DP83TC811RWRNDRQ1 [TI]

低功耗 100BASE-T1 汽车 PHYTER™ 以太网物理层收发器 | RND | 36 | -40 to 125;
DP83TC811RWRNDRQ1
型号: DP83TC811RWRNDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低功耗 100BASE-T1 汽车 PHYTER™ 以太网物理层收发器 | RND | 36 | -40 to 125

以太网 以太网:16GBASE-T 电信 电信集成电路
文件: 总128页 (文件大小:1829K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
DP83TC811R-Q1 低功耗汽车 PHY  
100BASE-T1 汽车以太网物理层收发器  
2 应用  
1 特性  
1
符合 100BASE-T1 – IEEE 802.3bw 标准  
主干网络  
网关和车身控制  
远程信息处理  
符合 OPEN Alliance 标准  
能够与 BroadR-Reach100BASE-T1 PHY 进  
行互操作  
3 说明  
符合面向汽车应用的 AEC-Q100 标准:  
DP83TC811R-Q1 器件是一款符合 IEEE 802.3bw 标  
准的汽车 PHYTER™以太网物理层收发器。它提供通  
过单一屏蔽双绞线电缆发送和接收数据所需的所有物理  
层功能。该器件具有 xMII 灵活性,支持标准 MII、  
RMII RGMII MAC 接口。  
器件温度等级 1:环境工作温度范围为 –40°C  
+125°C  
器件 HBM ESD 分类等级 3A  
除引脚 5 之外,其他所有引脚的器件 CDM  
ESD 分类等级均为 C5  
引脚 5 的器件 CDM ESD 分类等级为 C3  
该器件包含诊断工具套件,从而提供广泛的实时监控工  
具、调试工具和测试模式。该工具套件中包含首款集成  
式静电放电 (ESD) 监控工具。它能够对 xMII MDI  
上的 ESD 事件进行计数,并且能够通过使用可编程中  
断提供实时监控。此外,DP83TC811R-Q1 还包含一  
个假随机二进制序列 (PRBS) 帧生成工具,该工具与内  
部回送完全兼容,能够在不使用 MAC 的情况下发送和  
接收数据。DP83TC811R-Q1 采用 6.00mm ×  
引脚 12 13 的器件 IEC61000-4-2 ESD 分类  
等级为 4±8kV 接触放电  
MAC 接口:MIIRMII RGMII  
VQFN,可湿侧面封装  
支持 IEEE 1588 SFD  
符合 AVB/TSN 标准的低发送和接收延迟  
低有功功率运行:< 230mW  
可配置的 I/O 电压:3.3V2.5V 1.8V  
节能 特性:  
6.00mm36 引脚 VQFN 可湿侧面封装。  
器件信息(1)  
睡眠、待机和禁用  
局域网唤醒 (WoL)  
器件型号  
封装  
VQFN (36)  
封装尺寸(标称值)  
DP83TC811R-Q1  
6.00mm x 6.00mm  
诊断工具套件  
信号质量指标 (SQI)  
时域反射法 (TDR)  
静电放电传感器  
电压传感器  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
空白  
空白  
温度传感器  
PRBS 内置自检  
简化原理图  
100BASE-T1  
IEEE 802.3bw  
MII  
RMII  
CMC  
Automotive  
Connector  
RGMII  
DP83TC811R-Q1  
100 Mbps  
Automotive Ethernet PHY  
CPU/MPU  
MAC  
CM  
Termination  
25-MHz  
Clock Source  
Status  
LEDs  
GND  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS551  
 
 
 
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 23  
8.4 Device Functional Modes........................................ 30  
8.5 Programming........................................................... 42  
8.6 Register Maps......................................................... 46  
Application and Implementation ...................... 111  
9.1 Application Information.......................................... 111  
9.2 Typical Applications .............................................. 111  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
6.1 Pin Multiplexing......................................................... 8  
Specifications......................................................... 9  
7.1 Absolute Maximum Ratings ...................................... 9  
7.2 ESD Ratings.............................................................. 9  
7.3 Recommended Operating Conditions....................... 9  
7.4 Thermal Information.................................................. 9  
7.5 Electrical Characteristics......................................... 10  
7.6 Timing Requirements.............................................. 11  
7.7 Timing Diagrams..................................................... 14  
7.8 Typical Characteristics............................................ 20  
Detailed Description ............................................ 21  
8.1 Overview ................................................................. 21  
8.2 Functional Block Diagram ....................................... 22  
9
10 Power Supply Recommendations ................... 117  
11 Layout................................................................. 117  
11.1 Layout Guidelines ............................................... 117  
11.2 Layout Example .................................................. 120  
12 器件和文档支持 ................................................... 122  
12.1 接收文档更新通知 ............................................... 122  
12.2 社区资源.............................................................. 122  
12.3 ..................................................................... 122  
12.4 静电放电警告....................................................... 122  
12.5 Glossary.............................................................. 122  
13 机械、封装和可订购信息..................................... 122  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (November 2017) to Revision A  
Page  
将器件状态从预告信息更改成了生产数据” ......................................................................................................................... 1  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
5 Device Comparison Table  
PART  
SGMII  
OPERATING  
NUMBER  
SUPPORT  
TEMPERATURE  
DP83TC811R-Q1  
DP83TC811S-Q1  
No  
–40°C to 125°C  
–40°C to 125°C  
Yes  
6 Pin Configuration and Functions  
RND Package  
36-Pin VQFN  
Top View  
27  
26  
25  
24  
23  
22  
21  
20  
19  
TX_CLK  
TX_EN / TX_CTRL  
TX_D3  
28  
29  
30  
31  
32  
33  
34  
35  
36  
18  
17  
16  
15  
14  
13  
12  
11  
10  
TDO  
TCK  
CLKOUT / GPIO_2  
RX_DV / CRS_DV  
RX_CTRL  
TX_D2  
TX_D1  
GND  
RX_ER  
TRD_M  
TRD_P  
VDDA  
INH  
TX_D0  
TX_ER  
LED_0 / GPIO_0  
MDIO  
1
2
3
4
5
6
7
8
9
Copyright © 2017–2018, Texas Instruments Incorporated  
3
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Pin Functions(1)  
PIN  
STATE(2)  
DESCRIPTION  
NAME  
NO.  
MAC INTERFACE  
23  
RX_D3  
RX_D2  
RX_D1  
RX_D0  
Receive Data: Symbols received on the cable are decoded and transmitted out of these pins  
synchronous to the rising edge of RX_CLK. They contain valid data when RX_DV is asserted. A data  
nibble, RX_D[3:0], is transmitted in MII and RGMII modes. 2 bits; RX_D[1:0], are transmitted in RMII  
mode. RX_D[3:2] are not used when in RMII mode.  
24  
25  
26  
S, PD, O  
If the PHY is bootstrapped to RMII Master mode, a 50-MHz clock reference is automatically outputted  
on RX_D3. This clock should be fed to the MAC.  
Receive Clock: In MII and RGMII modes, the receive clock provides a 25-MHz reference clock.  
RX_CLK  
27  
O
Unused in RMII mode  
Receive Error: In MII and RMII modes, this pin indicates a receive error symbol has been detected  
within a received packet. In MII mode, RX_ER is asserted high synchronously to the rising edge of  
RX_CLK. In RMII mode, RX_ER is asserted high synchronously to the rising edge of the reference  
clock. This pin is not required to be used by the MAC in MII or RMII because the PHY will  
automatically corrupt data on a receive error.  
RX_ER  
14  
S, PD, O  
Unused in RGMII mode  
Receive Data Valid: This pin indicates when valid data is presented on RX_D[3:0] for MII mode.  
Carrier Sense Data Valid: This pin combines carrier sense and data valid into an asynchronous  
signal. When CRS_DV is asserted, data is presented on RX_D[1:0] in RMII mode.  
RX_DV  
CRS_DV  
RX_CTRL  
15  
28  
S, PD, O  
RGMII Receive Control: Receive control combines receive data valid indication and receive error  
indication into a single signal. RX_DV is presented on the rising edge of RX_CLK and RX_ER is  
presented on the falling edge of RX_CLK.  
Transmit Clock: In MII mode, the transmit clock is a 25-MHz output and has constant phase  
referenced to the reference clock. In RGMII mode, this clock is sourced from the MAC layer to the  
PHY. A 25-MHz clock should be provided (not required to have constant phase to the reference clock  
unless synchronous RGMII is enabled in ).  
TX_CLK  
PD, I, O  
Unused in RMII mode  
Transmit Enable: In MII mode, transmit enable is presented prior to the rising edge of the transmit  
clock. TX_EN indicates the presence of valid data inputs on TX_D[3:0]. In RMII mode, transmit  
enable is presented prior to the rising edge of the reference clock. TX_EN indicates the presence of  
valid data inputs on TX_D[1:0].  
TX_EN  
TX_CTRL  
29  
PD, I  
RGMII Transmit Control: Transmit control combines transmit enable and transmit error indication  
into a single signal. TX_EN is presented prior to the rising edge of TX_CLK; TX_ER is presented  
prior to the falling edge of TX_CLK.  
TX_D3  
TX_D2  
30  
31  
Transmit Data: In MII and RGMII modes, the transmit data nibble, TX_D[3:0], is received from the  
MAC prior to the rising edge of TX_CLK. In RMII mode, TX_D[1:0] is received from the MAC prior to  
the rising edge of the reference clock. TX_D[3:2] are not used in RMII mode.  
PD, I  
PD, I  
32  
33  
TX_D1  
TX_D0  
Transmit Error: In MII mode, this pin indicates a transmit error symbol has been detected within a  
transmitted packet. TX_ER is received prior to the rising edge of TX_CLK.  
TX_ER  
34  
Unused in RMII and RGMII modes  
(1) When pins are unused, follow the recommended connection requirements provided in the table above. If pins do not have required  
termination, they may be left floating.  
(2) Pin Type:  
I = Input  
O = Output  
IO = Input/Output  
OD = Open Drain  
PD = Internal pulldown  
PU = Internal pullup  
S = Bootstrap configuration pin (all configuration pins have weak internal pullups or pulldowns)  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Pin Functions(1) (continued)  
PIN  
STATE(2)  
DESCRIPTION  
NAME  
NO.  
SERIAL MANAGEMENT INTERFACE  
Management Data Clock: Synchronous clock to the MDIO serial management input and output  
data. This clock may be asynchronous to the MAC transmit and receive clocks. The maximum clock  
rate is 25 MHz. There is no minimum clock rate.  
MDC  
1
I
Management Data Input/Output: Bidirectional management data signal that may be sourced by the  
management station or the PHY. This pin requires a pullup resistor.  
MDIO  
36  
IO  
Recommended to use a resistor between 2.2 kΩ and 9 kΩ.  
CONTROL INTERFACE  
Interrupt: Active-LOW output, which will be asserted LOW when an interrupt condition occurs. This  
pin has a weak internal pullup. Register access is necessary to enable various interrupt triggers.  
Once an interrupt event flag is set, register access is required to clear the interrupt event.  
INT  
2
PU, OD, O  
Note: Power-on-RESET (POR) Done interrupt is enabled by default. POR Done interrupt can be  
cleared by reading register INT_STAT3 Register 0x0018 – Interrupt Status Register #3.  
This pin can be configured as an Active-HIGH output using register INT_TEST Register 0x0011 –  
Interrupt Test Register.  
Reset: Active-LOW input, which initializes or reinitializes the DP83TC811R-Q1. Asserting this pin  
LOW for at least 1 μs will force a reset process to occur. All internal registers will reinitialize to their  
default states as specified for each bit in the Register Maps section. All bootstrap pins are resampled  
upon deassertion of reset.  
RESET  
EN  
3
7
PU, I  
PD, I  
Enable: Active-HIGH input, which will disable the DP83TC811R-Q1 when pulled LOW and power  
down all internal blocks. Disable state is equivalent to a power-down state.  
This pin can be directly tied to VDDIO; enabling the device.  
WAKE: Active-HIGH input, which wakes the PHY from SLEEP. Asserting this pin HIGH at power-up  
will prevent the PHY from going to SLEEP.  
WAKE  
INH  
8
PD, I  
O
This pin can be directly tied to VDDIO to wake the device.  
INH: Active-HIGH output, which will be asserted HIGH when the PHY is in SLEEP or DISABLED.  
This pin is LOW for all other PHY states.  
10  
CLOCK INTERFACE  
Reference Clock Input (MII and RGMII): Reference clock 25-MHz ±100 ppm-tolerance crystal or  
oscillator input. The device supports either an external crystal resonator connected across pins XI  
and XO, or an external CMOS-level oscillator connected to pin XI only and XO left floating.  
Reference Clock Input (RMII): Reference clock 50-MHz ±100 ppm-tolerance CMOS-level oscillator  
in RMII Slave mode. Reference clock 25-MHz ±100 ppm-tolerance crystal or oscillator in RMII Master  
mode.  
XI  
5
4
I
This is a fail-safe pin. When the PHY is not powered, an external oscillator is allowed to be powered  
and driving into this pin. Fail-safe prevents pin back-driving.  
Reference Clock Output: XO pin is used for crystal only. This pin should be left floating when a  
CMOS-level oscillator is connected to XI.  
XO  
O
LED/GPIO INTERFACE  
LED_0 /  
35  
S, PD, IO  
S, PD, IO  
IO  
LED_0: Link Status  
GPIO_0  
LED_1 /  
6
LED_1: Link Status and BLINK for TX/RX Activity  
Clock Output: 25-MHz reference clock  
GPIO_1  
CLKOUT /  
16  
GPIO_2  
MEDIUM DEPENDENT INTERFACE  
TRD_M  
TRD_P  
13  
12  
Differential Transmit and Receive: Bidirectional differential signaling configured for 100BASE-T1  
operation, IEEE 802.3bw compliant.  
IO  
JTAG (IEEE 1149.1)  
Test Clock: Primary clock source for all test logic input and output. This pin is controlled by the  
testing entity.  
TCK  
17  
PU, I  
This pin can be left unconnected if not used.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Pin Functions(1) (continued)  
PIN  
STATE(2)  
DESCRIPTION  
NAME  
NO.  
Test Data Output: Test results are scanned out.  
TDO  
18  
O
This pin can be left unconnected if not used.  
Test Mode Select: Sequences the Tap Controller (16-state FSM) to select the desired test  
instruction. TI recommends applying three clock cycles with TMS HIGH to reset JTAG.  
TMS  
TDI  
19  
20  
PU, I  
PU, I  
This pin can be left unconnected if not used.  
Test Data Input: Test data is scanned into the device.  
This pin can be left unconnected if not used.  
POWER CONNECTIONS  
Core Supply: 3.3 V  
VDDA  
11  
SUPPLY  
Recommend using 10-nF, 100-nF, 1-µF, and 10-µF ceramic decoupling capacitors; optional ferrite  
bead.  
IO Supply: 1.8 V, 2.5 V, or 3.3 V  
VDDIO  
22  
SUPPLY  
Recommend using 10-nF, 100-nF, 1-µF, and 10-µF ceramic decoupling capacitors; optional ferrite  
bead.  
GROUND  
DAP  
GROUND  
Ground  
DO NOT CONNECT  
DNC  
DNC  
9
DNC: Do not connect (leave floating)  
DNC: Do not connect (leave floating)  
21  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
 
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Table 1. Pin States(1)  
POWER-UP / RESET  
NORMAL OPERATION: MII / RMII / RGMII  
PULL VALUE  
PIN  
NAME  
PULL VALUE  
PIN STATE  
PULL TYPE  
PIN STATE  
PULL TYPE  
(kΩ)  
(kΩ)  
none  
9
MDC  
INT  
I
none  
PU  
none  
9
I
none  
PU  
I
OD, O  
RESET  
XO  
I
PU  
9
I
PU  
9
O
none  
none  
PD  
none  
none  
9
O
none  
none  
none  
PD  
none  
none  
none  
500  
XI  
I
I
LED_1  
EN  
HI-Z  
O
I
PD  
500  
500  
none  
none  
none  
none  
none  
9
I
WAKE  
DNC  
I
PD  
I
PD  
500  
FLOAT  
none  
none  
none  
none  
none  
PD  
FLOAT  
none  
none  
none  
none  
none  
none  
none  
none  
PU  
none  
none  
none  
none  
none  
none  
none  
none  
9
INH  
O
O
VDDA  
TRD_P  
TRD_M  
RX_ER  
RX_DV  
CLKOUT  
TCK  
SUPPLY  
SUPPLY  
IO  
IO  
IO  
IO  
HI-Z  
HI-Z  
O
O
PD  
9
O
none  
PU  
none  
9
O
I
I
TDO  
O
none  
PU  
none  
9
O
none  
PU  
none  
9
TMS  
I
I
TDI  
I
PU  
9
I
PU  
9
DNC  
FLOAT  
SUPPLY  
HI-Z  
HI-Z  
HI-Z  
HI-Z  
O
none  
none  
PD  
none  
none  
9
FLOAT  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
VDDIO  
RX_D3  
RX_D2  
RX_D1  
RX_D0  
RX_CLK  
SUPPLY  
O
O
O
O
O
PD  
9
PD  
9
PD  
9
none  
none  
O
none  
PD(2)  
none  
9(2)  
TX_CLK  
I
PD  
9
I(2)  
TX_EN  
TX_D3  
TX_D2  
TX_D1  
TX_D0  
TX_ER  
LED_0  
MDIO  
I
PD  
PD  
9
I
I
PD  
PD  
9
I
9
9
9
I
PD  
9
I
PD  
I
PD  
9
9
I
PD  
9
I
PD  
I
PD  
9
I
HI-Z  
I
PD  
9
I
PD  
9
PD  
9
O
I
none  
none  
none  
none  
none  
none  
(1) Type: I = Input  
O = Output  
IO = Input/Output  
OD = Open Drain  
PD = Internal pulldown  
PU = Internal pullup  
(2) Pin operation only for RGMII operation.  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
6.1 Pin Multiplexing  
GPIOs are controlled using IO_CTRL1 Register 0x0462 – GPIO Control Register #1 and IO_CTRL2 Register  
0x0463 – GPIO Control Register #2.  
LED:  
Pin configured as LED indication. LED_CFG1 Register 0x0460 – LED Configuration Register #1  
determines LED function.  
CLKOUT: Pin configured as a clock output signal  
WoL:  
Pin configured to output WoL interrupt  
UV:  
Pin configured to output undervoltage interrupt  
Pin configured to output transmit 1588 SFD indication  
1588_TX:  
1588_RX: Pin configured to output receive 1588 SFD indication  
0s:  
1s:  
Pin configured LOW (ground)  
Pin configured HIGH (VDDIO)  
RMII_REF: Pin configured to output RMII 50-MHz reference clock  
Table 2. Pin Multiplexing  
FIELD  
PIN  
0b000  
0b001  
0b010  
0b011  
0b100  
0b101  
0b110  
0b111  
STRAP  
LED_0 /  
GPIO_0  
35  
LED_0  
CLKOUT_0  
LED_1 /  
GPIO_1  
6
LED_1  
CLKOUT_1  
CLKOUT_2  
WoL  
UV  
Reserved  
Reserved  
0s  
1s  
CLKOUT /  
GPIO_2  
16  
23  
LED_2  
RX_D3  
RX_D3  
RMII_REF  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
4.0  
UNIT  
VDDA  
Input voltage  
VDDIO  
4.0  
V
Other pins  
4.0  
DC output  
voltage  
All Pins  
–0.3  
4.0  
V
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per  
All pins  
±4000  
AEC Q100-002(1)  
All pins except XI pin  
XI pin(2)  
±750  
±250  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per  
AEC Q100-011  
V
IEC 61000-4-2 contact discharge  
TRD_N, TRD_P pins  
±8000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) XI pin is a fail-safe input.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.62  
2.25  
2.97  
2.97  
–40  
NOM  
1.8  
MAX  
1.98  
2.75  
3.63  
3.63  
125  
UNIT  
IO Supply Voltage, 1.8V operation  
IO Supply Voltage, 2.5V operation  
IO Supply Voltage, 3.3V operation  
Core Supply Voltage  
VDDIO  
2.5  
V
3.3  
VDDA  
TA  
3.3  
V
Operating Free Air Temperature  
°C  
7.4 Thermal Information  
DP83TC811R-Q1  
THERMAL METRIC(1)  
VQFN  
36 PINS  
31.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
19.3  
12.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
YJB  
12.5  
RθJC(bot)  
1.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
XI pin, WAKE pin and EN pin  
VIH  
VIL  
High Level Input Voltage  
High Level Input Voltage  
1.3  
V
V
0.5  
3.3V VDDIO(1)  
VOH  
VOL  
VIH  
VIL  
High Level Output Voltage  
IOH = -2mA VDDIO = 3.3 V +/- 10%  
IOL = 2mA VDDIO = 3.3 V +/- 10%  
VDDIO = 3.3 V +/- 10%  
2.4  
2
V
V
V
V
Low Level Output Voltage  
High Level Input Voltage  
Low Level Input Voltage  
0.4  
0.8  
VDDIO = 3.3 V +/- 10%  
2.5V VDDIO(1)  
VOH  
VOL  
VIH  
VIL  
High Level Output Voltage  
IOH = -2mA VDDIO = 2.5 V +/- 10%  
IOL = 2mA VDDIO = 2.5 V +/- 10%  
VDDIO = 2.5 V +/- 10%  
2
V
V
V
V
Low Level Output Voltage  
High Level Input Voltage  
Low Level Input Voltage  
0.4  
0.7  
1.7  
VDDIO = 2.5 V +/- 10%  
1.8V VDDIO(1)  
VDDIO  
–0.45  
VOH  
VOL  
VIH  
High Level Output Voltage  
IOH = -2mA VDDIO = 1.8 V +/- 10%  
IOL = 2mA VDDIO = 1.8 V +/- 10%  
VDDIO = 1.8 V +/- 10%  
V
V
V
Low Level Output Voltage  
High Level Input Voltage  
0.45  
0.65 *  
VDDIO  
0.35 *  
VDDIO  
VIL  
Low Level Input Voltage  
VDDIO = 1.8 V +/- 10%  
V
DC CHARACTERISTICS  
IIH  
IIL  
Input High Current  
VIN = VDDIO  
-30  
-30  
-75  
30  
30  
75  
µA  
µA  
µA  
pF  
pF  
pF  
pF  
kΩ  
Input Low Current  
TRI-STATE Output Current(2)  
VIN = GND  
IOZ  
VOUT = VDDIO, VOUT = GND  
Input pins  
5
1
5
1
9
CIN  
Input Capacitance  
XI  
Output pins  
COUT  
Output Capacitance  
XO  
Rpull-up  
Integrated Pull-Up Resistance  
RESET, INT, TCK, TMS and TDI  
6.5  
12.5  
RX_D[3:0], RX_ER, RX_DV, TX_EN,  
TX_D[3:0], TX_ER, LED_0 and LED_1  
6.75  
9
500  
50  
11.25  
kΩ  
kΩ  
Ω
Rpull-down Integrated Pull-Down Resistance  
WAKE and EN  
Integrated MAC Series Termination  
RX_D[3:0], RX_ER, RX_DV and  
RX_CLK  
Rseries  
Resistor  
CURRENT CONSUMPTION  
MII  
18  
6
22  
12  
13  
17  
10  
10  
IDDIO-1V8- IO Supply Current, 1.8V operation,  
RMII  
RGMII  
MII  
mA  
mA  
Active/Normal Mode  
ACT  
10  
13  
3
IDDIO-1V8- IO Supply Current, 1.8V operation,  
RMII  
RGMII  
Standby  
STBY  
8
IDDIO-1V8-  
RST  
IO Supply Current, 1.8V operation, Reset All Interfaces  
IO Supply Current, 1.8V operation, Sleep All Interfaces  
6
8
10  
90  
mA  
µA  
IDDIO-1V8-  
SLP  
(1) For pins: MDC, INT_N, RESET_N, XO, LED_1, RX_ER, RX_DV, CLKOUT, TCK, TDO, TMS, TDI, RX_D[3:0], RX_CLK, TX_CLK,  
TX_EN, TX_D[3:0], TX_ER, LED_0, and MDIO  
(2) For pins: RX_D[3:0], RX_CLK, RX_ER, RX_DV, TX_CLK, MDIO, INT_N, XO, and TDO  
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IDDIO-1V8- IO Supply Current, 1.8V operation,  
All Interfaces  
8
85  
µA  
Disable  
DIS  
MII  
24  
14  
12  
18  
11  
10  
28  
24  
17  
22  
21  
13  
IDDIO-2V5- IO Supply Current, 2.5V operation,  
RMII  
RGMII  
MII  
mA  
mA  
Active/Normal Mode  
ACT  
IDDIO-2V5- IO Supply Current, 2.5V operation,  
RMII  
RGMII  
Standby  
STBY  
IDDIO-2V5-  
RST  
IO Supply Current, 2.5V operation, Reset All Interfaces  
IO Supply Current, 2.5V operation, Sleep All Interfaces  
8
11  
11  
18  
95  
93  
mA  
µA  
µA  
IDDIO-2V5-  
SLP  
IDDIO-2V5- IO Supply Current, 2.5V operation,  
DIS  
All Interfaces  
Disable  
MII  
31  
22  
16  
24  
19  
13  
37  
36  
21  
29  
33  
17  
IDDIO-3V3- IO Supply Current, 3.3V operation,  
RMII  
RGMII  
MII  
mA  
mA  
Active/Normal Mode  
ACT  
IDDIO-3V3- IO Supply Current, 3.3V operation,  
RMII  
RGMII  
Standby  
STBY  
IDDIO-3V3-  
RST  
IO Supply Current, 3.3V operation, Reset All Interfaces  
IO Supply Current, 3.3V operation, Sleep All Interfaces  
15  
14  
14  
30  
100  
100  
mA  
µA  
µA  
IDDIO-3V3-  
SLP  
IDDIO-3V3- IO Supply Current, 3.3V operation,  
DIS  
All Interfaces  
Disable  
IDDA-ACT  
Active/Normal Mode  
Standby  
65  
20  
13  
51  
51  
110  
55  
mA  
mA  
mA  
µA  
Core Supply Current; MII, RMII, RGMII  
IDDA-STBY  
IDDA-RST  
Reset  
44  
IDDA-SLP Core Supply Current; All Interfaces  
IDDA-DIS  
Sleep  
186  
185  
Disable  
µA  
MDI CHARACTERISTICS  
VOD-MDI  
Rmdi_diff  
Output Differential Voltage  
2.2  
V
Integrated Differential MDI Termination  
TRD_P and TRD_M  
100  
0
Ω
BOOTSTRAP DC CHARACTERISTICS  
0.08 x  
VDDIO  
Vbs_1  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
0
V
V
V
V
0.148 x  
VDDIO  
0.165 x  
VDDIO  
0.181 x  
VDDIO  
Vbs_2  
Bootstrap Threshold  
Vbs_3  
0.235 x  
VDDIO  
0.252 x  
VDDIO  
0.277 x  
VDDIO  
0.694 x  
VDDIO  
Vbs_4  
VDDIO  
VDDIO  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
MII TIMING  
T1.1  
T1.2  
TX_CLK High / Low Time  
TX_D[3:0], TX_ER, TX_EN Setup to TX_CLK  
16  
10  
20  
24  
ns  
ns  
Copyright © 2017–2018, Texas Instruments Incorporated  
11  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Timing Requirements (continued)  
MIN  
0
NOM  
MAX  
UNIT  
ns  
T1.3  
T2.1  
T2.2  
TX_D[3:0], TX_ER, TX_EN Hold from TX_CLK  
RX_CLK High / Low Time  
16  
14  
20  
20  
24  
26  
ns  
RX_D[3:0], RX_ER, RX_DV Delay from RX_CLK rising  
ns  
RMII SLAVE TIMING  
T3.1  
Reference Clock Period  
20  
50  
ns  
%
Reference Clock Duty Cycle  
35  
4
65  
12  
65  
T3.2  
T3.3  
T3.4  
TX_D[1:0], TX_ER, TX_EN Setup to XI Clock  
TX_D[1:0], TX_ER, TX_EN Hold from XI Clock  
RX_D[1:0], RX_ER Delay from XI Clock rising(1)  
ns  
ns  
ns  
2
3
6
RMII MASTER TIMING(2)  
T3.1  
RMII Master Clock Period  
20  
50  
ns  
%
RMII Master Clock Duty Cycle  
35  
4
T3.2  
T3.3  
T3.4  
TX_D[1:0], TX_ER, TX_EN Setup to RMII Master Clock  
TX_D[1:0], TX_ER, TX_EN Hold from RMII Master Clock  
RX_D[1:0], RX_ER Delay from RMII Master Clock rising(1)  
ns  
ns  
ns  
2
4
6
12  
RGMII TIMING  
Tskew (Align) RX_D[3:0], RX_CTRL Delay from RX_CLK (Align Mode Enabled)  
Tskew (Shift) RX_D[3:0], RX_CTRL Delay from RX_CLK (Shift Mode Enabled)  
Tsetup (Align) TX_D[3:0], TX_CTRL Setup to TX_CLK (Align Mode Enabled)  
Tsetup (Shift) TX_D[3:0], TX_CTRL Setup to TX_CLK (Shift Mode Enabled)  
Thold (Align) TX_D[3:0], TX_CTRL Hold from TX_CLK (Align Mode Enabled)  
Thold (Shift) TX_D[3:0], TX_CTRL Hold from TX_CLK (Shift Mode Enabled)  
–600  
1.2  
1
0
2
600  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
%
–1  
1
3
Tcyc  
Clock Cycle Duration  
Duty Cycle  
36  
40  
40  
50  
44  
60  
Tr/Tf  
Rise / Fall Time (20% - 80%)(3)  
750  
1200  
ps  
SMI TIMING  
T4.1  
MDC to MDIO (Output) Delay Time  
MDIO (Input) to MDC Setup Time  
MDIO (Input) to MDC Hold Time  
MDC Frequency  
0
10  
10  
6
12.5  
25  
ns  
ns  
T4.2  
T4.3  
ns  
2.5  
MHz  
POWER-UP TIMING  
T5.1  
T5.1  
T5.2  
T5.3  
T5.4  
T5.5  
T5.6  
VDDA ramp rate  
0.165  
0.165  
–50  
33  
33  
50  
V/ms  
V/ms  
ms  
VDDIO ramp rate  
VDDA and VDDIO ramp delay offset  
Crystal stabilization time post power-up  
350  
µs  
Osillator stabilization time post power-up  
Post power-up stabilization-time prior to MDC preamble for register access  
Hardware configuration latch-in time from power-up  
40  
60  
60  
ms  
ms  
ms  
Hardware configuration pins transition to functional mode from latch-in  
completion  
T5.7  
T5.8  
200  
60  
ns  
PAM3 IDLE Stream from power-up (Master Mode)  
ms  
RESET TIMING (RESET_N)  
T6.1  
T6.2  
RESET pulse width  
1
µs  
µs  
Post reset stabilization-time prior to MDC preamble for register access  
2.5  
(1) CRS_DV is an asynchronous signal as defined by the RMII version 1.2 specification.  
(2) RMII Master Clock is in reference to the 50-MHz clock output on RX_D3 when the device is configured for RMII Master mode through  
hardware bootstrap.  
(3) RGMII rise/fall time control register configurable  
12  
Copyright © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Timing Requirements (continued)  
MIN  
NOM  
MAX  
UNIT  
T6.3  
T6.4  
T6.5  
Hardware configuration latch-in time from reset  
700  
ns  
Hardware configuration pins transition to functional mode from latch-in  
completion  
200  
300  
ns  
µs  
PAM3 IDLE Stream from reset (Master Mode)  
TRANSMIT LATENCY TIMING  
MII Rising edge TX_CLK with assertion TX_EN to SSD symbol on MDI  
140  
304  
172  
372  
ns  
ns  
Slave RMII Rising edge XI clock with assertion TX_EN to SSD symbol on  
MDI  
Master RMII Rising edge clock with assertion TX_EN to SSD symbol on  
MDI  
T7.1  
322  
382  
ns  
RGMII Rising edge TX_CLK with assertion TX_CTRL to SSD symbol on  
MDI  
134  
401  
ns  
ns  
Bit sequence 0b1101101000 to SSD symbol on MDI  
440  
RECEIVE LATENCY TIMING  
SSD symbol on MDI to MII Rising edge of RX_CLK with assertion of  
RX_DV  
366  
434  
438  
406  
513  
525  
ns  
ns  
ns  
SSD symbol on MDI to Slave RMII Rising edge of XI clock with assertion of  
CRS_DV  
T8.1  
SSD symbol on MDI to Master RMII Rising edge of Master clock with  
assertion of CRS_DV  
SSD symbol on MDI to Rising edge of RGMII RX_CLK with assertion of  
RX_CTRL  
385  
582  
417  
643  
ns  
ns  
SSD symbol on MDI to SFD (/S/) comprising bit sequence 0b1101101000  
25 MHz OSCILLATOR REQUIREMENTS  
Frequency  
25  
MHz  
ppm  
ns  
Frequency Tolerance and Stability Over temperature and aging  
–100  
100  
8
Rise / Fall Time (10% - 90%)  
Jitter (Short-term, Cycle-to-Cycle)  
Jitter (Long-term, Accumulative over 10 ms)  
Duty Cycle  
150  
2
ps  
ns  
40  
60  
%
50 MHz OSCILLATOR REQUIREMENTS  
Frequency  
50  
MHz  
ppm  
ns  
Frequency Tolerance and Stability Over temperature and aging  
Rise / Fall Time (10% - 90%)  
Jitter (Short-term, Cycle-to-Cycle)  
Jitter (Long-term, Accumulative over 10 ms)  
Duty Cycle  
–100  
100  
4
155  
2.5  
60  
ps  
ns  
40  
%
25 MHz CRYSTAL REQUIREMENTS  
Frequency  
25  
25  
MHz  
ppm  
Frequency Tolerance and Stability Over temperature and aging  
Equivalent Series Resistance  
–100  
100  
50  
OUTPUT CLOCK TIMING (CLKOUT)  
Frequency  
MHz  
%
Duty Cycle  
45  
55  
1
Rise / Fall Time (20% - 80%)  
Jitter (Short-term, Cycle-to-Cycle)  
Jitter (Long-term, Accumulative over 10 ms)  
ns  
200  
125  
ps  
ps  
Copyright © 2017–2018, Texas Instruments Incorporated  
13  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
7.7 Timing Diagrams  
tT1.1t  
tT1.1t  
Clock  
tT1.2t  
tT1.3t  
Data and  
Control  
Valid Data  
1. MII Transmit Timing  
tT2.1t  
tT2.1t  
Clock  
tT2.2t  
Data and  
Control  
Valid Data  
2. MII Receive Timing  
tT3.1t  
Clock  
tT3.2t  
tT3.3t  
Transmit  
Data and  
Control  
Valid Data  
tT3.4t  
Receive  
Data and  
Control  
Valid Data  
3. RMII Transmit and Receive Timing  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Timing Diagrams (接下页)  
tTcyc  
t
TX_CLK  
TX_D[3:0]  
TX_CTRL  
Thold(shift)  
Valid Data  
Valid Data  
Valid Data  
Tsetup(shift)  
TX_ER  
TX_EN  
TX_ER  
TX_EN  
4. RGMII Transmit Timing (Internal Delay Enabled)  
tTcyc  
t
TX_CLK  
TX_D[3:0]  
TX_CTRL  
Thold(align)  
Valid Data  
Valid Data  
Valid Data  
Tsetup(align)  
TX_EN  
TX_ER  
TX_EN  
TX_ER  
5. RGMII Transmit Timing (Internal Delay Disabled)  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Timing Diagrams (接下页)  
tTcyc  
t
RX_CLK  
Tskew(shift)  
RX_D[3:0]  
Valid Data  
Valid Data  
Valid Data  
Tskew(shift)  
RX_CTRL  
RX_DV  
RX_ER  
RX_DV  
RX_ER  
RX_DV  
6. RGMII Receive Timing (Internal Delay Enabled)  
tTcyc  
t
RX_CLK  
RX_D[3:0]  
RX_CTRL  
Tskew(align)  
Valid Data  
Valid Data  
RX_DV  
RX_ER  
RX_DV  
7. RGMII Receive Timing (Internal Delay Disabled)  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Timing Diagrams (接下页)  
MDC  
MDIO  
MDIO  
tT4.2t  
tT4.3t  
Valid Data  
tT4.1t  
Valid Data  
8. Serial Management Timing  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Timing Diagrams (接下页)  
tT5.3t  
XI(crystal)  
tT5.4t  
XI(oscillator)  
T5.1  
VDDIO  
T5.2  
VDDA  
MDC  
tT5.5t  
tT5.6t  
Bootstrap  
Latch-in  
Active  
I/O Pins  
tT5.7t  
tT5.8t  
+1  
PAM3  
0
(Master)  
-1  
9. Power-Up Timing  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Timing Diagrams (接下页)  
VVDD  
XI  
tT6.1t  
Hardware  
RESET_N  
MDC  
tT6.2t  
tT6.3t  
Bootstrap  
Latch-in  
Active  
I/O Pins  
tT6.4t  
tT6.5t  
+1  
PAM3  
0
(Master)  
-1  
10. Reset Timing  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
7.8 Typical Characteristics  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.5  
2
1.5  
1
0.5  
TA = 25èC  
TA = -40èC  
TA = 125èC  
TA = 25èC  
TA = -40èC  
TA = 125èC  
0
0
0.002 0.004 0.006 0.008  
Load (A)  
0.01  
0.012 0.014  
-0.014  
-0.012  
-0.01  
-0.008  
Load (A)  
-0.006  
-0.004  
-0.002  
D001  
D003  
VDDIO = 2.5 V +10%  
VDDIO = 2.5 V –10%  
11. LED_0, LED_1, and CLKOUT VOL (2.5 V)  
12. LED_0, LED_1, and CLKOUT VOH (2.5 V)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.5  
2
1.5  
1
TA = 25èC  
TA = -40èC  
TA = 125èC  
TA = 25èC  
TA = -40èC  
TA = 125èC  
0.5  
0
0
0.002 0.004 0.006 0.008  
Load (A)  
0.01  
0.012 0.014  
-0.014  
-0.012  
-0.01  
-0.008  
Load (A)  
-0.006  
-0.004  
-0.002  
D002  
D004  
VDDIO = 3.3 V +10%  
VDDIO = 3.3 V –10%  
13. LED_0, LED_1, and CLKOUT VOL (3.3 V)  
14. LED_0, LED_1, and CLKOUT VOH (3.3 V)  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8 Detailed Description  
8.1 Overview  
The DP83TC811R-Q1 is a 100BASE-T1 automotive Ethernet Physical Layer transceiver. It is IEEE 802.3bw  
compliant and AEC-Q100 qualified for automotive applications. The DP83TC811R-Q1 is interoperable with both  
BroadR-Reach PHYs and 100BASE-T1 PHYs.  
This device is specifically designed to operate at 100-Mbps speed while meeting CISPR-25 Level 5 limits. The  
DP83TC811R-Q1 transmits PAM3 ternary symbols at 66.667 MHz over unshielded single twisted-pair cable. It is  
application flexible; supporting MII, RMII and RGMII in a single 36-pin VQFN wettable flank package.  
There is an extensive Diagnostic Tool Kit within the DP83TC811R-Q1 for both in-system use as well as debug,  
compliance and system prototyping for bring-up. Not only is the DP83TC811R-Q1 designed for IEC61000-4-2  
Level 4 electrostatic discharge limits, but also includes an on-chip ESD sensor for detecting ESD events in real-  
time.  
The DP83TC811R-Q1 is built for minimal thermal footprint with low active power as well multiple low-power  
modes. It supports Wake-on-LAN Magic Packets and Custom Pattern detection, allowing upstream devices an  
option for entering into their own low-power state. Additionally, the device can enter into Sleep state and remain  
until energy is detected on the MDI or locally woken through the WAKE pin.  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.2 Functional Block Diagram  
MII / RGMII Option  
SGMII Option  
RMII Option  
Serial  
Management  
MII / RMII / RGMII / SGMII Interface  
TX  
RX  
Data  
TX_CLK  
Data  
RX_CLK  
MII  
Registers  
100BASE-T1  
PCS - TX  
100BASE-T1  
PCS - RX  
PHY Control  
100BASE-T1  
PMA - TX  
100BASE-T1  
PMA - RX  
Transmit Block  
Receive Block  
BIST  
LED  
Driver  
Cable Diagnostics  
Hybrid  
TRD±  
LEDs  
15. DP83TC811R-Q1 Functional Block Diagram  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.3 Feature Description  
8.3.1 Wake-on-LAN (WoL) Packet Detection  
Wake-on-LAN provides a mechanism to detect specific frames and notify the connected controller through either  
register status change, GPIO indication or an interrupt flag. WoL within the DP83TC811R-Q1 allows for  
connected devices residing above the Physical Layer to remain in a low-power state until frames with the  
qualifying credentials are detected. Supported WoL frame types include: Magic Packet, Magic Packet with  
Secure-ON, and Custom Pattern Match. When a qualifying WoL frame is received, the DP83TC811R-Q1 WoL  
logic circuit is able to generate a user defined event (either pulses or level change) through any of the GPIO pins  
or a status interrupt flag to inform a connected controller that a wake event has occurred. Additionally, the  
DP83TC811R-Q1 includes a CRC Gate to prevent invalid packets from triggering a wake-up event.  
The WoL feature set includes:  
Wake-up interrupt generation upon receiving a valid Magic Packet or Pattern  
CRC checking of Magic Packets to prevent interrupt generation for invalid packets  
Magic Packets with Secure-ON password and 64-byte Custom Pattern Match  
8.3.1.1 Magic Packet Structure  
When configured for Magic Packet mode, the DP83TC811R-Q1 scans all incoming frames addressed to the  
node for a specific sequence. This sequence identifies the frame as a Magic Packet frame.  
A Magic Packet frame must also meet the basic requirements for the LAN technology chosen, such as SOURCE  
ADDRESS, DESTINATION ADDRESS (which may be the receiving station’s IEEE address or a BROADCAST  
ADDRESS), and CRC. The specific Magic Packet sequence consists of 16 duplications of the IEEE address of  
this node, with no breaks or interruptions, followed by Secure-ON password if security is enabled. This sequence  
can be located anywhere within the packet, but must be preceded by a synchronization stream. The  
synchronization stream is defined as 6-bytes of FFh.  
DEST (6 bytes)  
SRC (6 bytes)  
MISC (X bytes, X >= 0)  
FF … FF (6 bytes)  
MAGIC Pattern  
DEST * 16  
Secure-On Password (6 bytes)  
MISC (Y bytes, Y >= 0)  
CRC (4 bytes)  
Only if Secure-On is Enabled  
16. Magic Packet Structure  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Feature Description (接下页)  
8.3.1.2 Magic Packet Example  
The following is an example Magic Packet for a Destination Address of 11h 22h 33h 44h 55h 66h and a Secure-  
ON password 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh:  
DESTINATION SOURCE MISC FF FF FF FF FF FF  
11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66  
11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66  
11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66  
11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66  
11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66  
11 22 33 44 55 66 2A 2B 2C 2D 2E 2F MISC CRC  
8.3.1.3 Wake-on-LAN Configuration and Status  
Wake-on-LAN functionality is configured through the WOL_CFG Register 0x04A0 – WoL Configuration Register.  
Wake-on-LAN status is reported in the WOL_STAT Register 0x04A1 – WoL Status Register. Wake-on-LAN  
interrupt flag configuration and status is located in the INT_STAT1 Register 0x0012 – Interrupt Status Register  
#1.  
8.3.2 Start of Frame Detect for IEEE 1588 Time Stamp  
IEEE 802.3bw uses 4B3B encoding (3B4B decoding), reducing a 4-bit data path operating at 25 MHz down to a  
3-bit data path operating at 33.334 MHz. For frames and inter-packet gaps that are not divisible by three, one to  
two stuff bits are added at the end of a transmitted frame. These stuff bits are removed by the link partner before  
the data is routed to the MAC, making it completely transparent to layers above the Physical layer. These stuff  
bits cause frame jitter.  
The DP83TC811R-Q1 supports an IEEE 1588 indication pulse at the SFD (start of frame delimiter) for receive  
and transmit paths. The 1588 SFD pulse indicates the actual time the symbol is presented on the lines (for  
transmit), or the first symbol received (for receive), which provides a deterministic reference point. The pulse can  
be transmitted out of any of the following pins: LED_0 (GPIO_0), LED_1 (GPIO_1), or CLKOUT (GPIO_2).  
There are two registers that are able to control the routing of the IEEE 1588 transmit and receive indications. The  
IO_CTRL1 Register 0x0462 – GPIO Control Register #1 is able to route both transmit and receive indications to  
LED_0 (GPIO_0) and LED_1 (GPIO_1). CLKOUT transmit and receive 1588 SFD indication is found in the  
IO_CTRL2 Register 0x0463 – GPIO Control Register #2.  
TX_CLK  
XI  
Master CLK  
TX_EN  
TX_CTRL  
tT7.1t  
+1  
MDI  
0
-1  
17. Transmit Latency  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Feature Description (接下页)  
RX_CLK  
XI  
Master CLK  
RX_DV  
RX_CTRL  
tT8.1t  
+1  
MDI  
0
-1  
18. Receive Latency  
8.3.3 Diagnostic Tool Kit  
The DP83TC811R-Q1 diagnostic tool kit provides mechanisms for monitoring normal operation, device-level  
debugging, system-level debugging, fault detection, and compliance testing. This tool kit includes a built-in self-  
test with PRBS data, various loopback modes, Signal Quality Indicator (SQI), Time Domain Reflectometry (TDR),  
undervoltage monitor, overtemperature monitor, electrostatic discharge monitor, and IEEE 802.3bw test modes.  
8.3.3.1 Signal Quality Indicator  
When the DP83TC811R-Q1 is active, the Signal Quality Indicator may be used to determine the quality of link  
based on SNR readings made by the device. SQI is presented as both a four-level indication and a percentage  
based on the calculated SNR value. Signal quality indication is accessible through the SQI Register 0x0198 –  
Signal Quality Indication Register. SQI is continuously monitored by the DP83TC811R-Q1 to allow for real-time  
link signal quality status.  
Bits[9:8] in register 0x198 provide signal quality status. For SQI value, convert bits[7:0] to decimal form.  
3. Signal Quality Indicator  
BIT[9]  
BIT[8]  
SIGNAL QUALITY STATUS  
No Link  
SIGNAL QUALITY INDICATION  
0
0
1
1
0
1
0
1
SQI 40  
Intermittent/Poor Link  
Good Link  
40 < SQI 70  
Excellent Link  
SQI > 70  
Signal-to-noise ratio is accessible through the SNR Register 0x0197 – Signal-to-Noise Ratio Result Register. To  
convert this binary register field to dB, follow these steps:  
1. Convert bits[7:0] in register 0x197 to decimal form  
2. Divide decimal value by 10  
3. Result is SNR (dB) reading  
8.3.3.2 Electrostatic Discharge Sensing  
Electrostatic discharge is a serious issue for electronic circuits and if not properly mitigated can create short-term  
issues (signal integrity, link drops, packet loss) as well as long-term reliability faults. The DP83TC811R-Q1 has  
robust integrated ESD circuitry and offers an ESD sensing architecture. ESD events can be detected on both the  
xMII and MDI pins independently for further analysis and debug.  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Additionally, the DP83TC811R-Q1 provides an interrupt status flag; bit[11] in the INT_STAT1 Register 0x0012 –  
Interrupt Status Register #1 when an ESD event is logged in the ESDS Register 0x0448 – Electrostatic  
Discharge Status Register. Hardware and software resets are ignored by the ESDS register to prevent  
unwarranted clearing.  
8.3.3.3 Time Domain Reflectometry  
Time domain reflectometry helps determine the quality of the cable, connectors and terminations in addition to  
estimating OPEN and SHORT faults along a cable. The DP83TC811R-Q1 transmits a test pulse down the  
attached twisted-pair cable. Transmitted pulses continue down the cable and reflect from each imperfection and  
fault, allowing the device to measure the time to return and strength (amplitude) of all reflections. This technique  
enables the DP83TC811R-Q1 to identify cable OPENs and SHORTs.  
TDR is activated by setting bit[15] in the TDR Register 0x001E – Time Domain Reflectometry Register. Cable  
diagnostic status is obtained by reading bits[1:0] in the TDR register. TDR runs are stored in the TDRR Register  
0x016B – TDR Results Register. When more than one fault is present, additional locations are identified by the  
TDRLR1 Register 0x0180 – TDR Location Result Register #1 and the TDRPT Register 0x018A – TDR Peak  
Type Register.  
8.3.3.4 Temperature and Voltage Sensing  
Overtemperature and undervoltage monitoring are always active in the DP83TC811R-Q1 by default. If an  
overtemperature condition, an undervoltage condition, or both conditions are detected, interrupt status flags are  
set in the INT_STAT2 Register 0x0013 – Interrupt Status Register #2. Additionally, temperature and voltage  
monitoring cycle period can be adjusted using the MON_CFG1 Register 0x0480 – Monitor Configuration Register  
#1 bits[2:0]. By default, sample time is set to 31 ms, but also has a configurable range of 16 ms to 240 ms.  
Single-run temperature and voltage monitoring is also supported when bit[1] is set to 0b0 in the MON_CFG2  
Register 0x0481 – Monitor Configuration Register #2, disabling period monitoring. To activate a single run, bit[0]  
in MON_CFG2 register must be set after disabling period monitoring. Temperature monitor results are available  
in the MON_STAT1 Register 0x0483 – Monitor Status Register #1. VDDA and VDDIO supply monitor results are  
available in the MON_STAT2 Register 0x0484 – Monitor Status Register #2.  
8.3.3.5 Built-In Self-Test  
The DP83TC811R-Q1 incorporates an internal PRBS Built-in Self-Test (BIST) circuit to accommodate in-circuit  
testing and diagnostics. The BIST circuit can be used to test the integrity of transmit and receive data paths.  
BIST can be enabled while using internal loopbacks (MII, PCS or analog) or external loopback when using a Link  
Partner configured for Reverse Loopback. BIST simulates pseudo-random data transfer scenarios in format of  
real packets and Inter-Packet Gap (IPG) on the lines. It allows full control over packet lengths and IPG.  
BIST Packet Length is controlled using bits[10:0] in the BICTSR2 Register 0x001C – BIST Control and Status  
Register #2. BIST IPG Length is controlled using bits[7:0] in the BICTSR1 Register 0x001B – BIST Control and  
Status Register #1.  
BIST is implemented with independent transmit and receive paths, with the transmit clock generating a  
continuous stream of a pseudo-random sequence. The device generates a 15-bit pseudo-random sequence for  
BIST. Received data is compared to the generated pseudo-random data to determine pass or fail status. The  
number of error bytes that the PRBS checker received is stored in bits[15:8] of the BICSR1 register. PRBS lock  
status and sync can be read from the BISTCR Register 0x0016 – BIST Control Register.  
PRBS test can be put in continuous mode using bit[14] in the BISCR register. In continuous mode, when the  
BIST error counter reaches its maximum value, the counter starts counting from zero again. To read the BIST  
error count, bit[15] in the BICSR1 register must be set to 0b1. This will lock the current number of BIST errors for  
read-back. Note that setting bit[15] also clears the BIST error counter.  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.3.3.6 Loopback Modes  
There are several loopback options within the DP83TC811R-Q1 that test and verify various functional blocks  
within the PHY. Loopback modes also provide on-board and system level verification testing and debug.  
8.3.3.6.1 xMII Loopback  
xMII Loopback is the shallowest loop through the PHY. It is a useful test mode to validate communications  
between the MAC and the PHY. When in xMII Loopback, data transmitted from a connected MAC on the TX path  
is internally looped back in the DP83TC811R-Q1 to the RX pins where it can be checked by the MAC. There is  
no link indication when in xMII loopback.  
xMII Loopback is enabled by setting bit[14] in the BMCR Register 0x0000 – Basic Mode Control Register.  
xMII Loopback  
PMA Receive  
PCS Receive  
PMA Transmit  
PCS Transmit  
MDI  
MII  
19. xMII Loopback  
8.3.3.6.2 PCS Loopback  
PCS Loopback will loop back data prior to it exiting the PCS and entering the PMA. Data received from the MAC  
on the transmit path is brought through the digital block within the PHY where it is then routed back to the MAC  
through the receive path. The DP83TC811R-Q1 receive PMA circuitry is configured for isolation to prevent  
contention.  
PCS Loopback is enabled by setting bits[6:2] = 0b0001 in the BISTCR Register 0x0016 – BIST Control Register.  
PMA Receive  
PCS Receive  
PCS Loopback  
PMA Transmit  
PCS Transmit  
MDI  
MII  
20. PCS Loopback  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.3.3.6.3 Analog Loopback  
Analog Loopback uses the echoed signals from the unterminated MDI and decodes these signals in the Hybrid to  
return the data to the MAC.  
Analog Loopback is enabled by setting bits[6:2] = 0b0010 in the BISTCR register.  
PMA Receive  
PCS Receive  
Open  
PMA Transmit  
PCS Transmit  
MDI  
MII  
21. Analog Loopback  
8.3.3.6.4 Reverse Loopback  
Reverse Loopback receives data on the MDI and passes it through the entire receive block where it is then  
looped back within the PCS layer to the transmit block. The data is transmitted back out on the MDI to the  
attached Link Partner. To avoid contention, MAC transmit path is isolated.  
Reverse Loopback is enable by setting bits[6:2] = 0b0100 in the BISTCR register.  
PMA Receive  
PCS Receive  
PMA Transmit  
PCS Transmit  
Reverse  
Loopback  
MDI  
MII  
22. Reverse Loopback  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.3.4 Compliance Test Modes  
There are four PMA compliance test modes required in IEEE 802.3bw, sub-clause 96.5.2, which are all  
supported by the DP83TC811R-Q1. These compliance test modes include: transmitter waveform Power Spectral  
Density (PSD) mask, amplitude, distortion, 100BASE-T1 Master jitter, 100BASE-T1 Slave jitter, droop, transmitter  
frequency, frequency tolerance, return loss, and mode conversion. Any of the three GPIOs can be used to output  
TX_TCLK for the 100BASE-T1 Slave jitter measurement.  
8.3.4.1 Test Mode 1  
Test mode 1 evaluates transmitter droop. In test mode 1, the DP83TC811R-Q1 transmits ‘+1’ symbols for a  
minimum of 600 ns followed by ‘–1’ symbols for a minimum of 600 ns. This pattern is repeated continuously until  
the test mode is disabled.  
Test mode 1 is enabled by setting bits[15:13] = 0b001 in the TEST_CTRL Register 0x0836 – MMD1 100BASE-  
T1 PMA Test Control Register.  
Additionally, transmit symbol width can be controlled using bits[9:4] in the TEST_MODE_CTRL Register  
0x0497 – Test Mode Control Register.  
8.3.4.2 Test Mode 2  
Test mode 2 evaluates the transmitter 100BASE-T1 Master mode jitter. In test mode 2, the DP83TC811R-Q1  
transmits a {+1,-1} data symbol sequence. The transmitter synchronizes the transmitted symbols from the local  
reference clock.  
Test mode 2 is enabled by setting bits[15:13] = 0b010 in TEST_CTRL register.  
8.3.4.3 Test Mode 4  
Test mode 4 evaluates the transmitter distortion. In test mode 4, the DP83TC811R-Q1 transmits the sequence of  
symbols generated by 公式 1:  
g(x) = 1 + x9 + x11  
(1)  
The bit sequences, x0n and x1n, are generated from combinations of the scrambler in accordance to and :  
'x0n = Scrn[0]  
(2)  
(3)  
x1n = Scrn[1] ^ Scrn[4]  
Example streams of the 3-bit nibbles are shown in 4.  
4. Transmitter Test Mode 4 Symbol Mapping  
x1n  
0
x0n  
0
PAM3 SYMBOL  
0
+1  
0
0
1
1
0
1
1
–1  
Test mode 4 is enabled by setting bits[15:13] = 0b100 in TEST_CTRL register.  
8.3.4.4 Test Mode 5  
Test mode 5 evaluates the transmitter PSD mask. In test mode 5, the DP83TC811R-Q1 transmits a pseudo-  
random sequence of PAM3 symbols.  
Test mode 5 is enabled by setting bits[15:13] = 0b101 in TEST_CTRL register.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
 
 
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.4 Device Functional Modes  
State Change #3  
State Change #4  
Normal  
PHY Enabled  
Sleep Request  
PHY Enabled  
From any state  
State  
Change #6  
EN = LOW  
and RESET_N = HIGH  
and Power-on  
State  
Change #5  
State  
Change #1  
State  
Change #2  
Silent  
PHY Disabled  
State  
Change #7  
Disable  
PHY Disabled  
State  
Change #8  
WAKE = HIGH  
or  
Energy detected on MDI  
Standby  
PHY Disabled  
Sleep  
PHY Disabled  
Reset  
EN = HIGH  
and RESET_N = HIGH  
and Power-on  
RESET_N = HIGH  
and  
POR = complete  
RESET_N = LOW  
and EN = HIGH  
and Power-on  
Power-on  
Power-off  
Reset  
PHY Disabled  
Power-off  
PHY Disabled  
From any state  
From any state  
23. PHY Operation State Diagram  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Device Functional Modes (接下页)  
8.4.1 Power Down  
When VDDA is below the POR threshold (1V), the DP83TC811R-Q1 is in a power-down state. All digital IOs will  
remain in high impedance states and analog blocks are disabled. PMA termination is not present when powered  
down.  
8.4.2 Reset  
Reset is activated upon power-up, when RESET is pulled LOW (for the minimum reset pulse time) or if hardware  
reset is initiated by setting bit[15] in the PHYRCR Register 0x001F – PHY Reset Control Register. All digital  
circuitry is cleared along with register settings during reset. Once reset completes, device bootstraps are re-  
sampled and associated bootstrap registers are set accordingly. PMA termination is not present in reset.  
8.4.3 Disable  
To disable the PHY, EN pin must be held LOW. When disabled, the PHY behaves the same as it does in power-  
down. PMA termination is not present when the PHY is disabled.  
8.4.4 Standby  
The device (100BASE-T1 Master mode only) automatically enters into standby post power-up and reset so long  
that EN is held HIGH and the device is bootstrapped for managed operation.  
In standby, all PHY functions are operational except for PCS and PMA blocks. Link establishment is not possible  
in standby and data cannot be transmitted or received. SMI functions are operational and register configurations  
are maintained.  
If the device is configured for autonomous operation through bootstrap setting, the PHY automatically switches to  
normal operation once POR is complete.  
8.4.5 Normal  
Normal mode can be entered from either autonomous or managed operation. When in autonomous operation,  
the PHY will automatically try to establish a link with a valid Link Partner once POR is complete.  
In managed operation, SMI access is required to allow the device to exit standby (100BASE-T1 Master mode  
only); commands issued through the SMI allow the device to exit standby and enables both the PCS and PMA  
blocks. All device features are operational in normal mode.  
Autonomous operation can be enabled through SMI access by setting bit[6] in the AUTO_PHY Register  
0x018B – Autonomous PHY Control Register.  
8.4.6 Sleep Request  
Sleep request is entered when switching from normal mode to sleep mode. This is an intermediate state and is  
used to for a smooth transition into sleep mode. In sleep request mode, the PHY transmits LPS code-groups,  
informing the Link Partner that sleep is requested.  
PHY sleep_rqst_timer (default = 1ms) begins once the PHY enters into sleep request mode. LPS decoding at the  
Link Partner will trigger the LPS RECEIVED interrupt. Once sleep_rqst_timer expires, the device transitions to  
silent mode prior to entering sleep mode. During sleep request, any frame received on the MDI or xMII enables  
the DP83TC811R-Q1; the PHY exits sleep request and enters normal mode.  
8.4.7 Silent  
The DP83TC811R-Q1 enters silent mode once the sleep_rqst_timer expires or the PHY no longer detects  
activity on the MDI, indicating that the Link Partner has already moved to silent mode.  
Silent mode is only an intermediate state prior to sleep. The PHY sets tx_mode = SEND_Z and (0,0) are  
transmitted on the MDI. If sleep enable, bit[1] in the AUTO_PHY Register 0x018B – Autonomous PHY Control  
Register, is set and no energy is detected on the MDI for the duration of silent_timer (default = 8 ms), the  
DP83TC811R-Q1 will enter sleep mode. However, if energy is detected on the MDI prior to silent_timer  
expiration, the PHY enters standby mode.  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
8.4.8 Sleep  
If sleep enable is set, the PHY transitions to sleep mode after silent_timer expires; however, if sleep enable is not  
set, the device transitions to standby once silent_timer expires. By default, sleep enable is set. Once in sleep  
mode, all PHY blocks are disabled except for energy detection on the MDI. All register configurations are lost in  
sleep mode. No link can be established, data cannot be transmitted or received and SMI access is not available  
when in sleep mode.  
8.4.9 Low-Power Sleep  
Low-Power Sleep code-groups are used to inform the Link Partner that sleep mode is requested. The  
DP83TC811R-Q1 uses the Sdn[1] scrambler stream for LPS.  
Sdn[1] scrambler stream must be set prior to LPS use, found in LPS_CFG Register 0x04E5 – LPS Configuration  
Register.  
8.4.10 Wake-Up  
The user can wake up the DP83TC811R-Q1 remotely through energy detection on the MDI or locally using the  
WAKE pin. For local wake, the WAKE pin must be pulled HIGH. If the WAKE pin is tied LOW, the PHY will only  
exit sleep if energy is detected on the MDI.  
8.4.11 State Transitions  
8.4.11.1 State Transition #1 - Standby to Normal  
Autonomous Operation: The PHY will automatically transition to Normal state upon POR completion.  
Managed Operation: The PHY will transition to Normal state out of Standby if any of the following occurs:  
1. Energy detection, when energy is detected on the MDI  
2. Register access, enabling Autonomous operation by setting bit[6] in the AUTO_PHY Register 0x018B –  
Autonomous PHY Control Register  
3. Register access, forcing Normal state by setting bit[0] in the PWRM Register 0x018C – Power Mode Register  
8.4.11.2 State Transition #2 - Normal to Standby  
This state transition is not supported.  
8.4.11.3 State Transition #3 - Normal to Sleep Request  
Sleep Request state can be entered when valid LPS code-groups are received on the MDI from a Link Partner.  
The PHY will not be permitted to transmit LPS code-groups unless the registers below are  
set.  
To enable LPS code-group transmission, the LPS transmission enable bit[0] must be set in AUTO_PHY Register  
0x018B – Autonomous PHY Control Register.  
The Sdn[1] scrambler stream must be enabled by setting bits[9:8] = 0b11 in LPS_CFG Register 0x04E5 – LPS  
Configuration Register.  
LPS code-group identification within the PCS layer must be enabled by setting bit[0] in LPS_CTRL2 Register  
0x0487 – LPS Control Register #2.  
LPS code-groups are sent once Sleep Request is enabled by setting bit[1] in PWRM Register 0x018C – Power  
Mode Register.  
8.4.11.4 State Transition #4 - Sleep Request to Normal  
Sleep Request can be terminated and the device re-enter Normal state by any of the following methods:  
1. Register access, forcing Normal state by setting bit[0] in the PWRM Register 0x018C – Power Mode Register  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Device Functional Modes (接下页)  
2. Frame detection, when a valid frame is transmitted or received before sleep_rqst_timer expires  
8.4.11.5 State Transition #5 - Sleep Request to Standby  
This state transition is not supported.  
8.4.11.6 State Transition #6 - Sleep Request to Silent  
Silent state can be entered by any of the following methods:  
1. Valid LPS code-groups are received on the MDI and sleep_rqst_timer expired  
2. Quiet MDI, SEND_Z [ternary symbol vectors of (0,0)] detected on the MDI  
8.4.11.7 State Transition #7 - Silent to Standby  
Standby state can be entered by any of the following methods:  
1. Standby enable, sleep is disabled by setting bit[1] = 0b0 in the AUTO_PHY Register 0x018B – Autonomous  
PHY Control Register and silent_timer expired  
2. MDI Detection, Non-SEND_Z code-groups detected on the MDI prior to silent_timer expiration  
8.4.11.8 State Transition #8 - Silent to Sleep  
The PHY will exit Silent state and enter into Sleep state once the silent_timer expires or no activity is detected on  
the transmitter or receiver.  
8.4.12 Media Dependent Interface  
8.4.12.1 100BASE-T1 Master and 100BASE-T1 Slave Configuration  
100BASE-T1 Master and 100BASE-T1 Slave are configured using either hardware bootstraps or through register  
access.  
LED_0 controls the 100BASE-T1 Master and 100BASE-T1 Slave bootstrap configuration. By default, 100BASE-  
T1 Slave mode is configured because there is an internal pulldown resistor on LED_0 pin. If 100BASE-T1 Master  
mode configuration through hardware bootstrap is preferred, an external pullup resistor is required.  
Additionally, bit[14] in the PMA_CTRL2 Register 0x0834 – MMD1 PMA Control Register #2 controls the  
100BASE-T1 Master and 100BASE-T1 Slave configuration. When this bit is set, 100BASE-T1 Master mode is  
enabled.  
8.4.12.2 Auto-Polarity Detection and Correction  
During the link training process, the DP83TC811R-Q1 100BASE-T1 Slave device is able to detect polarity  
reversal and automatically corrects the error. If polarity reversal is detected, the 100BASE-T1 Slave will invert its  
own transmitted signals to account for the error and ensure compatibility with the 100BASE-T1 Master. Polarity  
at the 100BASE-T1 Master is always observed as correct because polarity detection and correction is handled  
entirely by the 100BASE-T1 Slave.  
8.4.12.3 Jabber Detection  
The jabber function prevents the PCS Receive state machine from locking up into a DATA state if the End-of-  
Stream Delimiters, ESD1 and ESD2, are never detected or received within the rcv_max_timer. When the  
maximum receive DATA state timer expires, the PCS Receive state machine is reset and transitions into IDLE  
state. IEEE 802.3bw specifies that jabber timeout be set to 1.08 ms ± 54 μs. By default, jabber timeout in the  
DP83TC811R-Q1 is set to 1.1 ms. This timer is configurable in JAB_CFG Register 0x0496 – Jabber  
Configuration Register.  
8.4.12.4 Interleave Detection  
The interleave function allows for the DP83TC811R-Q1 to detect and de-interleave the serial stream from a  
connected link partner. The two possible interleave sequences of ternary symbols include: (TAn, TBn) or (TBn,  
TAn).  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
8.4.13 MAC Interfaces  
8.4.13.1 Media Independent Interface  
The Media Independent Interface (MII) is a synchronous 4-bit wide nibble data interface that connects the PHY to  
the MAC. The MII is fully compliant with IEEE 802.3-2015 clause 22.  
The MII signals are summarized in 5:  
5. MII Signals  
FUNCTION  
PINS  
TX_D[3:0]  
Data Signals  
RX_D[3:0]  
TX_EN, TX_ER  
RX_DV, RX_ER  
TX_CLK  
Control Signals  
Clock Signals  
RX_CLK  
TX_CLK  
TX_ER  
TX_EN  
TX_D[3:0]  
RX_CLK  
RX_DV  
PHY  
MAC  
RX_ER  
RX_D[3:0]  
24. MII Signaling  
6. MII Transmit Encoding  
TX_EN  
TX_ER  
TX_D[3:0]  
DESCRIPTION  
0
0
1
1
0
1
0
1
0000 through 1111  
0000 through 1111  
0000 through 1111  
0000 through 1111  
Normal Inter-Frame  
Reserved  
Normal Data Transmission  
Transmit Error Propagation  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
7. MII Receive Encoding  
RX_DV  
RX_ER  
RX_D[3:0]  
0000 through 1111  
0000  
DESCRIPTION  
Normal Inter-Frame  
Normal Inter-Frame  
Reserved  
0
0
0
0
0
1
1
0
1
1
1
1
0
1
0001 through 1101  
1110  
False Carrier Indication  
Reserved  
1111  
0000 through 1111  
0000 through 1111  
Normal Data Reception  
Data Reception with Errors  
8.4.13.2 Reduced Media Independent Interface  
The DP83TC811R-Q1 incorporates the Reduced Media Independent Interface (RMII) as defined in the RMII  
Revision 1.2 and 1.0 from the RMII consortium. The purpose of this interface is to provide a reduced pin count  
alternative to the IEEE 802.3u MII as specified in Clause 22. Architecturally, the RMII specification provides an  
additional reconciliation layer on either side of the MII, but can be implemented in the absence of an MII.  
The DP83TC811R-Q1 offers two types of RMII operations: RMII Slave and RMII Master. In RMII Slave Mode, the  
DP83TC811R-Q1 operates off a 50-MHz CMOS-level oscillator, which is either provided by the MAC or  
synchronous to the MAC's reference clock. In RMII Master operation, the DP83TC811R-Q1 operates off of either  
a 25-MHz CMOS-level oscillator connected to XI pin or a 25-MHz crystal connected across XI and XO pins.  
When bootstrapping to RMII Master Mode, a 50-MHz output clock will automatically be enabled on RX_D3. This  
50-MHz output clock should be routed to the MAC.  
The RMII specification has the following characteristics:  
Single clock reference shared between MAC and PHY  
Provides independent 2-bit wide transmit and receive data paths  
In this mode, data transfers are two bits for every clock cycle using the 50-MHz reference clock for both transmit  
and receive paths.  
The RMII signals are summarized in 8:  
8. RMII Signals  
FUNCTION  
PINS  
TX_D[1:0]  
RX_D[1:0]  
TX_EN  
Data Signals  
Control Signals  
CRS_DV  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
 
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
TX_EN  
TX_D[1:0]  
RX_CLK (optional)  
RX_DV (optional)  
RX_ER (optional)  
RX_D[1:0]  
PHY  
MAC  
CRS_DV  
25. RMII Signaling  
9. RMII Transmit Encoding  
TX_EN  
TX_D[1:0]  
00 through 11  
00 through 11  
DESCRIPTION  
Normal Inter-Frame  
0
1
Normal Data Transmission  
10. RMII Receive Encoding  
CRS_DV  
RX_ER  
RX_D[1:0]  
00 through 11  
00  
DESCRIPTION  
0
0
0
1
1
0
1
1
0
1
Normal Inter-Frame  
Normal Inter-Frame  
Reserved  
01 through 11  
00 through 11  
00 through 11  
Normal Data Reception  
Data Reception with Errors  
RMII Slave: Data on TX_D[1:0] are latched at the PHY with reference to the rising edge of the reference clock at  
the XI pin. Data is presented on RX_D[1:0] with reference to the same rising clock edges at the XI pin.  
RMII Master: Data on TX_D[1:0] are latched at the PHY with reference to the rising edge of the reference clock  
at the RX_D3 pin. Data is presented on RX_D[1:0] with reference to the same rising clock edges at the RX_D3  
pin.  
The DP83TC811R-Q1 RMII supplies an RX_DV signal, which provides a simpler method to recover receive data  
without the need to separate RX_DV from the CRS_DV indication. RX_ER is also supported even though it is not  
required by the RMII specification.  
RMII includes a programmable FIFO to adjust for the frequency differences between the reference clock and the  
recovered clock. The programmable FIFO, located in the , minimizes internal propagation delay based on  
expected maximum packet size and clock accuracy.  
11 indicates how to program the FIFO based on the expected maximum packet size and clock accuracy. This  
table is based on the assumption that the local reference clock and link partner reference clock have the same  
accuracy.  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
11. Recommended RMII Packet Sizes  
START THRESHOLD  
RECOMMENDED PACKET SIZE AT ±100ppm  
2-bits  
3-bits  
4-bits  
5-bits  
1250 bytes  
3750 bytes  
6250 bytes  
8750 bytes  
8.4.13.3 Reduced Gigabit Media Independent Interface  
The DP83TC811R-Q1 also supports Reduced Gigabit Media Independent Interface (RGMII) as specified by  
RGMII version 2.0 with LVCMOS. RGMII is designed to reduce the number of pins required to connect MAC and  
PHY. To accomplish this goal, the control signals are multiplexed. Both rising and falling edges of the clock are  
used to sample the control signal pin on transmit and receive paths. Data is samples on just the rising edge of  
the clock. For 100-Mbps operation, RX_CLK and TX_CLK operate at 25 MHz.  
The RGMII signals are summarized in 12:  
12. RGMII Signals  
FUNCTION  
PINS  
TX_D[3:0]  
RX_D[3:0]  
TX_CTRL  
RX_CTRL  
TX_CLK  
Data Signals  
Control Signals  
Clock Signals  
RX_CLK  
TX_CLK  
TX_CTRL  
TX_D[3:0]  
RX_CLK  
PHY  
MAC  
RX_CTRL  
RX_D[3:0]  
25-MHz Crystal or  
CMOS-level  
Oscillator  
26. RGMII Connections  
13. RGMII Transmit Encoding  
TX_CTRL  
(POSITIVE EDGE)  
TX_CTRL  
(NEGATIVE EDGE)  
TX_D[3:0]  
DESCRIPTION  
0
0
1
1
0
1
0
1
0000 through 1111  
0000 through 1111  
0000 through 1111  
0000 through 1111  
Normal Inter-Frame  
Reserved  
Normal Data Transmission  
Transmit Error Propagation  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
 
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
14. RGMII Receive Encoding  
RX_CTRL  
(POSITIVE EDGE)  
RX_CTRL  
(NEGATIVE EDGE)  
RX_D[3:0]  
DESCRIPTION  
0
0
0
0
1
1
0
1
1
1
0
1
0000 through 1111  
0000 through 1101  
1110  
Normal Inter-Frame  
Reserved  
False Carrier Indication  
Reserved  
1111  
0000 through 1111  
0000 through 1111  
Normal Data Reception  
Data Reception with Errors  
During packet reception, RX_CLK may be stretched on either the positive or negative pulse to accommodate the  
transition from the internal free running clock to a recovered clock (data synchronous). Data may be duplicated  
on the falling edge of the clock because double data rate (DDR) is only required for 1-Gbps operation, which is  
not supported by the DP83TC811R-Q1.  
The DP83TC811R-Q1 supports in-band status indication to help simplify link status detection. Inter-frame signals  
on RX_D[3:0] pins as specified in 15.  
15. RGMII In-Band Status  
RX_CTRL  
RX_D3  
RX_D[2:1]  
RX_CLK Clock Speed:  
00 = 2.5 MHz  
RX_D0  
00  
Duplex Status:  
Link Status:  
Note:  
0 = Half-Duplex  
1 = Full-Duplex  
01 = 25 MHz  
0 = Link not established  
1 = Valid link established  
In-band status is only valid when  
RX_CTRL is low  
10 = 125 MHz  
11 = Reserved  
8.4.14 Serial Management Interface  
The Serial Management Interface (SMI) provides access to the DP83TC811R-Q1 internal register space for  
status information and configuration. The SMI frames and base registers are compatible with IEEE 802.3 clause  
22. The implemented register set consists of the registers required by the IEEE 802.3 plus several others to  
provide additional visibility and controllability of the DP83TC811R-Q1. Additionally, the DP83TC811R-Q1  
includes control and status registers added to clause 45 as defined by IEEE 802.3bw. Access to clause 45  
register field is achieved using clause 22 access.  
The SMI includes the management clock (MDC) and the management input and output data pin (MDIO). MDC is  
sourced by the external management entity, also called Station (STA), and can run at a maximum clock rate of  
25 MHz. MDC is not expected to be continuous, and can be turned off by the external management entity when  
the bus is idle.  
MDIO is sourced by the external management entity and by the PHY. The data on the MDIO pin is latched on  
the rising edge of the MDC. MDIO pin requires a pullup resistor (2.2 K), which pulls MDIO high during IDLE and  
turnaround.  
Up to 16 DP83TC811R-Q1 PHYs can share a common SMI bus. To distinguish between the PHYs, a 4-bit  
address is used. During power-up-reset, the DP83TC811R-Q1 latches the PHYAD[3:0] configuration pins to  
determine its address.  
The management entity must not start an SMI transaction in the first cycle after power-up-reset. To maintain valid  
operation, the SMI bus must remain inactive at least one MDC cycle after hard reset is deasserted. In normal  
MDIO transactions, the register address is taken directly from the management-frame reg_addr field, thus  
allowing direct access to 32 16-bit registers (including those defined in IEEE 802.3 and vendor specific). The  
data field is used for both reading and writing. The Start code is indicated by a <01> pattern. This pattern makes  
sure that the MDIO line transitions from the default idle line state. Turnaround is defined as an idle bit time  
inserted between the Register Address field and the Data field. To avoid contention during a read transaction, no  
device may actively drive the MDIO signal during the first bit of turnaround. The addressed DP83TC811R-Q1  
drives the MDIO with a zero for the second bit of turnaround and follows this with the required data.  
For write transactions, the station-management entity writes data to the addressed DP83TC811R-Q1, thus  
eliminating the requirement for MDIO Turnaround. The turnaround time is filled by the management entity by  
inserting <10>.  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
16. SMI Protocol Structure  
SMI PROTOCOL  
<idle> <start> <op code> <device address> <reg address> <turnaround> <data> <idle>  
<idle><01><10><AAAAA><RRRRR><Z0><XXXX XXXX XXXX XXXX><idle>  
<idle><01><01><AAAAA><RRRRR><10><XXXX XXXX XXXX XXXX><idle>  
Read Operation  
Write Operation  
8.4.15 Direct Register Access  
Direct register access can be used for the first 31 registers (0x0 through 0x1F).  
8.4.16 Extended Register Space Access  
The DP83TC811R-Q1 SMI function supports read and write access to the extended register set using registers  
REGCR (0xD) and ADDAR (0xE) and the MDIO Manageable Device (MMD) indirect method defined in IEEE  
802.3ah Draft for Clause 22 for accessing the Clause 45 extended register set.  
REGCR (0xD) is the MDIO Manageable MMD access control. In general, register REGCR[4:0] is the device  
address DEVAD that directs any accesses of ADDAR (0xE) register to the appropriate MMD.  
The DP83TC811R-Q1 supports two MMD device addresses:  
1. The vendor-specific device address DEVAD[4:0] = 11111 is used for general MMD register accesses.  
2. DEVAD[4:0] = 00001 is used for 100BASE-T1 PMA MMD register accesses. Register names for registers  
accessible at this device address are preceded by MMD1.  
All accesses through register REGCR and ADDAR must use the correct DEVAD. Transactions with other  
DEVADs are ignored. REGCR[15:14] holds the access function: address (00), data with no post increment (01),  
data with post increment on read and writes (10) and data with post increment on writes only (11).  
ADDAR is the address and data MMD register. ADDAR is used in conjunction with REGCR to provide the  
access to the extended register set. If register REGCR[15:14] is (00), then ADDAR holds the address of the  
extended address space register. Otherwise, ADDAR holds the data as indicated by the contents of its  
address register. When REGCR[15:14] is set to (00), accesses to register ADDAR modify the extended  
register set address register. This address register must always be initialized in order to access any of the  
registers within the extended register set.  
When REGCR[15:14] is set to (01), accesses to register ADDAR access the register within the extended  
register set selected by the value in the address register.  
When REGCR[15:14] is set to (10), access to register ADDAR access the register within the extended  
register set selected by the value in the address register. After that access is complete, for both reads and  
writes, the value in the address register is incremented.  
When REGCR[15:14] is set to (11), access to register ADDAR access the register within the extended  
register set selected by the value in the address register. After that access is complete, for write access only,  
the value in the address register is incremented. For read accesses, the value of the address register remains  
unchanged.  
The following sections describe how to perform operations on the extended register set using register REGCR  
and ADDAR.  
8.4.17 Write Address Operation  
To set the address register:  
1. Write the value 0x1F (address function field = 00, DEVAD = '11111') to register REGCR.  
2. Write the register address to register ADDAR.  
Subsequent writes to register ADDAR (step 2) continue to write the address register.  
8.4.17.1 MMD1 - Write Address Operation  
For writing register addresses within MMD1 field:  
1. Write the value 0x1 (address function field = 00, DEVAD = '00001') to register REGCR.  
2. Write the register address to register ADDAR.  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
 
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.4.18 Read Address Operation  
To read the address register:  
1. Write the value 0x1F (address function field = 00, DEVAD = '11111') to register REGCR.  
2. Read the register address from register ADDAR.  
Subsequent reads to register ADDAR (step 2) continue to read the address register.  
8.4.18.1 MMD1 - Read Address Operation  
For reading register addresses within MMD1 field:  
1. Write the value 0x1 (address function field = 00, DEVAD = '00001') to register REGCR.  
2. Read the register address from register ADDAR.  
8.4.19 Write Operation (No Post Increment)  
To write a register in the extended register set:  
1. Write the value 0x1F (address function field = 00, DEVAD = '11111') to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x401F (data, no post increment function field = 01, DEVAD = '11111') to register REGCR.  
4. Write the content of the desired extended register set to register ADDAR.  
Subsequent writes to register ADDAR (step 4) continue to rewrite the register selected by the value in the  
address register.  
Steps (1) and (2) can be skipped if the address register was previously configured.  
8.4.19.1 MMD1 - Write Operation (No Post Increment)  
To write a register in the MMD1 extended register set:  
1. Write the value 0x1 (address function field = 00, DEVAD = '00001') to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x4001 (data, no post increment function field = 01, DEVAD = '00001') to register REGCR.  
4. Write the content of the desired extended register set to register ADDAR.  
8.4.20 Read Operation (No Post Increment)  
To read a register in the extended register set:  
1. Write the value 0x1F (address function field = 00, DEVAD = '11111') to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x401F (data, no post increment function field = 01, DEVAD = '11111') to register REGCR.  
4. Read the content of the desired extended register set in register ADDAR.  
Subsequent reads to register ADDAR (step 4) continue to reading the register selected by the value in the  
address register.  
Steps (1) and (2) can be skipped if the address register was previously configured.  
8.4.20.1 MMD1 - Read Operation (No Post Increment)  
To read a register in the MMD1 extended register set:  
1. Write the value 0x1 (address function field = 00, DEVAD = '00001') to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x4001 (data, no post increment function field = 01, DEVAD = '00001') to register REGCR.  
40  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
4. Read the content of the desired extended register set in register ADDAR.  
8.4.21 Write Operation (Post Increment)  
To write a register in the extended register set with post increment:  
1. Write the value 0x1F (address function field = 00, DEVAD = '11111') to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x801F (data, post increment function field = 10, DEVAD = '11111') or the value 0xC01F  
(data, post increment on writes function field = 11, DEVAD = '11111') to register REGCR.  
4. Write the content of the desired extended register set to register ADDAR.  
Subsequent writes to register ADDAR (step 4) write the next higher addressed data register selected by the  
value of the address register; the address register is incremented after each access.  
8.4.21.1 MMD1 - Write Operation (Post Increment)  
To write a register in the MMD1 extended register set with post increment:  
1. Write the value 0x1 (address function field = 00, DEVAD = '00001') to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x8001 (data, post increment function field = 10, DEVAD = '00001') or the value 0xC001  
(data, post increment on writes function field = 11, DEVAD = '00001') to register REGCR.  
4. Write the content of the desired extended register set to register ADDAR.  
8.4.22 Read Operation (Post Increment)  
To read a register in the extended register set and automatically increment the address register to the next  
higher value following the write operation:  
1. Write the value 0x1F (address function field = 00, DEVAD = '11111') to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x801F (data, post increment function field = 10, DEVAD = '11111') to register REGCR.  
4. Read the content of the desired extended register set in register ADDAR.  
Subsequent reads to register ADDAR (step 4) read the next higher addressed data register selected by the value  
of the address register; the address register is incremented after each access.  
8.4.22.1 MMD1 - Read Operation (Post Increment)  
To read a register in the MMD1 extended register set and automatically increment the address register to the  
next higher value following the write operation:  
1. Write the value 0x1 (address function field = 00, DEVAD = '00001') to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x8001 (data, post increment function field = 10, DEVAD = '00001') to register REGCR.  
4. Read the content of the desired extended register set in register ADDAR.  
版权 © 2017–2018, Texas Instruments Incorporated  
41  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.5 Programming  
8.5.1 Strap Configuration  
The DP83TC811R-Q1 uses functional pins as strap options to place the device into specific modes of operation.  
The values of these pins are sampled at power up and hardware reset (through either the RESET pin or register  
access). The strap pins support 4 levels, which are described in greater detail below. Configuration of the device  
may be done through 4-level strapping or through serial management interface.  
Because strap pins are functional pins after reset is deasserted, they should not be  
connected directly to VDDIO or GND. Either pullup resistors, pulldown resistors, or both  
are required for proper operation.  
VDDIO  
RH  
9 kΩ  
±25%  
RL  
27. Strap Circuit  
17. Recommended 4-Level Strap Resistor Ratios(1)(2)  
MODE  
IDEAL RH (k)  
IDEAL RL (k)  
OPEN  
1
2
3
4
OPEN  
10  
2.49  
5.76  
2.49  
2.49  
OPEN  
(1) Strap resistors with 1% tolerance are recommended.  
(2) Resistor ratios are only a recommendation. Use the bootstrap threshold values contained within the Electrical Characteristics table for  
more precise mode selections.  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
The following table describes the DP83TC811R-Q1 configuration bootstraps:  
18. 4-Level Bootstraps  
PIN  
NAME  
DEFAULT  
MODE  
PIN NO.  
STRAP FUNCTION  
DESCRIPTION  
MODE  
PHY_AD[0]  
PHY_AD[2]  
1
0
0
RX_DV  
RX_ER  
RX_D0  
RX_D1  
RX_D2  
RX_D3  
LED_0  
15  
1
1
1
1
1
1
1
2
0
1
PHY_AD: PHY Address ID  
3
1
1
4
1
0
MODE  
PHY_AD[1]  
PHY_AD[3]  
1
0
0
14  
26  
25  
24  
23  
35  
2
0
1
PHY_AD: PHY Address ID  
3
1
1
4
1
0
MODE  
MAC[0]  
TEST[0]  
1
0
0
MAC: MAC Interface Selection  
TEST: Test Mode Selection  
2
0
1
3
1
1
4
1
0
MODE  
MAC[1]  
TEST[1]  
1
0
0
MAC: MAC Interface Selection  
TEST: Test Mode Selection  
2
0
1
3
1
1
4
1
0
MODE  
MAC[2]  
TEST[2]  
1
0
0
MAC: MAC Interface Selection  
TEST: Test Mode Selection  
2
3
0
1
1
1
4
1
0
MODE  
1
RESERVED  
RESERVED  
0
0
Reserved  
Reserved  
Reserved  
MODE  
1
RX_D3 must be strapped to MODE 1  
MS  
RESERVED  
RESERVED  
MS: 100BASE-T1 Master & 100BASE-T1  
Slave Selection  
Note: LED_0 must only be set for bootstrap  
MODE 1 or MODE 4.  
0
Reserved  
Reserved  
4
1
AUTO  
0
MODE  
1
AUTO: Autonomous Disable  
Note 1: LED_1 must only be set for  
bootstrap MODE 1 or MODE 4.  
Note 2: Autonomous bootstrap is only active  
for 100BASE-T1 Master mode PHYs. This  
bootstrap is ignored when the PHY is  
bootstrapped for 100BASE-T1 Slave mode  
operation.  
Reserved  
Reserved  
LED_1  
6
1
4
1
版权 © 2017–2018, Texas Instruments Incorporated  
43  
 
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
19. 100BASE-T1 Master and 100BASE-T1 Slave Selection Bootstrap  
MS  
0
DESCRIPTION  
100BASE-T1 Slave Configuration  
100BASE-T1 Master Configuration  
1
20. MAC Interface Selection Bootstraps  
MAC[2]  
MAC[1]  
MAC[0]  
DESCRIPTION  
0
0
0
RESERVED  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
MII  
RMII Slave  
RMII Master  
RGMII (Align Mode)  
RGMII (TX Internal Delay Mode)  
RGMII (TX and RX Internal Delay Mode)  
RGMII (RX Internal Delay Mode)  
21. Test Mode Bootstraps  
TEST[2]  
TEST[1]  
TEST[0]  
Description  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Normal Operation  
Test Mode 1  
Test Mode 2  
RESERVED  
Test Mode 4  
Test Mode 5  
RESERVED  
RESERVED  
22. PHY Address Bootstraps  
PHY_AD[3]  
PHY_AD[2]  
PHY_AD[1]  
PHY_AD[0]  
DESCRIPTION  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
PHY Address: 0b00000 (0)  
PHY Address: 0b00001 (1)  
PHY Address: 0b00010 (2)  
PHY Address: 0b00011 (3)  
PHY Address: 0b00100 (4)  
PHY Address: 0b00101 (5)  
PHY Address: 0b00110 (6)  
PHY Address: 0b00111 (7)  
PHY Address: 0b01000 (8)  
PHY Address: 0b01001 (9)  
PHY Address: 0b01010 (10)  
PHY Address: 0b01011 (11)  
PHY Address: 0b01100 (12)  
PHY Address: 0b01101 (13)  
PHY Address: 0b01110 (14)  
PHY Address: 0b01111 (15)  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
23. Autonomous Mode Bootstrap  
AUTO  
DESCRIPTION  
0
1
Autonomous Mode, PHY able to establish link after power-up  
Managed Mode, PHY must be allowed to establish link after power-up based on register write  
8.5.2 LED Configuration  
The DP83TC811R-Q1 supports up to three configurable Light Emitting Diode (LED) pins: LED_0, LED_1, and  
LED_2 (CLKOUT). Several functions can be multiplexed onto the LEDs for different modes of operation. LED  
operations are selected using the LED_CFG1 Register 0x0460 – LED Configuration Register #1.  
Because the LED output pins are also used as strap pins, external components required for strapping and the  
user must consider the LED usage to avoid contention. Specifically, when the LED outputs are used to drive  
LEDs directly, the active state of each output driver is dependent on the logic level sampled by the corresponding  
input upon power up or hardware reset.  
28 shows the two proper ways of connecting LEDs directly to the DP83TC811R-Q1.  
Pull-Down  
VDDIO  
Strap Pin  
RCL  
D1  
RP  
RP  
D1  
RCL  
Pull-Up  
Strap Pin  
28. Example Strap Connections  
8.5.3 PHY Address Configuration  
The DP83TC811R-Q1 can be set to respond to any of 16 possible PHY addresses through bootstrap pins. The  
PHY address is latched into the device upon power-up or hardware reset. Each DP83TC811R-Q1 or port sharing  
PHY on the serial management bus in the system must have a unique PHY address. The DP83TC811R-Q1  
supports PHY address strapping values 0 (<0b00000>) through 15 (<0b01111>).  
By default, the DP83TC811R-Q1 will latch to a PHY address of 0 (<0b00000>). This address can be changed by  
adding pullup resistors to bootstrap pins found in 18.  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
 
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6 Register Maps  
In the register definitions under the ‘TYPE’ heading, the following definitions apply:  
COR  
Strap  
LH  
Clear on read  
Default value loaded from bootstrap pin after reset  
Latched high and held until read  
Latched low and held until read  
Read only access  
LL  
RO  
RW  
SC  
Read write access  
Register sets on event occurrence and self-clears when event ends  
8.6.1 Register Access Summary  
There are two different methods for accessing registers within the field. Direct register access method is only  
allowed for the first 31 registers (0x0 through 0x1F). Registers beyond 0x1F must be accessed by use of the  
Indirect Method (Extended Register Space) described in Extended Register Space Access.  
24. Register Access Summary  
REGISTER FIELD  
REGISTER ACCESS METHODS  
Direct Access  
Indirect Access, MMD1F = '11111'  
Example: to read register 0x17 in MMD1F field with no post increment  
Step 1) write 0x1F to register 0xD  
0x0 through 0x1F  
Step 2) write 0x17 to register 0xE  
Step 3) write 0x401F to register 0xD  
Step 4) read register 0xE  
Indirect Access, MMD1F = '11111'  
Example: to read register 0x462 in MMD1F field with no post increment  
Step 1) write 0x1F to register 0xD  
Step 2) write 0x462 to register 0xE  
MMD1F Field  
0x20 - 0xFFF  
Step 3) write 0x401F to register 0xD  
Step 4) read register 0xE  
Indirect Access, MMD1 = '00001'  
Example: to read register 0x7 in MMD1 field with no post increment  
Step 1) write 0x1 to register 0xD  
Step 2) write 0x7 to register 0xE  
MMD1 Field  
0x0 - 0xFFF  
Step 3) write 0x4001 to register 0xD  
Step 4) read register 0xE  
46  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.2 BMCR Register 0x0000 – Basic Mode Control Register  
29. Basic Mode Control Register (BMCR)  
15  
14  
13  
Speed  
Selection  
12  
Auto-  
Negotiation  
Enable  
11  
IEEE Power  
10  
Isolate  
9
1
8
0
Reset  
xMII Loopback  
Reserved  
RO-01  
Down  
RW/SC-0  
7
RW-0  
6
RO-1  
5
RO-0  
4
RW-0  
3
RW-0  
2
Reserved  
RO-0  
25. BMCR Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15  
Reset  
RW, SC  
0
PHY Software Reset:  
1 = Initiate software Reset / Reset in Progress  
0 = Normal Operation  
Writing a 1 to this bit resets the PHY PCS registers. When the  
reset operation is done, this bit is cleared to 0 automatically.  
PHY Vendor Specific registers will not be cleared.  
14  
xMII Loopback  
RW  
0
xMII Loopback:  
1 = xMII Loopback enabled  
0 = Normal Operation  
When xMII loopback mode is activated, the transmitted data  
presented on xMII TXD is looped back to xMII RXD internally.  
There is no LINK indication generated when xMII loopback is  
enabled.  
13  
12  
11  
Speed Selection  
RO  
RO  
RW  
1
0
0
Speed Selection: Always 100-Mbps Speed  
Auto-Negotiation: Not supported  
Auto-Negotiation Enable  
IEEE Power Down  
Power Down:  
1 = IEEE Power Down  
0 = Normal Operation  
The PHY is powered down after this bit is set. Only register  
access is enabled during this power down condition. To control  
the power down mechanism, this bit is OR'ed with the input from  
the INT/PWDN_N pin. When the active low INT/PWDN_N is  
asserted, this bit is set.  
10  
Isolate  
RW  
RO  
0
Isolate:  
1 = Isolates the port from the xMII with the exception of the  
serial management interface  
0 = Normal Operation  
9:0  
Reserved  
01 0000  
0000  
Reserved  
版权 © 2017–2018, Texas Instruments Incorporated  
47  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.3 BMSR Register 0x0001 – Basic Mode Status Register  
30. Basic Mode Status Register (BMSR)  
15  
14  
13  
12  
11  
10  
9
8
0
100Base-T4  
100Base-TX  
Full-Duplex  
100Base-TX  
Half-Duplex  
10Base-T Full- 10Base-T Half-  
Reserved  
Duplex  
RO-0  
Duplex  
RO-0  
RO-0  
7
RO-0  
6
RO-0  
5
RO-0  
4
3
2
1
SMI Preamble  
Suppression  
Auto-  
Negotiation  
Complete  
Remote Fault  
Auto-  
Negotiation  
Ability  
Link Status  
Jabber Detect  
Extended  
Capability  
RO-1  
RO-1  
RO/LH-0  
RO-0  
RO/LL-1  
RO/LH-1  
RO-1  
26. BMSR Field Descriptions  
BIT  
FIELD  
100Base-T4  
TYPE  
DEFAULT DESCRIPTION  
15  
RO  
0
100Base-T4 Capable:  
This protocol is not available. Always reads as 0.  
14  
13  
12  
11  
100Base-TX Full-Duplex  
100Base-TX Half-Duplex  
10Base-T Full-Duplex  
10Base-T Half-Duplex  
RO  
RO  
RO  
RO  
0
100Base-TX Full-Duplex Capable:  
1 = Device able to perform Full-Duplex 100Base-TX  
0 = Device not able to perform Full-Duplex 100Base-TX  
0
0
0
100Base-TX Half-Duplex Capable:  
1 = Device able to perform Half-Duplex 100Base-TX  
0 = Device not able to perform Half-Duplex 100Base-TX  
10Base-T Full-Duplex Capable:  
1 = Device able to perform Full-Duplex 10Base-T  
0 = Device not able to perform Full-Duplex 10Base-T  
10Base-T Half-Duplex Capable:  
1 = Device able to perform Half-Duplex 10Base-T  
0 = Device not able to perform Half-Duplex 10Base-T  
10:7  
6
Reserved  
RO  
RO  
0
1
Reserved  
SMI Preamble Suppression  
Preamble Suppression Capable:  
1 = Device able to perform management transaction with  
preamble suppressed  
0 = Device not able to perform management transaction with  
preambles suppressed  
If this bit is set to 1, 32-bits of preamble needed only once after  
reset, invalid opcode or invalid turnaround.  
5
4
Auto-Negotiation Complete  
Remote Fault  
RO  
1
0
Auto-Negotiation Complete:  
1 = Auto-Negotiation process completed  
0 = Auto Negotiation process not completed (either still in  
process, disabled or reset)  
RO, LH  
Remote Fault:  
1 = Remote fault condition detected  
0 = No remote fault condition detected  
Far End Fault indication or notification from Link Partner of  
Remote Fault. This bit is cleared on read or reset.  
3
2
Auto-Negotiation Ability  
Link Status  
RO  
0
0
Auto-Negotiation Ability:  
1 = Device is able to perform Auto-Negotiation  
0 = Device is not able to perform Auto-Negotiation  
RO, LL  
Link Status:  
1 = Valid link established (for either 10-Mbps or 100-Mbps  
operation)  
0 = Link not established  
1
0
Jabber Detect  
RO, LH  
RO  
0
1
Jabber Detect:  
1 = Jabber condition detected  
0 = No jabber condition detected  
Extended Capability  
Extended Capability:  
1 = Extended register capabilities  
0 = Basic register set capabilities only  
48  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.4 PHYID1 Register 0x0002 – PHY Identifier Register #1  
31. PHY Identifier Register #1 (PHYID1)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Organizationally Unique Identifier Bits 21:6  
RO-0010 0000  
4
3
2
Organizationally Unique Identifier Bits 21:6  
RO-0010 0000  
27. PHYID1 Field Descriptions  
BIT  
15:0  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Organizationally Unique Identifier  
Bits 21:6  
RO  
0010  
0000  
0000  
0000  
8.6.5 PHYID2 Register 0x0003 – PHY Identifier Register #2  
32. PHY Identifier Register #2 (PHYID2)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Organizationally Unique Identifier Bits 5:0  
RO-1010 00  
Model Number  
RO-10 0101  
7
6
5
4
3
2
Revision Number  
RO-0011  
28. PHYID2 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:10  
Organizationally Unique Identifier  
Bits 5:0  
RO  
1010 00  
9:4  
Model Number  
RO  
RO  
10 0101  
0011  
Vendor Model Number:  
The six bits of vendor model number are mapped from bits 9 to  
4
3:0  
Revision Number  
Model Revision Number:  
Four bits of the vendor model revision number are mapped from  
bits 3 to 0. This field is incremented for all major device  
changes.  
版权 © 2017–2018, Texas Instruments Incorporated  
49  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.6 TDR_AUTO Register 0x0009 – TDR Auto-Run Register  
33. TDR Auto-Run Register (TDR_AUTO)  
15  
7
14  
6
13  
5
12  
11  
3
10  
9
1
8
Reserved  
RW-0010 000  
TDR Auto-Run  
RW-0  
4
2
0
Reserved  
RW-0  
29. TDR_AUTO Field Descriptions  
BIT  
FIELD  
TYPE  
RW  
DEFAULT DESCRIPTION  
15:9  
8
Reserved  
0010 000 Reserved  
TDR Auto-Run  
RW  
0
TDR Auto-Run:  
1 = TDR will automatically run when link is lost  
0 = TDR auto-run disabled  
7:0  
Reserved  
RW  
0
Reserved  
50  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.7 REGCR Register 0x000D – Register Control Register  
34. Register Control Register (REGCR)  
15  
14  
13  
5
12  
4
11  
3
10  
9
1
8
0
Extended Register Command  
RW-0  
Reserved  
RO-0  
7
6
2
DEVAD  
RW-0  
30. REGCR Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:14  
Extended Register Command  
RW  
0
Extended Register Command:  
00 = Address  
01 = Data, no post increment  
10 = Data, post increment on read and write  
11 = Data, post increment on write only  
13:5  
4:0  
Reserved  
DEVAD  
RO  
0
0
Reserved  
RW  
Device Address: Bits[4:0] are the device address, DEVAD, that  
directs any accesses of ADDAR Register 0x000E –  
Address/Data Register to the appropriate MMD. Specifically, the  
DP83TC811R-Q1 uses the vendor specific DEVAD [4:0] =  
"11111" for accesses to registers 0x04D1 and lower. For MMD1  
access, the DEVAD[4:0] = '00001'. All accesses through  
registers REGCR and ADDAR should use the DEVAD for either  
MMD or MMD1. Transactions with other DEVAD are ignored.  
8.6.8 ADDAR Register 0x000E – Address/Data Register  
35. Address/Data Register (ADDAR)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Address/Data  
RW-0  
7
6
5
4
3
2
Address/Data  
RW-0  
31. ADDAR Field Descriptions  
BIT  
15:0  
FIELD  
Address/Data  
TYPE  
DEFAULT DESCRIPTION  
RW  
0
If REGCR register 15:14 = '00', holds the MMD DEVAD's  
address register, otherwise holds the MMD DEVAD's data.  
版权 © 2017–2018, Texas Instruments Incorporated  
51  
 
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.9 INT_TEST Register 0x0011 – Interrupt Test Register  
36. Interrupt Test Register (INT_TEST)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Reserved  
RW-0000 0001 0000  
4
3
2
Interrupt  
Polarity  
Test Interrupt  
Reserved  
RW-11  
RW-1  
RW-0  
32. INT_TEST Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:4  
Reserved  
RW  
0000 0001 Reserved  
0000  
3
Interrupt Polarity  
RW  
RW  
1
0
Interrupt Polarity:  
1 = Steady state (normal operation) without an interrupt is logical  
1; during interrupt, pin is logical 0  
0 = Steady state (normal operation) without an interrupt is logical  
0; during interrupt, pin is logical 1  
2
Test Interrupt  
Test Interrupt:  
1 = Generate an interrupt  
0 = Do not generate interrupt  
Forces the PHY to generate an interrupt to facilitate interrupt  
testing. Interrupts will continue to be generated as long as this  
bit remains set.  
1:0  
Reserved  
RW  
11  
Reserved  
52  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.10 INT_STAT1 Register 0x0012 – Interrupt Status Register #1  
37. Interrupt Status Register #1 (INT_STAT1)  
15  
14  
13  
12  
11  
10  
9
8
Link Quality  
Interrupt  
Energy Detect  
Interrupt  
Link Status  
Changed  
Interrupt  
WoL Interrupt  
ESD Event  
Interrupt  
100BASE-T1  
Master /  
100BASE-T1  
Slave Training  
Complete  
False Carrier  
Counter Half-  
Full Interrupt  
Receive Error  
Counter Half-  
Full Interrupt  
Interrupt  
RO/LH-0  
7
RO/LH-0  
6
RO/LH-0  
5
RO/LH-0  
4
RO/LH-0  
3
RO/LH-0  
2
RO/LH-0  
1
RO/LH-0  
0
Link Quality  
Interrupt  
Enable  
Energy Detect  
Interrupt  
Link Status  
Changed  
Enable  
WoL Interrupt  
Enable  
ESD Event  
Interrupt  
MS Training  
Complete  
Interrupt  
False Carrier  
HF Enable  
Receive Error  
HF Enable  
Enable  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
33. INT_STAT1 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15  
Link Quality Interrupt  
Energy Detect Interrupt  
Link Status Changed Interrupt  
WoL Interrupt  
RO, LH  
0
0
0
0
0
0
Change of Link Quality Status Interrupt:  
1 = Change of link quality when link is ON  
0 = Link quality is Good  
14  
13  
12  
11  
10  
RO, LH  
RO, LH  
RO, LH  
RO, LH  
Change of Energy Detection Status Interrupt:  
1 = Change of energy detected  
0 = No change of energy detected  
Change of Link Status Interrupt:  
1 = Change of link status interrupt is pending  
0 = No change of link status  
Detection of WoL Frame Interrupt:  
1 = WoL interrupt is pending  
0 = No WoL frame detected  
ESD Event Interrupt  
ESD Interrupt:  
1 = ESD event detected  
0 = No ESD events detected  
100BASE-T1 Master / 100BASE-T1 RO, LH  
Slave Training Complete Interrupt  
100BASE-T1 Master and 100BASE-T1 Slave Training  
Complete Interrupt:  
1 = 100BASE-T1 Master and 100BASE-T1 Slave Training  
complete interrupt is pending  
0 = MS Training is not pending  
9
8
False Carrier Counter Half-Full  
Interrupt  
RO, LH  
RO, LH  
0
0
False Carrier Counter Half-Full Interrupt:  
1 = False Carrier counter (FCSCR Register 0x0014 – False  
Carrier Sense Counter Register) exceeds half-full interrupt is  
pending  
0 = False Carrier half-full event is not pending  
Receive Error Counter Half-Full  
Interrupt  
Receiver Error Counter Half-Full Interrupt:  
1 = Receive Error counter (RECR Register 0x0015 – Receive  
Error Count Register) exceeds half-full interrupt is pending  
0 = Receive Error half-full event is not pending  
7
6
5
4
3
2
Link Quality Interrupt Enable  
Energy Detect Interrupt Enable  
Link Status Changed Enable  
WoL Interrupt Enable  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
Enable interrupt on change of link quality  
Enable interrupt on change of energy detection  
Enable interrupt on change of link status  
Enable Interrupt on WoL frame detection  
Enable Interrupt on ESD event detection  
ESD Event Interrupt  
MS Training Complete Interrupt  
Enable Interrupt on 100BASE-T1 Master and 100BASE-T1  
Slave Training Completion  
1
0
False Carrier HF Enable  
Receive Error HF Enable  
RW  
RW  
0
0
Enable Interrupt on False Carrier Counter Register half-full  
event  
Enable Interrupt on Receive Error Counter Register half-full  
event  
版权 © 2017–2018, Texas Instruments Incorporated  
53  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.11 INT_STAT2 Register 0x0013 – Interrupt Status Register #2  
38. Interrupt Status Register #2 (INT_STAT2)  
15  
14  
13  
12  
11  
10  
9
8
Undervoltage  
Interrupt  
Overvoltage  
Interrupt  
Reserved  
Overtemperatur  
e Interrupt  
Sleep Mode  
Interrupt  
Polarity  
Change  
Interrupt  
Jabber Detect  
Interrupt  
RO/LH-0  
7
RO/LH-0  
6
RO/LH-0  
Reserved  
RO/LH-0  
3
RO/LH-0  
2
RO/LH-0  
1
RO/LH-0  
0
5
4
Undervoltage  
Interrupt  
Overvoltage  
Interrupt  
Enable  
Overtemperatur  
e Interrupt  
Enable  
Sleep Mode  
Event Enable  
Polarity  
Change  
Interrupt  
Enable  
Jabber Detect  
Interrupt  
Enable  
Enable  
RW-0  
RW-0  
RO-0  
RW-0  
RW-0  
RW-0  
RW-0  
34. INT_STAT2 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15  
Undervoltage Interrupt  
RO, LH  
0
Undervoltage Interrupt:  
1 = Undervoltage event interrupt pending  
0 = No undervoltage event pending  
14  
Overvoltage Interrupt  
RO, LH  
0
Overvoltage Interrupt:  
1 = Overvoltage event interrupt pending  
0 = No overvoltage event pending  
13:12  
11  
Reserved  
RO, LH  
RO, LH  
0
0
Reserved  
Overtemperature Interrupt  
Overtemperature Interrupt:  
1 = Overtemperature event interrupt pending  
0 = No overtemperature event pending  
10  
9
Sleep Mode Interrupt  
Polarity Change Interrupt  
Jabber Detect Interrupt  
RO, LH  
RO, LH  
RO, LH  
0
0
0
Sleep Mode Interrupt:  
1 = Sleep mode event interrupt is pending  
0 = No Sleep mode event pending  
Polarity Change Interrupt:  
1 = Data polarity change interrupt pending  
0 = No Data polarity even pending  
8
Jabber Detect Interrupt:  
1 = Jabber detect event interrupt pending  
0 = No Jabber detect event pending  
7
6
Undervoltage Interrupt Enable  
Overvoltage Interrupt Enable  
Reserved  
RW  
RW  
RO  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
Enable interrupt on undervoltage event  
Enable interrupt on overvoltage event  
Reserved  
5 :4  
3
Overtemperature Interrupt Enable  
Sleep Mode Event Enable  
Polarity Change Interrupt Enable  
Jabber Detect Interrupt Enable  
Enable interrupt on overtemperature event  
Enable Interrupt on sleep mode event  
Enable Interrupt on change of polarity status  
Enable Interrupt on Jabber detection event  
2
1
0
54  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.12 FCSCR Register 0x0014 – False Carrier Sense Counter Register  
39. False Carrier Sense Counter Register (FCSCR)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
1
8
0
Reserved  
RO-0  
2
False Carrier Event Counter  
RO/COR-0  
35. FCSCR Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
7:0  
Reserved  
RO  
0
0
Reserved  
False Carrier Event Counter:  
False Carrier Event Counter  
RO,  
COR  
This 8-bit counter increments on every false carrier event. This  
counter stops when it reaches its maximum count (0xFF). When  
the counter exceeds half-full (0x7F), an interrupt event is  
generated. This register is cleared on read.  
8.6.13 RECR Register 0x0015 – Receive Error Count Register  
40. Receive Error Count Register (RECR)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Receive Error Counter  
RO/COR-0  
7
6
5
4
3
2
Receive Error Counter  
RO/COR-0  
36. RECR Field Descriptions  
BIT  
15:0  
FIELD  
Receive Error Counter  
TYPE  
DEFAULT DESCRIPTION  
RO,  
0 RX_ER Counter:  
COR  
When a valid carrier is presented (only while RX_DV is set), and  
there is at least one occurrence of an invalid data symbol, this  
16-bit counter increments for each receive error detected. The  
RX_ER counter does not count in xMII loopback mode. The  
counter stops when it reaches its maximum count (0xFFFF).  
When the counter exceeds half-full (0x7FFF), an interrupt is  
generated. This register is cleared on read.  
版权 © 2017–2018, Texas Instruments Incorporated  
55  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.14 BISTCR Register 0x0016 – BIST Control Register  
41. BIST Control Register (BISTCR)  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
BIST Error  
Counter Mode  
PRBS Packet  
Type  
Packet  
Generation  
Enable  
PRBS Checker PRBS Checker  
Packet  
Generator  
Status  
Reserved  
Lock/Sync  
Sync Loss  
RO-0  
7
RW-0  
6
RW-0  
5
RW-0  
RO-0  
3
RO/LH-0  
2
RO-0  
1
RO-10  
0
4
Loopback Select  
RW-0  
Reserved  
RW-0  
37. BISTCR Field Descriptions  
BIT  
15  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
Reserved  
0
0
Reserved  
14  
BIST Error Counter Mode  
RW  
BIST Error Counter Mode:  
1 = Continuous mode, when the BIST Error counter reaches its  
max value, a pulse is generated and the counter starts counting  
from zero again.  
0 = Single mode, when BIST Error Counter reaches its max  
value, PRBS checker stops counting.  
13  
PRBS Packet Type  
RW  
0
PRBS Packet Type:  
1 = When packet generator is enabled (Bit[12] = '1'), generate  
continuous packets with PRBS data. When packet generator is  
disabled, PRBS checker is still enabled.  
0 = When packet generator is enabled, generate single packet  
with constant data. PRBS gen/check is disabled.  
12  
11  
10  
9
Packet Generation Enable  
PRBS Checker Lock/Sync  
PRBS Checker Sync Loss  
Packet Generator Status  
RW  
0
0
0
0
Packet Generation Enable:  
1 = Enable packet generator with PRBS data  
0 = Disable packet generator  
RO  
PRBS Checker Lock/Sync Indication:  
1 = PRBS checker is locked and synced on received bit stream  
0 = PRBS checker is not locked  
RO, LH  
RO  
PRBS Checker Sync Loss Indication:  
1 = PRBS checker has lost sync  
0 = PRBS checker has not lost sync  
Packet Generation Status Indication:  
1 = Packet Generator is active and generating packets  
0 = Packet Generator is off  
8:7  
6:2  
Reserved  
RO  
10  
0
Reserved  
Loopback Select  
RW  
Loopback Select:  
Bits[5:2]  
0000 = Normal operation  
0001 = PCS Loopback  
0010 = Analog Loopback  
0100 = Reverse Loopback  
1000 = Reserved  
Bit[6]:  
1 = Transmit data to the MDI in xMII Loopback  
0 = Surpress data to the MDI in xMII Loopback  
Note: Bit[6] can only can be set in xMII Loopback  
1:0  
Reserved  
RW  
0
Reserved  
56  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.15 xMII_CTRL Register 0x0017 – xMII Control Register  
42. xMII Control Register (xMII_CTRL)  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
RGMII RX  
Clock Internal  
Delay  
RGMII TX  
Clock Internal  
Delay  
Reserved  
RGMII Mode  
Reserved  
RW-010  
RW/Strap  
4
RW/Strap  
3
RW-0  
2
RW/Strap  
1
RW-0  
0
7
6
5
Clock Select  
Reserved  
RMII Mode  
RMII Revision  
Select  
RMII Overflow RMII Underflow  
RMII Receive Elasticity Buffer  
Size  
Status  
Status  
RW/Strap  
RW-1  
RW/Strap  
RW-0  
RO/COR-0  
RO/COR-0  
RW-01  
38. xMII_CTRL Field Descriptions  
BIT  
15:13  
12  
FIELD  
TYPE  
RW  
DEFAULT  
010  
DESCRIPTION  
Reserved  
Reserved  
RGMII RX Clock Internal  
Delay  
RW  
Strap  
RGMII RX Clock Internal Delay:  
1 = Receive path internal clock delay is enabled  
0 = Receive path internal clock delay is disabled  
Note: When enabled, receive path internal clock (RX_CLK) is  
delayed by 2ns relative to receive data. When disabled, data  
and clock are in align mode.  
11  
RGMII TX Clock Internal  
Delay  
RW  
Strap  
RGMII TX Clock Internal Delay:  
1 = Transmit path internal clock delay is enabled  
0 = Transmit path internal clock delay is disabled  
Note: When enabled, transmit path internal clock (TX_CLK) is  
delayed by 2ns relative to transmit data. When disabled, data  
and clock are in align mode.  
10  
9
Reserved  
RW  
RW  
0
Reserved  
RGMII Mode  
Strap  
RGMII Mode Enable:  
1 = Enable RGMII mode of operation  
0 = Mode determined by Bit[5]  
8
7
Reserved  
RW  
RW  
0
Reserved  
Clock Select  
Strap  
Reference Clock Select:  
Strap determines the clock reference requirement.  
1 = 50-MHz clock reference, CMOS-level oscillator  
0 = 25-MHz clock reference, crystal or CMOS-level oscillator  
6
5
Reserved  
RW  
RW  
1
Reserved  
RMII Mode  
Strap  
RMII Mode Enable:  
1 = Enable RMII mode of operation  
0 = Enable MII mode of operation  
4
RMII Revision Select  
RW  
0
RMII Revision Select:  
1 = RMII Revision 1.0  
0 = RMII Revision 1.2  
RMII revision 1.0, CRS_DV will remain asserted until final data  
is transferred. CRS_DV will not toggle at the end of a packet.  
RMII revision 1.2, CRS_DV will toggle at the end of a packet to  
indicate de-assertion of CRS.  
3
2
RMII Overflow Status  
RMII Underflow Status  
RO,  
COR  
0
0
RX FIFO Overflow Status:  
1 = Normal  
0 = Overflow detected  
RO,  
COR  
RX FIFO Underflow Status:  
1 = Normal  
0 = Underflow detected  
版权 © 2017–2018, Texas Instruments Incorporated  
57  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
38. xMII_CTRL Field Descriptions (接下页)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
1:0  
RMII Receive Elasticity  
Buffer Size  
RW  
01  
Receive Elasticity Buffer Size:  
This field controls the Receive Elasticity Buffer which allows for  
frequency variation tolerance between the 50-MHz RMII clock  
and the recovered data. The following values indicate the  
tolerance in bits for a single packet. The minimum setting allows  
for standard Ethernet frame sizes at ±100ppm accuracy.  
00 = 5-bit tolerance (up to 8750 byte packets)  
01 = 2-bit tolerance (up to 1250 byte packets)  
10 = 3-bit tolerance (up to 3750 byte packets)  
11 = 4-bit tolerance (up to 6250 byte packets)  
8.6.16 INT_STAT3 Register 0x0018 – Interrupt Status Register #3  
43. Interrupt Status Register #3 (INT_STAT3)  
15  
14  
13  
12  
11  
10  
9
1
8
Reserved  
POR Done  
Interrupt  
No Frame  
Detected  
Interrupt  
Reserved  
LPS Interrupt  
RO-0  
RO/LH-0  
4
RO/LH-0  
3
RO/LH-0  
Reserved  
RO/LH-0  
0
7
6
5
2
Reserved  
POR Done  
Interrupt  
Enable  
No Frame  
Detected  
Interrupt  
Enable  
LPS Interrupt  
Enable  
RO-0  
RW-1  
RW-0  
RW-0  
RW-0  
39. INT_STAT3 Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:13  
12  
Reserved  
0
0
Reserved  
POR Done Interrupt:  
POR Done Interrupt  
RO, LH  
1 = POR done event pending  
0 = No POR done event pending  
11  
No Frame Detected Interrupt  
RO, LH  
0
No Frame Detection Interrupt:  
1 = No Frame Detection event interrupt pending  
0 = No event pending  
10:9  
8
Reserved  
RO, LH  
RO, LH  
0
0
Reserved  
LPS Interrupt  
LPS Interrupt:  
1 = LPS event interrupt is pending  
0 = No LPS event pending  
7:5  
4
Reserved  
RO  
0
1
0
0
0
Reserved  
POR Done Interrupt Enable  
RW  
Enable interrupt on POR Done event.  
Enable interrupt on No Frame Detection event  
Reserved  
3
No Frame Detected Interrupt Enable RW  
2:1  
0
Reserved  
RW  
RW  
LPS Interrupt Enable  
Enable interrupt on LPS event  
58  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.17 BICTSR1 Register 0x001B – BIST Control and Status Register #1  
44. BIST Control and Status Register #1 (BICTSR1)  
15  
7
14  
6
13  
5
12  
BIST Error Count  
RW-0  
11  
10  
2
9
1
8
0
4
3
BIST IPG Length  
RW-0111 1101  
40. BICTSR1 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
BIST Error Count  
RO  
0 BIST Error Count:  
Holds number of errored bytes received by the PRBS checker.  
Value in this register is locked and cleared when write is done to  
Bit[15]. When BIST Error Counter Mode is set to '0', count stops  
on 0xFF (see register 0x16)  
Note: Writing '1' to Bit[15] will lock the counter's value for  
successive read operation and clear the BIST Error Counter.  
7:0  
BIST IPG Length  
RW  
0111 1101 BIST IPG Length:  
Inter Packet Gap (IPG) Length defines the size of the gap (in 4  
byte increments) between any 2 successive packets generated  
by the BIST.  
Default value is 0x7D:  
0x7D to decimal conversion = 125  
125 * 4 bytes = 500 bytes (default)  
8.6.18 BICTSR2 Register 0x001C – BIST Control and Status Register #2  
45. BIST Control and Status Register #2 (BICTSR2)  
15  
7
14  
6
13  
12  
11  
10  
2
9
8
0
Reserved  
RO-0  
BIST Packet Length  
RW-101 1110 1110  
5
4
3
1
BIST Packet Length  
RW-101 1110 1110  
41. BICTSR2 Field Description  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
Reserved  
101 1110 BIST Packet Length:  
15:11  
10:0  
Reserved  
0
BIST Packet Length  
RW  
1110  
Length of the generated BIST packets. The value of this register  
defines the size (in bytes) of every packet that is generated by  
the BIST. Default value is 0x5EE, which is equal to 1514 bytes.  
版权 © 2017–2018, Texas Instruments Incorporated  
59  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.19 TDR Register 0x001E – Time Domain Reflectometry Register  
46. Time Domain Reflectometry Register (TDR)  
15  
14  
6
13  
5
12  
4
11  
10  
9
8
TDR Start  
RW/SC-0  
Reserved  
RO-0  
7
3
2
1
0
TDR Status  
RO-0  
TDR Test Fail  
RO-0  
42. TDR Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15  
TDR Start  
RW, SC  
0
TDR Start:  
1 = Start cable measurement  
0 = Cable Diagnostic is disabled  
14:2  
1
Reserved  
RO  
RO  
0
0
Reserved  
TDR Status  
TDR Done:  
1 = Indication that cable measurement process is complete  
0 = Cable Diagnostic had not completed  
0
TDR Test Fail  
RO  
0
TDR Process Fail:  
1 = Indication that cable measurement process failed  
0 = Cable Diagnostic has not failed  
8.6.20 PHYRCR Register 0x001F – PHY Reset Control Register  
47. PHY Reset Control Register (PHYRCR)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Hardware  
Reset  
Software reset  
Reserved  
RW-0  
RW/SC-0  
RW/SC-0  
6
7
5
4
3
2
Standby Mode  
RW-0  
Reserved  
RW-0  
43. PHYRCR Field Descriptions  
BIT  
FIELD  
Hardware Reset  
TYPE  
DEFAULT DESCRIPTION  
15  
RW, SC  
0
Hardware Reset:  
1 = Reset PHY. This bit is self cleared and has the same effect  
as the RESET pin.  
0 = Normal Operation  
14  
Software reset  
RW, SC  
0
Software Restart:  
1 = Restart PHY. This bit is self cleared and resets all PHY  
circuitry except registers.  
0 = Normal Operation  
13:8  
7
Reserved  
RW  
RW  
0
0
Reserved  
Standby Mode  
Standby Mode:  
1 = Standby mode enabled  
0 = Normal operation  
6:0  
Reserved  
RW  
0
Reserved  
60  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.21 LSR Register 0x0133 – Link Status Results Register  
48. Link Status Results Register (LSR)  
15  
7
14  
13  
5
12  
11  
3
10  
9
8
0
Reserved  
RO-0  
Link Status  
RO-0  
Reserved  
RO-0101 1110 0  
6
4
2
1
Scrambler Lock Local Receiver  
Status  
Remote  
Receiver Status  
RO-0  
RO-0  
RO-0  
44. LSR Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:13  
12  
Reserved  
0
0
Reserved  
Link Status  
RO  
Unlatched Link Status:  
1 = Valid Link Established  
0 = No Link  
11:3  
2
Reserved  
RO  
RO  
0101 1110 Reserved  
0
Scrambler Lock  
0
0
0
Scrambler Lock:  
1 = Scrambler Locked  
0 = Scrambler Not Locked  
1
0
Local Receiver Status  
RO  
RO  
Local Receiver Status:  
1 = Local PHY received link valid  
0 = Local PHY received link invalid  
Remote Receiver Status  
Remote Receiver Status:  
1 = Remote PHY received link valid  
0 = Remote PHY received link invalid  
8.6.22 TDRR Register 0x016B – TDR Results Register  
49. TDR Results Register (TCRR)  
15  
14  
13  
12  
11  
10  
2
9
8
Reserved  
RO-0  
Fault Status  
RO-0  
Fault Type  
RO-0  
7
6
5
4
3
1
0
Fault Location  
RO-0  
45. TDRR Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:10  
9
Reserved  
0
0
Reserved  
Fault Status  
RO  
Fault Status:  
1 = Fault Detected  
0 = No Fault Detected  
8
Fault Type  
RO  
RO  
0
0
Fault Type:  
1 = SHORT Fault  
0 = OPEN Fault  
Note: Only valid when bit[9] = 1.  
7:0  
Fault Location  
Fault Location:  
To calculate fault location in meters, convert binary field to  
decimal form and multiply by 1.5.  
Note: Only valid when bit[9] = 1.  
版权 © 2017–2018, Texas Instruments Incorporated  
61  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.23 TDRLR1 Register 0x0180 – TDR Location Result Register #1  
50. TDR Location Result Register #1 (TDRLR1)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
1
8
0
Location 2  
RO-0  
2
Location 1  
RO-0  
46. TDRLR1 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Location 2  
RO  
0
Location of the Second peak discovered by the TDR  
mechanism.  
Distance in meters = 1.5 * (convert bit field to decimal - 4)  
7:0  
Location 1  
RO  
0
Location of the First peak discovered by the TDR mechanism.  
Distance in meters = 1.5 * (convert bit field to decimal - 4)  
8.6.24 TDRLR2 Register 0x0181 – TDR Location Result Register #2  
51. TDR Location Result Register #2  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
1
8
0
Location 4  
RO-0  
2
Location 3  
RO-0  
47. TDRLR2 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Location 4  
RO  
0
Location of the Fourth peak discovered by the TDR mechanism.  
Distance in meters = 1.5 * (convert bit field to decimal - 4)  
7:0  
Location 3  
RO  
0
Location of the Third peak discovered by the TDR mechanism.  
Distance in meters = 1.5 * (convert bit field to decimal - 4)  
62  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.25 TDRPT Register 0x018A – TDR Peak Type Register  
52. TDR Peak Type Register (TDRPT)  
15  
14  
13  
12  
11  
10  
9
8
0
Reserved  
RO-0  
Peak 4 Type  
RO-0  
Peak 3 Type  
RO-0  
Peak 2 Type  
RO-0  
Peak 1 Type  
RO-0  
Reserved  
RO-0  
7
6
5
4
3
2
1
Reserved  
RO-0  
48. TDRPT Field Descriptions  
BIT  
15  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
Reserved  
0
0
Reserved  
14  
Peak 4 Type  
RO  
Peak 4 Polarity Detection:  
1 = Negative Polarity  
0 = Positive Polarity  
Negative polarity detection can be caused by a SHORT.  
Positive polarity detection can be caused by an OPEN.  
Note:only valid when bits[15:8] in register 0x181 is not zero.  
13  
12  
Peak 3 Type  
Peak 2 Type  
Peak 1 Type  
Reserved  
RO  
RO  
RO  
RO  
0
0
0
0
Peak 3 Polarity Detection:  
1 = Negative Polarity  
0 = Positive Polarity  
Negative polarity detection can be caused by a SHORT.  
Positive polarity detection can be caused by an OPEN.  
Note:only valid when bits[7:0] in register 0x181 is not zero.  
Peak 2 Polarity Detection:  
1 = Negative Polarity  
0 = Positive Polarity  
Negative polarity detection can be caused by a SHORT.  
Positive polarity detection can be caused by an OPEN.  
Note:only valid when bits[15:8] in register 0x180 is not zero.  
11  
Peak 1 Polarity Detection:  
1 = Negative Polarity  
0 = Positive Polarity  
Negative polarity detection can be caused by a SHORT.  
Positive polarity detection can be caused by an OPEN.  
Note:only valid when bits[7:0] in register 0x180 is not zero.  
10:0  
Reserved  
版权 © 2017–2018, Texas Instruments Incorporated  
63  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.26 AUTO_PHY Register 0x018B – Autonomous PHY Control Register  
53. Autonomous PHY Control Register (AUTO_PHY)  
15  
7
14  
13  
5
12  
4
11  
3
10  
2
9
8
0
Reserved  
RW-0  
6
1
Autonomous  
Command  
Reserved  
Sleep Enable  
LPS  
Transmission  
Enable  
RW/COR/Strap  
RW-01 10  
RW-1  
RW-0  
49. AUTO_PHY Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:7  
6
Reserved  
RW  
0
Reserved  
Autonomous Command:  
Autonomous Command  
RW,  
Strap  
COR  
1 = Device in Autonomous operation  
0 = Device in Managed operation  
Note: This bit is a one-time event. Once written to or read, the  
bit will always read 0b0. Managed mode can only be entered at  
power-up or reset when the bootstrap is sampled.  
5:2  
1
Reserved  
RW  
RW  
01 10  
1
Reserved  
Sleep Enable  
Sleep Enable:  
1 = Sleep enabled  
0 = Standby enabled  
The device will transition to Sleep state after negotiating with a  
Link Partner if this bit is set. Otherwise, once LPS negotiation is  
complete, the device will transition to Standby.  
0
LPS Transmission Enable  
RW  
0
LPS Transmission Enable:  
1 = Device allowed to send LPS code-groups  
0 = No LPS code-groups enabled  
Device is only allowed to send LPS code-groups when this bit is  
set.  
64  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.27 PWRM Register 0x018C – Power Mode Register  
54. Power Mode Register (PWRM)  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
0
Reserved  
RW-0  
3
Reserved  
RW-0  
Sleep Request  
Command  
Normal  
Command  
RW-0  
RW/SC-0  
50. PWRM Register 0x018C – Power Mode Register  
BIT  
FIELD  
TYPE  
RW  
DEFAULT DESCRIPTION  
15:2  
1
Reserved  
0
0
Reserved  
Sleep Request Command  
RW  
Sleep Request Command:  
1 = Device will transmit LPS code-groups  
0 = Normal operation  
0
Normal Command  
RW, SC  
0
Normal Command:  
1 = Device forced to Normal state  
0 = Normal operation  
Self-cleared only when PHY moves from Standby to Normal  
state. Bit is not cleared on any other transition.  
8.6.28 SNR Register 0x0197 – Signal-to-Noise Ratio Result Register  
55. Signal-to-Noise Ratio Result Register (SNR)  
15  
7
14  
6
13  
5
12  
11  
3
10  
9
1
8
Reserved  
RO-0  
SNR  
RO-0  
4
2
0
SNR  
RO-0  
51. SNR Field Descriptions  
BIT  
FIELD  
Reserved  
SNR  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:9  
8:0  
0
0
Reserved  
RO  
Signal-to-Noise Ratio:Value contained within bit field contains  
10*SNR (dB). To obtain SNR (dB) convert binary value to  
decimal form and divide by 10.  
Note: Only valid when link is established.  
版权 © 2017–2018, Texas Instruments Incorporated  
65  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.29 SQI Register 0x0198 – Signal Quality Indication Register  
56. Signal Quality Indication Register (SQI)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
1
8
0
Reserved  
RO-0  
SQS  
RO-0  
2
SQI  
RO-0  
52. SQI Field Descriptions  
BIT  
FIELD  
Reserved  
SQS  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:10  
9:8  
0
0
Reserved  
RO  
Signal Quality Status:  
00 = No Link  
01 = Poor Link, Intermittent Link  
10 = Good Link quality  
11 = Excellent Link quality  
7:0  
SQI  
RO  
0
Signal Quality Indication:Value contained within bit field  
contains SQI and directly relates to the Signal Quality Status bit  
field. Convert binary value to decimal to obtain SQI.  
SQI > 70 -- Excellent Link quality  
40 < SQI < 70 -- Good Link quality  
SQI < 40 -- Intermittent or No Link  
66  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.30 LD_CTRL Register 0x0400 – Line Driver Control Register  
57. Line Driver Control Register (LD_CTRL)  
15  
7
14  
13  
5
12  
4
11  
3
10  
9
1
8
0
Reserved  
RW-000  
Line Driver Series Termination  
RW-1 0000  
6
2
Reserved  
RW-0000 0000  
53. LD_CTRL Field Descriptions  
BIT  
FIELD  
Reserved  
Line Driver Series Termination  
TYPE  
RW  
DEFAULT DESCRIPTION  
15:13  
12:8  
000  
Reserved  
RW  
1 0000  
Line Driver Series Termination Control:  
0 0000 = 70 Ω  
0 0001 = 67.7 Ω  
0 0010 = 65.6 Ω  
0 0011 = 63.6 Ω  
0 0100 = 61.7 Ω  
0 0101 = 60 Ω  
0 0110 = 58.3 Ω  
0 0111 = 56.7 Ω  
0 1000 = 55.2 Ω  
0 1001 = 53.8 Ω  
0 1010 = 52.5 Ω  
0 1011 = 51.2 Ω  
0 1100 = 50 Ω  
0 1101 = 48.8 Ω  
0 1110 = 47.7 Ω  
0 1111 = 46.6 Ω  
1 0000 = 45.6 (default)  
1 0001 = 44.7 Ω  
1 0010 = 43.7 Ω  
1 0011 = 42.8 Ω  
1 0100 = 42 Ω  
1 0101 = 41 Ω  
1 0110 = 40.4 Ω  
1 0111 = 39.6 Ω  
1 1000 = 38.9 Ω  
1 1001 = 38.2 Ω  
1 1010 = 37.5 Ω  
1 1011 = 36.8 Ω  
1 1100 = 36.2 Ω  
1 1101 = 35.6 Ω  
1 1110 = 35 Ω  
1 1111 = 34.4 Ω  
7:0  
Reserved  
RW  
0000 0000 Reserved  
版权 © 2017–2018, Texas Instruments Incorporated  
67  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.31 LDG_CTRL1 Register 0x0401 – Line Driver Gain Control Register #1  
58. Line Driver Gain Control Register (LDG_CTRL1)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
1
8
0
Reserved  
RW-0  
2
Fine Gain Control - MDI  
RW-1010  
54. LDG_CTRL1 Field Descriptions  
BIT  
FIELD  
TYPE  
RW  
DEFAULT DESCRIPTION  
15:4  
3:0  
Reserved  
0
Reserved  
Fine Gain Control - MDI  
RW  
1010  
Line Driver Differential Swing Control:  
0000 = - 16% change in gain  
0001 = - 14% change in gain  
0010 = - 12% change in gain  
0011 = - 10% change in gain  
0100 = - 8% change in gain  
0101 = - 6% change in gain  
0110 = - 4% change in gain  
0111 = - 2% change in gain  
1000 = No change in gain  
1001 = + 2% change in gain  
1010 = + 4% change in gain  
1011 = + 6% change in gain  
1100 = + 8% change in gain  
1101 = + 10% change in gain  
1110 = + 12% change in gain  
1111 = + 14% change in gain  
8.6.32 LDG_CTRL2 Register 0x0402 – Line Driver Control Register #2  
59. Line Driver Control Register #2 (LDG_CTRL1)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Reserved  
RW-0000 0011 1000 0  
4
3
2
Coarse Gain Control - MDI  
RW-011  
55. LDG_CTRL1 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:3  
Reserved  
RW  
0000 0011 Reserved  
1000 0  
2:0  
Coarse Gain Control - MDI  
RW  
011  
Line Driver Differential Swing Control:  
000 = - 60% change in gain  
001 = - 40% change in gain  
010 = - 20% change in gain  
011 = No change in gain  
100 = + 20% change in gain  
101 = + 40% change in gain  
110 = + 60% change in gain  
111 = + 80% change in gain  
68  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.33 DLL_CTRL 0x0446 – RGMII DLL Control Register  
60. RGMII DLL Control Register (DLL_CTRL)  
15  
7
14  
13  
12  
4
11  
10  
9
1
8
0
Reserved  
RO-0  
6
5
3
2
DLL TX Internal Delay Control  
RW-0111  
DLL RX Internal Delay Control  
RW-0111  
56. DLL_CTRL Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:8  
7:4  
Reserved  
0
Reserved  
DLL TX Internal Delay Control  
RW  
0111  
Transmit Internal Delay Control:  
Controls the DLL value in 250-ps steps for the transmit path.  
Value below is the amount of internal delay on the TX_CLK path  
induced.  
0000 = 0.25 ns  
0001 = 0.50 ns  
0010 = 0.75 ns  
0011 = 1.00 ns  
0100 = 1.25 ns  
0101 = 1.50 ns  
0110 = 1.75 ns  
0111 = 2.00 ns  
1000 = 2.25 ns  
1001 = 2.50 ns  
1010 = 2.75 ns  
1011 = 3.00 ns  
1100 = 3.25 ns  
1101 = 3.50 ns  
1110 = 3.75 ns  
1111 = 4.00 ns  
3:0  
DLL RX Internal Delay Control  
RW  
0111  
Receive Internal Delay Control:  
Controls the DLL value in 250ps steps for the receive path.  
Value below is the amount of internal delay on the RX_CLK path  
induced.  
0000 = 0.25 ns  
0001 = 0.50 ns  
0010 = 0.75 ns  
0011 = 1.00 ns  
0100 = 1.25 ns  
0101 = 1.50 ns  
0110 = 1.75 ns  
0111 = 2.00 ns  
1000 = 2.25 ns  
1001 = 2.50 ns  
1010 = 2.75 ns  
1011 = 3.00 ns  
1100 = 3.25 ns  
1101 = 3.50 ns  
1110 = 3.75 ns  
1111 = 4.00 ns  
版权 © 2017–2018, Texas Instruments Incorporated  
69  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.34 ESDS Register 0x0448 – Electrostatic Discharge Status Register  
61. Electrostatic Discharge Status Register (ESDS)  
15  
7
14  
6
13  
5
12  
4
11  
10  
9
1
8
0
Reserved  
RO-0  
xMII ESD Event Counter  
RO-0  
3
2
Reserved  
RO-0  
MDI ESD Event Counter  
RO-0  
57. ESDS Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:14  
13:8  
Reserved  
0
0
Reserved  
xMII ESD Event Counter  
RO  
xMII ESD Counter:  
When the integrated ESD structure is activated on the xMII  
interface, the xMII ESD counter will increment. There is no ESD  
dead-time built into the counter, which means that even with a  
single pulse event more than one ESD event could be logged.  
Counter cleared on power cycle. It cannot be cleared by  
hardware reset.  
7:6  
5:0  
Reserved  
RO  
RO  
0
0
Reserved  
MDI ESD Event Counter  
MDI ESD Counter:  
When the integrated ESD structure is activated on the xMII  
interface, the MDI ESD counter will increment. There is no ESD  
dead-time built into the counter, which means that even with a  
single pulse event more than one ESD event could be logged.  
MDI is in reference to the TRD+ and TRD- pins.  
Counter cleared on power cycle. It cannot be cleared by  
hardware reset.  
70  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.35 LED_CFG1 Register 0x0460 – LED Configuration Register #1  
62. LED Configuration Register #1 (LED_CFG1)  
15  
7
14  
6
13  
12  
11  
3
10  
9
1
8
0
Reserved  
RW-0  
LED Blink Rate Control  
RW-10  
LED_2 Control  
RW-0110  
5
4
2
LED_1 Control  
RW-0001  
LED_0 Control  
RW-0000  
58. LED_CFG1 Field Descriptions  
BIT  
FIELD  
TYPE  
RW  
DEFAULT DESCRIPTION  
15:14  
13:12  
Reserved  
0
Reserved  
LED Blink Rate Control  
RW  
10  
Blink Rate Control:  
00 = 20-Hz (50ms)  
01 = 10-Hz (100ms)  
10 = 5-Hz (200ms)  
11 = 2-Hz (500ms)  
11:8  
7:4  
LED_2 Control  
LED_1 Control  
LED_0 Control  
RW  
RW  
RW  
0110  
0001  
0000  
LED_2 Control:  
Selects the source for LED_2.  
Use same reference as defined by bits [3:0] in this register.  
LED_1 Control:  
Selects the source for LED_1.  
Use same reference as defined by bits [3:0] in this register.  
3:0  
LED_0 Control:  
Selects the source for LED_0.  
0000 = LINK OK  
0001 = LINK OK + RX/TX Activity  
0010 = LINK OK + TX Activity  
0011 = LINK OK + RX Activity  
0100 = LINK OK + 100BASE-T1 100BASE-T1 Master  
0101 = LINK OK + 100BASE-T1 100BASE-T1 Slave  
0110 = TX/RX Activity  
0111 = Reserved  
1000 = Reserved  
1001 = Link Lost (remains on until register 0x1 is read)  
1010 = Blink for PRBS error (remains ON for single error,  
remains until counter is cleared)  
1011 = Reserved  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Reserved  
版权 © 2017–2018, Texas Instruments Incorporated  
71  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.36 xMII_IMP_CTRL Register 0x0461 – xMII Impedance Control Register  
63. xMII Impedance Control Register (xMII_IMP_CTRL)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
Reserved  
RW-0000 0100 000  
4
3
0
xMII Impedance Control  
RW-1 000  
Reserved  
RW-0  
59. xMII_IMP_CTRL Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:5  
Reserved  
RW  
0000 0100 Reserved  
000  
4:1  
xMII Impedance Control  
RW  
1 000  
MAC Impedance Control:  
MAC Impedance Control sets the series termination value within  
the DP83TC811R-Q1. This field controls the following pins:  
RX_D[3:0], RX_CLK, RX_ER, and RX_DV.  
0 000 = 99 Ω  
0 001 = 91 Ω  
0 010 = 84 Ω  
0 011 = 78 Ω  
0 100 = 73 Ω  
0 101 = 69 Ω  
0 110 = 65 Ω  
0 111 = 61 Ω  
1 000 = 58 Ω (default)  
1 001 = 55 Ω  
1 010 = 53 Ω  
1 011 = 50 Ω  
1 100 = 48 Ω  
1 101 = 46 Ω  
1 110 = 44 Ω  
1 111 = 42 Ω  
Note: Individual pin control is not supported.  
0
Reserved  
RW  
0
Reserved  
72  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.37 IO_CTRL1 Register 0x0462 – GPIO Control Register #1  
64. GPIO Control Register #1 (IO_CTRL1)  
15  
14  
6
13  
12  
11  
10  
9
8
0
Reserved  
RO-0  
LED_1 Clock Select  
RW-000  
Reserved  
RO-0  
LED_1 GPIO Select  
RW-000  
7
5
4
3
2
1
Reserved  
RO-0  
LED_0 Clock Select  
RW-000  
Reserved  
RO-0  
LED_0 GPIO Select  
RW-000  
60. IO_CTRL1 Field Descriptions  
BIT  
15  
FIELD  
Reserved  
TYPE  
RO  
DEFAULT DESCRIPTION  
0
Reserved  
14:12  
LED_1 Clock Select  
RW  
000  
LED_1 Clock Select:  
000 = XI Clock  
001 = TX_TCLK Clock  
11  
Reserved  
RO  
0
Reserved  
10:8  
LED_1 GPIO Select  
RW  
000  
LED_1 GPIO Select:  
000 = LED_1  
001 = Clock  
010 = WoL  
011 = Undervoltage Indication  
100 = 1588 Transmit  
101 = 1588 Receive  
110 = Constant '0'  
111 = Constant '1'  
7
Reserved  
RO  
0
Reserved  
6:4  
LED_0 Clock Select  
RW  
000  
LED_0 Clock Select:  
000 = XI Clock  
001 = TX_TCLK Clock  
3
Reserved  
RO  
0
Reserved  
2:0  
LED_0 GPIO Select  
RW  
000  
LED_0 GPIO Select:  
000 = LED_0  
001 = Clock  
010 = WoL  
011 = Undervoltage Indication  
100 = 1588 Transmit  
101 = 1588 Receive  
110 = Constant '0'  
111 = Constant '1'  
版权 © 2017–2018, Texas Instruments Incorporated  
73  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.38 IO_CTRL2 Register 0x0463 – GPIO Control Register #2  
65. GPIO Control Register #2 (IO_CTRL2)  
15  
7
14  
13  
12  
4
11  
3
10  
9
8
0
Reserved  
RO-0  
6
5
2
1
CLKOUT Clock Select  
RW-0000  
Reserved  
RO-0  
CLKOUT GPIO Select  
RW-001  
61. IO_CTRL2 Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:8  
7:4  
Reserved  
0
Reserved  
CLKOUT Clock Select  
RW  
0000  
CLKOUT Clock Select:  
0000 = XI Clock  
0001 = TX_TCLK Clock  
3
Reserved  
RO  
0
Reserved  
2:0  
CLKOUT GPIO Select  
RW  
001  
CLKOUT GPIO Select:  
000 = LED_2  
001 = Clock  
010 = WoL  
011 = Undervoltage Indication  
100 = 1588 Transmit  
101 = 1588 Receive  
110 = Constant '0'  
111 = Constant '1'  
74  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.39 STRAP Register 0x0467 – Strap Configuration Register  
66. Strap Configuration Register (STRAP)  
15  
LED_1 Bootstrap  
RO/Strap  
14  
13  
RX_DV Bootstrap  
RO/Strap  
12  
11  
RX_ER Bootstrap  
RO/Strap  
10  
9
8
LED_0 Bootstrap  
RO/Strap  
7
6
5
4
3
2
1
0
RX_D0 Bootstrap  
RO/Strap  
RX_D1 Bootstrap  
RO/Strap  
RX_D2 Bootstrap  
RO/Strap  
RX_D3 Bootstrap  
RO/Strap  
62. STRAP Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:14  
LED_1 Bootstrap  
RO  
Strap  
Strap  
Strap  
Strap  
Strap  
LED_1 Bootstrap Mode:  
00 = Mode 1; Autonomous Enabled  
01 = Mode 2; RESERVED  
10 = Mode 3; RESERVED  
11 = Mode 4; Autonomous Disabled  
Refer to the strap section in the data sheet for information  
regarding PHY configuration.  
Note: Bit values ('00', '01', '10', '11') are just used to indicate the  
Strap Mode and do not reflect the same bit sequence that is  
defined in the strap section of the data sheet.  
13:12  
11:10  
9:8  
RX_DV Bootstrap  
RX_ER Bootstrap  
LED_0 Bootstrap  
RX_D0 Bootstrap  
RO  
RO  
RO  
RO  
RX_DV Bootstrap Mode:  
00 = Mode 1; PHY_AD[0] = 0, PHY_AD[2] = 0  
01 = Mode 2; PHY_AD[0] = 0, PHY_AD[2] = 1  
10 = Mode 3; PHY_AD[0] = 1, PHY_AD[2] = 1  
11 = Mode 4; PHY_AD[0] = 1, PHY_AD[2] = 0  
Refer to the strap section in the data sheet for information  
regarding PHY configuration.  
Note: Bit values ('00', '01', '10', '11') are just used to indicate the  
Strap Mode and do not reflect the same bit sequence that is  
defined in the strap section of the data sheet.  
RX_ER Bootstrap Mode:  
00 = Mode 1; PHY_AD[1] = 0, PHY_AD[3] = 0  
01 = Mode 2; PHY_AD[1] = 0, PHY_AD[3] = 1  
10 = Mode 3; PHY_AD[1] = 1, PHY_AD[3] = 1  
11 = Mode 4; PHY_AD[1] = 1, PHY_AD[3] = 0  
Refer to the strap section in the data sheet for information  
regarding PHY configuration.  
Note: Bit values ('00', '01', '10', '11') are just used to indicate the  
Strap Mode and do not reflect the same bit sequence that is  
defined in the strap section of the data sheet.  
LED_0 Bootstrap Mode:  
00 = Mode 1; 100BASE-T1 Slave Mode  
01 = Mode 2; RESERVED  
10 = Mode 3; RESERVED  
11 = Mode 4; 100BASE-T1 Master Mode  
Refer to the strap section in the data sheet for information  
regarding PHY configuration.  
Note: Bit values ('00', '01', '10', '11') are just used to indicate the  
Strap Mode and do not reflect the same bit sequence that is  
defined in the strap section of the data sheet.  
7:6  
RX_D0 Bootstrap Mode:  
00 = Mode 1; MAC[0] = 0, TEST[0] = 0  
01 = Mode 2; MAC[0] = 0, TEST[0] = 1  
10 = Mode 3; MAC[0] = 1, TEST[0] = 1  
11 = Mode 4; MAC[0] = 1, TEST[0] = 0  
Refer to the strap section in the data sheet for information  
regarding PHY configuration.  
Note: Bit values ('00', '01', '10', '11') are just used to indicate the  
Strap Mode and do not reflect the same bit sequence that is  
defined in the strap section of the data sheet.  
版权 © 2017–2018, Texas Instruments Incorporated  
75  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
62. STRAP Field Descriptions (接下页)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
5:4  
RX_D1 Bootstrap  
RO  
Strap  
Strap  
Strap  
RX_D1 Bootstrap Mode:  
00 = Mode 1; MAC[1] = 0, TEST[1] = 0  
01 = Mode 2; MAC[1] = 0, TEST[1] = 1  
10 = Mode 3; MAC[1] = 1, TEST[1] = 1  
11 = Mode 4; MAC[1] = 1, TEST[1] = 0  
Refer to the strap section in the data sheet for information  
regarding PHY configuration.  
Note: Bit values ('00', '01', '10', '11') are just used to indicate the  
Strap Mode and do not reflect the same bit sequence that is  
defined in the strap section of the data sheet.  
3:2  
RX_D2 Bootstrap  
RO  
RX_D2 Bootstrap Mode:  
00 = Mode 1; MAC[2] = 0, TEST[2] = 0  
01 = Mode 2; MAC[2] = 0, TEST[2] = 1  
10 = Mode 3; MAC[2] = 1, TEST[2] = 1  
11 = Mode 4; MAC[2] = 1, TEST[2] = 0  
Refer to the strap section in the data sheet for information  
regarding PHY configuration.  
Note: Bit values ('00', '01', '10', '11') are just used to indicate the  
Strap Mode and do not reflect the same bit sequence that is  
defined in the strap section of the data sheet.  
1:0  
RX_D3 Bootstrap  
RO  
RX_D3 Bootstrap Mode:  
00 = Mode 1; Required Strap Mode  
01 = Mode 2; RESERVED  
10 = Mode 3; RESERVED  
11 = Mode 4; RESERVED  
Refer to the strap section in the data sheet for information  
regarding PHY configuration.  
Note: Bit values ('00', '01', '10', '11') are just used to indicate the  
Strap Mode and do not reflect the same bit sequence that is  
defined in the strap section of the data sheet.  
76  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.40 LED_CFG2 Register 0x0469 – LED Configuration Register #2  
67. LED Configuration Register #2 (LED_CFG2)  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
LED_2 Polarity  
LED_2  
Override Value  
LED_2  
Override  
Enable  
RO-0  
5
RO-0  
RO-0  
1
RO-0  
0
7
6
4
3
2
Reserved  
LED_1 Polarity  
LED_1  
Override Value  
LED_1  
Override  
Enable  
Reserved  
LED_0 Polarity  
LED_0  
Override Value  
LED_0  
Override  
Enable  
RO-0  
RW/Strap  
RO-0  
RO-0  
RO-0  
RW/Strap  
RO-0  
63. LED_CFG2 Field Descriptions  
BIT  
15:11  
10  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
Reserved  
0
0
Reserved  
LED_2 Polarity  
RW  
LED_2 Polarity:  
1 = Active HIGH  
0 = Active LOW  
9
8
LED_2 Override Value  
LED_2 Override Enable  
RW  
RW  
0
0
LED_2 Override Value:  
1 = Force HIGH  
0 = Force LOW  
LED_2 Override Enable:  
1 = Enable force override  
0 = Normal operation  
7
6
Reserved  
RO  
0
Reserved  
LED_1 Polarity  
RW  
Strap  
LED_1 Polarity:  
1 = Active HIGH  
0 = Active LOW  
5
4
LED_1 Override Value  
LED_1 Override Enable  
RW  
RW  
0
0
LED_1 Override Value:  
1 = Force HIGH  
0 = Force LOW  
LED_1 Override Enable:  
1 = Enable force override  
0 = Normal operation  
3
2
Reserved  
RO  
0
Reserved  
LED_0 Polarity  
RW  
Strap  
LED_0 Polarity:  
1 = Active HIGH  
0 = Active LOW  
1
0
LED_0 Override Value  
LED_0 Override Enable  
RW  
RW  
0
0
LED_0 Override Value:  
1 = Force HIGH  
0 = Force LOW  
LED_0 Override Enable:  
1 = Enable force override  
0 = Normal operation  
版权 © 2017–2018, Texas Instruments Incorporated  
77  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.41 MON_CFG1 Register 0x0480 – Monitor Configuration Register #1  
68. Monitor Configuration Register #1 (MON_CFG1)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
1
8
0
Reserved  
RO-0  
2
Monitors Configuration Cycle Period  
RW-0010  
64. MON_CFG1 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:4  
3:0  
Reserved  
RO  
0
Reserved  
Monitors Configuration Cycle Period RW  
0010  
Monitors Configuration Cycle Period:  
If monitors are set to periodic mode, bits[3:0] determine the  
sampling cycle time.  
Cycle time has a range of 16ms - 240ms.  
Example:  
If value of bits[3:0] = 0b0001, sample time is 16ms.  
Note: 0b0000 is invalid  
8.6.42 MON_CFG2 Register 0x0481 – Monitor Configuration Register #2  
69. Monitor Configuration Register #2 (MON_CFG2)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
8
Reserved  
RO-0000 0000 1010 00  
4
3
1
0
Temperature /  
Temperature /  
Supply Monitor Supply Monitor  
Periodic Mode  
Start  
RW-1  
RW/SC-0  
65. MON_CFG2 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:2  
Reserved  
RW  
0000 0000 Reserved  
1010 00  
1
Temperature / Supply Monitor  
Periodic Mode  
RW  
1
Temperature and Supply Monitor Periodic Mode:  
1 = Temperature and supply monitor are activated periodically  
0 = Temperature and supply monitor is a single run  
Note: When temperature and supply monitor are activated  
periodically, cycle time is determined by bits[3:0] in register  
0x480.  
0
Temperature / Supply Monitor Start RW, SC  
0
Temperature and Supply Monitor Start:  
1 = Start temperature and supply monitor function (this bit self-  
clears)  
0 = Normal operation  
78  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.43 MON_CFG3 Register 0x0482 – Monitor Configuration Register #3  
70. Monitor Configuration Register #3 (MON_CFG3)  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
RW-0  
Undervoltage Threshold Configuration  
RW-111  
Reserved  
RW-0  
Overvoltage Threshold Configuration  
RW-000  
7
6
5
4
3
2
1
0
Reserved  
RW-0  
Overtemperature Threshold Configuration  
RW-111  
66. MON_CFG3 Field Descriptions  
BIT  
15  
FIELD  
TYPE  
RW  
DEFAULT DESCRIPTION  
Reserved  
0
Reserved  
14:12  
Undervoltage Threshold  
Configuration  
RW  
111  
Undervoltage Threshold Configuration:  
000 = Voltage > VDD + 9%  
001 = VDD + 1.5% < Voltage < VDD + 9%  
010 = VDD - 4.5% < Voltage < VDD + 1.5%  
011 = VDD - 7.5% < Voltage < VDD - 4.5%  
100 = VDD - 10.5% < Voltage < VDD - 7.5%  
101 = VDD - 13.5% < Voltage < VDD - 10.5%  
110 = VDD - 16.5% < Voltage < VDD - 13.5%  
111 = Voltage < VDD - 16.5%  
Note 1: VDD = 1.8 V, 2.5 V or 3.3 V  
Note 2: VDD +/- X% represents VDD +/- VDD*(X)/100  
11  
Reserved  
RW  
RW  
0
Reserved  
10:8  
Overvoltage Threshold  
Configuration  
000  
Overvoltage Threshold Configuration:  
000 = Voltage > VDD + 9%  
001 = VDD + 1.5% < Voltage < VDD + 9%  
010 = VDD - 4.5% < Voltage < VDD + 1.5%  
011 = VDD - 7.5% < Voltage < VDD - 4.5%  
100 = VDD - 10.5% < Voltage < VDD - 7.5%  
101 = VDD - 13.5% < Voltage < VDD - 10.5%  
110 = VDD - 16.5% < Voltage < VDD - 13.5%  
111 = Voltage < VDD - 16.5%  
Note 1: VDD = 1.8 V, 2.5 V or 3.3 V  
Note 2: VDD +/- X% represents VDD +/- VDD*(X)/100  
7:3  
2:0  
Reserved  
RW  
RW  
0
Reserved  
Overtemperature Threshold  
Configuration  
111  
Overtemperature Threshold Configuration:  
000 = Temperature < -40oC  
001 = -40oC < Temperature < 0oC  
010 = 0oC < Temperature < 30oC  
011 = 30oC < Temperature < 70oC  
100 = 70oC < Temperature < 100oC  
101 = 100oC < Temperature < 135oC  
110 = 135oC < Temperature < 165oC  
111 = Temperature > 165oC  
版权 © 2017–2018, Texas Instruments Incorporated  
79  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.44 MON_STAT1 Register 0x0483 – Monitor Status Register #1  
71. Monitor Status Register #1 (MON_STAT1)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
1
8
0
Reserved  
RO-0  
2
Temperature Monitor Value  
RO-000  
67. MON_STAT1 Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:3  
2:0  
Reserved  
0
Reserved  
Temperature Monitor Value  
RO  
000  
Temperature Monitor Value:  
000 = Temperature < -40oC  
001 = -40oC < Temperature < 0oC  
010 = 0oC < Temperature < 30oC  
011 = 30oC < Temperature < 70oC  
100 = 70oC < Temperature < 100oC  
101 = 100oC < Temperature < 135oC  
110 = 135oC < Temperature < 165oC  
111 = Temperature > 165oC  
8.6.45 MON_STAT2 Register 0x0484 – Monitor Status Register #2  
72. Monitor Status Register #2 (MON_STAT2)  
15  
14  
6
13  
12  
4
11  
10  
9
8
0
Reserved  
RO-0  
VDDIO Supply Monitor Value  
RO-000  
Reserved  
RO-0  
VDDA Supply Monitor Value  
RO-000  
7
5
3
2
1
Reserved  
RO-0  
68. MON_STAT2 Field Descriptions  
BIT  
15  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
Reserved  
0
Reserved  
14:12  
VDDIO Supply Monitor Value  
RO  
000  
VDDIO Supply Monitor Value:  
000 = Voltage > VDDIO + 9%  
001 = VDDIO + 1.5% < Voltage < VDDIO + 9%  
010 = VDDIO - 4.5% < Voltage < VDDIO + 1.5%  
011 = VDDIO - 7.5% < Voltage < VDDIO - 4.5%  
100 = VDDIO - 10.5% < Voltage < VDDIO - 7.5%  
101 = VDDIO - 13.5% < Voltage < VDDIO - 10.5%  
110 = VDDIO - 16.5% < Voltage < VDDIO - 13.5%  
111 = Voltage < VDDIO - 16.5%  
Note 1: VDDIO = 1.8 V, 2.5 V or 3.3 V  
Note 2: VDDIO +/- X% represents VDDIO +/- VDDIO*(X)/100  
11  
Reserved  
RO  
RO  
0
Reserved  
10:8  
VDDA Supply Monitor Value  
000  
VDDA Supply Monitor Value:  
000 = Voltage > VDDA + 9%  
001 = VDDA + 1.5% < Voltage < VDDA + 9%  
010 = VDDA - 4.5% < Voltage < VDDA + 1.5%  
011 = VDDA - 7.5% < Voltage < VDDA - 4.5%  
100 = VDDA - 10.5% < Voltage < VDDA - 7.5%  
101 = VDDA - 13.5% < Voltage < VDDA - 10.5%  
110 = VDDA - 16.5% < Voltage < VDDA - 13.5%  
111 = Voltage < VDDA - 16.5%  
Note 1: VDDA = 3.3 V  
Note 2: VDDA +/- X% represents VDDA +/- VDDA*(X)/100  
7:0  
Reserved  
RO  
0
Reserved  
80  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.46 PCS_CTRL1 Register 0x0485 – PCS Control Register #1  
73. PCS Control Register #1 (PCS_CTRL1)  
15  
14  
13  
IPG Scrambler  
Lock Check  
Disable  
12  
Link Control  
11  
10  
Reserved  
9
1
8
Reserved  
RW-0  
Link-Up  
Descrambler  
Lock  
Configuration  
RW-0  
5
RW-1  
4
RW-0  
2
RW-0111 1000  
0
7
6
3
Link-Up Descrambler Lock Configuration  
RW-0111 1000  
69. PCS_CTRL1 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:14  
13  
Reserved  
RW  
0
0
Reserved  
IPG Scrambler Lock Check Disable RW  
IPG Scrambler Lock Check Diable:  
1 = Scrambler lock check is disabled during IPG  
0 = Scrambler lock check is enabled during IPG  
12  
Link Control  
RW  
1
Link Control:  
1 = Enable training and link-up to start  
0 = Disable training and link-up  
11:9  
8:0  
Reserved  
RO  
0
Reserved  
Link-Up Descrambler Lock  
Configuration  
RW  
0111 1000 Link-Up Descrambler Lock Configuration:  
Determines the number of initial idle symbols to determine  
descrambler lock (LINK)  
Default set to 120 IDLES  
8.6.47 PCS_CTRL2 Register – 0x0486 PCS Control Register #2  
74. PCS Control Register #2 (PCS_CTRL2)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Reserved  
RW-00  
Descrambler Error Count Configuration  
RW-00 1010  
7
6
5
4
3
2
Reserved  
RW-000  
Remote Receiver Configuration  
RW-0 0101  
70. PCS_CTRL2 Field Descriptions  
BIT  
FIELD  
TYPE  
RW  
DEFAULT DESCRIPTION  
15:14  
13:9  
Reserved  
00  
Reserved  
Descrambler Error Count  
Configuration  
RW  
00 101  
Descrambler Error Count Configuration:  
Determines the number of error (non-idle) symbols to determine  
descrambler loss of lock (no LINK)  
Default set to 10 symbols  
8:5  
4:0  
Reserved  
RW  
RW  
0 000  
Reserved  
Remote Receiver Configuration  
0 0101  
Remote Receiver Configuration:  
Determines the number of error symbols for remote receiver  
status to go LOW.  
Default set to 5 symbols  
版权 © 2017–2018, Texas Instruments Incorporated  
81  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.48 LPS_CTRL2 Register 0x0487 – LPS Control Register #2  
75. LPS Control Register #2 (LPS_CTRL2)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Reserved  
RW-0000 1010 0000 000  
4
3
2
PCS LPS  
Enable  
RW--0  
71. LPS_CTRL2 Register 0x0487 – LPS Control Register #2  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:1  
Reserved  
RW  
0000 1010 Reserved  
0000 000  
0
PCS LPS Enable  
RW  
0
PCS LPS Enable:  
1 = LPS enabled in PCS  
0 = LPS disabled in PCS  
Device must have this bit enabled to transmit and receive LPS  
code-groups.  
82  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.49 INTER_CFG Register 0x0489 – Interleave Configuration  
76. Interleave Configuration (INTER_CFG)  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
Reserved  
RO-0  
5
4
3
2
Force  
Interleave  
Interleave  
Enable  
Interleave  
Detection  
Enable  
RW-0  
RW-0  
RW-1  
72. INTER_CFG Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:3  
2
Reserved  
0
0
Reserved  
Force Interleave  
RW  
Force Interleave:  
1 = Force interleave on TX  
0 = Normal operation  
1
0
Interleave Enable  
RW  
RW  
0
1
Interleave Enable:  
1 = Enable interleave on TX if interleave detected on RX  
0 = Normal operation  
Interleave Detection Enable  
Interleave Detection Enable:  
1 = Enable interleave detection  
0 = Disable interleave detection  
8.6.50 LPS_CTRL3 Register 0x0493 – LPS Control Register #3  
77. LPS Control Register #3 (LPS_CTRL3)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Reserved  
RW-0  
7
6
5
4
3
2
sleep_rqst_timer Setting  
RW-01  
Reserved  
RW-0100  
73. LPS_CTRL3 Register 0x0493 – LPS Control Register #3  
BIT  
FIELD  
TYPE  
RW  
DEFAULT DESCRIPTION  
15:6  
5:4  
Reserved  
0
Reserved  
sleep_rqst_timer  
RW  
01  
sleep_rqst_timer Setting:  
00 = 0.4 ms  
01 = 1 ms  
10 = 4 ms  
11 = 8 ms  
3:0  
Reserved  
RW  
0100  
Reserved  
版权 © 2017–2018, Texas Instruments Incorporated  
83  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.51 JAB_CFG Register 0x0496 – Jabber Configuration Register  
78. Jabber Configuration Register (JAB_CFG)  
15  
7
14  
6
13  
12  
4
11  
3
10  
9
8
Reserved  
RO-0  
Jabber Timout Configuration  
RW-100 0100 1100  
5
2
1
0
Jabber Timout Configuration  
RW-100 0100 1100  
74. JAB_CFG Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
Reserved  
100 0100 Jabber Timout Configuration:  
15:11  
10:0  
Reserved  
0
Jabber Timout Configuration  
RW  
1100  
Sets time to determine a jabber condition.  
Default set to 1100us.  
Note: Convert value read in this register to decimal format to  
find the time in micro seconds  
8.6.52 TEST_MODE_CTRL Register 0x0497 – Test Mode Control Register  
79. Test Mode Control Register (TEST_MODE_CTRL)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
8
Reserved  
Test Mode 1 Symbol Control  
RW-01 1100  
RO-0000 00  
1
0
Reserved  
RO-0000  
75. TEST_MODE_CTRL Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:10  
9:4  
Reserved  
0000 00  
01 1100  
Reserved  
Test Mode 1 Symbol Control:  
Test Mode 1 Symbol Control  
RW  
Sets the number of +1/-1 symbols to send in Test Mode 1  
Number of Symbols = (2*FIELD_VALUE + 2)  
Example:  
FIELD_VALUE = 28  
Number of Symbols = (2*28 + 2) = 58  
Time = 58*15ns = 870ns  
3:0  
Reserved  
RW  
0000  
Reserved  
84  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.53 WOL_CFG Register 0x04A0 – WoL Configuration Register  
80. WoL Configuration Register (WOL_CFG)  
15  
14  
13  
12  
11  
10  
9
8
Bit Nibble Swap  
SFD Byte  
CRC Gate  
WoL Level  
Change  
WoL Pulse Indication Select  
WoL Indication  
Select  
Indication Clear  
RW-00  
RW-0  
5
RW-1  
4
W/SC-0  
RW-00  
RW-0  
0
7
6
3
2
1
WoL Enable  
Bit Mask Flag  
Secure-ON  
Enable  
Reserved  
WoL Pattern  
Enable  
WoL Magic  
Packet Enable  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
76. WOL_CFG Field Descriptions  
BIT  
FIELD  
Bit Nibble Swap  
TYPE  
DEFAULT DESCRIPTION  
15:14  
RW  
00  
Bit Nibble Swap:  
00 = normal order, no swap (RXD [3:0])  
01 = swap bits order (RXD [0:3])  
10 = swap nibbles order (RXD [3:0] , RXD [7:4])  
11 = swap bits order in each nibble (RXD [4:7] , RXD [0:3])  
13  
12  
SFD Byte  
CRC Gate  
RW  
RW  
0
1
SFD Byte Search:  
1 = SFD is 0x5D (i.e. Receive module searches for 0x5D)  
0 = SFD is 0xD5 (i.e. Receive module searches for 0xD5)  
CRC Gate:  
1 = Bad CRC gates Magic Packet and Pattern Indications  
0 = Disable bad CRC gate  
Note: If Bad CRC gate is disabled, there will be no indication  
(status, interrupt, GPIO) if the device receives a bad CRC.  
11  
WoL Level Change Indication Clear W, SC  
0
WoL Level Change Indication Clear:  
If WoL Indication is set for Level change mode, this bit clears the  
level upon a write.  
10:9  
WoL Pulse Indication Select  
RW  
00  
WoL Pulse Indication Select:  
Only valid when WoL Indication is set for Pulse mode.  
00 = 8 clock cycles (of 100-MHz clock)  
01 = 16 clock cycles  
10 = 32 clock cycles  
11 = 64 clock cycles  
8
7
WoL Indication Select  
WoL Enable  
RW  
RW  
0
0
WoL Indication Select:  
1 = Level change mode  
0 = Pulse mode  
WoL Enable:  
1 = Enable Wake-on-LAN (WoL)  
0 = normal operation  
6
5
Bit Mask Flag  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
Bit Mask Flag  
Secure-ON Enable  
Reserved  
Enable Secure-ON password for Magic Packets  
Reserved  
4:2  
1
WoL Pattern Enable  
WoL Magic Packet Enable  
Enable Interrupt upon reception of packet with configured pattern  
Enable Interrupt upon reception of Magic Packet  
0
版权 © 2017–2018, Texas Instruments Incorporated  
85  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.54 WOL_STAT Register 0x04A1 – WoL Status Register  
81. WoL Status Register (WOL_STAT)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Reserved  
WoL Interrupt  
Source  
Reserved  
RO-0  
RO-0  
RW-0  
4
7
6
5
3
2
SFD Error  
Bad CRC  
Secure-On  
Hack Flag  
Reserved  
WoL Pattern  
Status  
WoL Magic  
Packet Status  
RO/LH/SC-0  
RO/LH/SC-0  
RO/LH/SC-0  
RO/LH/SC-0  
RO/LH/SC-0  
RO/LH/SC-0  
77. WOL_STAT Field Descriptions  
BIT  
15:13  
12  
FIELD  
Reserved  
TYPE  
RO  
DEFAULT DESCRIPTION  
0
0
Reserved  
WoL Interrupt Source:  
WoL Interrupt Source  
RW  
Source of Interrupt for bit [1] of register 0x13.  
1 = WoL Interrupt  
0 = Data Polarity Interrupt  
When enabling WoL, this bit is automatically set to WoL  
Interrupt.  
11:8  
7
Reserved  
SFD Error  
RO  
0
0
Reserved  
RO, LH,  
SC  
SFD Error:  
1 = Packet with SFD error (without the SFD byte indicated in bit  
[13] register 0x4A0)  
0 = No SFD error  
6
5
Bad CRC  
RO, LH,  
SC  
0
0
Bad CRC:  
1 = Bad CRC was received  
0 = No bad CRC received  
Secure-On Hack Flag  
RO, LH,  
SC  
Secure-ON Hack Flag:  
1 = Invalid Password detected in Magic Packet  
0 = Valid Secure-ON Password  
4:2  
1
Reserved  
RO, LH,  
SC  
0
0
Reserved  
WoL Pattern Status  
RO, LH,  
SC  
WoL Pattern Status:  
1 = Valid packet with configured pattern received  
0 = No valid packet with configured pattern received  
0
WoL Magic Packet Status  
RO, LH,  
SC  
0
WoL Magic Packet Status:  
1 = Valid Magic Packet received  
0 = No valid Magic Packet received  
86  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.55 WOL_DA1 Register 0x04A2 – WoL Destination Address Configuration Register #1  
82. WoL Destination Address Configuration Register #1 (WOL_DA1)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
MAC Destination Address Byte 4  
RW-0  
4
3
MAC Destination Address Byte 5  
RW-0  
78. WOL_DA1 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
MAC Destination Address Byte 4  
RW  
0
Perfect Match Data:  
Configured for MAC Destination Address  
7:0  
MAC Destination Address Byte 5  
RW  
0
Perfect Match Data:  
Configured for MAC Destination Address  
8.6.56 WOL_DA2 Register 0x04A3 – WoL Destination Address Configuration Register #2  
83. WoL Destination Address Configuration Register #2 (WOL_DA2)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
MAC Destination Address Byte 2  
RW-0  
4
3
MAC Destination Address Byte 3  
RW-0  
79. WOL_DA2 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
MAC Destination Address Byte 2  
RW  
0
Perfect Match Data:  
Configured for MAC Destination Address  
7:0  
MAC Destination Address Byte 3  
RW  
0
Perfect Match Data:  
Configured for MAC Destination Address  
8.6.57 WOL_DA3 Register 0x04A4 – WoL Destination Address Configuration Register #3  
84. WoL Destination Address Configuration Register #3 (WOL_DA3)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
MAC Destination Address Byte 0  
RW-0  
4
3
MAC Destination Address Byte 1  
RW-0  
80. WOL_DA3 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
MAC Destination Address Byte 0  
RW  
0
Perfect Match Data:  
Configured for MAC Destination Address  
7:0  
MAC Destination Address Byte 1  
RW  
0
Perfect Match Data:  
Configured for MAC Destination Address  
版权 © 2017–2018, Texas Instruments Incorporated  
87  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.58 RXSOP1 Register 0x04A5 – Receive Secure-ON Password Register #1  
85. Receive Secure-ON Password Register #1 (RXSOP1)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Secure-ON Password Byte 1  
RW-0  
4
3
Secure-ON Password Byte 0  
RW-0  
81. RXSOP1 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Secure-ON Password Byte 1  
RW  
0
Secure-ON Password Select:  
Secure-ON password for Magic Packets  
7:0  
Secure-ON Password Byte 0  
RW  
0
Secure-ON Password Select:  
Secure-ON password for Magic Packets  
8.6.59 RXSOP2 Register 0x04A6 – Receive Secure-ON Password Register #2  
86. Receive Secure-ON Password Register #2 (RXSOP2)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Secure-ON Password Byte 3  
RW-0  
4
3
Secure-ON Password Byte 2  
RW-0  
82. RXSOP2 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Secure-ON Password Byte 3  
RW  
0
Secure-ON Password Select:  
Secure-ON password for Magic Packets  
7:0  
Secure-ON Password Byte 2  
RW  
0
Secure-ON Password Select:  
Secure-ON password for Magic Packets  
88  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.60 RXSOP3 Register 0x04A7 – Receive Secure-ON Password Register #3  
87. Receive Secure-ON Password Register #3 (RXSOP3)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Secure-ON Password Byte 5  
RW-0  
4
3
Secure-ON Password Byte 4  
RW-0  
83. RXSOP3 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Secure-ON Password Byte 5  
RW  
0
Secure-ON Password Select:  
Secure-ON password for Magic Packets  
7:0  
Secure-ON Password Byte 4  
RW  
0
Secure-ON Password Select:  
Secure-ON password for Magic Packets  
8.6.61 RXPAT1 Register 0x04A8 – Receive Pattern Register #1  
88. Receive Pattern Register #1 (RXPAT1)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Pattern Byte 1  
RW-0  
7
6
5
4
3
2
Pattern Byte 0  
RW-0  
84. RXPAT1 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 1  
RW  
0
Pattern Configuration:  
Configures byte 1 of the pattern  
7:0  
Pattern Byte 0  
RW  
0
Pattern Configuration:  
Configures byte 0 of the pattern  
版权 © 2017–2018, Texas Instruments Incorporated  
89  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.62 RXPAT2 Register 0x04A9 – Receive Pattern Register #2  
89. Receive Pattern Register #2 (RXPAT2)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
1
8
0
Pattern Byte 3  
RW-0  
2
Pattern Byte 2  
RW-0  
85. RXPAT2 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 3  
RW  
0
Pattern Configuration:  
Configures byte 3 of the pattern  
7:0  
Pattern Byte 2  
RW  
0
Pattern Configuration:.  
Configures byte 2 of the pattern  
8.6.63 RXPAT3 Register 0x04AA – Receive Pattern Register #3  
90. Receive Pattern Register #3 (RXPAT3)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Pattern Byte 5  
RW-0  
7
6
5
4
3
2
Pattern Byte 4  
RW-0  
86. RXPAT3 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 5  
RW  
0
Pattern Configuration:  
Configures byte 5 of the pattern  
7:0  
Pattern Byte 4  
RW  
0
Pattern Configuration:  
Configures byte 4 of the pattern  
90  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.64 RXPAT4 Register 0x04AB – Receive Pattern Register #4  
91. Receive Pattern Register #4 (RXPAT4)  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
Pattern Byte 7  
RW-0  
5
4
3
2
Pattern Byte 6  
RW-0  
87. RXPAT4 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 7  
RW  
0
Pattern Configuration:  
Configures byte 7 of the pattern  
7:0  
Pattern Byte 6  
RW  
0
Pattern Configuration:  
Configures byte 6 of the pattern  
8.6.65 RXPAT5 Register 0x04AC – Receive Pattern Register #5  
92. Receive Pattern Register #5 (RXPAT5)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Pattern Byte 9  
RW-0  
7
6
5
4
3
2
Pattern Byte 8  
RW-0  
88. RXPAT5 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 9  
RW  
0
Pattern Configuration:  
Configures byte 9 of the pattern  
7:0  
Pattern Byte 8  
RW  
0
Pattern Configuration:  
Configures byte 8 of the pattern  
版权 © 2017–2018, Texas Instruments Incorporated  
91  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.66 RXPAT6 Register 0x04AD – Receive Pattern Register #6  
93. Receive Pattern Register #6 (RXPAT6)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 11  
RW-0  
4
3
2
Pattern Byte 10  
RW-0  
89. RXPAT6 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 11  
RW  
0
Pattern Configuration:  
Configures byte 11 of the pattern  
7:0  
Pattern Byte 10  
RW  
0
Pattern Configuration:  
Configures byte 10 of the pattern  
8.6.67 RXPAT7 Register 0x04AE – Receive Pattern Register #7  
94. Receive Pattern Register #7 (RXPAT7)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Pattern Byte 13  
RW-0  
7
6
5
4
3
2
Pattern Byte 12  
RW-0  
90. RXPAT7 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 13  
RW  
0
Pattern Configuration:  
Configures byte 13 of the pattern  
7:0  
Pattern Byte 12  
RW  
0
Pattern Configuration:  
Configures byte 12 of the pattern  
92  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.68 RXPAT8 Register 0x04AF – Receive Pattern Register #8  
95. Receive Pattern Register #8 (RXPAT8)  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
Pattern Byte 15  
RW-0  
5
4
3
2
Pattern Byte 14  
RW-0  
91. RXPAT8 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 15  
RW  
0
Pattern Configuration:  
Configures byte 15 of the pattern  
7:0  
Pattern Byte 14  
RW  
0
Pattern Configuration:  
Configures byte 14 of the pattern  
8.6.69 RXPAT9 Register 0x04B0 – Receive Pattern Register #9  
96. Receive Pattern Register #9 (RXPAT9)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Pattern Byte 17  
RW-0  
7
6
5
4
3
2
Pattern Byte 16  
RW-0  
92. RXPAT9 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 17  
RW  
0
Pattern Configuration:  
Configures byte 17 of the pattern  
7:0  
Pattern Byte 16  
RW  
0
Pattern Configuration:  
Configures byte 16 of the pattern  
版权 © 2017–2018, Texas Instruments Incorporated  
93  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.70 RXPAT10 Register 0x04B1 – Receive Pattern Register #10  
97. Receive Pattern Register #10 (RXPAT10)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 19  
RW-0  
4
3
2
Pattern Byte 18  
RW-0  
93. RXPAT10 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 19  
RW  
0
Pattern Configuration:  
Configures byte 19 of the pattern  
7:0  
Pattern Byte 18  
RW  
0
Pattern Configuration:  
Configures byte 18 of the pattern  
8.6.71 RXPAT11 Register 0x04B2 Receive Pattern Register #11  
98. Receive Pattern Register #11 (RXPAT11)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Pattern Byte 21  
RW-0  
7
6
5
4
3
2
Pattern Byte 20  
RW-0  
94. RXPAT11 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 21  
RW  
0
Pattern Configuration:  
Configures byte 21 of the pattern  
7:0  
Pattern Byte 20  
RW  
0
Pattern Configuration:  
Configures byte 20 of the pattern  
94  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.72 RXPAT12 Register 0x04B3 – Receive Pattern Register #12  
99. Receive Pattern Register #12 (RXPAT12)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 23  
RW-0  
4
3
2
Pattern Byte 22  
RW-0  
95. RXPAT12 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 23  
RW  
0
Pattern Configuration:  
Configures byte 23 of the pattern  
7:0  
Pattern Byte 22  
RW  
0
Pattern Configuration:  
Configures byte 22 of the pattern  
8.6.73 RXPAT13 Register 0x04B4 – Receive Pattern Register #13  
100. Receive Pattern Register #13 (RXPAT13)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 25  
RW-0  
4
3
2
Pattern Byte 24  
RW-0  
96. RXPAT13 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 25  
RW  
0
Pattern Configuration:  
Configures byte 25 of the pattern  
7:0  
Pattern Byte 24  
RW  
0
Pattern Configuration:  
Configures byte 24 of the pattern  
版权 © 2017–2018, Texas Instruments Incorporated  
95  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.74 RXPAT14 Register 0x04B5 – Receive Pattern Register #14  
101. Receive Pattern Register #14 (RXPAT14)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 27  
RW-0  
4
3
2
Pattern Byte 26  
RW-0  
97. RXPAT14 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 27  
RW  
0
Pattern Configuration:  
Configures byte 27 of the pattern  
7:0  
Pattern Byte 26  
RW  
0
Pattern Configuration:  
Configures byte 26 of the pattern  
8.6.75 RXPAT15 Register 0x04B6 – Receive Pattern Register #15  
102. Receive Pattern Register #15 (RXPAT15)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 29  
RW-0  
4
3
2
Pattern Byte 28  
RW-0  
98. RXPAT15 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 29  
RW  
0
Pattern Configuration:  
Configures byte 29 of the pattern  
7:0  
Pattern Byte 28  
RW  
0
Pattern Configuration:  
Configures byte 28 of the pattern  
96  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.76 RXPAT16 Register 0x04B7 – Receive Pattern Register #16  
103. Receive Pattern Register #16 (RXPAT16)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 31  
RW-0  
4
3
2
Pattern Byte 30  
RW-0  
99. RXPAT16 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 31  
RW  
0
Pattern Configuration:  
Configures byte 31 of the pattern  
7:0  
Pattern Byte 30  
RW  
0
Pattern Configuration:  
Configures byte 30 of the pattern  
8.6.77 RXPAT17 Register 0x04B8 – Receive Pattern Register #17  
104. Receive Pattern Register #17 (RXPAT17)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 33  
RW-0  
4
3
2
Pattern Byte 32  
RW-0  
100. RXPAT17 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 33  
RW  
0
Pattern Configuration:  
Configures byte 33 of the pattern  
7:0  
Pattern Byte 32  
RW  
0
Pattern Configuration:  
Configures byte 32 of the pattern  
版权 © 2017–2018, Texas Instruments Incorporated  
97  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.78 RXPAT18 Register 0x04B9 – Receive Pattern Register #18  
105. Receive Pattern Register #18 (RXPAT18)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 35  
RW-0  
4
3
2
Pattern Byte 34  
RW-0  
101. RXPAT18 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 35  
RW  
0
Pattern Configuration:  
Configures byte 35 of the pattern  
7:0  
Pattern Byte 34  
RW  
0
Pattern Configuration:  
Configures byte 34 of the pattern  
8.6.79 RXPAT19 Register 0x04BA Receive Pattern Register #19  
106. Receive Pattern Register #19 (RXPAT19)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Pattern Byte 37  
RW-0  
7
6
5
4
3
2
Pattern Byte 36  
RW-0  
102. RXPAT19 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 37  
RW  
0
Pattern Configuration:  
Configures byte 37 of the pattern  
7:0  
Pattern Byte 36  
RW  
0
Pattern Configuration:  
Configures byte 36 of the pattern  
98  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.80 RXPAT20 Register 0x04BB – Receive Pattern Register #20  
107. Receive Pattern Register #20 (RXPAT20)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 39  
RW-0  
4
3
2
Pattern Byte 38  
RW-0  
103. RXPAT20 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 39  
RW  
0
Pattern Configuration:  
Configures byte 39 of the pattern  
7:0  
Pattern Byte 38  
RW  
0
Pattern Configuration:  
Configures byte 38 of the pattern  
8.6.81 RXPAT21 Register 0x04BC – Receive Pattern Register #21  
108. Receive Pattern Register #21 (RXPAT21)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 41  
RW-0  
4
3
2
Pattern Byte 40  
RW-0  
104. RXPAT21 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 41  
RW  
0
Pattern Configuration:  
Configures byte 41 of the pattern  
7:0  
Pattern Byte 40  
RW  
0
Pattern Configuration:  
Configures byte 40 of the pattern  
版权 © 2017–2018, Texas Instruments Incorporated  
99  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.82 RXPAT22 Register 0x04BD – Receive Pattern Register #22  
109. Receive Pattern Register #22 (RXPAT22)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 43  
RW-0  
4
3
2
Pattern Byte 42  
RW-0  
105. RXPAT22 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 43  
RW  
0
Pattern Configuration:  
Configures byte 43 of the pattern  
7:0  
Pattern Byte 42  
RW  
0
Pattern Configuration:  
Configures byte 42 of the pattern  
8.6.83 RXPAT23 Register 0x04BE – Receive Pattern Register #23  
110. Receive Pattern Register #23 (RXPAT23)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 45  
RW-0  
4
3
2
Pattern Byte 44  
RW-0  
106. RXPAT23 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 45  
RW  
0
Pattern Configuration:  
Configures byte 45 of the pattern  
7:0  
Pattern Byte 44  
RW  
0
Pattern Configuration:  
Configures byte 44 of the pattern  
100  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.84 RXPAT24 Register 0x04BF – Receive Pattern Register #24  
111. Receive Pattern Register #24 (RXPAT24)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 47  
RW-0  
4
3
2
Pattern Byte 46  
RW-0  
107. RXPAT24 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 47  
RW  
0
Pattern Configuration:  
Configures byte 47 of the pattern  
7:0  
Pattern Byte 46  
RW  
0
Pattern Configuration:  
Configures byte 46 of the pattern  
8.6.85 RXPAT25 Register 0x04C0 – Receive Pattern Register #25  
112. Receive Pattern Register #25 (RXPAT25)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 49  
RW-0  
4
3
2
Pattern Byte 48  
RW-0  
108. RXPAT25 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 49  
RW  
0
Pattern Configuration:  
Configures byte 49 of the pattern  
7:0  
Pattern Byte 48  
RW  
0
Pattern Configuration:  
Configures byte 48 of the pattern  
版权 © 2017–2018, Texas Instruments Incorporated  
101  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.86 RXPAT26 Register 0x04C1 – Receive Pattern Register #26  
113. Receive Pattern Register #26 (RXPAT26)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 51  
RW-0  
4
3
2
Pattern Byte 50  
RW-0  
109. RXPAT26 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 51  
RW  
0
Pattern Configuration:  
Configures byte 51 of the pattern  
7:0  
Pattern Byte 50  
RW  
0
Pattern Configuration:  
Configures byte 50 of the pattern  
8.6.87 RXPAT27 Register 0x04C2 Receive Pattern Register #27  
114. Receive Pattern Register #27 (RXPAT27)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Pattern Byte 53  
RW-0  
7
6
5
4
3
2
Pattern Byte 52  
RW-0  
110. RXPAT27 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 53  
RW  
0
Pattern Configuration:  
Configures byte 53 of the pattern  
7:0  
Pattern Byte 52  
RW  
0
Pattern Configuration:  
Configures byte 52 of the pattern  
102  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.88 RXPAT28 Register 0x04C3 – Receive Pattern Register #28  
115. Receive Pattern Register #28 (RXPAT28)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 55  
RW-0  
4
3
2
Pattern Byte 54  
RW-0  
111. RXPAT28 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 55  
RW  
0
Pattern Configuration:  
Configures byte 55 of the pattern  
7:0  
Pattern Byte 54  
RW  
0
Pattern Configuration:  
Configures byte 54 of the pattern  
8.6.89 RXPAT29 Register 0x04C4 – Receive Pattern Register #29  
116. Receive Pattern Register #29 (RXPAT29)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 57  
RW-0  
4
3
2
Pattern Byte 56  
RW-0  
112. RXPAT29 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 57  
RW  
0
Pattern Configuration:  
Configures byte 57 of the pattern  
7:0  
Pattern Byte 56  
RW  
0
Pattern Configuration:  
Configures byte 56 of the pattern  
版权 © 2017–2018, Texas Instruments Incorporated  
103  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.90 RXPAT30 Register 0x04C5 – Receive Pattern Register #30  
117. Receive Pattern Register #30 (RXPAT30)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 59  
RW-0  
4
3
2
Pattern Byte 58  
RW-0  
113. RXPAT30 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 59  
RW  
0
Pattern Configuration:  
Configures byte 59 of the pattern  
7:0  
Pattern Byte 58  
RW  
0
Pattern Configuration:  
Configures byte 58 of the pattern  
8.6.91 RXPAT31 Register 0x04C6 – Receive Pattern Register #31  
118. Receive Pattern Register #31 (RXPAT31)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 61  
RW-0  
4
3
2
Pattern Byte 60  
RW-0  
114. RXPAT31 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 61  
RW  
0
Pattern Configuration:  
Configures byte 61 of the pattern  
7:0  
Pattern Byte 60  
RW  
0
Pattern Configuration:  
Configures byte 60 of the pattern  
104  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.92 RXPAT32 Register 0x04C7 – Receive Pattern Register #32  
119. Receive Pattern Register #32 (RXPAT32)  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Pattern Byte 63  
RW-0  
4
3
2
Pattern Byte 62  
RW-0  
115. RXPAT32 Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
15:8  
Pattern Byte 63  
RW  
0
Pattern Configuration:  
Configures byte 63 of the pattern  
7:0  
Pattern Byte 62  
RW  
0
Pattern Configuration:  
Configures byte 62 of the pattern  
8.6.93 RXPBM1 Register 0x04C8 – Receive Pattern Byte Mask Register #1  
120. Receive Pattern Byte Mask Register #1 (RXPBM1)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Mask Bytes 0 to 15  
RW-0  
4
3
Mask Bytes 0 to 15  
RW-0  
116. RXPBM1 Field Descriptions  
BIT  
15:0  
FIELD  
Mask Bytes 0 to 15  
TYPE  
DEFAULT DESCRIPTION  
RW  
0 Pattern Byte Mask Configuration:  
Configures masks for bytes 0 to 15. For each byte '1' means it is  
masked.  
版权 © 2017–2018, Texas Instruments Incorporated  
105  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.94 RXPBM2 Register 0x04C9 – Receive Pattern Byte Mask Register #2  
121. Receive Pattern Byte Mask Register #2 (RXPBM2)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Mask Bytes 16 to 31  
RW-0  
4
3
Mask Bytes 16 to 31  
RW-0  
117. RXPBM2 Field Descriptions  
BIT  
15:0  
FIELD  
Mask Bytes 16 to 31  
TYPE  
DEFAULT DESCRIPTION  
RW  
0 Pattern Byte Mask Configuration:  
Configures masks for bytes 16 to 31. For each byte '1' means it  
is masked.  
8.6.95 RXPBM3 Register 0x04CA – Receive Pattern Byte Mask Register #3  
122. Receive Pattern Byte Mask Register #3 (RXPBM3)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Mask Bytes 32 to 47  
RW-0  
4
3
Mask Bytes 32 to 47  
RW-0  
118. RXPBM3 Field Descriptions  
BIT  
15:0  
FIELD  
Mask Bytes 32 to 47  
TYPE  
DEFAULT DESCRIPTION  
RW  
0 Pattern Byte Mask Configuration:  
Configures masks for bytes 32 to 47. For each byte '1' means it  
is masked.  
106  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
8.6.96 RXPBM4 Register 0x04CB – Receive Pattern Byte Mask Register #4  
123. Receive Pattern Byte Mask Register #4 (RXPBM4)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Mask Bytes 48 to 63  
RW-0  
4
3
Mask Bytes 48 to 63  
RW-0  
119. RXPBM4 Field Descriptions  
BIT  
15:0  
FIELD  
Mask Bytes 48 to 63  
TYPE  
DEFAULT DESCRIPTION  
RW  
0 Pattern Byte Mask Configuration:  
Configures masks for bytes 48 to 63. For each byte '1' means it  
is masked.  
8.6.97 RXPATC Register 0x04CC – Receive Pattern Control Register  
124. Receive Pattern Control Register (RXPATC)  
15  
7
14  
6
13  
5
12  
4
11  
10  
9
1
8
0
Reserved  
RO-0  
3
2
Pattern Start Point  
RW-0  
120. RXPATC Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:6  
5:0  
Reserved  
0
0
Reserved  
Pattern Start Point  
RW  
Pattern Start Point:  
Number of bytes after SFD where comparison begins on RX  
packets to the configured pattern.  
00000 = Start compare on 1st byte after SFD  
00001 = Start compare on 2nd byte after SFD  
01100 = Start compare on 13th byte (Default)  
Default setting is 0xC, which means the pattern comparision will  
begin after source and destination addresses since they are  
each 6 bytes.  
版权 © 2017–2018, Texas Instruments Incorporated  
107  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.98 RXD3CLK Register 0x04E0 – RX_D3 Clock Control Register  
125. RX_D3 Clock Control Register (RXD3CLK)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
8
0
Reserved  
RO-0  
2
1
RX_D3 Clock Control  
RW-Strap  
121. RXD3CLK Field Descriptions  
BIT  
FIELD  
TYPE  
RW  
DEFAULT DESCRIPTION  
15:3  
2:0  
Reserved  
0
Reserved  
RX_D3 Clock Control  
RW  
Strap  
RX_D3 Control:  
000 = RX_D3 operation  
011 = 50-MHz output clock (RMII Master mode)  
8.6.99 LPS_CFG Register 0x04E5 – LPS Configuration Register  
126. LPS Configuration Register (LPS_CFG)  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
LPS Mode Selection  
RW-00  
RW-0000 00  
7
6
5
4
3
2
1
0
Reserved  
RW-1100 0011  
122. LPS_CFG Register 0x04E5 – LPS Configuration Register  
BIT  
FIELD  
TYPE  
RW  
DEFAULT DESCRIPTION  
15:10  
9:8  
Reserved  
0000 00  
00  
Reserved  
LPS Mode Selection  
RW  
LPS Mode Selection:  
00 = Reserved  
01 = Reserved  
10 = Reserved  
11 = Sdn[1] scrambled stream  
7:0  
Reserved  
RW  
1100 0011 Reserved  
108  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
The following registers reside in the MMD1 register field. To access these registers, the  
DEVID must be 0x1.  
8.6.100 PMA_CTRL1 Register 0x0007 – MMD1 PMA Control Register #1  
127. MMD1 PMA Control Register #1 (PMA_CTRL1)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
Reserved  
RO-0  
PMA / PMD Type  
RO-111101  
123. PMA_CTRL1 Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:6  
5:0  
Reserved  
0
Reserved  
PMA / PMD Type  
RO  
111101  
100BASE-T1  
8.6.101 PMA_EXT1 Register 0x000B – MMD1 PMA Extended Ability Register #1  
128. MMD1 PMA Extended Ability Register #1 (PMA_EXT1)  
15  
14  
13  
12  
11  
10  
9
8
0
Reserved  
RO-0  
100BASE-T1  
Extended  
Abilities  
PMA / PMD Type  
RO-1  
3
RO-0  
1
7
6
5
4
2
PMA / PMD Type  
RO-0  
124. PMA_EXT1 Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:12  
11  
Reserved  
0
1
Reserved  
100BASE-T1 Extended Abilities  
RO  
Extended Abilities:  
1 = PHY able to perform extended abilities listed in register 0x12  
within MMD1  
0 = PHY unable to perform extended abilities listed in register  
0x12 within MMD1  
10:0  
PMA / PMD Type  
RO  
0
Reserved  
版权 © 2017–2018, Texas Instruments Incorporated  
109  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.6.102 PMA_EXT2 Register 0x0012 – MMD1 PMA Extended Ability Register #2  
129. MMD1 PMA Extended Ability Register #2 (PMA_EXT2)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
Reserved  
RO-0  
0
Ability  
RO-1  
125. PMA_EXT2 Field Descriptions  
BIT  
FIELD  
TYPE  
RO  
DEFAULT DESCRIPTION  
15:1  
0
Reserved  
0
1
Reserved  
100BASE-T1 Ability  
RO  
100BASE-T1 Ability:  
1 = PHY supports 100BASE-T1  
0 = PHY does not support 100BASE-T1  
8.6.103 PMA_CTRL2 Register 0x0834 – MMD1 PMA Control Register #2  
130. MMD1 PMA Control Register #2 (PMA_CTRL2)  
15  
14  
13  
5
12  
4
11  
3
10  
2
9
1
8
0
Reserved  
RO-1  
Master / Slave  
RW/Strap  
Reserved  
RO-0  
7
6
Reserved  
RO-0  
126. PMA_CTRL2 Field Descriptions  
BIT  
15  
FIELD  
Reserved  
TYPE  
DEFAULT DESCRIPTION  
RO  
1
Reserved  
14  
100BASE-T1 Master / 100BASE-T1 RW  
Slave Configuration  
Strap  
100BASE-T1 Master / 100BASE-T1 Slave Configuration:  
1 = PHY configured as a 100BASE-T1 Master  
0 = PHY configured as a 100BASE-T1 Slave  
13:0  
Reserved  
RO  
0
Reserved  
8.6.104 TEST_CTRL Register 0x0836 – MMD1 100BASE-T1 PMA Test Control Register  
131. MMD1 100BASE-T1 PMA Test Control Register (TEST_CTRL)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
100BASE-T1 Test Modes  
RW/Strap-000  
4
3
Reserved  
RO-0  
127. TEST_CTRL Field Descriptions  
BIT  
FIELD  
100BASE-T1 Test Modes  
TYPE  
DEFAULT DESCRIPTION  
15:4  
RW  
Strap  
100BASE-T1 Test Mode Control:  
000 = Normal operation  
001 = Test Mode 1  
010 = Test Mode 2  
100 = Test Mode 4  
101 = Test Mode 5  
3:0  
Reserved  
RO  
0
Reserved  
110  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DP83TC811R-Q1 is a single-port 100-Mbps Automotive Ethernet PHY. It supports IEEE 802.3bw and allows  
for connections to an Ethernet MAC through MII, RMII, or RGMII. When using the device for Ethernet  
applications, it is necessary to meet certain requirements for normal operation. The following subsections are  
intended to assist in appropriate component selection and required connections.  
9.2 Typical Applications  
132 through 135 show some the typical applications for the DP83TC811R-Q1.  
DC  
Blocking  
TX_CLK  
TX_D[3:0]  
TX_EN  
CMC  
4
4
TRD_P  
TRD_N  
Automotive  
Connector  
LPF  
ESD  
RX_CLK  
RX_D[3:0]  
RX_DV  
(optional) (optional)  
CM  
Termination  
VDDIO  
Media Access Controller  
DP83TC811  
MDIO  
MDC  
MDI  
Coupling  
ESD  
Shunt  
EN  
WAKE  
INT  
GND  
132. Typical Application (MII)  
版权 © 2017–2018, Texas Instruments Incorporated  
111  
 
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Typical Applications (接下页)  
DC  
Blocking  
CMC  
2
2
TRD_P  
TRD_N  
TX_D[1:0]  
TX_EN  
Automotive  
Connector  
LPF  
ESD  
(optional) (optional)  
CM  
Termination  
RX_D[1:0]  
CRS_DV  
VDDIO  
Media Access Controller  
DP83TC811  
MDIO  
MDC  
MDI  
Coupling  
ESD  
Shunt  
EN  
WAKE  
INT  
GND  
RMII Reference Clock  
XI  
50-MHz  
Reference  
Clock  
133. Typical Application (RMII Slave)  
DC  
Blocking  
CMC  
2
2
TRD_P  
TRD_N  
TX_D[1:0]  
TX_EN  
Automotive  
Connector  
LPF  
ESD  
(optional) (optional)  
CM  
Termination  
RX_D[1:0]  
CRS_DV  
VDDIO  
Media Access Controller  
DP83TC811  
MDIO  
MDC  
MDI  
Coupling  
ESD  
Shunt  
EN  
WAKE  
INT  
GND  
25-MHz  
Reference  
Clock  
XI  
RMII Reference Clock  
RX_D3 (50-MHz)  
134. Typical Application (RMII Master)  
112  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Typical Applications (接下页)  
DC  
Blocking  
TX_CLK  
TX_D[3:0]  
TX_EN  
CMC  
4
TRD_P  
TRD_N  
Automotive  
Connector  
LPF  
ESD  
RX_CLK  
RX_D[3:0]  
RX_DV  
4
(optional) (optional)  
CM  
Termination  
VDDIO  
Media Access Controller  
DP83TC811  
MDIO  
MDC  
MDI  
Coupling  
ESD  
Shunt  
EN  
WAKE  
INT  
GND  
135. Typical Application (RGMII)  
An optional external low-pass filter may be added to reduce radiated emissions and improve radiated immunity.  
Suggested values are located in 128.  
GND  
C3  
R1  
R2  
C1  
C2  
L1  
L2  
TRD+  
DP83TC811  
To CMC  
TRDœ  
C4  
GND  
136. MDI Low-Pass Filter  
9.2.1 Design Requirements  
For these typical applications, use the following as design parameters:  
128. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VDDIO  
VDDA  
1.8 V, 2.5 V, or 3.3 V  
3.3 V  
(1)  
Decoupling capacitors VDDIO  
10 nF, 100 nF, 1 μF, 10 μF  
1 kΩ at 100 MHz (BLM18AG102SH)  
10 nF, 100 nF, 1 μF, 10 μF  
1 kΩ at 100 MHz (BLM18AG102SH)  
0.1 μF  
(Optional) ferrite bead for VDDIO  
(1)  
Decoupling capacitors VDDA  
(Optional) ferrite bead for VDDA  
(2)  
DC Blocking Capacitors  
(1) 10% tolerance components are recommended.  
(2) 1% tolerance components are recommended.  
版权 © 2017–2018, Texas Instruments Incorporated  
113  
 
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
128. Design Parameters (接下页)  
DESIGN PARAMETER  
EXAMPLE VALUE  
200 μH  
Common-Mode Choke  
Common Mode Termination Resistors(2)  
1 kΩ  
(1)  
MDI Coupling Capacitor  
4.7 nF  
ESD Shunt(1)  
(Optional) MDI Low-Pass Filter(3)  
Reference Clock  
100 kΩ  
120 nH (L1 and L2), 47 pF (C3 and C4), 22 pF (C1  
and C2), 27 Ω (R1 and R2)  
25 MHz  
(3) 2% tolerance components are recommended.  
9.2.1.1 Physical Medium Attachment  
There must be no metal running beneath the common-mode choke. CMCs can inject noise into metal beneath  
them, which can affect the emissions and immunity performance of the system. Because the DP83TC811R-Q1 is  
a voltage mode line driver, no external termination resistors are required. The ESD shunt and MDI coupling  
capacitor should be connected to ground. Ensure that the common mode termination resistors are 1% tolerance  
or better to improve differential coupling.  
9.2.1.1.1 Common-Mode Choke Recommendations  
The following CMCs have been tested with the DP83TC811R-Q1:  
129. Recommended CMCs  
MANUFACTURER  
Pulse Electronics  
Murata  
PART NUMBER  
AE2002  
DLW43MH201XK2L  
DLW32MH201XK2  
ACT45L-201  
Murata  
TDK  
TDK  
ACT1210L-201  
130. CMC Electrical Specifications  
PARAMETER  
TYP  
–0.5  
–1.0  
–26  
–20  
–24  
–42  
–25  
–70  
–50  
–24  
UNITS  
dB  
CONDITIONS  
1 – 30 MHz  
30 – 60 MHz  
1 – 30 MHz  
30 – 60 MHz  
1 MHz  
Insertion Loss  
dB  
dB  
Return Loss  
dB  
dB  
Common-Mode Rejection  
dB  
10 – 100 MHz  
400 MHz  
dB  
dB  
1 – 10 MHz  
100 MHz  
Differential Common-Mode Rejection  
dB  
dB  
1000 MHz  
114  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
9.2.2 Detailed Design Procedure  
When creating a new system design with an Ethernet PHY, follow this schematic capture procedure:  
1. Select desired PHY hardware configurations in 18.  
2. Use the Electrical Characteristics table and 17 to select the correct external bootstrap resistors.  
3. If using LEDs, ensure the correct external circuit is applied as shown in 28.  
4. Select an appropriate clock source that adheres to either the CMOS-level oscillator or crystal resonator  
requirements within the Electrical Characteristics table.  
5. Select a CMC, a list of recommended CMCs are located in 129.  
6. Add common-mode termination, DC-blocking capacitors, an MDI-coupling capacitor, and an ESD shunt  
found in 128.  
7. Ensure that there is sufficient supply decoupling on VDDIO and VDDA supply pins.  
8. Add an external pullup resistor (tie to VDDIO) on MDIO line.  
9. If sleep modes are not desired, WAKE and EN pins should be tied to VDDIO directly or through an external  
pullup resistor.  
The following layout procedure should be followed:  
1. Locate the PHY near the edge of the board so that short MDI traces can be routed to the desired connector.  
2. Place the MDI external components: CMC, DC-blocking capacitors, CM termination, MDI-coupling capacitor,  
and ESD shunt.  
3. Create a top-layer metal pour keepout under the CMC.  
4. Ensure that the MDI TRD_M and TRD_P traces are routed such that they are 100-Ω differential.  
5. Place the clock source near the XI and XO pins.  
6. Ensure that when configured for MII, RMII, or RGMII operation, the xMII pins are routed 50-Ω and are single-  
ended with reference to ground.  
7. Ensure that transmit path xMII pins are routed such that setup and hold timing does not violate the PHY  
requirements.  
8. Ensure that receive path xMII pins are routed such that setup and hold timing does not violate the MAC  
requirements.  
9. Place the MDIO pullup close to the PHY.  
版权 © 2017–2018, Texas Instruments Incorporated  
115  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
9.2.3 Application Curves  
The following curves were obtained using the DP83TC811EVM under nominal conditions.  
137. MDI IDLE Stream  
138. MDI IDLE Stream (Variable Persistence)  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-10  
-15  
-20  
-25  
-30  
Limit  
Data  
Limit  
Data  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (MHz)  
0
10  
20  
30  
40  
50  
60  
70  
Frequency (MHz)  
D001  
D002  
139. MDI Mode Conversion  
140. MDI Return Loss  
116  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
10 Power Supply Recommendations  
The DP83TC811R-Q1 is capable of operating with a wide range of IO supply voltages (3.3 V, 2.5 V, or 1.8 V).  
No power supply sequencing is required. The recommended power supply de-coupling network is shown in 图  
141. For improved conducted emissions, an optional ferrite bead may be placed between the supply and the  
PHY de-coupling network.  
VDDA  
10 nF 100 nF 1 µF 10 µF  
DP83TC811  
VDDIO  
10 µF 1 µF 100 nF 10 nF  
Copyright © 2018, Texas Instruments Incorporated  
141. Recommended Supply De-Coupling Network  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Signal Traces  
PCB traces are lossy and long traces can degrade signal quality. Traces should be kept short as possible.  
Unless mentioned otherwise, all signal traces should be 50-Ω, single-ended impedance. Differential traces should  
be 50-Ω single-ended and 100-Ω differential. Take care to ensure impedance is controlled throughout.  
Impedance discontinuities will cause reflections leading to emissions and signal integrity issues. Stubs should be  
avoided on all signal traces, especially differential signal pairs.  
142. Differential Signal Trace Routing  
版权 © 2017–2018, Texas Instruments Incorporated  
117  
 
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Layout Guidelines (接下页)  
Within the differential pairs, trace lengths should be run parallel to each other and matched in length. Matched  
lengths minimize delay differences, avoiding an increase in common mode noise and emissions. Length  
matching is also important for MAC interface connections. All transmit signal traces should be length matched to  
each other and all receive signal traces should be length matched to each other.  
Ideally, there should be no crossover or vias on signal path traces. Vias present impedance discontinuities and  
should be minimized when possible. Route trace pairs on the same layer. Signals on different layers should not  
cross each other without at least one return path plane between them. Differential pairs should always have a  
constant coupling distance between them. For convenience and efficiency, TI recommends routing critical signals  
first (that is, MDI differential pairs, reference clock, and MAC IF traces).  
11.1.2 Return Path  
A general best practice is to have a solid return path beneath all signal traces. This return path can be a  
continuous ground or DC power plane. Reducing the width of the return path can potentially affect the impedance  
of the signal trace. This effect is more prominent when the width of the return path is comparable to the width of  
the signal trace. Breaks in return path between the signal traces should be avoided at all cost. A signal crossing  
a split plane may cause unpredictable return path currents and could impact signal quality and result in  
emissions issues.  
143. Power and Ground Plane Breaks  
11.1.3 Metal Pour  
All metal pours that are not signals or power must be tied to ground. There must be no floating metal in the  
system, and there must be no metal between differential traces.  
118  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Layout Guidelines (接下页)  
11.1.4 PCB Layer Stacking  
To meet signal integrity and performance requirements, minimum four-layer PCB is recommended. However, a  
six-layer PCB and above should be used when possible.  
144. Recommended PCB Layer Stack-Up  
版权 © 2017–2018, Texas Instruments Incorporated  
119  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
11.2 Layout Example  
There are two evaluation board references for the DP83TC811R-Q1; the DP83TC811EVM is a media converter  
board specifically designed for interoperability and bit error rate testing while the DP83TC811SEVM is an xMII  
board for MAC interface support and compliance testing.  
145. DP83TC811R-Q1 MII / RMII / RGMII Layout Recommendation  
120  
版权 © 2017–2018, Texas Instruments Incorporated  
DP83TC811R-Q1  
www.ti.com.cn  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
Layout Example (接下页)  
146. MDI Low-Pass Filter Layout Recommendation  
版权 © 2017–2018, Texas Instruments Incorporated  
121  
DP83TC811R-Q1  
ZHCSHX5A NOVEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
如需接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
PHYTER, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
122  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DP83TC811RWRNDRQ1  
DP83TC811RWRNDTQ1  
ACTIVE  
VQFNP  
VQFNP  
RND  
36  
36  
2000 RoHS & Green Call TI | NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
DP83TC811  
A1R  
ACTIVE  
RND  
250 RoHS & Green Call TI | NIPDAUAG  
DP83TC811  
A1R  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2022  
Addendum-Page 2  
PACKAGE OUTLINE  
RND0036A  
VQFN - 0.9 mm max height  
SCALE 2.300  
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
A
B
0.15  
0.05  
0.05  
0.00  
PIN 1 ID  
(0.15)  
6.1  
5.9  
DETAIL  
A
S
C
A
L
E
2
0
.
0
0
0
DETAIL A  
TYPICAL  
(
5.75)  
0.2  
0.1  
(0.15)  
DETAIL  
B
S
C
A
L
E
2
0
.
0
0
0
DETAIL B  
TYPICAL  
SEE DETAIL A  
0.9 MAX  
C
SEATING PLANE  
0.08 C  
(0.2)  
SEE DETAIL B  
18  
4X (45 X0.42)  
10  
9
19  
4X  
SYMM  
3.7 0.1  
4
1
27  
0.3  
0.2  
32X 0.5  
36X  
36  
28  
0.1  
C B  
A
PIN 1 ID  
(R0.2)  
SYMM  
0.05  
C
0.5  
36X  
0.3  
4221715/A 09/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RND0036A  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.7)  
SYMM  
36  
28  
36X (0.6)  
36X (0.25)  
1
27  
4X  
(1.6)  
SYMM  
(5.8)  
32X (0.5)  
9
19  
(
0.2) TYP  
VIA  
18  
10  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221715/A 09/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RND0036A  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(5.8)  
(1.78)  
36  
28  
36X (0.6)  
36X (0.25)  
1
27  
32X (0.5)  
(5.8)  
SYMM  
(1.78)  
METAL  
TYP  
9
19  
4X ( 1.58)  
18  
10  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
4221715/A 09/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DP83TC811RWRNDTQ1

低功耗 100BASE-T1 汽车 PHYTER™ 以太网物理层收发器 | RND | 36 | -40 to 125
TI

DP83TC811S-Q1

具有 xMII 支持和诊断工具的汽车级 1 级、低功耗 100BASE-T1 以太网 PHY 收发器
TI

DP83TC811SWRNDRQ1

具有 xMII 支持和诊断工具的汽车级 1 级、低功耗 100BASE-T1 以太网 PHY 收发器 | RND | 36 | -40 to 125
TI

DP83TC811SWRNDTQ1

具有 xMII 支持和诊断工具的汽车级 1 级、低功耗 100BASE-T1 以太网 PHY 收发器 | RND | 36 | -40 to 125
TI

DP83TC812-Q1

DP83TC812-Q1 TC-10 Compliant 100BASE-T1 Automotive Ethernet PHY
TI

DP83TC812R-Q1

DP83TC812x-Q1 TC-10 Compliant 100BASE-T1 Automotive Ethernet PHY
TI

DP83TC812RRHARQ1

DP83TC812x-Q1 TC-10 Compliant 100BASE-T1 Automotive Ethernet PHY
TI

DP83TC812RRHATQ1

DP83TC812x-Q1 TC-10 Compliant 100BASE-T1 Automotive Ethernet PHY
TI

DP83TC812S-Q1

DP83TC812x-Q1 TC-10 Compliant 100BASE-T1 Automotive Ethernet PHY
TI

DP83TC812S-Q1_V01

DP83TC812x-Q1 TC-10 Compliant 100BASE-T1 Automotive Ethernet PHY
TI

DP83TC812SRHARQ1

DP83TC812x-Q1 TC-10 Compliant 100BASE-T1 Automotive Ethernet PHY
TI

DP83TC812SRHATQ1

DP83TC812x-Q1 TC-10 Compliant 100BASE-T1 Automotive Ethernet PHY
TI