DRV10987SPWPR [TI]

12V 至 24V 标称电压、3.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125;
DRV10987SPWPR
型号: DRV10987SPWPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12V 至 24V 标称电压、3.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125

电动机控制 电机 驱动 光电二极管 传感器 驱动器
文件: 总77页 (文件大小:2770K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
DRV10987 12V 24V、三相无传感器 BLDC 电机驱动器  
1 特性  
3 说明  
1
工作电压范围:  
DRV10987 器件是一款带有集成式功率 MOSFET 的三  
相无传感器 180° 正弦电机驱动器,可提供高达 2A 的  
连续驱动电流。该器件专为成本敏感型、低噪音、需要  
少量外部组件的风扇和泵 应用而设计低功耗是一个关  
键问题。™  
电机操作:6.2V 28V  
总驱动器 H + L rDS(on)  
250 mΩTA = 25°C 时  
驱动电流:2A 持续绕组电流(峰值为 3A)  
正弦 180° 无传感器换向方案  
DRV10987 器件可以低至 6.2V 的电源电压将电流传输  
给电机。如果电源电压高于 28V,则器件停止驱动电  
机并保护 DRV10987 电路。  
用于 EMI 管理的可配置输出 PWM 压摆率和频率  
初始位置检测算法可避免启动过程中回旋  
无需外部检测电阻器  
器件信息 (1)  
灵活的用户接口选项:  
I2C 接口:访问命令和反馈寄存器  
专用的 SPEED 引脚:接受模拟或 PWM 输入  
专用的 FG 引脚:提供 TACH 反馈  
可通过 EEPROM 定制旋转曲线  
器件型号  
DRV10987  
封装  
封装尺寸(标称值)  
散热薄型小外形尺寸  
封装 (HTSSOP) (24)  
7.80mm × 6.40mm  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
器件比较  
使用 DIR 引脚进行正向/反向控制  
器件编号  
DRV10987D  
DRV10987S  
型号  
集成式降压转换器:5V100mA  
集成式 LDO3.3V20mA  
待机电流:8.5mA  
休眠型号  
待机型号  
待机型号的电源电流为 8.5mA (DRV10987S)  
休眠型号的电源电流为 48μA (DRV10987D)  
保护 特性  
应用电路原理图  
VCC  
0.1 µF  
10 nF  
1
2
3
4
5
6
7
8
9
VCP  
VCC 24  
VCC 23  
10 µF  
CPP  
过流保护(相间保护、相接地保护和相到 VCC  
短路保护)  
CPN  
W
W
V
22  
21  
20  
19  
18  
17  
10 µF  
5 V  
SW  
47 µH  
SWGND  
VREG  
V1P8  
GND  
V3P3  
锁定检测可检测转子锁定条件  
防电压浪涌 (AVS) 保护  
欠压锁定 (UVLO)  
过压保护  
M
V
1 µF  
U
U
1 µF  
PGND 16  
PGND 15  
DIR 14  
4.75 kW  
4.75 kW  
10 SCL  
11 SDA  
12 FG  
热警告和热关断  
SPEED 13  
Interface to  
Microcontroller  
热增强型封装  
Copyright © 2017, Texas Instruments Incorporated  
2 应用  
落地扇和吊式风扇  
空气净化器和加湿器  
烘干机循环风扇  
排水泵和抽水机  
三相 BLDC 电机和 PMSM 电机  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSE89  
 
 
 
 
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 21  
8.5 Register Maps......................................................... 47  
Application and Implementation ........................ 64  
9.1 Application Information............................................ 64  
9.2 Typical Application ................................................. 64  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Typical Characteristics............................................ 12  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 14  
9
10 Power Supply Recommendations ..................... 67  
11 Layout................................................................... 67  
11.1 Layout Guidelines ................................................. 67  
11.2 Layout Example .................................................... 67  
12 器件和文档支持 ..................................................... 68  
12.1 ....................................................................... 68  
12.2 静电放电警告......................................................... 68  
12.3 接收文档更新通知 ................................................. 68  
12.4 社区资源................................................................ 68  
12.5 Glossary................................................................ 68  
13 机械、封装和可订购信息....................................... 68  
8
4 修订历史记录  
Changes from Revision A (November 2017) to Revision B  
Page  
Removed non-essential specifications from the Specifications section ................................................................................. 5  
Updated naming convention in Step-Down Regulator subsection ....................................................................................... 14  
Changed the Conditions to Enter or Exit Sleep or Standby Condition table to reflect Electrical Characteristics  
parameter names.................................................................................................................................................................. 18  
Changed the Conditions to Enter or Exit Sleep or Standby Condition table to reflect Electrical Characteristics  
parameter names.................................................................................................................................................................. 19  
已更改 eeWRnEn field description to properly reflect actual function.................................................................................. 55  
Changed BEMF comparator hysteresis to reflect Electrical Characteristics specifications ................................................ 58  
Changes from Original (August 2017) to Revision A  
Page  
已将待机和休眠型号的电源电流添加至特性 列表 ................................................................................................................... 1  
添加了器件比较 .................................................................................................................................................................. 1  
说明 (续) 部分添加了器件的休眠和待机型号讨........................................................................................................... 3  
Added table note to 1, Conditions to Enter or Exit Sleep or Standby Condition ............................................................. 19  
Added subsection, Required Sequence to Enter Sleep Mode ............................................................................................. 19  
已添加 constraints for external inductor................................................................................................................................ 65  
2
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
5 说明 (续)  
DRV10987 器件采用专有无传感器控制方案来提供持续正弦驱动,可大幅降低换向过程中通常会产生的纯音。该器  
件的接口设计简单而灵活。可直接通过 PWM、模拟、或 I2C 输入控制电机。可同时通过 FG 引脚和 I2C 接口获得  
电机转速反馈。  
DRV10987 器件 具有 一个集成降压稳压器,可高效地将电源电压降至 5V,从而为内外部电路供电。3.3V LDO 也  
可用于为外部电路供电。待机模式 (8.5mA) 型号 (DRV10987S) 会使稳压器保持运行,而休眠模式 (48µA) 型号  
(DRV10987D) 会使稳压器停止工作。除对休眠和待机功能进行具体讨论的情况外,本数据表均使用 DRV10987 器  
件编号来指代这两种器件,即 DRV10987D(休眠型号)和 DRV10987S(待机型号)。  
用户可通过 I2C 接口对寄存器中的特定电机参数进行重新编程并可对 EEPROM 进行编程,以帮助优化既定应用的  
性能。DRV10987 器件采用带有外露散热焊盘的高效散热型 HTSSOP 24 引脚封装。额定工作环境温度范围为  
-40°C 125°C。  
6 Pin Configuration and Functions  
PWP PowerPAD™ Package  
24-Pin HTSSOP With Exposed Thermal Pad  
Top View  
VCP  
CPP  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCC  
VCC  
W
2
CPN  
3
SW  
4
W
SWGND  
VREG  
V1P8  
GND  
V3P3  
SCL  
5
V
6
V
Thermal  
Pad  
7
U
8
U
9
PGND  
PGND  
DIR  
SPEED  
10  
11  
12  
SDA  
FG  
Not to scale  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
(1)  
N/AME  
CPN  
HTSSOP  
3
2
P
P
Charge pump pin 1, use a ceramic capacitor between CPN and CPP  
Charge pump pin 2, use a ceramic capacitor between CPN and CPP  
CPP  
Direction;  
DIR  
14  
I
When low, phase driving sequence is U V W  
When high, phase driving sequence is U W V  
FG  
12  
8
O
P
P
I
FG signal output indicates speed of motor  
Digital and analog ground  
Power ground  
I2C clock signal  
I2C data signal  
GND  
PGND  
SCL  
SDA  
SPEED  
SW  
15, 16  
10  
11  
I/O  
I
13  
Speed control signal for PWM or analog input speed command  
Step-down regulator switching node output  
Step-down regulator ground  
Motor U phase  
4
O
P
O
O
SWGND  
U
5
17, 18  
19, 20  
V
Motor V phase  
Internal 1.8-V digital core voltage. V1P8 capacitor must connect to GND. This is an output, but is not  
specified to drive external loads.  
V1P8  
V3P3  
7
9
P
P
Internal 3.3-V supply voltage. V3P3 capacitor must connect to GND. This is an output and may drive  
external loads not to exceed IV3P3_MAX  
.
VCC  
VCP  
VREG  
W
23, 24  
P
P
P
O
Device power supply  
1
6
Charge pump output, use a ceramic capacitor between VCP and VCC  
Step-down regulator output and feedback point  
Motor W phase  
21, 22  
The exposed thermal pad must be electrically connected to the ground plane by soldering to the PCB  
for proper operation, and connected to the bottom side of the PCB through vias for better thermal  
spreading.  
Thermal pad  
(GND)  
P
(1) I = Input, O = Output, I/O = Input/output, P = Power  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
MAX  
UNIT  
VCC  
28  
VCC during overvoltage protection(VCC slew rate < 10 V/ms)  
45  
SPEED  
4
Input voltage(2)  
V
PGND, SWGND  
0.3  
SCL, SDA  
4
4
DIR  
U, V, W  
30  
SW  
–1  
30  
VREG  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
–55  
7
FG  
4
(2)  
Output voltage  
VCP  
VCC + 6  
30  
V
CPN  
CPP  
VCC + 6  
4
V3P3  
V1P8  
2.5  
150  
150  
TJ_MAX  
Tstg  
Maximum junction temperature  
Storage temperature  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the ground terminal (GND) unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
(1)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins  
Electrostatic  
discharge  
V(ESD)  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
MIN  
4.5  
NOM  
12  
MAX  
45  
UNIT  
VCC, register contents preserved  
Supply voltage  
V
VCC, motor operational  
6.2  
12  
28  
U, V, W  
–0.7  
–0.1  
–0.1  
–0.1  
–0.1  
–0.7  
29  
SCL, SDA, FG, SPEED, DIR  
3.3  
3.6  
PGND, GND, SWGND  
Voltage range  
0.1  
V
VCP, CPP  
VCC + 5  
VCC  
VCC  
100  
5
CPN  
SW  
Step-down regulator with inductor (buck mode) output current  
Step-down regulator with resistor (linear mode) output current  
Current range  
TA  
mA  
°C  
V3P3 LDO output current (no load on VREG and step-down  
regulator in linear mode)  
5
Operating ambient temperature  
–40  
125  
7.4 Thermal Information  
DRV10987  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
24 PINS  
36.1  
17.4  
14.8  
0.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
14.5  
1.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics .  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
7.5 Electrical Characteristics  
over operating voltage and ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT (DRV10987D)  
VSPEED = 0 V; VCC = 12 V; TA  
25  
=
48  
54  
µA  
81  
IccSLEEP1  
Sleep current  
Active current  
VSPEED = 0 V; VCC = 12 V; across  
temperature  
VSPEED > 0 V; step-down regulator  
with inductor (buck mode); no motor  
load  
10  
13  
15  
Icc  
mA  
16  
VSPEED > 0 V; step-down regulator  
with resistor (linear mode); no motor  
load  
SUPPLY CURRENT (DRV10987S)  
VSPEED = 0 V; step-down regulator  
with  
8.5  
14  
inductor (buck mode)  
IccSTBY  
Standby current  
Active current  
mA  
VSPEED = 0 V; buck regulator with  
resistor (linear mode)  
11  
10  
13  
15  
VSPEED > 0 V; buck regulator with  
inductor; no motor load  
15  
Icc  
mA  
16  
VSPEED > 0 V; buck regulator with  
resistor; no motor load  
UVLO  
UVLO rising threshold  
voltage  
VUVLO_R  
5.8  
5.6  
6
5.8  
6.2  
6
V
V
UVLO falling threshold  
voltage  
VUVLO_F  
UVLO threshold voltage  
hysteresis  
VUVLO_HYS  
170  
195  
220  
mV  
VV1P8_UVLO_R  
VV1P8_UVLO_F  
VV3P3_UVLO_R  
VV3P3_UVLO_F  
V1P8 UVLO rising threshold  
V1P8 UVLO falling threshold  
V3P3 UVLO rising threshold  
V3P3 UVLO falling threshold  
1.5  
1.4  
2.7  
2.5  
4
1.6  
1.55  
2.85  
2.7  
1.7  
1.65  
2.95  
2.8  
V
V
V
V
V
VVREG_UVLO_R VREG UVLO rising threshold  
4.2  
4.3  
VVREG_UVLO_F VREG UVLO falling  
threshold  
3.9  
4.2  
V
LDO OUTPUT  
Step-down regulator with inductor  
(buck mode), 20-mA load  
3.1  
3.1  
3.3  
3.3  
3.5  
3.5  
V3P3  
Output voltage  
V
Step-down regulator with resistor  
(linear mode), no load  
Step-down regulator with inductor  
(buck mode)  
IV3P3_MAX  
V1P8  
Maximum load from V3P3  
Output voltage  
20  
mA  
V
No load  
1.7  
1.8  
1.9  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over operating voltage and ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
STEP-DOWN REGULATOR  
LSW = 47 µH, CSW = 10 µF  
Iload = 100 mA  
4.5  
4.5  
5
5
5.5  
V
VREG  
Regulator output voltage  
RSW = 39 Ω, CSW = 10 µF  
Iload = 5 mA  
5.5  
Maximum load from VREG in  
buck mode  
IREG_MAX_L  
IREG_MAX_R  
LSW = 47 µH, CSW = 10 µF  
100  
5
mA  
mA  
Maximum load from VREG in  
linear mode  
RSW = 39 Ω, CSW = 10 µF  
INTEGRATED MOSFET  
TA = 25˚C; VCC > 6.5 V; IO = 1 A  
TA = 125˚C; VCC > 6.5V; IO = 1 A  
250  
325  
400  
550  
rDS(ON)  
Series resistance (H + L)  
mΩ  
SPEED – ANALOG MODE  
VAN/A_FS  
VAN/A_ZS  
Analog full-speed voltage  
V(V3P3) × 0.9  
0
V(V3P3)  
100  
V
Analog zero-speed voltage  
mV  
Sampling period for analog  
voltage on SPEED pin  
tSAM  
320  
6.5  
µs  
VAN/A_RES  
Analog voltage resolution  
mV  
SPEED – PWM DIGITAL MODE  
VDIG_IH  
VDIG_IL  
ƒPWM  
PWM input high voltage  
2.2  
0.1  
V
V
PWM input low voltage  
PWM input frequency  
0.6  
100 kHz  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
Electrical Characteristics (continued)  
over operating voltage and ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SLEEP MODE (DRV10987D)  
Analog voltage to enter sleep  
mode  
VEN_SL  
SpdCtrlMd = 0 (analog mode)  
SpdCtrlMd = 0 (analog mode)  
100  
mV  
V
Analog voltage to exit sleep  
mode  
VEX_SL  
2.2  
SpdCtrlMd = 0 (analog mode)  
VSPEED > VEX_SL  
Time needed to exit from  
sleep mode  
tEX_SL_ANA  
2
350  
2
µs  
SpdCtrlMd = 0 (analog mode)  
VSPEED > VEN_SL; ISDen = 0;  
BrkDoneThr[2:0] = 0  
Time taken to drive motor  
after exiting from sleep mode  
tEX_SL_DR_ANA  
ms  
µs  
SpdCtrlMd = 1 (PWM mode)  
VSPEED > VDIG_IH  
Time needed to exit from  
sleep mode  
tEX_SL_PWM  
SpdCtrlMd = 1 (PWM mode)  
VSPEED > VDIG_IH; ISDen = 0;  
BrkDoneThr[2:0] = 0  
Time taken to drive motor  
after exiting from sleep mode  
tEX_SL_DR_PWM  
350  
ms  
SpdCtrlMd = 0 (analog mode)  
VSPEED < VEN_SL; AvSIndEn = 0  
Time needed to enter sleep  
mode  
tEN_SL_ANA  
6
ms  
ms  
kΩ  
SpdCtrlMd = 1 (PMW mode)  
VSPEED < VDIG_IL; AvSIndEn = 0  
Time needed to enter sleep  
mode  
tEN_SL_PWM  
RPD_SPEED_SL  
60  
Internal SPEED pin pull  
down resistance to ground  
VSPEED = 0 (Sleep mode)  
55  
STANDBY MODE (DRV10987S)  
Analog voltage to enter  
standby mode  
VEN_SB  
SpdCtrlMd = 0 (analog mode)  
SpdCtrlMd = 0 (analog mode)  
100  
700  
mV  
V
Analog voltage to exit  
standby mode  
VEX_SB  
0.17  
1
SpdCtrlMd = 0 (analog mode)  
VSPEED > VEX_SB  
Time needed to exit from  
standby mode  
tEX_SB_ANA  
ms  
SpdCtrlMd = 0 (analog mode)  
VSPEED > VEN_SB; ISDen = 0;  
BrkDoneThr[2:0] = 0  
Time taken to drive motor  
after exiting standby mode  
tEX_SB_DR_ANA  
350  
2
ms  
µs  
SpdCtrlMd = 1 (PWM mode)  
VSPEED > VDIG_IH  
Time needed to exit from  
standby mode  
tEX_SB_PWM  
SpdCtrlMd = 1 (PWM mode)  
VSPEED_DUTY > 0; ISDen = 0;  
BrkDoneThr[2:0] = 0  
Time taken to drive motor  
after exiting standby mode  
tEX_SB_DR_PWM  
350  
ms  
SpdCtrlMd = 0 (analog mode)  
VSPEED < VEN_SB; AvSIndEn = 0  
Time needed to enter  
standby mode  
tEN_SB_ANA  
tEN_SB_PWM  
6
ms  
ms  
SpdCtrlMd = 1 (PMW mode)  
VSPEED < VDIG_IL; AvSIndEn = 0  
Time needed to enter  
standby mode  
60  
DIGITAL I/O (DIR INPUT, FG OUTPUT)  
VDIR_H  
VDIR_L  
VFG_OH  
VFG_OL  
Input high  
2.2  
V
V
V
V
Input low  
0.6  
0.6  
Output high voltage  
Output low voltage  
Io = 5 mA  
Io = 5 mA  
3.3  
I2C SERIAL INTERFACE  
VI2C_H  
VI2C_L  
fI2C  
Input high  
2.2  
0
V
V
Input low  
I2C clock frequency  
0.6  
400 kHz  
LOCK DETECTION RELEASE TIME  
tLOCK_OFF  
tLCK_ETR  
Lock release time  
Lock enter time  
5
s
s
0.3  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over operating voltage and ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
OVERCURRENT PROTECTION  
IOC_limit_HS  
IOC_limit_LS  
THERMAL SHUTDOWN  
HS overcurrent protection  
VCC < 28.5 V  
3.5  
3.5  
4.25  
4.25  
5.5  
5.5  
A
A
LS overcurrent protection  
VCC < 28.5 V  
Junction temperature  
shutdown threshold  
TSDN  
150  
165  
180  
°C  
Junction temperature  
shutdown hysteresis  
TSDN_HYS  
TWARN  
15  
20  
25  
°C  
°C  
Junction temperature  
warning threshold  
115  
125  
140  
PHASE DRIVER  
PHslew = 0; measure 20% to 80%;  
VCC = 12 V  
Phase slew rate switching  
low to high  
SLPH_LH0  
85  
60  
38  
27  
85  
59  
36  
25  
120  
80  
145 V/µs  
100 V/µs  
62 V/µs  
44 V/µs  
145 V/µs  
100 V/µs  
60 V/µs  
45 V/µs  
PHslew = 1; measure 20% to 80%;  
VCC = 12 V  
Phase slew rate switching  
low to high  
SLPH_LH1  
SLPH_LH2  
SLPH_LH3  
SLPH_HL0  
SLPH_HL1  
SLPH_HL2  
SLPH_HL3  
PHslew = 2; measure 20% to 80%;  
VCC = 12 V  
Phase slew rate switching  
low to high  
50  
PHslew = 3; measure 20% to 80%;  
VCC = 12 V  
Phase slew rate switching  
low to high  
35  
PHslew = 0; measure 80% to 20%;  
VCC = 12 V  
Phase slew rate switching  
high to low  
120  
80  
PHslew = 1; measure 80% to 20%;  
VCC = 12 V  
Phase slew rate switching  
high to low  
PHslew = 2; measure 80% to 20%;  
VCC = 12 V  
Phase slew rate switching  
high to low  
50  
PHslew = 3; measure 80% to 20%;  
VCC = 12 V  
Phase slew rate switching  
high to low  
35  
EEPROM  
EEProg  
Programing voltage  
Retention  
6.2  
10  
V
EERET  
Years  
Cycles  
EEEND  
Endurance  
1000  
OVERVOLTAGE PROTECTION  
Overvoltage protection rising  
VCC threshold  
VOV_R  
28.5  
27.7  
0.73  
29.2  
28.2  
1
30  
28.8  
1.1  
V
V
V
Overvoltage protection exit  
on falling VCC threshold  
VOV_F  
Overvoltage protection  
hysteresis  
VOV_HYS  
BEMF COMPARATOR  
BEMFHYS BEMF comparator hysteresis  
BEMF_HYS = 0  
BEMF_HYS = 1  
7
20  
40  
30  
51  
mV  
17  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
Speed Pin  
VEX_SL  
VEN_SL  
tEX_SL_ANA  
tEN_SL_ANA  
V1P8  
tEX_SL_DR_ANA  
Phase Pin  
Motor Drive State  
1. DRV10987D Analog Mode Timing  
VDIG_IH  
VDIG_IL  
Speed Pin  
tEX_SL_PWM  
tEN_SL_PWM  
V1P8  
tEX_SL_DR_PWM  
Phase Pin  
Motor Drive State  
2. DRV10987D PWM Mode Timing  
Speed Pin  
VEX_SB  
VEN_SB  
tEX_SB_ANA  
tEN_SB_ANA  
Internal  
Signal  
(Digital  
Reset)  
tEX_SB_DR_ANA  
Phase Pin  
Motor Drive State  
3. DRV10987S Analog Mode Timing  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
VDIG_IH  
Speed Pin  
VDIG_IL  
tEX_SB_PWM  
tEN_SB_PWM  
Internal  
Signal  
(Digital  
Reset)  
tEX_SB_DR_PWM  
Phase Pin  
Motor Drive State  
4. DRV10987S PWM Mode Timing  
7.6 Typical Characteristics  
15  
5.2  
IVCC  
12  
9
5.1  
5
6
4.9  
4.8  
3
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Power Supply (V)  
Power Supply (V)  
D001  
D002  
5. Supply Current vs Power Supply Voltage  
6. Step-Down Regulator Output vs Power Supply Voltage  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8 Detailed Description  
8.1 Overview  
The DRV10987 device is a three-phase sensorless motor driver with integrated power MOSFETs that provides  
drive-current capability up to 2 A continuously. The device is specifically designed for low-noise, low-external-  
component-count motor-drive applications. The device is configurable through a simple I2C interface to  
accommodate different motor parameters and spin-up profiles for different customer applications.  
A 180° sensorless control scheme provides continuous sinusoidal output voltages to the motor phases to enable  
ultra-quiet motor operation by keeping the electrically induced torque ripple small.  
The DRV10987 device features extensive protection and fault-detection mechanisms to ensure reliable  
operation. Voltage surge protection prevents the input VCC capacitor from overcharging, which typically occurs  
during motor deceleration. The device provides overcurrent protection without the need for an external current-  
sense resistor. Rotor-lock detection is available through several methods. These methods can be configured with  
register settings to ensure reliable operation. The device provides additional protection for undervoltage lockout  
(UVLO) and for thermal shutdown.  
The commutation control algorithm continuously measures the motor phase current and periodically measures  
the VCC supply voltage. The device uses this information for BEMF estimation, and the information is also  
provided through the I2C register interface for debug and diagnostic use in the system, if desired.  
A step-down regulator in buck mode efficiently steps down the supply voltage. The output of this regulator  
provides power for the internal circuits and can also be used to provide power for an external circuit such as a  
microcontroller. If providing power for an external circuit is not necessary (and to reduce system cost), configure  
the step-down regulator as a linear regulator by replacing the inductor with a resistor.  
The DRV10987 device has a flexible interface, capable of supporting both analog and digital inputs. In addition to  
the I2C interface, the device has FG, DIR, and SPEED pins. SPEED is the speed–command input pin. DIR is the  
direction–control input pin. FG is the speed indicator output, which shows the frequency of the motor  
commutation.  
EEPROM is integrated in the DRV10987 device as memory for the motor parameter and operation settings.  
EEPROM data transfers to the registers after power-on.  
The DRV10987 device can also operate in register mode. If the system includes a microcontroller communicating  
through the I2C interface, the device can dynamically update the motor parameters and operation settings by  
writing to the registers. In this configuration, the EEPROM data is bypassed by the register settings.  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
8.2 Functional Block Diagram  
SDA  
I2C  
Register  
EEPROM  
Communication  
SCL  
VCC  
VCP  
CPP  
CPN  
SW  
Charge  
Pump  
5-V Step-Down  
VREG  
Regulator  
SWGND  
V3P3  
3.3-V LDO  
1.8-V LDO  
FG  
VCC  
VCC  
VCC  
V1P8  
GND  
VCP  
Oscillator  
Band Gap  
U
Pre-  
Driver  
U
V
Logic  
Core  
V / I  
Sensor  
ADC  
W
VCP  
PWM and Analog  
Speed Control  
SPEED  
DIR  
V
Pre-  
Driver  
Lock  
Overcurrent  
Thermal  
UVLO  
VCP  
W
Pre-  
Driver  
GND  
PGND  
Copyright © 2017, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Regulators  
8.3.1.1 Step-Down Regulator  
The DRV10987 device includes a step-down hysteretic voltage regulator that can be operated as either a  
switching buck regulator using an external inductor or as a linear regulator using an external resistor. The best  
efficiency is achieved when the step-down regulator is in buck mode. The regulator output voltage is 5 V. When  
the regulated voltage drops by the hysteresis level, the high-side FET turns on to raise the regulated voltage  
back to the target of 5 V. The switching frequency of the hysteretic regulator is not constant and changes with  
load.  
If the step-down regulator is configured in buck mode, see IREG_MAX_L in Electrical Characteristics to determine  
the amount of current provided for external load. If the step-down regulator is configured in linear mode, see  
IREG_MAX_R in Electrical Characteristics to determine the amount of current provided for external load. Active  
current ICC is higher in buck mode compared to linear mode.  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
Feature Description (接下页)  
IC  
IC  
VREG  
VREG  
VCC  
VCC  
47 µH  
10 µF  
39 Ω  
SW  
SW  
5 V  
5 V  
10 µF  
Load  
SWGND  
SWGND  
Step-Down Regulator With External Inductor (Buck  
Mode)  
Step-Down Regulator With External Resistor (Linear  
Mode)  
7. Step-Down Regulator Configurations  
8.3.1.2 3.3-V and 1.8-V LDOs  
The DRV10987 device includes a 3.3-V LDO and a 1.8-V LDO. The 1.8-V LDO is for internal circuits only. The  
3.3-V LDO is mainly for internal circuits, but can also drive external loads not to exceed IV3P3_MAX. For example, it  
can work as a pullup voltage for the FG, DIR, SDA, and SCL interfaces.  
Both the V1P8 and V3P3 capacitors must be connected to GND.  
8.3.2 Protection Circuits  
8.3.2.1 Thermal Shutdown  
The DRV10987 device has a built-in thermal shutdown function, which shuts down the device when the junction  
temperature is more than TSDN˚C and recovers operating conditions when the junction temperature falls to TSDN  
SDN_HYS˚C.  
T
The OverTemp status bit (address 0x00, bit 15) is set during thermal shutdown. In addition to the thermal  
shutdown function, there is a warning bit that is set whenever the device exceeds TWARN and is indicated by the  
TempWarning bit of the FaultReg register (address 0x00, bit 14).  
8.3.2.2 Undervoltage Lockout (UVLO)  
The DRV10987 device has a built-in UVLO function block. The device is locked out when VCC is below VUVLO_F  
and is unlocked when VCC is above VUVLO_R. The hysteresis of the UVLO threshold is VUVLO_HYS. In addition to  
the main supply, the step-down regulator, charge pump, and 3.3-V LDO all have undervoltage lockout monitors.  
8.3.2.3 Overcurrent Protection (OCP)  
The overcurrent protection function acts to protect the device if the current, as measured from the FETs, exceeds  
the IOC-limit threshold. The overcurrent protection function protects the device in the event of a short-circuit  
condition on the motor phases. A short-circuit condition includes phase shorts to GND, phase shorts to phase, or  
phase shorts to VCC. The DRV10987 device places the output drivers into a high-impedance state until the lock  
time tLOCK_OFF has expired. The OverCurr status bit of the FaultReg register (address 0x00, bit 11) is set.  
The DRV10987 device also provides software current-limit and lock-detection current-limit functions to protect the  
device and motor (see Current Limits and Lock Detect and Fault Handling ).  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
Feature Description (接下页)  
8.3.2.4 Lock  
When the motor is blocked or stopped by an external force, lock protection is triggered, and the device stops  
driving the motor immediately. After the lock release time tLOCK_OFF, the DRV10987 device resumes driving the  
motor again. If the lock condition is still present, it enters the next lock protection cycle, and repeats until the lock  
condition is removed. With this lock protection, the motor and device do not overheat or become damaged due to  
the motor being locked (see Lock Detect and Fault Handling ).  
During a lock condition the Status register indicates which of the locks has occurred.  
8.3.3 Motor Speed Control  
The DRV10987 device offers four methods for indirectly controlling the speed of the motor by adjusting the  
output voltage amplitude. This can be accomplished by varying the supply voltage (VCC) or by controlling the  
speed command. The speed command can be controlled in one of three ways. The user can set the speed  
command by adjusting either the PWM input (PWM in) or the analog input (Analog) or by writing the speed  
command directly through the I2C serial port (I2C). The speed command is used to determine the PWM duty  
cycle output (PWM_DCO) (see 9).  
The PWM input (PWM in) can have a minimum duty cycle limit applied. DutyCycleLimit[1:0], accessible through  
the I2C interface, allows the user to configure the minimum duty cycle behavior. This behavior is illustrated in 图  
8.  
DutyCycleLimit[1:0], Reg0x95  
DutyCycleLimit[1:0], Reg0x95  
Output Duty  
Cycle (%)  
Output Duty  
Cycle (%)  
10 - linear down to 5%, then holds at 5% until  
duty command is 1.5 %; 100 % for duty command  
below 1.5 %.  
00 - linear down to 5%, then holds at 5% until  
duty command is 1.5 %; 0 % for duty command  
below 1.5 %.  
11 - linear down to 10%, then holds at 10% until  
duty command is 1.5 %; 100 % for duty command  
below 1.5 %.  
01 - linear down to 10%, then holds at 10% until  
duty command is 1.5 %; 0 % for duty command  
below 1.5 %.  
100  
10  
5
10  
5
0
Input Duty Cycle  
0
Input Duty Cycle (%)  
Input Duty Cycle (%)  
0 1.5  
5
10  
0 1.5  
5
10  
8. Duty Cycle Profile  
The speed command may not always be equal to the PWM_DCO because the DRV10987 device has the AVS  
function (see Anti-Voltage Surge Function), the software current-limit function (see Software Current Limit), and  
the closed-loop accelerate function (see Closed-Loop Accelerate) to optimize the control performance. These  
functions can limit the PWM_DCO, which affects the output amplitude (see 9).  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
Feature Description (接下页)  
PWM Duty  
ADC  
PWM In  
AVS,  
Acceleration Current Limit  
Closed Loop Accelerate  
SPEED Pin  
Speed  
Command  
Analog  
I2C  
PWM_  
DCO  
Output  
Motor  
VCC  
X
Amplitude  
Copyright © 2017, Texas Instruments Incorporated  
9. Multiplexing the Speed Command to the Output Amplitude Applied to the Motor  
The output voltage amplitude applied to the motor is developed through sine wave modulation so that the phase-  
to-phase voltage is sinusoidal.  
When any phase is measured with respect to ground, the waveform is sinusoidally coupled with third-order  
harmonics. This encoding technique permits one phase to be held at ground while the other two phases are  
pulse-width modulated. 10 and 11 show the sinusoidal encoding technique used in the DRV10987 device.  
PWM Output  
Average Value  
10. PWM Output and the Average Value  
U-V  
U
V-W  
W-U  
V
W
Sinusoidal Voltage From Phase to Phase  
Sinusoidal Voltage With Third-Order Harmonics  
From Phase to GND  
11. Representing Sinusoidal Voltages With Third-Order Harmonic Output  
The output amplitude is determined by the magnitude of VCC and the PWM duty cycle output (PWM_DCO). The  
PWM_DCO represents the peak duty cycle that is applied in one electrical cycle. The maximum amplitude is  
reached when PWM_DCO is at 100%. The peak output amplitude is VCC. When the PWM_DCO is at 50%, the  
peak amplitude is VCC / 2 (see 12).  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
Feature Description (接下页)  
VCC  
100% PWM DCO  
50% PWM DC0  
VCC / 2  
12. Output Voltage Amplitude Adjustment  
Motor speed is controlled indirectly by controlling the output amplitude, which is achieved by either controlling  
VCC, or controlling the PWM_DCO. The DRV10987 device provides different options for the user to control the  
PWM_DCO:  
Analog input (SPEED pin)  
PWM encoded digital input (SPEED pin)  
I2C serial interface.  
See the Closed Loop section for more information.  
8.3.4 Overvoltage Protection  
The recommended operation voltage of the DRV10987 device is from 6.2 V to 28 V. The device is able to drive  
the motor within this VCC range.  
If VCC goes higher than VOV_R, DRV10987 stops driving the motor and protects its own circuitry. When VCC drops  
below VOV_F, the DRV10987 device continues to operate the motor based on the user’s command. The  
overvoltage protection works as long as the VCC slew rate is more than 10 V/ms.  
8.3.5 Sleep or Standby Condition  
The DRV10987 device is available in either a sleep mode (DRV10987D) or standby mode version (DRV10987S).  
The DRV10987 device enters either sleep or standby to conserve energy. When the device enters either sleep or  
standby, the device stops driving the motor. The step-down regulator is disabled in the sleep mode version to  
conserve more energy. The I2C interface is disabled and any register data not stored in EEPROM is reset for the  
sleep mode version. The switching regulator remains active in the standby mode version. The register data is  
maintained, and the I2C interface remains active for standby mode version.  
For different speed command modes, 1 shows the timing and command to enter the sleep or standby  
condition.  
1. Conditions to Enter or Exit Sleep or Standby Condition  
SPEED  
COMMAND  
MODE  
ENTER STANDBY  
CONDITION  
EXIT FROM STANDBY  
CONDITION  
EXIT FROM SLEEP  
CONDITION  
ENTER SLEEP CONDITION  
SPEED pin voltage < VEN_SB SPEED pin voltage < VEN_SL SPEED pin voltage > VEX_SB SPEED pin voltage > VEX_SL  
Analog  
PWM  
for tEN_SB_ANA  
for tEN_SL_ANA  
for tEX_ SB_ANA  
for tEX_SL_ANA  
SPEED pin low (V < VDIG_IL  
for tEN_SB_PWM  
)
SPEED pin low (V < VDIG_IL  
for tEN_SL_PWM  
)
SPEED pin high (V > VDIG_IH  
for tEX_SB_PWM  
)
SPEED pin high (V > VDIG_IH)  
for tEX_SL_PWM  
(1)  
(1) See 2 for details on PWM duty cycle requirements to exit sleep mode.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
Feature Description (接下页)  
1. Conditions to Enter or Exit Sleep or Standby Condition (接下页)  
SPEED  
COMMAND  
MODE  
ENTER STANDBY  
CONDITION  
EXIT FROM STANDBY  
EXIT FROM SLEEP  
CONDITION  
ENTER SLEEP CONDITION  
CONDITION  
SPEED pin high (V > VDIG_IH  
for tEX_SL_PWM (PWM mode)  
or SPEED pin voltage >  
VEX_SL for tEX_SL_ANA (Analog  
mode)  
)
SpdCtrl[8:0] is programmed  
as 0 for tEN_SB_PWM  
See Required Sequence to  
Enter Sleep Mode(2)  
SpdCtrl[8:0] is programmed  
as non-zero for tEX_SB_PWM  
I2C  
(2) See Required Sequence to Enter Sleep Mode for the required sequence to enter sleep mode.  
Note that when using the analog speed command, a higher voltage is required to exit from the sleep condition  
than from the standby condition. The I2C speed command cannot take the device out of the sleep condition  
because I2C communication is disabled during the sleep condition.  
2. Minimum PWM Duty Cycle Requirement for Different PWM Frequency to Exit Sleep Condition  
INPUT PWM FREQUENCY (kHz)  
PWM DUTY CYCLE (%)  
0.1 to 0.5  
0.5 to 1  
1 to 50  
50 to 100  
100  
14  
11  
9
4
3.5  
8.3.5.1 Required Sequence to Enter Sleep Mode  
In I2C speed command mode, either of two sequence options can be used to enter sleep mode.  
8.3.5.1.1 Option 1  
1. Provide a non-zero value to the speed control register. For example, write 100 to register 0x30,  
speedCtrl[8:0].  
2. Set the I2C OverRide bit to 1. That is, write 1 to register 0x30, speedCtrl[15].  
3. In analog mode, be sure SPEED pin voltage is less than VEN_SL for tEN_SL_ANA. In PWM mode, make sure  
SPEED pin is low (V < VDIG_IL) for tEN_SL_PWM  
.
4. Provide the value of zero to the speed control register to enter sleep mode. That is, write 0 to register 0x30,  
speedCtrl[8:0].  
8.3.5.1.2 Option 2  
1. Set the motor disable bit to 1. That is, write 1 to register 0x60, EECtrl[15].  
2. Set the I2C OverRide bit to 1. That is, write 1 to register 0x30, speedCtrl[15].  
3. Set the motor disable bit to 0. That is, write 0 to register 0x60, EECtrl[15].  
4. Provide the value of zero to the speed control register to enter sleep mode. That is, write 0 to register 0x30,  
speedCtrl[8:0].  
8.3.6 EEPROM Access  
The DRV10987 device has 112 bits (7 registers with 16-bit width) of EEPROM data, which are used to program  
the motor parameters as described in the I2C Serial Interface.  
The procedure for programming the EEPROM is as follows. TI recommends to perform the EEPROM  
programming without the motor spinning, cycle the power after the EEPROM write, and read back the EEPROM  
to verify the programming is successful.  
1. Power up with any voltage within operating voltage range (6.2 V to 28 V)  
2. Wait 10 ms  
3. Write register 0x60 to set MTR_DIS = 1; this disables the motor driver.  
4. Write register 0x31 with 0x0000 to clear the EEPROM access code  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
5. Write register 0x31 with 0xC0DE to enable access to EEPROM  
6. Read register 0x32 for eeReadyStatus = 1  
7. Case-A: Mass Write  
A. Write all individual shadow registers  
a. Write register 0x90 (CONFIG1) with CONFIG1 data  
b. ...  
c. Write register 0x96 (CONFIG7) with CONFIG7 data  
B. Write the following to register 0x35  
a. ShadowRegEn = 0  
b. eeRefresh = 0  
c. eeWRnEn = 1  
d. EEPROM Access Mode = 10  
C. Wait for register 0x32 eeReadyStatus = 1 – EEPROM is now updated with the contents of the shadow  
registers.  
8. Case-B: Mass Read  
A. Write the following to register 0x35  
a. ShadowRegEn = 0  
b. eeRefresh = 0  
c. eeWRnEn = 0  
d. eeAccMode = 10  
B. Internally, the device starts reading the EEPROM and storing it in the shadow registers.  
C. Wait for register 0x32 eeReadyStatus = 1 – shadow registers now contain the EEPROM values  
9. Write register 0x60 to set MTR_DIS = 0; this re-enables the motor driver  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8.4 Device Functional Modes  
This section includes the logic required to be able to reliably start and drive the motor. It describes the processes  
used in the logic core and provides the information needed to configure the parameters effectively to work over a  
wide range of applications.  
8.4.1 Motor Parameters  
See the DRV10983-Q1 Tuning Guide for the motor parameter measurement.  
The motor phase resistance (RPH_CT) and BEMF constant (Kt) are two important parameters used to characterize  
a BLDC motor. The DRV10987 device requires these parameters to be configured in the register. The motor  
phase resistance is programmed by writing the values for Rm[6:0] (combination of RMShift[2:0] and  
RMValue[3:0]) in the Config1 register. The BEMF constant is programmed by writing the values for Kt[6:0]  
(combination of KTShift[2:0] and KTValue[3:0]) in the Config2 register.  
8.4.1.1 Motor Phase Resistance (RPH_CT  
)
For a wye-connected motor, the motor phase resistance refers to the resistance from the phase output to the  
center tap, RPH_CT (denoted as RPH_CT in 13).  
Phase U  
RPH_CT  
RPH_CT  
RPH_CT  
Center  
Tap  
Phase V  
Phase W  
13. Wye-Connected Motor Phase Resistance  
For a delta-connected motor, the motor phase resistance refers to the equivalent phase to center tap in the wye  
configuration. In 14, it is denoted as RY. RPH_CT = RY.  
For both the delta-connected motor and the wye-connected motor, the easy way to get the equivalent RPH_CT is  
to measure the resistance between two phase terminals (RPH_PH), and then divide this value by two, RPH_CT = ½  
RPH_PH  
.
Phase U  
RY  
R
R
PH_PH  
PH_PH  
RY  
RY  
Center  
Tap  
Phase V  
R
Phase W  
PH_PH  
14. Delta-Connected Motor and the Equivalent Wye Connections  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
 
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
The motor phase resistance (RPH_CT) must be converted to a 7-bit digital register value Rm[6:0] to program the  
motor phase resistance value. The digital register value can be determined as follows:  
1. Convert the motor phase resistance (RPH_CT) to a digital value where the LSB is weighted to represent 9.67  
mΩ: Rmdig = RPH_CT / 0.00967.  
2. Encode the digital value such that Rmdig = RMValue[3:0] << RMShift[2:0].  
The maximum resistor value, RPH_CT, that can be programmed for the DRV10987 device is 18.5 Ω, which  
represents Rmdig = 1920 and an encoded Rm[6:0] value of 0x7Fh. The minimum resistor the DRV10987 device  
supports is 0.029 Ω, RPH_CT, which represents Rmdig = 3.  
For convenience, the encoded value for Rm[6:0] can also be obtained from 3.  
3. Motor Phase Resistance Look-Up Table  
RM[6:0] {RMShift[2:0],  
RMValue[3:0]}  
RM[6:0] {RMShift[2:0],  
RMValue[3:0]}  
RM[6:0] {RMShift[2:0],  
RMValue[3:0]}  
RPH_CT (Ω)  
RPH_CT (Ω)  
RPH_CT (Ω)  
BINARY  
000 0000  
000 0001  
000 0010  
000 0011  
000 0100  
000 0101  
000 0110  
000 0111  
000 1000  
000 1001  
000 1010  
000 1011  
000 1100  
000 1101  
000 1110  
000 1111  
001 1000  
001 1001  
001 1010  
001 1011  
001 1100  
001 1101  
001 1110  
001 1111  
HEX  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
BINARY  
0101000  
010 1001  
010 1010  
010 1011  
010 1100  
010 1101  
010 1110  
010 1111  
011 1000  
011 1001  
011 1010  
011 1011  
011 1100  
011 1101  
011 1110  
011 1111  
100 1000  
100 1001  
100 1010  
100 1011  
100 1100  
100 1101  
100 1110  
100 1111  
HEX  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
BINARY  
1011000  
101 1001  
101 1010  
101 1011  
101 1100  
101 1101  
101 1110  
101 1111  
110 1000  
110 1001  
110 1010  
110 1011  
110 1100  
110 1101  
110 1110  
110 1111  
111 1000  
111 1001  
111 1010  
111 1011  
111 1100  
111 1101  
111 1110  
111 1111  
HEX  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0
0.3104  
0.3492  
0.388  
2.4832  
2.7936  
3.104  
0.0097  
0.0194  
0.0291  
0.0388  
0.0485  
0.0582  
0.0679  
0.0776  
0.0873  
0.097  
0.4268  
0.4656  
0.5044  
0.5432  
0.582  
3.4144  
3.7248  
4.0352  
4.3456  
4.656  
0.6208  
0.6984  
0.776  
4.9664  
5.5872  
6.208  
0.1067  
0.1164  
0.1261  
0.1358  
0.1455  
0.1552  
0.1746  
0.194  
0.8536  
0.9312  
1.0088  
1.0864  
1.164  
6.8288  
7.4496  
8.0704  
8.6912  
9.312  
1.2416  
1.3968  
1.552  
9.9328  
11.1744  
12.416  
13.6576  
14.8992  
16.1408  
17.3824  
18.624  
0.2134  
0.2328  
0.2522  
0.2716  
0.291  
1.7072  
1.8624  
2.0176  
2.1728  
2.328  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8.4.1.2 BEMF Constant (Kt)  
The BEMF constant, Kt[6:0], describes the phase-to-phase BEMF voltage of the motor as a function of the motor  
velocity.  
15 shows the measurement technique for this constant as used in the DRV10987 device.  
PhU  
Rm  
Ep  
Lm  
Te  
Ep Ep  
=
Eu  
Kt =  
Ev  
1
fe  
Ew  
te  
Lm  
Lm  
Rm  
Rm  
PhV  
PhW  
15. Kt Definition  
With the motor coasting, use an oscilloscope to capture the differential voltage waveform between any two  
phases. Derive the motor BEMF constant used by the DRV10987 device as shown in 公式 1.  
Kt = Ep × te  
where  
Ep is ½ the peak-to-peak amplitude of the measured voltage  
te is the electrical period  
(1)  
The measured BEMF constant (Kt) must be converted to a 7-bit digital register value Kt[6:0] (combination of  
KtShift[2:0] and KtValue[3:0]) to program the BEMF constant value. The digital register value can be determined  
as follows:  
1. Convert the measured Kt to a weighted digital value: Ktph_dig = 1090 × Kt  
2. Encode the digital value such that Ktph_dig = KtValue[3:0] << KtShift[2:0].  
The maximum Kt that can be programmed is 1760 mV/Hz. This represents a digital value of 1920 and an  
encoded Kt[6:0] value of 0x7Fh. The minimum Kt that can be programmed is 0.92 mV/Hz, which represents a  
digital value of 1 and an encoded Kt[6:0] value of 0x01h.  
For convenience, the encoded value of Kt[6:0] may also be obtained from 4.  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
Kt (mV/Hz)  
4. BEMF Constant (Kt) Look-Up Table  
Kt[6:0] {KtShift[2:0],  
KtValue[3:0]}  
Kt [6:0] {KtShift[2:0],  
KtValue[3:0]}  
Kt [6:0] {KtShift[2:0],  
KtValue[3:0]}  
Kt (mV/Hz)  
Kt (mV/Hz)  
BINARY  
000 0000  
000 0001  
000 0010  
000 0011  
000 0100  
000 0101  
000 0110  
000 0111  
000 1000  
000 1001  
000 1010  
000 1011  
000 1100  
000 1101  
000 1110  
000 1111  
001 1000  
001 1001  
001 1010  
001 1011  
001 1100  
001 1101  
001 1110  
001 1111  
HEX  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
BINARY  
010 1000  
010 1000  
010 1000  
010 1000  
010 1000  
010 1000  
010 1000  
010 1000  
011 1000  
011 1000  
011 1000  
011 1000  
011 1000  
011 1000  
011 1000  
011 1000  
100 1000  
100 1000  
100 1000  
100 1000  
100 1000  
100 1000  
100 1000  
100 1000  
HEX  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
BINARY  
101 1000  
101 1000  
101 1000  
101 1000  
101 1000  
101 1000  
101 1000  
101 1000  
110 1000  
110 1000  
110 1000  
110 1000  
110 1000  
110 1000  
110 1000  
110 1000  
111 1000  
111 1000  
111 1000  
111 1000  
111 1000  
111 1000  
111 1000  
111 1000  
HEX  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0
29.44  
33.12  
36.8  
235.52  
264.96  
294.4  
0.92  
1.84  
2.76  
3.68  
4.6  
40.48  
44.16  
47.84  
51.52  
55.2  
323.84  
353.28  
382.72  
412.16  
441.6  
5.52  
6.44  
7.36  
8.28  
9.2  
58.88  
66.24  
73.6  
471.04  
529.92  
588.8  
10.12  
11.04  
11.96  
12.88  
13.8  
14.72  
16.56  
18.4  
20.24  
22.08  
23.92  
25.76  
27.6  
80.96  
88.32  
95.68  
103.04  
110.4  
117.76  
132.48  
147.2  
161.92  
176.64  
191.36  
206.08  
220.8  
647.68  
706.56  
765.44  
824.32  
883.2  
942.08  
1059.84  
1177.6  
1295.36  
1413.12  
1530.88  
1648.64  
1766.4  
8.4.2 Starting the Motor Under Different Initial Conditions  
The motor can be in one of three states when the DRV10987 device attempts to begin the start-up process. The  
motor may be stationary, or spinning in the forward or reverse directions. The DRV10987 device includes a  
number of features to allow for reliable motor start under all of these conditions. 16 shows the motor start-up  
flow for each of the three initial motor states.  
8.4.2.1 Case 1 – Motor is Stationary  
If the motor is stationary, the commutation logic must be initialized to be in phase with the position of the motor.  
The DRV10987 device provides for two options to initialize the commutation logic to the motor position. Initial  
position detect (IPD) determines the position of the motor based on the deterministic inductance variation, which  
is often present in BLDC motors. The align-and-go technique forces the motor into alignment by applying a  
voltage across a particular motor phase to force the motor to rotate in alignment with this phase.  
8.4.2.2 Case 2 – Motor is Spinning in the Forward Direction  
If the motor is spinning forward with enough velocity, the DRV10987 device may be configured to go directly into  
closed loop. By resynchronizing to the spinning motor, the user achieves the fastest possible start-up time for this  
initial condition.  
8.4.2.3 Case 3 – Motor is Spinning in the Reverse Direction  
If the motor is spinning in the reverse direction, the DRV10987 device provides several methods to convert it  
back to the forward direction.  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
One method, reverse drive, allows the motor to be driven so that it accelerates through zero velocity. The motor  
achieves the shortest possible spin-up time in systems where the motor is spinning in the reverse direction.  
If this feature is not selected, then the DRV10987 device may be configured either to wait for the motor to stop  
spinning or to brake the motor. After the motor has stopped spinning, the motor start-up sequence proceeds as it  
would for a motor which is stationary.  
Take care when using the reverse-drive or brake feature to ensure that the current is limited to an acceptable  
level and that the supply voltage does not surge as a result of energy being returned to the power supply.  
IPD  
Stationary  
Align and Go  
Spinning forward  
Spinning reversely  
Direct closed loop  
Wait  
Brake  
Reverse drive  
16. Start the Motor Under Different Initial Conditions  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
8.4.3 Motor Start Sequence  
17 shows the motor-start sequence implemented in the DRV10987 device.  
Power on  
DIR pin  
change  
N
ISDen  
Y
ISD  
Speed <  
ISDThr  
Y
N
Forward  
N
Y
Speed >  
RvsDrThr  
Y
N
BrkEn  
Y
N
Brake  
N
RvsDrEn  
Y
IPDEn  
Y
Time >  
BrkDoneThr  
N
Y
N
Align  
IPD  
RvsDr  
Accelerate  
Speed >  
Op2CIsThr  
N
Y
ClosedLoop  
17. Motor Starting-Up Flow  
Accelerate State The DRV10987 device accelerates the motor according to the settings of StAccel and  
StAccel2. After applying the accelerate settings, the MSS advances to the Speed>Op2ClsThr  
judgment.  
Align State The DRV10987 device performs the align function (see Align). After the align completes, the MSS  
transitions to the Accelerate state.  
Brake State The device performs the brake function (see Motor Brake).  
BrkEn Judgment The MSS checks to determine whether the brake function is enabled (BrkDoneThr[2:0] 000).  
If the brake function is enabled, the MSS advances to the brake state.  
ClosedLoop State In this state, the DRV10987 device drives the motor based on feedback from the  
commutation control algorithm.  
DIR Pin Change Judgment If the DIR pin is changed during any of above states, DRV10987 device stops  
driving the motor and restarts from the beginning.  
Forward Judgment The MSS determines whether the motor is spinning in the forward or the reverse direction.  
If the motor is spinning in the forward direction, the DRV10987 device executes the  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
resynchronization (see Motor Resynchronization) process by transitioning directly into the  
ClosedLoop state. If the motor is spinning in the reverse direction, the MSS proceeds to the  
Speed>RvsDrThr.  
IPDEn Judgment The MSS checks to see if IPD has been enabled (IPDCurrThr[3:0] 0000). If the IPD is  
enabled, the MSS transitions to the IPD state. Otherwise, it transitions to the align state.  
IPD State  
ISD State  
The DRV10987 device performs the IPD function. The IPD function is described in Initial Position  
Detect (IPD). After the IPD completes, the MSS transitions to the accelerate state.  
The MSS determines the initial condition of the motor (see Initial Speed Detect (ISD)).  
ISDen Judgment After power-on, the DRV10987 MSS enters the ISDen judgment where it checks to see if the  
initial speed detect (ISD) function is enabled (ISDen = 1). If ISD is disabled, the MSS proceeds  
directly to the BrkEn Judgment. If ISD is enabled, the motor start sequence advances to the ISD  
state.  
Power-On State This is the initial power-on state of the motor start sequencer (MSS). The MSS starts in this  
state on initial power-up or whenever the DRV10987 device comes out of standby mode.  
RvsDrEn Judgment The MSS checks to see if the reverse drive function is enabled (RvsDrEn = 1). If it is, the  
MSS transitions into the RvsDr state. If the reverse drive function is not enabled, the MSS  
advances to the BrkEn judgment.  
RvsDr State The DRV10987 device drives the motor in the forward direction to force it to rapidly decelerate (see  
Reverse Drive). When it reaches zero velocity, the MSS transitions to the Accelerate state.  
Speed<ISDThr Judgment If the motor speed is lower than the threshold defined by ISDThr[1:0], then the motor  
is considered to be stationary and the MSS proceeds to the BrkEn judgment. If the speed is greater  
than the threshold defined by ISDThr[1:0], the start sequence proceeds to the Forward judgment.  
Speed>Op2ClsThr Judgment The motor accelerates until the drive rate exceeds the threshold configured by  
the Op2ClsThr[4:0] settings. When this threshold is reached, the DRV10987 device enters into the  
ClosedLoop state.  
Speed>RvsDrThr Judgment The motor start sequencer checks to see if the reverse speed is greater than the  
threshold defined by RvsDrThr[1:0]. If it is, then the MSS returns to the ISD state to allow the motor  
to decelerate. This prevents the DRV10987 device from attempting to reverse drive or brake a  
motor that is spinning too quickly. If the reverse speed of the motor is less than the threshold  
defined by RvsDrThr[1:0], then the MSS advances to the RvsDrEn judgment.  
Time>BrkDoneThr Judgment The MSS applies brake for a time configured by BRKDoneThr[2:0]. After brake  
state, the MSS advances to the IPDEn judgment.  
8.4.3.1 Initial Speed Detect (ISD)  
The ISD function is used to identify the initial condition of the motor. If the function is disabled, the DRV10987  
device does not perform the initial speed detect function and treats the motor as if it is stationary.  
Phase-to-phase comparators are used to detect the zero crossings of the motor BEMF voltage while it is  
coasting (motor phase outputs are in the high-impedance state). 18 shows the configuration of the  
comparators.  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
degrees  
60  
V
+
+
U
W
18. Initial Speed Detect Function  
If the UW comparator output is lagging the UV comparator by 60°, the motor is spinning forward. If the UW  
comparator output is leading the UV comparator by 60°, the motor is spinning in reverse.  
The motor speed is determined by measuring the time between two rising edges of either of the comparators.  
If neither of the comparator outputs toggles for a given amount of time, the condition is defined as stationary. The  
amount of time can be programmed by setting the register bits ISDThr[1:0].  
8.4.3.2 Motor Resynchronization  
The resynchronize function works when the ISD function is enabled and determines that the initial state of the  
motor is spinning in the forward direction. The speed and position information measured during ISD are used to  
initialize the drive state of the DRV10987 device, which can transition directly into the closed-loop running state  
without needing to stop the motor.  
8.4.3.3 Reverse Drive  
The ISD function measures the initial speed and the initial position; the DRV10987 reverse drive function acts to  
reverse accelerate the motor through zero speed and to continue accelerating until the closed loop threshold is  
reached (see 19). If the reverse speed is greater than the threshold configured in RvsDrThr[1:0], then the  
DRV10987 device waits until the motor coasts to a speed that is less than the threshold before driving the motor  
to reverse accelerate.  
Speed  
Closed loop  
Op2ClsThr  
Open loop  
Time  
RevDrThr  
Reverse Drive  
Coasting  
19. Reverse Drive Function  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
Reverse drive is suitable for applications where the load condition is light at low speed and relatively constant  
and where the reverse speed is low (for example, a fan motor with little friction). For other load conditions, the  
motor brake function provides a method for helping force a motor which is spinning in the reverse direction to  
stop spinning before the device initiates a normal start-up sequence.  
8.4.3.4 Motor Brake  
The motor brake function can be used to stop the spinning motor before attempting to start the motor. The brake  
is applied by turning on all three of the low-side driver FETs.  
Brake is enabled by configuring a non-zero BrkDoneThr[2:0]. The driver comes out of the brake state only when  
the phase current is lower than BrkCurThrSel for BrkDoneThr[2:0] time. After the motor is stopped, the motor  
position is unknown. To proceed with restarting in the correct direction, the IPD or align-and-go algorithm must  
be implemented. The motor start sequence is the same as it would be for a motor starting in the stationary  
condition. The driver enters the brake state before entering the IPD or align-and-go state.  
The motor brake function can be disabled, in which case the DRV10987 device skips the brake state and  
attempts to spin the motor as if it were stationary. If this happens while the motor is spinning in either direction,  
the start-up sequence may not be successful.  
8.4.3.5 Motor Initialization  
8.4.3.5.1 Align  
The DRV10987 device aligns a motor by injecting dc current through a particular phase pattern which is current  
flowing into phase V, flowing out from phase W for a certain time (configured by AlignTime[2:0]). The current  
magnitude is determined by OpenLCurr[1:0]. The motor should be aligned at the known position.  
The time of align affects the start-up timing (see Start-Up Timing). A bigger-inertia motor requires longer align  
time.  
8.4.3.5.2 Initial Position Detect (IPD)  
The inductive sense method is used to determine the initial position of the motor when IPD is enabled. IPD is  
enabled by selecting IPDCurrThr[3:0] to any value other than 0000.  
IPD can be used in applications where reverse rotation of the motor is unacceptable. Because IPD is not  
required to wait for the motor to align with the commutation, it can allow for a faster motor start sequence. IPD  
works well when the inductance of the motor varies as a function of position. Because it works by pulsing current  
to the motor, it can generate acoustics which must be taken into account when determining the best start method  
for a particular application.  
8.4.3.5.2.1 IPD Operation  
IPD operates by sequentially applying voltage across two of the three motor phases according to the following  
sequence: VW WV UV VU WU UW (see 20). When the current reaches the threshold configured in  
IPDCurrThr[3:0], the voltage across the motor is stopped. The DRV10987 device measures the time it takes from  
when the voltage is applied until the current threshold is reached. The time varies as a function of the inductance  
in the motor windings. The state with the shortest time represents the state with the minimum inductance. The  
minimum inductance is because of the alignment of the north pole of the motor with this particular driving state.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
U
V
N
S
IPDclk  
Clock  
W
Drive  
V W  
W V  
U V  
V U  
W U  
U W  
IPDCurrThr  
Current  
Search the Minimum Time  
Permanent  
Magnet Position  
Saturation Position of the  
Magnetic Field  
Smallest  
Inductance  
Minimum  
Time  
20. IPD Function  
8.4.3.5.2.2 IPD Release Mode  
Two options are available for stopping the voltage applied to the motor when the current threshold is reached. If  
IPDRlsMd = 0, the recirculate mode is selected. The low-side (S6) MOSFET remains on to allow the current to  
recirculate between the MOSFET (S6) and body diode (S2) (see 21). If IPDRlsMd = 1, the high-impedance  
mode is selected. Both the high-side (S1) and low-side (S6) MOSFETs are turned off and the current flies back  
across the body diodes into the power supply (see 22).  
In the high-impedance state, the phase current has a faster settle-down time, but that could result in a surge on  
VCC. Manage this with appropriate selection of either a clamp circuit or by providing sufficient capacitance  
between VCC and GND. If the voltage surge cannot be contained and if it is unacceptable for the application, then  
select the recirculate mode. When selecting the recirculate mode, select the IPDClk[1:0] bits to give the current in  
the motor windings enough time to decay to 0.  
S3  
S5  
S1  
S3  
S5  
M
M
U1  
U1  
S2  
S2  
S4  
S4  
Driving  
Brake (Recirculate)  
21. IPD Release Mode 0  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
S3  
S5  
S1  
S3  
S4  
S5  
M
M
U1  
S2  
U1  
S2  
S4  
S6  
Driving  
Hi-Z (High-Impedance)  
22. IPD Release Mode 1  
8.4.3.5.2.3 IPD Advance Angle  
After the initial position is detected, the DRV10987 device begins driving the motor at an angle specified by  
IPDAdvcAgl[1:0].  
Advancing the drive angle anywhere from 0° to 180° results in positive torque. Advancing the drive angle by 90°  
results in maximum initial torque. Applying maximum initial torque could result in uneven acceleration to the rotor.  
Select the IPDAdvcAgl[1:0] to allow for smooth acceleration in the application (see 23).  
Motor spinning direction  
U
V
N
S
W
U
V
U
V
U
V
U
V
N
N
N
N
S
S
S
S
W
W
W
W
30˘ advance  
60˘ advance  
90˘ advance  
120˘ advance  
23. IPD Advance Angle  
8.4.3.5.3 Motor Start  
After it is determined that the motor is stationary and after completing the motor initialization with either align or  
IPD, the DRV10987 device begins to accelerate the motor. This acceleration is accomplished by applying a  
voltage determined by the open-loop current setting (OpenLCurr[1:0]) to the appropriate drive state and by  
increasing the rate of commutation without regard to the real position of the motor (referred to as open-loop  
operation). The function of the open-loop operation is to drive the motor to a minimum speed so that the motor  
generates sufficient BEMF to allow the commutation control logic to accurately drive the motor.  
5 lists the configuration options that can be set in the register to optimize the initial motor acceleration stage  
for different applications.  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
5. Configuration Options for Controlling Open-Loop Motor Start  
CONFIGURATION  
BITS  
DESCRIPTION  
REG. NAME  
MIN. VALUE  
MAX. VALUE  
Open- to closed-loop threshold  
Align time  
CONFIG4  
CONFIG4  
CONFIG4  
Op2ClsThr[4:0]  
AlignTime[2:0]  
StAccel[2:0]  
0.8 Hz  
40 ms  
204.8 Hz  
5.3 s  
First-order acceleration coefficient  
0.019 Hz/s  
76 Hz/s  
Second-order acceleration  
coefficient  
CONFIG4  
StAccel2[2:0]  
0.0026 Hz/s2  
57 Hz/s2  
Open-loop current setting  
Align current setting  
200 mA  
150 mA  
1.6 A  
1.2 A  
CONFIG3  
CONFIG3  
OpenLCurr[1:0]  
OpLCurrRt[2:0]  
Open-loop current ramping  
0.023 VCC/s  
6 VCC/s  
8.4.3.6 Start-Up Timing  
Start-up timing is determined by the align and accelerate time. The align time can be set by AlignTime[2:0]. The  
accelerate time is defined by the open-loop to closed-loop threshold Op2ClsThr[4:0] along with the first-order  
acceleration coefficient StAccel[2:0](A1) and second-order acceleration coefficient StAccel2[2:0](A2) acceleration  
coefficients. 24 shows the motor start-up process.  
Speed  
Speed =  
Close loop  
A1 ´ t + 0.5 A2 ´ t2  
Op2ClsThr  
AlignTime  
Accelerate Time is determined by  
Op2ClsThr and A1, A2.  
Time  
Accelerate Time  
24. Motor Start-Up Process  
Select the first-order and second-order acceleration coefficients to allow the motor to reliably accelerate from  
zero velocity up to the closed-loop threshold in the shortest time possible. Using slow acceleration coefficients for  
open loop stage can help improve reliability in applications where it is difficult to initialize the motor accurately  
with either align or IPD.  
Select the open- to closed-loop threshold to allow the motor to accelerate to a speed that generates sufficient  
BEMF for closed-loop control. This is determined by the BEMF constant of the motor based on the relationship  
described in 公式 2.  
BEMF = Kt × speed (Hz)  
(2)  
8.4.4 Align Current  
During the align state, the measured align current is dependent on the actual motor phase resistance and rDS(on)  
of the internal FETs. The relationship between measured align current and configured align current is derived  
from the actual motor phase resistance, configured motor phase resistance, and rDS(on)  
.
é
ê
ë
ù
ú
Rm  
AlignCurrent _Measured = AlignCurrent _Configured´  
R
+ r  
ê
ú
DS(on) û  
motor  
where  
AlignCurrent_Measured is the actual align current measured during the align state  
AlignCurrent_Configured is the align current configured by OpenLCurr[1:0]  
Rmotor is the actual motor phase resistance  
rDS(on) is the resistance between the drain and source of the FETs during the on-state  
Rm is configured by Rm[6:0]  
(3)  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8.4.5 Start-Up Current Setting  
The start-up current setting is to control the peak start-up current during open loop. During open-loop operation, it  
is desirable to control the magnitude of drive current applied to the motor. This is helpful in controlling and  
optimizing the rate of acceleration. The limit takes effect during reverse drive, align, and acceleration.  
The start current is set by programming the OpenLCurr[1:0] bits. The current should be selected to allow the  
motor to reliably accelerate to the handoff threshold. Heavier loads may require a higher current setting, but it  
should be noted that the rate of acceleration is limited by the acceleration rate (StAccel[2:0], StAccel2[2:0]). If the  
motor is started with more current than necessary to reliably reach the handoff threshold, it results in higher  
power consumption.  
The start current is controlled based on the relationship shown in 公式 4 and 25. The duty cycle applied to the  
motor is derived from the calculated value for ULimit and the magnitude of the supply voltage, VCC, as well as the  
drive state of the motor.  
ULimit = ILimit ì Rm + Speed Hz ì Kt  
(
)
where  
ILimit is configured by OpenLCurr[1:0]  
Rm is configured by Rm[6:0]  
Speed is variable based the open-loop acceleration profile of the motor  
Kt is configured by Kt[6:0]  
(4)  
Rm  
BEMF = Kt × speed  
M
VU = BEMF + I× Rm  
Copyright © 2017, Texas Instruments Incorporated  
25. Motor Start-Up Current  
8.4.5.1 Start-Up Current Ramp-Up  
A fast change in the applied drive current may result in a sudden change in the driving torque. In some  
applications, this could result in acoustic noise. To avoid this, the DRV10987 device allows the option of limiting  
the rate at which the current is applied to the motor. OpLCurrRt[2:0] sets the maximum voltage ramp-up rate that  
is applied to the motor. The waveforms in 26 show how this feature can be used to gradually ramp the current  
applied to the motor.  
Start Driving With Fast Current Ramp  
Start Driving With Slow Current Ramp  
26. Motor Start-Up Current Ramp  
8.4.6 Closed Loop  
In closed loop operation, the DRV10987 device continuously samples the current in the U phase of the motor  
and uses this information to estimate the BEMF voltage that is present. The drive state of the motor is controlled  
based on the estimated BEMF voltage.  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
 
 
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
8.4.6.1 Half-Cycle Control and Full-Cycle Control  
The estimated BEMF used to control the drive state of the motor has two zero-crosses every electrical cycle. The  
DRV10987 device can be configured to update the drive state either once every electrical cycle or twice for every  
electrical cycle. When AdjMode is programmed to 1, half-cycle adjustment is applied. The control logic is  
triggered at both the rising edge and falling edge. When AdjMode is programmed to 0, full-cycle adjustment is  
applied. The control logic is triggered only at the rising edge (see 27).  
Half-cycle adjustment provides a faster response when compared with full-cycle adjustment. Use half-cycle  
adjustment whenever the application requires operation over large dynamic loading conditions. Use the full-cycle  
adjustment for low-current (<1 A) applications because it offers more tolerance for current-measurement offset  
errors.  
Zero cross signal  
Zero cross signal  
Estimated Position  
Real Driving Voltage  
Real Position  
Ideal Driving Voltage  
Estimated Position  
Real Driving Voltage  
Real Position  
Ideal Driving Voltage  
Adjustment (full cycle)  
Adjustment (half cycle)  
27. Closed-Loop Control Commutation-Adjustment Mode  
8.4.6.2 Analog-Mode Speed Control  
The SPEED input pin can be configured to operate as an analog input (SpdCtrlMd = 0).  
When configured for analog mode, the voltage range on the SPEED pin can be varied from 0 to V3P3. If  
SPEED > VANA_FS, the speed command is maximum. If VANA_ZS SPEED < VANA_FS the speed command  
changes linearly according to the magnitude of the voltage applied at the SPEED pin. If SPEED < VANA_ZS the  
speed command is to stop the motor. 28 shows the speed command when operating in analog mode.  
Speed  
Command  
Maximum  
Speed  
Command  
Analog Input  
VANA-ZS  
VANA-FS  
28. Analog-Mode Speed Command  
8.4.6.3 Digital PWM-Input-Mode Speed Control  
If SpdCtrlMd = 1, the SPEED input pin is configured to operate as a PWM-encoded digital input. The PWM duty  
cycle applied to the SPEED pin can be varied from 0 to 100%. The speed command is proportional to the PWM  
input duty cycle. The speed command stops the motor when the PWM input keeps at 0 for tEN_SL_SB (see 29).  
The frequency of the PWM input signal applied to the SPEED pin is defined as fPWM. This is the frequency the  
device can accept to control motor speed. It does not correspond to the PWM output frequency that is applied to  
the motor phase. The PWM output frequency can be configured to be either 25 kHz when the PWMFreq bit is set  
to 0 or to 50 kHz when PWMFreq bit is set to 1.  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
Speed  
Command  
Maximum  
Speed  
Command  
PWM duty  
0
100%  
29. PWM-Mode Speed Command  
8.4.6.4 I2C-Mode Speed Control  
The DRV10987 device can also command the speed through the I2C serial interface. To enable this feature, the  
OverRide bit is set to 1. When the DRV10987 device is configured to operate in I2C mode, it ignores the signal  
applied to the SPEED pin.  
The speed command can be set by writing the SpdCtrl[8:0] bits. The 9-bit SpdCtrl [8:0] located in the SpeedCtrl  
registers is used to set the peak amplitude voltage applied to the motor. The maximum speed command is set  
when SpdCtrl [8:0] is set to 0x1FF (511).  
8.4.6.5 Closed-Loop Accelerate  
To prevent sudden changes in the torque applied to the motor which could result in acoustic noise, the  
DRV10987 device provides the option of limiting the maximum rate at which the speed command changes.  
ClsLpAccel[2:0] can be programmed to set the maximum rate at which the speed command changes (shown in  
30).  
y%  
Speed command  
input  
x%  
y%  
Speed command  
after closed loop  
accelerate buffer  
x%  
Closed loop  
accelerate settings  
30. Closed-Loop Accelerate  
8.4.6.6 Control Coefficient  
The DRV10987 device continuously measures the motor current and uses this information to control the drive  
state of the motor when operating in closed-loop mode. In applications where noise makes it difficult to control  
the commutation optimally, the CtrlCoef[1:0] can be used to attenuate the feedback used for closed-loop control.  
The loop is less reactive to the noise on the feedback and provides for a smoother output.  
8.4.6.7 Commutation Control  
To achieve the best efficiency, it is often desirable to control the drive state of the motor so that the motor phase  
current is aligned with the motor BEMF voltage.  
To align the motor phase current with the motor BEMF voltage, consider the inductive effect of the motor. The  
voltage applied to the motor should be applied in advance of the motor BEMF voltage (see 31). The  
DRV10987 device provides configuration bits for controlling the time (tadv) between the driving voltage and  
BEMF.  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
For motors with salient pole structures, aligning the motor BEMF voltage with the motor current may not achieve  
the best efficiency. In these applications, the timing advance should be adjusted accordingly. Accomplish this by  
operating the system at constant speed and load conditions and by adjusting tadv until the minimum current is  
achieved.  
Phase  
Voltage  
Phase  
BEMF  
Phase  
Current  
tadv  
31. Advance Time (tadv) Definition  
The DRV10987 device has two options for adjusting the motor commutate advance time. When CommAdvMode  
= 0, mode 0 is selected. When CommAdvMode = 1, mode 1 is selected.  
Mode 0: tadv is maintained to be a fixed time relative to the estimated BEMF zero cross as determined by 公式 5.  
tadv = tSETTING  
(5)  
Mode 1: tadv is maintained to be a variable time relative to the estimated BEMF zero cross as determined by 公式  
6.  
tadv = tSETTING × (VU – BEMF) / VU.  
where  
VUis the phase voltage amplitude  
BEMF is the phase BEMF amplitude  
(6)  
tSETTING (in µs) is determined by the configuration of the TCtrlAdvShift [2:0] and TCtrlAdvValue [3:0] bits as  
defined in 公式 7. For convenience, the available tSETTING values are provided in 6.  
tSETTING = 2.5 µs × [TCtrlAdvValue[3:0]] << TCtrlAdvShift[2:0]  
(7)  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
6. Configuring Commutation Advance Timing by Adjusting tSETTING  
TCtrlAdv [6:0]  
TCtrlAdv [6:0]  
TCtrlAdv [6:0]  
{TCtrlAdvShift[2:0],  
TCtrlAdvValue[3:0]}  
{TCtrlAdvShift[2:0],  
TCtrlAdvValue[3:0]}  
{TCtrlAdvShift[2:0],  
TCtrlAdvValue[3:0]}  
tSETTING (µs)  
tSETTING (µs)  
tSETTING (µs)  
Binary  
Hex  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
Binary  
Hex  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
Binary  
Hex  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
000 0000  
000 0001  
000 0010  
000 0011  
000 0100  
000 0101  
000 0110  
000 0111  
000 1000  
000 1001  
000 1010  
000 1011  
000 1100  
000 1101  
000 1110  
000 1111  
001 1000  
001 1001  
001 1010  
001 1011  
001 1100  
001 1101  
001 1110  
001 1111  
0
2.5  
5
010 1000  
010 1001  
010 1010  
010 1011  
010 1100  
010 1101  
010 1110  
010 1111  
011 1000  
011 1001  
011 1010  
011 1011  
011 1100  
011 1101  
011 1110  
011 1111  
100 1000  
100 1001  
100 1010  
100 1011  
100 1100  
100 1101  
100 1110  
100 1111  
80  
101 1000  
101 1001  
101 1010  
101 1011  
101 1100  
101 1101  
101 1110  
101 1111  
110 1000  
110 1001  
110 1010  
110 1011  
110 1100  
110 1101  
110 1110  
110 1111  
111 1000  
111 1001  
111 1010  
111 1011  
111 1100  
111 1101  
111 1110  
111 1111  
640  
720  
90  
100  
110  
120  
130  
140  
150  
160  
170  
200  
220  
240  
260  
280  
300  
320  
360  
400  
440  
480  
520  
560  
600  
800  
7.5  
10  
880  
960  
12.5  
15  
1040  
1120  
1200  
1280  
1440  
1600  
1760  
1920  
2080  
2240  
2400  
2560  
2880  
3200  
3520  
3840  
4160  
4480  
4800  
17.5  
20  
22.5  
25  
27.5  
30  
32.5  
35  
37.5  
40  
45  
50  
55  
60  
65  
70  
75  
8.4.7 Current Limits  
The DRV10987 device has several current-limit modes to help ensure optimal control of the motor and to ensure  
safe operation. The various current-limit modes are listed in 7. Software current limit is used to provide a  
means of controlling the amount of current delivered to the motor. This is useful when the system must limit the  
amount of current pulled from the power supply during motor start-up. The lock-detection current limit is a  
configurable threshold that can be used to limit the current applied to the motor. Overcurrent protection is used to  
protect the device; therefore, it cannot be disabled or configured to a different threshold. The current-limit modes  
are described in the following sections.  
7. DRV10987 Current-Limit Modes  
CURRENT LIMIT MODE  
SITUATION  
Motor start  
ACTION  
FAULT DIAGNOSIS  
No fault  
Software Current Limit  
Limit the output voltage amplitude  
Lock0: Lock-Detection Current  
Limit Triggered  
Motor locked  
Stop driving the motor and enter the lock state  
Stop driving the motor and enter the lock state  
Mechanical rotation error  
Circuit connection  
Overcurrent Protection (OCP) Short circuit  
8.4.7.1 Software Current Limit  
The software current limit limits the voltage applied to the motor to prevent the current from exceeding the  
programmed threshold. The software current limit threshold is configured by writing the SWiLimitThr[3:0] bits to  
select ILIMIT. The software current limit does not use a direct measurement of current. It uses the programmed  
motor phase resistance, RPH_CT, and programmed BEMF constant (Kt) to limit the voltage, VU, applied to the  
motor as shown in 32 and 公式 8.  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
 
 
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
When the software current limit is active, it does not stop the motor from spinning nor does it trigger a fault. The  
functionality of the software current limit is only available in closed-loop control.  
Rm  
ILIMIT  
BEMF = Kt ´ Speed  
M
VU_LIMIT  
Copyright © 2017, Texas Instruments Incorporated  
32. Software Current Limit  
VU_LIMIT = ILIMIT × RPH_CT + Speed × Kt  
(8)  
8.4.8 Lock Detect and Fault Handling  
The DRV10987 device provides several options for determining if the motor becomes locked as a result of some  
external torque. Five lock-detect schemes work together to ensure the lock condition is detected quickly and  
reliably. 33 shows the logic which integrates the various lock-detect schemes. When a lock condition is  
detected, the DRV10987 device takes action to prevent continuously driving the motor in order to prevent  
damage to the system or the motor.  
In addition to detecting if there is a locked motor condition, the DRV10987 device also identifies and takes action  
if there is no motor connected to the system.  
Each of the five lock-detect schemes and the no-motor detection can be disabled by their respective register bits,  
LockEn[5:0].  
When a lock condition is detected, the FaultReg register provides an indication of which of the six different  
conditions was detected on Lock5 to Lock0. These bits are reset when the motor restarts. The bits in the  
FaultReg register are set even if the lock detect scheme is disabled.  
The DRV10987 device reacts to either locked-rotor or no-motor-connected conditions by putting the output  
drivers into a high-impedance state. To prevent the energy in the motor from pumping the supply voltage, the  
DRV10987 device incorporates an anti-voltage-surge (AVS) process whenever the output stages transition into  
the high-impedance state. The AVS function is described in Anti-Voltage Surge Function. After entering the high-  
impedance state as a result of a fault condition, the system tries to restart after tLOCK_OFF  
.
LockEn(0, 1, 2, 3, 4, 5)  
Lock-Detection Current Limit  
Speed Abnormal  
BEMF Abnormal  
Hi-Z  
OR  
and Restart  
Logic  
No-Motor Fault  
Open-Loop Stuck  
Closed-Loop Stuck  
Reset  
Register:  
FaultCode[5:0]  
Set  
Copyright © 2017, Texas Instruments Incorporated  
33. Lock Detect and Fault Diagnosis  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8.4.8.1 Lock0: Lock-Detection Current Limit Triggered  
The lock-detection current-limit function provides a configurable threshold for limiting the current to prevent  
damage to the system. This is often tripped in the event of a sudden locked-rotor condition. The DRV10987  
device continuously monitors the current in the low-side drivers as shown in 34. If the current goes higher than  
the threshold configured by the HWiLimitThr[2:0] bits, then the DRV10987 device stops driving the motor by  
placing the output phases into a high-impedance state. The Lock0 bit is set and a lock condition is reported. The  
device retries after tLOCK_OFF  
.
Set the lock-detection current limit to a higher value than the software current limit.  
+
DigitalCore  
DAC  
34. Lock-Detection Current Limit  
8.4.8.2 Lock1: Abnormal Speed  
If the motor is operating normally, the motor BEMF should always be less than the output amplitude. The  
DRV10987 device uses two methods of monitoring the BEMF in the system. The U phase current is monitored to  
maintain an estimate of BEMF based on the setting for Rm[6:0] {RmShift[2:0],RmValue[3:0]}. In addition, the  
BEMF is estimated based on the operation speed of the motor and the setting for Kt[6:0]  
{KtShift[2:0],KtValue[3:0]}. 35 shows the method for using this information to detect a lock condition. If the  
motor BEMF is much higher than the output amplitude for a certain period of time, tLCK_ETR, it means the  
estimated speed is wrong, and the motor has gotten out of phase.  
Rm  
BEMF1 = VU I× Rm  
BEMF2 =Kt × Speed  
I
M
VU  
Lock Detected If BEMF2 > VU  
Copyright © 2017, Texas Instruments Incorporated  
35. Lock Detection 1  
8.4.8.3 Lock2: Abnormal Kt  
For any given motor, the integrated value of BEMF during half of an electrical cycle is constant. The value is  
determined by the BEMF constant (Kt) (see 36). The BEMF constant is the same regardless of whether the  
motor is running fast or slow. This constant value is continuously monitored by calculation and used as a criterion  
to determine the motor lock condition, and is referred to as Ktc.  
Based on the Kt value programmed, create a range from Kt_low to Kt_high. If Ktc goes beyond the range for a  
certain period of time, tLCK_ETR, lock is detected. Kt_low and Kt_high are determined by KtLckThr[1:0] (see 37).  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
 
 
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
36. BEMF Integration  
Kt_high  
Ktc  
Kt  
Kt_low  
Lock detect  
37. Abnormal-Kt Lock Detect  
8.4.8.4 Lock3: No-Motor Fault  
The phase U current is checked after transitioning from open loop to closed loop. If the phase U current is not  
greater than 140 mA then the motor is not connected as shown in 38. This condition is treated and reported  
as a fault.  
DRV10987  
M
38. No-Motor Error  
8.4.8.5 Lock4: Open-Loop Motor-Stuck Lock  
Lock4 is used to detect locked-motor conditions while the motor start sequence is in open loop.  
For a successful startup, motor speed should be equal to the open-to-closed-loop handoff threshold when the  
motor is transitioning into closed loop. However, if the motor is locked, the motor speed is not able to match the  
open-loop drive rate.  
If the motor BEMF is not detected for one electrical cycle after the open-loop drive rate exceeds the threshold,  
then the open loop was unsuccessful as a result of a locked-rotor condition.  
8.4.8.6 Lock5: Closed-Loop Motor-Stuck Lock  
If the motor suddenly becomes locked, motor speed and Ktc are not able to be refreshed because the BEMF  
zero cross of the motor may not appear after the lock. In this condition, lock can also be detected by the  
following scheme: if the current commutation period is 2× longer than the previous period.  
40  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8.4.9 Anti-Voltage Surge Function  
When a motor is driven, energy is transferred from the power supply into the motor. Some of this energy is  
stored in the form of inductive energy or as mechanical energy. The DRV10987 device includes circuits to  
prevent this energy from being returned to the power supply, which could result in pumping up the VCC voltage.  
This function is referred to as the AVS and acts to protect the DRV10987 device as well as other circuits that  
share the same VCC connection. Two forms of AVS protection are used to prevent both the mechanical energy  
and the inductive energy from being returned to the supply. Each of these modes can be independently disabled  
through the register configuration bits AVSMEn and AVSIndEn.  
8.4.9.1 Mechanical AVS Function  
If the speed command suddenly drops such that the BEMF voltage generated by the motor is greater than the  
voltage that is applied to the motor, then the mechanical energy of the motor is returned to the power supply and  
the VCC voltage surges. The mechanical AVS function works to prevent this from happening. The DRV10987  
device buffers the speed command value and limits the resulting output voltage, VU_MIN, so that it is not less than  
the BEMF voltage of the motor. The BEMF voltage in the mechanical AVS function is determined using the  
programmed value for the motor Kt (Kt[6:0]) along with the speed. 39 shows the criteria used by the  
mechanical AVS function.  
Rm  
IMIN = 0  
BEMF  
M
VU  
VU_MIN = BEMF + IMIN ´ Rm = BEMF  
Copyright © 2017, Texas Instruments Incorporated  
39. Mechanical AVS  
The mechanical AVS function can operate in one of two modes, which can be configured by the register bit  
AVSMMd:  
AVSMMd = 0 – AVS mode is always active to prevent the applied voltage from being less than the BEMF  
voltage.  
AVSMMd = 1 – AVS mode becomes active when VCC reaches 24 V. The motor acts as a generator and  
returns energy into the power supply until VCC reaches 24 V. This mode can be used to enable faster  
deceleration of the motor in applications where returning energy to the power supply is allowed.  
8.4.9.2 Inductive AVS Function  
When the DRV10987 device transitions from driving the motor into a high-impedance state, the inductive current  
in the motor windings continues to flow and the energy returns to the power supply through the intrinsic body  
diodes in the FET output stage (see 40).  
S1  
S3  
S4  
S5  
S6  
S1  
S3  
S4  
S5  
S6  
M
M
VCC  
S2  
VCC  
S2  
Driving State  
High-Impedance State  
40. Inductive-Mode Voltage Surge  
To prevent the inductive energy from being returned to the power supply, the DRV10987 system transitions from  
driving to a high-impedance state by first turning OFF the active high-side drivers, and turning ON all low-side  
drivers. The DRV10987 device monitors phase current after entering the BRAKE state and transitions into the  
high-impedance state when the amplitude of the phase current is less than BrkCurThrSel for a fixed period of  
time (BrkDoneThr[2:0])(see 41).  
版权 © 2017–2018, Texas Instruments Incorporated  
41  
 
 
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
S1  
VCC  
S2  
S3  
S5  
S6  
S1  
S3  
S4  
S5  
S6  
M
M
VCC  
S2  
S4  
Driving  
AVS State  
41. Inductive AVS  
In this example, current is applied to the motor through the high-side driver on phase U (S1) and returned  
through the low-side driver on phase W (S6). The high-side driver on phase U is turned OFF' and all low-side  
drivers are tunned ON to allow the inductive energy in the resulting LR circuit to decay. If BrkDoneThr[2:0] = 000,  
no brake is applied and the device does not protect from inductive energy even with the inductive AVS feature  
enabled.  
8.4.10 PWM Output  
The DRV10987 device has 32 options for PWM dead time. These options can be used to configure the time  
between one of the bridge FETs turning off and the complementary FET turning on. Deadtime[4:0] can be used  
to configure dead times between 40 and 1280 ns. Take care that the dead time is long enough to prevent the  
bridge FETs from shooting through.  
The DRV10987 device offers two options for PWM switching frequency. When the configuration bit PWMFreq is  
set to 0, the output PWM frequency is 25 kHz, and when PWMFreq is set to 1, the output PWM frequency is 50  
kHz.  
8.4.11 FG Customized Configuration  
The DRV10987 device provides information about the motor speed through the frequency generate (FG) pin. FG  
also provides information about the driving state of the DRV10987 device.  
8.4.11.1 FG Configuration  
The FG output frequency can be configured by FGcycle[3:0]. The default FG toggles once every electrical cycle  
(FGcycle = 0000). Many applications configure the FG output so that it provides two pulses for every mechanical  
rotation of the motor. The configuration bits provided in the DRV10987 device can accomplish this for 2-pole, 4-  
pole, 6-pole, and 8-pole motors up to 32-pole motors. This is illustrated in 42 for 2, 4, 6, and 8-pole motors.  
42 shows the DRV10987 device has been configured to provide FG pulses once every electrical cycle (4  
poles), twice every three electrical cycles (6 poles), and once every two electrical cycles (8 poles).  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
Motor phase  
driving voltage  
FGCycle = 0000  
2 pole  
FGCycle = 0001  
4 pole  
FGCycle = 0010  
6 pole  
FGCycle = 0011  
8 pole  
42. FG Divider  
8.4.11.2 FG Open-Loop and Lock Behavior  
Note that the FG output reflects the driving state of the motor. During normal closed-loop behavior, the driving  
state and the actual state of the motor are synchronized. During open-loop acceleration, however, this may not  
reflect the actual motor speed. During a locked-motor condition, the FG output is driven high.  
The DRV10987 device provides three options for controlling the FG output during open loop, as shown in 43.  
The selection of these options is determined by the FGOLSel[1:0] setting.  
Option0: Open-loop, FG output based on driving frequency  
Option1: Open-loop, no FG output (keep high)  
Option2: FG output based on driving frequency at the first power-on start-up, and no FG output (keep high)  
for any subsequent restarts  
版权 © 2017–2018, Texas Instruments Incorporated  
43  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
Open loop  
Closed loop  
Motor phase  
driving voltage  
FGOLsel = 00  
FGOLsel =01  
Open loop  
Closed loop  
Open loop  
Closed loop  
Motor phase  
driving voltage  
FGOLsel =10  
Start-up after power on or wakeup  
from sleep or standby mode  
Rest of the startups  
43. FG Behavior During Open Loop  
8.4.12 Diagnostics and Visibility  
The DRV10987 device offers extensive visibility into the motor system operation conditions stored in internal  
registers. This information can be monitored through the I2C interface. Information can be monitored relating to  
the device status, motor speed, supply voltage, speed command, motor phase-voltage amplitude, fault status,  
and others. The data is updated on the fly.  
8.4.12.1 Motor-Status Readback  
The motor FaultReg register provides information on overtemperature (OverTemp), overcurrent (OverCurr), and  
locked rotor (Lock0–Lock5).  
8.4.12.2 Motor-Speed Readback  
The motor operation speed is automatically updated in register MotorSpeed while the motor is spinning. The  
value is determined by the period for calculated BEMF zero crossings on phase U. The electrical speed of the  
motor is denoted as Velocity (Hz) and is calculated as shown in 公式 9.  
Velocity (Hz) = {MotorSpeed} / 10  
As an example consider the following:  
MotorSpeed = 0x01FF;  
(9)  
Velocity = 512 (0x01FF) / 10 = 51 Hz  
ecycles 1 mechcycle  
second  
minute  
51  
ì
ì 60  
= 1530 RPM  
second  
2
ecycle  
For a 4-pole motor, this translates to:  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8.4.12.3 Motor Electrical-Period Readback  
The motor-operation electrical period is automatically updated in register MotorPeriod while the motor is spinning.  
The electrical period is measured as the time between calculated BEMF zero crossings for phase U. The  
electrical period of the motor is denoted as tELE_PERIOD (µs) and is calculated as shown in 公式 10.  
tELE_PERIOD (µs) = {MotorPeriod} × 10  
As an example consider the following:  
MotorPeriod = 0x01FF;  
(10)  
(11)  
tELE_PERIOD = 512 (0x01FF) × 10 = 5120 µs  
The motor electrical period and motor speed satisfies the condition of 公式 11.  
tELE_PERIOD (s) × Velocity (Hz) = 1  
8.4.12.4 BEMF Constant Readback  
For any given motor, the integrated value of BEMF during half of an electronic cycle is a constant, Ktc (see  
Lock2: Abnormal Kt).  
The integration of the motor BEMF is processed periodically (updated every electrical cycle) while the motor is  
spinning. The result is stored in register MotorKt.  
The relationship is shown in 公式 12.  
Ktc (V/Hz) = ({MotorKt} / 2) / 1090  
(12)  
8.4.12.5 Motor Estimated Position by IPD  
After inductive sense is executed, the rotor position is detected within 60 electrical degrees of resolution. The  
position is stored in register IPDPosition.  
The value stored in IPDPosition corresponds to one of the six motor positions plus the IPD advance angle as  
shown in 8. For more information about IPD, see Initial Position Detect (IPD).  
8. IPD Position Read Back  
S
U
V
U
V
U
V
U
V
U
V
U
V
N
N
S
W
W
W
W
W
W
Rotor position (°)  
Data1  
0
0
60  
43  
60  
44  
120  
85  
180  
128  
120  
85  
240  
171  
300  
213  
IPD advance angle  
Data2  
30  
22  
90  
63  
Register data  
(Data1 + Data2) mod (256)  
8.4.12.6 Supply-Voltage Readback  
The power supply is monitored periodically during motor operation. This information is available in register  
SupplyVoltage. The power supply voltage is recorded as shown in 公式 13.  
VPOWERSUPPLY (V) = Supply Voltage × 30 V / 256  
(13)  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
 
 
 
 
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
8.4.12.7 Speed-Command Readback  
The DRV10987 device converts the various types of speed command into a speed command value (SpeedCmd)  
as shown in 44. By reading SpeedCmd, the user can observe PWM input duty cycle (PWM digital mode),  
analog voltage (analog mode), or I2C data (I2C mode). This value is calculated as shown in 公式 14.  
公式 14 shows how the speed command as a percentage can be calculated and set in SpeedCmd.  
DutySPEED (%) = SpeedCmd × 100 / 255  
where  
DutySPEED = Speed command as a percentage  
SpeedCmd = Register value  
(14)  
8.4.12.8 Speed-Command Buffer Readback  
If software current limit and AVS are enabled, the PWM duty cycle output (read back at spdCmdBuffer) may not  
always match the input command (read back at SpeedCmd) shown in 44. See Anti-Voltage Surge Function  
and Current Limits.  
By reading the value of spdCmdBuffer, the user can observe buffered speed command (output PWM duty cycle)  
to the motor.  
公式 15 shows how the buffered speed is calculated.  
DutyOUTPUT (%) = spdCmdBuffer × 100 / 255  
where  
DutyOUTPUT = The maximum duty cycle of the output PWM, which represents the output amplitude as a  
percentage.  
spdCmdBuffer = Register value  
(15)  
PWM In  
Analog  
PWM Duty  
ADC  
AVS,  
Software Current Limit  
Closed Loop Accelerate  
SPEED Pin  
Speed  
Command  
I2C  
SpeedCmd  
PWM_DCO  
spdCmdBuffer  
Copyright © 2017, Texas Instruments Incorporated  
44. SpeedCmd and spdCmdBuffer Registers  
8.4.12.9 Fault Diagnostics  
See Lock Detect and Fault Handling.  
46  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8.5 Register Maps  
8.5.1 I2C Serial Interface  
The DRV10987 device provides an I2C slave interface with slave address 101 0010. TI recommends a pullup  
resistor of 4.7 kΩ to 3.3 V for I2C interface ports SCL and SDA. The protocol for the I2C interface is given in 图  
45.  
I2C Write  
Start  
7 bit Slave Add  
R/W=0 ACK 8 bit Reg Add  
ACK 8 bit Data ACK 8 bit Data ACK  
Stop  
Internal Reg  
write happens  
I2C Read  
Start  
7 bit Slave Add  
R/W=0 ACK 8 bit Reg Add  
ACK  
Start  
7 bit Slave Add  
R/W=1 8 bit Data ACK 8 bit Data ACK  
Stop  
Data from Reg is  
loaded to the buffer  
45. I2C Protocol  
Seven read/write registers (0x30:0x36) are used to set motor speed and control device registers and EEPROM.  
Device operation status can be read back through nine read-only registers (0x0:0x08). Another seven EEPROM  
registers (0x90:0x96) can be accessed to program motor parameters and optimize the spin-up profile for the  
application.  
8.5.2 Register Map  
REGISTER  
NAME  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
ADDR.  
(1)(2)  
FaultReg  
0x00  
OverTemp TempWarni  
ng  
VCC_OV  
VREG_OC  
OverCurr  
CP_UVLO VREG_UVL VCC_UVLO  
O
V3P3_UVL  
O
Reserved  
Lock5  
Lock4  
Lock3  
Lock2  
Lock1  
Lock0  
(1)  
(1)  
MotorSpeed  
MotorPeriod  
0x01  
0x02  
0x03  
0x04  
MotorSpeed[15:0]  
MotorPeriod[15:0]  
MotorKt[15:0]  
(1)  
MotorKt  
(1)  
MotorCurrent  
Reserved  
MotorCurrent[10:8]  
MotorCurrent[7:0]  
IPDPosition[7:0]  
SupplyVoltage[7:0]  
SpeedCmd[7:0]  
IPDPosition /  
SupplyVoltage  
0x05  
0x06  
0x07  
0x08  
0x30  
(1)  
SpeedCmd /  
spdCmdBuffer(1)  
spdCmdBuffer[7:0]  
(1)  
AnalogInLvl  
Reserved  
commandSenseAdc[9:8]  
commandSenseAdc[7:0]  
DieID[7:0]  
Device ID /  
(1)  
Revision ID  
RevisionID[7:0]  
Reserved  
(3)  
SpeedCtrl  
OverRide  
SpeedCtrl[8  
]
SpeedCtrl[7:0]  
EEPROM  
Programming1  
0x31  
ENPROGKEY[15:0]  
(3)  
(1) Read only  
(2) Fault Register requires 0xFF to be written to the register to clear the bits.  
(3) R/W  
版权 © 2017–2018, Texas Instruments Incorporated  
47  
 
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
Register Maps (接下页)  
REGISTER  
NAME  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
ADDR.  
EEPROM  
Programming2  
0x32  
Reserved  
Reserved  
(3)  
(3)  
eeReadySt  
atus  
EEPROM  
Programming3  
0x33  
Reserved  
eeIndAddress[7:0]  
eeIndWData[15:0]  
EEPROM  
Programming4  
0x34  
0x35  
(3)  
(3)  
EEPROM  
Programming5  
Reserved  
ShadowRe  
Reserved  
eeWRnEn  
eeRefresh  
gEn  
Reserved  
eeAccMode[1:0]  
EEPROM  
Programming6  
0x36  
0x60  
eeIndRData[15:0]  
(3)  
EECTRL  
MTR_DIS  
Reserved  
Reserved  
(4)  
CONFIG1  
CONFIG2  
CONFIG3  
0x90  
0x91  
0x92  
0x93  
0x94  
SSMConfig[1:0]  
FGOLSel[1:0]  
FGCycle[3:0]  
ClkCycleAdj  
ust  
RMShift[2:0]  
RMValue[3:0]  
(4)  
(4)  
Reserved  
KtShift[2:0]  
KtValue[3:0]  
CommAdv  
Mode  
TCtrlAdvShift[2:0]  
TCtrlAdvValue[3:0]  
ISDThr[1:0]  
BrkCurrThr BEMF_HYS  
Sel  
ISDEn  
RvsDrEn  
RvsDrThr[1:0]  
OpenLCurr[1:0]  
OpLCurrRt[2:0]  
StAccel2[2:0]  
BrkDoneThr[2:0]  
StAccel[2:0]  
CONFIG4(4)  
Reserved AccelRange  
Sel  
Op2ClsThr[4:0]  
AlignTime[2:0]  
LockEn1  
(4)  
CONFIG5  
OTWarning_ILimit[1:0]  
LockEn5  
LockEn4  
LockEn3  
LockEn2  
LockEn0  
SwILimit[3:0]  
HwILimit[2:0]  
AVSMEn  
IPDasHwILi  
mit  
(4)  
CONFIG6  
0x95  
0x96  
SpdCtlrMd  
CLoopDis  
PWMFreq  
KtLckThr[1:0]  
ClsLpAccel[2:0]  
AvSIndEn  
AVSMMd  
IPDRIsMd  
DutyCycleLimit[1:0]  
IPDCurrThr[3:0]  
SlewRate[1:0]  
IPDClk[1:0]  
(4)  
CONFIG7  
IPDAdvcAg[1:0]  
Reserved CtrlCoef[1:0]  
DeadTime[4:0]  
(4) EEPROM  
48  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
9. Default EEPROM Values  
ADDRESS  
DEFAULT  
VALUE  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0xC000  
0x0049  
0x00C1  
0x3788  
0x3BAF  
0x7840  
0x007A  
8.5.3 Register Descriptions  
10. Access Type Codes  
ACCESS TYPE  
CODE  
DESCRIPTION  
READ TYPE  
R
R
Read  
Write  
WRITE TYPE  
W
W
W1C  
W
Write  
1C  
1 to clear  
RESET OR DEFAULT VALUE  
-n  
Value after reset or the default  
value  
8.5.3.1 FaultReg Register (address = 0x00) [reset = 0x00]  
46. FaultReg Register  
15  
14  
13  
12  
11  
10  
9
8
OverTemp  
R/W1C-0  
TempWarning  
R//W1C-0  
VCC_OV  
R/W1C-0  
VREG_OC  
R/W1C-0  
OverCurr  
R/W1C-0  
CP_UVLO  
R/W1C-0  
VREG_UVLO  
R/W1C-0  
VCC_UVLO  
R/W1C-0  
7
6
5
4
3
2
1
0
V3P3_UVLO  
R/W1C-0  
Reserved  
R/W1C-0  
Lock5  
Lock4  
Lock3  
Lock2  
Lock1  
Lock0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
11. FaultReg Register Field Descriptions  
Bit  
Field  
OverTemp  
Type  
Reset  
Description  
Bit to indicate device temperature is over the limit.  
15  
R//W1C  
0
14  
13  
12  
TempWarning  
VCC_OV  
R/W1C  
R/W1C  
R/W1C  
0
0
0
Bit to indicate device temperature is over the warning limit.  
Bit to indicate the supply voltage is above the upper limit.  
VREG_OC  
Bit to indicate that the switching regulator is in an overcurrent  
condition.  
11  
10  
OverCurr  
R/W1C  
R/W1C  
0
0
Bit to indicate that an overcurrent event happened.  
CP_UVLO  
Bit to indicate that the charge pump is in an undervoltage fault  
condition.  
9
8
7
6
VREG_UVLO  
VCC_UVLO  
V3P3_UVLO  
Reserved  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
Bit to indicate that the switching regulator (VREG) is in an  
undervoltage fault condition.  
Bit to indicate that the supply (VCC) is in an undervoltage fault  
condition.  
Bit to indicate that the 3.3 V LDO regulator is in an undervoltage  
fault condition.  
Do not access this bit.  
版权 © 2017–2018, Texas Instruments Incorporated  
49  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
11. FaultReg Register Field Descriptions (接下页)  
Bit  
5
Field  
Type  
Reset  
Description  
Lock5  
Lock4  
Lock3  
Lock2  
Lock1  
Lock0  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
0
0
Stuck in closed loop fault  
Stuck in open loop fault  
No motor fault  
4
3
2
Kt abnormal fault  
1
Speed abnormal fault  
Hardware current-limit fault  
0
8.5.3.2 MotorSpeed Register (address = 0x01) [reset = 0x00]  
47. MotorSpeed Register  
15  
14  
13  
12  
11  
10  
9
8
MotorSpeed[15] MotorSpeed[14] MotorSpeed[13] MotorSpeed[12] MotorSpeed[11] MotorSpeed[10] MotorSpeed[9] MotorSpeed[8]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
1
R-0  
0
MotorSpeed[7] MotorSpeed[6] MotorSpeed[5] MotorSpeed[4] MotorSpeed[3] MotorSpeed[2] MotorSpeed[1] MotorSpeed[0]  
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0  
12. MotorSpeed Register Field Descriptions  
Bit  
15:0  
Field  
MotorSpeed[15:0]  
Type  
Reset  
Description  
R
0x00  
16-bit value indicating the motor speed.  
Motor speed in Hz = MotorSpeed[15:0] / 10  
8.5.3.3 MotorPeriod Register (address = 0x02) [reset = 0x00]  
48. MotorPeriod Register  
15  
14  
13  
12  
11  
10  
9
8
MotorPeriod[15] MotorPeriod[14] MotorPeriod[13] MotorPeriod[12] MotorPeriod[11] MotorPeriod[10] MotorPeriod[9] MotorPeriod[8]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
1
R-0  
0
MotorPeriod[7] MotorPeriod[6] MotorPeriod[5] MotorPeriod[4] MotorPeriod[3] MotorPeriod[2] MotorPeriod[1] MotorPeriod[0]  
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0  
13. MotorPeriod Register Field Descriptions  
Bit  
15:0  
Field  
MotorPeriod[15:0]  
Type  
Reset  
Description  
R
0x00  
16-bit value indicating the motor period.  
Motor period = MotorPeriod[15:0] × 10 = period in μs  
50  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8.5.3.4 MotorKt Register (address = 0x03) [reset = 0x00]  
49. MotorKt Register  
15  
MotorKt[15]  
R-0  
14  
MotorKt[14]  
R-0  
13  
MotorKt[13]  
R-0  
12  
MotorKt[12]  
R-0  
11  
MotorKt[11]  
R-0  
10  
MotorKt[10]  
R-0  
9
8
MotorKt[9]  
R-0  
MotorKt[8]  
R-0  
7
6
5
4
3
2
1
0
MotorKt[7]  
R-0  
MotorKt[6]  
R-0  
MotorKt[5]  
R-0  
MotorKt[4]  
R-0  
MotorKt[3]  
R-0  
MotorKt[2]  
R-0  
MotorKt[1]  
R-0  
MotorKt[0]  
R-0  
14. MotorKt Register Field Descriptions  
Bit  
Field  
MotorKt[15:0]  
Type  
Reset  
Description  
15:0  
R
0x00  
16-bit value indicating the motor measured BEMF.constant  
Ktc (V/Hz) = {MotorKt[15:0]} / 2 / 1090  
8.5.3.5 MotorCurrent Register (address = 0x04) [reset = 0x00]  
50. MotorCurrent Register  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MotorCurrent[1 MotorCurrent[9] MotorCurrent[8]  
0]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
1
R-0  
0
MotorCurrent[7] MotorCurrent[6] MotorCurrent[5] MotorCurrent[4] MotorCurrent[3] MotorCurrent[2] MotorCurrent[1] MotorCurrent[0]  
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0  
15. MotorCurrent Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0
Description  
15:11  
10:0  
Reserved  
Do not access these bits.  
MotorCurrent[10:0]  
R
0x00  
11-bit value indicating the motor current.  
Current (A) = 3 × (MotorCurrent[10:0] –- 1023) / 2048  
8.5.3.6 IPDPosition–SupplyVoltage Register (address = 0x05) [reset = 0x00]  
51. IPDPosition–SupplyVoltage Register  
15  
14  
13  
12  
11  
10  
9
8
IPDPosition [7] IPDPosition [6] IPDPosition [5] IPDPosition [4] IPDPosition [3] IPDPosition [2] IPDPosition [1] IPDPosition [0]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
1
R-0  
0
SupplyVoltage[ SupplyVoltage[ SupplyVoltage[ SupplyVoltage[ SupplyVoltage[ SupplyVoltage[ SupplyVoltage[ SupplyVoltage[  
7]  
6]  
5]  
4]  
3]  
2]  
1]  
0]  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
16. IPDPosition–SupplyVoltage Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
IPDPosition [7:0]  
R
0x0  
8-bit value indicating the estimated motor position during IPD  
plus the IPD advance angle (see 8)  
7:0  
SupplyVoltage[7:0]  
R
0x0  
8-bit value indicating the supply voltage  
VPOWERSUPPLY (V) = SupplyVoltage[7:0] × 30 V / 255  
For example, SupplyVoltage[7:0] = 0x67,  
VPOWERSUPPLY (V) = 0x67 (102) × 30 / 255 = 12 V  
版权 © 2017–2018, Texas Instruments Incorporated  
51  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
8.5.3.7 SpeedCmd–spdCmdBuffer Register (address = 0x06) [reset = 0x00]  
52. SpeedCmd–spdCmdBuffer Register  
15  
SpeedCmd[7]  
R-0  
14  
SpeedCmd[6]  
R-0  
13  
SpeedCmd[5]  
R-0  
12  
SpeedCmd[4]  
R-0  
11  
SpeedCmd[3]  
R-0  
10  
SpeedCmd[2]  
R-0  
9
8
SpeedCmd[1]  
R-0  
SpeedCmd[0]  
R-0  
7
6
5
4
3
2
1
0
spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[  
7]  
6]  
5]  
4]  
3]  
2]  
1]  
0]  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
17. SpeedCmd–spdCmdBuffer Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
SpeedCmd[7:0]  
R
0x0  
8-bit value indicating the speed command based on analog or  
PWMin or I2C.  
FF indicates 100% speed command.  
7:0  
spdCmdBuffer[7:0]  
R
0x0  
8-bit value indicating the speed command after buffer output.  
FF indicates 100% speed command.  
8.5.3.8 AnalogInLvl Register (address = 0x07) [reset = 0x00]  
53. AnalogInLvl Register  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
commandSnsA commandSnsA  
DC[9]  
DCt[8]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
R-0  
1
0
commandSnsA commandSnsA commandSnsA commandSnsA commandSnsA commandSnsA commandSnsA commandSnsA  
DC[7]  
DC[6]  
DC[5]  
DC[4]  
DC[3]  
DC[2]  
DC[1]  
DC[0]  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
18. AnalogInLvl Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0
Description  
15:10  
9:0  
Reserved  
Do not access these bits.  
commandSnsADC[9:0]  
R
0x00  
10-bit value indicating the analog speed input converted to a  
digital word.  
AnalogSPEED (V) = AnalogInLvl × V3P3 / 1024  
8.5.3.9 DeviceID–RevisionID Register (address = 0x08) [reset = 0x00]  
54. DeviceID–RevisionID Register  
15  
DieID[7]  
R-0  
14  
DieID[6]  
R-0  
13  
DieID[5]  
R-0  
12  
DieID[4]  
R-0  
11  
DieID[3]  
R-0  
10  
DieID[2]  
R-0  
9
8
DieID[1]  
R-0  
DieID[0]  
R-0  
7
6
5
4
3
2
1
0
RevisionID[7]  
R-0  
RevisionID[6]  
R-0  
RevisionID[5]  
R-0  
RevisionID[4]  
R-0  
RevisionID[3]  
R-0  
RevisionID[2]  
R-0  
RevisionID[1]  
R-0  
RevisionID[0]  
R-0  
52  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
19. DeviceID–RevisionID Register Field Descriptions  
Bit  
15:8  
7:0  
Field  
Type  
R
Reset  
0x0  
Description  
DieID[7:0]  
8-bit unique device identification.  
RevisionID[7:0]  
R
0x0  
8-bit revision ID for the device  
0000 0000 REV A  
0000 0001 REV B  
...  
8.5.3.10 Unused Registers (addresses = 0x011 Through 0x2F)  
Registers 0x09 through 0x2F are not used.  
8.5.3.11 SpeedCtrl Register (address = 0x30) [reset = 0x00]  
55. SpeedCtrl Register  
15  
14  
Reserved  
R-0  
13  
Reserved  
R-0  
12  
Reserved  
R-0  
11  
Reserved  
R-0  
10  
Reserved  
R-0  
9
8
OverRide  
R/W-0  
Reserved  
R-0  
SpeedCtrl[8]  
R/W-0  
7
6
5
4
3
2
1
0
SpeedCtrl[7]  
R/W-0  
SpeedCtrl[6]  
R/W-0  
SpeedCtrl[5]  
R/W-0  
SpeedCtrl[4]  
R/W-0  
SpeedCtr[3]  
R/W-0  
SpeedCtrl[2]  
R/W-0  
SpeedCtrl[1]  
R/W-0  
SpeedCtrl[0]  
R/W-0  
20. SpeedCtrl Register Field Descriptions  
Bit  
Field  
OverRide  
Type  
Reset  
Description  
15  
R/W  
0
Used to control the SpdCtrl[8:0] bits. If OverRide = 1, the user  
can write the speed command directly through I2C.  
14:9  
8:0  
Reserved  
R
0x0  
Do not access these bits.  
SpeedCtrl[8:0]  
R/W  
0x00  
9-bit value used for the motor speed. If OverRide = 1, speed  
command can be written by the user through I2C.  
版权 © 2017–2018, Texas Instruments Incorporated  
53  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
8.5.3.12 EEPROM Programming1 Register (address = 0x31) [reset = 0x00]  
56. EEPROM Programming1 Register  
15  
14  
13  
12  
11  
10  
9
8
ENPROGKEY  
[15]  
ENPROGKEY  
[14]  
ENPROGKEY  
[13]  
ENPROGKEY  
[12]  
ENPROGKEY  
[11]  
ENPROGKEY  
[10]  
ENPROGKEY  
[9]  
ENPROGKEY  
[9]  
R/W-0  
7
R/W-0  
6
R/W-0  
5
R/W-0  
4
R/W-0  
3
R/W-0  
2
R/W-0  
1
R/W-0  
0
ENPROGKEY  
[7]  
ENPROGKEY  
[6]  
ENPROGKEY  
[5]  
ENPROGKEY  
[4]  
ENPROGKEY  
[3]  
ENPROGKEY  
[2]  
ENPROGKEY  
[1]  
ENPROGKEY  
[0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
21. EEPROM Programming1 Register Field Descriptions  
Bit  
Field  
ENPROGKEY[15:0]  
Type  
Reset  
Description  
15:0  
R/W  
0x00  
EEPROM access key  
0xCODE access key for customer space; registers 0x90 to  
0x96  
8.5.3.13 EEPROM Programming2 Register (address = 0x32) [reset = 0x00]  
57. EEPROM Programming2 Register  
15  
Reserved  
R-0  
14  
Reserved  
R-0  
13  
Reserved  
R-0  
12  
Reserved  
R-0  
11  
Reserved  
R-0  
10  
Reserved  
R-0  
9
8
Reserved  
R-0  
Reserved  
R-0  
7
6
5
4
3
2
1
0
eeReadyStatus  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
22. EEPROM Programming2 Register Field Descriptions  
Bit  
15:1  
0
Field  
Type  
R
Reset  
0x00  
0
Description  
Reserved  
Do not access these bits.  
EEPROM status bit.  
eeReadyStatus  
R
0: EEPROM not ready for read/write access  
1: EEPROM ready for read/write access  
8.5.3.14 EEPROM Programming3 Register (address = 0x33) [reset = 0x00]  
58. EEPROM Programming3 Register  
15  
Reserved  
R-0  
14  
Reserved  
R-0  
13  
Reserved  
R-0  
12  
Reserved  
R-0  
11  
Reserved  
R-0  
10  
Reserved  
R-0  
9
8
Reserved  
R-0  
Reserved  
R-0  
7
6
5
4
3
2
1
0
eeIndAddress  
[7]  
eeIndAddress  
[6]  
eeIndAddress  
[5]  
eeIndAddress  
[4]  
eeIndAddress  
[3]  
eeIndAddress  
[2]  
eeIndAddress  
[1]  
eeIndAddress  
[0]  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
54  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
23. EEPROM Programming3 Register Field Descriptions  
Bit  
15:8  
7:0  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
Do not access these bits.  
eeIndAddress[7:0]  
R
0x0  
EEPROM individual access address.  
Contents of this register define the address of EEPROM for the  
individual access operation. For example, for writing/reading  
CONFIG1 in individual access mode happens if eeIndAddress =  
0x90.  
8.5.3.15 EEPROM Programming4 Register (address = 0x34) [reset = 0x00]  
59. EEPROM Programming4 Register  
15  
14  
13  
12  
11  
10  
9
8
eeIndWData  
[15]  
eeIndWData  
[14]  
eeIndWData  
[13]  
eeIndWData  
[12]  
eeIndWData  
[11]  
eeIndWData  
[10]  
eeIndWData[9] eeIndWData[8]  
R/W-0  
7
R/W-0  
6
R/W-0  
5
R/W-0  
4
R/W-0  
3
R/W-0  
2
R/W-0  
1
R/W-0  
0
eeIndWData[7] eeIndWData[6] eeIndWData[5] eeIndWData[4] eeIndWData[3] eeIndWData[2] eeIndWData[1] eeIndWData[0]  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
24. EEPROM Programming4 Register Field Descriptions  
Bit  
15:0  
Field  
eeIndWData[15:0]  
Type  
Reset  
Description  
R/W  
0x00  
EEPROM individual access write data  
Contents of this register are the data to be written to EEPROM  
of the registers specified by eeIndAddress.  
8.5.3.16 EEPROM Programming5 Register (address = 0xYY) [reset = 0x00]  
60. EEPROM Programming5 Register  
15  
Reserved  
R-0  
14  
Reserved  
R-0  
13  
Reserved  
R-0  
12  
11  
Reserved  
R-0  
10  
Reserved  
R-0  
9
8
ShadowRegEn  
R/W-0  
Reserved  
R-0  
eeRefresh  
R-0  
7
6
5
4
3
2
1
0
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
eeWRnEn  
R/W-0  
eeAccMode[1] eeAccMode[0]  
R/W-0 R/W-0  
25. EEPROM Programming5 Register Field Descriptions  
Bit  
15:13  
12  
Field  
Type  
R
Reset  
000  
0
Description  
Reserved  
Do not access these bits.  
ShadowRegEn  
R/W  
Enable shadow register.  
0: Shadow register is not used.  
1: Shadow register values are used for device operation  
(EEPROM contents are ignored). I2C read returns the contents  
of the shadow registers.  
11:9  
8
Reserved  
eeRefresh  
R
000  
0
Do not access these bits.  
R/W  
EEPROM refresh  
0: Normal operation  
1: Sync shadow registers with contents of EEPROM.  
7:3  
2
Reserved  
eeWRnEn  
R
0x0  
0
Do not access these bits.  
R/W  
EEPROM Write/Read enable  
0 : EEPROM read enable  
1 : EEPROM write enable  
版权 © 2017–2018, Texas Instruments Incorporated  
55  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
25. EEPROM Programming5 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
1:0  
eeAccMode[1:0]  
R/W  
00  
EEPROM access mode  
00: EEPROM access disabled  
01: EEPROM individual access enabled  
10: EEPROM mass access enabled  
11: Reserved  
8.5.3.17 EEPROM Programming6 Register (address = 0x36) [reset = 0x00]  
61. EEPROM Programming6 Register  
15  
14  
13  
12  
11  
10  
9
8
eeIndRData[15] eeIndRData[14] eeIndRData[13] eeIndRData[12] eeIndRData[11] eeIndRData[10] eeIndRData[9] eeIndRData[8]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
1
R-0  
0
eeIndRData[7] eeIndRData[6] eeIndRData[5] eeIndRData[4] eeIndRData[3] eeIndRData[2] eeIndRData[1] eeIndRData[0]  
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0  
26. EEPROM Programming6 Register Field Descriptions  
Bit  
15:0  
Field  
eeIndRData[15:0]  
Type  
Reset  
Description  
R
0x00  
EEPROM Individual Access Read Data  
Contents of this register reflect the value of EEPROM location  
accessed through the individual read.  
8.5.3.18 Unused Registers (addresses = 0x37 Through 0x5F)  
Registers 0x37 through 0x5F are not used.  
8.5.3.19 EECTRL Register (address = 0x60) [reset = 0x00]  
62. EECTRL Register  
15  
MTR_DIS  
W-0  
14  
Reserved  
R-0  
13  
Reserved  
R-0  
12  
Reserved  
R-0  
11  
Reserved  
R-0  
10  
Reserved  
R-0  
9
8
Reserved  
R-0  
Reserved  
R-0  
7
6
5
4
3
2
1
0
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
27. EECTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
MTR_DIS  
W
0
Control to disable motor operation. For use during EEPROM  
programming. This bit is write-only (cannot be read).  
0: Motor control is enabled.  
1: Motor control is disabled.  
14:0  
Reserved  
R
0x00  
Reserved  
8.5.3.20 Unused Registers (addresses = 0x61 Through 0x8F)  
Registers 0x61 through 0x8F are not used.  
56  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8.5.3.21 CONFIG1 Register (address = 0x90) [reset = 0x00]  
63. CONFIG1 Register  
15  
14  
13  
12  
11  
10  
9
8
SSMConfig[1]  
R/W-0  
SSMConfig[0]  
R/W-0  
FGOLSel[1]  
R/W-0  
FGOLSel[0]  
R/W-0  
FGCycle[3]  
R/W-0  
FGCycle[2]  
R/W-0  
FGCycle[1]  
R/W-0  
FGCycle[0]  
R/W-0  
7
6
5
4
3
2
1
0
ClkCycleAdjust  
R/W-0  
RMShift[2]  
R/W-0  
RMShift[1]  
R/W-0  
RMShift[0]  
R/W-0  
RMValue[3]  
R/W-0  
RMValue[2]  
R/W-0  
RMValue[1]  
R/W-0  
RMValue[0]  
R/W-0  
28. CONFIG1 Register Field Descriptions  
Bit  
Field  
SSMConfig[1:0]  
Type  
Reset  
Description  
15:14  
R/W  
00  
Spread spectrum modulation control  
00: No spread spectrum  
01: ±5% dithering  
1:0: ±10% dithering  
11: ±15% dithering  
13:12  
11:8  
FGOLSel[1:0]  
FGCycle[3:0]  
R/W  
R/W  
00  
FG open-loop output select  
00: FG outputs in both open loop and closed loop  
01: FG outputs only in closed loop  
10: FG outputs closed loop and the first open loop  
11: Reserved  
0x0  
FG motor pole option  
n: FG output is electrical speed / (n + 1)  
0: FG / 1 (2 pole)  
1: FG / 2 (4 pole)  
2: FG / 3 (6 pole)  
3: FG / 4 (8 pole)  
...  
15: FG / 16 (32 pole)  
7
ClkCycleAdjust  
RMShift[2:0]  
R/W  
R/W  
0
0: Full-cycle adjust  
1: Half-cycle adjust  
6:4  
000  
Number of shift bits to determine the motor phase resistance.  
RPH_CT = RmValue << RmShift  
RPH_CT' = (bin) {RPhase / 0.009615}  
After calculating RPH_CT' value, split the value with shift number  
and significant number according the length of the RPH_CT  
'
value.  
If the length of RPH_CT' is within 4 bits; RmValue[3:0] = RPH_CT';  
RmShift[2:0] = 000  
If the length of RPH_CT' is 5 bits; RmValue[3:0] = RPH_CT'[4:1];  
RmShift[2:0] = 001  
and so on.  
3:0  
RMValue[3:0]  
R/W  
0x0  
Significant portion of the motor resistor, used in conjunction with  
RmShift[2:0]  
8.5.3.22 CONFIG2 Register (address = 0x91) [reset = 0x00]  
64. CONFIG2 Register  
15  
Reserved  
R-0  
14  
13  
12  
11  
10  
9
8
KtShift[2]  
R/W-0  
KtShift[1]  
R/W-0  
KtShift[0]  
R/W-0  
KtValue[3]  
R/W-0  
KtValue[2]  
R/W-0  
KtValue[1]  
R/W-0  
KtValue[0]  
R/W-0  
7
6
5
4
3
2
1
0
CommAdvMod TCtrlAdvShift[2] TCtrlAdvShift[1] TCtrlAdvShift[0]  
e
TCtrlAdvValue[3:0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R-0  
版权 © 2017–2018, Texas Instruments Incorporated  
57  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
29. CONFIG2 Register Field Descriptions  
Bit  
15  
Field  
Type  
R
Reset  
0
Description  
Reserved  
KtShift[2:0]  
Do not access this bit  
14:12  
R/W  
000  
Number of shift bits to determine the motor BEMF constant.  
Kt = KtValue << KtShift  
11:8  
7
KtValue[3:0]  
R/W  
R/W  
0x0  
0
CommAdvMode  
Commutation advance mode  
0: Voltage advance is maintained at a fixed time(1) relative to the  
estimated BEMF.  
1: Voltage advance is maintained at a variable time relative to  
the estimated BEMF based on: tadv = tsetting × (VU(BEMF)) / VU  
6:4  
3:0  
TCtrlAdvShift[2:0]  
TCtrlAdvValue[3:0]  
R/W  
R/W  
000  
0x0  
Number of shift bits to determine the commutation advance  
timing  
tadv = TCtrlAdvValue << TCtrlAdvShift  
Commutation advance value.  
(1) EEPROM  
8.5.3.23 CONFIG3 Register (address = 0x92) [reset = 0x00]  
65. CONFIG3 Register  
15  
14  
13  
12  
11  
10  
9
8
ISDThr[1]  
R/W-0  
ISDThr[0]  
R/W-0  
BrkCurThrSel  
R/W-0  
BEMF_HYS  
R/W-0  
ISDEn  
R/W-0  
RvsDrEn  
R/W-0  
RvsDrThr[1]  
R/W-0  
RvsDrThr[0]  
R/W-0  
7
6
5
4
3
2
1
0
OpenLCurr[1]  
R/W-0  
OpenLCurr[0]  
R/W-0  
OpLCurrRt[2]  
R/W-0  
OpLCurrRt[1]  
R/W-0  
OpLCurrRt[0]  
R/W-0  
BrkDoneThr[2] BrkDoneThr[1] BrkDoneThr[0]  
R/W-0 R/W-0 R/W-0  
30. CONFIG3 Register Field Descriptions  
Bit  
Field  
ISDThr[1:0]  
Type  
Reset  
Description  
15:14  
R/W  
00  
ISD stationary judgment threshold  
00: 6 Hz (80 ms, no zero cross)  
01: 3 Hz (160 ms, no zero cross)  
10: 1.6 Hz (320 ms, no zero cross)  
11: 0.8 Hz (640 ms, no zero cross)  
13  
12  
BrkCurThrSel  
BEMF_HYS  
R/W  
R/W  
0
0
Brake current-level-threshold selection.  
0: 24 mA  
1: 48 mA  
0: Low hysteresis for BEMF comparator (approximately 20 mV)  
1: High hysteresis for BEMF comparator (approximately 40 mV).  
See the BEMF COMPARATOR section of Electrical  
Characteristics.  
11  
10  
ISDEn  
R/W  
R/W  
R/W  
0
0: Initial speed detect (ISD) disabled  
1: ISD enabled  
RvsDrEn  
RvsDrThr[1:0]  
0
0: Reverse drive disabled  
1: Reverse drive enabled  
9:8  
00  
The threshold where device starts to process reverse drive  
(RvsDr) or brake.  
00: 6.3 Hz  
01: 13 Hz  
10: 26 Hz  
11: 51 Hz  
58  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
30. CONFIG3 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
7:6  
OpenLCurr[1:0]  
R/W  
00  
Open-loop current setting.  
00: 0.2 A  
01: 0.4 A  
10: 0.8 A  
11: 1.6 A  
Align current setting.  
00: 0.15 A  
01: 0.3 A  
10: 0.6 A  
11: 1.2 A  
5:3  
OpLCurrRt[2:0]  
R/W  
000  
Open-loop current ramp-up setting.  
000: 6 VCC/s  
001: 3 VCC/s  
010: 1.5 VCC/s  
011: 0.7 VCC/s  
100: 0.34 VCC/s  
101: 0.16 VCC/s  
110: 0.07 VCC/s  
111: 0.023 VCC/s  
2:0  
BrkDoneThr[2:0]  
R/W  
000  
Braking mode setting.  
000: No brake (BrkEn = 0)  
001: 2.7 s  
010: 1.3 s  
011: 0.67 s  
100: 0.33 s  
101: 0.16 s  
110: 0.08 s  
111: 0.04 s  
8.5.3.24 CONFIG4 Register (address = 0x93) [reset = 0x00]  
66. CONFIG4 Register  
15  
Reserved  
R-0  
14  
13  
12  
11  
10  
9
8
AccelRangeSel  
R/W-0  
StAccel2[2]  
R/W-0  
StAccel2[1]  
R/W-0  
StAccel2[0]  
R/W-0  
StAccel[2]  
R/W-0  
StAccel[1]  
R/W-0  
StAccel[0]  
R/W-0  
7
6
5
4
3
2
1
0
Op2ClsThr[4]  
R/W-0  
Op2ClsThr[3]  
R/W-0  
Op2ClsThr[2]  
R/W-0  
Op2ClsThr[1]  
R/W-0  
Op2ClsThr[0]  
R/W-0  
AlignTime[2]  
R/W-0  
AlignTime[1]  
R/W-0  
AlignTime[0]  
R/W-0  
版权 © 2017–2018, Texas Instruments Incorporated  
59  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
31. CONFIG4 Register Field Descriptions  
Bit  
15  
14  
Field  
Type  
R
Reset  
Description  
Reserved  
AccelRangeSel  
0
0
Do not access this bit  
R/W  
Acceleration range selection  
0: Fast  
1: Slow  
13:11  
StAccel2[2:0]  
R/W  
000  
Open-loop start-up acceleration (second-order acceleration  
coefficient)  
AccelRangeSel = 0; 000: 57 Hz/s2  
AccelRangeSel = 0; 001 = 29 Hz/s2  
AccelRangeSel = 0; 010 = 14 Hz/s2  
AccelRangeSel = 0; 011 = 6.9 Hz/s2  
AccelRangeSel = 0; 100 = 3.3 Hz/s2  
AccelRangeSel = 0; 101 = 1.6 Hz/s2  
AccelRangeSel = 0; 110 = 0.66 Hz/s2  
AccelRangeSel = 0; 111 = 0 Hz/s2  
AccelRangeSel = 1; 000 = 0.22 Hz/s2  
AccelRangeSel = 1; 001 = 0.11 Hz/s2  
AccelRangeSel = 1; 010 = 0.055 Hz/s2  
AccelRangeSel = 1; 011 = 0.027 Hz/s2  
AccelRangeSel = 1; 100 = 0.013 Hz/s2  
AccelRangeSel = 1; 101 = 0.0063 Hz/s2  
AccelRangeSel = 1; 110 = 0.0026 Hz/s2  
AccelRangeSel = 1; 111 = 0 Hz/s2  
10:8  
StAccel[2:0]  
R/W  
0
Open-loop start-up acceleration (first-order acceleration  
coefficient)  
AccelRangeSel = 0; 000 = 76 Hz/s  
AccelRangeSel = 0; 001 = 38 Hz/s  
AccelRangeSel = 0; 010 = 19 Hz/s  
AccelRangeSel = 0; 011 = 9.2 Hz/s  
AccelRangeSel = 0; 100 = 4.5 Hz/s  
AccelRangeSel = 0; 101 = 2.1 Hz/s  
AccelRangeSel = 0; 110 = 0.9 Hz/s  
AccelRangeSel = 0; 111 = 0.3 Hz/s  
AccelRangeSel = 1; 000 = 4.8 Hz/s  
AccelRangeSel = 1; 001 = 2.4 Hz/s  
AccelRangeSel = 1; 010 = 1.2 Hz/s  
AccelRangeSel = 1; 011 = 0.58 Hz/s  
AccelRangeSel = 1; 100 = 0.28 Hz/s  
AccelRangeSel = 1; 101 = 0.13 Hz/s  
AccelRangeSel = 1; 110 = 0.056 Hz/s  
AccelRangeSel = 1; 111 = 0.019 Hz/s  
7:3  
Op2ClsThr[4:0]  
R/W  
0
Open- to closed-loop threshold  
0 xxxx = Range 0: n × 0.8 Hz  
0 0000 = N/A  
0 0001 = 0.8 Hz  
0 0111 = 5.6 Hz  
0 1111 = 12 Hz  
1 xxxx = Range 1: (n + 1) × 12.8 Hz  
1 0000 = 12.8 Hz  
1 0001 = 25.6 Hz  
...  
1 0111 = 192 Hz  
1 1111 = 204.8 Hz  
2:0  
AlignTime[2:0]  
R/W  
0
Align time.  
000 = 5.3 s  
001 = 2.7 s  
010 = 1.3 s  
011 = 0.67 s  
100 = 0.33 s  
101 = 0.16 s  
110 = 0.08 s  
111 = 0.04 s  
60  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8.5.3.25 CONFIG5 Register (address = 0x94) [reset = 0x00]  
67. CONFIG5 Register  
15  
14  
13  
12  
11  
10  
9
8
OTWarning  
Limit[1]  
OTWarning  
Limit[0]  
LockEn5  
LockEn4  
LockEn3  
LockEn2  
LockEn1  
LockEn0  
R/W-0  
7
R/W-0  
6
R/W-0  
5
R/W-0  
4
R/W-0  
3
R/W-0  
2
R/W-0  
1
R/W-0  
0
SWiLimitThr [3] SWiLimitThr [2] SWiLimitThr [1] SWiLimitThr [0] HWiLimitThr [2] HWiLimitThr [1] HWiLimitThr [0] IPDasHwILimit  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
32. CONFIG5 Register Field Descriptions  
Bit  
15:14  
Field  
OTWarningLimit[1:0]  
Type  
Reset  
Description  
R/W  
00  
Overtemperature warning current limit  
00: No temperature-based current-limit function, uses  
SWILimitThr  
01: Limit current to 1 A when overtemperature warning reached  
10: Limit current to 1.6 A when overtemperature warning  
reached  
11: Limit current to 2 A when overtemperature warning reached  
13  
LockEn5  
R/W  
0
Stuck in closed loop (no zero cross detected). Enabled when  
high  
12  
11  
10  
9
LockEn4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
Open loop stuck (no zero cross detected). Enabled when high  
No motor fault. Enabled when high  
LockEn3  
0
LockEn2  
0
Abnormal Kt. Enabled when high  
LockEn1  
0
Abnormal speed. Enabled when high  
8
LockEn0  
0
Lock-detection current limit. Enabled when high.  
7:4  
SWiLimitThr[3:0]  
0x0  
Software current limit threshold  
0000: No software current limit  
0001: 0.2-A current limit  
0010 to 1111: n × 0.2 A current limit  
3:1  
HWiLimitThr[2:0]  
R/W  
000  
HWILimitThr: Current limit for lock detection  
If IPDasHwILimit = 0 then  
x00: 2.5 A  
x01: 1.9 A  
x10: 1.5 A  
x11: 0.9 A  
If IPDasHwILimit = 1 then  
000: 0.4 A  
001: 0.8 A  
010: 1.2 A  
011: 1.6 A  
100: 2 A  
101: 2.4 A  
110: 2.8 A  
111: 3.2 A  
0
IPDasHwILimit  
R/W  
0
0: Range1 of current limit for lock detection  
1: Range2 of current limit for lock detection  
版权 © 2017–2018, Texas Instruments Incorporated  
61  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
8.5.3.26 CONFIG6 Register (address = 0x95) [reset = 0x00]  
68. CONFIG6 Register  
15  
14  
13  
12  
11  
10  
9
8
SpdCtrlMd  
R/W-0  
PWMFreq  
R/W-0  
KtLckThr[1]  
R/W-0  
KtLckThr[0]  
R/W-0  
AVSIndEn  
R/W-0  
AVSMEn  
R/W-0  
AVSMMd  
R/W-0  
IPDRlsMd  
R/W-0  
7
6
5
4
3
2
1
0
CLoopDis  
ClsLpAccel[2]  
ClsLpAccel[1]  
ClsLpAccel[0] DutyCycleLimit[ DutyCycleLimit[  
SlewRate[1]  
SlewRate[0]  
1]  
0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
33. CONFIG6 Register Field Descriptions  
Bit  
Field  
SpdCtrlMd  
Type  
Reset  
Description  
15  
R/W  
0
Speed input mode  
0: Analog input expected at SPEED pin  
1: PWM input expected at SPEED pin  
14  
PWMFreq  
R/W  
R/W  
0
0
PWM Frequency Control  
0: PWM frequency = 25 kHz  
1: PWM frequency = 50 kHz  
13:12  
KtLckThr[1:0]  
Abnormal Kt lock detect threshold  
00: Kt_high = 3/2Kt. Kt_low = 3/4Kt  
01: Kt_high = 2Kt. Kt_low = 3/4Kt  
10: Kt_high = 3/2Kt. Kt_low = 1/2Kt  
11: Kt_high = 2Kt. Kt_low = 1/2Kt  
11  
10  
9
AVSIndEn  
AVSMEn  
AVSMMd  
R/W  
R/W  
R/W  
0
0
0
Inductive AVS enable. Enabled when high  
Mechanical AVS enable. Enabled when high  
Mechanical AVS mode  
0: AVS to VCC  
1: AVS to 24 V  
8
IPDRlsMd  
R/W  
0
IPD release mode  
0: Brake when inductive release  
1: Hi-z when inductive release  
7
CLoopDis  
R/W  
R/W  
0
0
0: Transfer to closed loop at Op2ClsThr speed  
1: No transfer to closed loop. Keep in open loop  
6:4  
ClsLpAccel[2:0]  
Closed-loop accelerate  
000: Immediate change  
001: 48 VCC/s  
010: 48 VCC/s  
011: 0.77 VCC/s  
100: 0.37 VCC/s  
101: 0.19 VCC/s  
110: 0.091 VCC/s  
111: 0.045 VCC/s  
3:2  
DutyCycleLimit[1:0]  
R/W  
0
Minimum duty-cycle limit  
00: Linear down to 5%, then holds at 5% until duty command is  
1.5%; 0% for duty command below 1.5%.  
01: Linear down to 10%, then holds at 10% until duty command  
is 1.5%; 0% for duty command below 1.5%.  
10: Linear down to 5%, then holds at 5% until duty command is  
1.5%; 100% for duty command below 1.5%.  
11: Linear down to 10%, then holds at 10% until duty command  
is 1.5%; 100% for duty command below 1.5%.  
1:0  
SlewRate[1:0]  
R/W  
0
Slew-rate control for phase node  
00: Typical slew rate for VCC at 12 V = 35 V/μs  
01: Typical slew rate for VCC at 12 V = 50 V/μs  
10: Typical slew rate for VCC at 12 V = 80 V/μs  
11: Typical slew rate for VCC at 12 V = 120 V/μs  
62  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
8.5.3.27 CONFIG7 Register (address = 0x96) [reset = 0x00]  
69. CONFIG7 Register  
15  
14  
13  
12  
11  
10  
9
8
IPDAdvcAg[1]  
R/W-0  
IPDAdvcAg[0]  
R/W-0  
IPDCurrThr[3]  
R/W-0  
IPDCurrThr[2]  
R/W-0  
IPDCurrThr[1]  
R/W-0  
IPDCurrThr[0]  
R/W-0  
IPDClk[1]  
R/W-0  
IPDClk[0]  
R/W-0  
7
6
5
4
3
2
1
0
Reserved  
R-0  
CtrlCoef[1]  
R/W-0  
CtrlCoef[0]  
R/W-0  
DeadTime[4]  
R/W-0  
DeadTime[3]  
R/W-0  
DeadTime[2]  
R/W-0  
DeadTime[1]  
R/W-0  
DeadTime[0]  
R/W-0  
34. CONFIG7 Register Field Descriptions  
Bit  
Field  
IPDAdvcAg[1:0]  
Type  
Reset  
Description  
15:14  
R/W  
00  
Advance angle after inductive sense.  
00: 30 degrees  
01: 60 degrees  
10: 90 degrees  
11: 120 degrees  
13:10  
9:8  
IPDCurrThr[3:0]  
IPDClk[1:0]  
R/W  
R/W  
0x0  
00  
IPD (inductive sense) current threshold  
0000: No IPD function. Align and go  
0001: 0.4-A current threshold.  
0010 to 1111: 0.2 A × (n + 1) current threshold.  
Inductive sense clock  
00: IPD clock 12 Hz; IPD measurement resolution = 2.56 µs  
01: IPD clock = 24 Hz; IPD measurement resolution = 1.28 µs  
10: IPD clock = 47 Hz; IPD measurement resolution = 0.64 µs  
11: IPD clock = 95 Hz; IPD measurement resolution = 0.32 µs  
7
Reserved  
R
0
Do not access this bit.  
6:5  
CtrlCoef[1:0]  
R/W  
00  
SCORE control constant  
00: 0.25  
01: 0.5  
10: 0.75  
11: 1  
4:0  
DeadTime[4:0]  
R/W  
0x0  
Driver dead time  
(n + 1) × 40 ns  
40 ns to 1.28 μs  
版权 © 2017–2018, Texas Instruments Incorporated  
63  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DRV10987 device is used in sensorless 3-phase BLDC motor control. The driver provides a high-  
performance, high-reliability, flexible, and simple solution for appliance, fan, pump, and HVAC applications. The  
following design shows a common application of the DRV10987 device.  
9.2 Typical Application  
VCC  
0.1 µF  
1
2
3
4
5
6
7
8
9
VCP  
VCC 24  
VCC 23  
10 µF  
CPP  
10 nF  
CPN  
W
W
V
22  
21  
20  
19  
18  
17  
10 µF  
5 V  
SW  
47 µH  
SWGND  
VREG  
V1P8  
GND  
V3P3  
M
V
1 µF  
U
U
1 µF  
PGND 16  
PGND 15  
DIR 14  
4.75 kW  
4.75 kW  
10 SCL  
11 SDA  
12 FG  
SPEED 13  
Interface to  
Microcontroller  
Copyright © 2017, Texas Instruments Incorporated  
70. Typical Application Schematic  
9.2.1 Design Requirements  
35 provides design input parameters and motor parameters for system design.  
64  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
Typical Application (接下页)  
35. Recommended Application Range  
MIN  
6.2  
TYP  
MAX UNIT  
28  
1.8 V/Hz  
Motor voltage  
12  
V
BEMF constant  
Phase to phase, measured while motor is coasting  
1 phase, measured ph-ph and divided by 2  
0.001  
0.3  
Motor phase resistance  
19  
Ω
1 phase; inductance divided by resistance, measured ph-ph is equal  
to 1 ph  
Motor electrical constant  
100  
1
5000  
µs  
Operating closed loop  
speed  
Electrical frequency  
1000  
Hz  
Motor winding current  
(RMS)  
0.1  
2
3
A
A
Absolute maximum current During start-up or locked condition  
36. External Components  
COMPONENT  
CVCC  
PIN 1  
VCC  
PIN 2  
GND  
VCC  
RECOMMENDED  
10-µF ceramic capacitor rated for VCC  
0.1-µF ceramic capacitor rated for 10 V  
10-nF ceramic capacitor rated for VCC × 2  
CVCP  
VCP  
CPP  
SW  
CCP  
CPN  
LSW-VREG  
VREG  
47-µH ferrite inductor with 1.15-A current rating, 1.15-A saturation current, and DC resistance <  
1 Ω (buck mode)  
RSW-VREG  
CVREG  
CV1P8  
CV3P3  
RSCL  
SW  
VREG  
GND  
GND  
GND  
V3P3  
V3P3  
V3P3  
39-Ω series resistor rated for ¼ W (linear mode)  
10-µF ceramic capacitor rated for 10 V  
1-µF ceramic capacitor rated for 5 V  
1-µF ceramic capacitor rated for 5 V  
4.75-kΩ pullup to V3P3  
VREG  
V1P8  
V3P3  
SCL  
SDA  
FG  
RSDA  
4.75-kΩ pullup to V3P3  
RFG  
4.75-kΩ pullup to V3P3  
9.2.2 Detailed Design Procedure  
1. See the Design Requirements section and make sure your system meets the recommended application  
range.  
2. See the DRV10983-Q1 Tuning Guide and measure the motor parameters.  
3. See the DRV10983-Q1 Tuning Guide. Configure the parameters using the DRV10987 GUI, and optimize the  
motor operation. The Tuning Guide takes the user through all the configurations step by step, including: start-  
up operation, closed-loop operation, current control, initial positioning, lock detection, and anti-voltage surge.  
4. Build the hardware based on Layout Guidelines .  
5. Connect the device into a system and validate your system solution.  
版权 © 2017–2018, Texas Instruments Incorporated  
65  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
9.2.3 Application Curves  
FG  
Phase  
current  
Phase  
voltage  
71. DRV10987 Start-Up Waveform  
72. DRV10987 Operation Current Waveform  
66  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV10987  
www.ti.com.cn  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
10 Power Supply Recommendations  
The DRV10987 device is designed to operate from an input voltage supply, VCC, in a range between 8 V and  
28 V. The user must place a 10-µF ceramic capacitor rated for VCC as close as possible to the VCC and GND  
pins.  
If the power supply ripple is more than 200 mV, in addition to the local decoupling capacitors, a bulk capacitance  
is required and must be sized according to the application requirements. If the bulk capacitance is implemented  
in the application, the user can reduce the value of the local ceramic capacitor to 1 µF.  
11 Layout  
11.1 Layout Guidelines  
Place the VCC, GND, U, V, and W pins with thick traces because high current passes through these traces.  
Place the 10-µF capacitor between VCC and GND, and as close to the VCC and GND pins as possible.  
Place the capacitor between CPP and CPN, and as close to the CPP and CPN pins as possible.  
Place the capacitor between V1P8 and GND, and as close to the V1P8 pin as possible.  
Connect GND, PGND, and SWGND under the thermal pad.  
Keep the thermal pad connection as large as possible, on both the bottom side and top sides. It should be  
one piece of copper without any gaps.  
11.2 Layout Example  
CVCC (10 µF)  
CVCP (0.1 µF)  
VCC  
VCC  
W
VCP  
CPP  
CCP (10 nF)  
CPN  
LSW_VREG (47 µH)  
SW  
W
CVRE (10 µF)  
G
SWGND  
VREG  
V
V
V1P8  
GND  
V3P3  
U
CV1P8 (1 µF)  
CV3P3 (1 µF)  
U
PGND  
PGND  
DIR  
SPEED  
RSCL(4.75 kW)  
SCL  
RSDA (4.75 kW)  
SDA  
RFG (4.75 kW)  
FG  
73. Layout Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
67  
DRV10987  
ZHCSH31B AUGUST 2017REVISED FEBRUARY 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
is a trademark of ~other.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。本数据随时可能发生变更并  
且不对本文档进行修订,恕不另行通知。要获取数据表的浏览器版本,请查看左侧的导航面板。  
68  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV10987DPWPR  
DRV10987SPWPR  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
24  
24  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
10987D  
10987S  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV10987DPWPR  
DRV10987SPWPR  
HTSSOP PWP  
HTSSOP PWP  
24  
24  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
6.95  
6.95  
8.3  
8.3  
1.6  
1.6  
8.0  
8.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV10987DPWPR  
DRV10987SPWPR  
HTSSOP  
HTSSOP  
PWP  
PWP  
24  
24  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 24  
4.4 x 7.6, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224742/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0024J  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
22X 0.65  
PLANE  
24  
1
2X  
7.9  
7.7  
7.15  
NOTE 3  
12  
B
13  
0.30  
24X  
4.5  
4.3  
0.19  
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 2.08 MAX  
NOTE 5  
4X 0.3 MAX  
13  
4X 0.1 MAX  
NOTE 5  
12  
0.25  
GAGE PLANE  
1.2 MAX  
5.26  
5.11  
25  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
24  
3.20  
3.05  
4225860/A 04/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0024J  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(3.2)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
24X (1.5)  
1
24  
24X (0.45)  
SEE DETAILS  
(R0.05) TYP  
(5.26)  
22X (0.65)  
SYMM  
25  
(7.8)  
NOTE 9  
(1.2) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
13  
12  
(1.2) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4225860/A 04/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0024J  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.2)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
24X (1.5)  
1
24  
24X (0.45)  
(R0.05) TYP  
22X (0.65)  
SYMM  
(5.26)  
25  
BASED ON  
0.125 THICK  
STENCIL  
12  
13  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.58 X 5.88  
3.20 X 5.26 (SHOWN)  
2.92 X 4.80  
0.125  
0.15  
0.175  
2.70 X 4.45  
4225860/A 04/2020  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DRV110

POWER SAVING SOLENOID CONTROLLER WITH INTEGRATED SUPPLY REGULATION
TI

DRV1100

HIGH POWER DIFFERENTIAL DRIVER AMPLIFIER
BB

DRV1100

HIGH POWER DIFFERENTIAL DRIVER AMPLIFIER
TI

DRV1100P

HIGH POWER DIFFERENTIAL DRIVER AMPLIFIER
BB

DRV1100PG4

LINE DRIVER, PDIP8, GREEN, PLASTIC, DIP-8
TI

DRV1100U

HIGH POWER DIFFERENTIAL DRIVER AMPLIFIER
BB

DRV1100U

HIGH POWER DIFFERENTIAL DRIVER AMPLIFIER
TI

DRV1100U-2K5

HIGH POWER DIFFERENTIAL DRIVER AMPLIFIER
TI

DRV1100U/2K5

Line Driver, 1 Func, 1 Driver, CMOS, PDSO8, GREEN, SOIC-8
BB

DRV1100U/2K5

High Power Differential Driver Amplifier 8-SOIC
TI

DRV1100U/2K5G4

LINE DRIVER, PDSO8, GREEN, SOIC-8
TI

DRV1100UG4

High Power Differential Driver Amplifier 8-SOIC
TI