DRV5015A2QDBZR [TI]

高灵敏度 (±2mT)、低电压(最高 5.5V)霍尔效应锁存器 | DBZ | 3 | -40 to 125;
DRV5015A2QDBZR
型号: DRV5015A2QDBZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高灵敏度 (±2mT)、低电压(最高 5.5V)霍尔效应锁存器 | DBZ | 3 | -40 to 125

锁存器 传感器 换能器
文件: 总26页 (文件大小:1392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV5015  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
DRV5015低电压高灵敏度数字锁存器霍尔效应传感器  
1 特性  
3 说明  
1
数字锁存器霍尔效应传感器  
高磁性灵敏度:  
DRV5015 是一款低电压数字锁存器霍尔效应传感器,  
专为高速和高温电机 应用。该器件由 2.5V 5.5V 的  
电源供电,可以检测磁通量密度并根据预定义的磁性阈  
值显示数字输出。  
DRV5015A1±0.7mT(典型值)  
DRV5015A2±1.8mT(典型值)  
DRV5015A3±1.8mT(反相,典型值)  
必须交换北极和南极磁极才能切换输出,集成的磁滞能  
够提供稳定可靠的切换。  
集成迟滞  
30kHz 高速感应带宽  
该器件具有两个磁性阈值选项和一个反相输出选项。高  
磁性灵敏度可提供低成本磁体选择和组件放置灵活性。  
2.5V 5.5V 工作 VCC 范围  
开漏输出,输出电流高达 20mA  
运行温度范围:–40°C +125°C  
该器件在 –40°C +125°C 的宽环境温度范围内能够  
保持稳定一致的优异性能。  
2 应用  
器件信息(1)  
无刷直流电机传感器  
增量旋转编码:  
器件型号  
DRV5015  
封装  
SOT-23 (3)  
封装尺寸(标称值)  
2.92mm × 1.30mm  
刷式直流电机反馈  
电机速度(转速计)  
机械行程  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
流体测量  
人机界面旋钮  
轮速  
电动自行车  
典型原理图  
磁响应  
VCC  
OUT  
VCC  
DRV5015  
VCC  
Controller  
VCC  
OUT  
GPIO  
GPIO  
BHYS  
GND  
VCC  
DRV5015  
0V  
VCC  
B
OUT  
BRP  
BOP  
north  
0 mT  
south  
GND  
DRV5015A1, DRV5015A2  
OUT  
VCC  
BHYS  
0V  
B
BRP  
BOP  
north  
0 mT  
south  
DRV5015A3  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS915  
 
 
 
DRV5015  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Applications ................................................ 13  
8.3 What to Do and What Not to Do ............................. 16  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 3  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Magnetic Characteristics........................................... 4  
6.7 Typical Characteristics.............................................. 5  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 7  
8
9
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Example .................................................... 17  
11 器件和文档支持 ..................................................... 18  
11.1 文档支持................................................................ 18  
11.2 接收文档更新通知 ................................................. 18  
11.3 社区资源................................................................ 18  
11.4 ....................................................................... 18  
11.5 静电放电警告......................................................... 18  
11.6 术语表 ................................................................... 18  
12 机械、封装和可订购信息....................................... 18  
7
4 修订历史记录  
Changes from Original (June 2018) to Revision A  
Page  
Changed output voltage max value from VCC + 0.3 V to 6.0 V in the Absolute Maximum Ratings table ............................. 3  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DRV5015  
www.ti.com.cn  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
5 Pin Configuration and Functions  
DBZ Package  
3-Pin SOT-23  
Top View  
VCC  
OUT  
1
2
3
GND  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
OUT  
NO.  
3
Ground  
Output  
Ground reference.  
Open-drain output.  
2
2.5-V to 5.5-V power supply. Connect a ceramic capacitor with a value of at least 0.01 µF  
between VCC and ground.  
VCC  
1
Power supply  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
6.0  
UNIT  
V
VCC  
VOUT  
IOUT  
BMAX  
TJ  
Power supply voltage  
Output voltage  
6.0  
V
Output current  
30  
mA  
T
Magnetic flux density  
Operating junction temperature  
Storage temperature  
Unlimited  
150  
–40  
–65  
°C  
°C  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
±5000  
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per JEDEC  
specification JESD22-C101(2)  
±1500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
DRV5015  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0
MAX  
5.5  
UNIT  
V
VCC  
VOUT  
IOUT  
TA  
Power supply voltage  
Output pin voltage  
5.5  
V
Output sinking current  
Operating ambient temperature  
0
20  
mA  
°C  
–40  
125  
6.4 Thermal Information  
DRV5015  
THERMAL METRIC(1)  
SOT-23 (DBZ)  
UNIT  
3 PINS  
356  
128  
94  
RθJA  
RθJC(top)  
RθJB  
YJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
11.4  
92  
YJB  
(1) For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
6.5 Electrical Characteristics  
at VCC = 2.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
2.3  
40  
MAX  
2.8  
70  
UNIT  
mA  
µs  
ICC  
tON  
td  
Operating supply current  
Power-on time  
Propagation delay time(1)  
B = BRP – 10 mT to BOP + 10 mT in 1 µs  
13  
25  
µs  
High-impedance output leakage  
current  
5.5 V applied to OUT, while OUT is high-  
impedance  
IOZ  
100  
0.4  
nA  
V
VOL  
Low-level output voltage  
IOUT = 20 mA  
0.15  
(1) See the Propagation Delay section for more information.  
6.6 Magnetic Characteristics  
at VCC = 2.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
DRV5015A1, DRV5015A2, DRV5015A3  
fBW  
Sensing bandwidth  
20  
30  
kHz  
DRV5015A1  
BOP  
Magnetic threshold operate point  
Magnetic threshold release point  
–0.2  
–2.0  
0.35  
0.7  
–0.7  
1.4  
2.0  
0.2  
mT  
mT  
mT  
BRP  
BHYS  
Magnetic hysteresis: |BOP – BRP|  
DRV5015A2DRV5015A3  
BOP  
BRP  
Magnetic threshold operate point  
Magnetic threshold release point  
0.5  
–3.7  
2.3  
1.8  
–1.8  
3.6  
3.7  
mT  
mT  
mT  
-0.5  
BHYS  
Magnetic hysteresis: |BOP –BRP|  
4
版权 © 2018–2019, Texas Instruments Incorporated  
DRV5015  
www.ti.com.cn  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
6.7 Typical Characteristics  
at TA = 25°C typical (unless otherwise noted)  
2
1
2
1
BRP  
0
0
-1  
-1  
BOP  
-2  
-2  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Ambeint Temperature (èC)  
Ambient Temperature (èC)  
D001  
D002  
1. BOP Threshold vs Temperature (DRV5015A1)  
2. BRP Threshold vs Temperature (DRV5015A1)  
2
1
2
1.5  
1
BRP  
0.5  
0
0
-0.5  
-1  
-1  
-2  
-1.5  
-2  
BOP  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Operating Supply Voltage (V)  
Operating Supply Voltage (V)  
D003  
D004  
3. BOP Threshold vs Supply Voltage (DRV5015A1)  
4. BRP Threshold vs Supply Voltage (DRV5015A1)  
4
3
3.5  
2
1
3
2.5  
2
0
1.5  
1
-1  
-2  
-3  
VCC = 2.5 V  
VCC = 4 V  
VCC = 5.5 V  
0.5  
0
BOP  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D005  
D006  
5. ICC vs Temperature (DRV5015A1)  
6. BOP Threshold vs Temperature  
(DRV5015A2, DRV5015A3)  
版权 © 2018–2019, Texas Instruments Incorporated  
5
DRV5015  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C typical (unless otherwise noted)  
3
3
2
BRP  
BOP  
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
2.5  
3
3.5  
4
4.5  
5
5.5  
Ambient Temperature (èC)  
Operating Supply Voltage (V)  
D007  
D008  
7. BRP Threshold vs Temperature  
8. BOP Threshold vs Supply Voltage  
(DRV5015A2, DRV5015A3)  
(DRV5015A2, DRV5015A3)  
3
4
3.5  
3
BRP  
2
1
2.5  
2
0
1.5  
1
-1  
-2  
-3  
VCC = 2.5 V  
VCC = 4 V  
VCC = 5.5 V  
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Operating Supply Voltage (V)  
Ambient Temperature (èC)  
D009  
D010  
9. BRP Threshold vs Supply Voltage  
10. ICC vs Temperature  
(DRV5015A2, DRV5015A3)  
(DRV5015A2, DRV5015A3)  
6
版权 © 2018–2019, Texas Instruments Incorporated  
DRV5015  
www.ti.com.cn  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
7 Detailed Description  
7.1 Overview  
The DRV5015 is a magnetic sensor with a digital output that latches the most recent pole measured. During  
power-up, in the absence of an external magnetic field, the DRV5015A1 and DRV5015A2 default to a low output  
state and the DRV5015A3 defaults to a high output state. Applying a south magnetic pole near the top of the  
package causes the DRV5015A1 and DRV5015A2 output to drive low, whereas a north magnetic pole causes  
this output to drive high. Applying a south magnetic pole near the top of the package causes the DRV5015A3  
output to drive high, whereas a north magnetic pole causes this output to drive low. The absence of a magnetic  
field causes the output to continue to drive the current state, whether low or high.  
The device integrates a Hall effect element, analog signal conditioning, offset cancellation circuits, amplifiers, and  
comparators. These features provide stable performance across a wide temperature range and resistance to  
mechanical stress.  
7.2 Functional Block Diagram  
VCC  
Voltage  
Regulator  
0.01 µF  
REF  
GND  
Element Bias  
OUT  
Offset Cancellation  
Amp  
Output  
Control  
Temperature  
Compensation  
7.3 Feature Description  
7.3.1 Magnetic Flux Direction  
As shown in 11, the DRV5015 is sensitive to the magnetic field component that is perpendicular to the top of  
the package.  
B
SOT-23  
PCB  
11. Direction of Sensitivity  
版权 © 2018–2019, Texas Instruments Incorporated  
7
 
 
DRV5015  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
www.ti.com.cn  
Feature Description (接下页)  
Magnetic flux that travels from the bottom to the top of the package is considered positive in this document. This  
condition exists when a south magnetic pole is near the top of the package. Magnetic flux that travels from the  
top to the bottom of the package is considered negative. 12 shows the flux direction polarity.  
positive B  
negative B  
N
S
S
N
PCB  
PCB  
12. Flux Direction Polarity  
8
版权 © 2018–2019, Texas Instruments Incorporated  
 
DRV5015  
www.ti.com.cn  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
Feature Description (接下页)  
7.3.2 Magnetic Response  
13 shows the device output response to stimulus and hysteresis.  
OUT  
VCC  
BHYS  
0V  
B
BRP  
BOP  
north  
0 mT  
south  
DRV5015A1, DRV5015A2  
OUT  
VCC  
BHYS  
0V  
B
BRP  
BOP  
north  
0 mT  
south  
DRV5015A3  
13. Device Output Response to Stimulus  
版权 © 2018–2019, Texas Instruments Incorporated  
9
 
DRV5015  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.3 Output Driver  
14 shows the DRV5015 open-drain output structure. An open-drain output offers flexibility by enabling system  
designers to interface to wide-range GPIO termination voltages. C1 represents the input capacitance of the  
GPIO. R1 represents the pullup resistor connected to the termination voltage, VPULL-UP. The maximum allowable  
value of VPULL_UP is 5.5 V. The value of R1 must be selected after proper considerations among the system  
speed and the power dissipation through the pullup resistor.  
VPULL_UP  
R1  
OUT  
C1  
DRV5015  
Output  
Control  
GND  
14. Open-Drain Output (Simplified)  
7.3.4 Power-On Time  
15 shows that after the VCC voltage is applied, the DRV5015 measures the magnetic field and sets the output  
within the tON time.  
VCC  
2.5 V  
tON  
time  
Output  
Invalid  
Valid  
time  
15. tON Definition  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV5015  
www.ti.com.cn  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
Feature Description (接下页)  
7.3.5 Hall Element Location  
The sensing element inside the device is in the center of both packages when viewed from the top. 16 shows  
the tolerances and side-view dimensions.  
SOT-23 Top View  
133 µm  
centered  
±70 µm  
133 µm  
SOT-23 Side View  
650 µm  
±80 µm  
16. Hall Element Location  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
 
DRV5015  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.6 Propagation Delay  
The DRV5015 samples the Hall element at a nominal sampling interval of every 16.67 µs to detect the presence  
of a magnetic north or south pole. At each sampling point, the device takes the average of the current sampled  
value and immediately preceding sampled value of the magnetic field. If this average value crosses the BOP or  
BRP threshold, the device output changes to the corresponding state as defined by the Overview section.  
17 shows the DRV5015A1 propagation delay analysis in the proximity of a magnetic south pole. The Hall  
element of the DRV5015 experiences an increasing magnetic field as a magnetic south pole approaches near  
the device. At time t2, the average magnetic field is (B2 + B1) / 2, which is below the BOP threshold of the device.  
At time t3, the actual magnetic field has crossed the BOP threshold. However, the average (B3 + B2) / 2 is still less  
than the BOP threshold. As such, the device waits for next sample time, t4, to start the output transition through  
the analog signal chain. The propagation delay, td, is measured as the delay from the time the magnetic field  
crosses the BOP threshold to the time output transitions.  
Magnetic Field  
Magnetic  
Field Ramp  
B6  
B5  
B4  
B3  
BOP Threshold  
B2  
B1  
Delay Through  
Analog Signal Chain  
t5  
t6  
t1  
t2  
t3  
t4  
Time  
td  
Output  
Time  
DRV5015A1 Output Transition At Magnetic South Pole  
17. Propagation Delay  
7.4 Device Functional Modes  
The DRV5015 has one mode of operation that applies when the are met.  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DRV5015  
www.ti.com.cn  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV5015 is ideal for use in rotary applications for brushless DC (BLDC) motor sensors or incremental rotary  
encoding.  
For reliable functionality, the magnet must apply a flux density at the sensor greater than the corresponding  
maximum BOP or BRP numbers specified in the table. Add additional margin to account for mechanical tolerance,  
temperature effects, and magnet variation. Magnets generally produce weaker fields as temperature increases.  
8.2 Typical Applications  
8.2.1 BLDC Motor Sensors Application  
VCC  
3
Outputs  
GPIOs  
VCC  
DRV5015  
DRV5015  
DRV5015  
Microcontroller  
6 Gate Drivers  
& MOSFETs  
Motor  
PWM  
GPIOs  
18. BLDC Motor System  
8.2.1.1 Design Requirements  
Use the parameters listed in 1 for this design.  
1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Number of motor phases  
Motor RPM  
3
15 kRPM  
12  
Number of magnet poles on the rotor  
Magnetic material  
Bonded neodymium  
125°C  
Maximum temperature inside the motor  
Magnetic flux density peaks at the Hall  
sensors at maximum temperature  
±11 mT  
Hall sensor VCC  
5 V ± 10%  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
 
DRV5015  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
Three-phase brushless DC motors often use three Hall effect latch devices to measure the electrical angle of the  
rotor and tell the controller how to drive the three wires. These wires connect to electromagnet windings, which  
generate magnetic fields that apply forces to the permanent magnets on the rotor.  
Space the three Hall sensors across the printed-circuit board (PCB) so that these sensors are 120 electrical  
degrees apart. This configuration creates six 3-bit states with equal time duration for each electrical cycle, which  
consists of one north and one south magnetic pole. From the center of the motor axis, the number of degrees to  
space each sensor equals 2 / [number of poles] × 120°. In this design example, the first sensor is placed at 0°,  
the second sensor is placed 20° rotated, and the third sensor is placed 40° rotated. Alternatively, a 3× degree  
offset can be added or subtracted to any sensor, meaning that the third sensor can alternatively be placed at  
40° – (3 × 20°) = –20°.  
8.2.1.3 Application Curve  
U
Phase  
V
Voltages  
W
Hall 1  
DRV5011  
Hall 2  
Outputs  
Hall 3  
Electrical Angle  
0°  
0°  
120°  
240°  
360°  
60°  
Mechanical Angle  
30°  
.
19. Phase Voltages and Hall Signals for a 3-Phase BLDC Motor  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV5015  
www.ti.com.cn  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
8.2.2 Incremental Rotary Encoding Application  
VCC  
VCC  
DRV5015  
VCC  
Controller  
OUT  
GPIO  
GPIO  
GND  
VCC  
DRV5015  
VCC  
OUT  
GND  
20. Incremental Rotary Encoding System  
8.2.2.1 Design Requirements  
Use the parameters listed in 2 for this design.  
2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
RPM range  
45 kRPM  
8
Number of magnet poles  
Magnetic material  
Ferrite  
2.5 mm  
Air gap above the Hall sensors  
Magnetic flux density peaks at the Hall  
sensors at maximum temperature  
±7 mT  
8.2.2.2 Detailed Design Procedure  
Incremental encoders are used on knobs, wheels, motors, and flow meters to measure relative rotary movement.  
By attaching a ring magnet to the rotating component and placing a DRV5015 nearby, the sensor generates  
voltage pulses as the magnet turns. If directional information is also needed (clockwise versus counterclockwise),  
a second DRV5015 can be added with a phase offset, and then the order of transitions between the two signals  
describes the direction.  
Creating this phase offset requires spacing the two sensors apart on the PCB, and an ideal 90° quadrature offset  
is attained when the sensors are separated by half the length of each magnet pole, plus any integer number of  
pole lengths. 20 shows this configuration because the sensors are 1.5 pole lengths apart. One of the sensors  
changes its output every 360° / 8 poles / 2 sensors = 22.5° of rotation. For reference, the TIDA-00480 TI Design  
Considerations Automotive Hall Sensor Rotary Encoder uses a 66-pole magnet with changes every 2.7°.  
The maximum rotational speed that can be measured is limited by the sensor bandwidth. Generally, the  
bandwidth must be faster than two times the number of poles per second. In this design example, the maximum  
speed is 45000 RPM, which involves 6000 poles per second. The DRV5015 sensing bandwidth is typically  
30 kHz, which is five times the pole frequency. In systems where the sensor sampling rate is close to two times  
the number of poles per second, most of the samples measure a magnetic field that is significantly lower than the  
peak value, because the peaks only occur when the sensor and pole are perfectly aligned. In this case, add  
margin by applying a stronger magnetic field that has peaks significantly higher than the maximum BOP  
.
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
 
DRV5015  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
www.ti.com.cn  
8.2.2.3 Application Curve  
Two signals in quadrature provide movement and direction information. 21 shows how each 2-bit state has  
unique adjacent 2-bit states for clockwise and counterclockwise.  
Voltage  
Sensor 1  
Sensor 2  
time  
21. Quadrature Output (2-Bit)  
8.3 What to Do and What Not to Do  
The Hall element is sensitive to magnetic fields that are perpendicular to the top of the package; therefore, the  
correct magnet orientation must be used for the sensor to detect the field. 22 shows correct and incorrect  
orientations when using a ring magnet.  
CORRECT  
INCORRECT  
22. Correct and Incorrect Magnet Orientations  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV5015  
www.ti.com.cn  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
9 Power Supply Recommendations  
The DRV5015 is powered from 2.5-V to 5.5-V DC power supplies. A decoupling capacitor close to the device  
must be used to provide local energy with minimal inductance. TI recommends using a ceramic capacitor with a  
value of at least 0.01 µF.  
10 Layout  
10.1 Layout Guidelines  
Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall  
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.  
Magnetic fields also easily pass through most PCBs, which makes placing the magnet on the opposite side of  
the PCB possible.  
10.2 Layout Example  
VCC  
GND  
OUT  
23. Example Layout  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
DRV5015  
ZHCSHJ9A JUNE 2018REVISED APRIL 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
TIDA-00480 TI 设计注意事项 - 汽车霍尔传感器旋转编码器》  
HALL-ADAPTER-EVM用户指南  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV5015A1QDBZR  
DRV5015A1QDBZT  
DRV5015A2QDBZR  
DRV5015A2QDBZT  
DRV5015A3QDBZR  
DRV5015A3QDBZT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
15A1  
15A1  
15A2  
15A2  
15A3  
15A3  
SN  
SN  
SN  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV5015A1QDBZR  
DRV5015A1QDBZT  
DRV5015A2QDBZR  
DRV5015A2QDBZT  
DRV5015A3QDBZR  
DRV5015A3QDBZT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV5015A1QDBZR  
DRV5015A1QDBZT  
DRV5015A2QDBZR  
DRV5015A2QDBZT  
DRV5015A3QDBZR  
DRV5015A3QDBZT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
(0.125)  
3.04  
2.80  
1.9  
3
(0.15)  
NOTE 4  
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/D 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV5015A2QDBZT

高灵敏度 (±2mT)、低电压(最高 5.5V)霍尔效应锁存器 | DBZ | 3 | -40 to 125
TI

DRV5015A3EDBZRQ1

汽车类、高灵敏度 (±2mT)、低电压(高达 5.5V)霍尔效应锁存器 | DBZ | 3 | -40 to 150
TI

DRV5015A3QDBZR

高灵敏度 (±2mT)、低电压(最高 5.5V)霍尔效应锁存器 | DBZ | 3 | -40 to 125
TI

DRV5015A3QDBZT

高灵敏度 (±2mT)、低电压(最高 5.5V)霍尔效应锁存器 | DBZ | 3 | -40 to 125
TI

DRV5021

低电压(最高 5.5V)、高带宽(高达 30kHz)单极开关
TI

DRV5021-Q1

汽车类 2.5-V 至 5.5-V 霍尔效应单极开关
TI

DRV5021A1EDBZRQ1

汽车类 2.5-V 至 5.5-V 霍尔效应单极开关

| DBZ | 3 | -40 to 150
TI

DRV5021A1QDBZR

低电压(最高 5.5V)、高带宽(高达 30kHz)单极开关 | DBZ | 3 | -40 to 125
TI

DRV5021A1QDBZT

低电压(最高 5.5V)、高带宽(高达 30kHz)单极开关 | DBZ | 3 | -40 to 125
TI

DRV5021A2EDBZRQ1

汽车类 2.5-V 至 5.5-V 霍尔效应单极开关

| DBZ | 3 | -40 to 150
TI

DRV5021A2QDBZR

低电压(最高 5.5V)、高带宽(高达 30kHz)单极开关 | DBZ | 3 | -40 to 125
TI

DRV5021A2QDBZT

低电压(最高 5.5V)、高带宽(高达 30kHz)单极开关 | DBZ | 3 | -40 to 125
TI