- 1%  
PLACE RESISTORS AND  
CAPACITORS CLOSE TO  
THE DEVICE.  
Figure 12. 10/100 Mb/s Twisted Pair Interface  
35  
www.national.com  
 
capacitor values will vary with the crystal vendors; check  
with the vendor for the recommended loads.  
5.2 ESD Protection  
Typically, ESD precautions are predominantly in effect  
when handling the devices or board before being installed  
in a system. In those cases, strict handling procedures  
need be implemented during the manufacturing process to  
greatly reduce the occurrences of catastrophic ESD  
events. After the system is assembled, internal compo-  
nents are less sensitive from ESD events.  
The oscillator circuit is designed to drive a parallel reso-  
nance AT cut crystal with a minimum drive level of 100µW  
and a maximum of 500µW. If a crystal is specified for a  
lower drive level, a current limiting resistor should be  
placed in series between X2 and the crystal.  
As a starting point for evaluating an oscillator circuit, if the  
requirements for the crystal are not known, CL1 and CL2  
should be set at 33 pF, and R1 should be set at 0Ω.  
The network interface pins are more susceptible to ESD  
events.  
Specification for 25 MHz crystal are listed in Table 16.  
5.3 Clock In (X1) Requirements  
The DP83849C supports an external CMOS level oscillator  
source or a crystal resonator device.  
X2  
X1  
Oscillator  
R1  
If an external clock source is used, X1 should be tied to the  
clock source and X2 should be left floating.  
Specifications for CMOS oscillators: 25 MHz in MII Mode  
and 50 MHz in RMII Mode are listed in Table 14 and Table  
15.  
CL1  
CL2  
Crystal  
Figure 13. Crystal Oscillator Circuit  
A 25 MHz, parallel, 20 pF load crystal resonator should be  
used if a crystal source is desired. Figure 13 shows a typi-  
cal connection for a crystal resonator circuit. The load  
Table 14. 25 MHz Oscillator Specification  
Parameter  
Frequency  
Frequency  
Tolerance  
Frequency  
Stability  
Min  
Typ  
Max  
+50  
+50  
Units  
MHz  
ppm  
Condition  
Operational Temperature  
1 year aging  
25  
ppm  
Rise / Fall Time  
Jitter  
6
nsec  
psec  
20% - 80%  
Short term  
8001  
8001  
Jitter  
psec  
Long term  
Duty Cycle  
Symmetry  
40%  
60%  
1 This limit is provided as a guideline for component selection and to guaranteed by production testing.  
Refer to AN-1548, “PHYTER 100 Base-TX Reference Clock Jitter Tolerance,“ for details on jitter performance.  
www.national.com  
36  
 
 
Table 15. 50 MHz Oscillator Specification  
Parameter  
Frequency  
Frequency  
Tolerance  
Frequency  
Stability  
Min  
Typ  
Max  
+50  
+50  
Units  
MHz  
ppm  
Condition  
50  
Operational Temperature  
Operational Temperature  
ppm  
Rise / Fall Time  
Jitter  
6
nsec  
psec  
20% - 80%  
Short term  
8001  
8001  
Jitter  
psec  
Long term  
Duty Cycle  
Symmetry  
40%  
60%  
1 This limit is provided as a guideline for component selection and to guaranteed by production testing.  
Refer to AN-1548, “PHYTER 100 Base-TX Reference Clock Jitter Tolerance,“ for details on jitter performance.  
Table 16. 25 MHz Crystal Specification  
Parameter  
Frequency  
Min  
Typ  
Max  
+50  
+50  
40  
Units  
MHz  
ppm  
Condition  
25  
Frequency  
Operational Tem-  
perature  
Tolerance  
Frequency  
ppm  
pF  
1 year aging  
Stability  
Load Capacitance  
25  
must be connected to pin 31 (PFBOUT), each pin requires  
a small capacitor (.1 µF). See Figure 14 below for proper  
connections.  
5.4 Power Feedback Circuit  
To ensure correct operation for the DP83849C, parallel  
caps with values of 10 µF and 0.1 µF should be placed  
close to pin 31 (PFBOUT) of the device. Pin 7 (PFBIN1),  
pin 28 (PFBIN2), pin 34 (PFBIN3) and pin 54 (PFBIN4)  
Pin 31 (PFBOUT  
)
.1 µF  
10 µF  
+
-
Pin 7 (PFBIN1)  
Pin 28 (PFBIN2)  
Pin 34 (PFBIN3)  
.1 µF  
.1 µF  
Pin 54 (PFBIN4)  
.1 µF  
.1 µF  
Figure 14. Power Feeback Connection  
37  
www.national.com  
 
 
 
 
5.5 Power Down/Interrupt  
5.6 Energy Detect Mode  
The Power Down and Interrupt functions are multiplexed When Energy Detect is enabled and there is no activity on  
on pin 18 and pin 44 of the device. By default, this pin func- the cable, the DP83849C will remain in a low power mode  
tions as a power down input and the interrupt function is while monitoring the transmission line. Activity on the line  
disabled. Setting bit 0 (INT_OE) of MICR (11h) will config- will cause the DP83849C to go through a normal power up  
ure the pin as an active low interrupt output. Ports A and B sequence. Regardless of cable activity, the DP83849C will  
can be powered down individually, using the separate occasionally wake up the transmitter to put ED pulses on  
PWRDOWN_INT_A and PWRDOWN_INT_B pins.  
the line, but will otherwise draw as little power as possible.  
Energy detect functionality is controlled via register Energy  
Detect Control (EDCR), address 1Dh.  
5.5.1 Power Down Control Mode  
The PWRDOWN_INT pins can be asserted low to put the  
device in a Power Down mode. This is equivalent to setting  
bit 11 (Power Down) in the Basic Mode Control Register,  
BMCR (00h). An external control signal can be used to  
drive the pin low, overcoming the weak internal pull-up  
resistor. Alternatively, the device can be configured to ini-  
tialize into a Power Down state by use of an external pull-  
down resistor on the PWRDOWN_INT pin. Since the  
device will still respond to management register accesses,  
setting the INT_OE bit in the MICR register will disable the  
PWRDOWN_INT input, allowing the device to exit the  
Power Down state.  
5.7 Link Diagnostic Capabilities  
The DP83849C contains several system diagnostic capa-  
bilities for evaluating link quality and detecting potential  
cabling faults in Twisted Pair cabling. Software configura-  
tion is available through the Link Diagnostics Registers -  
Page 2 which can be selected via Page Select Register  
(PAGESEL), address 13h. These capabilities include:  
— Linked Cable Status  
— Link Quality Monitor  
— TDR (Time Domain Reflectometry) Cable Diagnostics  
5.5.2 Interrupt Mechanisms  
5.7.1 Linked Cable Status  
Since each port has a separate interrupt pin, the interrupts  
can be connected individually or may be combined in a  
wired-OR fashion. If the interrupts share a single connec-  
tion, each port status should be checked following an inter-  
rupt.  
In an active connection with a valid link status, the following  
diagnostic capabilities are available:  
— Polarity reversal  
— Cable swap (MDI vs MDIX) detection  
— 100Mb Cable Length Estimation  
The interrupt function is controlled via register access. All  
interrupt sources are disabled by default. Setting bit 1 — Frequency offset relative to link partner  
(INTEN) of MICR (11h) will enable interrupts to be output,  
— Cable Signal Quality Estimation  
dependent on the interrupt mask set in the lower byte of  
the MISR (12h). The PWRDOWN_INT pin is asynchro-  
nously asserted low when an interrupt condition occurs.  
5.7.1.1 Polarity Reversal  
The source of the interrupt can be determined by reading  
the upper byte of the MISR. One or more bits in the MISR  
will be set, denoting all currently pending interrupts. Read-  
ing of the MISR clears ALL pending interrupts.  
The DP83849C detects polarity reversal by detecting nega-  
tive link pulses. The Polarity indication is available in bit 12  
of the PHYSTS (10h) or bit 4 of the 10BTSCR (1Ah).  
Inverted polarity indicates the positive and negative con-  
ductors in the receive pair are swapped. Since polarity is  
corrected by the receiver, this does not necessarily indicate  
a functional problem in the cable.  
Example: To generate an interrupt on a change of link sta-  
tus or on a change of energy detect power state, the steps  
would be:  
— Write 0003h to MICR to set INTEN and INT_OE  
Since the polarity indication is dependent on link pulses  
from the link partner, polarity indication is only valid in  
10Mb modes of operation, or in 100Mb Auto-Negotiated  
mode. Polarity indication is not available in 100Mb forced  
mode of operation or in a parallel detected 100Mb mode.  
— Write 0060h to MISR to set ED_INT_EN and  
LINK_INT_EN  
— Monitor PWRDOWN_INT pin  
When PWRDOWN_INT pin asserts low, the user would  
read the MISR register to see if the ED_INT or LINK_INT  
bits are set, i.e. which source caused the interrupt. After  
reading the MISR, the interrupt bits should clear and the  
PWRDOWN_INT pin will deassert.  
5.7.1.2 Cable Swap Indication  
As part of Auto-Negotiation, the DP83849C has the ability  
(using Auto-MDIX) to automatically detect a cable with  
swapped MDI pairs and select the appropriate pairs for  
transmitting and receiving data. Normal operation is  
termed MDI, while crossed operation is MDIX. The MDIX  
status can be read from bit 14 of the PHYSTS (10h).  
www.national.com  
38  
 
5.7.1.3 100MB Cable Length Estimation  
Software is expected to read initial adapted values and  
then program the thresholds based on an expected valid  
range. This mechanism takes advantage of the fact that  
the DSP adaption should remain in a relatively small range  
once a valid link has been established.  
The DP83849C provides a method of estimating cable  
length based on electrical characteristics of the 100Mb  
Link. This essentially provides an effective cable length  
rather than a measurement of the physical cable length.  
The cable length estimation is only available in 100Mb  
mode of operation with a valid Link status. The cable  
length estimation is available at the Link Diagnostics Reg-  
5.7.2.1 Link Quality Monitor Control and Status  
isters  
-
Page 2, register 100Mb Length Detect  
Control of the Link Quality Monitor is done through the Link  
Quality Monitor Register (LQMR), address 1Dh and the  
Link Quality Data Register (LQDR), address 1Bh of the  
Link Diagnostics Registers - Page 2. The LQMR register  
includes a global enable to enable the Link Quality Monitor  
function. In addition, it provides warning status from both  
high and low thresholds for each of the monitored parame-  
ters. Note that individual low or high parameter threshold  
comparisons can be disabled by setting to the minimum or  
maximum values.  
(LEN100_DET), address 14h.  
5.7.1.4 Frequency Offset Relative to Link Partner  
As part of the 100Mb clock recovery process, the DSP  
implementation provides a frequency control parameter.  
This value may be used to indicate the frequency offset of  
the device relative to the link partner. This operation is only  
available in 100Mb operation with a valid link status. The  
frequency offset can be determined using the register  
100Mb Frequency Offset Indication (FREQ100), address  
15h, of the Link Diagnostics Registers - Page 2.  
To allow the Link Quality Monitor to interrupt the system,  
the Interrupt must be enabled through the interrupt control  
registers, MICR (11h) and MISR (12h).  
Two different versions of the Frequency Offset may be  
monitored through bits [7:0] of register FREQ100 (15h).  
The first is the long-term Frequency Offset. The second is  
the current Frequency Control value, which includes short-  
term phase adjustments and can provide information on  
the amount of jitter in the system.  
5.7.2.2 Checking Current Parameter Values  
Prior to setting Threshold values, it is recommended that  
software check current adapted values. The thresholds  
may then be set relative to the adapted values. The current  
adapted values can be read using the LQDR register by  
setting the Sample_Param bit [13] of LQDR, address  
(1Eh).  
5.7.1.5 Cable Signal Quality Estimation  
For example, to read the DBLW current value:  
The cable signal quality estimator keeps a simple tracking  
of results of the DSP and can be used to generate an  
approximate Signal-to-Noise Ratio for the 100Mb receiver.  
This information is available to software through the Link  
1. Write 2400h to LQDR (1Eh) to set the Sample_Param  
bit and set the LQ_PARAM_SEL[2:0] to 010.  
2. Read LQDR (1Eh). Current DBLW value is returned  
in the low 8 bits.  
Diagnostics Registers  
-
Page 2: Variance Control  
(VAR_CTRL), address 1Ah and Data (VAR_DATA),  
address 1Bh.  
The variance computation times (VAR_TIMER) can be  
chosen from the set of {2, 4, 6, 8} ms. The 32-bit variance  
sum can be read by two consecutive reads of the  
VAR_DATA register. This sum can be used to compute an  
SNR estimate by software using the following equation:  
5.7.2.3 Threshold Control  
The LQDR (1Eh) register also provides a method of pro-  
gramming high and low thresholds for each of the four  
parameters that can be monitored. The register imple-  
ments an indirect read/write mechanism.  
SNR = 10log10((37748736 * VAR_TIMER) / Variance).  
Writes are accomplished by writing data, address, and a  
write strobe to the register. Reads are accomplished by  
writing the address to the register, and reading back the  
value of the selected threshold. Setting thresholds to the  
maximum or minimum values will disable the threshold  
comparison since values have to exceed the threshold to  
generate a warning condition.  
5.7.2 Link Quality Monitor  
The Link Quality Monitor allows a method to generate an  
alarm when the DSP adaption strays from a programmable  
window. This could occur due to changes in the cable  
which could indicate a potential problem. Software can  
program thresholds for the following DSP parameters to be  
used to interrupt the system:  
Warnings are not generated if the parameter is equal to the  
threshold. By default, all thresholds are disabled by setting  
to the min or max values. The following table shows the  
four parameters and range of values:  
— Digital Equalizer C1 Coefficient (DEQ C1)  
— Digital Adaptive Gain Control (DAGC)  
— Digital Base-Line Wander Control (DBLW)  
— Recovered Clock Long-Term Frequency Offset (FREQ)  
— Recovered Clock Frequency Control (FC)  
39  
www.national.com  
Table 17. Link Quality Monitor Parameter Ranges  
Parameter  
DEQ C1  
Minimum Value  
Maximum Value  
+127  
Min (2-s comp)  
Max (2-s comp)  
0x7F  
-128  
0
0x80  
0x00  
0x80  
0x80  
0x80  
DAGC  
+255  
0xFF  
DBLW  
-128  
-128  
-128  
+127  
0x7F  
Freq Offset  
Freq Control  
+127  
0x7F  
+127  
0x7F  
5.7.3 TDR Cable Diagnostics  
The DP83849C implements a Time Domain Reflectometry records the time, in 8ns intervals, at which the peak or  
(TDR) method of cable length measurement and evalua- threshold value first occurs.  
tion which can be used to evaluate a connected twisted  
The TDR monitor implements a timer that starts when the  
pair cable. The TDR implementation involves sending a  
pulse is transmitted. A window may be enabled to qualify  
pulse out on either the Transmit or Receive conductor pair  
incoming data to look for response only in a desired range.  
and observing the results on either pair. By observing the  
This is especially useful for eliminating the transmitted  
types and strength of reflections on each pair, software can  
pulse, but also may be used to look for multiple reflections.  
determine the following:  
— Cable short  
5.7.3.3 TDR Control Interface  
— Cable open  
The TDR Control interface is implemented in the Link Diag-  
nostics Registers  
(TDR_CTRL), address 16h and TDR Window (TDR_WIN),  
address 17h. The following basic controls are:  
- Page 2 through TDR Control  
— Distance to fault  
— Identify which pair has a fault  
— Pair skew  
TDR Enable: Enable bit 15 of TDR_CTRL (16h) to allow  
the TDR function. This bypasses normal operation and  
gives control of the CD10 and CD100 block to the TDR  
function.  
The TDR cable diagnostics works best in certain condi-  
tions. For example, an unterminated cable provides a  
good reflection for measuring cable length, while a cable  
with an ideal termination to an unpowered partner may pro-  
vide no reflection at all.  
TDR Send Pulse: Enable bit 11 of TDR_CTRL (16h) to  
send the TDR pulse and starts the TDR Monitor.  
The following Transmit mode controls are available:  
5.7.3.1 TDR Pulse Generator  
Transmit Mode: Enables use of 10Mb Link pulses from  
the 10Mb Common Driver or data pulses from the 100Mb  
Common Driver by enabling TDR 100Mb, bit 14 of  
TDR_CRTL (16h).  
The TDR implementation can send two types of TDR  
pulses. The first option is to send 50ns or 100ns link  
pulses from the 10Mb Common Driver. The second option  
is to send pulses from the 100Mb Common Driver in 8ns  
increments up to 56ns in width. The 100Mb pulses will  
alternate between positive and negative pulses. The  
shorter pulses provide better ability to measure short cable  
lengths, especially since they will limit overlap between the  
transmitted pulse and a reflected pulse. The longer pulses  
may provide better measurements of long cable lengths.  
Transmit Pulse Width: Bits [10:8] of TDR_CTRL (16h)  
allows sending of 0 to 7 clock width pulses. Actual puls-  
es are dependent on the transmit mode. If Pulse Width  
is set to 0, then no pulse will be sent.  
Transmit Channel Select: The transmitter can send  
pulses down either the transmit pair or the receive pair  
by enabling bit 13 of TDR_CTRL (16h). Default value is  
to select the transmit pair.  
In addition, if the pulse width is programmed to 0, no pulse  
will be sent, but monitor circuit will still be activated. This  
allows sampling of background data to provide a baseline  
for analysis.  
The following Receive mode controls are available:  
Min/Max Mode Select: Bit 7 of TDR_CTRL (16h) con-  
trols the TDR Monitor operation. In default mode, the  
monitor will detect maximum (positive) values. In Min  
mode, the monitor will detect minimum (negative) val-  
ues.  
5.7.3.2 TDR Pulse Monitor  
The TDR function monitors data from the Analog to Digital  
Converter (ADC) to detect both peak values and values  
above a programmable threshold. It can be programmed  
to detect maximum or minimum values. In addition, it  
Receive Channel Select: The receiver can monitor ei-  
ther the transmit pair or the receive pair by enabling bit  
12 of TDR_CTRL (16h). Default value is to select the  
transmit pair.  
www.national.com  
40  
 
Receive Window: The receiver can monitor receive  
threshold measurement are available in the TDR Peak  
data within a programmable window using the TDR Win- Measurement Register (TDR_PEAK), address 18h and  
dow Register (TDR_WIN), address 17h. The window is TDR Threshold Measurement Register (TDR_THR),  
controlled by two register values: TDR Start Window, bits address 19h. The threshold measurement may be a more  
[15:8] of TDR_WIN (17h) and TDR Stop Window, bits  
[7:0] of TDR_WIN (17h). The TDR Start Window indi-  
cates the first clock to start sampling. The TDR Stop  
Window indicates the last clock to sample. By default,  
the full window is enabled, with Start set to 0 and Stop  
set to 255. The window range is in 8ns clock increments,  
so the maximum window size is 2048ns.  
accurate method of measuring the length for longer cables  
to provide a better indication of the start of the received  
pulse, rather than the peak value.  
Software utilizing the TDR function should implement an  
algorithm to send TDR pulses and evaluate results. Multi-  
ple runs should be used to best qualify any received pulses  
as multiple reflections could exist. In addition, when moni-  
toring the transmitting pair, the window feature should be  
used to disqualify the transmitted pulse. Multiple runs may  
also be used to average the values providing more accu-  
rate results.  
5.7.3.4 TDR Results  
The TDR function monitors data from the Analog to Digital  
Converter (ADC) to detect both peak values and values  
above a programmable threshold. It can be programmed  
to detect maximum or minimum values. In addition, it  
records the time, in 8ns intervals, at which the peak or  
threshold value first occurs. The results of a TDR peak and  
Actual distance measurements are dependent on the  
velocity of propagation of the cable. The delay value is typ-  
ically on the order of 4.6 to 4.9 ns/m.  
41  
www.national.com  
(BMCR). The period from the point in time when the reset  
bit is set to the point in time when software reset has con-  
cluded is approximately 1 µs.  
6.0 Reset Operation  
The DP83849C includes an internal power-on reset (POR)  
function and does not need to be explicitly reset for normal  
operation after power up. If required during normal opera-  
tion, the device can be reset by a hardware or software  
reset.  
The software reset will reset the device such that all regis-  
ters will be reset to default values and the hardware config-  
uration values will be maintained. Software driver code  
must wait 3 µs following a software reset before allowing  
further serial MII operations with the DP83849C.  
6.1 Hardware Reset  
A hardware reset is accomplished by applying a low pulse  
(TTL level), with a duration of at least 1 µs, to the  
RESET_N pin. This will reset the device such that all regis-  
ters will be reinitialized to default values and the hardware  
configuration values will be re-latched into the device (simi-  
lar to the power-up/reset operation).  
6.3 Soft Reset  
A partial software reset can be initiated by setting the Soft  
Reset bit (bit 9) in the PHYCR2 Register. Setting this bit will  
reset all transmit and receive operations, but will not reset  
the register space. All register configurations will be pre-  
served. Register space will remain available following a  
Soft Reset.  
6.2 Full Software Reset  
A full-chip software reset is accomplished by setting the  
reset bit (bit 15) of the Basic Mode Control Register  
www.national.com  
42  
7.0 Register Block  
Table 18. Register Map  
Tag  
Offset  
Access  
Description  
Hex  
00h  
01h  
02h  
03h  
04h  
05h  
05h  
06h  
07h  
08h-Fh  
10h  
11h  
12h  
13h  
Decimal  
0
1
RW  
RO  
RO  
RO  
RW  
RW  
RW  
RW  
RW  
BMCR  
Basic Mode Control Register  
BMSR  
Basic Mode Status Register  
2
PHYIDR1  
PHYIDR2  
ANAR  
PHY Identifier Register #1  
3
PHY Identifier Register #2  
4
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Ability Register (Base Page)  
Auto-Negotiation Link Partner Ability Register (Next Page)  
Auto-Negotiation Expansion Register  
Auto-Negotiation Next Page TX  
RESERVED  
5
ANLPAR  
ANLPARNP  
ANER  
5
6
7
ANNPTR  
RESERVED  
PHYSTS  
MICR  
8-15  
16  
17  
18  
19  
RO  
RW  
RW  
RW  
PHY Status Register  
MII Interrupt Control Register  
MISR  
MII Interrupt Status Register  
PAGESEL  
Page Select Register  
Extended Registers - Page 0  
14h  
15h  
20  
21  
RO  
RO  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
FCSCR  
RECR  
False Carrier Sense Counter Register  
Receive Error Counter Register  
PCS Sub-Layer Configuration and Status Register  
RMII and Bypass Register  
16h  
22  
PCSR  
17h  
23  
RBR  
18h  
24  
LEDCR  
PHYCR  
10BTSCR  
CDCTRL1  
PHYCR2  
EDCR  
LED Direct Control Register  
19h  
25  
PHY Control Register  
1Ah  
26  
10Base-T Status/Control Register  
CD Test Control Register and BIST Extensions Register  
Phy Control Register 2  
1Bh  
27  
1Ch  
1Dh  
1Eh-1Fh  
28  
29  
Energy Detect Control Register  
RESERVED  
30-31  
RESERVED  
Reserved Registers  
14h-1Fh  
20-31  
RESERVED  
RESERVED  
Link Diagnostics Registers - Page 2  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
RO  
RW  
RW  
RW  
RO  
RO  
RW  
RO  
LEN100_DET 100Mb Length Detect Register  
FREQ100  
TDR_CTRL  
TDR_WIN  
TDR_PEAK  
TDR_THR  
VAR_CTRL  
VAR_DAT  
RESERVED  
LQMR  
100Mb Frequency Offset Indication Register  
TDR Control Register  
TDR Window Register  
TDR Peak Measurement Register  
TDR Threshold Measurement Register  
Variance Control Register  
Variance Data Register  
RESERVED  
RW  
RW  
Link Quality Monitor Register  
Link Quality Data Register  
RESERVED  
LQDR  
RESERVED  
43  
www.national.com  
 
 
www.national.com  
44  
 
45  
www.national.com  
www.national.com  
46  
7.1 Register Definition  
In the register definitions under the ‘Default’ heading, the following definitions hold true:  
RW=Read Write access  
SC=Register sets on event occurrence and Self-Clears when event ends  
RW/SC =Read Write access/Self Clearing bit  
RO=Read Only access  
COR = Clear on Read  
RO/COR=Read Only, Clear on Read  
RO/P=Read Only, Permanently set to a default value  
LL=Latched Low and held until read, based upon the occurrence of the corresponding event  
— LH=Latched High and held until read, based upon the occurrence of the corresponding event  
47  
www.national.com  
7.1.1 Basic Mode Control Register (BMCR)  
Table 20. Basic Mode Control Register (BMCR), address 00h  
Bit  
Bit Name  
Default  
Description  
15  
RESET  
0, RW/SC  
Reset:  
1 = Initiate software Reset / Reset in Process.  
0 = Normal operation.  
This bit, which is self-clearing, returns a value of one until the reset  
process is complete. The configuration is re-strapped.  
14  
LOOPBACK  
0, RW  
Loopback:  
1 = Loopback enabled.  
0 = Normal operation.  
The loopback function enables MII transmit data to be routed to the MII  
receive data path.  
Setting this bit may cause the descrambler to lose synchronization and  
produce a 500 µs “dead time” before any valid data will appear at the  
MII receive outputs.  
13  
12  
SPEED SELEC-  
TION  
Strap, RW  
Strap, RW  
Speed Select:  
When auto-negotiation is disabled writing to this bit allows the port  
speed to be selected.  
1 = 100 Mb/s.  
0 = 10 Mb/s.  
AUTO-NEGOTI-  
ATION  
Auto-Negotiation Enable:  
Strap controls initial value at reset.  
ENABLE  
1 = Auto-Negotiation Enabled - bits 8 and 13 of this register are ig-  
nored when this bit is set.  
0 = Auto-Negotiation Disabled - bits 8 and 13 determine the port speed  
and duplex mode.  
11  
POWER DOWN  
0, RW  
Power Down:  
1 = Power down.  
0 = Normal operation.  
Setting this bit powers down the PHY. Only the register block is en-  
abled during a power down condition. This bit is OR’d with the input  
from the PWRDOWN_INT pin. When the active low PWRDOWN_INT  
pin is asserted, this bit will be set.  
10  
9
ISOLATE  
0, RW  
Isolate:  
1 = Isolates the Port from the MII with the exception of the serial man-  
agement.  
0 = Normal operation.  
RESTART  
AUTO-NEGOTI-  
ATION  
0, RW/SC  
Restart Auto-Negotiation:  
1 = Restart Auto-Negotiation. Re-initiates the Auto-Negotiation pro-  
cess. If Auto-Negotiation is disabled (bit 12 = 0), this bit is ignored. This  
bit is self-clearing and will return a value of 1 until Auto-Negotiation is  
initiated, whereupon it will self-clear. Operation of the Auto-Negotiation  
process is not affected by the management entity clearing this bit.  
0 = Normal operation.  
8
DUPLEX MODE  
Strap, RW  
Duplex Mode:  
When auto-negotiation is disabled writing to this bit allows the port Du-  
plex capability to be selected.  
1 = Full Duplex operation.  
0 = Half Duplex operation.  
www.national.com  
48  
 
Table 20. Basic Mode Control Register (BMCR), address 00h (Continued)  
Bit  
Bit Name  
Default  
Description  
7
COLLISION  
TEST  
0, RW  
Collision Test:  
1 = Collision test enabled.  
0 = Normal operation.  
When set, this bit will cause the COL signal to be asserted in response  
to the assertion of TX_EN within 512-bit times. The COL signal will be  
de-asserted within 4-bit times in response to the de-assertion of  
TX_EN.  
6:0  
RESERVED  
0, RO  
RESERVED: Write ignored, read as 0.  
49  
www.national.com  
7.1.2 Basic Mode Status Register (BMSR)  
Table 21. Basic Mode Status Register (BMSR), address 01h  
Bit  
Bit Name  
Default  
Description  
15  
100BASE-T4  
0, RO/P  
100BASE-T4 Capable:  
0 = Device not able to perform 100BASE-T4 mode.  
100BASE-TX Full Duplex Capable:  
14  
13  
12  
11  
100BASE-TX  
FULL DUPLEX  
100BASE-TX  
HALF DUPLEX  
10BASE-T  
1, RO/P  
1, RO/P  
1, RO/P  
1, RO/P  
1 = Device able to perform 100BASE-TX in full duplex mode.  
100BASE-TX Half Duplex Capable:  
1 = Device able to perform 100BASE-TX in half duplex mode.  
10BASE-T Full Duplex Capable:  
FULL DUPLEX  
10BASE-T  
1 = Device able to perform 10BASE-T in full duplex mode.  
10BASE-T Half Duplex Capable:  
HALF DUPLEX  
RESERVED  
1 = Device able to perform 10BASE-T in half duplex mode.  
RESERVED: Write as 0, read as 0.  
10:7  
6
0, RO  
MF PREAMBLE  
SUPPRESSION  
1, RO/P  
Preamble suppression Capable:  
1 = Device able to perform management transaction with preamble  
suppressed, 32-bits of preamble needed only once after reset, invalid  
opcode or invalid turnaround.  
0 = Normal management operation.  
Auto-Negotiation Complete:  
5
4
AUTO-NEGOTIATION  
COMPLETE  
0, RO  
1 = Auto-Negotiation process complete.  
0 = Auto-Negotiation process not complete.  
REMOTE FAULT  
0, RO/LH Remote Fault:  
1 = Remote Fault condition detected (cleared on read or by reset).  
Fault criteria: Far End Fault Indication or notification from Link Part-  
ner of Remote Fault.  
0 = No remote fault condition detected.  
Auto Negotiation Ability:  
3
2
AUTO-NEGOTIATION  
ABILITY  
1, RO/P  
1 = Device is able to perform Auto-Negotiation.  
0 = Device is not able to perform Auto-Negotiation.  
LINK STATUS  
0, RO/LL Link Status:  
1 = Valid link established (for either 10 or 100 Mb/s operation).  
0 = Link not established.  
The criteria for link validity is implementation specific. The occurrence  
of a link failure condition will causes the Link Status bit to clear. Once  
cleared, this bit may only be set by establishing a good link condition  
and a read via the management interface.  
1
0
JABBER DETECT  
0, RO/LH Jabber Detect: This bit only has meaning in 10 Mb/s mode.  
1 = Jabber condition detected.  
0 = No Jabber.  
This bit is implemented with a latching function, such that the occur-  
rence of a jabber condition causes it to set until it is cleared by a read  
to this register by the management interface or by a reset.  
EXTENDED CAPA-  
BILITY  
1, RO/P  
Extended Capability:  
1 = Extended register capabilities.  
0 = Basic register set capabilities only.  
www.national.com  
50  
 
The PHY Identifier Registers #1 and #2 together form a unique identifier for the DP83849C. The Identifier consists of a  
concatenation of the Organizationally Unique Identifier (OUI), the vendor's model number and the model revision num-  
ber. A PHY may return a value of zero in each of the 32 bits of the PHY Identifier if desired. The PHY Identifier is intended  
to support network management. National's IEEE assigned OUI is 080017h.  
7.1.3 PHY Identifier Register #1 (PHYIDR1)  
Table 22. PHY Identifier Register #1 (PHYIDR1), address 02h  
Bit  
Bit Name  
Default  
Description  
15:0  
OUI_MSB  
<0010 0000 0000 OUI Most Significant Bits: Bits 3 to 18 of the OUI (080017h) are  
0000>, RO/P  
stored in bits 15 to 0 of this register. The most significant two bits  
of the OUI are ignored (the IEEE standard refers to these as bits 1  
and 2).  
7.1.4 PHY Identifier Register #2 (PHYIDR2)  
Table 23. PHY Identifier Register #2 (PHYIDR2), address 03h  
Default Description  
<0101 11>, RO/P OUI Least Significant Bits:  
Bits 19 to 24 of the OUI (080017h) are mapped from bits 15 to 10  
Bit  
Bit Name  
15:10  
OUI_LSB  
of this register respectively.  
9:4  
3:0  
VNDR_MDL  
MDL_REV  
<00 1010>, RO/P Vendor Model Number:  
The six bits of vendor model number are mapped from bits 9 to 4  
(most significant bit to bit 9).  
<0010>, RO/P Model Revision Number:  
Four bits of the vendor model revision number are mapped from  
bits 3 to 0 (most significant bit to bit 3). This field will be incremented  
for all major device changes.  
7.1.5 Auto-Negotiation Advertisement Register (ANAR)  
This register contains the advertised abilities of this device as they will be transmitted to its link partner during Auto-Nego-  
tiation. Any writes to this register prior to completion of Auto-Negotiation (as indicated in the Basic Mode Status Register  
(address 01h) Auto-Negotiation Complete bit, BMSR[5]) should be followed by a renegotiation. This will ensure that the  
new values are properly used in the Auto-Negotiation.  
Table 24. Negotiation Advertisement Register (ANAR), address 04h  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RW  
Next Page Indication:  
0 = Next Page Transfer not desired.  
1 = Next Page Transfer desired.  
14  
13  
RESERVED  
RF  
0, RO/P  
0, RW  
RESERVED by IEEE: Writes ignored, Read as 0.  
Remote Fault:  
1 = Advertises that this device has detected a Remote Fault.  
0 = No Remote Fault detected.  
12  
RESERVED  
0, RW  
RESERVED for Future IEEE use: Write as 0, Read as 0  
51  
www.national.com  
 
 
 
Table 24. Negotiation Advertisement Register (ANAR), address 04h (Continued)  
Bit  
Bit Name  
Default  
Description  
11  
ASM_DIR  
0, RW  
Asymmetric PAUSE Support for Full Duplex Links:  
The ASM_DIR bit indicates that asymmetric PAUSE is supported.  
Encoding and resolution of PAUSE bits is defined in IEEE 802.3  
Annex 28B, Tables 28B-2 and 28B-3, respectively. Pause resolu-  
tion status is reported in PHYCR[13:12].  
1 = Advertise that the DTE (MAC) has implemented both the op-  
tional MAC control sublayer and the pause function as specified in  
clause 31 and annex 31B of 802.3u.  
0= No MAC based full duplex flow control.  
10  
PAUSE  
0, RW  
PAUSE Support for Full Duplex Links:  
The PAUSE bit indicates that the device is capable of providing the  
symmetric PAUSE functions as defined in Annex 31B.  
Encoding and resolution of PAUSE bits is defined in IEEE 802.3  
Annex 28B, Tables 28B-2 and 28B-3, respectively. Pause resolu-  
tion status is reported in PHYCR[13:12].  
1 = Advertise that the DTE (MAC) has implemented both the op-  
tional MAC control sublayer and the pause function as specified in  
clause 31 and annex 31B of 802.3u.  
0= No MAC based full duplex flow control.  
100BASE-T4 Support:  
9
8
T4  
TX_FD  
TX  
0, RO/P  
1= 100BASE-T4 is supported by the local device.  
0 = 100BASE-T4 not supported.  
Strap, RW  
Strap, RW  
Strap, RW  
Strap, RW  
100BASE-TX Full Duplex Support:  
1 = 100BASE-TX Full Duplex is supported by the local device.  
0 = 100BASE-TX Full Duplex not supported.  
100BASE-TX Support:  
7
1 = 100BASE-TX is supported by the local device.  
0 = 100BASE-TX not supported.  
6
10_FD  
10  
10BASE-T Full Duplex Support:  
1 = 10BASE-T Full Duplex is supported by the local device.  
0 = 10BASE-T Full Duplex not supported.  
10BASE-T Support:  
5
1 = 10BASE-T is supported by the local device.  
0 = 10BASE-T not supported.  
4:0  
SELECTOR  
<00001>, RW Protocol Selection Bits:  
These bits contain the binary encoded protocol selector supported  
by this port. <00001> indicates that this device supports IEEE  
802.3u.  
www.national.com  
52  
7.1.6 Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page)  
This register contains the advertised abilities of the Link Partner as received during Auto-Negotiation. The content  
changes after the successful auto-negotiation if Next-pages are supported.  
Table 25. Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page), address 05h  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RO  
Next Page Indication:  
0 = Link Partner does not desire Next Page Transfer.  
1 = Link Partner desires Next Page Transfer.  
Acknowledge:  
14  
13  
ACK  
RF  
0, RO  
0, RO  
1 = Link Partner acknowledges reception of the ability data word.  
0 = Not acknowledged.  
The Auto-Negotiation state machine will automatically control the  
this bit based on the incoming FLP bursts.  
Remote Fault:  
1 = Remote Fault indicated by Link Partner.  
0 = No Remote Fault indicated by Link Partner.  
RESERVED for Future IEEE use:  
12  
11  
RESERVED  
ASM_DIR  
0, RO  
0, RO  
Write as 0, read as 0.  
ASYMMETRIC PAUSE:  
1 = Asymmetric pause is supported by the Link Partner.  
0 = Asymmetric pause is not supported by the Link Partner.  
PAUSE:  
10  
9
PAUSE  
T4  
0, RO  
0, RO  
0, RO  
0, RO  
0, RO  
0, RO  
1 = Pause function is supported by the Link Partner.  
0 = Pause function is not supported by the Link Partner.  
100BASE-T4 Support:  
1 = 100BASE-T4 is supported by the Link Partner.  
0 = 100BASE-T4 not supported by the Link Partner.  
100BASE-TX Full Duplex Support:  
8
TX_FD  
TX  
1 = 100BASE-TX Full Duplex is supported by the Link Partner.  
0 = 100BASE-TX Full Duplex not supported by the Link Partner.  
100BASE-TX Support:  
7
1 = 100BASE-TX is supported by the Link Partner.  
0 = 100BASE-TX not supported by the Link Partner.  
10BASE-T Full Duplex Support:  
6
10_FD  
10  
1 = 10BASE-T Full Duplex is supported by the Link Partner.  
0 = 10BASE-T Full Duplex not supported by the Link Partner.  
10BASE-T Support:  
5
1 = 10BASE-T is supported by the Link Partner.  
0 = 10BASE-T not supported by the Link Partner.  
4:0  
SELECTOR  
<0 0000>, RO Protocol Selection Bits:  
Link Partner’s binary encoded protocol selector.  
53  
www.national.com  
 
7.1.7 Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page)  
Table 26. Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page), address 05h  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RO  
Next Page Indication:  
1 = Link Partner desires Next Page Transfer.  
0 = Link Partner does not desire Next Page Transfer.  
Acknowledge:  
14  
ACK  
0, RO  
1 = Link Partner acknowledges reception of the ability data word.  
0 = Not acknowledged.  
The Auto-Negotiation state machine will automatically control the  
this bit based on the incoming FLP bursts. Software should not at-  
tempt to write to this bit.  
13  
12  
MP  
0, RO  
0, RO  
Message Page:  
1 = Message Page.  
0 = Unformatted Page.  
Acknowledge 2:  
ACK2  
1 = Link Partner does have the ability to comply to next page mes-  
sage.  
0 = Link Partner does not have the ability to comply to next page  
message.  
11  
TOGGLE  
CODE  
0, RO  
Toggle:  
1 = Previous value of the transmitted Link Code word equalled 0.  
0 = Previous value of the transmitted Link Code word equalled 1.  
10:0  
<00000000000>, Code:  
RO  
This field represents the code field of the next page transmission.  
If the MP bit is set (bit 13 of this register), then the code shall be  
interpreted as a “Message Page,” as defined in annex 28C of  
Clause 28. Otherwise, the code shall be interpreted as an “Unfor-  
matted Page,” and the interpretation is application specific.  
www.national.com  
54  
 
7.1.8 Auto-Negotiate Expansion Register (ANER)  
This register contains additional Local Device and Link Partner status information.  
Table 27. Auto-Negotiate Expansion Register (ANER), address 06h  
Bit  
15:5  
4
Bit Name  
RESERVED  
PDF  
Default  
0, RO  
0, RO  
Description  
RESERVED: Writes ignored, Read as 0.  
Parallel Detection Fault:  
1 = A fault has been detected via the Parallel Detection function.  
0 = A fault has not been detected.  
3
LP_NP_ABLE  
0, RO  
Link Partner Next Page Able:  
1 = Link Partner does support Next Page.  
0 = Link Partner does not support Next Page.  
Next Page Able:  
2
1
NP_ABLE  
PAGE_RX  
1, RO/P  
1 = Indicates local device is able to send additional “Next Pages”.  
Link Code Word Page Received:  
0, RO/COR  
1 = Link Code Word has been received, cleared on a read.  
0 = Link Code Word has not been received.  
Link Partner Auto-Negotiation Able:  
0
LP_AN_ABLE  
0, RO  
1 = indicates that the Link Partner supports Auto-Negotiation.  
0 = indicates that the Link Partner does not support Auto-Negotia-  
tion.  
55  
www.national.com  
 
7.1.9 Auto-Negotiation Next Page Transmit Register (ANNPTR)  
This register contains the next page information sent by this device to its Link Partner during Auto-Negotiation.  
Table 28. Auto-Negotiation Next Page Transmit Register (ANNPTR), address 07h  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RW  
Next Page Indication:  
0 = No other Next Page Transfer desired.  
1 = Another Next Page desired.  
RESERVED: Writes ignored, read as 0.  
Message Page:  
14  
13  
RESERVED  
MP  
0, RO  
1, RW  
1 = Message Page.  
0 = Unformatted Page.  
12  
11  
ACK2  
0, RW  
0, RO  
Acknowledge2:  
1 = Will comply with message.  
0 = Cannot comply with message.  
Acknowledge2 is used by the next page function to indicate that  
Local Device has the ability to comply with the message received.  
TOG_TX  
Toggle:  
1 = Value of toggle bit in previously transmitted Link Code Word  
was 0.  
0 = Value of toggle bit in previously transmitted Link Code Word  
was 1.  
Toggle is used by the Arbitration function within Auto-Negotiation  
to ensure synchronization with the Link Partner during Next Page  
exchange. This bit shall always take the opposite value of the  
Toggle bit in the previously exchanged Link Code Word.  
10:0  
CODE  
<000 0000 0001>, Code:  
RW  
This field represents the code field of the next page transmission.  
If the MP bit is set (bit 13 of this register), then the code shall be  
interpreted as a "Message Page”, as defined in annex 28C of  
IEEE 802.3u. Otherwise, the code shall be interpreted as an "Un-  
formatted Page”, and the interpretation is application specific.  
The default value of the CODE represents a Null Page as defined  
in Annex 28C of IEEE 802.3u.  
www.national.com  
56  
 
7.1.10 PHY Status Register (PHYSTS)  
This register provides a single location within the register set for quick access to commonly accessed information.  
Table 29. PHY Status Register (PHYSTS), address 10h  
Bit  
15  
14  
Bit Name  
RESERVED  
MDIX MODE  
Default  
0, RO  
0, RO  
Description  
RESERVED: Write ignored, read as 0.  
MDIX mode as reported by the Auto-Negotiation logic:  
This bit will be affected by the settings of the MDIX_EN and  
FORCE_MDIX bits in the PHYCR register. When MDIX is enabled,  
but not forced, this bit will update dynamically as the Auto-MDIX al-  
gorithm swaps between MDI and MDIX configurations.  
1 = MDI pairs swapped  
(Receive on TPTD pair, Transmit on TPRD pair)  
0 = MDI pairs normal  
(Receive on TRD pair, Transmit on TPTD pair)  
Receive Error Latch:  
13  
12  
RECEIVE ERROR  
LATCH  
0, RO/LH  
This bit will be cleared upon a read of the RECR register.  
1 = Receive error event has occurred since last read of RXERCNT  
(address 15h, Page 0).  
0 = No receive error event has occurred.  
POLARITY STATUS  
0, RO  
Polarity Status:  
This bit is a duplication of bit 4 in the 10BTSCR register. This bit will  
be cleared upon a read of the 10BTSCR register, but not upon a  
read of the PHYSTS register.  
1 = Inverted Polarity detected.  
0 = Correct Polarity detected.  
11  
10  
FALSE CARRIER  
SENSE LATCH  
0, RO/LH  
0, RO/LL  
False Carrier Sense Latch:  
This bit will be cleared upon a read of the FCSR register.  
1 = False Carrier event has occurred since last read of FCSCR (ad-  
dress 14h).  
0 = No False Carrier event has occurred.  
SIGNAL DETECT  
100Base-TX qualified Signal Detect from PMA:  
This is the SD that goes into the link monitor. It is the AND of raw  
SD and descrambler lock, when address 16h, bit 8 (page 0) is set.  
When this bit is cleared, it will be equivalent to the raw SD from the  
PMD.  
9
8
DESCRAMBLER  
LOCK  
0, RO/LL  
0, RO  
100Base-TX Descrambler Lock from PMD.  
PAGE RECEIVED  
Link Code Word Page Received:  
This is a duplicate of the Page Received bit in the ANER register,  
but this bit will not be cleared upon a read of the PHYSTS register.  
1 = A new Link Code Word Page has been received. Cleared on  
read of the ANER (address 06h, bit 1).  
0 = Link Code Word Page has not been received.  
7
MII INTERRUPT  
0, RO  
MII Interrupt Pending:  
1 = Indicates that an internal interrupt is pending. Interrupt source  
can be determined by reading the MISR Register (12h). Reading  
the MISR will clear the Interrupt.  
0 = No interrupt pending.  
57  
www.national.com  
 
Table 29. PHY Status Register (PHYSTS), address 10h  
Bit  
Bit Name  
Default  
Description  
6
REMOTE FAULT  
0, RO  
Remote Fault:  
1 = Remote Fault condition detected (cleared on read of BMSR (ad-  
dress 01h) register or by reset). Fault criteria: notification from Link  
Partner of Remote Fault via Auto-Negotiation.  
0 = No remote fault condition detected.  
5
JABBER DETECT  
0, RO  
Jabber Detect: This bit only has meaning in 10 Mb/s mode  
This bit is a duplicate of the Jabber Detect bit in the BMSR register,  
except that it is not cleared upon a read of the PHYSTS register.  
1 = Jabber condition detected.  
0 = No Jabber.  
4
3
2
AUTO-NEG COM-  
PLETE  
0, RO  
0, RO  
0, RO  
Auto-Negotiation Complete:  
1 = Auto-Negotiation complete.  
0 = Auto-Negotiation not complete.  
Loopback:  
LOOPBACK STA-  
TUS  
1 = Loopback enabled.  
0 = Normal operation.  
Duplex:  
DUPLEX STATUS  
SPEED STATUS  
LINK STATUS  
This bit indicates duplex status and is determined from Auto-Nego-  
tiation or Forced Modes.  
1 = Full duplex mode.  
0 = Half duplex mode.  
Note: This bit is only valid if Auto-Negotiation is enabled and com-  
plete and there is a valid link or if Auto-Negotiation is disabled and  
there is a valid link.  
1
0, RO  
Speed10:  
This bit indicates the status of the speed and is determined from  
Auto-Negotiation or Forced Modes.  
1 = 10 Mb/s mode.  
0 = 100 Mb/s mode.  
Note: This bit is only valid if Auto-Negotiation is enabled and com-  
plete and there is a valid link or if Auto-Negotiation is disabled and  
there is a valid link.  
0
0, RO  
Link Status:  
This bit is a duplicate of the Link Status bit in the BMSR register,  
except that it will not be cleared upon a read of the PHYSTS regis-  
ter.  
1 = Valid link established (for either 10 or 100 Mb/s operation)  
0 = Link not established.  
www.national.com  
58  
7.1.11 MII Interrupt Control Register (MICR)  
This register implements the MII Interrupt PHY Specific Control register. Sources for interrupt generation include: Energy  
Detect State Change, Link State Change, Speed Status Change, Duplex Status Change, Auto-Negotiation Complete or  
any of the counters becoming half-full. The individual interrupt events must be enabled by setting bits in the MII Interrupt  
Status and Event Control Register (MISR).  
Table 30. MII Interrupt Control Register (MICR), address 11h  
Bit  
15:3  
2
Bit Name  
RESERVED  
TINT  
Default  
0, RO  
Description  
RESERVED: Writes ignored, read as 0.  
Test Interrupt:  
0, RW  
Forces the PHY to generate an interrupt to facilitate interrupt test-  
ing. Interrupts will continue to be generated as long as this bit re-  
mains set.  
1 = Generate an interrupt  
0 = Do not generate interrupt  
Interrupt Enable:  
1
0
INTEN  
0, RW  
0, RW  
Enable interrupt dependent on the event enables in the MISR reg-  
ister.  
1 = Enable event based interrupts  
0 = Disable event based interrupts  
Interrupt Output Enable:  
INT_OE  
Enable interrupt events to signal via the PWRDOWN_INT pin by  
configuring the PWRDOWN_INT pin as an output.  
1 = PWRDOWN_INT is an Interrupt Output  
0 = PWRDOWN_INT is a Power Down Input  
7.1.12 MII Interrupt Status and Misc. Control Register (MISR)  
This register contains event status and enables for the interrupt function. If an event has occurred since the last read of  
this register, the corresponding status bit will be set. If the corresponding enable bit in the register is set, an interrupt will  
be generated if the event occurs. The MICR register controls must also be set to allow interrupts. The status indications  
in this register will be set even if the interrupt is not enabled.  
Table 31. MII Interrupt Status and Misc. Control Register (MISR), address 12h  
15  
14  
13  
12  
LQ_INT  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
Link Quality interrupt:  
1 = Link Quality interrupt is pending and is cleared by the current  
read.  
0 = No Link Quality interrupt pending.  
ED_INT  
Energy Detect interrupt:  
1 = Energy detect interrupt is pending and is cleared by the current  
read.  
0 = No energy detect interrupt pending.  
LINK_INT  
SPD_INT  
Change of Link Status interrupt:  
1 = Change of link status interrupt is pending and is cleared by the  
current read.  
0 = No change of link status interrupt pending.  
Change of speed status interrupt:  
1 = Speed status change interrupt is pending and is cleared by the  
current read.  
0 = No speed status change interrupt pending.  
59  
www.national.com  
 
 
Table 31. MII Interrupt Status and Misc. Control Register (MISR), address 12h  
11  
10  
9
DUP_INT  
ANC_INT  
FHF_INT  
RHF_INT  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
Change of duplex status interrupt:  
1 = Duplex status change interrupt is pending and is cleared by  
the current read.  
0 = No duplex status change interrupt pending.  
Auto-Negotiation Complete interrupt:  
1 = Auto-negotiation complete interrupt is pending and is cleared  
by the current read.  
0 = No Auto-negotiation complete interrupt pending.  
False Carrier Counter half-full interrupt:  
1 = False carrier counter half-full interrupt is pending and is  
cleared by the current read.  
0 = No false carrier counter half-full interrupt pending.  
8
Receive Error Counter half-full interrupt:  
1 = Receive error counter half-full interrupt is pending and is  
cleared by the current read.  
0 = No receive error carrier counter half-full interrupt pending.  
Enable Interrupt on Link Quality Monitor event  
7
6
5
4
3
2
1
0
LQ_INT_EN  
ED_INT_EN  
0, RW  
0, RW  
0, RW  
0, RW  
0, RW  
0, RW  
0, RW  
0, RW  
Enable Interrupt on energy detect event  
LINK_INT_EN  
SPD_INT_EN  
DUP_INT_EN  
ANC_INT_EN  
FHF_INT_EN  
RHF_INT_EN  
Enable Interrupt on change of link status  
Enable Interrupt on change of speed status  
Enable Interrupt on change of duplex status  
Enable Interrupt on Auto-negotiation complete event  
Enable Interrupt on False Carrier Counter Register half-full event  
Enable Interrupt on Receive Error Counter Register half-full event  
7.1.13 Page Select Register (PAGESEL)  
This register is used to enable access to the Link Diagnostics Registers.  
Table 32. Page Select Register (PAGESEL), address 13h  
Bit  
15:2  
1:0  
Bit Name  
RESERVED  
PAGE_SEL  
Default  
0, RO  
Description  
RESERVED: Writes ignored, Read as 0  
Page_Sel Bit:  
0, RW  
Selects between paged registers for address 14h to 1Fh.  
0 = Extended Registers Page 0  
1 = RESERVED  
2 = Link Diagnostics Registers Page 2  
www.national.com  
60  
 
7.2 Extended Registers - Page 0  
7.2.1 False Carrier Sense Counter Register (FCSCR)  
This counter provides information required to implement the “False Carriers” attribute within the MAU managed object  
class of Clause 30 of the IEEE 802.3u specification.  
Table 33. False Carrier Sense Counter Register (FCSCR), address 14h  
Bit  
15:8  
7:0  
Bit Name  
RESERVED  
FCSCNT[7:0]  
Default  
0, RO  
Description  
RESERVED: Writes ignored, Read as 0  
False Carrier Event Counter:  
0, RO/COR  
This 8-bit counter increments on every false carrier event. This  
counter sticks when it reaches its max count (FFh).  
7.2.2 Receiver Error Counter Register (RECR)  
This counter provides information required to implement the “Symbol Error During Carrier” attribute within the PHY man-  
aged object class of Clause 30 of the IEEE 802.3u specification.  
Table 34. Receiver Error Counter Register (RECR), address 15h  
Bit  
15:8  
7:0  
Bit Name  
RESERVED  
RXERCNT[7:0]  
Default  
0, RO  
Description  
RESERVED: Writes ignored, Read as 0  
RX_ER Counter:  
0, RO/COR  
When a valid carrier is present and there is at least one occurrence  
of an invalid data symbol, this 8-bit counter increments for each re-  
ceive error detected. This event can increment only once per valid  
carrier event. If a collision is present, the attribute will not incre-  
ment. The counter sticks when it reaches its max count.  
7.2.3 100 Mb/s PCS Configuration and Status Register (PCSR)  
This register contains control and status information for the 100BASE Physical Coding Sublayer.  
Table 35. 100 Mb/s PCS Configuration and Status Register (PCSR), address 16h  
Bit  
15:12  
11  
Bit Name  
RESERVED  
FREE_CLK  
Default  
<00>, RO  
0, RW  
Description  
RESERVED: Writes ignored, Read as 0.  
Receive Clock:  
1 = RX_CLK is free-running  
0 = RX_CLK phase adjusted based on alignment  
100Mbs True Quiet Mode Enable:  
1 = Transmit True Quiet Mode.  
0 = Normal Transmit Mode.  
10  
9
TQ_EN  
0, RW  
0, RW  
SD FORCE PMA  
Signal Detect Force PMA:  
1 = Forces Signal Detection in PMA.  
0 = Normal SD operation.  
61  
www.national.com  
 
 
 
Table 35. 100 Mb/s PCS Configuration and Status Register (PCSR), address 16h (Continued)  
Bit  
Bit Name  
Default  
Description  
8
SD_OPTION  
1, RW  
Signal Detect Option:  
1 = Default operation. Link will be asserted following detection of  
valid signal level and Descrambler Lock. Link will be maintained as  
long as signal level is valid. A loss of Descrambler Lock will not  
cause Link Status to drop.  
0 = Modified signal detect algorithm. Link will be asserted following  
detection of valid signal level and Descrambler Lock. Link will be  
maintained as long as signal level is valid and Descrambler re-  
mains locked.  
7
DESC_TIME  
0, RW  
Descrambler Timeout:  
Increase the descrambler timeout. When set this should allow the  
device to receive larger packets (>9k bytes) without loss of syn-  
chronization.  
1 = 2ms  
0 = 722us (per ANSI X3.263: 1995 (TP-PMD) 7.2.3.3e)  
RESERVED:  
6
5
RESERVED  
0, RO  
0, RW  
Must be zero.  
FORCE_100_OK  
Force 100Mb/s Good Link:  
1 = Forces 100Mb/s Good Link.  
0 = Normal 100Mb/s operation.  
RESERVED:  
4:3  
2
RESERVED  
0,RO  
Must be zero  
NRZI_BYPASS  
0, RW  
NRZI Bypass Enable:  
1 = NRZI Bypass Enabled.  
0 = NRZI Bypass Disabled.  
RESERVED:  
1:0  
RESERVED  
0,RO  
Must be zero.  
www.national.com  
62  
7.2.4 RMII and Bypass Register (RBR)  
This register configures the RMII/MII Interface Mode of operation. This register controls selecting MII or RMII mode for  
Receive or Transmit. In addition, several additional bits are included to allow datapath selection for Transmit and Receive  
in multiport applications.  
Table 36. RMII and Bypass Register (RBR), addresses 17h  
Bit  
Bit Name  
Default  
Description  
15  
SIM_WRITE  
0, RW  
Simultaneous Write:  
Setting this bit in port A register space enables simultaneous write  
to Phy registers in both ports. Subsequent writes to port A registers  
will write to registers in both ports A and B.  
1 = Simultaneous writes to both ports  
0 = Per-port write  
14  
13  
RESERVED  
0, RO  
0, RW  
RESERVED: Writes ignored, Read as 0  
Disable RMII TX Latency Optimization:  
DIS_TX_OPT  
Normally the RMII Transmitter will minimize the transmit latency by  
realigning the transmit clock with the Reference clock phase at the  
start of a packet transmission. Setting this bit will disable Phase re-  
alignment and ensure that IDLE bits will always be sent in multiples  
of the symbol size. This will result in a larger uncertainty in RMII  
transmit latency.  
12:9  
8
RESERVED  
PMD_LOOP  
0
RESERVED:  
Must be zero  
0, RW  
PMD Loopback:  
0= Normal Operation  
1= Remote (PMD) Loopback  
Setting this bit will cause the device to Loopback data received  
from the Physical Layer. The loopback is done prior to the MII or  
RMII interface. Data received at the internal MII or RMII interface  
will be applied to the transmitter. This mode should only be used if  
RMII mode is enabled.  
7:6  
5
RESERVED  
RMII_MODE  
0
RESERVED:  
Must be zero  
Strap, RW  
Reduced MII Mode:  
0 = Standard MII Mode  
1 = Reduced MII Mode  
Reduced MII Revision 1.0:  
4
RMII_REV1_0  
0, RW  
0 = (RMII revision 1.2) CRS_DV will toggle at the end of a packet  
to indicate deassertion of CRS.  
1 = (RMII revision 1.0) CRS_DV will remain asserted until final data  
is transferred. CRS_DV will not toggle at the end of a packet.  
3
2
RX_OVF_STS  
RX_UNF_STS  
ELAST_BUF[1:0]  
0, RO/COR  
0, RO/COR  
01, RW  
RX FIFO Over Flow Status:  
0 = Normal  
1 = Overflow detected  
RX FIFO Under Flow Status:  
0 = Normal  
1 = Underflow detected  
Receive Elasticity Buffer:  
1:0  
This field controls the Receive Elasticity Buffer which allows for fre-  
quency variation tolerance between the 50MHz RMII clock and the  
recovered data. See Section 3.2 for more information on Elasticity  
Buffer settings in RMII mode.  
63  
www.national.com  
 
7.2.5 LED Direct Control Register (LEDCR)  
This register provides the ability to directly control any or all LED outputs. It does not provide read access to LEDs. In  
addition, it provides control for the Activity source and blinking LED frequency.  
Table 37. LED Direct Control Register (LEDCR), address 18h  
Bit  
15:9  
8
Bit Name  
RESERVED  
LEDACT_RX  
Default  
0, RO  
Description  
RESERVED: Writes ignored, read as 0.  
1 = Activity is only indicated for Receive traffic  
0 = Activity is indicated for Transmit or Receive traffic  
LED Blink Frequency  
0, RW  
7:6  
BLINK_FREQ  
00, RW  
These bits control the blink frequency of the LED_LINK output  
when blinking on activity is enabled.  
0 = 6Hz  
1 = 12Hz  
2 = 24Hz  
3 = 48Hz  
5
4
3
DRV_SPDLED  
DRV_LNKLED  
DRV_ACTLED  
0, RW  
0, RW  
0, RW  
1 = Drive value of SPDLED bit onto LED_SPEED output  
0 = Normal operation  
1 = Drive value of LNKLED bit onto LED_LINK output  
0 = Normal operation  
1 = Drive value of ACTLED bit onto LED_ACT/LED_COL output  
0 = Normal operation  
2
1
0
SPDLED  
LNKLED  
ACTLED  
0, RW  
0, RW  
0, RW  
Value to force on LED_SPEED output  
Value to force on LED_LINK output  
Value to force on LED_ACT/LED_COL output  
www.national.com  
64  
 
7.2.6 PHY Control Register (PHYCR)  
This register provides control for Phy functions such as MDIX, BIST, LED configuration, and Phy address. It also pro-  
vides Pause Negotiation status.  
Table 38. PHY Control Register (PHYCR), address 19h  
Bit  
Bit Name  
Default  
Description  
15  
MDIX_EN  
Strap, RW  
Auto-MDIX Enable:  
1 = Enable Auto-neg Auto-MDIX capability.  
0 = Disable Auto-neg Auto-MDIX capability.  
The Auto-MDIX algorithm requires that the Auto-Negotiation En-  
able bit in the BMCR register to be set. If Auto-Negotiation is not  
enabled, Auto-MDIX should be disabled as well.  
14  
13  
FORCE_MDIX  
PAUSE_RX  
0, RW  
0, RO  
Force MDIX:  
1 = Force MDI pairs to cross.  
(Receive on TPTD pair, Transmit on TPRD pair)  
0 = Normal operation.  
Pause Receive Negotiated:  
Indicates that pause receive should be enabled in the MAC. Based  
on ANAR[11:10] and ANLPAR[11:10] settings.  
This function shall be enabled according to IEEE 802.3 Annex 28B  
Table 28B-3, “Pause Resolution”, only if the Auto-Negotiated High-  
est Common Denominator is a full duplex technology.  
12  
11  
PAUSE_TX  
BIST_FE  
0, RO  
Pause Transmit Negotiated:  
Indicates that pause transmit should be enabled in the MAC. Based  
on ANAR[11:10] and ANLPAR[11:10] settings.  
This function shall be enabled according to IEEE 802.3 Annex 28B  
Table 28B-3, “Pause Resolution”, only if the Auto-Negotiated High-  
est Common Denominator is a full duplex technology.  
0, RW/SC  
BIST Force Error:  
1 = Force BIST Error.  
0 = Normal operation.  
This bit forces a single error, and is self clearing.  
BIST Sequence select:  
1 = PSR15 selected.  
10  
9
PSR_15  
0, RW  
0 = PSR9 selected.  
BIST_STATUS  
0, LL/RO  
BIST Test Status:  
1 = BIST pass.  
0 = BIST fail. Latched, cleared when BIST is stopped.  
For a count number of BIST errors, see the BIST Error Count in the  
CDCTRL1 register.  
8
7
BIST_START  
BP_STRETCH  
0, RW  
0, RW  
BIST Start:  
1 = BIST start.  
0 = BIST stop.  
Bypass LED Stretching:  
This will bypass the LED stretching and the LEDs will reflect the in-  
ternal value.  
1 = Bypass LED stretching.  
0 = Normal operation.  
65  
www.national.com  
 
Table 38. PHY Control Register (PHYCR), address 19h (Continued)  
Bit  
6
Bit Name  
Default  
0, RW  
Description  
LED_CNFG[1]  
LED_CNFG[0]  
LED Configuration  
5
Strap, RW  
LED_CNFG[1]  
LED_ CNFG[0]  
Mode Description  
Mode 1  
Don’t care  
1
0
0
0
1
Mode 2  
Mode 3  
In Mode 1, LEDs are configured as follows:  
LED_LINK = ON for Good Link, OFF for No Link  
LED_SPEED = ON in 100 Mb/s, OFF in 10 Mb/s  
LED_ACT/LED_COL = ON for Activity, OFF for No Activity  
In Mode 2, LEDs are configured as follows:  
LED_LINK = ON for good Link, BLINK for Activity  
LED_SPEED = ON in 100 Mb/s, OFF in 10 Mb/s  
LED_ACT/LED_COL = ON for Collision, OFF for No Collision  
Full Duplex, OFF for Half Duplex  
In Mode 3, LEDs are configured as follows:  
LED_LINK = ON for Good Link, BLINK for Activity  
LED_SPEED = ON in 100 Mb/s, OFF in 10 Mb/s  
LED_ACT/LED_COL = ON for Full Duplex, OFF for Half Duplex  
PHY Address: PHY address for port.  
4:0  
PHYADDR[4:0]  
Strap, RW  
7.2.7 10 Base-T Status/Control Register (10BTSCR)  
This register is used for control and status for 10BASE-T device operation.  
Table 39. 10Base-T Status/Control Register (10BTSCR), address 1Ah  
Bit  
Bit Name  
Default  
Description  
10Base-T Serial Mode (SNI)  
15  
10BT_SERIAL  
Strap, RW  
1 = Enables 10Base-T Serial Mode  
0 = Normal Operation  
Places 10 Mb/s transmit and receive functions in Serial Network  
Interface (SNI) Mode of operation. Has no effect on 100 Mb/s  
operation.  
14:12  
11:9  
RESERVED  
SQUELCH  
0, RW  
RESERVED:  
Must be zero.  
100, RW  
Squelch Configuration:  
Used to set the Squelch ‘ON’ threshold for the receiver.  
Default Squelch ON is 330mV peak.  
www.national.com  
66  
 
Table 39. 10Base-T Status/Control Register (10BTSCR), address 1Ah (Continued)  
Bit  
Bit Name  
Default  
Description  
10Base-T Loopback Disable:  
8
LOOPBACK_10_DIS  
0, RW  
In half-duplex mode, default 10BASE-T operation loops Transmit  
data to the Receive data in addition to transmitting the data on the  
physical medium. This is for consistency with earlier 10BASE2 and  
10BASE5 implementations which used a shared medium. Setting  
this bit disables the loopback function.  
This bit does not affect loopback due to setting BMCR[14].  
Normal Link Pulse Disable:  
1 = Transmission of NLPs is disabled.  
0 = Transmission of NLPs is enabled.  
Force 10Mb Good Link:  
7
6
LP_DIS  
0, RW  
0, RW  
FORCE_LINK_10  
1 = Forced Good 10Mb Link.  
0 = Normal Link Status.  
5
4
RESERVED  
POLARITY  
0, RW  
RESERVED:  
Must be zero.  
RO/LH  
10Mb Polarity Status:  
This bit is a duplication of bit 12 in the PHYSTS register. Both bits  
will be cleared upon a read of 10BTSCR register, but not upon a  
read of the PHYSTS register.  
1 = Inverted Polarity detected.  
0 = Correct Polarity detected.  
RESERVED:  
3
2
1
RESERVED  
RESERVED  
0, RW  
1, RW  
0, RW  
Must be zero.  
RESERVED:  
Must be set to one.  
HEARTBEAT_DIS  
Heartbeat Disable: This bit only has influence in half-duplex 10Mb  
mode.  
1 = Heartbeat function disabled.  
0 = Heartbeat function enabled.  
When the device is operating at 100Mb or configured for full  
duplex operation, this bit will be ignored - the heartbeat func-  
tion is disabled.  
0
JABBER_DIS  
0, RW  
Jabber Disable:  
Applicable only in 10BASE-T.  
1 = Jabber function disabled.  
0 = Jabber function enabled.  
67  
www.national.com  
7.2.8 CD Test and BIST Extensions Register (CDCTRL1)  
This register controls test modes for the 10BASE-T Common Driver. In addition it contains extended control  
and status for the packet BIST function.  
Table 40. CD Test and BIST Extensions Register (CDCTRL1), address 1Bh  
Bit  
Bit Name  
Default  
Description  
15:8  
BIST_ERROR_COUNT  
0, RO  
BIST ERROR Counter:  
Counts number of errored data nibbles during Packet BIST. This  
value will reset when Packet BIST is restarted. The counter sticks  
when it reaches its max count.  
7:6  
5
RESERVED  
0, RW  
0, RW  
RESERVED:  
Must be zero.  
BIST_CONT_MODE  
Packet BIST Continuous Mode:  
Allows continuous pseudo random data transmission without any  
break in transmission. This can be used for transmit VOD testing.  
This is used in conjunction with the BIST controls in the PHYCR  
Register (19h). For 10Mb operation, jabber function must be dis-  
abled, bit 0 of the 10BTSCR (1Ah), JABBER_DIS = 1.  
4
CDPATTEN_10  
0, RW  
CD Pattern Enable for 10Mb:  
1 = Enabled.  
0 = Disabled.  
3
2
RESERVED  
0, RW  
0, RW  
RESERVED:  
Must be zero.  
10MEG_PATT_GAP  
Defines gap between data or NLP test sequences:  
1 = 15 µs.  
0 = 10 µs.  
1:0  
CDPATTSEL[1:0]  
00, RW  
CD Pattern Select[1:0]:  
If CDPATTEN_10 = 1:  
00 = Data, EOP0 sequence  
01 = Data, EOP1 sequence  
10 = NLPs  
11 = Constant Manchester 1s (10MHz sine wave) for harmonic dis-  
tortion testing.  
7.2.9 Phy Control Register 2 (PHYCR2)  
This register provides additional general control.  
Table 41. Phy Control Register 2 (PHYCR2), address 1Ch  
Bit  
15:10  
9
Bit Name  
RESERVED  
SOFT_RESET  
Default  
0, RO  
Description  
RESERVED: Writes ignored, read as 0.  
Soft Reset:  
0, RW/SC  
Resets the entire device minus the registers - all configuration is  
preserved.  
1= Reset, self-clearing.  
8:0  
RESERVED  
0, RO  
RESERVED: Writes ignored, read as 0.  
www.national.com  
68  
 
 
7.2.10 Energy Detect Control (EDCR)  
This register provides control and status for the Energy Detect function.  
Table 42. Energy Detect Control (EDCR), address 1Dh  
Default Description  
Strap, RW  
Bit  
Bit Name  
15  
ED_EN  
Energy Detect Enable:  
Allow Energy Detect Mode.  
When Energy Detect is enabled and Auto-Negotiation is disabled  
via the BMCR register, Auto-MDIX should be disabled via the PHY-  
CR register.  
14  
13  
12  
ED_AUTO_UP  
ED_AUTO_DOWN  
ED_MAN  
1, RW  
1, RW  
Energy Detect Automatic Power Up:  
Automatically begin power up sequence when Energy Detect Data  
Threshold value (EDCR[3:0]) is reached. Alternatively, device  
could be powered up manually using the ED_MAN bit (ECDR[12]).  
Energy Detect Automatic Power Down:  
Automatically begin power down sequence when no energy is de-  
tected. Alternatively, device could be powered down using the  
ED_MAN bit (EDCR[12]).  
0, RW/SC  
Energy Detect Manual Power Up/Down:  
Begin power up/down sequence when this bit is asserted. When  
set, the Energy Detect algorithm will initiate a change of Energy De-  
tect state regardless of threshold (error or data) and timer values.  
In managed applications, this bit can be set after clearing the Ener-  
gy Detect interrupt to control the timing of changing the power  
state.  
11  
10  
ED_BURST_DIS  
ED_PWR_STATE  
0, RW  
0, RO  
Energy Detect Burst Disable:  
Disable bursting of energy detect data pulses. By default, Energy  
Detect (ED) transmits a burst of 4 ED data pulses each time the CD  
is powered up. When bursting is disabled, only a single ED data  
pulse will be send each time the CD is powered up.  
Energy Detect Power State:  
Indicates current Energy Detect Power state. When set, Energy  
Detect is in the powered up state. When cleared, Energy Detect is  
in the powered down state. This bit is invalid when Energy Detect  
is not enabled.  
9
8
ED_ERR_MET  
ED_DATA_MET  
ED_ERR_COUNT  
0, RO/COR  
0, RO/COR  
0001, RW  
Energy Detect Error Threshold Met:  
No action is automatically taken upon receipt of error events. This  
bit is informational only and would be cleared on a read.  
Energy Detect Data Threshold Met:  
The number of data events that occurred met or surpassed the En-  
ergy Detect Data Threshold. This bit is cleared on a read.  
7:4  
Energy Detect Error Threshold:  
Threshold to determine the number of energy detect error events  
that should cause the device to take action. Intended to allow aver-  
aging of noise that may be on the line. Counter will reset after ap-  
proximately 2 seconds without any energy detect data events.  
3:0  
ED_DATA_COUNT  
0001, RW  
Energy Detect Data Threshold:  
Threshold to determine the number of energy detect events that  
should cause the device to take actions. Intended to allow averag-  
ing of noise that may be on the line. Counter will reset after approx-  
imately 2 seconds without any energy detect data events.  
69  
www.national.com  
 
7.3 Link Diagnostics Registers - Page 2  
Page 2 Link Diagnostics Registers are accessible by setting bits [1:0] = 10 of PAGESEL (13h).  
7.3.1 100Mb Length Detect Register (LEN100_DET), Page 2, address 14h  
This register contains linked cable length estimation in 100Mb operation. The cable length is an estimation of the effec-  
tive cable length based on the characteristics of the recovered signal. The cable length is valid only during 100Mb oper-  
ation with a valid Link status indication.  
Table 43. 100Mb Length Detect Register (LEN100_DET), address 14h  
Bit  
15:8  
7:0  
Bit Name  
RESERVED  
CABLE_LEN  
Default  
0, RO  
0, RO  
Description  
RESERVED: Writes ignored, read as 0.  
Cable Length Estimate:  
Indicates an estimate of effective cable length in meters. A value  
of FF indicates cable length cannot be determined.  
7.3.2 100Mb Frequency Offset Indication Register (FREQ100), Page 2, address 15h  
This register returns an indication of clock frequency offset relative to the link partner. Two values can be read, the long  
term Frequency Offset, or a short term Frequency Control value. The Frequency Control value includes short term  
phase correction. The variance between the Frequency Control value and the Frequency Offset can be used as an indi-  
cation of the amount of jitter in the system.  
Table 44. 100Mb Frequency Offset Indication Register (FREQ100), address 15h  
Bit  
Bit Name  
Default  
Description  
Sample Frequency Offset:  
15  
SAMPLE_FREQ  
0, RW  
If Sel_FC is set to a 0, then setting this bit to a 1 will poll the DSP  
for the long-term Frequency Offset value. The value will be avail-  
able in the Freq_Offset bits of this register.  
If Sel_FC is set to a 1, then setting this bit to a 1 will poll the DSP  
for the current Frequency Control value. The value will be available  
in the Freq_Offset bits of this register.  
This register bit will always read back as 0.  
RESERVED: Writes ignored, read as 0.  
Select Frequency Control:  
14:9  
8
RESERVED  
SEL_FC  
0, RO  
0, RW  
Setting this bit to a 1 will select the current Frequency Control value  
instead of the Frequency Offset. This value contains Frequency  
Offset plus the short term phase correction and can be used to in-  
dicate amount of jitter in the system. The value will be available in  
the Freq_Offset bits of this register.  
7:0  
FREQ_OFFSET  
0, RO  
Frequency Offset:  
Frequency offset value loaded from the DSP following assertion of  
the Sample_Freq control bit. The Frequency Offset or Frequency  
Control value is a twos-complement signed value in units of ap-  
proximately 5.1562ppm. The range is as follows:  
0x7F = +655ppm  
0x00 = 0ppm  
0x80 = -660ppm  
www.national.com  
70  
 
 
7.3.3 TDR Control Register (TDR_CTRL), Page 2, address 16h  
This register contains control for the Time Domain Reflectometry (TDR) cable diagnostics. The TDR cable diagnostics  
sends pulses down the cable and captures reflection data to be used to estimate cable length and detect certain cabling  
faults.  
Table 45. TDR Control Register (TDR_CTRL), address 16h  
Bit  
Bit Name  
Default  
Description  
15  
TDR_ENABLE  
0, RW  
TDR Enable:  
Enable TDR mode. This forces powerup state to correct operating  
condition for sending and receiving TDR pulses.  
14  
TDR_100Mb  
0, RW  
TDR 100Mb:  
Sets TDR controller to use the 100Mb Transmitter. This allows for  
sending pulse widths in multiples of 8ns. Pulses in 100Mb mode  
will alternate between positive pulses and negative pulses.  
Default operation uses the 10Mb Link Pulse generator. Pulses may  
include just the 50ns preemphasis portion of the pulse or the 100ns  
full link pulse (as controlled by setting TDR Width).  
13  
12  
TX_CHANNEL  
RX_CHANNEL  
0, RW  
0, RW  
Transmit Channel Select:  
Select transmit channel for sending pulses. Pulse can be sent on  
the Transmit or Receive pair.  
0 : Transmit channel  
1 : Receive channel  
Receive Channel Select:  
Select receive channel for detecting pulses. Pulse can be moni-  
tored on the Transmit or Receive pair.  
0 : Transmit channel  
1 : Receive channel  
Send TDR Pulse:  
11  
SEND_TDR  
TDR_WIDTH  
0, RW/SC  
0, RW  
Setting this bit will send a TDR pulse and enable the monitor circuit  
to capture the response. This bit will automatically clear when the  
capture is complete.  
10:8  
TDR Pulse Width:  
Pulse width in clocks for the transmitted pulse. In 100Mb mode,  
pulses are in 8ns increments. In 10Mb mode, pulses are in 50ns  
increments, but only 50ns or 100ns pulses can be sent. Sending a  
pulse of 0 width will not transmit a pulse, but allows for baseline  
testing.  
7
TDR_MIN_MODE  
0, RW  
Min/Max Mode control:  
This bit controls direction of the pulse to be detected. Default looks  
for a positive peak. Threshold and peak values will be interpreted  
appropriately based on this bit.  
0 : Max Mode, detect positive peak  
1 : Min Mode, detect negative peak  
RESERVED: Writes ignored, read as 0.  
6
RESERVED  
0, RO  
5:0  
RX_THRESHOLD <10_0000>, RW RX Threshold:  
This value provides a threshold for measurement to the start of a  
peak. If Min Mode is set to 0, data must be greater than this value  
to trigger a capture. If Min Mode is 1, data must be less than this  
value to trigger a capture. Data ranges from 0x00 to 0x3F, with  
0x20 as the midpoint. Positive data is greater than 0x20, negative  
data is less than 0x20.  
71  
www.national.com  
 
7.3.4 TDR Window Register (TDR_WIN), Page 2, address 17h  
This register contains sample window control for the Time Domain Reflectometry (TDR) cable diagnostics. The two val-  
ues contained in this register specify the beginning and end times for the window to monitor the response to the transmit-  
ted pulse. Time values are in 8ns increments. This provides a method to search for multiple responses and also to  
screen out the initial outgoing pulse.  
Table 46. TDR Window Register (TDR_WIN), address 17h  
Bit  
Bit Name  
Default  
Description  
15:8  
TDR_START  
0, RW  
TDR Start Window:  
Specifies start time for monitoring TDR response.  
7:0  
TDR_STOP  
0xFF, RW  
TDR Stop Window:  
Specifies stop time for monitoring TDR response. The Stop Win-  
dow should be set to a value greater than or equal to the Start Win-  
dow.  
7.3.5 TDR Peak Register (TDR_PEAK), Page 2, address 18h  
This register contains the results of the TDR Peak Detection. Results are valid if the TDR_CTRL[11] is clear following  
sending the TDR pulse.  
Table 47. TDR Peak Register (TDR_PEAK), address 18h  
Bit  
Bit Name  
RESERVED  
TDR_PEAK  
Default  
0, RO  
0, RO  
Description  
RESERVED: Writes ignored, read as 0.  
TDR Peak Value:  
15:14  
13:8  
This register contains the peak value measured during the TDR  
sample window. If Min Mode control (TDR_CTRL[7]) is 0, this con-  
tains the maximum detected value. If Min Mode control is 1, this  
contains the minimum detected value.  
7:0  
TDR_PEAK_TIME  
0, RO  
TDR Peak Time:  
Specifies the time for the first occurrence of the peak value.  
7.3.6 TDR Threshold Register (TDR_THR), Page 2, address 19h  
This register contains the results of the TDR Threshold Detection. Results are valid if the TDR_CTRL[11] is clear follow-  
ing sending the TDR pulse.  
Table 48. TDR Threshold Register (TDR_THR), address 19h  
Bit  
15:9  
8
Bit Name  
RESERVED  
Default  
0, RO  
0, RO  
Description  
RESERVED: Writes ignored, read as 0.  
TDR Threshold Met:  
TDR_THR_MET  
This bit indicates the TDR threshold was met during the sample  
window. A value of 0 indicates the threshold was not met.  
7:0  
TDR_THR_TIME  
0, RO  
TDR Threshold Time:  
Specifies the time for the first data that met the TDR threshold.  
This field is only valid if the threshold was met.  
www.national.com  
72  
 
 
 
7.3.7 Variance Control Register (VAR_CTRL), Page 2, address 1Ah  
The Variance Control and Data Registers provide control and status for the Cable Signal Quality Estimation function.  
The Cable Signal Quality Estimation allows a simple method of determining an approximate Signal-to-Noise Ratio for the  
100Mb receiver. This register contains the programmable controls and status bits for the variance computation, which  
can be used to make a simple Signal-to-Noise Ratio estimation.  
Table 49. Variance Control Register (VAR_CTRL), address 1Ah  
Bit  
Bit Name  
Default  
Description  
Variance Data Ready Status:  
0, RO  
15  
VAR_RDY  
Indicates new data is available in the Variance data register. This  
bit will be automatically cleared after two consecutive reads ot  
VAR_DATA.  
14:4  
3
RESERVED  
0, RO  
0, RW  
RESERVED: Writes ignored, read as 0.  
Freeze Variance Registers:  
VAR_FREEZE  
Freeze VAR_DATA register.  
This bit is ensures that VAR_DATA register is frozen for software  
reads. This bit is automatically cleared after two consecutive reads  
of VAR_DATA.  
2:1  
VAR_TIMER  
0, RW  
Variance Computation Timer (in ms):  
Selects the Variance computation timer period. After a new value  
is written, computation is automatically restarted. New variance  
register values are loaded after the timer elapses.  
Var_Timer = 0 => 2 ms timer (default)  
Var_Timer = 1 => 4 ms timer  
Var_Timer = 2 => 6 ms timer  
Var_Timer = 3 => 8 ms timer  
Time units are actually 217 cycles of an 8ns clock, or 1.048576ms.  
Variance Enable:  
0, RW  
0
VAR_ENABLE  
Enable Variance computation. Off by default.  
7.3.8 Variance Data Register (VAR_DATA), Page 2, address 1Bh  
This register contains the 32-bit Variance Sum. The contents of the data are valid only when VAR_RDY is asserted in the  
VAR_CTRL register. Upon detection of VAR_RDY asserted, software should set the VAR_FREEZE bit in the VAR_CTRL  
register to prevent loading of a new value into the VAR_DATA register. Since the Variance Data value is 32-bits, two  
reads of this register are required to get the full value.  
Table 50. Variance Data Register (VAR_DATA), address 1Bh  
Bit  
Bit Name  
Default  
Description  
15:0  
VAR_DATA  
0, RO  
Variance Data:  
Two reads are required to return the full 32-bit Variance Sum value.  
Following setting the VAR_FREEZE control, the first read of this  
register will return the low 16 bits of the Variance data. A second  
read will return the high 16 bits of Variance data.  
73  
www.national.com  
 
 
7.3.9 Link Quality Monitor Register (LQMR), Page 2, address 1Dh  
This register contains the controls for the Link Quality Monitor function. The Link Quality Monitor provides a mechanism  
for programming a set of thresholds for DSP parameters. If the thresholds are violated, an interrupt will be asserted if  
enabled in the MISR. Monitor control and status are available in this register, while the LQDR register controls read/write  
access to threshold values and current parameter values. Reading of LQMR register clears warning bits and re-arms the  
interrupt generation. In addition, this register provides a mechanims for allowing automatic reset of the 100Mb link based  
on the Link Quality Monitor status.  
Table 51. Link Quality Monitor Register (LQMR), address 1Dh  
Bit  
Bit Name  
Default  
Description  
Link Quality Monitor Enable:  
15  
LQM_ENABLE  
0, RW  
Enables the Link Quality Monitor. The enable is qualified by having  
a valid 100Mb link. In addition, the individual thresholds can be dis-  
abled by setting to the max or min values.  
14:10  
9
RESERVED  
0, RO  
RESERVED: Writes ignored, read as 0.  
FC_HI_WARN  
0, RO/COR  
Frequency Control High Warning:  
This bit indicates the Frequency Control High Threshold was ex-  
ceeded. This register bit will be cleared on read.  
8
7
6
5
4
3
2
1
0
FC_LO_WARN  
FREQ_HI_WARN  
FREQ_LO_WARN  
DBLW_HI_WARN  
DBLW_LO_WARN  
DAGC_HI_WARN  
DAGC_LO_WARN  
C1_HI_WARN  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
0, RO/COR  
Frequency Control Low Warning:  
This bit indicates the Frequency Control Low Threshold was ex-  
ceeded. This register bit will be cleared on read.  
Frequency Offset High Warning:  
This bit indicates the Frequency Offset High Threshold was ex-  
ceeded. This register bit will be cleared on read.  
Frequency Offset Low Warning:  
This bit indicates the Frequency Offset Low Threshold was exceed-  
ed. This register bit will be cleared on read.  
DBLW High Warning:  
This bit indicates the DBLW High Threshold was exceeded. This  
register bit will be cleared on read.  
DBLW Low Warning:  
This bit indicates the DBLW Low Threshold was exceeded. This  
register bit will be cleared on read.  
DAGC High Warning:  
This bit indicates the DAGC High Threshold was exceeded. This  
register bit will be cleared on read.  
DAGC Low Warning:  
This bit indicates the DAGC Low Threshold was exceeded. This  
register bit will be cleared on read.  
C1 High Warning:  
This bit indicates the DEQ C1 High Threshold was exceeded. This  
register bit will be cleared on read.  
C1_LO_WARN  
C1 Low Warning:  
This bit indicates the DEQ C1 Low Threshold was exceeded. This  
register bit will be cleared on read.  
www.national.com  
74  
 
7.3.10 Link Quality Data Register (LQDR), Page 2  
This register provides read/write control of thresholds for the 100Mb Link Quality Monitor function. The register also pro-  
vides a mechanism for reading current adapted parameter values. Threshold values may not be written if the device is  
powered-down.  
Table 52. Link Quality Data Register (LQDR), address 1Eh  
Bit  
15:14  
13  
Bit Name  
RESERVED  
Default  
0, RO  
Description  
RESERVED: Writes ignored, read as 0.  
Sample DSP Parameter:  
SAMPLE_PARAM  
0, RW  
Setting this bit to a 1 enables reading of current parameter values  
and initiates sampling of the parameter value. The parameter to be  
read is selected by the LQ_PARAM_SEL bits.  
12  
WRITE_LQ_THR  
LQ_PARAM_SEL  
0, RW  
0, RW  
Write Link Quality Threshold:  
Setting this bit will cause a write to the Threshold register selected  
by LQ_PARAM_SEL and LQ_THR_SEL. The data written is con-  
tained in LQ_THR_DATA. This bit will always read back as 0.  
11:9  
Link Quality Parameter Select:  
This 3-bit field selects the Link Quality Parameter. This field is used  
for sampling current parameter values as well as for reads/writes to  
Threshold values. The following encodings are available:  
000: DEQ_C1  
001: DAGC  
010: DBLW  
011: Frequency Offset  
100: Frequency Control  
Link Quality Threshold Select:  
8
LQ_THR_SEL  
0, RW  
This bit selects the Link Quality Threshold to be read or written. A  
0 selects the Low threshold, while a 1 selects the high threshold.  
When combined with the LQ_PARAM_SEL field, the following en-  
codings are available {LQ_PARAM_SEL, LQ_THR_SEL}:  
000,0: DEQ_C1 Low  
000,1: DEQ_C1 High  
001,0: DAGC Low  
001,1: DAGC High  
010,0: DBLW Low  
010,1: DBLW High  
011,0: Frequency Offset Low  
011,1: Frequency Offset High  
100,0: Frequency Control Low  
100,1: Frequency Control High  
Link Quality Threshold Data:  
7:0  
LQ_THR_DATA  
0, RW  
The operation of this field is dependent on the value of the  
Sample_Param bit.  
If Sample_Param = 0:  
On a write, this value contains the data to be written to the selected  
Link Quality Threshold register.  
On a read, this value contains the current data in the selected Link  
Quality Threshold register.  
If Sample_Param = 1:  
On a read, this value contains the sampled parameter value. This  
value will remain unchanged until a new read sequence is started.  
75  
www.national.com  
 
8.0 Electrical Specifications  
Note: All parameters are guaranteed by test, statistical Recommended Operating Conditions  
analysis or design.  
Supply voltage (VCC  
Commercial - Ambient Temperature (TA)  
-0.5 V to 4.2 V Power Dissipation (PD)  
)
3.3 Volts + .3V  
Absolute Maximum Ratings  
Supply Voltage (VCC  
0 to 70 °C  
594 mW  
)
DC Input Voltage (VIN)  
-0.5V to VCC + 0.5V  
-0.5V to VCC + 0.5V  
Absolute maximum ratings are those values beyond which  
the safety of the device cannot be guaranteed. They are  
not meant to imply that the device should be operated at  
these limits.  
DC Output Voltage (VOUT  
)
-65oC to 150°C  
260 °C  
Storage Temperature (TSTG  
)
Lead Temp. (TL)  
(Soldering, 10 sec.)  
ESD Rating  
4.0 kV  
(RZAP = 1.5k, CZAP = 100 pF)  
Thermal Characteristic  
Max  
98  
Units  
°C  
Maximum Case Temperature @ 1.0 W  
Theta Junction to Case (Tjc) @ 1.0 W  
17.3  
°C / W  
53  
°C / W  
Theta Junction to Ambient (Tja) degrees Celsius/Watt - No Airflow @ 1.0 W  
8.1 DC Specs  
Symbol  
VIH  
Pin Types  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
I
Input High Voltage Nominal VCC  
2.0  
V
I/O  
VIL  
IIH  
I
Input Low Voltage  
0.8  
10  
V
µA  
µA  
V
I/O  
I
Input High Current VIN = VCC  
Input Low Current VIN = GND  
I/O  
IIL  
I
10  
I/O  
VOL  
VOH  
IOZ  
O,  
I/O  
Output Low  
Voltage  
IOL = 4 mA  
IOH = -4 mA  
VOUT = VCC  
0.4  
O,  
I/O  
Output High  
Voltage  
Vcc - 0.5  
0.95  
V
I/O,  
O
TRI-STATE  
Leakage  
+ 10  
1.05  
+ 2  
µA  
V
VTPTD_100 PMD Output 100M Transmit  
Pair Voltage  
1
VTPTDsym PMD Output 100M Transmit  
Pair Voltage Symmetry  
%
VTPTD_10  
PMD Output 10M Transmit  
2.2  
2.5  
8
2.8  
V
Pair  
Voltage  
CIN1  
I
CMOS Input  
Capacitance  
pF  
pF  
COUT1  
O
CMOS Output  
Capacitance  
8
www.national.com  
76  
Symbol  
Pin Types  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
SDTHon  
PMD Input  
Pair  
100BASE-TX  
Signal detect turn-  
on threshold  
1000  
mV diff pk-pk  
SDTHoff  
PMD Input  
Pair  
100BASE-TX  
Signal detect turn-  
off threshold  
200  
mV diff pk-pk  
VTH1  
Idd100  
Idd10  
Idd  
PMD Input  
Pair  
10BASE-T Re-  
ceive Threshold  
585  
mV  
mA  
mA  
mA  
Supply  
Supply  
Supply  
100BASE-TX  
(Full Duplex)  
180  
180  
9.5  
10BASE-T  
(Full Duplex)  
Power Down  
Mode  
CLK2MAC disabled  
77  
www.national.com  
8.2 AC Specs  
8.2.1 Power Up Timing  
Vcc  
X1 clock  
T2.1.1  
Hardware  
RESET_N  
32 clocks  
MDC  
T2.1.2  
Latch-In of Hardware  
Configuration Pins  
T2.1.3  
input  
output  
Dual Function Pins  
Become Enabled As Outputs  
Parameter  
Description  
Post Power Up Stabilization  
Notes  
Min  
Typ Max Units  
T2.1.1  
MDIO is pulled high for 32-bit serial man- 167  
ms  
time prior to MDC preamble for agement initialization  
register accesses  
X1 Clock must be stable for a min. of  
167ms at power up.  
T2.1.2  
T2.1.3  
Hardware Configuration Latch- Hardware Configuration Pins are de-  
167  
ms  
in Time from power up  
scribed in the Pin Description section  
X1 Clock must be stable for a min. of  
167ms at power up.  
Hardware Configuration pins  
transition to output drivers  
50  
ns  
Note: In RMII Mode, the minimum Post Power up Stabilization and Hardware Configuration Latch-in times are 84ms.  
www.national.com  
78  
 
 
 
8.2.2 Reset Timing  
Vcc  
X1 clock  
T2.2.1  
T2.2.4  
Hardware  
RESET_N  
32 clocks  
MDC  
T2.2.2  
Latch-In of Hardware  
Configuration Pins  
T2.2.3  
input  
output  
Dual Function Pins  
Become Enabled As Outputs  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.2.1  
Post RESET Stabilization time MDIO is pulled high for 32-bit serial man-  
prior to MDC preamble for reg- agement initialization  
ister accesses  
3
µs  
T2.2.2  
Hardware Configuration Latch- Hardware Configuration Pins are de-  
in Time from the Deassertion scribed in the Pin Description section  
of RESET (either soft or hard)  
3
µs  
T2.2.3  
T2.2.4  
Hardware Configuration pins  
transition to output drivers  
50  
ns  
RESET pulse width  
X1 Clock must be stable for at min. of 1us  
during RESET pulse low time.  
1
µs  
Note: It is important to choose pull-up and/or pull-down resistors for each of the hardware configuration pins that provide  
fast RC time constants in order to latch-in the proper value prior to the pin transitioning to an output driver.  
79  
www.national.com  
 
 
 
 
8.2.3 MII Serial Management Timing  
MDC  
T2.3.1  
T2.3.4  
MDIO (output)  
MDC  
T2.3.2  
T2.3.3  
Valid Data  
MDIO (input)  
Parameter  
T2.3.1  
Description  
Notes  
Min  
0
Typ  
Max  
Units  
ns  
MDC to MDIO (Output) Delay Time  
MDIO (Input) to MDC Setup Time  
MDIO (Input) to MDC Hold Time  
MDC Frequency  
30  
T2.3.2  
10  
10  
ns  
T2.3.3  
ns  
T2.3.4  
2.5  
25  
MHz  
8.2.4 100 Mb/s MII Transmit Timing  
T2.4.1  
T2.4.1  
TX_CLK  
T2.4.3  
T2.4.2  
TXD[3:0]  
TX_EN  
Valid Data  
Parameter  
T2.4.1  
Description  
Notes  
Min Typ Max Units  
TX_CLK High/Low Time  
100 Mb/s Normal mode  
100 Mb/s Normal mode  
16  
10  
20  
24  
ns  
ns  
T2.4.2  
TXD[3:0], TX_EN Data Setup to TX_CLK  
T2.4.3  
TXD[3:0], TX_EN Data Hold from TX_CLK 100 Mb/s Normal mode  
0
ns  
www.national.com  
80  
 
 
 
 
 
 
 
8.2.5 100 Mb/s MII Receive Timing  
T2.5.1  
T2.5.1  
RX_CLK  
T2.5.2  
RXD[3:0]  
RX_DV  
RX_ER  
Valid Data  
Parameter  
T2.5.1  
Description  
RX_CLK High/Low Time  
RX_CLK to RXD[3:0], RX_DV, RX_ER Delay 100 Mb/s Normal mode  
Notes  
Min Typ Max Units  
100 Mb/s Normal mode  
16  
10  
20  
24  
30  
ns  
ns  
T2.5.2  
Note: RX_CLK may be held low or high for a longer period of time during transition between reference and recovered  
clocks. Minimum high and low times will not be violated.  
8.2.6 100BASE-TX MII Transmit Packet Latency Timing  
TX_CLK  
TX_EN  
TXD  
T2.6.1  
IDLE  
(J/K)  
DATA  
PMD Output Pair  
Parameter  
Description  
Notes  
Min  
Typ Max  
Units  
T2.6.1  
TX_CLK to PMD Output Pair 100BASE-TX mode  
Latency  
5
bits  
Note: For Normal mode, latency is determined by measuring the time from the first rising edge of TX_CLK occurring after  
the assertion of TX_EN to the first bit of the “J” code group as output from the PMD Output Pair. 1 bit time = 10 ns in 100  
Mb/s mode.  
81  
www.national.com  
 
 
 
8.2.7 100BASE-TX MII Transmit Packet Deassertion Timing  
TX_CLK  
TX_EN  
TXD  
T2.7.1  
PMD Output Pair  
DATA  
(T/R)  
IDLE  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
bits  
T2.7.1  
TX_CLK to PMD Output Pair 100BASE-TX mode  
Deassertion  
5
Note: Deassertion is determined by measuring the time from the first rising edge of TX_CLK occurring after the deasser-  
tion of TX_EN to the first bit of the “T” code group as output from the PMD Output Pair. 1 bit time = 10 ns in 100 Mb/s mode.  
www.national.com  
82  
 
8.2.8 100BASE-TX Transmit Timing (tR/F & Jitter)  
T2.8.1  
+1 rise  
90%  
10%  
PMD Output Pair  
10%  
90%  
+1 fall  
T2.8.1  
-1 fall  
-1 rise  
T2.8.1  
T2.8.1  
T2.8.2  
PMD Output Pair  
eye pattern  
T2.8.2  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.8.1  
100 Mb/s PMD Output Pair tR  
and tF  
3
4
5
ns  
100 Mb/s tR and tF Mismatch  
500  
1.4  
ps  
ns  
T2.8.2  
100 Mb/s PMD Output Pair  
Transmit Jitter  
Note: Normal Mismatch is the difference between the maximum and minimum of all rise and fall times  
Note: Rise and fall times taken at 10% and 90% of the +1 or -1 amplitude  
83  
www.national.com  
 
 
8.2.9 100BASE-TX MII Receive Packet Latency Timing  
PMD Input Pair  
Data  
IDLE  
(J/K)  
T2.9.1  
CRS  
T2.9.2  
RXD[3:0]  
RX_DV  
RX_ER  
Parameter  
T2.9.1  
Description  
Carrier Sense ON Delay  
Receive Data Latency  
Notes  
Min  
Typ Max  
Units  
bits  
100BASE-TX mode  
100BASE-TX mode  
20  
24  
T2.9.2  
bits  
Note: Carrier Sense On Delay is determined by measuring the time from the first bit of the “J” code group to the assertion  
of Carrier Sense.  
Note: 1 bit time = 10 ns in 100 Mb/s mode  
Note: PMD Input Pair voltage amplitude is greater than the Signal Detect Turn-On Threshold Value.  
8.2.10 100BASE-TX MII Receive Packet Deassertion Timing  
PMD Input Pair  
CRS  
DATA  
(T/R)  
IDLE  
T2.10.1  
Parameter  
T2.10.1  
Description  
Carrier Sense OFF Delay  
Notes  
100BASE-TX mode  
Min  
Typ Max  
Units  
24  
bits  
Note: Carrier Sense Off Delay is determined by measuring the time from the first bit of the “T” code group to the deasser-  
tion of Carrier Sense.  
Note: 1 bit time = 10 ns in 100 Mb/s mode  
www.national.com  
84  
 
 
 
8.2.11 10 Mb/s MII Transmit Timing  
T2.11.1  
T2.11.1  
TX_CLK  
T2.11.2  
T2.11.3  
TXD[3:0]  
TX_EN  
Valid Data  
Parameter  
T2.11.1  
Description  
TX_CLK High/Low Time  
Notes  
Min Typ Max Units  
10 Mb/s MII mode  
10 Mb/s MII mode  
10 Mb/s MII mode  
190 200 210  
ns  
ns  
ns  
T2.11.2  
TXD[3:0], TX_EN Data Setup to TX_CLK fall  
TXD[3:0], TX_EN Data Hold from TX_CLK rise  
25  
0
T2.11.3  
Note: An attached Mac should drive the transmit signals using the positive edge of TX_CLK. As shown above, the MII  
signals are sampled on the falling edge of TX_CLK.  
8.2.12 10 Mb/s MII Receive Timing  
T2.12.1  
T2.12.1  
RX_CLK  
T2.12.3  
T2.12.2  
RXD[3:0]  
RX_DV  
Valid Data  
Parameter  
T2.12.1  
Description  
Notes  
Min Typ Max Units  
RX_CLK High/Low Time  
160 200  
100  
240  
ns  
ns  
ns  
T2.12.2  
RX_CLK to RXD[3:0], RX_DV Delay  
10 Mb/s MII mode  
10 Mb/s MII mode  
T2.12.3  
RX_CLK rising edge delay from RXD[3:0],  
RX_DV Valid  
100  
Note: RX_CLK may be held low for a longer period of time during transition between reference and recovered clocks.  
Minimum high and low times will not be violated.  
85  
www.national.com  
 
 
 
 
 
 
8.2.13 10 Mb/s Serial Mode Transmit Timing  
T2.13.2  
T2.13.1  
TX_CLK  
T2.13.4  
T2.13.3  
TXD[0]  
TX_EN  
Valid Data  
Parameter  
T2.13.1  
Description  
TX_CLK High Time  
Notes  
Min Typ Max Units  
10 Mb/s Serial mode  
10 Mb/s Serial mode  
10 Mb/s Serial mode  
10 Mb/s Serial mode  
20  
70  
25  
0
25  
75  
30  
80  
ns  
ns  
ns  
ns  
T2.13.2  
TX_CLK Low Time  
T2.13.3  
TXD_0, TX_EN Data Setup to TX_CLK rise  
TXD_0, TX_EN Data Hold from TX_CLK rise  
T2.13.4  
8.2.14 10 Mb/s Serial Mode Receive Timing  
T2.14.1  
T2.14.1  
RX_CLK  
T2.14.2  
RXD[0]  
RX_DV  
Valid Data  
Parameter  
T2.14.1  
Description  
RX_CLK High/Low Time  
RX_CLK fall to RXD_0, RX_DV Delay  
Notes  
Min Typ Max Units  
35  
50  
65  
10  
ns  
ns  
T2.14.2  
10 Mb/s Serial mode  
-10  
Note: RX_CLK may be held high for a longer period of time during transition between reference and recovered clocks.  
Minimum high and low times will not be violated.  
www.national.com  
86  
 
 
 
 
 
 
8.2.15 10BASE-T Transmit Timing (Start of Packet)  
TX_CLK  
TX_EN  
TXD  
T2.15.2  
PMD Output Pair  
T2.15.1  
Parameter  
Description  
Notes  
Min  
Typ  
Max  
Units  
T2.15.1  
Transmit Output Delay from the  
Falling Edge of TX_CLK  
10 Mb/s MII mode  
3.5  
bits  
T2.15.2  
Transmit Output Delay from the  
Rising Edge of TX_CLK  
10 Mb/s Serial mode  
3.5  
bits  
Note: 1 bit time = 100 ns in 10Mb/s.  
8.2.16 10BASE-T Transmit Timing (End of Packet)  
TX_CLK  
TX_EN  
T2.16.1  
0
0
PMD Output Pair  
T2.16.2  
PMD Output Pair  
1
1
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.16.1  
End of Packet High Time  
(with ‘0’ ending bit)  
250  
300  
ns  
T2.16.2  
End of Packet High Time  
(with ‘1’ ending bit)  
250  
300  
ns  
87  
www.national.com  
 
 
 
 
8.2.17 10BASE-T Receive Timing (Start of Packet)  
1st SFD bit decoded  
1
0
1
0
1
0
1
0
1
0
1
1
TPRD±  
T2.17.1  
CRS  
RX_CLK  
T2.17.2  
RX_DV  
T2.17.3  
0000  
Preamble  
SFD  
Data  
RXD[3:0]  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.17.1  
Carrier Sense Turn On Delay (PMD  
Input Pair to CRS)  
630 1000  
ns  
T2.17.2  
T2.17.3  
RX_DV Latency  
10  
8
bits  
bits  
Receive Data Latency  
Measurement shown from SFD  
Note: 10BASE-T RX_DV Latency is measured from first bit of preamble on the wire to the assertion of RX_DV  
Note: 1 bit time = 100 ns in 10 Mb/s mode.  
8.2.18 10BASE-T Receive Timing (End of Packet)  
IDLE  
1
0
1
PMD Input Pair  
RX_CLK  
T2.18.1  
CRS  
Parameter  
Description  
Carrier Sense Turn Off Delay  
Notes  
Min  
Typ Max Units  
T2.18.1  
1.0  
µs  
www.national.com  
88  
 
 
 
 
8.2.19 10 Mb/s Heartbeat Timing  
TX_EN  
TX_CLK  
COL  
T2.19.2  
T2.19.1  
Parameter  
T2.19.1  
Description  
Notes  
Min  
Typ Max Units  
CD Heartbeat Delay  
10 Mb/s half-duplex mode  
10 Mb/s half-duplex mode  
1200  
1000  
ns  
ns  
T2.19.2  
CD Heartbeat Duration  
8.2.20 10 Mb/s Jabber Timing  
TXE  
T2.20.1  
T2.20.2  
PMD Output Pair  
COL  
Parameter  
T2.20.1  
Description  
Jabber Activation Time  
Jabber Deactivation Time  
Notes  
Min  
Typ Max Units  
85  
ms  
ms  
T2.20.2  
500  
89  
www.national.com  
 
 
 
 
8.2.21 10BASE-T Normal Link Pulse Timing  
T2.21.2  
T2.21.1  
Normal Link Pulse(s)  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.21.1  
T2.21.2  
Pulse Width  
Pulse Period  
100  
16  
ns  
ms  
Note: These specifications represent transmit timings.  
8.2.22 Auto-Negotiation Fast Link Pulse (FLP) Timing  
T2.22.2  
T2.22.3  
T2.22.1  
T2.22.1  
Fast Link Pulse(s)  
clock  
pulse  
data  
pulse  
clock  
pulse  
T2.22.5  
T2.22.4  
FLP Burst  
FLP Burst  
Parameter  
T2.22.1  
Description  
Notes  
Min  
Typ Max Units  
Clock, Data Pulse Width  
100  
125  
ns  
T2.22.2  
Clock Pulse to Clock Pulse  
Period  
µs  
T2.22.3  
Clock Pulse to Data Pulse  
Period  
Data = 1  
62  
µs  
T2.22.4  
T2.22.5  
Burst Width  
2
ms  
ms  
FLP Burst to FLP Burst Period  
16  
Note: These specifications represent transmit timings.  
www.national.com  
90  
 
 
 
 
 
 
 
8.2.23 100BASE-TX Signal Detect Timing  
PMD Input Pair  
T2.23.1  
T2.23.2  
SD+ internal  
Parameter  
T2.23.1  
Description  
Notes  
Min  
Typ Max Units  
SD Internal Turn-on Time  
SD Internal Turn-off Time  
1
ms  
T2.23.2  
350  
µs  
Note: The signal amplitude on PMD Input Pair must be TP-PMD compliant.  
8.2.24 100 Mb/s Internal Loopback Timing  
TX_CLK  
TX_EN  
TXD[3:0]  
CRS  
T2.24.1  
RX_CLK  
RX_DV  
RXD[3:0]  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
240 ns  
T2.24.1  
TX_EN to RX_DV Loopback  
100 Mb/s internal loopback mode  
Note1: Due to the nature of the descrambler function, all 100BASE-TX Loopback modes will cause an initial “dead-time”  
of up to 550 µs during which time no data will be present at the receive MII outputs. The 100BASE-TX timing specified is  
based on device delays after the initial 550µs “dead-time”.  
Note2: Measurement is made from the first rising edge of TX_CLK after assertion of TX_EN.  
91  
www.national.com  
 
 
 
8.2.25 10 Mb/s Internal Loopback Timing  
TX_CLK  
TX_EN  
TXD[3:0]  
CRS  
T2.25.1  
RX_CLK  
RX_DV  
RXD[3:0]  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
µs  
T2.25.1  
TX_EN to RX_DV Loopback 10 Mb/s internal loopback mode  
2
Note: Measurement is made from the first rising edge of TX_CLK after assertion of TX_EN.  
www.national.com  
92  
 
8.2.26 RMII Transmit Timing  
T2.26.1  
X1  
T2.26.2  
T2.26.3  
TXD[1:0]  
TX_EN  
Valid Data  
T2.26.4  
Symbol  
PMD Output Pair  
Parameter  
T2.26.1  
Description  
X1 Clock Period  
Notes  
50 MHz Reference Clock  
Min Typ Max Units  
20  
ns  
ns  
T2.26.2  
TXD[1:0], TX_EN, DataSetup  
to X1 rising  
4
2
T2.26.3  
T2.26.4  
TXD[1:0], TX_EN, Data Hold  
from X1 rising  
ns  
X1 Clock to PMD Output Pair 100BASE-TX mode  
Latency (100Mb)  
11  
bits  
93  
www.national.com  
 
 
 
 
8.2.27 RMII Receive Timing  
IDLE  
(J/K)  
Data  
(TR)  
Data  
PMD Input Pair  
T2.27.4  
T2.27.5  
X1  
T2.27.1  
T2.27.2  
T2.27.2  
T2.27.3  
T2.27.2  
RX_DV  
CRS_DV  
T2.27.2  
RXD[1:0]  
RX_ER  
Parameter  
Description  
X1 Clock Period  
Notes  
Min Typ Max Units  
T2.27.1  
T2.27.2  
50 MHz Reference Clock  
20  
ns  
ns  
RXD[1:0], CRS_DV, RX_DV  
and RX_ER output delay from  
X1 rising  
2
14  
T2.27.3  
T2.27.4  
T2.27.5  
CRS ON delay (100Mb)  
CRS OFF delay (100Mb)  
100BASE-TX mode  
100BASE-TX mode  
18.5  
27  
bits  
bits  
bits  
RXD[1:0] and RX_ER latency 100BASE-TX mode  
(100Mb)  
38  
Note: Per the RMII Specification, output delays assume a 25pF load.  
Note: CRS_DV is asserted asynchronously in order to minimize latency of control signals through the Phy. CRS_DV may  
toggle synchronously at the end of the packet to indicate CRS deassertion.  
Note: RX_DV is synchronous to X1. While not part of the RMII specification, this signal is provided to simplify recovery of  
receive data.  
Note: CRS ON delay is measured from the first bit of the JK symbol on the PMD Receive Pair to initial assertion of  
CRS_DV.  
Note: CRS_OFF delay is measured from the first bit of the TR symbol on the PMD Receive Pair to initial deassertion of  
CRS_DV.  
Note: Receive Latency is measured from the first bit of the symbol pair on the PMD Receive Pair. Typical values are with  
the Elasticity Buffer set to the default value (01).  
www.national.com  
94  
 
 
 
 
 
8.2.28 Isolation Timing  
Clear bit 10 of BMCR  
(return to normal operation  
from Isolate mode)  
T2.28.1  
MODE  
NORMAL  
ISOLATE  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.28.1  
From software clear of bit 10 in  
the BMCR register to the transi-  
tion from Isolate to Normal Mode  
100  
µs  
8.2.29 CLK2MAC Timing  
X1  
T2.29.2  
T2.29.1  
T2.29.1  
CLK2MAC  
Parameter  
Description  
Notes  
Min Typ Max Units  
T2.29.1  
CLK2MAC High/Low Time  
MII mode  
20  
10  
ns  
ns  
ns  
RMII mode  
T2.29.2  
CLK2MAC propagation delay  
Relative to X1  
8
Note: CLK2MAC characteristics are dependent upon the X1 input characteristics.  
95  
www.national.com  
 
 
 
8.2.30 100 Mb/s X1 to TX_CLK Timing  
X1  
T2.30.1  
TX_CLK  
Parameter  
Description  
X1 to TX_CLK delay  
Notes  
Min Typ Max Units  
ns  
T2.30.1  
100 Mb/s Normal mode  
0
5
Note: X1 to TX_CLK timing is provided to support devices that use X1 instead of TX_CLK as the reference for transmit  
Mll data.  
www.national.com  
96  
Notes  
97  
www.national.com  
9.0 Physical Dimensions  
inches (millimeters) unless otherwise noted  
Thin Quad Flat Package (TQFP)  
NS Package Number VHB80A  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PROCUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPEC-  
IFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED,  
ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANT. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETER OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLIC-  
TIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PROCUCTS AND APPLICA-  
TIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PROCUCTS THAT INCLUDE NATIONAL  
COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDEDING LIBILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICU-  
LAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROP-  
ERTY RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER  
AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to per-  
form can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright 2008 National Semiconductor Corporation  
©
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Technical  
Support Center  
Email:  
new.feedback@nsc.com  
Tel: 1-800-272-9959  
National Semiconductor Europe  
Technical Support Center  
National Semiconductor Asia  
Pacific Technical  
Support Center  
National Semiconductor Japan  
Technical Support Center  
Email: jpn.feedback@nsc.com  
Email: europe.support@nsc.com  
German Tel: +49 (0) 180 5010 771  
English Tel: +44 (0) 870 850 4288  
Email: ap.support@nsc.com  
www.national.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Transportation and Automotive www.ti.com/automotive  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

DP83849C_08

PHYTER® DUAL Commercial Temperature Dual Port 10/100 Mb/s Ethernet Physical Layer Transceiver
NSC

DP83849I

DP83849I PHYTER DUAL Industrial Temperature with Flexible Port Switching Dual Port 10/100 Mb/s Ethernet Physical Layer Transceiver
NSC

DP83849I

DP83849I PHYTER DUAL Industrial erature with Flexible Port Switching
TI

DP83849ID

PHYTER DUAL Industrial Temperature with Fiber Support (FX) Dual Port 10/100 Mb/s Ethernet Physical Layer Transceiver
NSC

DP83849ID

PHYTER DUAL Industrial Temperature with Fiber Support
TI

DP83849IDVS

PHYTER DUAL Industrial Temperature with Fiber Support
TI

DP83849IDVS/NOPB

Industrial temperature, dual-port 10/100-Mbps Ethernet PHY transceiver with fiber support 80-TQFP -40 to 85
TI

DP83849IDVSX/NOPB

PHYTER DUAL Industrial Temperature with Fiber Support
TI

DP83849ID_08

PHYTER® DUAL Industrial Temperature with Fiber Support (FX) Dual Port 10/100 Mb/s Ethernet Physical Layer Transceiver
NSC

DP83849IF

PHYTER® DUAL Industrial Temperature with Fiber Support (FX) and Flexible Port Switching Dual Port 10/100 Mb/s Ethernet Physical Layer Tranceiver
NSC

DP83849IF

DP83849IF PHYTER DUAL Industrial Temperature with Fiber Support (FX) and Flexible Port Switching Dual Port 10/100 Mb/s Ethernet Physical Layer Tranceiver
TI

DP83849IFVS

PHYTER㈢ DUAL Industrial Temperature with Fiber Support (FX) an Flexible Port Switching Dual Port 10/100 Mb/s Ethernet Physical Layer Transceiver
NSC