DRV8305NEPHPQ1 [TI]

汽车类 12V 电池三相智能栅极驱动器(0 级和 1 级) | PHP | 48 | -40 to 150;
DRV8305NEPHPQ1
型号: DRV8305NEPHPQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 12V 电池三相智能栅极驱动器(0 级和 1 级) | PHP | 48 | -40 to 150

电池 栅极驱动 驱动器
文件: 总63页 (文件大小:1909K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
DRV8305-Q1 集成三个分流放大器和稳压器的三相汽车智能栅极驱动器  
1 特性  
3 说明  
1
具有符合面向汽车应用的 AEC-Q100 标准  
DRV8305-Q1 器件是一款适用于三相电机驱动应用的  
栅极驱动器 IC。该器件提供了三个高精度半桥驱动  
器,每个驱动器能够驱动一个高侧和低侧 N 沟道  
MOSFET。电荷泵驱动器支持占空比为 100% 的低压  
操作,适用于冷启动条件。该器件最高可耐受 45V 负  
载突降电压。  
环境工作温度范围:  
温度等级 0 (E)–40°C +150°C  
温度等级 1 (Q)–40°C +125°C  
4.4V 45V 工作电压范围  
1.25A 1A 峰值栅极驱动电流  
智能栅极驱动架构(IDRIVE TDRIVE)  
可编程高侧和低侧压摆率控制  
DRV8305-Q1 器件具备三个双向分流放大器,支持可  
变增益设置和可调节偏移基准,可精确测量低侧电流。  
支持 100% 占空比的电荷泵栅极驱动器  
三个集成式分流放大器  
DRV8305-Q1 器件具有一个集成稳压器,可满足微控  
制器 (MCU) 或其他系统的电源要求。稳压器可与 LIN  
物理接口直接相连,支持低功耗系统待机和休眠模式。  
50mA 集成型 LDO3.3V 5V 选项)  
高达 200kHz 3 PWM 6 PWM 输入控制  
能够进行单 PWM 模式换向  
栅极驱动器在切换时使用自动握手,以防止发生电流击  
穿。可精确感测高侧和低侧 MOSFET VDS,从而防  
止外部 MOSFET 出现过流情况。SPI 提供详细的故障  
报告、诊断和器件配置,例如分流放大器的增益选项、  
独立的 MOSFET 过流检测和栅极驱动转换率控制。  
用于器件设置和故障报告的串行外设接口 (SPI)  
耐热增强型 48 引脚 HTQFP 封装  
保护 功能:  
故障诊断和 MCU 看门狗  
可编程的死区时间控制  
MOSFET 击穿保护  
MOSFET VDS 过流监视器  
栅极驱动器故障检测  
支持电池反向保护  
器件选项:  
DRV8305NQ1 级,带有电压基准  
DRV83053Q1 级,带有 3.3V50mA LDO  
DRV83055Q1 级,带有 5V50mA LDO  
DRV8305NE0 级,带有电压基准  
支持跛行回家模式  
器件信息 (1)  
过热警告和关断  
器件型号  
DRV8305-Q1  
封装  
封装尺寸(标称值)  
HTQFP (48)  
7.00mm × 7.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
三相 BLDC 电机和 PMSM 电机  
汽车油泵和水泵  
汽车风扇和鼓风机  
简化原理图  
4.4 to 45 V  
DRV8305-Q1  
EN_GATE  
PWM  
Automotive  
3-Phase  
Gate Drive  
Brushless  
Gate Driver  
SPI  
M
Shunt Amps  
nFAULT  
Sense  
LDO  
Shunt Amps  
Protection  
50-mA LDO  
Copyright © 2016, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSD12  
 
 
 
 
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
目录  
7.6 Register Maps......................................................... 37  
Application and Implementation ........................ 45  
8.1 Application Information............................................ 45  
8.2 Typical Application .................................................. 46  
Power Supply Recommendations...................... 50  
9.1 Power Supply Consideration in Generator Mode ... 50  
9.2 Bulk Capacitance ................................................... 50  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 8  
6.6 SPI Timing Requirements (Slave Mode Only)........ 14  
6.7 Typical Characteristics............................................ 15  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 18  
7.4 Device Functional Modes........................................ 33  
7.5 Programming........................................................... 35  
8
9
10 Layout................................................................... 52  
10.1 Layout Guidelines ................................................. 52  
10.2 Layout Example .................................................... 52  
11 器件和文档支持 ..................................................... 53  
11.1 文档支持................................................................ 53  
11.2 接收文档更新通知 ................................................. 53  
11.3 社区资源................................................................ 53  
11.4 ....................................................................... 53  
11.5 静电放电警告......................................................... 53  
11.6 Glossary................................................................ 53  
12 机械、封装和可订购信息....................................... 53  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (September 2017) to Revision D  
Page  
Added content to the VREG pin description........................................................................................................................... 5  
Added ESD classification levels to the ESD Ratings table .................................................................................................... 6  
Added the VREG Reference Voltage Input (DRV8305N) section ....................................................................................... 48  
Added the Power Supply Consideration in Generator Mode section................................................................................... 50  
Changes from Revision B (May 2016) to Revision C  
Page  
Added transient specification for GHx, SLx, SPx, and SNx ................................................................................................... 6  
Changed SPx and SNx rating from -2 V to -3 V..................................................................................................................... 6  
Changed the test condition for the VAVDD_UVLO, VVCPH_UVFL, VVCPH_UVLO2, and VVCP_LSD_UVLO2 parameters in the  
Electrical Characteristics table ............................................................................................................................................ 11  
Changed the maximum VAVDD_UVLO and VPVDD_UVLO2 parameters in the Electrical Characteristics table ............................. 11  
Moved the External Components table from the Pin Configuration and Functions section to the Feature Description  
section .................................................................................................................................................................................. 18  
Added the description for latch fault reset methods to the Undervoltage Warning (UVFL), Undervoltage Lockout  
(UVLO), and Overvoltage (OV) Protection section............................................................................................................... 32  
Changed the description of FLIP_OTSD register bit in the IC Operation Register Description........................................... 42  
已添加 接收文档更新通知.............................................................................................................................................. 53  
Changes from Revision A (March 2016) to Revision B  
Page  
已更改 产品预览量产数据并发布了完整数据手册........................................................................................................... 1  
2
版权 © 2015–2019, Texas Instruments Incorporated  
 
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
Changes from Original (May 2015) to Revision A  
Page  
器件预览数据表更新了基本电气特性和功能描述 .................................................................................................................... 1  
Updated the y-axis units to µA for Figure 4.......................................................................................................................... 15  
Copyright © 2015–2019, Texas Instruments Incorporated  
3
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
5 Pin Configuration and Functions  
PHP Package  
48-Pin HTQFP  
Top View  
GHA  
SHA  
SLA  
GLA  
GLB  
SLB  
SHB  
GHB  
GHC  
SHC  
SLC  
GLC  
EN_GATE  
INHA  
INLA  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3
INHB  
INLB  
4
5
INHC  
INLC  
6
PowerPAD  
(GND)  
7
nFAULT  
nSCS  
SDI  
8
9
10  
11  
12  
SDO  
SCLK  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Enables the gate driver and current shunt amplifiers; internal  
pulldown.  
EN_GATE  
1
I
Enable gate  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
2
3
4
5
6
7
I
I
I
I
I
I
Bridge PWM input  
Bridge PWM input  
Bridge PWM input  
Bridge PWM input  
Bridge PWM input  
Bridge PWM input  
PWM input signal for bridge A high-side.  
PWM input signal for bridge A low-side.  
PWM input signal for bridge B high-side.  
PWM input signal for bridge B low-side.  
PWM input signal for bridge C high-side.  
PWM input signal for bridge C low-side.  
When low indicates a fault has occurred; open drain;  
external pullup to MCU power supply needed (1 kΩ to 10  
k).  
nFAULT  
8
OD  
Fault indicator  
nSCS  
SDI  
9
I
I
SPI chip select  
SPI input  
Select/enable for SPI; active low.  
SPI input signal.  
10  
11  
12  
SDO  
SCLK  
O
I
SPI output  
SPI clock  
SPI output signal.  
SPI clock signal.  
VREG and MCU watchdog fault indication; open drain;  
external pullup to MCU power supply needed (1 kΩ to 10  
k).  
PWRGD  
13  
OD  
Power good  
GND  
14, 45  
15  
P
P
Device ground  
Must be connected to ground.  
5-V internal analog supply regulator; bypass to GND with a  
6.3-V, 1-µF ceramic capacitor.  
AVDD  
Analog regulator  
SO1  
SO2  
SO3  
16  
17  
18  
O
O
O
Current amplifier output  
Current amplifier output  
Current amplifier output  
Output of current sense amplifier 1.  
Output of current sense amplifier 2.  
Output of current sense amplifier 3.  
4
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
SN3  
NO.  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
I
I
Current amplifier negative input  
Current amplifier positive input  
Current amplifier negative input  
Current amplifier positive input  
Current amplifier negative input  
Current amplifier positive input  
Low-side gate driver  
Negative input of current sense amplifier 3.  
Positive input of current sense amplifier 3.  
Negative input of current sense amplifier 2.  
Positive input of current sense amplifier 2.  
Negative input of current sense amplifier 1.  
Positive input of current sense amplifier 1.  
Low-side gate driver output for half-bridge C.  
Low-side source connection for half-bridge C.  
High-side source connection for half-bridge C.  
High-side gate driver output for half-bridge C.  
High-side gate driver output for half-bridge B.  
High-side source connection for half-bridge B.  
Low-side source connection for half-bridge B.  
Low side gate driver output for half-bridge B.  
Low-side gate driver output for half-bridge A.  
Low-side source connection for half-bridge A.  
High-side source connection for half-bridge A.  
High-side gate driver output for half-bridge A.  
SP3  
SN2  
SP2  
SN1  
SP1  
GLC  
SLC  
SHC  
GHC  
GHB  
SHB  
SLB  
GLB  
GLA  
SLA  
SHA  
GHA  
I
I
I
I
O
I
Low-side source connection  
High-side source connection  
High-side gate driver  
I
O
O
I
High-side gate driver  
High-side source connection  
Low-side source connection  
Low-side gate driver  
I
O
O
I
Low-side gate driver  
Low-side source connection  
High-side source connection  
High-side gate driver  
I
O
Internal voltage regulator for low-side gate driver; connect 1-  
µF capacitor to GND.  
VCP_LSD  
VCPH  
37  
38  
P
P
Low-side gate driver regulator  
High-side gate driver regulator  
Internal charge pump for high-side gate driver; connect 2.2-  
µF capacitor to PVDD.  
CP2H  
CP2L  
39  
40  
P
P
Flying capacitor for charge pump; connect 0.047-µF  
capacitor between CP2H and CP2L.  
Charge pump flying capacitor  
Power supply  
Device power supply; minimum 4.7-µF ceramic capacitor to  
GND.  
PVDD  
41  
P
CP1L  
CP1H  
42  
43  
P
P
Flying capacitor for charge pump; connect 0.047-µF  
capacitor between CP1H and CP1L.  
Charge pump flying capacitor  
High-side MOSFET drain connection; common for all three  
half bridges.  
VDRAIN  
DVDD  
44  
46  
P
P
High-side drain  
Digital regulator  
3.3-V internal digital-supply regulator; bypass to GND with a  
6.3-V, 1-µF ceramic capacitor.  
High voltage tolerant input pin to wake-up device from  
SLEEP; pin cannot be used to disable LDO; driver needs to  
be enabled and disabled separately.  
WAKE  
47  
I
Wake up from sleep control pin  
Dual purpose pin based on part number; also supplies  
internal amplifier reference voltage and SDO pullup.  
VREG: 3.3-V or 5-V, 50-mA LDO; connect 1-µF to GND.  
VREF: Reference voltage; LDO disabled.  
If PVDD voltage is lower than VREF pin voltage, there is a  
current path from VREF to PVDD through the internal LDO.  
The current must be limited to 50 mA by the system.  
VREG  
GND  
48  
P
P
VREG/VREF  
PPAD  
Device ground  
Must be connected to ground.  
Copyright © 2015–2019, Texas Instruments Incorporated  
5
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating temperature range with respect to GND (unless otherwise noted)(1)  
MIN  
–0.3  
0
MAX  
45  
UNIT  
V
Power supply pin voltage (PVDD)  
Power supply pin voltage ramp rate (PVDD)  
High-side charge pump pin voltage (VCPH)  
Low-side regulator pin voltage (VCP_LSD)  
2
V/µs  
–0.3  
–0.3  
PVDD – 1.5  
PVDD – 3  
–0.3  
–5  
PVDD + 12  
V
V
12  
Charge pump 1 positive switching pin voltage (CP1H)  
Charge pump 2 positive switching pin voltage (CP2H)  
Charge pump negative switching pin voltage (CPxL)  
High-side gate driver pin voltage (GHx)  
PVDD + 12  
V
PVDD + 12  
V
PVDD  
V
57  
15  
V
Gate-to-source voltage difference (GHx-SHx), (GLx-SLx)  
Low-side gate driver pin voltage (GLx)  
–0.3  
–3  
V
12  
V
High-side gate driver source voltage (SHx)  
–5  
45  
V
Transient 200-ns high-side gate driver source voltage (SHx)  
High-side gate driver source voltage (SHx)  
–7  
45  
V
–5  
PVDD + 5  
5
V
Low-side gate driver source voltage (SLx)  
–3  
V
Transient 200-ns low-side gate driver source voltage (SLx)  
Drain pin voltage (VDRAIN)  
–5  
5
V
–0.3  
–0.3  
–0.3  
–3  
45  
V
Control pin voltage (INHx, INLx, EN_GATE, SCLK, SDI, SCS, SDO, nFAULT, PWRGD)  
Wake pin voltage (WAKE)  
5.5  
45  
V
V
Sense amplifier voltage (SPx, SNx)  
5
V
Transient 200-ns sense amplifier voltage (SPx, SNx)  
Sense amplifier output pin voltage (SOx)  
–5  
5
V
–0.3  
–0.3  
0
5.5  
5.5  
100  
3.6  
5.5  
7
V
Externally applied reference voltage, DRV8305N (VREG)  
Externally applied reference sink current, DRV8305N (VREG)  
Internal digital regulator voltage (DVDD)  
V
µA  
V
–0.3  
–0.3  
0
Internal analog regulator voltage (AVDD)  
V
Open drain pins sink current (nFAULT, PWRGD)  
Wake pin sink current (WAKE) – limit current with external resistor  
mA  
mA  
°C  
°C  
°C  
0
1
DRV8305xQPHPQ1  
Junction temperature, TJ  
–40  
–40  
–55  
150  
175  
150  
DRV8305xEPHPQ1(2)(3)  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) IC is designed to be operational up to TJ = 175°C. Internal overtemperature shutdown will be disabled by default on the  
DRV8305xEPHPQ1.  
(3) Because lifetime degrades exponentially at higher temperatures, operation between TJ = 150°C to 175°C must be limited to transient  
and infrequent events. For transient events between TJ = 150°C to 175°C for a total of 10 hours over lifetime, no degradation in lifetime  
is expected. Contact TI for lifetime impact if the use case requires TJ = 150°C to 175°C greater than 10 hours.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM Classification Level 2  
±2000  
V
Electrostatic  
discharge  
V(ESD)  
Charged-device model (CDM), per AEC Q100-011  
CDM Classification Level C4A  
±500  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
6.3 Recommended Operating Conditions  
over operating temperature range (unless otherwise noted)  
MIN  
4.4  
4.3  
0
MAX  
45  
UNIT  
V
PVDD  
PVDD  
VCPH  
VCP_LSD  
IGATE  
Power supply voltage  
Power supply voltage for voltage regulator operation  
Charge pump external load current  
45  
V
30  
mA  
mA  
mA  
kHz  
mA  
Low-side regulator external load current  
0
30  
Total average gate drive current (HS + LS)  
Operating switching frequency of gate driver  
Voltage regulator external load current (regulator enabled device options)  
0
30  
fgate  
0
200  
50  
VREG  
0
Maximum external capacitive load on shunt amplifier output (without  
external resistor)  
CO_OPA  
InFAULT  
0
60  
pF  
nFAULT sink current (nFAULT = 0.3 V)  
0
–40  
–40  
–40  
–40  
7
125  
150  
150  
175  
mA  
°C  
°C  
°C  
°C  
Operating ambient temperature, DRV8305xQPHPQ1  
Operating ambient temperature, DRV8305xEPHPQ1  
Operating junction temperature, DRV8305xQPHPQ1  
Operating junction temperature, DRV8305xEPHPQ1  
TA  
TJ  
6.4 Thermal Information  
DRV8305-Q1  
THERMAL METRIC(1)  
PHP (HTQFP)  
UNIT  
48 PINS  
26.6  
12.9  
7.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
7.5  
RθJC(bot)  
0.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2015–2019, Texas Instruments Incorporated  
7
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
6.5 Electrical Characteristics  
PVDD = 4.4 to 45 V, DRV8305xQ: TJ = –40°C to 150°C, DRV8305xE: TJ = –40°C to 175°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES (PVDD, DVDD, AVDD)  
4.4  
4.3  
45  
45  
V
V
VPVDD  
PVDD operating voltage  
Voltage regulator (VREG) operational  
PVDD operating supply  
current  
EN_GATE = HIGH; VREG no load;  
outputs HI-Z  
IPVDD_Operating  
IPVDD_Standby  
20  
5
mA  
mA  
μA  
PVDD standby supply  
current  
EN_GATE = LOW; VREG no load  
EN_GATE = LOW; Sleep Mode;  
TJ = –40 to 150 °C  
60  
200  
IPVDD_Sleep  
PVDD sleep supply current  
EN_GATE = LOW; Sleep Mode;  
TJ = 150 to 175 °C  
250  
uA  
PVDD = 5.3 to 45 V  
PVDD = 4.4 to 5.3 V  
4.85  
5
PVDD  
3.3  
5.15  
V
V
V
VAVDD  
VDVDD  
Internal regulator voltage  
Internal regulator voltage  
PVDD – 0.4  
VOLTAGE REGULATOR (3.3-V or 5-V VREG)  
PVDD = 5.4 to 45 V  
VREG × 0.97  
PVDD – 0.4  
VREG × 0.97  
VREG VREG × 1.03  
V
V
VVREG  
VREG DC output voltage  
PVDD = 4.4 to 5.3 V; 5-V VREG  
PVDD = 4.4 to 5.3 V; 3.3-V VREG  
5.3 V VIN 12 V; IO = 1 mA  
100 μA IOUT 50 mA; 5-V VREG  
100 μA IOUT 50 mA; 3.3-V VREG  
PVDD  
VREG VREG × 1.03  
20  
V
VLineReg  
VLoadReg  
Line regulation  
Load regulation  
mV  
mV  
mV  
50  
30  
150  
100  
LOGIC-LEVEL INPUTS (INHx, INLx, EN_GATE, SCLK, nSCS)  
VIL  
Input logic low voltage  
Input logic high voltage  
Internal pulldown resistor  
0
2
0.8  
5
V
V
VIH  
RPD  
To GND  
100  
kΩ  
CONTROL OUTPUTS (nFAULT, SDO, PWRGD)  
VOL  
VOH  
IOH  
Output logic low voltage  
Output logic high voltage  
Output logic high leakage  
nFAULT; SDO; PWRGD; IO = 5 mA  
SDO; IO = 5 mA  
0.5  
1
V
V
VREG – 0.9  
–1  
VO = 3.3 V  
μA  
HIGH VOLTAGE TOLERANT LOGIC INPUT (WAKE)  
VIL_WAKE  
VIH_WAKE  
Output logic low voltage  
Output logic high voltage  
1.1  
1.45  
1.8  
V
V
1.46  
GATE DRIVE OUTPUT (GHx, GLx)  
VPVDD = 8 to 45 V; IGATE < 30 mA  
VPVDD = 5.5 to 8 V; IGATE < 10 mA  
VPVDD = 4.4 to 5.5 V; IGATE < 5 mA  
VPVDD = 8 to 45 V; IGATE < 30 mA  
VPVDD = 5.5 to 8 V; IGATE < 10 mA  
VPVDD = 4.4 to 5.5 V; IGATE < 5 mA  
9
7
5
9
9
8
10  
10  
10.7  
10.7  
9
V
V
V
V
V
V
High-side gate driver Vgs  
voltage  
VGHS  
10.7  
10.7  
10.7  
Low-side gate driver Vgs  
voltage  
VGLS  
PEAK CURRENT DRIVE TIMES (GHx, GLx)  
TDRIVEP = 00; TDRIVEN = 00  
TDRIVEP = 01; TDRIVEN = 01  
TDRIVEP = 10; TDRIVEN = 10  
TDRIVEP = 11; TDRIVEN = 11  
220  
440  
ns  
ns  
ns  
ns  
Peak sink or source current  
drive time  
tDRIVE  
880  
1780  
8
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
Electrical Characteristics (continued)  
PVDD = 4.4 to 45 V, DRV8305xQ: TJ = –40°C to 150°C, DRV8305xE: TJ = –40°C to 175°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
HIGH-SIDE PEAK CURRENT GATE DRIVE (GHx)  
IDRIVEP_HS = 0000  
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.125  
0.25  
0.5  
A
A
A
A
A
A
A
A
A
A
A
A
IDRIVEP_HS = 0001  
IDRIVEP_HS = 0010  
IDRIVEP_HS = 0011  
IDRIVEP_HS = 0100  
IDRIVEP_HS = 0101  
IDRIVEP_HS = 0110  
IDRIVEP_HS = 0111  
IDRIVEP_HS = 1000  
IDRIVEP_HS = 1001  
IDRIVEP_HS = 1010  
IDRIVEP_HS = 1011  
High-side peak source  
current  
IDRIVEP_HS  
0.75  
1
IDRIVEP_HS = 1100, 1101, 1110,  
1111  
0.05  
A
IDRIVEN_HS = 0000  
IDRIVEN_HS = 0001  
IDRIVEN_HS = 0010  
IDRIVEN_HS = 0011  
IDRIVEN_HS = 0100  
IDRIVEN_HS = 0101  
IDRIVEN_HS = 0110  
IDRIVEN_HS = 0111  
IDRIVEN_HS = 1000  
IDRIVEN_HS = 1001  
IDRIVEN_HS = 1010  
IDRIVEN_HS = 1011  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.08  
0.25  
0.5  
A
A
A
A
A
A
A
A
A
A
A
A
IDRIVEN_HS  
High-side peak sink current  
0.75  
1
1.25  
IDRIVEN_HS = 1100, 1101, 1110,  
1111  
0.06  
A
LOW-SIDE PEAK CURRENT GATE DRIVE (GLx)  
IDRIVEP_LS = 0000  
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.125  
0.25  
0.5  
A
A
A
A
A
A
A
A
A
A
A
A
IDRIVEP_LS = 0001  
IDRIVEP_LS = 0010  
IDRIVEP_LS = 0011  
IDRIVEP_LS = 0100  
IDRIVEP_LS = 0101  
IDRIVEP_LS = 0110  
IDRIVEP_LS = 0111  
IDRIVEP_LS = 1000  
IDRIVEP_LS = 1001  
IDRIVEP_LS = 1010  
IDRIVEP_LS = 1011  
Low-side peak source  
current  
IDRIVEP_LS  
0.75  
1
IDRIVEP_LS = 1100, 1101, 1110,  
1111  
0.05  
A
Copyright © 2015–2019, Texas Instruments Incorporated  
9
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
PVDD = 4.4 to 45 V, DRV8305xQ: TJ = –40°C to 150°C, DRV8305xE: TJ = –40°C to 175°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IDRIVEN_LS = 0000  
MIN  
TYP  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.08  
0.25  
0.5  
MAX UNIT  
A
A
A
A
A
A
A
A
A
A
A
A
IDRIVEN_LS = 0001  
IDRIVEN_LS = 0010  
IDRIVEN_LS = 0011  
IDRIVEN_LS = 0100  
IDRIVEN_LS = 0101  
IDRIVEN_LS = 0110  
IDRIVEN_LS = 0111  
IDRIVEN_LS = 1000  
IDRIVEN_LS = 1001  
IDRIVEN_LS = 1010  
IDRIVEN_LS = 1011  
IDRIVEN_LS  
Low-side peak sink current  
0.75  
1
1.25  
IDRIVEN_LS = 1100, 1101, 1110,  
1111  
0.06  
A
PASSIVE GATE PULLDOWN (GHx, GLx)  
EN_GATE = LOW; GHx to GND;  
EN_GATE = LOW; GLx to GND;  
EN_GATE = LOW; GHx to GND;  
EN_GATE = LOW; GLx to GND;  
1000  
500  
Gate pulldown resistance,  
sleep mode  
RSLEEP_PD  
1000  
500  
Gate pulldown resistance,  
RSTANDBY_PD  
standby mode  
ACTIVE GATE PULLDOWN (GHx, GLx)  
Gate pulldown current,  
holding  
EN_GATE = HIGH;  
GHx to SHx; GLx to SLx  
IHOLD  
50  
mA  
A
Gate pulldown current,  
strong  
EN_GATE = HIGH;  
GHx to SHx; GLx to SLx  
ISTRONG  
1.25  
GATE TIMING  
Positive input falling to  
GHS_x falling  
tpd_lf-O  
PVDD = 12 V; CL = 1 nF; 50% to 50%  
PVDD = 12 V; CL = 1 nF; 50% to 50%  
200  
200  
280  
ns  
ns  
ns  
Positive input rising to  
GHS_x rising  
tpd_lr-O  
Minimum dead time after  
hand shaking  
td_min  
DEAD_TIME = 000  
DEAD_TIME = 001  
DEAD_TIME = 010  
DEAD_TIME = 011  
DEAD_TIME = 100  
DEAD_TIME = 101  
DEAD_TIME = 110  
DEAD_TIME = 111  
35  
52  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
88  
440  
880  
1760  
3520  
5280  
Dead time in addition to  
td_min  
tdtp  
Propagation delay matching  
tPD_MATCH  
tDT_MATCH  
between high-side and low-  
side  
50  
50  
ns  
ns  
Dead-time matching  
10  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
Electrical Characteristics (continued)  
PVDD = 4.4 to 45 V, DRV8305xQ: TJ = –40°C to 150°C, DRV8305xE: TJ = –40°C to 175°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CURRENT SHUNT AMPLIFIER  
GAIN_CSx = 00  
10  
19.9  
39.8  
78.8  
V/V  
V/V  
V/V  
V/V  
GAIN_CSx = 01  
GAIN_CSx = 10  
GAIN_CSx = 11  
Current sense amplifier  
gain  
GCSA  
Input differential > 0.025 V;  
TJ = –40 to 150 °C  
–3.5  
–4  
3.5  
4
%
%
Current sense amplifier  
gain error  
GERR  
Input differential > 0.025 V;  
TJ = 150 to 175 °C  
Settling time to 1%; no blanking;  
GCSA = 10; Vstep = 0.46 V  
300  
600  
1.2  
ns  
ns  
µs  
Settling time to 1%; no blanking;  
GCSA = 20; Vstep = 0.46 V  
Current sense amplifier  
settling time  
tSETTLING  
Settling time to 1%; no blanking;  
GCSA = 40; Vstep = 0.46 V  
Settling time to 1%; no blanking;  
GCSA = 80; Vstep = 0.46 V  
2.4  
µs  
mV  
%
VIOS  
DC input offset  
GCSA = 10; input shorted; RTI  
–4  
–3  
4
3
Internal or external VREF;  
VREF_SCALE = 01  
Internal or external VREF;  
VREF_SCALE = 10  
VVREF_ERR  
Reference buffer error (DC)  
–4  
4
%
%
Internal or external VREF;  
VREF_SCALE = 11  
–10  
10  
VDRIFTOS  
IBIAS  
Input offset error drift  
Input bias current  
GCSA = 10; input shorted; RTI  
VIN_COM = 0; SOx open  
10  
1
µV/C  
µA  
100  
IBIAS (SNx-SPx); VIN_COM = 0;  
SOx open  
IOFFSET  
Input bias current offset  
µA  
VIN_COM  
VIN_DIFF  
Common input mode range  
Differential input range  
–0.15  
–0.48  
0.15  
0.48  
V
V
External input resistance matched;  
DC; GCSA = 10  
60  
60  
80  
80  
dB  
dB  
Common mode rejection  
ration  
CMRR  
External input resistance matched;  
20 kHz; GCSA = 10  
DC (<120 Hz); GCSA = 10  
20 kHz; GCSA = 10  
150  
90  
dB  
dB  
PSRR  
Power supply rejection ratio  
VSWING  
VSLEW  
IVO  
Output voltage swing  
Output slew rate  
PVDD > 5.3 V  
0.3  
5.2  
4.7  
V
GCSA = 10; RL = 0 ; CL = 60 pF  
10  
20  
V/µs  
mA  
Output short circuit current SOx shorted to ground  
Unity gain bandwidth  
GCSA = 10  
UGB  
2
MHz  
product  
VOLTAGE PROTECTION  
VAVDD_UVLO AVDD undervoltage fault  
AVDD falling, relative to GND  
VREG_UV_LEVEL = 00  
VREG_UV_LEVEL = 01  
VREG_UV_LEVEL = 10  
VREG_UV_LEVEL = 11  
3.3  
1.5  
3.7  
VREG × 0.9  
VREG × 0.8  
VREG × 0.7  
VREG × 0.7  
V
V
V
V
V
VVREG_UV  
VREG undervoltage fault  
VREG undervoltage  
monitor deglitch time  
VVREG_UV_DGL  
2
µs  
Copyright © 2015–2019, Texas Instruments Incorporated  
11  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
PVDD = 4.4 to 45 V, DRV8305xQ: TJ = –40°C to 150°C, DRV8305xE: TJ = –40°C to 175°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
PVDD falling  
MIN  
7.7  
TYP  
MAX UNIT  
8.1  
8.3  
4.1  
4.3  
4.4  
4.7  
36  
V
V
V
V
V
V
V
V
Undervoltage protection  
warning, PVDD  
VPVDD_UVFL  
VPVDD_UVLO1  
VPVDD_UVLO2  
PVDD rising  
PVDD falling  
PVDD rising  
PVDD falling  
PVDD rising  
PVDD falling  
PVDD rising  
7.9  
Undervoltage protection  
lock out, PVDD  
4.2  
4.4  
Undervoltage protection  
fault, PVDD  
33.5  
32.5  
Overvoltage protection  
warning, PVDD  
VPVDD_OVFL  
VVCPH_UVFL  
35  
Charge pump undervoltage  
protection warning, VCPH  
VCPH falling, relative to PVDD  
8
5.3  
5
V
V
V
VCPH falling, relative to PVDD,  
SET_VCPH_UV = 0  
4.6  
4.3  
Charge pump undervoltage  
protection fault, VCPH  
VVCPH_UVLO2  
VCPH falling, relative to PVDD,  
SET_VCPH_UV = 1  
Low-side regulator  
VVCP_LSD_UVLO2 undervoltage fault,  
VCP_LSD  
VCP_LSD falling, relative to GND  
6.4  
14  
7.5  
18  
V
Charge pump overvoltage  
protection fault, VCPH  
VVCPH_OVLO  
Relative to PVDD  
Relative to GND  
V
V
Charge pump overvoltage  
protection fault, VCPH  
VVCPH_OVLO_ABS  
60  
TEMPERATURE PROTECTION  
Junction temperature-to  
OTW_CLR  
clear overtemperature  
100  
135  
125  
160  
130  
160  
155  
185  
150  
185  
180  
210  
°C  
°C  
°C  
°C  
(OTW) warning(1)  
Junction temperature for  
overtemperature (OTW)  
warning(1)  
OTW_SET  
Junction temperature-to-  
clear overtemperature  
shutdown (OTSD)(1)  
OTSD_CLR  
OTSD_SET(2)  
Junction temperature for  
overtemperature shutdown  
(OTSD)(1)  
Junction temperature flag  
setting 1(1)  
TEMP_FLAG1  
TEMP_FLAG2  
TEMP_FLAG3  
TEMP_FLAG4  
105  
125  
135  
185  
°C  
°C  
°C  
°C  
Junction temperature flag  
setting 2(1)  
Junction temperature flag  
setting 3(1)  
Junction temperature flag  
setting 4(1)  
PROTECTION CONTROL  
Delay, error event to all  
gates low  
tpd,E-L  
TBLANK = 00; TVDS = 00  
TBLANK = 00; TVDS = 00  
1
1
µs  
µs  
Delay, error event to  
nFAULTx low  
tpd,E-SD  
(1) Specified by design.  
(2) Overtemperature shutdown (OTSD) is disabled by default for DRV8305xEPHPQ1 and may only be re-enabled through control register.  
12  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
Electrical Characteristics (continued)  
PVDD = 4.4 to 45 V, DRV8305xQ: TJ = –40°C to 150°C, DRV8305xE: TJ = –40°C to 175°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
FET CURRENT PROTECTION (VDS SENSING)  
VDS_LEVEL = 00000  
0.06  
0.068  
0.076  
0.086  
0.097  
0.109  
0.123  
0.138  
0.155  
0.175  
0.197  
0.222  
0.25  
V
V
VDS_LEVEL = 00001  
VDS_LEVEL = 00010  
VDS_LEVEL = 00011  
VDS_LEVEL = 00100  
VDS_LEVEL = 00101  
VDS_LEVEL = 00110  
VDS_LEVEL = 00111  
VDS_LEVEL = 01000  
VDS_LEVEL = 01001  
VDS_LEVEL = 01010  
VDS_LEVEL = 01011  
VDS_LEVEL = 01100  
VDS_LEVEL = 01101  
VDS_LEVEL = 01110  
VDS_LEVEL = 01111  
VDS_LEVEL = 10000  
VDS_LEVEL = 10001  
VDS_LEVEL = 10010  
VDS_LEVEL = 10011  
VDS_LEVEL = 10100  
VDS_LEVEL = 10101  
VDS_LEVEL = 10110  
VDS_LEVEL = 10111  
VDS_LEVEL = 11000  
VDS_LEVEL = 11001  
VDS_LEVEL = 11010  
VDS_LEVEL = 11011  
VDS_LEVEL = 11100  
VDS_LEVEL = 11101  
VDS_LEVEL = 11110  
VDS_LEVEL = 11111  
TVDS = 00  
V
V
V
V
V
V
V
V
V
V
V
0.282  
0.317  
0.358  
0.403  
0.454  
0.511  
0.576  
0.648  
0.73  
V
V
V
Drain-source voltage  
VDS_TRIP  
protection limit  
V
V
V
V
V
V
0.822  
0.926  
1.043  
1.175  
1.324  
1.491  
1.679  
1.892  
2.131  
2.131  
0
V
V
V
V
V
V
V
V
V
V
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
TVDS = 01  
1.75  
tVDS  
VDS sense deglitch time  
VDS sense blanking time  
TVDS = 10  
3.5  
TVDS = 11  
7
TBLANK = 00  
0
TBLANK = 01  
1.75  
tBLANK  
TBLANK = 10  
3.5  
TBLANK = 11  
7
nFAULT pin warning pulse  
length  
tWARN_PULSE  
56  
2
µs  
PHASE SHORT PROTECTION  
VSNSOCP_TRIP  
Phase short protection limit Fixed voltage  
V
Copyright © 2015–2019, Texas Instruments Incorporated  
13  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
6.6 SPI Timing Requirements (Slave Mode Only)  
MIN  
NOM  
MAX  
UNIT  
ms  
ns  
tSPI_READY  
tCLK  
SPI read after power on  
Minimum SPI clock period  
Clock high time  
PVDD > VPVDD_UVLO1  
5
10  
100  
40  
40  
20  
30  
tCLKH  
ns  
tCLKL  
Clock low time  
ns  
tSU_SDI  
tHD_SDI  
tD_SDO  
tHD_SDO  
tSU_SCS  
tHD_SCS  
tHI_SCS  
SDI input data setup time  
SDI input data hold time  
ns  
ns  
SDO output data delay time, CLK high to SDO valid CL = 20 pF  
SDO output hold time  
20  
ns  
40  
50  
ns  
SCS setup time  
ns  
SCS hold time  
50  
ns  
SCS minimum high time before SCS active low  
SCS access time, SCS low to SDO out of high impedance  
SCS disable time, SCS high to SDO high impedance  
400  
ns  
10  
10  
ns  
tACC  
tDIS  
ns  
tSU_SCS  
tHD_SCS  
tHI_SCS  
SCS  
SCLK  
SDI  
tCLK  
tCLKH  
tCLKL  
MSB In  
(Must Be Valid)  
LSB  
LSB  
tSU_SDI  
tHD_SDI  
MSB Out (Is Valid)  
SDO  
Z
Z
tD_SDO  
tHD_SDO  
tDIS  
tACC  
Figure 1. SPI Slave Mode Timing Definition  
14  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
6.7 Typical Characteristics  
6
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
30  
25  
20  
15  
10  
5
TA = -40°C  
TA = 25°C  
TA = 125°C  
TA = -40°C  
TA = 25°C  
TA = 125°C  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
PVDD (V)  
PVDD (V)  
D001  
D002  
Figure 2. Standby Current  
Figure 3. Operating Current  
200  
180  
160  
140  
120  
100  
80  
12  
10  
8
6
4
60  
40  
TA = -40°C  
TA = 25°C  
TA = 125°C  
TA = -40°C  
TA = 25°C  
TA = 125°C  
2
20  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
PVDD (V)  
PVDD (V)  
D003  
D004  
Figure 4. Sleep Current  
Figure 5. VCPH Voltage  
Copyright © 2015–2019, Texas Instruments Incorporated  
15  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DRV8305-Q1 is a 4.4-V to 45-V automotive gate driver IC for three-phase motor driver applications. This  
device reduces external component count in the system by integrating three half-bridge drivers, charge pump,  
three current shunt amplifiers, an uncommited 3.3-V or 5-V, 50-mA LDO, and a variety of protection circuits. The  
DRV8305-Q1 provides overcurrent, shoot-through, overtemperature, overvoltage, and undervoltage protection.  
Fault conditions are indicated by the nFAULT pin and specific fault information can be read back from the SPI  
registers. The protection circuits are highly configurable to allow adaptation to different applications and support  
limp home operation.  
The gate driver uses a tripler charge pump to generate the appropriate gate-to-source voltage bias for the  
external, high-side N-channel power MOSFETs during low supply conditions. A regulated 10-V LDO derived from  
the charge pump supplies the gate-to-source voltage bias for the low-side N-channel MOSFET. The high-side  
and low-side peak gate drive currents are adjustable through the SPI registers to finely tune the switching of the  
external MOSFETs without the need for external components. An internal handshaking scheme is used to  
prevent shoot-through and minimize the dead time when transitioning between MOSFETs in each half-bridge.  
Multiple input methods are provided to accommodate different control schemes including a 1-PWM mode which  
integrates a six-step block commutation table for BLDC motor control.  
VDS sensing of the external power MOSFETs allows for the DRV8305-Q1 to detect overcurrent conditions and  
respond appropriately. Integrated blanking and deglitch timers are provided to prevent false trips related to  
switching or transient noise. Individual MOSFET overcurrent conditions are reported through the SPI status  
registers and nFAULT pin. A dedicated VDRAIN pin is provided to accurately sense the drain voltage of the high-  
side MOSFET.  
The three internal current shunt amplifiers allow for the implementation of common motor control schemes that  
require sensing of the half-bridge currents through a low-side current shunt resistor. The amplifier gain, reference  
voltage, and blanking are adjustable through the SPI registers. A calibration method is providing to minimize  
inaccuracy related to offset voltage.  
Three versions of the DRV8305-Q1 are available with separate part numbers for the different devices options:  
DRV8305NQ: VREG pin has the internal LDO disabled and is only used as a voltage reference input for the  
amplifiers and SDO pullup. Grade 1.  
DRV83053Q: VREG is a 3.3-V, 50-mA LDO output pin. Grade 1.  
DRV83055Q: VREG is a 5-V, 50-mA LDO output pin. Grade 1.  
DRV8305NE: VREG pin has the internal LDO disabled and is only used as a voltage reference input for the  
amplifiers and SDO pullup. Grade 0.  
16  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
7.2 Functional Block Diagram  
DVDD  
AVDD  
VCP_LSD  
CP2H CP2L CP1H CP1L  
DVDD  
AVDD  
VCP_LSD  
VCPH  
DVDD  
LDO  
AVDD  
LDO  
Low Side  
Gate Drive  
LDO  
VCPH  
High Side Gate Drive  
2-Stage Charge Pump  
PVDD  
WAKE  
VREG/VREF  
PWRGD  
PVDD  
VREG  
VDRAIN  
VREG  
LDO  
VDRAIN  
VDRAIN  
VCPH  
HS  
GH_A  
SH_A  
GL_A  
+
-
VDS  
EN_GATE  
INH_A  
INL_A  
VCP_LSD  
LS  
+
-
VDS  
SL_A  
Phase A Pre-Driver  
PVDD  
Core Logic  
INH_B  
INL_B  
VDRAIN  
VCPH  
HS  
Digital  
Inputs  
and  
GH_B  
SH_B  
GL_B  
Control  
Configuration  
Timing  
+
-
VDS  
Outputs  
INH_C  
INL_C  
VCP_LSD  
LS  
+
-
VDS  
SL_B  
nFAULT  
Phase B Pre-Driver  
PVDD  
Protection  
VDRAIN  
VCPH  
HS  
VREG  
GH_C  
SH_C  
GL_C  
SL_C  
+
-
VDS  
SCLK  
nSCS  
SDI  
VCP_LSD  
LS  
+
-
VDS  
SPI  
Thermal  
Sensor  
Voltage  
Monitoring  
Phase C Pre-Driver  
AVDD  
SDO  
VREG  
SN1  
Current  
Sense  
Amplifier 1  
SO1  
SO2  
SO3  
Ref/k  
VREG  
SP1  
SN2  
AVDD  
AVDD  
Current  
Sense  
Amplifier 2  
Ref/k  
VREG  
SP2  
SN3  
Current  
Sense  
Amplifier 3  
Ref/k  
SP3  
GND GND  
PowerPAD  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2015–2019, Texas Instruments Incorporated  
17  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
7.3 Feature Description  
Table 1 lists the recommended values of the external components for the DRV8305-Q1.  
Table 1. External Components  
COMPONENT  
CPVDD  
PIN 1  
PVDD  
PIN 2  
GND  
RECOMMENDED  
4.7-µF ceramic capacitor rated for PVDD(1)  
1-µF ceramic capacitor rated for 6.3 V(1)  
1-µF ceramic capacitor rated for 6.3 V(1)  
2.2-µF ceramic capacitor rated for 16 V(1)  
1-µF ceramic capacitor rated for 16 V(1)  
0.047-µF ceramic capacitor rated for PVDD(1)  
0.047-µF ceramic capacitor rated for PVDD × 2(1)  
1-µF ceramic capacitor rated for 6.3 V(1)  
CAVDD  
AVDD  
GND  
CDVDD  
DVDD  
GND  
CVCPH  
VCPH  
PVDD  
GND  
CVCP_LSD  
CCP1  
VCP_LSD  
CP1H  
CP1L  
CP2L  
GND  
CCP2  
CP2H  
CVREG  
VREG  
RVDRAIN  
RnFAULT  
RPWRGD  
VDRAIN  
nFAULT  
PWRGD  
PVDD  
VCC(2)  
VCC(2)  
100-series resistor between VDRAIN and HS MOSFET DRAIN  
1-10 kpulled up the MCU power supply  
1-10 kpulled up the MCU power supply  
(1) The effective capacitance of ceramic capacitors varies with DC operating voltage and temperature. As a rule of thumb, expect the  
effective capacitance to decrease by as much as 50% at the extremes of the operating voltage. The system designer must review the  
capacitor characteristics and select the component accordingly.  
(2) VCC is not a pin on the DRV8305-Q1, but a VCC supply voltage pullup is required for open-drain output nFAULT; nFAULT may be  
pulled up to DVDD.  
7.3.1 Integrated Three-Phase Gate Driver  
The DRV8305-Q1 is a completely integrated three-phase gate driver. It provides three N-channel MOSFET half-  
bridge gate drivers, multiple input modes, high-side and low-side gate drive supplies, and a highly configurable  
gate drive architecture. The DRV8305-Q1 is designed to support automotive applications by incorporating a wide  
operating voltage range, wide temperature range, and array of protection features. The configurability of device  
allows for it to be used in a broad range of applications.  
7.3.2 INHx/INLx: Gate Driver Input Modes  
The DRV8305-Q1 can be operated in three different inputs modes to support various commutation schemes.  
Table 2 shows the truth table for the 6-PWM input mode. This mode allows for each half-bridge to be placed  
in one of three states, either High, Low, or Hi-Z, based on the inputs.  
Table 2. 6-PWM Truth Table  
INHx  
INLx  
GHx  
GLx  
L
1
1
0
0
1
0
1
0
L
H
L
L
H
L
L
18  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
6-PWM  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
MCU PWM  
MCU PWM  
MCU PWM  
MCU PWM  
MCU PWM  
MCU PWM  
Figure 6. 6-PWM Mode  
Table 3 shows the truth table for the 3-PWM input mode. This mode allows for each half-bridge to be placed  
in one of two states, either High or Low, based on the inputs. The three high-side inputs (INHx) are used to  
control the state of the half-bridge with the complimentary low-side signals being generated internally. Dead  
time can be adjusted through the internal setting (DEAD_TIME) in the SPI registers. In this mode all activity  
on INLx is ignored.  
Table 3. 3-PWM Truth Table  
INHx  
INLx  
X
GHx  
H
GLx  
L
1
0
X
L
H
3-PWM  
INHA  
MCU PWM  
INLA  
INHB  
MCU PWM  
INLB  
INHC  
MCU PWM  
INLC  
Figure 7. 3-PWM Mode  
Table 4 and Table 5 show the truth tables for the 1-PWM input mode. The 1-PWM mode uses an internally  
stored 6-step block commutation table to control the outputs of the three half-bridge drivers based on one  
PWM and three GPIO inputs. This mode allows the use of a lower cost microcontroller by requiring only one  
PWM resource. The PWM signal is applied on pin INHA (PWM_IN) to set the duty cycle of the half-bridge  
outputs along with the three GPIO signals on pins INLA (PHC_0), INHB (PHC_1), INLB (PHC_2) that serve to  
Copyright © 2015–2019, Texas Instruments Incorporated  
19  
 
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
set the value of a three bit register for the commutation table. The PWM may be operated from 0-100% duty  
cycle. The three bit register is used to select the state for each half-bridge for a total of eight states including  
an align and stop state.  
An additional and optional GPIO, INHC (DWELL) can be used to facilitate the insertion of dwell states or  
phase current overlap states between the six commutation steps. This may be used to reduce acoustic noise  
and improve motion through the reduction of abrupt current direction changes when switching between states.  
INHC must be high when the state is changed and the dwell state will exist until INHC is taken low. If the  
dwell states are not being used, the INHC pin can be tied low.  
In 1-PWM mode all activity on INLC is ignored.  
1 PWM  
INHA  
MCU PWM  
MCU GPIO  
MCU GPIO  
MCU GPIO  
—PWM“  
INLA  
INHB  
INLB  
INHC  
INLC  
—STATE0"  
—STATE1"  
—STATE2"  
—DWELL"  
MCU GPIO  
(optional)  
Figure 8. 1-PWM Mode  
The method of freewheeling can be selected through an SPI register (COMM_OPTION). Diode freewheeling  
is when the phase current is carried by the body diode of the external power MOSFET during periods when  
the MOSFET is reverse biased (current moving from source to drain). In active freewheeling, the power  
MOSFET is enabled during periods when the MOSFET is reverse biased. This allows the system to improve  
efficiency due to the typically lower impedance of the MOSFET conduction channel as compared to the body  
diode. Table 4 shows the truth table for active freewheeling. Table 5) shows the truth table for diode  
freewheeling.  
Table 4. 1-PWM Active Freewheeling  
STATE  
INLA:INHB:INLB:INHC  
GHA  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
PWM  
PWM  
PWM  
PWM  
LOW  
GLA  
!PWM  
!PWM  
LOW  
GHB  
LOW  
LOW  
LOW  
LOW  
LOW  
PWM  
PWM  
PWM  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
GLB  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
GHC  
LOW  
PWM  
PWM  
PWM  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
GLC  
LOW  
AB  
0110  
0101  
0100  
1101  
1100  
1001  
1000  
1011  
1010  
0011  
0010  
0111  
1110  
0000  
AB_CB  
CB  
!PWM  
!PWM  
!PWM  
!PWM  
!PWM  
LOW  
CB_CA  
CA  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
CA_BA  
BA  
!PWM  
!PWM  
!PWM  
!PWM  
!PWM  
LOW  
BA_BC  
BC  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
BC_AC  
AC  
!PWM  
!PWM  
!PWM  
!PWM  
LOW  
AC_AB  
Align  
Stop  
HIGH  
HIGH  
LOW  
20  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
Table 5. 1-PWM Diode Freewheeling  
STATE  
AB  
INLA:INHB:INLB:INHC  
GHA  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
PWM  
PWM  
PWM  
PWM  
LOW  
GLA  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
GHB  
LOW  
LOW  
LOW  
LOW  
LOW  
PWM  
PWM  
PWM  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
GLB  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
LOW  
GHC  
LOW  
PWM  
PWM  
PWM  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
GLC  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
0110  
0101  
0100  
1101  
1100  
1001  
1000  
1011  
1010  
0011  
0010  
0111  
1110  
0000  
AB_CB  
CB  
CB_CA  
CA  
CA_BA  
BA  
BA_BC  
BC  
BC_AC  
AC  
AC_AB  
Align  
Stop  
7.3.3 VCPH Charge Pump: High-Side Gate Supply  
The DRV8305-Q1 uses a charge pump to generate the proper gate-to-source voltage bias for the high-side N-  
channel MOSFETs. Similar to the often used bootstrap architecture, the charge pump generates a floating supply  
voltage used to enable the MOSFET. When enabled, the gate of the external MOSFET is connected to VCPH  
through the internal gate drivers. The charge pump of the DRV8305-Q1 regulates the VCPH supply to PVDD +  
10-V in order to support both standard and logic level MOSFETs. As opposed to a bootstrap architecture, the  
charge pump supports 0 to 100% duty cycle operation by eliminating the need to refresh the bootstrap capacitor.  
The charge pump also removes the need for bootstrap capacitors to be connected to the switch-node of the half-  
bridge.  
In order to support automotive cold crank transients on the battery which require the system to be operational to  
as low as 4.4 V, a regulated triple charge pump scheme is used to create sufficient VGS to drive standard and  
logic level MOSFETs during the low voltage transient. Between 4.4 to 18 V the charge pump regulates the  
voltage in a tripler mode. Beyond 18 V and until the max operating voltage, it switches over to a doubler mode in  
order to improve efficiency. The charge pump is disabled until EN_GATE is set high to reduce unneeded power  
consumption by the IC. After EN_GATE is set high, the device will go through a power up sequence to enable  
the gate drivers and gate drive supplies. 1 ms should be allocated after EN_GATE is set high to allow the charge  
pump to reach its regulation voltage.  
The charge pump is continuously monitored for undervoltage and overvoltage conditions to prevent underdriven  
or overdriven MOSFET scenarios. If an undervoltage or overvoltage condition is detected the appropriate actions  
is taken and reported through the SPI registers.  
7.3.4 VCP_LSD LDO: Low-Side Gate Supply  
The DRV8305-Q1 uses a linear regulator to generate the proper gate-to-source voltage vias for the low-side N-  
channel MOSFETs. The linear regulator generates a fixed 10-V supply voltage with respect to GND. When  
enabled, the gate of the external MOSFET is connected to VCPH_LSD through the internal gate drivers. In order  
to support automotive cold crank transients the input voltage for the VCP_LSD linear regulator is taken from the  
VCPH charge pump. This allows the DRV8305-Q1 to provide sufficient VGS to drive standard and logic level  
MOSFETs during the low voltage transient.  
The low-side regulator is disabled until EN_GATE is set high to reduce unneeded power consumption by the IC.  
After EN_GATE is set high, the device will go through a power up sequence for the gate drivers and gate drive  
supplies. 1 ms should be allocated after EN_GATE is set high to allow the low-side regulator to reach its  
regulation voltage. The VCP_LSD regulator is continuously monitored for undervoltage conditions to prevent  
underdriven MOSFET scenarios. If an undervoltage condition is detected the appropriate actions is taken and  
reported through the SPI registers.  
Copyright © 2015–2019, Texas Instruments Incorporated  
21  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
7.3.5 GHx/GLx: Half-Bridge Gate Drivers  
The DRV8305-Q1 gate driver uses a complimentary push-pull topology for both the high-side and the low-side  
gate drivers. Both the high-side (GHx to SHx) and the low-side (GLx to SLx) are implemented as floating gate  
drivers in order to tolerate switching transients from the half-bridges. The high-side and low-side gate drivers use  
a highly adjustable current control scheme in order to allow the DRV8305-Q1 to adjust the VDS slew rate of the  
external MOSFETs without the need for additional components. The scheme also incorporates a mechanism for  
detecting issues with the gate drive output to the power MOSFETs during operation. This scheme and its  
application benefits are outlined below as well as in the Understanding IDRIVE and TDRIVE in TI Motor Gate  
Drivers application report.  
VCPH  
INHx  
Level Shifters  
GHx  
INLx  
SHx  
Logic  
VCP_LSD  
Level Shifters  
GLx  
SLx  
Figure 9. DRV8305-Q1 Gate Driver Architecture  
7.3.5.1 Smart Gate Drive Architecture: IDRIVE  
The first component of the gate drive architecture implements adjustable current control for the gates of the  
external power MOSFETs. This feature allows the gate driver to control the VDS slew rate of the MOSFETs by  
adjusting the gate drive current. This is realized internally to reduce the need for external components inline with  
the gates of the MOSFETs. The DRV8305-Q1 provides 12 adjustable source and sink current levels for the high-  
side (the high-sides of all three phases share the same setting) and low-side gate drivers (the low-sides of all  
three phases share the same settings). The gate drive levels are adjustable through the SPI registers in both the  
standby and operating states. This flexibility allows the system designer to tune the performance of the driver for  
different operating conditions through software alone.  
22  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
The gate drivers are implemented as temperature compensated, constant current sources up to the 80-mA  
(sink)/70-mA (source) current settings in order to maintain the accuracy required for precise slew rate control.  
The current source architecture helps eliminate the temperature, process, and load-dependent variation  
associated with internal and external series limiting resistors. Beyond that, internal switches are adjusted to  
create the desired settings up to the 1.25-A (sink)/1-A (source) settings. For higher currents, internal series  
switches are used to minimize the power losses associated with mirroring such large currents.  
Control of the gate current during the MOSFET Miller region is a key component for adjusting the MOSFET VDS  
rise and fall times. MOSFET VDS slew rates are a critical parameter for optimizing emitted radiations, energy and  
duration of diode recovery spikes, dV/dt related turn on leading to shoot-through, and voltage transients related  
to parasitics.  
When a MOSFET is enhanced, three different charges must be supplied to the MOSFET gate. The MOSFET  
drain to source voltage will slew primarily during the Miller region. By controlling the rate of charge to the  
MOSFET gate (gate drive current strength) during the Miller region, it is possible to optimize the VDS slew rate  
for the reasons mentioned.  
1. QGS = Gate-to-source charge  
2. QGD = Gate-to-drain charge (Miller charge)  
3. Remaining QG  
Drain  
Gate  
C
GD  
Level  
Shifter  
C
GS  
Source  
Figure 10. MOSFET Charge Example  
7.3.5.2 Smart Gate Drive Architecture: TDRIVE  
The DRV8305-Q1 gate driver uses an integrated state machine (TDRIVE) in the gate driver to protect against  
excessive current on the gate drive outputs, shoot-through in the external MOSFET, and dV/dt turn on due to  
switching on the phase nodes. The TDRIVE state machine allows for the design of a robust and efficient motor  
drive system with minimal overhead.  
The state machine incorporates internal handshaking when switching from the low to the high-side external  
MOSFET or vice-versa. The handshaking is designed to prevent the external MOSFETs from entering a period  
of cross conduction, also known as shoot-through. The internal handshaking uses the VGS monitors of the  
DRV8305-Q1 to determine when one MOSFET has been disabled and the other can be enabled. This allows the  
gate driver to insert an optimized dead time into the system without the risk of cross conduction. Any dead time  
added externally through the MCU or SPI register will be inserted after the handshake process.  
The state machine also incorporates a gate drive timer to ensure that under abnormal circumstances such as a  
short on the MOSFET gate or the inadvertent turn on of a MOSFET VGS clamp, the high peak current through  
the DRV8305-Q1 and MOSFET is limited to a fixed duration. This concept is visualized in the figure below. First,  
the DRV8305-Q1 receives a command to enable or disable the MOSFET through INHx or INLx inputs. Second,  
the gate driver is enabled and a strong current is applied to the MOSFET gate and the gate voltage begins to  
Copyright © 2015–2019, Texas Instruments Incorporated  
23  
 
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
change. If the gate voltage has not changed to the desired level after the tDRIVE period (indicating a short circuit  
or overcurrent condition on the MOSFET gate), the DRV8305-Q1 signals a gate drive fault and the gate drive is  
disabled to help protect the external MOSFET and DRV8305-Q1. If the MOSFET does successfully enable or  
disable, after the tDRIVE period the DRV8305-Q1 will enable a lower hold current to ensure the MOSFET remains  
enabled or disabled and improve efficiency of the gate drive.  
Select a tDRIVE time that is longer than the time needed to charge or discharge the gate capacitances of the  
external MOSFETs. The TDRIVE SPI registers should be configured so that the MOSFET gates are charged  
completely within tDRIVE during normal operation. If tDRIVE is too low for a given MOSFET, then the MOSFET may  
not turn on completely. It is suggested to tune these values in-system with the required external MOSFETs to  
determine the best possible setting for the application. A good starting value is a tDRIVE period that is 2x the  
expected rise or fall times of the external MOSFET gates. Note that TDRIVE will not increase the PWM time and  
will simply terminate if a PWM command is received while it is active.  
tDRIVE_HS  
tDRIVE_HS  
INHx  
GHx Voltage  
Gate Off  
IHOLD  
IDRIVE  
GHx Current  
IDRIVE  
ISTRONG  
ISTRONG  
INLx  
GLx Voltage  
Gate Off  
IHOLD  
IHOLD  
IDRIVE  
GLx Current  
IDRIVE  
ISTRONG  
tDRIVE_LS  
tDRIVE_LS  
Figure 11. TDRIVE Gate Drive State Machine  
7.3.5.3 CSAs: Current Shunt Amplifiers  
The DRV8305-Q1 includes three high performance low-side current shunt amplifiers for accurate current  
measurement utilizing low-side shunt resistors in the external half-bridges. They are commonly used to measure  
the motor phase current to implement overcurrent protection, external torque control, or external commutation  
control through the application MCU.  
The current shunt amplifiers have the following features:  
Each of the three current sense amplifiers can be programmed and calibrated independently.  
Can provide output bias up to 2.5 V to support bidirectional current sensing.  
May be used for either individual or total current shunt sensing.  
Four programmable gain settings through SPI registers (10, 20, 40 and 80 V/V).  
Reference voltage for output bias provided from voltage regulator VREG for DRV83053Q and DRV83055Q.  
Reference voltage for output bias provided from externally applied voltage on VREG pin for DRV8305NQ and  
DRV8305NE.  
Programmable output bias scaling. The scaling factor k can be programmed through SPI registers (1/2 or  
1/4).  
Programmable blanking time (delay) of the amplifier outputs. The blanking time is implemented from any  
rising or falling edge of gate drive outputs. The blanking time is applied to all three current sense amplifiers  
equally. In case the current sense amplifiers are already being blanked when another gate driver rising or  
24  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
falling edge is seen, the blanking interval will be restarted at the edge. Note that the blanking time options do  
not include delay from internal amplifier loading or delays from the trace or component loads on the amplifier  
output. The programmable blanking time may be overridden to have no delay (default value).  
Minimize DC offset and drift through temperature with DC calibrating through SPI register. When DC  
calibration is enabled, device will short input of current shunt amplifier and disconnect the load. DC calibrating  
can be done at anytime, even when the MOSFET is switching because the load is disconnected. For best  
result, perform the DC calibrating during switching off period when no load is present to reduce the potential  
noise impact to the amplifier.  
The output of current shunt amplifier can be calculated as:  
VVREF  
VO =  
- Gì SN - SP  
(
)
X
X
k
where  
VREF is the reference voltage from the VREG pin.  
G is the gain setting of the amplifier.  
k = 2, 4, or 8  
SNx and SPx are the inputs of channel x.  
SPx should connect to the low-side (ground) of the sense resistor for the best common mode rejection.  
SNx should connect to the high-side (LS MOSFET source) of the sense resistor.  
(1)  
Figure 12 shows current amplifier simplified block diagram.  
S 4  
S 3  
S 2  
S 1  
400 k  
200 kꢀ  
100 kꢀ  
50 kꢀ  
DC_CAL(SPI)  
SN  
AVDD  
5 kꢀ  
œ
S 5  
100 ꢀ  
SO  
DC_CAL(SPI)  
5 kꢀ  
+
SP  
S 1  
S 2  
S 3  
S 4  
50 kꢀ  
100 kꢀ  
200 kꢀ  
400 kꢀ  
DC_CAL(SPI)  
VREF/k  
AVDD  
VREF  
œ
k = 2, 4, 8  
+
Figure 12. Current Shunt Amplifier Simplified Block Diagram  
Copyright © 2015–2019, Texas Instruments Incorporated  
25  
 
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
7.3.6 DVDD and AVDD: Internal Voltage Regulators  
The DRV8305-Q1 has two internal regulators, DVDD and AVDD, that power internal circuitry. These regulators  
cannot be used to drive external loads and may not be supplied externally.  
DVDD is the voltage regulator for the internal logic circuits and is maintained at a value of 3.3 V through the  
entire operating range of the device. DVDD is derived from the PVDD power supply. DVDD should be bypassed  
externally with a 1-µF capacitor to GND.  
AVDD is the voltage regulator that provides the voltage rail for the internal analog circuit blocks including the  
current sense amplifiers and is maintained at a value 5 V. AVDD is derived from the PVDD voltage power supply.  
AVDD should be bypassed externally with a 1-µF capacitor to GND.  
Because the allowed PVDD operating range of the device permits operation below the nominal value of AVDD,  
this regulator operates in two regimes: namely a linear regulating regime and a dropout region. In the dropout  
region, the AVDD will simply track the PVDD voltage minus a voltage drop.  
If the device is expected to operate within the dropout region, take care while selecting current sense amplifier  
components and settings to accommodate the reduced voltage rail.  
7.3.7 VREG: Voltage Regulator Output  
The DRV8305-Q1 integrates a 50-mA, LDO voltage regulator (VREG) that is dedicated for driving external loads  
such as an MCU directly. The VREG regulator also supplies the reference for the SDO output of the SPI bus and  
the voltage reference for the amplifier output bias. The three different DRV8305-Q1 device versions provide  
different configurations for the VREG output. For the DRV83053Q, the VREG output is regulated at 3.3 V. For  
the DRV83055Q, the VREG output is regulated at 5 V. For the DRV8305NQ and DRV8305NE, the VREG  
voltage regulator is disabled (VREG pin used for reference voltage) and the reference voltage for SDO and the  
amplifier output bias must be supplied from an external supply to the VREG pin.  
The DRV8305-Q1 VREG voltage regulator also features a PWRGD pin to protect against brownouts on  
externally driven devices. The PWRGD pin is often tied to the reset pin of a microcontroller to ensure that the  
microcontroller is always reset when the VREG output voltage is outside of its recommended operation area.  
When the voltage output of the VREG regulator drops or exceeds the set threshold (programmable).  
The PWRGD pin will go low for a period of 56 µs.  
After the 56-µs period has expired, the VREG voltage will be checked and PWRGD will be held low until the  
VREG voltage has recovered.  
The voltage regulator also has undervoltage protection implemented for both the input voltage (PVDD) and  
output voltage (VREG).  
7.3.8 Protection Features  
7.3.8.1 Fault and Warning Classification  
The DRV8305-Q1 integrates extensive error detection and monitoring features. These features allow the design  
of a robust system that can protect against a variety of system related failure modes. The DRV8305-Q1 classifies  
error events into two categories and takes different device actions dependent on the error classification.  
The first error class is a Warning. There are several types of conditions that are classified as warning only.  
Warning errors are report only and the DRV8305-Q1 will take no other action effecting the gate drivers or other  
blocks. When a warning condition occurs it will be reported in the corresponding SPI status register bit and on  
the nFAULT pin with a repeating 56-µs pulse low followed by a 56-µs pulse high. A warning error can be cleared  
by an SPI read to the corresponding status register bit. The same warning will not be reported through the  
nFAULT pin again unless that warning or condition passes and then reoccurs.  
A warning error is reported on the nFAULT pin with a repeating 56-µs pulse low followed by a 56-µs pulse  
high.  
The warning is reported on the nFAULT pin until a SPI read to the corresponding status register.  
The SPI read will clear the nFAULT report, but the SPI register will remain asserted until the condition has  
passed.  
The nFAULT pin will report a new warning if the condition clears and then occurs again.  
26  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
The second error class is a Fault. Fault errors will trigger a shutdown of the gate driver with its major blocks and  
are reported by holding nFAULT low with the corresponding status register asserted. Fault errors are latched  
until the appropriate recovery sequence is performed.  
A fault error is reported by holding the nFAULT pin low and asserting the FAULT bit in register 0x1.  
The error type will also be asserted in the SPI registers.  
A fault error is a latched fault and must be cleared with the appropriate recovery sequence.  
If a fault occurs during a warning error, the fault error will take precendence, latch nFAULT low and shutdown  
the gate driver.  
The output MOSFETs will be placed into their high impedance state in a fault error event.  
To recover from a fault type error, the condition must be removed and the CLR_FLTs bit asserted in register  
0x9, bit D1 or an EN_GATE reset pulse issued.  
The CLR_FLTS bit self clears to 0 after fault status reset and nFAULT pin is released.  
There are two exceptions to the fault and warning error classes. The first exception is the temperature flag  
warnings (TEMP_FLAGX). A Temperature Flag warning will not trigger any action on the nFAULT pin and the  
corresponding status bit will be updated in real time. See the overtemperature section for additional information.  
The second exception is the MCU Watchdog and VREG Undervoltage (VREG_UV) faults. These are reported on  
the PWRGD pin to protect the system from lock out and brownout conditions. See their corresponding sections  
for additional information.  
Note that nFAULT is an open-drain signal and must be pulled up through an external resistor.  
7.3.8.2 MOSFET Shoot-Through Protection (TDRIVE)  
DRV8305-Q1 integrates analog handshaking and digital dead time to prevent shoot-through in the external  
MOSFETs.  
An internal handshake through analog comparators is performed between each high-side and low-side  
MOSFET switching transaction (see Smart Gate Drive Architecture: TDRIVE). The handshake monitors the  
voltage between the gate and source of the external MOSFET to ensure the device has reached its cutoff  
threshold before enabling the opposite MOSFET.  
A minimum dead time (digital) of 40 ns is always inserted after each successful handshake. This digital dead  
time is programmable through the DEAD_TIME SPI setting in register 0x7, bits D6-D4 and is in addition to the  
time taken for the analog handshake.  
7.3.8.3 MOSFET Overcurrent Protection (VDS_OCP)  
To protect the system and external MOSFET from damage due to high current events, VDS overcurrent monitors  
are implemented in the DRV8305-Q1.  
The VDS sensing is implemented for both the high-side and low-side MOSFETs through the pins below:  
High-side MOSFET: VDS measured between VDRAIN and SHx pins.  
Low-side MOSFET: VDS measured between SHx and SLx pins.  
Based on the RDS(on) of the power MOSFETs and the maximum allowed IDS, a voltage threshold can be  
calculated, which when exceeded, triggers the VDS overcurrent protection feature. The voltage threshold level  
(VDS_LEVEL) is programmable through the SPI VDS_LEVEL setting in register 0xC, bits D7-D3 and may be  
changed during gate driver operation if needed.  
The VDS overcurrent monitors implement adjustable blanking and deglitch times to prevent false trips due to  
switching voltage transients. The VDS blanking time (tBLANK) is inserted digitally and programmable through the  
SPI TBLANK setting in register 0x7, bits D3-D2. The tBLANK time is inserted after each switch ON transistion  
(LOW to HIGH) of the output gate drivers is commanded. During the tBLANK time, the VDS comparators are not  
being monitored in order to prevent false trips when the MOSFET first turns ON. After the tBLANK time expires the  
overcurrent monitors will begin actively watching for an overcurrent event.  
The VDS deglitch time (tVDS) is inserted digitally and programmable through the SPI TVDS setting in register 0x7,  
bits D1-D0. The tVDS time is a delay inserted after the VDS sensing comparators have tripped to when the  
protection logic is informed that a VDS event has occurred. If the overcurrent event does not persist through tVDS  
delay then it will be ignored by the DRV8305-Q1.  
Note that the dead time and blanking time are overlapping timers as shown in Figure 13.  
Copyright © 2015–2019, Texas Instruments Incorporated  
27  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
INx_x  
Gx_x  
tDead  
tBLANK  
1
Input Signal  
tdeglitch  
2
3
Output Slew  
1
2
Expiration of Blanking  
3
Figure 13. VDS Deglitch and Blank Diagram  
The DRV8305-Q1 has three possible responses to a VDS overcurrent event. This response is set through the SPI  
VDS_MODE setting in register 0xC, bits D2-D0.  
VDS Latched Shutdown Mode:  
When a VDS overcurrent event occurs, the device will pull all gate drive outputs low in order to put all six  
external MOSFETs into high impedance mode. The fault will be reported on the nFAULT pin with the specific  
MOSFET in which the overcurrent event was detected in reported through the SPI status registers.  
VDS Report Only Mode:  
In this mode, the device will take no action related to the gate drivers. When the overcurrent event is detected  
the fault will be reported on the nFAULT pin with the specific MOSFET in which the overcurrent event was  
detected in reported through the SPI status registers. The gate drivers will continue to operate normally.  
VDS Disabled Mode:  
The device ignores all the VDS overcurrent event detections and does not report them.  
7.3.8.3.1 MOSFET dV/dt Turn On Protection (TDRIVE)  
The DRV8305-Q1 gate driver implements a strong pulldown scheme during turn on of the opposite MOSFET for  
preventing parasitic dV/dt turn on. Parasitic dV/dt turn on can occur when charge couples into the gate of the  
low-side MOSFET during a switching event. If the charge induces enough voltage to cross the threshold of the  
low-side MOSFET shoot-through can occur in the half-bridge. To prevent this the Smart Gate Drive Architecture:  
TDRIVE state machine turns on a strong pulldown during switching. After the switching event has completed, the  
gate driver switches back to a lower hold off pulldown to improve efficiency.  
7.3.8.3.2 MOSFET Gate Drive Protection (GDF)  
The DRV8305-Q1 uses a multilevel scheme to protect the external MOSFET from VGS voltages that could  
damage it. The first stage uses integrated VGS clamps that will turn on when the GHx voltage exceeds the SHx  
voltage by a value that could be damaging to the external MOSFETs.  
The second stage relies on the TDRIVE state machine to detect when abnormal conditions are present on the  
gate driver outputs. After the TDRIVE timer has expired the gate driver performs a check of the gate driver  
outputs against the commanded input. If the two do not match a gate drive fault (FETXX_VGS) is reported. This  
can be used to detected gate short to ground or gate short to supply event. The TDRIVE timer is adjustable for  
the high-side and low-side gate drive outputs through the TDRIVEN setting in register 0x5, bits D9-D8 and the  
TDRIVEP setting in register 0x6, bits D9-D8. The gate fault detection through TDRIVE can be disabled through  
the DIS_GDRV_FAULT setting in register 0x9, bit D8.  
The third stage uses undervoltage monitors for the low-side gate drive regulator (VCP_LSD_UVLO2) and high-  
side gate drive charge pump (VCPH_UVLO2) and an overvoltage monitor for high-side charge pump  
(VCPH_OVLO). These monitors are used to detect if any of the power supplies to the gate drivers have  
encountered an abnormal condition.  
7.3.8.4 Low-Side Source Monitors (SNS_OCP)  
In additional to the VDS monitors across each MOSFET, the DRV8305-Q1 directly monitors the voltage on the  
SLx pins with respect to ground. If high current events such phase shorts cause the SLx pin voltage to exceed 2  
V, the DRV8305-Q1 will shutdown the gate driver, put the external MOSFETs into a high impedance state, and  
report a SNS_OCP fault error on the nFAULT pin and corresponding SPI status bit in register 0x2, bits D2-D0.  
28  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
7.3.8.5 Fault and Warning Operating Modes  
Table 6. Fault and Warning Operating Modes(1)  
NAME  
CONDITION  
GATE DRIVE OUTPUTS  
GATE DRIVE SUPPLIES  
INTERNAL LOGIC  
DEVICE ACTION  
PVDD < VPVDD_UVLO1  
PVDD < VPVDD_UVLO2  
PL  
D
D
E
-
PVDD Undervoltage  
Fault (PVDD_UVLO)  
SPI  
PL  
E
D
E
E
E
D
D
D
D
D
E
E
D
E
E
E
E
D
nFAULT Latch  
PVDD Undervoltage  
Warning (PVDD_UVFL)  
SPI  
PVDD < VPVDD_UVFL  
PVDD > VPVDD_OVFL  
VCPH < VVCPH_UVFL  
VCPH < VVCPH_UVLO2  
VCP_LSD < VVCP_LSD_UVLO2  
VCPH > VVCPH_OVLO  
VCPH > VVCPH_OVLO_ABS  
AVDD < VAVDD_UVLO  
TJ > TTEMP_FLAGX  
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
nFAULT Toggle  
PVDD Overvoltage  
Warning (PVDD_OVFL)  
SPI  
E
nFAULT Toggle  
Charge Pump Undervoltage  
Warning (VCPH_UVFL)  
SPI  
E
nFAULT Toggle  
Charge Pump Undervoltage  
Fault (VCPH_UVLO2)  
SPI  
PL  
PL  
PL  
PL  
PL  
E
nFAULT Latch  
LS Gate Supply Undervoltage  
Fault (VCP_LSD_UVLO2)  
SPI  
nFAULT Latch  
SPI  
nFAULT Latch  
Charge Pump Overvoltage  
Fault (VCPH_OVLO)  
SPI  
nFAULT Latch  
AVDD Undervoltage  
Fault (AVDD_UVLO)  
SPI  
nFAULT Latch  
Temperature Flag  
Warning (TEMP_FLAGX)  
SPI  
Overtemperature Warning  
(OTW)  
SPI  
TJ > TOTW  
E
nFAULT Toggle  
Overtemperature Shutdown  
Fault (OTSD)  
SPI  
TJ > TOTSD  
PL  
PL  
E
nFAULT Latch  
Latched Shutdown  
VDS > VVDS_LEVEL  
SPI  
nFAULT Latch  
MOSFET Overcurrent  
Fault (VDS_OCP)  
Report Only  
VDS > VVDS_LEVEL  
SPI  
nFAULT Toggle  
Disabled  
VDS > VVDS_LEVEL  
E
-
LS Overcurrent  
Fault (SNS_OCP)  
SPI  
SLx > VSNS_OCP  
See TDRIVE  
PL  
PL  
nFAULT Latch  
Gate Drive Fault  
(GDF)  
SPI  
nFAULT Latch  
SPI  
PWRGD  
nFAULT Latch  
MCU Watchdog  
Fault (WD_FAULT)  
tINTERVAL > tWD_DLY  
PL  
PL  
E
E
E
E
SPI  
PWRGD  
nFAULT Latch  
VREG Undervoltage  
Fault (VREG_UV)  
VREG < VVREG_UV  
(1) E - Enabled, PL = Pulled Low, D = Disabled  
Copyright © 2015–2019, Texas Instruments Incorporated  
29  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
7.3.9 Undervoltage Warning (UVFL), Undervoltage Lockout (UVLO), and Overvoltage (OV) Protection  
The DRV8305-Q1 implements undervoltage and overvoltage monitors on its system supplies to protect the  
system, prevent brownout conditions, and prevent unexpected device behavior. Undervoltage is monitored for on  
the PVDD, AVDD, VREF, VCPH, and VCP_LSD power supplies. Overvoltage is monitored for on the PVDD and  
VCPH power supplies. The values for the various undervoltage and overvoltage levels are provided in the  
Electrical Characteristics table under the voltage protection section.  
The monitors for the main power supply, PVDD, incorporates several additional features:  
Undervoltage warning (PVDD_UVFL) level. Device operation is not impacted, report only indication.  
PVDD_UVFL is warning type error indicated on the nFAULT pin and the PVDD_UVFL status bit in register  
0x1, bit D7.  
Independent UVLO levels for the gate driver (PVDD_UVLO2) and VREG LDO regulator (PVDD_UVLO1).  
PVDD_UVLO2 will trigger a shutdown of the gate driver.  
PVDD_UVLO2 is a fault type error indicated on the nFAULT pin and corresponding status bit in register 0x3,  
bit D10.  
PVDD_UVLO2 may be disabled through the DIS_VPVDD_UVLO setting in register 0x9, bit D9. The fault will  
still be reported in the status bit in register 0x3, bit D10.  
Overvoltage detection to monitor for load dump or supply pumping conditions. Device operation is not  
impacted, report only indication.  
PVDD_OV is a warning type error indicated on the nFAULT pin and the PVDD_OV bit in register 0x1, bit D6.  
The monitors for the high-side charge pump supply, VCPH, and low-side supply (VCP_LSD) incorporate several  
additional features:  
VCPH relative (VCPH_OVLO) and absolute overvoltage (VCPH_OVLO_ABS) detection. The DRV8305-Q1  
monitors VCPH for overvoltage conditions with respect to PVDD and GND.  
VCPH_OVLO and VCPH_OVLO_ABS are fault type errors reported on nFAULT and the corresponding status  
bit in register 0x3, bits D1-D0.  
VCPH undervoltage (VCPH_UVLO2) is monitored to prevent underdriven MOSFET conditions.  
VCPH_UVLO2 will trigger a shutdown of the gate driver.  
VCPH_UVLO2 is a fault type error indicated on the nFAULT pin and corresponding status bit in register 0x3,  
bit D2.  
VCP_LSD undervoltage (VCP_LSD_UVLO2) is monitored to prevent underdriven MOSFET conditions.  
VCP_LSD_UVLO2 will trigger a shutdown of the gate driver.  
VCP_LSD_UVLO2 is a fault type error indicated on the nFAULT pin and corresponding status bit in register  
0x3, bit D4.  
Undervoltage protection for VCPH and VCP_LSD may not be disabled in the operating state.  
7.3.9.1 Overtemperature Warning (OTW) and Shutdown (OTSD) Protection  
A multi-level temperature detection circuit is implemented in the DRV8305-Q1.  
Flag Level 1 (TEMP_FLAG1): Level 1 overtemperature flag. No warning reported on nFAULT. Real-time flag  
indicated in SPI register 0x1, bit D3.  
Flag Level 2 (TEMP_FLAG2): Level 2 overtemperature flag. No warning reported on nFAULT. Real-time flag  
indicated in SPI register 0x1, bit D2.  
Flag Level 3 (TEMP_FLAG3): Level 3 overtemperature flag. No warning reported on nFAULT. Real-time flag  
indicated in SPI register 0x1, bit D1.  
Flag Level 4 (TEMP_FLAG4): Level 4 overtemperature flag. No warning reported on nFAULT. Real-time flag  
indicated in SPI register 0x1, bit D8.  
Warning Level (OTW): Overtemperature warning only. Warning reported on nFAULT. Real-time flag indicated  
in SPI register 0x1, bit D0.  
Fault Level (OTSD): Overtemperature fault and latched shut down of the device. Fault reported on nFAULT  
and in SPI register 0x3, bit D8.  
SPI operation is still available and register settings will be retained in the device during OTSD operation as long  
as PVDD is within operation range. An OTSD fault can be cleared when the device temperature has dropped  
below the fault level and a CLR_FLTS is issued.  
30  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
7.3.9.2 Reverse Supply Protection  
The DRV8305-Q1 is designed to support an external reverse supply protection scheme. The VCPH high-side  
charge pump is able to supply an external load up to 10 mA. This feature allows implementation of an external  
reverse battery protection scheme using a MOSFET and a BJT. The MOSFET gate and BJT can be driven  
through VCPH with a current limiting resistor. The current limiting resistor must be sized not to exceed the  
maximum external load on VCPH.  
The VDRAIN sense pin may also be protected against reverse supply conditions by use of a current limiting  
resistor. The current limit resistor must be sized not to exceed the maximum current load on the VDRAIN pin.  
100 is recommended between VDRAIN and the drain of the external high-side MOSFET.  
Supply  
Reverse Polarity  
MOSFET  
VCPH  
Optional  
Filtering or  
Switch  
PVDD  
VDRAIN  
Motor  
Power Stage  
Figure 14. Typical Scheme for Reverse Battery Protection Using VCPH  
7.3.9.3 MCU Watchdog  
The DRV8305-Q1 incorporates an MCU watchdog function to ensure that the external controller that is  
instructing the device is active and not in an unknown state. The MCU watchdog function may be enabled by  
writing a 1 to the WD_EN setting in the SPI register 0x9, bit D3. The default setting for the device is with the  
watchdog disabled. When the watchdog is enabled, an internal timer starts to countdown to the interval set by  
the WD_DLY setting in the SPI register 0x9, bits D6-D5. To restart the watchdog timer, the address 0x1 (status  
register) must be read by the controller within the interval set by the WD_DLY setting. If the watchdog timer is  
allowed to expire without the address 0x1 being read, a watchdog fault will be enabled.  
Response to a watchdog fault is as follows:  
A latched fault occurs on the DRV8305-Q1 and the gate drivers are put into a safe state. An appropriate  
recovery sequence must then be performed.  
Copyright © 2015–2019, Texas Instruments Incorporated  
31  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
The PWRGD pin is taken low for 56 µs and then back high in order to reset the controller or indicate the  
watchdog fault.  
The nFAULT pin is asserted low, the WD_EN bit is cleared, and the WD_FAULT set high in register 0x3, bit  
D9.  
It is recommended to read the status registers as part of the recovery or power-up routine in order to  
determine whether a WD_FAULT had previously occurred.  
Note that the watchdog fault results in a clearing of the WD_EN setting and it will have to be set again to resume  
watchdog functionality.  
7.3.9.4 VREG Undervoltage (VREG_UV)  
The DRV8305-Q1 has an undervoltage monitor on the VREG output regulator to ensure the external controller  
does not experience a brownout condition. The undervoltage monitor will signal a fault if the VREG output drops  
below a set threshold from its set point. The VREG output set point is configured for two different levels, 3.3 V or  
5 V, depending on the DRV8305-Q1 device options (DRV83053Q and DRV83055Q). The VREG undervoltage  
level can be set through the SPI setting VREG_UV_LEVEL in register 0xB, bits D1-D0. The VREG undervoltage  
monitor can be disabled through the SPI setting DIS_VREG_PWRGD in register 0xB, bit D2.  
Response to a VREG undervoltage fault is as follows:  
A latched fault occurs on the DRV8305-Q1 and the gate drivers are put into a safe state. An appropriate  
recovery sequence must then be performed.  
The PWRGD is taken low until the undervoltage condition is removed and for at least a minimum of 56 µs.  
The nFAULT pin is asserted low and the VREG_UV bit set high in register 0x3, bit D6.  
The fault can be cleared after the VREG undervoltage condition is removed with CLR_FLTS or an EN_GATE  
reset pulse.  
Note that the VREG undervoltage monitor is disabled on the no regulator (VREF) device option (DRV8305NQ  
and DRV8305NE).  
7.3.9.5 Latched Fault Reset Methods  
A latched fault can be cleared after the fault condition is removed by either setting the CLR_FLTS register bit in  
register 0x09 to 1 or by issuing an EN_GATE reset pulse to the DRV8305-Q1. The CLR_FLTS register bit will  
automatically reset back to 0 have the fault has been cleared.  
The secondary method through the EN_GATE pin requires a high-low-high pulse on the pin to clear the latched  
fault. The low duration of the pulse should be greater than or equal to 1µs.  
32  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
7.4 Device Functional Modes  
7.4.1 Power Up Sequence  
The DRV8305-Q1 has an internal state machine to ensure proper power up and power down sequencing of the  
device. When PVDD power is applied the device will remain inactive until PVDD cross the digital logic threshold.  
At this point, the digital logic will become active, VREG will enable (if 3.3-V or 5-V device option is used), the  
passive gate pulldowns will enable, and nFAULT will be driven low to indicate that the device has not reached  
the VPVDD_UVLO2 threshold. nFAULT will remain driven low until PVDD crosses the PVDD_UVLO threshold. At this  
point the device will enter its standby state.  
PVDD_UVLO2  
PVDD  
Logic  
Threshold  
Power Up  
Complete  
nFAULT  
(Active Low)  
X
Logic Reset  
Figure 15. Power-Up Sequence  
7.4.2 Standby State  
After the power up sequence is completed and the PVDD voltage is above VPVDD_UVLO2 threshold, the DRV8305-  
Q1 will indicate successful and fault free power up of all circuits by releasing the nFAULT pin. At this point the  
DRV8305-Q1 will enter its standby state and be ready to accept inputs from the external controller. The  
DRV8305-Q1 will remain in or re-enter its standby state anytime EN_GATE = LOW or a fault type error has  
occured. In this state the major gate driver blocks are disabled, but the passive gate pulldowns are still active to  
maintain the external MOSFETs in their high-impedence state. It is recommended, but not required to perform all  
device configurations through SPI in the standby state.  
7.4.3 Operating State  
After reaching the standby state and then taking EN_GATE from LOW to HIGH, the DRV8305-Q1 will enter its  
operating state. The operating state enables the major gate driver and current shunt amplifier blocks for normal  
operation. 1 ms should be allowed after EN_GATE is taken HIGH to allow the charge pump supply for the high-  
side gate drivers to reach its steady state operating point. If at any point in its operating state a fault type error  
occurs, the DRV8305-Q1 will immediately re-enter the standby state.  
7.4.4 Sleep State  
The sleep state can be entered by issuing a sleep command through the SLEEP bit in SPI register 0x9, bit D2  
with the device in its standby state (EN_GATE = LOW). The device will not respond to a sleep command in its  
operating state. After the sleep command is received, the gate drivers and output regulator (VREG) will safely  
power down after a programmable delay set in the SPI register 0xB, bits D4-D3. The device can then only be  
enabled through the WAKE pin which is a high-voltage tolerant input pin. For the DRV8305-Q1 to be brought out  
of sleep, the WAKE pin must be at a voltage greater than 3 V. This allows the wake pin to be driven, for  
example, directly by the battery through a switch, through the inhibit pin (INH) on a standard LIN interface, or  
through standard digital logic. The WAKE pin will only react to a wake up command if PVDD > VPVDD_UVLO2. After  
the DRV8305-Q1 is out of SLEEP mode, all activity on the WAKE pin is ignored. The sleep state erases all  
values in the SPI control registers and it is not recommended to write through SPI in the sleep state.  
Copyright © 2015–2019, Texas Instruments Incorporated  
33  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.5 Limp Home or Fail Code Operation  
The DRV8305-Q1 enables the adoption of secondary limp-home or fail code software through configurable fault  
mode handling. The following device features may be configured during the operating state without stopping the  
motor.  
IDRIVE Gate Current Output (IDRIVEN_HS, IDRIVEP_HS, IDRIVEN_LS, IDRIVEP_LS): All four IDRIVEX  
settings may be adjusted during normal operation without issue. This features allows the software to change  
the slew rate, switching characteristics of the external MOSFETs on the fly if required without having to stop  
the motor rotation. The IDRIVEX settings are located in the SPI registers 0x5 (high-side) and 0x6 (low-side).  
VDS Fault Mode (VDS_MODE): The VDS overcurrent monitors may be changed from latched shutdown  
(VDS_MODE = b'000) or report only (VDS_MODE = b'001) modes to disabled (VDS_MODE = b'010) mode to  
allow operation of the external MOSFETs past normal operating conditions. This is the only VDS_MODE  
change allowed in the operating state. The VDS_MODE setting is located in the SPI register 0xC, bits D2-D0.  
VDS Comparator Thresholds (VDS_LEVEL): The VDS overcurrent monitor threshold (VDS_LEVEL) may be  
changed at any time during operation to allow for higher than standard operating currents. The VDS_LEVEL  
setting is located in the SPI register 0xC.  
VGS Fault Mode (DIS_GDRV_FAULT): The VGS fault detection monitors can be disabled through the SPI  
register 0x9, bit D8. Reporting in SPI will also be disabled as a result.  
SNS_OCP Fault Mode (DIS_SNS_OCP): The sense amplifier overcurrent monitors can be disabled through  
the SPI register 0x9, bit D4. Reporting in SPI will also be disabled as a result.  
PVDD Undervoltage Lockout (DIS_VPVDD_UVLO2): The main power supply undervoltage lockout can be  
disabled through the SPI register 0x9, but D9. Reporting in SPI will also be disabled as a result.  
OTSD Overtemperature Shutdown (FLIP_OTS): The overtemperature shutdown can be disabled through the  
SPI register 0x9, bit D10. Reporting in SPI will also be disabled as a result. The OTS overtemperature  
shutdown is disabled by default on the Grade 0, DRV8305xE device.  
Unpowered System  
PVDD < VPVDD_UVLO1  
Sleep  
PVDD > VPVDD_UVLO2  
PVDD < VPVDD_UVLO1  
NO  
WAKE > WAKE_VIH  
WAKE >  
WAKE_VIH  
YES  
Sleep = 1 through SPI  
Operating  
Standby  
EN_GATE = High  
EN_GATE = Low  
Figure 16. Operating States  
34  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
7.5 Programming  
7.5.1 SPI Communication  
7.5.1.1 SPI  
The DRV8305-Q1 uses a SPI to set device configurations, operating parameters, and read out diagnostic  
information. The DRV8305-Q1 SPI operates in slave mode. The SPI input data (SDI) word consists of a 16-bit  
word with a 5-bit command and 11 bits of data. The SPI output data (SDO) word consists of 11 bits of register  
data with the first 5 bits (MSB) as don't cares.  
A valid frame must meet following conditions:  
CPOL (clock polarity) = 0 and CPHA (clock phase) = 1.  
SCLK must be low when nSCS transitions.  
Full 16 SCLK cycles.  
Data is always propagated on the rising edge of SCLK.  
Data is always captured on the falling edge of SCLK.  
MSB is shifted in and out first.  
When nSCS is high, SCLK and SDI are ignored and SDO is high impedance.  
nSCS should be taken high for at least 500 ns between frames.  
If the data sent to SDI is less than or greater than 16 bits it is considered a frame error and the data will be  
ignored.  
7.5.1.2 SPI Format  
1
2
3
4
X
15  
16  
SCS  
SCLK  
SDI  
MSB  
MSB  
LSB  
LSB  
SDO  
Receive  
Latch Points  
Figure 17. SPI Slave Mode Timing Diagram  
Copyright © 2015–2019, Texas Instruments Incorporated  
35  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
Programming (continued)  
The SPI input data (SDI) control word is 16 bits long and consists of the following format:  
1 read or write bit W [15]  
4 address bits A [14:11]  
11 data bits D [10:0]  
The SPI output data (SDO) word response word is 11 bits long (first 5 bits are don't cares). It contains the  
content of the register being accessed.  
The MSB of the SDI word (W0) is the read/write bit. When W0 = 0, the input data is a write command. When W0  
= 1, the input data is a read command.  
For a write command: The response word is the data currently in the register being written.  
For a read command: The response word is the data currently in the register being read.  
Table 7. SPI Input Data Control Word Format  
R/W  
B15  
W0  
ADDRESS  
DATA  
B5  
Word Bit  
B14  
A3  
B13  
A2  
B12  
A1  
B11  
A0  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
Command  
D5  
Table 8. SPI Output Data Response Word Format  
DATA  
Word Bit  
B15  
X
B14  
X
B13  
X
B12  
X
B11  
X
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
Command  
36  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
7.6 Register Maps  
Table 9. Register Map  
ADDRESS  
NAME  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Warnings &  
Watchdog Reset  
0x1  
FAULT  
RSVD  
TEMP_FLAG4  
PVDD_UVFL  
PVDD_OVFL  
VDS_STATUS  
VCPH_UVFL  
TEMP_FLAG1  
TEMP_FLAG2  
TEMP_FLAG3  
OTW  
OV/VDS  
Faults  
0x2  
0x3  
VDS_HA  
VDS_LA  
WD_FAULT  
VGS_LA  
VDS_HB  
OTSD  
VDS_LB  
RSVD  
VDS_HC  
VREG_UV  
VGS_HC  
VDS_LC  
AVDD_UVLO  
VGS_LC  
RSVD  
SNS_C_OCP  
VCPH_UVLO2  
RSVD  
SNS_B_OCP  
VCPH_OVLO  
SNS_A_OCP  
IC  
Faults  
VCP_LSD  
_UVLO2  
VCPH_OVLO  
_ABS  
PVDD_UVLO2  
RSVD  
VGS  
Faults  
0x4  
0x5  
0x6  
VGS_HA  
RSVD  
VGS_HB  
VGS_LB  
HS Gate Drive  
Control  
TDRIVEN  
TDRIVEP  
COMM_OPTION  
IDRIVEN_HS  
IDRIVEN_LS  
DEAD_TIME  
RSVD  
IDRIVEP_HS  
IDRIVEP_LS  
LS Gate Drive  
Control  
RSVD  
Gate Drive  
Control  
0x7  
0x8  
0x9  
RSVD  
PWM_MODE  
TBLANK  
TVDS  
Reserved  
DIS_PVDD  
_UVLO2  
DIS_GDRV  
_FAULT  
EN_SNS  
_CLAMP  
IC Operation  
FLIP_OTSD  
DC_CAL_CH3  
RSVD  
WD_DLY  
DIS_SNS_OCP  
WD_EN  
SLEEP  
CLR_FLTS  
SET_VCPH_UV  
Shunt Amplifier  
Control  
0xA  
0xB  
0xC  
DC_CAL_CH2  
DC_CAL_CH1  
CS_BLANK  
GAIN_CS3  
GAIN_CS2  
GAIN_CS1  
VREG_UV_LEVEL  
DIS_VREG  
_PWRGD  
Voltage  
Regulator Control  
VREF_SCALE  
RSVD  
SLEEP_DLY  
VDS Sense  
Control  
RSVD  
VDS_LEVEL  
VDS_MODE  
Copyright © 2015–2019, Texas Instruments Incorporated  
37  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
7.6.1 Status Registers  
The status registers are used to report device warnings, fault conditions, and provide a means to prevent timing  
out of the watchdog timer. Status registers are read only registers.  
7.6.1.1 Warning and Watchdog Reset (Address = 0x1)  
Table 10. Warning and Watchdog Reset Register Description  
BIT  
10  
9
R/W  
R
NAME  
DEFAULT  
0x0  
DESCRIPTION  
FAULT  
Fault indication  
R
RSVD  
0x0  
-
8
R
TEMP_FLAG4  
PVDD_UVFL  
PVDD_OVFL  
VDS_STATUS  
VCHP_UVFL  
TEMP_FLAG1  
TEMP_FLAG2  
TEMP_FLAG3  
OTW  
0x0  
Temperature flag setting for approximately 175°C  
PVDD undervoltage flag warning  
PVDD overvoltage flag warning  
Real time OR of all VDS overcurrent monitors  
Charge pump undervoltage flag warning  
Temperature flag setting for approximately 105°C  
Temperature flag setting for approximately 125°C  
Temperature flag setting for approximately 135°C  
Overtemperature warning  
7
R
0x0  
6
R
0x0  
5
R
0x0  
4
R
0x0  
3
R
0x0  
2
R
0x0  
1
R
0x0  
0
R
0x0  
7.6.1.2 OV/VDS Faults (Address = 0x2)  
Table 11. OV/VDS Faults Register Description  
BIT  
10  
9
R/W  
R
NAME  
DEFAULT  
0x0  
DESCRIPTION  
VDS_HA  
VDS_LA  
VDS overcurrent fault for high-side MOSFET A  
VDS overcurrent fault for low-side MOSFET A  
VDS overcurrent fault for high-side MOSFET B  
VDS overcurrent fault for low-side MOSFET B  
VDS overcurrent fault for high-side MOSFET C  
VDS overcurrent fault for low-side MOSFET C  
-
R
0x0  
8
R
VDS_HB  
VDS_LB  
0x0  
7
R
0x0  
6
R
VDS_HC  
VDS_LC  
0x0  
5
R
0x0  
4:3  
2
R
RSVD  
0x0  
R
SNS_C_OCP  
SNS_B_OCP  
SNS_A_OCP  
0x0  
Sense C overcurrent fault  
1
R
0x0  
Sense B overcurrent fault  
0
R
0x0  
Sense A overcurrent fault  
38  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
7.6.1.3 IC Faults (Address = 0x3)  
Table 12. IC Faults Register Description  
BIT  
10  
9
R/W  
R
NAME  
DEFAULT  
0x0  
DESCRIPTION  
PVDD_UVLO2  
WD_FAULT  
OTSD  
PVDD undervoltage 2 fault  
Watchdog fault  
R
0x0  
8
R
0x0  
Overtemperature fault  
7
R
RSVD  
0x0  
-
6
R
VREG_UV  
0x0  
VREG undervoltage fault  
AVDD undervoltage fault  
Low-side gate supply fault  
-
5
R
AVDD_UVLO  
VCP_LSD_UVLO2  
RSVD  
0x0  
4
R
0x0  
3
R
0x0  
2
R
VCPH_UVLO2  
VCPH_OVLO  
VCPH_OVLO_ABS  
0x0  
High-side charge pump undervoltage 2 fault  
High-side charge pump overvoltage fault  
High-side charge pump overvoltage ABS fault  
1
R
0x0  
0
R
0x0  
7.6.1.4 VGS Faults (Address = 0x4)  
Table 13. Gate Driver VGS Faults Register Description  
BIT  
10  
9
R/W  
R
NAME  
DEFAULT  
0x0  
DESCRIPTION  
VGS_HA  
VGS_LA  
VGS_HB  
VGS_LB  
VGS_HC  
VGS_LC  
RSVD  
VGS gate drive fault for high-side MOSFET A  
VGS gate drive fault for low-side MOSFET A  
VGS gate drive fault for high-side MOSFET B  
VGS gate drive fault for low-side MOSFET B  
VGS gate drive fault for high-side MOSFET C  
VGS gate drive fault for low-side MOSFET C  
-
R
0x0  
8
R
0x0  
7
R
0x0  
6
R
0x0  
5
R
0x0  
4:0  
R
0x0  
Copyright © 2015–2019, Texas Instruments Incorporated  
39  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
7.6.2 Control Registers  
Control registers are used to set the device parameters for DRV8305-Q1. The default values are shown in bold.  
Control registers are read/write registers  
Do not clear on register read, CLR_FLTs, or EN_GATE resets  
Cleared to default values on power up  
Cleared to default values when the device enters SLEEP mode  
7.6.2.1 HS Gate Drive Control (Address = 0x5)  
Table 14. HS Gate Driver Control Register Description  
BIT  
10  
R/W  
R/W  
R/W  
NAME  
DEFAULT  
0x0  
DESCRIPTION  
RSVD  
-
9:8  
TDRIVEN  
0x3  
High-side gate driver peak source time  
b'00 - 220 ns  
b'01 - 440 ns  
b'10 - 880 ns  
b'11 - 1780 ns  
7:4  
3:0  
R/W  
R/W  
IDRIVEN_HS  
IDRIVEP_HS  
0x4  
0x4  
High-side gate driver peak sink current  
b'0000 - 20 mA b'0001 - 30 mA b'0010 - 40 mA b'0011 - 50 mA  
b'0100 - 60 mA b'0101 - 70 mA b'0110 - 80 mA b'0111 - 0.25 A  
b'1000 - 0.50 A b'1001 - 0.75 A b'1010 - 1.00 A b'1011 - 1.25 A  
b'1100 - 60 mA b'1101 - 60 mA b'1110 - 60 mA b'1111 - 60 mA  
High-side gate driver peak source current  
b'0000 - 10 mA b'0001 - 20 mA b'0010 - 30 mA b'0011 - 40 mA  
b'0100 - 50 mA b'0101 - 60 mA b'0110 - 70 mA b'0111 - 0.125 A  
b'1000 - 0.25 A b'1001 - 0.50 A b'1010 - 0.75 A b'1011 - 1.00 A  
b'1100 - 50 mA b'1101 - 50 mA b'1110 - 50 mA b'1111 - 50 mA  
7.6.2.2 LS Gate Drive Control (Address = 0x6)  
Table 15. LS Gate Driver Control Register Description  
BIT  
10  
R/W  
R/W  
R/W  
NAME  
DEFAULT  
0x0  
DESCRIPTION  
RSVD  
-
9:8  
TDRIVEP  
0x3  
Low-side gate driver peak source time  
b'00 - 220 ns  
b'01 - 440 ns  
b'10 - 880 ns  
b'11 - 1780 ns  
7:4  
3:0  
R/W  
R/W  
IDRIVEN_LS  
IDRIVEP_LS  
0x4  
0x4  
Low-side gate driver peak sink current  
b'0000 - 20 mA b'0001 - 30 mA b'0010 - 40 mA b'0011 - 50 mA  
b'0100 - 60 mA b'0101 - 70 mA b'0110 - 80 mA b'0111 - 0.25 A  
b'1000 - 0.50 A b'1001 - 0.75 A b'1010 - 1.00 A b'1011 - 1.25 A  
b'1100 - 60 mA b'1101 - 60 mA b'1110 - 60 mA b'1111 - 60 mA  
Low-side gate driver peak source current  
b'0000 - 10 mA b'0001 - 20 mA b'0010 - 30 mA b'0011 - 40 mA  
b'0100 - 50 mA b'0101 - 60 mA b'0110 - 70 mA b'0111 - 0.125 A  
b'1000 - 0.25 A b'1001 - 0.50 A b'1010 - 0.75 A b'1011 - 1.00 A  
b'1100 - 50 mA b'1101 - 50 mA b'1110 - 50 mA b'1111 - 50 mA  
40  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
7.6.2.3 Gate Drive Control (Address = 0x7)  
Table 16. Gate Drive Control Register Description  
BIT  
R/W  
NAME  
DEFAULT  
DESCRIPTION  
10  
R/W  
VCPH_FREQ  
0x0  
Reduce charge pump frequency center and spread  
b'0 - Center = 518 kHz, Spread = 438 kHz - 633 kHz  
b'1 - Center = 452 kHz, Spread = 419 kHz - 491 kHz  
9
R/W  
R/W  
COMM_OPTION  
PWM_MODE  
0x1  
0x0  
Rectification control (PWM_MODE = b'10 only)  
b'0 - diode freewheeling  
b'1 - active freewheeling  
8:7  
PWM Mode  
b'00 - PWM with 6 independent inputs  
b'01 - PWM with 3 independent inputs  
b'10 - PWM with one input  
b'11 - PWM with 6 independent inputs  
6:4  
3:2  
R/W  
R/W  
DEAD_TIME  
TBLANK  
0x1  
0x1  
Dead time  
b'000 - 35 ns  
b'011 - 440 ns  
b'110 - 3520 ns  
b'001 - 52 ns  
b'100 - 880 ns  
b'111 - 5280 ns  
b'010 - 88 ns  
b'101 - 1760 ns  
VDS sense blanking  
b'00 - 0 µs  
b'01 - 1.75 µs  
b'10 - 3.5 µs  
b'11 - 7 µs  
1:0  
R/W  
TVDS  
0x2  
VDS sense deglitch  
b'00 - 0 µs  
b'01 - 1.75 µs  
b'10 - 3.5 µs  
b'11 - 7 µs  
Copyright © 2015–2019, Texas Instruments Incorporated  
41  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
7.6.2.4 IC Operation (Address = 0x9)  
Table 17. IC Operation Register Description  
BIT  
R/W  
NAME  
DEFAULT  
DESCRIPTION  
10  
R/W  
FLIP_OTSD  
0x0  
OTSD control setting  
DRV8305xQ  
b'0 - Enable OTSD  
b'1 - Disable OTSD  
DRV8305xE  
b'0 - Disable OTSD(1)  
b'1 - Enable OTSD  
9
R/W  
R/W  
R/W  
R/W  
DIS_PVDD_UVLO2  
DIS_GDRV_FAULT  
EN_SNS_CLAMP  
WD_DLY  
0x0  
0x0  
0x0  
0x1  
Disable PVDD_UVLO2 fault and reporting  
b'0 - PVDD_UVLO2 enabled  
b'1 - PVDD_UVLO2 disabled  
8
Disable gate drive fault and reporting  
b'0 - Gate driver fault enabled  
b'1 - Gate driver fault disabled  
7
Enable sense amplifier clamp  
b'0 - Sense amplifier clamp is not enabled  
b'1 - Sense amplifier clamp is enabled, limiting output to ~3.3 V  
6:5  
Watchdog delay  
b'00 - 10 ms  
b'01 - 20 ms  
b'10 - 50 ms  
b'11 - 100 ms  
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
DIS_SNS_OCP  
WD_EN  
0x0  
0x0  
0x0  
0x0  
0x0  
Disable SNS overcurrent protection fault and reporting  
b'0 - SNS OCP enabled  
b'1 - SNS OCP disabled  
Watchdog enable  
b'0 - Watch dog disabled  
b'1 - Watch dog enabled  
SLEEP  
Put device into sleep mode  
b'0 - Device awake  
b'1 - Device asleep  
CLR_FLTS  
SET_VCPH_UV  
Clear faults  
b'0 - Normal operation  
b'1 - Clear faults  
Set charge pump undervoltage threshold level  
b'0 - 4.9 V  
b'1 - 4.6 V  
(1) Overtemperature shutdown (OTSD) is disabled by default for DRV8305xEPHPQ1 and may only be re-enabled through this control bit.  
42  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
7.6.2.5 Shunt Amplifier Control (Address = 0xA)  
Table 18. Shunt Amplifier Control Register Description  
BIT  
R/W  
NAME  
DEFAULT  
DESCRIPTION  
10  
R/W  
DC_CAL_CH3  
0x0  
DC calibration of CS amplifier 3  
b'0 - Normal operation  
b'1 - DC calibration mode  
9
R/W  
R/W  
R/W  
DC_CAL_CH2  
DC_CAL_CH1  
CS_BLANK  
0x0  
0x0  
0x0  
DC calibration of CS amplifier 2  
b'0 - Normal operation  
b'1 - DC calibration mode  
8
DC calibration of CS amplifier 1  
b'0 - Normal operation  
b'1 - DC calibration mode  
7:6  
Current shunt amplifier blanking time  
b'00 - 0 ns  
b'01 - 500 ns  
b'10 - 2.5 µs  
b'11 - 10 µs  
5:4  
3:2  
1:0  
R/W  
R/W  
R/W  
GAIN_CS3  
GAIN_CS2  
GAIN_CS1  
0x0  
0x0  
0x0  
Gain of CS amplifier 3  
b'00 - 10 V/V  
b'01 - 20 V/V  
b'10 - 40 V/V  
b'11 - 80 V/V  
Gain of CS amplifier 2  
b'00 - 10 V/V  
b'01 - 20 V/V  
b'10 - 40 V/V  
b'11 - 80 V/V  
Gain of CS amplifier 1  
b'00 - 10 V/V  
b'01 - 20 V/V  
b'10 - 40 V/V  
b'11 - 80 V/V  
7.6.2.6 Voltage Regulator Control (Address = 0xB)  
Table 19. Voltage Regulator Control Register Description  
BIT  
10  
R/W  
R/W  
R/W  
NAME  
DEFAULT  
0x0  
DESCRIPTION  
RSVD  
-
9:8  
VREF_SCALE  
0x1  
VREF Scaling  
b'00 - RSVD  
b'01 - k = 2  
b'10 - k = 4  
b'11 - k = 8  
7:5  
4:3  
R/W  
R/W  
RSVD  
0x0  
0x1  
-
SLEEP_DLY  
Delay to power down VREG after SLEEP  
b'00 - 0 µs  
b'01 - 10 µs  
b'10 - 50 µs  
b'11 - 1 ms  
2
R/W  
R/W  
DIS_VREG_PWRGD  
VREG_UV_LEVEL  
0x0  
0x2  
Disable VREG undervoltage fault and reporting  
b'0 - VREG_UV enabled  
b'1 - VREG_UV disabled  
0:1  
VREG undervoltage set point  
b'00 - VREG x 0.9  
b'01 - VREG x 0.8  
b'10 - VREG x 0.7  
b'11 - VREG x 0.7  
Copyright © 2015–2019, Texas Instruments Incorporated  
43  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
7.6.2.7 VDS Sense Control (Address = 0xC)  
Table 20. VDS Sense Control Register Description  
BIT  
10:8  
7:3  
R/W  
R
NAME  
DEFAULT  
0x0  
DESCRIPTION  
RSVD  
These bits are reserved for internal use for revision ID.  
VDS comparator threshold  
R/W  
VDS_LEVEL  
0x19  
b'00000 - 0.060 V  
b'00100 - 0.097 V  
b'01000 - 0.155 V  
b'01100 - 0.250 V  
b'10000 - 0.403 V  
b'10100 - 0.648 V  
b'11000 - 1.043 V  
b'11100 - 1.679 V  
b'00001 - 0.068 V  
b'00101 - 0.109 V  
b'01001 - 0.175 V  
b'01101 - 0.282 V  
b'10001 - 0.454 V  
b'10101 - 0.730 V  
b'00010 - 0.076 V  
b'00110 - 0.123 V  
b'01010 - 0.197V  
b'01110 - 0.317 V  
b'10010 - 0.511 V  
b'10110 - 0.822 V  
b'00011 - 0.086 V  
b'00111 - 0.138 V  
b'01011 - 0.222 V  
b'01111 - 0.358 V  
b'10011 - 0.576 V  
b'10111 - 0.926 V  
b'11011 - 1.491 V  
b'11111 - 2.131 V  
b'11001 - 1.175 V b'11010 - 1.324 V  
b'11101 - 1.892 V b'11110 - 2.131 V  
2:0  
R/W  
VDS_MODE  
0x0  
VDS mode  
b'000 - Latched shut down when overcurrent detected  
b'001 - Report only when overcurrent detected  
b'010 - VDS protection disabled (no overcurrent sensing or reporting)  
44  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8305-Q1 is a gate driver IC designed to drive a 3-phase BLDC motor in combination with external  
power MOSFETs. The device provides a high level of integration with three half-bridge gate drivers, three current  
shunt amplifiers, adjustable slew rate control, logic LDO, and a suite of protection features.  
Copyright © 2015–2019, Texas Instruments Incorporated  
45  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
8.2 Typical Application  
The following design is a common application of the DRV8305-Q1.  
PVDD  
4.7µF  
PVDD  
1 µF  
VCC  
2.2 µF  
0.047 µF 0.047 µF  
1 µF  
MCU  
PVDD  
PVDD  
PVDD  
1 µF  
VCC  
POWER  
GPIO  
GH_A  
SH_A  
GH_B  
SH_B  
GH_C  
SH_C  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
EN_GATE  
GH_A  
SH_A  
SL_A  
GL_A  
GL_B  
SL_B  
SH_B  
GH_B  
GH_C  
SH_C  
SL_C  
GL_C  
GH_A  
SH_A  
SL_A  
GL_A  
GL_B  
SL_B  
SH_B  
GH_B  
GH_C  
SH_C  
SL_C  
GL_C  
VCC  
VCC  
VCC  
2
3
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
nFAULT  
nSCS  
SDI  
PWR_PAD (0) - GND  
PWM  
4
5
VCC  
GL_A  
GL_B  
GL_C  
6
DRV8305  
7
10 k  
SL_A  
SN1  
SL_B  
SN2  
SL_C  
SN3  
8
GPIO  
SPI  
9
1000 pF  
SP1  
1000 pF  
SP2  
1000 pF  
SP3  
10  
11  
12  
SDO  
SCLK  
VCC  
PVDD  
10 kꢀ  
VCC  
GPIO  
1 µF  
+
+
PVDDSENSE  
PVDDSENSE  
ASENSE  
ADC  
BSENSE  
CSENSE  
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. Typical Application Schematic  
46  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
8.2.1 Design Requirements  
Table 21. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
REFERENCE  
PVDD  
MR  
VALUE  
12 V  
0.5 Ω  
Motor winding resistance  
Motor winding inductance  
Motor poles  
ML  
0.28 mH  
16 poles  
2000 RPM  
6
MP  
Motor rated RPM  
Number of MOSFETs switching  
Switching frequency  
IDRIVEP  
MRPM  
NSW  
fSW  
45 kHz  
50 mA  
60 mA  
36 nC  
IDRIVEP  
IDRIVEN  
Qg  
IDRIVEN  
MOSFET QG  
MOSFET QGD  
QGD  
9 nC  
MOSFET RDS(on)  
Target full-scale current  
Sense resistor  
RDS(on)  
IMAX  
4.1 mΩ  
30 A  
RSENSE  
VDS_LVL  
VBIAS  
Gain  
0.005 Ω  
0.197 V  
1.65 V  
10 V/V  
VDS trip level  
Amplifier bias  
Amplifier gain  
8.2.2 Detailed Design Procedure  
8.2.2.1 Gate Drive Average Current  
The gate drive supply (VCP) of the DRV8305-Q1 is capable of delivering up to 30 mA (RMS) of current to the  
external power MOSFETs. The charge pump directly supplies the high-side N-channel MOSFETs and a 10-V  
LDO powered from VCP supplies the low-side N-channel MOSFETs. The designer can determine the  
approximate RMS load on the gate drive supply through the following equation.  
Gate Drive RMS Current = MOSFET Qg × Number of Switching MOSFETs × Switching Frequency  
(2)  
Example: 36 nC (QG) × 6 (NSW) × 45 kHz (fSW) = 9.72 mA  
Note that this is only a first-order approximation.  
8.2.2.2 MOSFET Slew Rates  
The rise and fall times of the external power MOSFET can be adjusted through the use of the DRV8305-Q1  
IDRIVE setting. A higher IDRIVE setting will charge the MOSFET gate more rapidly where a lower IDRIVE  
setting will charge the MOSFET gate more slowly. System testing requires fine tuning to the desired slew rate,  
but a rough first-order approximation can be calculated as shown in the following.  
MOSFET Slew Rate = MOSFET QGD / IDRIVE Setting  
(3)  
Example: 9 nC (QGD) / 50 mA (IDRIVEP) = 180 ns  
8.2.2.3 Overcurrent Protection  
The DRV8305-Q1 provides overcurrent protection for the external power MOSFETs through the use of VDS  
monitors for both the high-side and low-side MOSFETs. These are intended for protecting the MOSFET in  
overcurrent conditions and are not for precise current regulation.  
The overcurrent protection works by monitoring the VDS voltage drop of the external MOSFETs and comparing it  
against the internal VDS_LEVEL set through the SPI registers. The high-side VDS is measured across the  
VDRAIN and SH_X pins. The low-side VDS is measured across the SH_X and SL_X pins. If the VDS voltage  
exceeds the VDS_LEVEL value, the DRV8305-Q1 will take action according to the VDS_MODE register.  
The overcurrent trip level can be determined with the MOSFET RDS(on) and the VDS_LEVEL setting.  
Overcurrent Trip = VDS Level (VDS_LVL) / MOSFET RDS(on) (RDS(on)  
)
(4)  
47  
Copyright © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
Example: 0.197 V (VDS_LVL) / 4.1 m(RDS(ON)) = 48 A  
8.2.2.4 Current Sense Amplifiers  
The DRV8305-Q1 provides three bidirectional low-side current shunt amplifiers. These can be used to sense the  
current flowing through each half-bridge. If individual half-bridge sensing is not required, a single current shunt  
amplifier can be used to measure the sum of the half-bridge current. Use this simple procedure to correctly  
configure the current shunt amplifiers.  
1. Determine the peak current that the motor will demand (IMAX). This demand depends on the motor  
parameters and the application requirements. IMAX in this example is 14 A.  
2. Determine the available voltage output range for the current shunt amplifiers. This will be the ± voltage  
around the amplifier bias voltage (VBIAS). In this case VBIAS = 1.65 V and a valid output voltage is 0 to 3.3  
V. This gives an output range of ±1.65 V.  
3. Determine the sense resistor value and amplifier gain settings. The sense resistor value and amplifier gain  
have common tradeoffs. The larger the sense resistor value, the better the resolution of the half-bridge  
current. This comes at the cost of additional power dissipated from the sense resistor. A larger gain value  
allows for the use of a smaller resolution, but at the cost of increased noise in the output signal and a longer  
settling time. This example uses a 5-msense resistor and the minimum gain setting of the DRV8305-Q1  
(10 V/V). These values allow the current shunt amplifiers to measure ±33 A across the sense resistor.  
8.2.3 VREG Reference Voltage Input (DRV8305N)  
For the DRV8305N, the VREG pin is used for a reference voltage of current sense amplifier and SDO pullup as  
described in VREG: Voltage Regulator Output. The internal LDO is disabled, but the LDO physically exists in the  
device, and there is a current path from the VREG pin to the PVDD pin through the internal LDO. The reference  
current specified in the data sheet flows to the device if PVDD voltage (VPVDD) is higher than VREG pin voltage  
(VVREG). In case VVREG is higher than VPVDD during power up/down sequence, TI recommends to limit the current  
by adding a resistor to VREG pin so that the current does not exceed 50 mA. As shown in Figure 19, a 330-Ω  
resistor helps limit the current to approximately 15 mA when VVREG = 5 V and VPVDD = 0 V. For VVREG = 3.3 V, TI  
recommends to use 220 Ω.  
VPVDD < VVREG at  
power up/down  
VPVDD  
PVDD  
DRV8305N  
internal LDO  
AVDD  
Resistor to  
limit current  
disabled  
330  
VREG  
VVREG  
Power Supply IC  
Current Sense  
SOx  
1 F  
SDO  
Figure 19. VREG Reference Voltage Input  
48  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
8.2.4 Application Curves  
Figure 20. Gate Drive 20% Duty Cycle  
Figure 21. Gate Drive 80% Duty Cycle  
Figure 22. Motor Spinning 1000 RPM  
Figure 23. Motor Spinning 2000 RPM  
Copyright © 2015–2019, Texas Instruments Incorporated  
49  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
9.1 Power Supply Consideration in Generator Mode  
When the motor shaft of BLDC or PMSM motor is turned by an external force, the motor windings will generate a  
voltage on the motor inputs. This condition is known as generator mode or motor back-drive. In the generator  
mode, a positive voltage can be observed on SHx pins of the device. If there is a switch between VDRAIN and  
PVDD (SWVDRAIN in Figure 24 ), and the following conditions exist in the system, the absolute maximum voltage  
of VCPH with respect to PVDD must be reviewed:  
Generator mode  
SWVDRAIN is off  
PVDD and VCPH are low voltage (for example, PVDD = 0 V)  
If SHx voltage (VSHx) exceeds the VCPH voltage, the VCPH voltage starts following VSHx because of the device  
internal diodes D1 and D2 (or D3). If the VCPH-PVDD voltage exceeds the absolute maximum voltage of  
DRV8305-Q1, the ESD diode D4 starts conducting, and results in a big current from SHx to PVDD through the  
diodes D2, D1, and D4. To avoid this condition, TI recommends to add an external diode DVDRAIN_PVDD between  
VDRAIN and PVDD.  
SWVDRAIN  
12-V Battery  
Optional  
PVDD  
VCPH  
DVDRAIN_PVDD  
DRV8305-Q1  
ESD  
VDRAIN  
D4  
D1  
GHx  
Level  
shifter  
INHx  
external  
force  
D2  
D3  
SHx  
VSHx  
M
VCP_LSD  
GLx  
SLx  
Level  
shifter  
INLx  
GND  
Figure 24. Power Supply Consideration in Generator Mode  
9.2 Bulk Capacitance  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors, including the:  
Highest current required by the motor system  
Power supply’s capacitance and ability to source or sink current  
50  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
Bulk Capacitance (continued)  
Amount of parasitic inductance between the power supply and motor system  
Acceptable voltage ripple  
Type of motor used (brushed DC, brushless DC, stepper)  
Motor braking method  
The inductance between the power supply and motor drive system will limit the rate that current can change from  
the power supply. If the local bulk capacitance is too small, the system will respond to excessive current  
demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor  
voltage remains stable and high current can be quickly supplied.  
The data sheet generally provides a recommended value, but system-level testing is required to determine the  
appropriate-sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
Figure 25. Example Setup of Motor Drive System With External Power Supply  
The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases  
when the motor transfers energy to the supply.  
Copyright © 2015–2019, Texas Instruments Incorporated  
51  
DRV8305-Q1  
ZHCSF68D MAY 2015REVISED JULY 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Use the following layout recommendations when designing a PCB for the DRV8305-Q1.  
The DVDD and AVDD 1-μF bypass capacitors should connect directly to the adjacent GND pin to minimize  
loop impedance for the bypass capacitor.  
The CP1 and CP2 0.047-μF flying capacitors should be placed directly next to the DRV8305-Q1 charge pump  
pins.  
The VCPH 2.2-μF and VCP_LSD 1-μF bypass capacitors should be placed close to their corresponding pins  
with a direct path back to the DRV8305-Q1 PVDD for VCPH and GND for VCP_LSD.  
The PVDD 4.7-μF bypass capacitor should be placed as close as possible to the DRV8305-Q1 PVDD supply  
pin.  
Use the proper footprint as shown in the mechanical drawing.  
Minimize the loop length for the high-side and low-side gate drivers. The high-side loop is from the DRV8305-  
Q1 GH_X to the power MOSFET and returns through SH_X. The low-side loop is from the DRV8305-Q1  
GL_X to the power MOSFET and returns through SL_X.  
The VDRAIN pin is used to sense the DRAIN voltage of the high-side MOSFETs for the VDS overcurrent  
monitors. It should route through the 100-series resistor directly to the MOSFET DRAIN, ideally at the  
midpoint of the half-bridge connections in order to get the most accurate sense point.  
10.2 Layout Example  
PVDD  
4.7 µF  
PVDD  
2.2 µF  
100  
1 µF  
VCC  
0.047 µF  
0.047 µF  
1 µF  
D
D
D
D
G
S
S
S
1 µF  
OUTA  
OUTB  
OUTC  
S
S
S
G
D
D
D
D
5 mꢀ  
5 mꢀ  
5 mꢀ  
1
2
3
4
5
6
7
8
9
EN_GATE  
INHA  
GH_A 36  
SH_A 35  
SL_A 34  
GL_A 33  
GL_B 32  
SL_B 31  
SH_B 30  
GH_B 29  
GH_C 28  
SH_C 27  
SL_C 26  
GL_C 25  
INLA  
PWR_PAD (0) - GND  
INHB  
D
D
D
D
G
S
S
S
INLB  
VCC  
INHC  
DRV8305  
10 kꢀ  
INLC  
nFAULT  
nSCS  
S
S
S
G
D
D
D
D
10 SDI  
11 SDO  
12 SCLK  
D
D
D
D
G
S
S
S
VCC  
10 kꢀ  
1 µF  
S
S
S
G
D
D
D
D
Legend  
Top Layer  
Via  
Copyright © 2016, Texas Instruments Incorporated  
Figure 26. Layout Recommendation  
52  
版权 © 2015–2019, Texas Instruments Incorporated  
DRV8305-Q1  
www.ti.com.cn  
ZHCSF68D MAY 2015REVISED JULY 2019  
11 器件和文档支持  
11.1 文档支持  
请参见以下文档了解详细信息。  
德州仪器 (TI)《汽车 12V 200W (20A) BLDC 电机驱动器参考设计》  
德州仪器 (TI)《汽车两轴电动座椅驱动器参考设计》  
德州仪器 (TI)PowerPAD™ 热增强型封装》应用报告  
德州仪器 (TI)PowerPAD™ 速成》应用报告  
德州仪器 (TI)《使用 MSP430 的传感器式三相 BLDC 电机控制》应用报告  
德州仪器 (TI)《了解 TI 电机栅极驱动器中的 IDRIVE TDRIVE应用报告  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2019, Texas Instruments Incorporated  
53  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV83053QPHPQ1  
DRV83053QPHPRQ1  
DRV83055QPHPQ1  
DRV83055QPHPRQ1  
DRV8305NEPHPQ1  
DRV8305NEPHPRQ1  
DRV8305NQPHPQ1  
DRV8305NQPHPRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
PHP  
PHP  
PHP  
PHP  
PHP  
PHP  
PHP  
PHP  
48  
48  
48  
48  
48  
48  
48  
48  
250  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 150  
-40 to 150  
-40 to 125  
-40 to 125  
DRV83053Q  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
DRV83053Q  
DRV83055Q  
DRV83055Q  
DRV8305NE  
DRV8305NE  
DRV8305NQ  
DRV8305NQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV83053QPHPRQ1  
DRV83055QPHPRQ1  
DRV8305NEPHPRQ1  
DRV8305NQPHPRQ1  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
PHP  
PHP  
PHP  
PHP  
48  
48  
48  
48  
1000  
1000  
1000  
1000  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
9.6  
9.6  
9.6  
9.6  
9.6  
9.6  
9.6  
9.6  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV83053QPHPRQ1  
DRV83055QPHPRQ1  
DRV8305NEPHPRQ1  
DRV8305NQPHPRQ1  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
PHP  
PHP  
PHP  
PHP  
48  
48  
48  
48  
1000  
1000  
1000  
1000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
DRV83053QPHPQ1  
DRV83055QPHPQ1  
DRV8305NEPHPQ1  
DRV8305NQPHPQ1  
PHP  
PHP  
PHP  
PHP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
48  
48  
48  
48  
250  
250  
250  
250  
10 x 25  
10 x 25  
10 x 25  
10 x 25  
150  
150  
150  
150  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
11.1 11.25  
11.1 11.25  
11.1 11.25  
11.1 11.25  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
PHP 48  
7 x 7, 0.5 mm pitch  
TQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226443/A  
www.ti.com  
PACKAGE OUTLINE  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
7.2  
6.8  
B
NOTE 3  
37  
48  
PIN 1 ID  
1
36  
7.2  
6.8  
9.2  
TYP  
8.8  
NOTE 3  
12  
25  
13  
24  
A
0.27  
48X  
44X 0.5  
0.17  
0.08  
C A B  
4X 5.5  
1.2 MAX  
C
SEATING PLANE  
SEE DETAIL A  
0.08  
(0.13)  
TYP  
13  
24  
12  
25  
0.25  
(1)  
GAGE PLANE  
5.17  
3.89  
49  
0.75  
0.45  
0.15  
0.05  
0 -7  
A
16  
36  
DETAIL A  
TYPICAL  
1
48  
37  
5.17  
3.89  
4X (0.109) NOTE 5  
4225861/A 4/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
5. Feature may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
6.5)  
NOTE 10  
(5.17)  
SYMM  
48  
37  
SOLDER MASK  
DEFINED PAD  
48X (1.6)  
1
36  
48X (0.3)  
SYMM  
49  
(5.17)  
(1.1 TYP)  
(8.5)  
44X (0.5)  
12  
25  
(R0.05) TYP  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
13  
24  
(1.1 TYP)  
SEE DETAILS  
(8.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4225861/A 4/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(5.17)  
BASED ON  
0.125 THICK STENCIL  
SEE TABLE FOR  
SYMM  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
48  
37  
48X (1.6)  
1
36  
48X (0.3)  
(8.5)  
(5.17)  
SYMM  
49  
BASED ON  
0.125 THICK  
STENCIL  
44X (0.5)  
12  
25  
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
24  
13  
(8.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
5.78 X 5.78  
5.17 X 5.17 (SHOWN)  
4.72 X 4.72  
0.125  
0.150  
0.175  
4.37 X 4.37  
4225861/A 4/2020  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV8305NEPHPRQ1

汽车类 12V 电池三相智能栅极驱动器(0 级和 1 级) | PHP | 48 | -40 to 150
TI

DRV8305NPHP

具有电流分流放大器和 SPI 的最大 45V 三相智能栅极驱动器 | PHP | 48 | -40 to 125
TI

DRV8305NPHPR

具有电流分流放大器和 SPI 的最大 45V 三相智能栅极驱动器 | PHP | 48 | -40 to 125
TI

DRV8305NQPHPQ1

汽车类 12V 电池三相智能栅极驱动器(0 级和 1 级) | PHP | 48 | -40 to 125
TI

DRV8305NQPHPRQ1

汽车类 12V 电池三相智能栅极驱动器(0 级和 1 级) | PHP | 48 | -40 to 125
TI

DRV8306

最大 40V 含传感器梯形控制三相 BLDC 智能栅极驱动器
TI

DRV8306HRSMR

最大 40V 含传感器梯形控制三相 BLDC 智能栅极驱动器 | RSM | 32 | -40 to 125
TI

DRV8306HRSMT

最大 40V 含传感器梯形控制三相 BLDC 智能栅极驱动器 | RSM | 32 | -40 to 125
TI

DRV8308

无刷直流电机控制器
TI

DRV8308RHAR

DRV8308 Brushless DC Motor Controller
TI

DRV8308RHAT

DRV8308 Brushless DC Motor Controller
TI

DRV8308_15

DRV8308 Brushless DC Motor Controller
TI